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ABSTRACT 
 
There is need to continuously monitor the conditions of complex, expensive and 
process-critical machinery in order to detect its incipient breakdown as well as to 
ensure its high performance and operating safety. Depending on the application, 
several techniques are available for monitoring the condition of a machine. Vibration 
monitoring of rotating machinery is considered in this paper so as develop a self-
diagnosis tool for monitoring machines’ conditions. To achieve this a vibration fault 
simulation rig (VFSR) is designed and constructed so as to simulate and analyze some 
of the most common vibration signals encountered in rotating machinery. Vibration 
data are collected from the piezoelectric accelerometers placed at locations that 
provide rigid vibration transmission to them. Both normal and fault signals are 
analyzed using the singular value decomposition (SVD) algorithm so as to compute 
the parameters of the auto regressive moving average (ARMA) models. Machine 
condition monitoring is then based on the AR or ARMA spectra so as to overcome 
some of the limitations of the fast Fourier transform (FFT) techniques. Furthermore 
the estimated AR model parameters and the distribution of the singular values can be 
used in conjunction with the spectral peaks in making comparison between healthy 
and faulty conditions. Different fault conditions have been successfully simulated and 
analyzed using the VFSR in this paper. Results of analysis clearly indicate that this 
method of analysis can be further developed and used for self-diagnosis, predictive 
maintenance and intelligent-based monitoring. 
  
 
1. INTRODUCTION 
 
Condition monitoring of machinery is essential to prolong effective machine life, 
achieve the overall system reliability, minimize maintenance cost and ensure 
consistent and desirable product. This procedure can often allow the early detection of 
potentially catastrophic faults that may be very expensive to repair. It also allows the 
implementation of condition based maintenance instead of a failure based one. 
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Consequently, a significant reduction in down tool time and savings can be realized 
when condition monitoring and maintenance are cooperatively used on an operating 
plant.  
 
Several techniques that vary from simple visual inspection to complex vibration 
measurements or oil debris analysis are presently available for monitoring the 
condition of machinery [1, 2]. Visual inspection is relatively inexpensive and easy to 
implement but prone to subjective error. On the other hand, vibration analysis offers a 
quantitative but objective procedure for evaluating the whole state of the machine. 
This technique is therefore popularly used for machine monitoring and diagnosis. It is 
especially applicable to reciprocating and rotating machinery since the moving parts 
generate vibration [3].  
 
The spectral content of these vibrations will depend upon the input energy and the 
resonant frequencies of the machine. A change in the machine condition, as a result of 
wear or damage, will also cause a change in the resonant frequencies of the machine 
and consequently the vibrations will change. It is the change of vibration spectrum 
and the amplitude of vibration as a result of fault development that makes this method 
particularly suitable for machine monitoring and fault diagnosis [3].  
 
The vibratory waveforms picked up by a sensor and used for diagnostics can be 
processed by many techniques. The root mean square (RMS) analysis [1] measures 
the power content of the vibration. Though this method yields simple value, it can be 
very effective in detecting a major out-of-balance in a rotating system. However, this 
technique is only appropriate for the analysis of single sinusoid waveform. Time-
averaged analysis is used to process stochastic signal as most mechanical systems 
tend to produce a slightly varied signal with each rotation. The major disadvantage of 
this approach is the possibility of any changes due to a fault developing. The Fourier 
transform technique, often referred to as FFT, is the most commonly used procedure 
for analyzing vibration signals. This is particularly suitable for monitoring machine 
parts that produce a spectrum of frequencies. For example bearings have many 
frequencies owing to the different diameters of the rolling elements. The waterfall 
plot obtained from this analysis shows the slight variation of the peak for each 
frequency, but should fatigue begin to set in, or major wear, some of the frequency 
peaks will alter significantly. The Fourier transform technique also leads to the side 
bands and harmonics detection. Side-band analysis is used in the case where two 
frequencies are affected by the same fault; side bands are where two peaks are 
generated at equal distance either side of the major peak [3]. Rotating machinery does 
not generate a pure tone due to its shape and construction, that is, subharmonics at 
one-half the fundamental frequency are generated with a two-stage bearing mounting. 
A fault developing will cause the ratio of the levels of the harmonics to change. 
Another frequency-domain method that has been widely used is the cepstral analysis 
[2-4]. This is the logarithm processing of the transformed signal. This approach has 
been able to detect a fault developing in a situation where others may fail. 
 
This paper considers the development of self-diagnosis equipment for machine 
condition monitoring using digital signal processing techniques. The motivation for 
this is the need to develop intelligent-based monitoring and fault diagnosis system for 
assessing the condition of operating equipment. A vibration fault simulation rig 
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(VFSR) has been designed and constructed so as to simulate most commonly occur 
vibration signals in rotating machinery. Piezoelectric accelerometers are placed on 
this rig at locations closest to the sources of vibrations of interest. An ARMA model is 
then fitted to both the normal and simulated fault signals so as to compute the 
vibration spectra. The parameters of the AR part of this model are obtained by solving 
the Yule-Walker equations using the SVD algorithm. This model-based approach of 
condition monitoring is proposed here in order to overcome some of the limitations of 
the FFT techniques. First this method produces high-resolution estimates of the 
frequencies. This is particularly useful in analyzing vibration signals from machines 
such as gears, bearings and electric motors where closely spaced multi-frequencies 
with possible side bands are encountered. Secondly, the estimated model parameters 
and the distribution of the singular values obtained from the SVD analysis of either 
the correlation or data matrix can be used in conjunction with the spectral peaks in 
making comparison between healthy and faulty conditions. That is, the signal 
modeling approach offers alternative procedures of evaluating the state of machines 
through the singular values, which are found to differ in magnitudes depending on the 
type of faults Results of analysis show that the proposed methods can produce 
smoothed and high-resolution spectral estimates of the vibration signals that can be 
useful for monitoring the state of machines and fault diagnosis. It also offers a 
spectral matching procedure whereby the model spectral estimates are compared to 
that of the FFT estimates, thereby making it possible to study the variation of the 
location and spectral peaks with the machine condition. 
 
 
2. EXPERIMENTAL RIG [5] 
 
A VFSR has been designed and fabricated in order to simulate some of the most 
commonly found faults in rotating machinery. The following faults are simulated: 
mis-alignment (parallel and angular), imbalance, mechanical looseness, bent shaft, 
bearing fault, gear fault, eccentric pulley, electric motor fault, vane passing frequency, 
missing blade. The rig consists of the following components: 
 
a) Three stainless steel shafts of 10mm diameter are fabricated. Two are good shaft 

and the remaining one is a bent shaft for simulating bent shaft fault.  
b) Rotor disc is designed to simulate imbalance in rotating shaft without stopping it. 

A steel ball of weight 8.5 gram will be dropped into the rotor disc and trapped in 
hole  inside the disc while rotating. The round perplex cover is to prevent the steel 
ball from falling out during fault simulation. 

c) Balancing disc is used to study single plane and dual plane balancing.  
d) A stainless steel flywheel is designed for use together with bent shaft system. It 

acts as load and this increases the magnitude of the simulating fault vibration. 
e) A total of five aluminum pulleys such as, shaft pulley eccentric, pulley and pinion 

pulley with different diameters are fabricated.   
f) Fan blade to simulate vane passing frequency and missing blade. All blades in the 

fan  are adjustable so as to create different slanting angle of blades. The blades are 
long enough to apply aerodynamic force on the wind block when it rotates. This 
will enable the accelerometer to pickup strong (actual) vibration signal. 

g) The bearing used here comes together with detachable aluminum pillow block. 
One of the bearings is grinded at outer race to create the bearing outer race fault. 
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h) The gearbox is designed for gear fault simulation. It has two pinions and one gear. 
The ratio of the matching gears is 30:20.  The gear acts as driver whilst the pinion 
acts as driven gear.  One of the two pinions is damaged to simulate gear fault. The 
driver gear is made to be adjustable, that is it can change the matching from the 
good gear to a bad one on the driven shaft. This is accomplished by shifting the 
gear lever to a different position. 

 
Other components produced for this rig are wind block, flexible coupling, bearing 
stand, track, motor base plate, and sensor mounting stud, see Figure 1 and 2 for the 
location of the above components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Position Faults to detect 
 

MA1 Electric motor and eccentric pulley 
BA1 Imbalance, Parallel misalignment, Angular 

misalignment, Mechanical looseness, Bent shaft and 
Bearing fault 

BA2 Missing blade 
WBA Vane passing frequency 
GBA Gear fault 

 
Table 1: Accelerometer mounting position and the detecting faults. 

 
 

Motor
MA1

GBA

BA1 BA2

WBA

 

Figure 1 : Accelerometer mounting 
positions 
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3. VIBRATION DATA ANALYSIS 
 
 Most machines produce complex vibratory signals that would usually require 
advanced signal processing procedures before information that containing their 
conditions can be revealed. Several techniques [1-8] have been suggested in the 
literature and these can be divided to time- and frequency-domain techniques. Only 
the frequency-domain techniques are considered in this paper. Amongst these 
techniques, the FFT method is the most widely used as this can be found in many 
diagnostic equipment. Model-based methods of spectral analysis that can either 
overcome some of the limitations of the FFT techniques or provide more information 
about conditions of machine under investigation are considered here. The data 
acquired from the sensors are analyzed using the SVD algorithm since it is 
numerically stable and its singular values can also be used in evaluating the condition 
of the machine.  
 
Fitting an ARMA (p, q) model to the measured sensor data, x(n) leads to the 
difference equation 
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where ak and bk represent respectively the coefficients of the AR and MA model 
respectively; p and q are the respective AR and MA model order while ε(n) denotes 
the white Gaussian noise with variance σε

2. The power spectral density associated 
with this model is given by 
 
 
 
 
 

 

Figure  2 : The vibration analysis instruments and the 
VFSR 
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where A(ω) and B(ω) are respectively the discrete Fourier transform of ak and bk 
evaluated on the unit circle.  
The main problem in using (2) for estimating the power spectrum is the need to 
accurately compute the ARMA model parameters from the measured data. One of the 
most effective techniques for estimating these model parameters is by solving the 
extended higher order Yule-Walker equation (HOYWE) [10-13]. Multiplying 
equation (1) by x(k-m) and taking the expectation yields 
 

 
 
where Rx(m) is the auto-correlation function of x(k) and h(m) is the impulse response 
function of the ARMA model. Because of the nonlinear relationship between h(k), ak, 
and bk in (3), some numerical problems are often encountered in obtaining the optimal 
values of the ARMA model parameters. However since the MA part does not 
influence (3) after lag q, a two-stage procedure is often employed in solving this 
equation. Thus, considering the AR part of (3) leads to the HOYWE 

 
In practice both p and q are unknown prior to analysis and Rx(m) has to be estimated 
from the noisy data, hence this equation may not hold exactly. As pointed out by 
many authors [13, 14] using overdetermined set of HOYWE in (4) often yields much 
more accurate AR parameter estimates. Furthermore it is advocated that (4) should be 
solved using the SVD algorithm as this provides consistent and accurate estimates of 
the AR coefficients with minimal numerical problems. For this analysis (4) is 
expressed in a matrix form as Ra = e with R having elements r(i,j) = Rx(qe+1+i-j), 1 ≤ 
i ≤ t; 1 ≤ j ≤ pe+1.  
 
Both pe and qe are the guess values of the AR and MA model order respectively and e 
is a t x 1 error vector with t > pe.  
To solve for the AR parameters, the matrix R is decomposed according to R = UΣΣΣΣVT, 
where U and V are t × (pe+1) and (pe+1) × (pe+1) unitary matrices respectively, T 
denotes a transpose operation and Σ is a diagonal matrix having diagonal elements 
(σ1, σ2, ……σpe+1). These diagonal elements are called singular values and are 
arranged so that σ1 ≥ σ2 ≥ . . . . ≥ σpe+1 > 0. For noiseless data, only the first p singular 
values will be nonzero so that σM+1 = σM+2 = . . . . = σpe+1 = 0. The AR parameters are 
then estimated using the Moore-Penrose pseudo-inversion [13], that is, a = -R#r, 
where r corresponds to the first column of R. The AR model order is determined from 
the magnitude of the ratio of the singular values, σk/σk+1, that is, p is selected as the 
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point when this ratio suddenly becomes large. For this application, this may require a 
lot of trials before the correct value of p is obtained. 
 
The SVD analysis of the data acquired from the sensors is expected to provide the 
state of the running machines by examining the changes in the estimated AR 
coefficients a, the distribution and magnitude of the singular values. The main 
drawback of this approach is the tendency to produce smooth spectral estimates of the 
acquired data making it almost impossible to study the variation of the location and 
spectral peaks with respect both healthy and fault conditions. 
Another method that is based on forward-backward linear prediction [10] is 
considered and used here to overcome the limitation of the above technique. The 
vibration data, x(n) containing M harmonics can be described by the forward-
backward linear prediction equations of the form 
                  A a  =   e                                                                              (5) 
where 

                 A =  z
z

f

b







 

and the elements of  zf and zb are generated according to  
                  zf  =  x( p +1+ i - j ); 1 ≤ i ≤ N-1, 
                  zb =  x( i + j - 1 );      1 ≤ i ≤ N-1, 
for 1 ≤ j ≤ p+1. Here a is a (p+1) x 1 vector having elements [1, a1,......., ap] whereas e 
is the (2N-p) x 1 vector that corresponds to the prediction error; p is the order of the 
prediction filter. This technique can produce high-resolution spectral estimates of x(n) 
provided a high model order is used in the above analysis.  
Since matrix A is noisy, it is processed in the same manner as R after which the 
prediction error coefficient ak is estimated. To account for the nonstationary noise in 
the data, x[n] is fed into the prediction error filter so as to generate the transient error 
sequence [10] 

e[n] =
k

p

=
∑

1

ak x[n-k] ; 0 ≤ n ≤ p-1 

Once ak and e[n] are obtained then the power spectral density of x[n] is computed 
from 
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where  E(ω) and A(ω) are respectively the discrete Fourier transform of e[n] and  ak. 
 
 
4.  SIMULATION RESULTS 
 
The results of the simulated faults using Vibration Faults Simulation Rig are 
discussed here. Vibration data are acquired from the VRFS using the LabVIEW data 
acquisition system [15]. The data are prefiltered using a lowpass Butterworth filter 
whose cut-off frequency is selected according to the fault to be investigated. 
Similarly, the acquired analog signal is converted in to a digital form using a variable 
sampling rate that depends on the type of faults to be examined. The faults considered 
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are those commonly found in any rotating machinery. The results of fault vibration 
spectral obtained here are compared with those obtained from a good system. Both 
results are then compared with the standard vibration diagnosis guides. Some of the 
fault analysis results obtained in this study are subsequently discussed.   
 
Bearing wear always manifests by presence of whole series of running speed 
harmonics that may be up to 10 or 20 [5,6]. The initiation and progression of flaws on 
rolling element bearings are also studied here. Component flaws generate specific 
defect frequencies calculated from the following equations [5]: 

Defect in the outer race 



 −= φcos1

2 Pd
Bdrps  

Rolling element defect =
















− φ2

2

cos1)(
2 Pd

Bdrps
Bd

Pd   

 
In this experiment the number of balls, N = 7, the ball diameter, Bd = 4.8 mm, the 
pitch diameter, Pd = 18 mm, and the contact angle φ = 0. The running speed of the 
shaft is 1800 rpm. Using these data in the above equations yield outer frequency of 77 
Hz, ball spin frequency of 52 Hz, and inner race frequency of 133 Hz. The harmonics 
obtained as a result of the simulation studies are shown in Figure 3. The spectral 
analysis shows indeed the bearing has outer race defect frequency of about 76 Hz with 
its harmonic at 153 Hz. It is observed that the AR model provides smoothed spectral 
estimates as compared to the results obtained using the FFT algorithm.  
 
The result for the gear fault analysis is shown in Figure 4. Since the gear and the 
pinion have 30 teeth and 20 teeth respectively, the teeth ratio is 1.5. Consequently the 
gear mesh frequency (GMF) is calculated to be 600 Hz. The pinion mesh frequency is 
also 600 Hz. The good gear system has low amplitude at the GMF and its sidebands. 
However, as shown in Figure 5, the amplitude is high at both GMF and its sidebands 
for bad or worn-out gear system. It should be noted that high side band also indicates 
eccentricity, backlash or non-parallel shafts, which allow the rotation of the gear to 
“modulate” at running speed of others. 
 
A mechanical looseness fault is simulated by mounting an accelerometer on the 
bearing pillow block close to the flexible coupling of the rig. The acquired data are 
then analyzed using the SVD algorithm. The 1 × rpm is observed to increase 
significantly from its initial value, that is, from 0.0071g to 0.1172 g which 
corresponds to about 16 times increment. The 2 × rpm vibration level also suffers 
about ten times increment. Due to the mechanical looseness fault, harmonics of 
running speed frequency 30 Hz shows up in the vibration signatures as shown in 
Figure 6.  
 
 
6. CONCLUSION 
 
The design and construction of a test rig for simulating some commonly encountered 
faults in rotating machinery is presented in this paper. Spectral matching procedures 
whereby the AR or ARMA model spectra are compared to those of the FFT estimates 
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are suggested in this paper. Furthermore the use of the SVD algorithm for computing 
the AR model parameters is advocated as this procedure can also provide alternative 
ways of monitoring the state of machines. Though the proposed method shows a lot of 
potential in its ability to detect harmonics especially in the analysis of noisy data, a lot 
of efforts are still needed in realizing the goal of this project. Further research work to 
improve the above results is currently under investigation. 
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Figure 3: Comparison of vibration spectra due to bearing fault; 
(solid) - FFT estimates, (dotted) - AR spectral estimates 

0 200 400 600 800 1000 1200
0

50

100

150

200

250

Frequency

A
m

pl
itu

de

667.742

1016.13

869.585

1002.3

Figure 4: Comparison of vibration spectra due to gear fault; 
(solid) - FFT estimates, (dotted) - AR spectral estimates 
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Figure 5: Comparison of vibration spectra for healthy (solid) and faulty 
(dotted) gear using ARMA modeling technique 
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Figure 6: Comparison of vibration spectra due to mechanical 
looseness; (solid) - FFT estimates, (dotted) - ARMA spectra 
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