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Abstract

The creation of planning domain models for automated planning is chal-

lenging, especially when non-technical domain experts are required for

the creation of content. This is particularly true for the creation of do-

main models for Interactive Storytelling systems and games. AI plan-

ning can be used for the task of narrative generation and this could be

utilised in such systems. Therefore a tool supported approach to the

creation of narrative planning models that alleviates the requirement of

specifc domain modelling expertise and automates parts of the process

would make narrative generation a more accessible technology in this

context.

The aim of this thesis was to develop a semi-automated approach

to the creation of narrative planning domain models that automates the

process of domain modelling and is accessible to non-technical authors.

The approach taken aimed to use narrative synopses as an input for

which a planning domain model can be acquired from.

The contribution of this thesis is a novel approach for the acquisition

of planning domain models from narrative synopses. The presented ap-

proach extracts the required planning information that is described by

an input synopsis and from this automatically constructs a planning do-

main model that is representative of this information. Automated meth-

ods have been developed for the extraction of planning information that

utilise having an author “in the loop” and exploit the contextual infor-

mation available. A method for the automated construction of a plan-

ning domain model has been presented that is capable of reproducing

the original input. This acquired planning model can then be gener-

alised by an author using the default narrative control mechanisms that

the model provides to produce a model capable of generating new story

variants. The approach was implemented in a prototype system and

evaluated to demonstrate the effectiveness of the approach.
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Chapter 1

Introduction

Planning is the reasoning behind action. The process of planning is the delib-

eration, selection and ordering of actions, based upon anticipating the outcome

of each action and how this in turn changes the state of the world. Planning

is a task that requires a developed understanding of the environments and ob-

jects involved. It requires an ability to rationalise over the relationships that exist

within the world and quickly formulate solutions that achieve a goal, alongside

an ability to adapt when confronted with unforeseen changes.

The motivation for automated planning is largely a very practical one. By

creating information processing tools that provide effcient planning resources,

many complex tasks such as large-scale management problems can be supported

and improved by planning. There are also theoretical motivations for conducting

research in the feld of automated planning. Planning is an important part of

rational behaviour. If one purpose of AI is to grasp the computational aspects of

intelligence, then understanding planning, the reasoning behind action, is a key

element of such a purpose.

1.1 Background and Motivation

In order to solve a planning problem computationally three things are required:

a formal defnition of the world; a defnition of the problem; and a planning al-

gorithm capable of solving it. Planning problems are modelled by separating

the problem into two parts; a problem domain and a specifc problem instance.

The domain defnes the world and the way in which it operates. The problem

instance then defnes the objects that exist in the world, the initial state, and the

1



Chapter 1. Introduction

goal criteria for that problem instance. The way in which a problem is described

can have signifcant implications on the output plans that are produced and ulti-

mately how suitable they will be. Given the importance of correctly modelling

planning problems, the authoring of such planning models is a challenging exer-

cise that requires time and planning domain modelling expertise.

Automated planning can be applied to a variety of tasks, one of which is

the generation of narratives. Narratives can be viewed as a sequence of actions,

and thus AI planning can be used to determine such sequences. AI planning has

been widely used for generating narratives in Interactive Storytelling (IS) sys-

tems (e.g. Aylett et al. [4]; Riedl and Young [75]; Porteous et al. [68]). To date,

the modelling of these domain models has been handled manually: a common

strategy being to build up models via systematic consideration of alternatives

around a baseline plot [67]. Many prototype IS systems have sought inspira-

tion from existing narratives (e.g. Who’s afraid of Virginia Woolf? [51], and

Aladdin [75]).

Domain modelling for automated planning is challenging in general but is

further compounded when non-technical domain experts are required for the cre-

ation of content to populate the model. This is particularly true for the creation of

domain models for IS systems and games. Planning narratives for these types of

application are the focus of this work; however the same is true of applications in

other domains (e.g. requirements in engineering [21]). Therefore the motivation

of this work is to develop a tool supported approach to help reduce the burden of

creating planning domain models for narrative planning.

The work in this thesis seeks to develop a semi-automated route to authoring

a baseline plot from which variants can be built: taking a single natural language

plot synopsis as input and outputting a planning model. The automation of this

process could potentially reduce the time and expertise required to create nar-

rative planning models, which may in turn make AI planning a more accessible

technology for content creators.

1.2 Aims and Contributions

This research aims to fnd a solution to the problem of automating parts of the

process for the acquisition of narrative planning domain models. The approach

taken in this work is that of using natural language synopses as an input source

2



Chapter 1. Introduction

that the required information can be acquired from. This work aims to fnd a

general solution that can be applied to all third-person synopses and in doing so

tackle the various challenging tasks that this non-trivial problem presents. One

of the research questions being answered is that of: can any third-person natural

language synopsis be used as a suitable basis for domain model acquisition? One

of the key issues faced when learning domain models is the amount of informa-

tion required. Existing approaches either require a large number of plans to learn

from or complete descriptions of the state transitions that can occur. Natural lan-

guage synopses represent very challenging, unconstrained input to learn domain

models from, with little guaranteed regarding the information being described.

The contribution of this thesis is a novel approach to the acquisition of plan-

ning domain models from narrative synopses. The approach, referred to as Sto-

ryFramer, is comprised of a number of Natural Language Processing (NLP) and

Information Extraction (IE) techniques that are used to identify the narrative in-

formation being described in the natural language synopses. Methods are pre-

sented in this work that also exploit the contextual information regarding the

characters and objects that is available in this context when such information

can be used to increase the accuracy with which narrative information can be

identifed. The approach features a method for the automated construction of

narrative planning domain models that are representative of the information that

has been identifed in the input synopses. The planning domain models that are

constructed introduce control mechanisms that allow for the regeneration of the

original plot in addition to generation of new story variants.

This work refers to a creator of a narrative planning domain model as an

“author”. The semi-automated StoryFramer approach utilises having an author

“in the loop” and the role of the author can be defned as the fulflment of three

tasks: the validation of automated processes; providing additional information;

and the making of preferential choices. No requirement of planning domain

modelling expertise is needed for the completion of these tasks, in keeping with

the motivation to provide a tool supported approach to non-technical authors.

The contribution of this thesis is a semi-automated approach to the acquisi-

tion of planning domain models from narrative synopses. The approach features

the following:

• The identifcation of the mentioned objects in the synopses using a combi-

nation of NLP and IE techniques and the available contextual information.

3



Chapter 1. Introduction

• A novel sieve-based approach to the coreference resolution of pronouns

that utilises the available object information.

• The identifcation of the narrative events described by the synopses using

NLP techniques and the obtained information. A method for the identif-

cation of objects associated with each event is presented.

• The automated construction of planning domain models that are represen-

tative of the acquired narrative information.

The StoryFramer approach is implemented in a prototype system that incor-

porates these features and is used to evaluate the main contribution of the thesis.

Evaluations are conducted to assess the overall approach and the individual con-

stituent components that were developed. A variety of synopses are used to test

the automated components of the approach against human-identifed results and

alternative methods. A worked example has been provided and serves as a proof

of concept, demonstrating the approach from start to fnish: taking a NL synopsis

and outputting a planning model capable of generating new story variants.

Our working hypothesis is that the StoryFramer approach would reduce the

burden of authoring narrative planning domain models. Automating parts of the

process by acquiring narrative information from synopses and constructing plan-

ning domains models representative of this information would reduce the input

required of an author. A semi-automated approach would allow for the identifed

narrative information to be validated, ensuring the information acquired is accu-

rate. The approach would reduce the level of planning expertise that the creation

of planning domain models requires, allowing for non-experts to produce narra-

tive planning domain models. It is also hypothesised that the available contextual

information and the input of an author could be utilised in combination with NLP

and IE techniques to improve the accuracy with which narrative information can

be identifed from natural language synopses.

The results of the evaluations presented in this thesis validate these hypothe-

ses by demonstrating that the approach is capable of acquiring planning domain

models from natural language synopses. The planning domain models that are

constructed from the acquired narrative information are shown to be representa-

tive of the input synopses and capable of both: the regeneration of the original

plot; and the generation of new story variants. The methods presented for the

identifcation of narrative information are shown to achieve very positive results,
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displaying signifcant performance increases over alternative methods through

the exploitation of available contextual information and utilising an author’s in-

put.

1.3 Thesis Structure

This thesis has been organised using the following structure:

Chapter 2 - Details background information and reviews current and previ-

ous work in: Automated Planning; Planning based Narrative Generation; Infor-

mation Extraction (IE) approaches for natural language; and domain authoring

tools.

Chapter 3 - Discusses the key problems that have to be addressed. Presents

an overview of StoryFramer, breaking the approach down into its constituent

components.

Chapter 4 - Presents an in-depth look into the preprocessing of input synopses.

Covering the identifcation of object mentions, the disambiguation and typing of

objects and the coreferencing of pronouns.

Chapter 5 - Presents the acquisition of a planning domain model from prepro-

cessed synopses. Detailing the identifcation of the described narrative informa-

tion and the construction of planning models representative of that information.

Chapter 6 - Presents a worked example demonstrating the approach using a

synopsis of The Jungle Book. Detailing every step of the approach: from input

synopsis to an output planning model.

Chapter 7 - Evaluates the constituent components of the approach and the over-

all accuracy with which narrative information is extracted. Discusses the level of

authorial input required throughout the approach.

Chapter 8 - Reviews the work presented in this thesis and summarises the con-

tributions.
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Chapter 2

Background

This chapter covers the main areas of interest for this thesis: Automated Plan-

ning, Planning Based Narrative Generation, Knowledge Engineering and Rep-

resentation in planning (how the information for planning can be stored and

methods of automating their creation) and extracting information from text using

Natural Language Processing. Overviews of each area are presented and relevant

related works are discussed.

2.1 Automated Planning

This section discusses how planning problems can be captured and represented

such that they can be solved computationally. The work presented in this thesis

concerns itself with the semi-automated acquisition of such representations and

therefore a fundamental understanding of the process is required.

2.1.1 Automating the Planning Process

In order to solve a planning problem computationally two things are required: a

formal defnition of a problem and the world; and a planning algorithm capable

of solving it. How the problem has been described can have implications on how

suitable the fnal output plans will be. For example, take a classic logistics prob-

lem like that shown in fgure 2.1; where by the task is that of delivering parcels

around a city to a number of locations. A defnition of this problem describes

the starting positions of all the parcels and delivery vans. It details where each

parcel is to be delivered to, but fails to capture any of the spatial relationships

between the locations. While a solution can be found, the delivery route isn’t
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Figure 2.1: A logistics planning example: The task of planning the most effcient

way to deliver parcels around a set of connected locations using delivery vans.

considered, meaning that the resulting plan might not be the most effcient solu-

tion to the given problem. This shows the importance of accurately describing

planning problems. The defnition and modelling of planning problems will be

discussed in detail in section 2.2.

Solving a Planning Problem

Given an initial state, a goal and a set of actions that effect the world, the role

of a planner is to fnd plans (sequences of actions) that satisfy the given prob-

lem. The task presented to planners is a search problem. The general planning

problem is PSPACE-hard [11], which means that solving the problem can be as

diffcult as fnding any other solvable solution within the same polynomial space.

This means that a method of exploring all the possible combinations of actions

becomes unfeasible very quickly as the space grows too large, thus research into

fnding more intelligent and effcient methods was required. Automated Planning

has become a large feld of research since Newell and Simon introduced their

GPS ‘General Problem Solver’ [59] in 1961. The more recent introduction of

the International Planning Competition (IPC) in 1998 [54] provided an incentive

for the progression of Automated Planning. Since then signifcant advancements

have been made regarding approaches to solving planning problems [39] [41] [8]

and the computation of planning algorithm heuristics [38] [35] [9].
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2.2 Modelling

To model a problem is to capture the dynamics of the problem space within a

formal representation. Since planning is concerned with the selection and or-

dering of actions that change the state of the problem space, a general model

for a dynamic system is required. Domain-independent (or classical) planning

in the tradition of STRIPS [25], UCPOP [63], Graphplan [7], HSP [8], FF [38]

and FD [35] aim to solve problems using only general algorithms rather than us-

ing domain-specifc methods. Domain-specifc specialised approaches certainly

have their uses and are highly successful in a number of application areas where

exploiting the specifcs of the domain is highly advantageous; such as motion

and manipulation planning in robotics [3] [46]. However, if the goal is to de-

sign an autonomous intelligent machine, limiting it’s deliberative capabilities to

a specifc area wouldn’t be satisfactory.

A domain-independent planner takes as input a problem specifcation along-

side knowledge about the given domain. These models have to convey the ac-

tions that can occur in an abstract and general fashion. The models can vary from

simplistic ones that only allow for a limited level of reasoning, to far more fex-

ible and expansive models that can capture and reason about more complex ac-

tions. Developing formal representations for automated planning has been a area

of research interest; and the problem has been modelled in a number of differ-

ing ways. STRIPS [25] was an automated planner and the same name was later

used to refer to the formal language of the inputs to this planner. The STRIPS

language is the base for most of the languages used for expressing automated

planning problems, these languages are known as action languages. PDDL [53]

is one such action language that was developed in an attempt to standardise plan-

ning languages. Newer versions of PDDL have been developed to expand the

expressiveness of the language (discussed further in Sectoin 2.2.3). The method

of solving a planning problem can also affect the way in which it should be mod-

elled. Methods such as SAT [40] and SAS+ [5] cast a planning problem into an

instance that can be solved as a satisfability problem. Such approaches are often

more suited towards a specifc subset of problems.
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2.2.1 Modelling State Transition Systems

State transition systems are a way of modelling dynamic systems. Here we defne

a restricted version of the model as there is no need for the consideration of

external events effecting the state of the world. The applications of interest for

this work are deterministic, with the world only being modifed as a direct result

of planned actions.

Defnition 2.2.1. A state transition system is a triple τ = (S, A, γ), where:

• S is a fnite set of states;

• A is a fnite set of actions;

• γ : S × A → S is a mapping of states and actions to states.

A state transition system is shown in Figure 2.2 continuing with the logistics

example, simplifed further; consisting of two locations, one delivery van and

Figure 2.2: A state transition system for a simple logistics problem consisting of

two locations, one delivery van and one parcel.
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one parcel. The delivery van can drive between the two locations as they are

connected by a road. The van can load, and unload parcels at its current location.

The example shows the set of states, S = {State1,. . . , State6} and the set of

actions, A = {Drive1,. . . , Drive6, Load1, Load2, Unload1, Unload2}. The

transition function, γ, is implied by the arcs between the states that the actions

describe.

Modelling Planning Problems

Using a state transition system, τ = (S, A, γ), the dynamics of a planning prob-

lem environment can be captured. The actions of the planning problem are rep-

resented by A, the possible states of the environment are represented by S and

the state transitions of the environment are captured as γ.

The purpose of planning is to solve a specifc planning problem, thus a way

of defning planning problems is required.

Defnition 2.2.2. A planning problem P, can be described by the triple (τ , i, g),

where:

• τ is a planning environment defned by a state transition system;

• i ∈ S is the initial state of the environment;

• g is the goal criteria that defnes the objectives of the problem.

To defne a planning problem for the logistics example, τ can be represented

by the state transition system shown in Figure 2.2. The initial state i, could be

State1, with the van at location A and the parcel at location B. The objective of

the problem could be to deliver the parcel to location A, meaning the goal criteria

would be, parcel at location A. This problem is represented as (τ , State1, parcel

at location A). Using the state transition system in the fgure, starting at State1 

and applying the following actions: Drive1 in State1; Load1 in State2; Drive3 

in State3; and Unload2 in State4; the result of doing so is that State5 has been

reached. In State5 the parcel is now at location A and the goal criteria of the

problem has been met. The sequence of actions taken for this state transition to

occur is a solution to the problem.
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Modelling the Actions

So far the states of the world, τ have been represented using a state transition sys-

tem. Each state of the planning problem can be viewed as a set of propositions;

truth statements regarding the state of the world. For the logistics example, the

states can be defned by where the objects (van and parcel) are located. For any

given state the proposition that the V an1 is at LocationA is either true or false. A

state can be uniquely identifed by a set of propositions provided they have been

selected well. The propositions needed to defne the state for this example are

as such: The van can either be (at V an1 LocationA), or (at V an1 LocationB);

The parcel can either be (at P arcel1 LocationA), (at P arcel1 LocationB), or

(in P arcel1 V an1).

The role of the actions is to change which propositions hold true such that

the new state refects the transition that the action represents. For example the

Drive1 action that describes the transition between State1 and State2, where

the proposition (at V an1 LocationA) holds true and (at V an1 LocationB ) does

not in State1, to State2, where the reverse is now true, (at V an1 LocationA) no

longer hold true and (at V an1 LocationB ) now does.

Actions can be modelled as add and delete rules that effect the state of the

world, provided the action itself is valid and applicable in the current state. An

action is represented by a triple:

• Name - Each action requires a name to act as a unique identifer. For

example, the Load action, (Load P arcel1 V an1 LocationB), represents

the action that takes a parcel from a location and puts it inside a van.

• Preconditions - This is a set of propositions that all must hold true in the

current state of the world for the action to be applicable. For example, a

van can only load a parcel if they are both at the same location. The (Load 
P arcel1 V an1 LocationB) action is dependent on the two propositions:

(at V an1 LocationB) and (at P arcel1 LocationB) both holding true.

• Effects - The effects that the action has on the world. These can be sepa-

rated into add and delete effects. With add effects being propositions that

are added to the state of the world and become true; and delete effects be-

ing the removal of propositions from the current state that are currently true

that no longer will be as a result. The (Load P arcel1 V an1 LocationB)

11



Chapter 2. Background

action will remove the proposition (at P arcel1 LocationB ) and add (in 
P arcel1 V an1) from the state.

Using a PDDL representation a possible encoding of the Drive and Load 
actions are shown below in Figure 2.3.

(:action Drive 
:parameters(V an1 LocationA LocationB )

:precondition(at V an1 LocationA)

:effect(and (at V an1 LocationB) (not (at V an1 LocationB))))

(:action Load 
:parameters(V an1 P arcel1 LocationA)

:precondition(and (at V an1 LocationA) (at P arcel1 LocationA))

:effect(and (in P arcel1 V an1) (not (at P arcel1 LocationA))))

Figure 2.3: A possible PDDL representation of the Drive and Load actions.

The Drive action moves V an1 from LocationA to LocationB . And the

Load action takes the P arcel1 and puts it into the V an1, provided they are both

at LocationA.

Going back to the state transition system, τ = (S, A, γ), where S is a fnite

set of states. Using this representation means that S is implied by all the states

that are reachable from the initial state, i, by applying any sequence of actions.

This means that all the possible states of the world do not need to be declared up

front; the size of the state space can grow very quickly meaning that this can be

very important.

2.2.2 Modelling Planning Domains

The description of a planning problem is separated into two parts:

The Problem Domain - The domain defnes the world and the way in which

it operates. The Domain is a tuple, D = (O, P ), that defnes the set of predi-

cates, P , and operators, O. The predicates defne how the world is represented.

Predicates are the relations and properties of objects that need to exist to capture

the propositions of the state. In the Logistics example the predicates would be

at and in. In PDDL these would be expressed as (at ?x ?y) and (in ?x ?y), to
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represent that one object can be at another; and one object can be in another. The

operators are a set of parameterised actions that describe the possible behaviours

of the world. These actions consist of the parameterised sets of predicates that

defne the actions preconditions and effects, similar to the examples of Figure 2.3

which used propositions. The operators in the example would be Drive, Load 
and Unload.

A Specifc Problem - The problem model defnes the objects that exist within

the world, the initial state and the goal criteria. A problem model is specifed

with a tuple, P = (O, Si, g), where, O, is the set of objects; Si, describes the

initial state, defned by the set of propositions that hold true in that state; and g 
being the propositions that need to hold true for the problem to be considered

solved.

2.2.3 Models and Representations in this Work

The Planning Domain Defnition Language (PDDL) [53] is a modelling lan-

guage used in planning that has been developed for over twenty years, with

PDDL3.1 [36] being the most recent version. Each version expands the mod-

elling capabilities of the language, allowing for more planning problems to be

captured. The language has become the defacto planning language with its as-

sociation to the International Planning Competitions (IPCs) playing a signifcant

part in this.

PDDL1.2 [53] was the frst offcial version of PDDL. The model of the plan-

ning problem was separated into two parts: a domain description and a problem

description. The domain description contains the elements that are present in ev-

ery specifc problem; and the problem description determines a specifc problem.

A domain and a connected problem forms a PDDL model of a planning problem

that can then be used as input for a planner. In PDDL1.2 a domain can defne the

following: predicates, actions, an object-type hierarchy and constant objects.

PDDL2.1 [28] introduced numeric fuents, plan-metrics and continuous ac-

tions. By doing so PDDL2.1 expanded the number of problems that could be rep-

resented and solved using the language. Both derived predicates and time initial

literals were both introduced in PDDL2.2 [24] to once again extend the language.

PDDL3.0 [29] introduced state-trajectory constraints and preferences to enable

preference-based planning. Object-fuents were introduced in PDDL3.1 [36] and
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this version remains the latest and most expressive representation of PDDL.

Because PDDL has been used in conjunction with the IPCs as a means of

standardising the input of planners, as a result of this many options are avail-

able for solving planning problems that have been modelled using PDDL. PDDL

planning problems can often be solved using off-the-shelf planners that do not

require modifying in any way. This is a signifcant advantage in the context of

this work as the use of off-the-shelf planners requires no additional expertise

from a potential user. A goal of this work is to make planning technology more

accessible to non-experts and by using PDDL as the modelling language this can

be achieved.

The target output used in this work is a planning problem modelled using

PDDL1.2. This version of PDDL provides all of the functionality required for

this purpose. The expressiveness of other versions isn’t needed in this context.

2.3 Planning Based Narrative Generation

Narratives can be viewed as a sequence of actions, and thus AI planning can be

used for the task of narrative generation [93]. Planning for narrative generation

varies considerably compared to planning for the domains that appear in the clas-

sic benchmarks, logistics, blocksworld etc. With the IPC providing a research

incentive, the goal has often been to fnd the optimal solution to a problem, us-

ing the quickest and most effcient methods. For a narrative plan this takes a far

lower priority, with the quality of a plan being determined by other metrics, such

as a plan’s ‘shape’ or trajectory and the generation of plans that would be of the

most interest to an audience. Staging an optimal plan for narrative could be con-

sidered undesirable, with a focus being placed on a plan that encounters failures

and setbacks to produce a more suspenseful output. A narrative plan may also

look to minimise action repetition so that an audience receives a more varied

and interesting set of actions. With one application of AI narrative generation

being the integration within video games and interactive storytelling, a narrative

plan may need to cater for user input and external events effecting the world

state, causing narratives to become invalid and in need of regeneration. Since AI

planning was frst proposed for the task of narrative generation by Young [93]

the approach has been enthusiastically adopted and used in within various sys-

tems [13] [4] [75] [68].
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2.3.1 Planning for Interactive Storytelling

Despite the planning of both traditional and narrative problems functioning in the

same way, the confict lies within differing goals for their output plans. Where

traditional planning often favours optimality, the goal for interactive storytelling

(IS) could vary depending on the system; to entertain or educate for example.

The problem of most interest when it comes to planning for IS, is that of narrative

control.

In plan-based IS systems a plan generation engine is embedded with a system

where by the planner generates an initial narrative which is then presented to the

user. User interaction can change the state of the planning world and hence

require the replanning of the narrative. Such IS systems include the 2D and

3D visual representations of plans [51] [68], text representations [61] and flmic

content [64].

To model a planning domain representative of a narrative, one approach is

to start by modelling the base actions that can occur, which will form the plot.

These actions should be designed in such a way that a default base storyline can

be represented, while remaining generic enough that they provide enough scope

for new alternative story variants.

Controlling Narratives with Constraints

In order to control a narrative plan, a method for adding the narrative information

into the domain is required. PDDL3.0 [29] introduced state trajectory constraints

that could be used to encode control knowledge. The PDDL modal operators

“sometime” and “sometime-after” can be used to ensure the inclusion of specifc

key narrative events and to enforce a temporal order over them. This approach

of using these state trajectory constraints for narrative control was introduced by

Porteous et al. [66]. This can be done by breaking down a narrative into a set

of smaller, ordered sub-goals. By breaking down the narrative into smaller sub-

goals the burden on the planner is also signifcantly reduced. The new goal is

to fulfll the criteria for the next sub-goal, reducing the time needed to generate

and regenerate plans. This makes the approach suitable for interactive real-time

environments, where a user can have infuence over the story and require new

solutions to be found.

Building on this work, these constraints were used to not only control the or-
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dering of key narrative events, but also the tension level in the resulting plot [69].

Given that the domain actions had each been labelled with respective tension val-

ues, the author could specify a desired tension arc, comprising of a value to meet

at each sub-goal. The planner would then select actions with the goal of match-

ing these values as closely as possible.

Planning Believable Stories

Another metric by which narrative planning solutions are measured by is audi-

ence believability. Reidl and Young [75] describe plot believability and character

believabiltiy as the two key attributes that constitute a narrative plan as being a

sound and believable sequence of actions. The plan should represent a logical

and causal progression of plot, and characters should be perceived by the au-

dience as acting intentionally with motive behind their actions. There are two

main approaches to planning narratives: plot-centric and character-centric. Plot

centric looks at the world from the perspective of an author; having the author

set up key events that need to occur during the story. This ensures plot causality

but won’t necessarily produce believable characters. Character-centric is the al-

ternative approach, where characters are given their own specifc goals to meet

during the story. With them all working towards their own personal goals this en-

sures character believability. The trade off being that without higher level goals

ensuring a plausible narrative, the plot coherency can suffer.

Reidl and Young developed the IPOCL planner, with the intent of striking

a balance between the two approaches. Author goals and character goals were

separated and both taken into consideration when planning. The main drawback

of their approach was that because all goals had to be met for the plan to be

valid, there wasn’t the possibility for the failure of character goals; which is

often a common aspect of most stories and especially crucial in comedy and

tragedy [14].

Another approach to balancing plot and character was introduced by Por-

teous et al [67] with their Point of View (PoV) concept. Rather than charac-

ters having to meet strict goals, characters were assigned various points of view.

These were characteristics such as personality traits and attitudes towards other

characters. These PoVs are taken into consideration when looking at action pre-

conditions, ensuring that characters can only take part in actions that align with
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their PoV. With no set character goals to satisfy, characters can still appear to

fail to achieve their personal goals and allow for more plausible story variants

as a result. Building on this NetworkING [68] introduced a social network of

relationships between the characters and used these attitudes generate varied and

believable narratives.

2.4 Information Extraction from Natural Language

In order to be able to build domain models from story synopses, a vital part of

the process is the processing of text. The diffculty of extracting the information

contained in text can vary greatly depending on what restrictions, if any, the

text has to adhere to. Once the text becomes more complex than very simple

and specifc commands, a more sophisticated approach is required in order to

interpret its meaning.

Information Extraction (IE) research gained attention through the Message

Understanding Conference (MUC) [33] which provided funding from the De-

fense Advanced Research Projects Agency (DARPA). The conference aimed to

unite the efforts of IE at the time and started out with extracting the information

from military messages as the goal. Since then the input has evolved, becoming

increasingly more complex. As a competition, the conference provided the com-

munity with training data, test data and manually generated results that could be

compared against when evaluating the system. This contributed to the develop-

ment of a standard for evaluation used in IE. The common evaluation metrics

used are: precision, recall and F-Measure, where F-Measure is used to combine

precision and recall into a single value that can be weighted to favour either

value.

2.4.1 Information Extraction Tasks

There are a number of key tasks within IE. Depending on the system and the

complexity of the input texts, some tasks may not be applicable. Some of the

notable and relevant tasks are:

• Word and sentence boundary identifcation - seemingly a fairly straight-

forward process, there are many edge-cases that need to be accounted for.

The most common example is a full stop “.”, usually denoting the end of
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a sentence there are cases where this isn’t the case, such as: “Dr. Watson”

or “£1.50”.

• Phrase identifcation - the identifcation of a group of words, or single word

which plays a particular role in the grammatical structure of a sentence.

• Syntactic structure - identify the relationships between words and phrases.

The result of a syntactic analysis is usually a dependency graph.

• Root word analysis - often a word has multiple forms depending on how

it is being used. The most common example of this is verb tenses where

the same action is being described by numerous words, such as: eat, ate,

eating. Identifying the base-forms of these words to be “eat”, may result

in other processes and analysis easier.

• Named entity recognition - often referred to as NER, this is the task of

recognising known entities within the text. NER can also refer to how

these entities can then be classifed into pre-defned categories such as the

names of people, organisations, locations, etc.

• Relationship extraction - the identifcation of relations between entities.

• Coreference resolution - the task of fnding all expressions that refer to the

same entity in a text. The most common case where coreference resolu-

tion is required is when pronouns are present in the text. The process of

coreferencing aims to establish who or what a pronoun is referencing. An

example being, “Bob overslept and he was now running late for work.”

Here it is important to know that ‘he’ is referencing ‘Bob’ if the informa-

tion is to be extracted correctly.

The ordering of these tasks is important as many are dependent on other

tasks having been already completed. For example, named entities have to frst

be identifed before an attempt can be made at extracting relationships and links

between them.

For many IE tasks ’perfect’ solutions do not yet exist, with ongoing research

aiming to increase the accuracy of specifc tasks or general and more tailored

inputs. NLP research is often specifc to a given language. The more structured

a language’s grammar the easier it is to extract information from. For this work
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and any of work referenced, the language being used is English. English is also

the dominant language in research and on the WWW with approximately 52%

of websites using it for their content [90].

Natural Language Processing Toolkits

Natural language processing toolkits provide NLP functions and annotations that

can be used and applied in information extraction systems. Such annotations

include methods for: lexical analysis; text chunking; part-of-speech tagging;

named entity recognition; coreference resolution; constituency parsing; depen-

dency parsing; and sentiment analysis.

The available NLP toolkits include Stanford CoreNLP [48], NLTK [45] and

Apache OpenNLP [60]. The table below summarises the features of each toolkit.

CoreNLP NLTK OpenNLP

Lexical Analysis

Text Chunking

POS tagging

Named Entity Recognition

Dependency Parsing

Constituency Parsing

Coreference Resolution

Sentiment Analysis

Table 2.1: A summary of the features provided by NLP toolkits.

Stanford CoreNLP is used for this work as it includes all of the functions

and annotations that are required. CoreNLP is also the most well documented of

these toolkits.

2.4.2 Named Entity Recognition

Named entity recognition is the task of locating and classifying named entities

in a text into pre-defned categories such as persons, locations, organisations,

expressions of time, quantities, etc.

NER is treated as two distinct problems: the detection of entities, and their

type classifcation. The frst phase is typically simplifed to a segmentation prob-
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lem similar to chunking; which is the task of parsing natural language sentences

into partial syntactic structures. Entity names are defned to be a contiguous span

of tokens, with no nesting, so that “The Queen of England” is a single name, dis-

regarding the fact that inside this name, the substring “England” is a name itself.

The second phase of classifcation requires choosing an ontology that machine

learning models can be trained on so that an attempt at categorising the entities

by type can be made.

Approaches to Named Entity Recognition

The two NER problems of detection and classifcation are both considered to be

diffcult non-trivial problems that are yet to be solved, with the highest F-Score

achieved at the CoNLL03 competition [84] being 88.76.

Approaches typically use a combination of linguistic grammar-based tech-

niques alongside statistical models such as machine learning. Different sta-

tistical models have been used for NER, such as the Hidden Markov Model

(HMM) based chunk tagger [95] or the approach adopted by Stanford’s CoreNLP

NER [26], which instead utilises conditional random felds (CRF).

The overall systems used for many language technology applications tend to

run several independent processors over data. Such processors include parsers,

named entity recognisers and coreference systems. Such approaches can easily

result in inconsistent annotations which are harmful to the performance of the

aggregate system. The system proposed by Finkel & Manning in [27] joined both

the parsing and NER phases together, improving the performance of both tasks

in doing so. A joint, discriminative model is used, which is a feature-based CRF-

CFG (Conditional Random Fields/Context Free Grammar) parser that operates

over tree structures augmented with NER information.

Statistical supervised training NER systems typically require a large amount

of manually annotated training data. One of the main current research efforts

in the feld is to reduce the annotation labour required. Employing a semi-

supervised approach like that of Lin & Wu’s phrase clustering [43] is one way

of doing this. This method uses supervised training to learn word clusters but

then goes a step further and utilises a semi-supervised algorithm to also use

phrase clusters as features. Out of context, natural language words are often

ambiguous. Phrases are much less so because the words in a phrase provide con-
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text for one another. By using phrase clusters an improved F-Score of 90.9 was

achieved on the CoNLL03 evaluation data. Alongside such approaches, projects

like that of Zhai et. al [94] have turned to crowdsourcing as a means of obtaining

high-quality aggregate human judgements for supervised and semi-supervised

machine learning NER systems.

Even state-of-the-art NER systems are brittle, meaning that NER systems

developed for one domain do not typically perform well on other domains [65].

Considerable effort is involved in tuning NER systems to perform well on new

domains; this is true for both trained statistical and rule-based systems. Early

work in NER systems was aimed primarily at information extraction from jour-

nalistic articles before then focusing on the processing of military dispatches

and reports. Both the CoNLL03 and MUC7 are subsets of news corpora and

still remain as two of the standard evaluation datasets. A main focus of the feld

described by Ratinov & Roth [74] is to achieve robust performance across do-

mains and overcome the diffculties involved. The automatic content extraction

(ACE) program presented in [22] included several types of informal text styles,

providing more variety than it’s predecessor MUC. More recently NER has been

attempted on more noisy, informal text in the form of tweets by Ritter et al. [76],

standard NLP tools saw severely degraded performance on such input.

With there being no perfect solution or general robust NER system available

at present integrating NER into a new system would required either a new ap-

proach that exploits the specifcs of its intended domain or substantial relevant

training data for which to train an existing model on. Extensive manual human

annotation of such data would then need to be undertaken before it can be used

for training.

2.4.3 Coreference Resolution

Coreference resolution is the detection of coreference and anaphoric links be-

tween entities. In IE this is typically restricted to fnding links between pre-

viously extracted named entities. If an entity hasn’t been identifed during the

NER phase of processing, no links can be extracted related to that entity either.

When solutions for coreference resolution are evaluated, they are tested on a sets

of evaluation data provided by a conference such as the SIGNLL Conference on

Computational Natural Language Learning (CoNLL) [71]. The evaluation data
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contains both nominal and pronominal references. All the entities are manually

pre-identifed so that only the coreferencing component is being evaluated. This

does mean that when applied to real-world problems the accuracy scores may

suffer due to the failure of previous processes that the coreferencing is reliant

upon.

Focusing on the Stanford CoreNLP toolkit [48], there are three coreferencing

solutions available to choose from: deterministic, statistical and neural. These

approaches differ in speed, accuracy and the amount of model training required.

Stanford Coreference Resolution: Deterministic Approach

The Stanford Deterministic Coreference Resolution System is a fast, rule-based

approach to coreference resolution. The method described by Raghunathan [73]

utilises a multi-pass sieve approach to the problem. For a given mention a list

of candidate antecedents is created by selecting preceding mentions. For the

same sentence, Left-to-right breadth frst traversal of the syntactic tree is used

for this as favouring subjects closer to the beginning of the sentence yields more

probably candidates. This is also the case when looking to previous sentences

for a pronominal mention as subjects are more probable antecedents for pronouns

[42]. When looking to previous sentences for a nominal mention however, right-

to-left breadth frst traversal is used, instead favouring document proximity.

Once a list of candidate antecedents has been compiled, they are passed

through several sieves that looks to allocate the mention to a coreference cluster

with other mentions that reference the same entity. The sieves are a selection of

rules which determine whether a link has been found between entities. The frst

pass starts with very strict constraints, initially only looking for exact matches,

and gradually they become more relaxed. The fnal pass is dedicated to the coref-

erencing of pronouns.

Pronominal coreference resolution is handled in this method by enforcing

agreement constraints between coreferent mentions. The attributes used for these

constraints are: number, gender, person, animacy and NER label. These are

added to mentions based upon static lists and dictionaries. If values cannot be

detected the attributes are set as unknown and are treated as wildcards, i.e., they

can match any other value.
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Stanford Coreference Resolution: Statistical and Neural Approaches

Both the statistical [15] and neural [16] approaches share a similar method and

mainly differ in the models that are trained and used. The statistical approach

uses machine-learning and for neural, neural-networks are utilised. Both focus

on the training of pairwise mention-ranking models. Given a mention m and a

candidate antecedent c, the mention-ranking model produces a score, s(c, m),

indicating their compatibility for coreference. The score is based upon a variety

of common features, for the full set of features see [17]. Some of the features

include:

• Distance - the distance between the two mentions in sentences; number of

mentions between them.

• Syntactic - POS (part-of-speech) tags of the frst, last and head word; num-

ber of noun phrases under a mention on the syntactic tree.

• Semantic - named entity types; speaker identifcation.

• Rule-based - exact and partial string matching.

• Lexical - the frst, last and head word of the mention.

The approaches differ in the models and the training algorithms that are used

for this task. These models have to be trained using a training set of data. The

accuracy of these models will improve given a larger amount of training data.

In this case training data is provided alongside the competition data sets that the

models were evaluated on. There’s no guarantee that models trained on such data

would be as effective when applied to real-world applications.

The statistical approach also looks to make use of entity-level information

by combining this pairwise ranking with an entity-centric coreference solution.

In this case the pairwise ranking only looks to fnd a single best antecedent for

a mention. Mention pairs alone however are not enough to produce a fnal set

of coreference clusters as they do not enforce transitivity. A pair of mentions

(a, b) and the pair (b, c) are both deemed coreferent by the model, but there is

no guarantee that (a, c) will also classify as coreferent. In order to cluster these

mention pairs into larger clusters, entity level information is used. Attributes

gender and NER labels are identifed and assigned to the entities and used to

23



Chapter 2. Background

constrain which clusters can be merged. The attributes must be shared across

the entire cluster. The decision of whether two clusters should be merged is

controlled by a trained ”agent” that uses an agglomerative clustering approach.

More different training data is required to effectively train this agent model.

Stanford Coreference Resolution: Evaluation of approaches

Table 2.2 below shows the performance results for the three coreference systems

that Stanford CoreNLP provides. These results are taken from their website [82],

where additional information about each system can be found.

Preprocessing Time Coref Time Total Time F1 Score

Deterministic

Statistical

Neural

3.87

0.48

3.22

0.11

1.23

4.96

3.98

1.71

8.18

49.5

56.2

60.0

Table 2.2: The performance results of the different coreference solutions pro-

vided by the Stanford CoreNLP toolkit.

The F1 scores are the scores of each system run on the CoNLL-2012 [70]

english evaluation data. These models are designed for general-purpose use so

these numbers are lower than those reported in each associated paper. The pre-

processing time represents the time required for POS tagging, syntax parsing,

mention detection, etc., while coref time refers to the time taken by the corefer-

ence system.

The results show the varying accuracy and speed of each solution, with the

neural approach proving to be the most accurate but also the slowest. Statistical

is the fastest method based on total time due to only requiring dependency parses,

rather than the far slower to produce constituency parses. The main advantage of

deterministic is that as a fast rule-based approach there is no need for any models

to be trained beforehand. These results show an overall coreference score that in-

cludes both nominal and pronominal entity referencing. 38.69% of the mentions

in the CoNLL-2012 test data were pronouns. There is no requirement to publish

the results of how each system fared on specifc categories of mentions. Results

may vary signifcantly depending on the application for which the coreference

systems are being used. If being used to only coreference the pronouns in a text,

no assumption can be made that these values would hold true. With that being
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the case the general coreferencing methods provided with the CoreNLP toolkit

aren’t adequate in the context of this work.

2.5 Domain Model Acquisition

AI planning has been shown to be a useful approach for the generation of narra-

tive in multimedia storytelling systems. However the creation of the underlying

domain models is challenging: the well documented modelling for AI planning

authorial bottleneck is further compounded by the tendency for authors to be

non-technical. Formulating and maintaining domain models is considered a cen-

tral challenge in knowledge engineering for AI planning; in particular overcom-

ing the need to hard-code and manually maintain such models. The feld of do-

main model acquisition aims to explore alternative methods for obtaining/learn-

ing planning domain models, either fully or partially.

2.5.1 Learning Domain Models from Sets of Example Plans

One method of learning domain models is to use sets of example plans, also

referred to as plan traces, as it is possible to automatically infer the underlying

transition system from them. Using such an approach removes the necessity for

the domain expert to also be an expert at modelling transition systems.

The LOCM system [19] learns planning from sets of example plans. Its dis-

tinguishing feature is that the domain models are learned with no observation of

the states in the plan or of predicates used to describe them. LOCM exploits the

assumption that an action will change the state of the objects involved in some

way, and that the objects need to be in a certain state before the action can be exe-

cuted. By tracking all the individual objects involved in a plan trace it is possible

to work out the underlying state machines. For example, in a logistics delivery

domain it is possible to observe that once a parcel has been loaded into a van,

it can’t be loaded into another van, without it frst being unloaded at a location.

The system works because of some restrictive assumptions regarding the form of

the model. Objects are grouped into sorts and the behaviour available to objects

of any given sort is described by a single parameterised state machine. LOCM

is very powerful at fnding satisfactory models that ft within this representation,

however for many domains, including many of the benchmarks, this model is too

restrictive to suffciently capture the domain’s semantics. The expressiveness of
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LOCM is more restrictive than STRIPS.

LOCM2 [18] built upon LOCM by weakening some of the assumptions to

allow for a more expressive representation, enabling a wider range of domains

to be captured and learnt. LOCM2 allows for separate aspects of an objects be-

haviour to be represented as separate state machines. The LOP algorithm [31]

goes a step further, inducing static predicates by using a combination of the out-

put from LOCM2 and a set of optimal plans as input. LOP works by fnding the

minimal static predicate for each operator that preserves the original length of

the optimal plan.

NLOCM [32] implemented an approach for learning numeric domain models

with fxed action costs. Still using a set of example plans as input, the only

additional information required is a overall plan cost associated with each plan.

Using a constraint programming approach the cost of each individual action can

be calculated, given a suffcient number of input plans. NLOCM-BF [34] relaxed

the approach, allowing for a best-ft estimation of a domain model’s action costs

instead. This was then applied to the narrative application of learning tension

values for each action of a domain model that represented a number of episodes

from a cartoon.

Aineto et al. [2] present an approach for learning STRIPS action models from

examples that is fexible in the amount the amount of input knowledge available,

accepting partially specifed models as input. The approach is can be applied to

input ranging from sets of example plans to just a pair of initial and fnal states

where no intermediate states or actions have been observed.

2.5.2 Framer: Learning Domain Models from NL Descriptions
of Plans

The Framer system [44] presented by Lindsay et al. implements an approach

for learning planning domain models directly from natural language (NL) de-

scriptions of activity sequences. For modelling tools, there is still the underlying

assumption that the user can formulate the problem using some formal language.

Even in the case of using domain model acquisition tools such as LOCM [19],

there is still a requirement to specify input plans in an easily machine readable

format. Providing such input is impractical for many potential users and thus mo-

tivated an approach for learning domain models directly from natural language.
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Starting with natural language descriptions of actions, the goal of Framer is

to construct formal representations of the action sequences from these using NL

analysis. The generated action sequences provide the necessary structured input

required to inducing a PDDL domain, using existing domain model acquisition

technology, in this case LOCM.

The frst step in the approach is to generate action templates: reduced rep-

resentations of the input sentences, capturing the main action, objects that are

mentioned and an indication of their roles in the sentence. This is done by utilis-

ing Stanford’s CoreNLP toolkit, specifcally the dependency graph output. Tak-

ing the dependency graph annotation, this representation is further simplifed to

move closer to a predicate logic representation. This is achieved by applying a

recursive set of rules that crawl the dependency graph, transforming the relations

based upon their type. The root verb of the sentence forms the basis of the action

name, while the verbs subject and objects form the arguments. Conjunctions

introduce new sentence clauses, which form further predicates. Modifers and

compounds are other relation types of interest, as these are used to transform the

names of the predicates and arguments.

Once an action template representation has been generated, an attempt is

made at clustering together sentences that describe similar behaviours using on-

line lexical resources and a similarity metric. It is at this point that a consistent

formulation of the input sentences is generated, which is suffcient enough for a

domain model to be induced from.

In their evaluation Lindsay et al. [44] demonstrated that, with certain re-

strictions on the NL input, that it is possible to learn planning domain models

and generate PDDL representations from natural language input. The approach

relies on consistent object referencing being used throughout and requires ac-

tions to be fully described. Action descriptions will often lack key information.

For example, “Drive the Truck to Location A” would be an insuffcient action

description as it neglects to mention where the Truck is driving to Location A

from. Once a user understands the restrictions on the input sentences, the need

for any specialist modelling knowledge has been alleviated by this approach.

There are signifcant obstacles preventing such an approach being used for

the purpose of learning domain models from narrative plot synopses: 1) Unless

the synopsis is written in such a way to adhere to the input constraints, sourcing

a synopsis online that meets this criteria isn’t feasible due to how specifc the
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requirements over the natural language are. 2) A synopsis effectively describes

one input plan and for Framer to be able to accurately induce a model, a large set

of plans is required.

2.5.3 Extracting Planning Information from Natural Language

An alternative method of domain model acquisition is to extract planning in-

formation from natural language textual input, approaching it as an information

extraction task. A system doesn’t have to be explicitly extracting information for

the purpose of creating a domain model for it to be classed as extracting informa-

tion relevant towards planning. Depending on the input text being used, it is very

likely that extracting all the possible information available from the text won’t

be enough on it’s own to fully learn a domain model from [44]. With that said

it is still important to extract all the planning information present, from which a

planning model can then be built upon.

The purpose of a domain model is to capture the semantics of a problem

space. Any information relating to the world and the state transitions that can

occur is of relevance and should be extracted. What exactly is dependant on the

type of input being used and may also be dictated by the nature of the domain

being described. Information that is likely relevant across all domains would

include:

• Actions/Events - Identifying when actions and events have occurred or are

being described. Additionally being able to associate which objects are

involved in a given action, and if mentioned the possible preconditions

and effects for an action/event.

• Objects - Identifying all the objects mentioned in the text. This includes

both named entity recognition and coreference resolution so that every

mention is being associated to a uniquely identifable object.

• Predicates - Extracting the properties of objects in relation to the world

and potentially relations with other objects.

Information extraction tasks are usually divided into separate tasks of identi-

fcation and classifcation, and this holds true when applied to extracting planning

information. Identifying objects from natural language and knowing what type

of objects they are are two separate tasks.
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Extracting Planning Information from Instructions

Instructions can be viewed as detailed information about how something should

be done or operated. They can also be seen as a description of a plan that solves a

specifc problem, making them an ideal input to learn domain models from. Cru-

cially, instructional language is situated: it assumes a situational context which

the agent (i.e. the reader) is to carry out a sequence of actions, as applied to ob-

jects that are (or become) available in the immediate environment. Instructions

are usually written in imperative form, have a simple sentence structure and are

highly organised. While instructions do appear to make for ideal natural lan-

guage input, there are still a number of challenges that need to be addressed. The

main drawback is that actions and objects may not be explicitly specifed; it’s

common for instructional language to be ambiguous, under-specifed and often

even ungrammatical compared to more conventional usage.

Malmaud et al. [47] used cooking recipe instructions as an example for the

automated interpretation of how-to instructions. This approach interprets entire

recipes as opposed to independently parsing each sentence. The model used

has the overall structure of a discrete-time, partially observed, object-oriented

Markov Decision Process, with the goal of inferring the recipe, given the noisy

evidence. The paper discusses numerous challenges that were faced regarding

the interpretation of arguments, actions and control structure:

• Arguments - Recipes often feature arguments that are omitted or dependent

on the context. Common ingredients such as water, ice, salt and pepper

often aren’t listed on the corresponding ingredients list and are assumed

to be available. In some case arguments are never mentioned and are the

result of a previous stage. In the example “Pour ingredients over ice and

shake vigorously,” the object to shake is the unmentioned container that the

other ingredients are now in. Given the instruction to “Add the remaining

ingredients,” requires an understanding of which ingredients have already

been used prior in recipe.

• Actions - Actions can also have ambiguous meanings and can be omitted

from recipes and simply assumed. For example most recipes involving

eggs will instruct the user to “Add eggs to the mixture,” with the need to

crack them being implied but not mentioned. Actions such as “garnish”

can be referring to numerous smaller processes assumed from context or
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obtained from a visual representation of the fnal product that will often

accompany cooking recipes.

• Control Structure - Many conditions mentioned require additional inter-

pretation. Often the duration of an action is specifed by a fnal condition,

such as “Whisk until soft peaks have formed,” and this requires knowl-

edge of an expected state. Additionally some instructions are left open to

preference, “Add salt to taste”, for example. Though implicitly sequential,

recipes can also include sequencing language. Certain steps may require

a user to complete “ahead of time”, or to be completed while waiting for

another step that is currently in progress.

Addis & Borrajo [1] look to extract plan descriptions from semi-structured

online documents such as those available at www.WikiHow.com. Here the tem-

plate nature of these electronic documents is exploited to crawl the web pages

and process the relevant information. The ingredients/equipment list is extracted

from the page alongside the raw natural language method steps. An extracted

plan is then built up by taking the objects required to form the initial state. Se-

mantic analysis of the method sentences is conducted using WordNet [55], so

that the relevant information, such as the verbs conveying actions can be identi-

fed. These actions and the objects associated to them form the extracted plan,

with the title of the article, “how-to-do-x” becoming the goal. The presented sys-

tem achieved a accuracy of 68% across 40 random articles. Overall the extracted

plans were deemed to be understandable by a number users, though clearly far

from perfect. Despite adhering to a set template on WikiHow, articles are still

authored by many people, communicating with differing writing styles and lev-

els of detail. The approach claimed to have reached their goal of having a good

trade-off between information retrieved from the web pages and the information

lost during the analysis and fltration process.

Yordanova [92] proposes an information extraction approach to learning pre-

condition and effect rules that describe user behaviour from textual instructions

for activity recognition. As with previous methods, NLP techniques are used

to extract the semantics of the input. An attempt at identifying causal relations

between the actions is made by transforming every word of interest into a time

series and performing time series analysis to identify any causal relations. This

does however rely on the same actions being repeated multiple times during a
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plan in order for such relations to be detected.

Instructions can also be in the form of spoken input. Both Thomason [83]

and Scheutz [77] present methods that look to extract and learn information from

spoken instructions and commands in the context of human-robot dialog. In this

environment the goal is to identify the actions and objects involved from spoken

NL sentences. Spoken sentences are converted into text such that semantic and

syntactic language analysis can then be used to extract the information required.

Extracting Planning Information from Narrative Text

Narratives can be viewed as a description of characters and the events that they

are involved in. Such information could be extracted from a narrative to form

part of a narrative planning model.

The automatic extraction of such information is an area of interest in re-

search, with the manual extraction and representation of such information viewed

as an authorial bottleneck that could be alleviated. Similar to using textual in-

structions the goal of the task is to identify all the information regarding the ac-

tions, arguments, relations, control structure, and any other criteria that may be

of interest. Narrative text however is a far noisier input in comparison, proving

to be challenging to learn from. Narrative descriptions or synopses are mainly

written in third-person with the inclusion of pronouns and multiple references to

the same objects; and often encompass a wider range of writing styles and the

level of detail being described can vary signifcantly.

Goyal et al. [30] attempt to automatically extract narrative information from

narrative text in order to produce plot unit representations. They focused on

identifying the characters involved in a story, as well as the affect states for each

character as a result of the actions they are involved in. Plot units include three

types of affect states: positive, negative and mental. The idea being to identify

if the result of an action is desirable, undesirable or introduces a motivation for

a given character. In the example, “The cat ate the mouse,” the action would

yield a positive state for the cat who has been fed, and a negative state for the

mouse who has been eaten. In order to do this a lexicon of patient polarity verbs

that impart a positive or negative state on their patients was manually created as

such knowledge is not readily available on existing semantic resources. Aesop’s

fables were used as the input for this work. With the extraction of plot units from
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narrative text being a hugely complex task, no gold-standard evaluation data ex-

ists. Fables represent relatively simple and constrained texts. The problem of

identifying characters and resolving pronouns was minimised with some simpli-

fying restrictions put on the input data: only two characters were allowed per

fable and both characters are mentioned in the fable’s title. This allows for a

process of elimination method to be used for coreference resolution, where the

identifcation of one of the character’s genders using a simple rule-based coref-

erence system can lead to the identifcation of the other character based on the

types of pronouns being used in the text.

Rather than focusing on learning the sequence of events by which a narrative

is defned, alternative methods focus on the identifcation of personas and the

roles of the characters that drive these narratives. Valls-Vargas et al. [85] refer

to Propp’s Morophology of the Folktale [72] which categorised narrative roles

that characters can play into (Hero, Villain, Dispatcher, Donor, Helper, Prize, and

False hero) and hypothesised that the information given about how the characters

behave towards one another can help identify their roles. Actions that are likely

to occur between two specifc roles of character were encoded into a matrix. For

example, a fght is likely to occur between a Hero and a Villain. Every character

in a narrative is then assigned a role and a score is computed based upon how

well their interactions ft the matrix.

The approach taken by Bamman et al. [6] attempts to learn the personas of

characters in flm. These lexical classes capture the stereotypical actions of a

character, as well as attributes by which they are described. Personas are defned

by three typed distributions: words for which the character is the agent, words for

which the character is the patient, and words which are character attributes. They

used the example persona of a zombie, that could be categorised as an agent that

kills and eats, is killed by other characters, and has the attribute of being dead.

Given this information models are then trained on data using an unsupervised

learning algorithm before then being used to identify these personas in movie

plot summaries taken from Wikipedia.

2.6 Domain Authoring Tools

As discussed in the introduction, the task of authoring planning domains is

complex, time consuming and requires expertise of planning domain modelling.
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There is a motivation for tool supported domain modelling approaches that help

to simplify, automated and make AI planning more accessible to non-technical

authors. This section reviews a number of the available domain authoring tools

available.

2.6.1 itSIMPLE

itSIMPLE [86–89] is an IDE for modelling planning domains. The tool was

designed to support users during the construction of a planning domain appli-

cation mainly in the initial stages of the design life cycle. The stages include

processes such as domain specifcation, modelling, analysis, model testing and

maintenance, all of which are crucial to the success of the application.

itSIMPLE started by basing itself around the semi-formal specifcation lan-

guage, UML [23], which is a well-known diagrammatic language. With the tool

being aimed at both those who are familiar and unfamiliar with AI planning us-

ing a more general specifcation language keeps the barrier to entry minimal. The

environment also utilises XML [10], Petri Nets [57] and PDDL [53] represen-

tations, each one contributing towards the whole design process. Petri Nets are

used for dynamic domain analysis and PDDL is used based on the AI planning

communities adoption of the language as the standard specifcation for planner

inputs.

Using a specialised use of UML to model planning domains is what makes

itSIMPLE unique. The UML editor provided visualises the domain modelling

process using 5 diagram types: use case diagrams; class diagrams; state machine

diagrams; timing diagrams; and problem instance diagrams.

itSIMPLE provides a visual approach of diagrammatically modelling plan-

ning domains based upon UML. The tool can translate the model into a PDDL

representation which alleviates any required knowledge of the language, that

many non-planning users are unlikely to have encountered before. A PDDL ed-

itor is provided for those with a working knowledge of the language. Also pro-

vided are a number of planning algorithms built in to the tool, alongside methods

of analysing the created models.

In order to correctly produce a working domain model using itSIMPLE a user

is still required to have a good understanding of how planning domain models

operate and function, and how to represent this in the non-standard form expected
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by the tool. On top of this the defnition of action preconditions and effects is

done using a special UML language, the Object Constraint Language (OCL).

Again this requires the user to understand what input is expected from them

and the correct syntax in each case. It could be argued that despite alleviating

the need to have some expertise in how to write domain models in PDDL, this

has just been replaced by the need for a more specifc, non-standard knowledge

required to successfully produce models using itSIMPLE.

itSIMPLE wouldn’t be applicable in the context of this work as the tool isn’t

accessible to non-technical authors. The tool also provides no means of automat-

ing any of the domain modelling process.

2.6.2 GIPO

GIPO [52, 79–81] (Graphical Interface for Planning with Objects) was built to

investigate and support the knowledge engineering process in the building of

applied AI planning systems. The research was primarily directed at tackling

the end-user problem for the engineer who might be a domain expert but won’t

necessarily have a specialist knowledge of AI planning.

GIPO embodies an object centred approach and provides a graphical means

of defning a planning domain model. Crucially tools for importing and export-

ing domain defnitions to a literal-based PDDL format are included, in-keeping

with the goal of supporting a user without such expertise. The tool also makes

available a range of validation tools to perform syntactic and semantic checks on

the domain model, alongside a number of third party planning algorithms that

can be run from inside the tools environment.

Although using an object centred graphical method lifts the process of plan-

ning domain modelling to a conceptual level, the details of specifying state tran-

sition systems are still too theoretical for an unskilled user. GIPO does however

successfully remove the need for knowledge of a specifc domain modelling rep-

resentation such as PDDL and by favouring a graphical approach goes some way

to visualising the modelling task. For those with modelling expertise, the built-

in model analysis tools, planning algorithms available, and the ability to import

PDDL does give the tool some utility and appeal.

GIPO also wouldn’t be useful in the context of this work as there is no at-

tempt to automated the domain modelling process. Authors still require domain
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modelling expertise as the models are manually created using the GIPO tool.

2.6.3 Planning.Domains

The Planning.Domains platform [56] has been described as an initiative with

the fundamental objective of providing a set of resources, repositories and tools

for researchers to discover and develop planning problems. Planning.Domains

consists of three primary components: 1) An API for existing planning problems

and benchmarks; 2) The Planning.Domains Solver - an open and extendable

interface to a planner in the cloud service; and 3) a fully featured online editor

for creating and modifying PDDL.

The PDDL editor includes a number of standard features (e.g., syntax high-

lighting, bracket matching, and code folding), alongside other custom features:

1) PDDL specifc auto-completion; 2) Integration with both the API and Solver

to allow for the importing of a wide variety of domains and problem fles, as

well as the ability to compute and display solutions during the editing process;

3) Problem analysis can be conducted using an online version of TorchLight [37].

Planning.Domains also features a plugin framework that allows users to expand

the tools capabilities themselves.

Planning.Domains succeeds in providing an easy to use online PDDL editor.

With the tool being aimed at researchers and those already with an expertise of

PDDL and planning, no attempt at making planning technology more accessible

to a wider audience has been made. Planning.Domains supports the manual

authoring of a PDDL planning model. One of the aims of this work is to automate

the domain modelling process, which Planning.Domains doesn’t achieve.
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2.7 Conclusions

This chapter provided an overview of the areas of interest for this work. Au-

tomated planning and the modelling of planning problems have been reviewed

in addition to ways in which automated planning can be applied to the applica-

tion of narrative generation. Approaches to domain model acquisition have been

discussed, including how information extraction techniques can be used to to ex-

tract planning information from a variety of natural language sources. Domain

authoring tools have been reviewed and their key features identifed.

Approaches to information extraction are often focused towards general so-

lutions. When these approaches are applied within a specifc context, such as

narrative synopses, information that is available can often go unused. By ex-

ploiting the additional information available within a given context, information

can be extracted with greater accuracy.

The existing domain authoring tools that are available are aimed towards

authors with a knowledge of modelling planning domains. These tools do little

to alleviate the required expertise, making such tools unsuitable for non-technical

authors. By automating the construction of planning domain models, narrative

generation technology can be made more accessible to those who may utilise it

within games and IS applications.
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Chapter 3

StoryFramer: Acquiring Planning
Models from Narrative Synopses

The contribution to knowledge presented in this thesis is a novel approach for the

acquisition of planning domain models from narrative synopsis. StoryFramer is

the name used to refer to this approach throughout this work. The goal of Sto-

ryFramer is to take a natural language description of a story (plot synopsis), and

from this create a planning domain model which could be used with a planner.

This chapter will introduce an example narrative synopsis that will be used

throughout this work for the purposes of illustrating various aspects of the Sto-

ryFramer approach. A problem description is formulated based upon the nature

of the input, highlighting the key problems that a solution to this task has to ad-

dress. An overview of StoryFramer is presented, breaking the approach down

into its constituent components. This chapter will help demonstrate the goals

and contributions of this work. Following chapters will review StoryFramer’s

individual components in greater detail.

3.1 Scooby-Doo: An Example Input Synopsis

Using natural language descriptions of stories as input presents numerous chal-

lenges when attempting to extract information from them. Synopses are more

than just a simple plot outline: a synopsis is a miniature story, with actions, de-

scriptions, characterisation and snippets of dialogue to emphasise the narrative

being told. To illustrate the problems that are faced, an example input synopsis,

a section of which is shown in Figure 3.1, will be used throughout this work.
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   The gang travels to the museum (now the next day) where 
they deliver the knight to the museum curator, Mr. Wickles. 
He thanks them, but fears that perhaps it wasn't a good idea 
with Professor Hyde White disappearing. He goes on to explain 
about the legend of the Black Knight and how it comes to life 
when the moon is full. Velma asks him what Professor Hyde 
White was doing with it (despite having already found out 
beforehand), and replies that the professor was delivering it 
to the museum all the way from England. As this is going on, 
they don't notice the knight's glowing eyes. Two workers 
begin to move the crate, one of them asking Mr. Wickles where 
to put it. He tells them to put it in the medieval room. As 
Scooby follows the workers, he finds a strange pair of 
glasses. He picks them up, as Daphne calls him, while Fred 
says they're leaving.
   While driving down town, Velma says that the mystery has 
her baffled, and has got Shaggy hungry, asking when they can 
eat? Scooby pops his head up, in agreement, while still 
wearing the glasses he found. The others notice, and realize 
he must have found them at the museum. Shaggy wonders what 
they're for, with Fred suggesting they go to the library to 
find out.
   At the library they read a book which says that the 
glasses are for jewelers, scientists, and archaeologists like 
Professor Hyde White. It also says they're made in England. 
These two clues indicate that something is definitely up, and 
the gang plan on returning to the museum to investigate.
   The gang return to the museum at night and break in 
through an upper window. They split up and look for clues, 
not knowing that spooky eyes in an Indian effigy are watching 
them. Scooby, Shaggy and Velma bump into the Black Knight and 
have a brief altercation. Scooby runs into the fossil exhibit 
and begins gnawing on the bone, but is chased by the Knight. 
He meets up with Shaggy and the two find one of the paintings 
is missing. He informs the gang, but when they return, the 

painting is back on the wall.

Figure 3.1: A section taken from the example Scooby-Doo input synopsis [78]

The synopsis describes the plot of ‘What a Night for a Knight’, which is the frst

episode of the well-known cartoon, ‘Scooby-Doo, Where Are You!’ [78]. This

synopsis provides a good example of StoryFramer’s target input: a synopsis writ-

ten by a human, sourced from the internet. The only restrictions placed on the

input synopsis are that it has to be written in English, and in third-person. It also

contains examples of the common problems regarding the input that this task is

required to deal with, all of which will be highlighted in the following section.
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3.2 Problem Description

Acquiring a planning domain model from an input natural language synopsis

is a complex task that can be decomposed into two main stages: preprocessing

the input synopsis; and domain model acquisition. In the following sections

the problems these tasks pose are illustrated in reference to the Scooby-Doo

synopsis.

3.2.1 Preprocessing the Input Synopsis

Before information regarding a planning domain model can be extracted from

the synopsis, some preprocessing of the natural language input is required. An

important aspect of this is to gain a knowledge of the objects that are referenced

in the narrative. For this work objects are defned as nouns, provided they are

either: proper nouns, concrete nouns, collective nouns, or countable abstract

nouns. These objects that appear in the input text will map to objects in the

output domain model. Figure 3.2 shows all the objects highlighted for a section

of the example synopsis. The frst problem to address is how to identify the

objects in the natural language input.

It is possible for the same object to be referenced by multiple differing named

mentions. In the example both Professor Hyde White and the professor refer to

   The gang travels to the museum (now the next day) where 
they deliver the knight to the museum curator, Mr. Wickles. 
He thanks them, but fears that perhaps it wasn't a good idea 
with Professor Hyde White disappearing. He goes on to explain 
about the legend of the Black Knight and how it comes to life 
when the moon is full. Velma asks him what Professor Hyde 
White was doing with it (despite having already found out 
beforehand), and replies that the professor was delivering it 
to the museum all the way from England. As this is going on, 
they don't notice the knight's glowing eyes. Two workers 
begin to move the crate, one of them asking Mr. Wickles where 
to put it. He tells them to put it in the medieval room. As 
Scooby follows the workers, he finds a strange pair of 
glasses. He picks them up, as Daphne calls him, while Fred 

says they're leaving.

Figure 3.2: A section of the example synopsis with the objects highlighted in

blue.
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the same character. In the full synopsis the character is also referred to using

Hyde White and Jameson Hyde White: Prof. of Archaeology. As these all refer

to the same character they must be mapped to a single unique identifer which can

be used in the output domain model. A stage is therefore needed to disambiguate

the objects that have been identifed. This requires a method for identifying when

multiple named references are referencing the same object and selecting a unique

identifer that will be used going forward to represent the object in question.

Failing to disambiguate the identifed objects would lead to having duplicate

objects in the domain model, facilitating the possibility of having objects that

don’t exist being involved in actions. This wouldn’t accurately represent the

narrative plot being described by the synopsis.

Given the minimal restrictions placed over the input, it is likely that the syn-

opsis will contain the use of pronominal referencing, i.e., a word used in place

of a noun. Many of the pronouns present in the input text will refer to something

that has already been mentioned elsewhere in the discourse. Relevant informa-

tion regarding object properties and the actions that they are involved in, may

be conveyed with the use of pronouns. It is therefore important to know which

object or objects the pronouns in question are referring to.

Not all pronouns that appear in the input text will be referencing an object.

There are many different types of pronoun, some of which may be referencing

an object in the story. These pronouns are:

• Personal pronouns - used in place of common and proper nouns, e.g. it.

• Demonstrative pronouns - used to represent a thing or things, e.g. this,

that.

• Refexive pronouns - pronouns that end in -self or -selves, e.g. itself.

• Possessive pronouns - used to show ownership, e.g. its.

• Subject and Object pronouns - used as either the subject or the object in a

sentence, e.g. it

It is still possible that these pronouns aren’t referencing an object in the story

but are instead referring to something else, such as previous actions or events.

Some pronoun types will never reference an object in the story and can therefore

be ignored. The types of pronoun this applies to are:
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• Relative pronouns - used to relate subordinate adjective clauses to the rest

of the sentence, e.g. which, that, who, where.

• Indefnite pronouns - used to refer to something unspecifed, e.g. all, some,

any, several, either.

• Interrogative pronouns - used to ask questions, e.g. who, which, what,

where, how.

Deriving the correct interpretation of the text and understanding every refer-

ence that is made towards objects in the synopsis is an important problem that

has to be addressed in order to extract and create a representative domain model.

This is a two part problem: frst the pronouns that could potentially be referenc-

ing objects in the story have to be identifed, and secondly, a knowledge of which

objects are being referenced is required going forward. Figure 3.3 highlights the

pronouns present in the example that could be referencing objects and need to be

addressed.

Coreference Resolution is the task of linking expressions that refer to one

another. Coreferencing is an unsolved problem, with no current solution offer-

ing 100% accuracy. Existing solutions are available, such as those included with

the CoreNLP toolkit [48]. These models represent state of the art solutions and

   The gang travels to the museum (now the next day) where 
they deliver the knight to the museum curator, Mr. Wickles. 
He thanks them, but fears that perhaps it wasn't a good idea 
with Professor Hyde White disappearing. He goes on to explain 
about the legend of the Black Knight and how it comes to life 
when the moon is full. Velma asks him what Professor Hyde 
White was doing with it (despite having already found out 
beforehand), and replies that the professor was delivering it 
to the museum all the way from England. As this is going on, 
they don't notice the knight's glowing eyes. Two workers 
begin to move the crate, one of them asking Mr. Wickles where 
to put it. He tells them to put it in the medieval room. As 
Scooby follows the workers, he finds a strange pair of 
glasses. He picks them up, as Daphne calls him, while Fred 

says they're leaving.

Figure 3.3: A section of the example synopsis with pronouns that could be ref-

erencing objects highlighted in red. The objects are highlighted in blue.
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often achieve accuracy scores in the range of 50-60% [82]. These models how-

ever are designed for general-purpose use and therefore the accuracy they can

achieve is fairly low. This problem is exacerbated when applied to narrative syn-

opses due to their tendency to use uncommon character and object names that

aren’t recognised by these general models. Failure to recognise the objects has a

detrimental impact on coreferencing, as any reference made towards an unknown

object will be missed. This problem is reduced by machine learning approaches

that require a training data set. For the purpose of StoryFramer it is possible that

no suitable training data already exists for a given synopsis. For the purpose of

StoryFramer’s specifc coreference task, using a method that achieves the highest

accuracy and minimises the number of errors is the goal. Based upon the current

available coreferencing solutions there is clear motivation to fnd a method which

would be better able to accurately resolve pronouns in the context of a narrative

synopsis.

3.2.2 Domain Model Acquisition

The goal is to extract as much planning related information from the synopsis

as possible, and from this produce a domain model. This comes with a number

of diffculties. The frst problem is to defne what information described in the

input would be of relevance. Subsequently it has to be considered whether the

identifcation and extraction of such information is possible using Information

Extraction (IE) techniques in this environment.

With very minimal constraints placed over the input synopsis, the content of

each synopsis can vary greatly with regards to the level of detail and information

being described. It isn’t possible to identify something if it isn’t mentioned. The

challenge here is to be able to identify when something described in the input is

relevant, rather than searching for something specifc.

The purpose of a narrative synopsis is to provide a condensed summary, out-

lining the plot of a play, flm or book. Although the level of detail and description

can vary, some assumptions can be made regarding the minimum required con-

tent that a synopsis should contain. In order to convey the baseline plot, the

actions that the story comprises of, and the characters and objects involved in

these actions both need to be described. As a minimum, StoryFramer has to be

able to search for the verbs in the input sentences that suggest actions performed
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   The gang travels to the museum (now the next day) where 
they deliver the knight to the museum curator, Mr. Wickles. 
He thanks them, but fears that perhaps it wasn't a good idea 
with Professor Hyde White disappearing. He goes on to explain 
about the legend of the Black Knight and how it comes to life 
when the moon is full. Velma asks him what Professor Hyde 
White was doing with it (despite having already found out 
beforehand), and replies that the professor was delivering it 
to the museum all the way from England. As this is going on, 
they don't notice the knight's glowing eyes. Two workers 
begin to move the crate, one of them asking Mr. Wickles where 
to put it. He tells them to put it in the medieval room. As 
Scooby follows the workers, he finds a strange pair of 
glasses. He picks them up, as Daphne calls him, while Fred 

says they're leaving.

Figure 3.4: A section of the example synopsis, with the actions that occur in the

narrative highlighted in red. Verbs that are not describing actions are highlighted

in blue.

by characters in the narrative world. Additionally any objects that are participat-

ing in said actions should be identifed.

Detecting actions in natural language is a diffcult task, with their interpre-

tation often depending on contextual information. To illustrate this, Figure 3.4

highlights the verbs that could be conveying actions in the example text. Verbs

that are describing actions that take place in the narrative are highlighted in red.

Highlighted in blue are the verbs that could potentially be describing actions but

based on their context are not. In this example, these verbs instead are used to:

describe emotions; recall past events; narrate the story; describe properties; ask

questions; give instructions; and are used in other forms of speech. Here the role

of StoryFramer is to identify plausible candidate verbs that will be mapped to

domain model operators. All of the highlighted verbs could become actions in

the domain model. Whether it is possible to distinguish between those that are

judged to have actually occurred in the narrative, and those that have not based

on their context is a problem to be addressed. Alternatively, limiting the domain

model to only the actions that actually occurred may not be desirable as this

would also limit the possible story variants that such a model could produce.

Framer [44] showed that to in order to acquire planning domain models from

natural language action descriptions, the input had to adhere to some strict con-
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ditions on how the sentences were written. Given that the input for StoryFramer

are narrative synopses that could be sourced from the internet, forcing strict con-

straints over the input isn’t a plausible option. Extracting all the information

available in the synopsis that fts within StoryFramer’s selection criteria allows

for a domain model to be partially built. This can then be completed by an author

with domain modelling expertise. This presents a trade-off, the input required of

an author could be minimised at the cost of domain model fexibility.

3.3 StoryFramer Overview

The task at hand presents many problems and challenges, and following their

analysis a suitable approach referred to as StoryFramer has been developed. Sto-

ryFramer is a semi-automated approach that consists of six major components

that act as stages of a pipeline, with the output of one component required as

input for the next. The components can be further categorised into two main

stages: “Preprocessing Input Synopsis” and “Domain Model Acquisition”. Each

component contains a number of smaller components. Together these compo-

Preprocessing Input Synopsis

Input NL Synopsis

Object Identification

1.
Object Selection, 

Disambiguation & Typing

2. Pronominal 
Coreference 
Resolution

3.

Domain Model Acquisiton

Extraction of 
Planning Information

4. Automated Planning 
Domain Model 
Construction

5.
Domain Model 
Generalisation

6.

Output Domain Model

Figure 3.5: An overview of the StoryFramer approach showing its constituent

components and how they are ordered.
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nents facilitate StoryFramer’s overall goal: to take an input natural language

plot synopsis and from this, construct a planning domain model representative

of the input. An overview of the StoryFramer pipeline is shown in Figure 3.5.

The major components are described in detail in the following chapters. The

“Preprocessing Input Synopsis” section of the fgure is the focus of Chapter 4

and the “Domain Model Acquisition” section is the focus of Chapter 5. A brief

overview of each component is presented in Section 3.3.1. The role of the author

is discussed in Section 3.3.2.

3.3.1 An Overview of the StoryFramer Components

1) Object Identifcation - The automated identifcation of named object men-

tions (references referring to characters, objects and things) that are present in

the input synopsis.

2) Object Selection, Disambiguation & Typing - Objects are selected from

the identifed object mentions and are disambiguated to create a list of unique

objects. Suitable types are then assigned to these objects. These tasks are com-

pleted by the author.

3) Pronominal Coreference Resolution - The automated coreference resolution

of pronouns that have been used to reference an object(s).

4) Extraction of Planning Information - The automated identifcation of the

narrative events that are described by the synopsis. This included the identif-

cation of objects that are participating or are associated with each event and the

identifcation of additional properties.

5) Automated Planning Domain Model Construction - The automated con-

struction of a default planning model that is representative of the extracted plan-

ning information. A planning model capable of reproducing the original plot can

also be automatically constructed.

6) Domain Model Generalisation - The default planning model can be gener-

alised by the author. Amendments can be made to the model using the default

predicates and control that the default model provides. A planning model capable

of generating new story variants can be created by making such amendments.
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3.3.2 The Role of the Author

The author that is using the StoryFramer approach is utilised throughout in or-

der to create a planning model that accurately represents an input synopsis. The

role of the author can be defned as the fulflment of three tasks: validating au-

tomated processes; providing additional information; and making preferential

choices. These tasks can be completed by non-technical authors as no expertise

of modelling planning domains is required.

In order to create a planning model representative of an input synopsis it

is important that the results of each task are correct. Accuracy can be ensured

by having the author validate the results of StoryFramer’s automated processes.

Any errors that are incurred as a result of an automated process can be corrected

by the author, which also prevents errors from propagating down the pipeline.

Additional information such as the types of object that are present in the

synopsis can be provided by the author. This information can then be exploited

by the automated processes to achieve a signifcant increase in accuracy. Such

information is either already known to the author or can be acquired through

reading of the input synopsis.

A number of preferential choices are presented to the author during the Sto-

ryFramer approach. For some tasks there are multiple correct ways in which they

can be completed. One such task is the selection and disambiguation of objects.

The author groups object mentions together based upon the unique objects that

they are referencing. What is considered to be an object is a decision that can be

made by the author, which in turn has an effect on the completion of this task.

Another task where author preference has to be considered is the generalisation

of the default planning model. The amendments that are made to the model in

order to produce a model capable of generating new story variants are dependant

on the types of new story that the author wishes to generate. This task is therefore

completed by the author.
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Preprocessing Input Synopses

This chapter details the frst stage of the StoryFramer approach to domain model

acquisition from input synopses; the preprocessing of input synopses. Common

features of narrative synopses are analysed and discussed. The available natural

language processing tools and annotations are introduced, detailing how they

can be used in this context. Preprocessing input synopses comprises of three

main tasks: the identifcation of objects within the input text; object selection,

disambiguation and typing; and pronominal coreference resolution. Methods are

presented that provide solutions to these tasks, exploiting the NLP tools and the

information available. The approach taken will be discussed and demonstrated

using the Scooby-Doo example synopsis introduced in Section 3.1.

4.1 Feature Analysis of Narrative Synopses

One important goal of StoryFramer is to place as few restrictions on the input

synopses as possible. One of the research questions being answered is that of;

can you take any natural language narrative synopsis and use that as a basis

for domain model acquisition? In order to address this, the general features of

narrative synopses need to be considered, as well as the minimum set of require-

ments/restrictions that the input has to adhere to.

4.1.1 Input Requirements and Assumptions

For a narrative synopsis to be used as input in this work it has to meet the fol-

lowing to two requirements: The synopsis has to be written in third-person; and

written using the English language.
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Narrative synopses should be written in third-person and present tense, but

when using sources that have been written by a human there can be no guarantee

of this. One of the assumptions that can be made of third-person synopses is that

the frst time any object/person/thing is referenced, it will be referenced by name.

This doesn’t always hold true of frst-person written pieces, where there is no

requirement for the narrators identity to be stated in the natural language, often

their identity stems from source context, e.g., the author. Knowing the identities

of the ‘things’ that are present in the synopsis is important for constructing a

domain model, as it allows for the tracking of an object’s involvement in actions.

It would be possible to relax the third-person requirement with the trade-off that

an author will assume the burden of ensuring that all ‘things’ referenced in the

synopsis have the correct identities.

The process of extracting planning domain models from synopses isn’t re-

stricted to the English language. In this work English is used mainly as a prefer-

ence but also due to its compatibility with the NLP tools that are being utilised.

In order to adapt the method to another language, the NLP annotations being

used would need to be trained on models for the appropriate language. Addi-

tionally the rules used for coreferencing pronouns may have to be modifed to

achieve more accurate results. A fair assumption being made is that the NL

sentences of the synopsis are well-formed and in accordance with a language’s

grammar. In order to extract the narrative information required the synopsis has

to at least contain such information regarding the narrative events that occur and

be presented in a clear, understandable manner. If the input fails to achieve this,

the synopsis isn’t a suitable source for domain model acquisition.

4.1.2 Common Features of Narrative Synopses

The content of synopses can greatly vary, but there are a number of common

features that they will all likely contain.

The purpose of a narrative synopsis is to provide a plot summary of a story.

In order to do this the minimum requirement of the content is to include infor-

mation regarding the characters and objects involved, and how they participate

in the narrative actions that occur. The level of detail that they are both described

with vary, but the core purpose will be the same. A well-written synopsis is not

just a dry list of events and should include actions, revelations and emotions [50].
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Although not a requirement, it is likely that a synopsis will describe how charac-

ters are feeling and how they are motivated to carry out specifc actions.

Another common feature of narrative synopses is the use of pronominal ref-

erencing, i.e, the usage of pronouns. Pronouns are commonly used in writing to

avoid the repetition of nouns. Pronouns are used to reference someone or some-

thing that has previously been mentioned in the discourse. The assumption is

made that all pronouns have been used correctly so that the antecedent(s) being

referenced are clear and there is no ambiguity.

Similar to how pronouns are used to avoid the repetition of nouns, an alter-

nate and common approach is to use multiple named references for the same

person or object. When this is the case it is expected that the multiple named

mentions are used clearly in such a way that it is easy to determine that they are

referring to the same thing. A simple example would be when a character’s frst

name is used, as opposed to their full name and title.

4.1.3 Genres and Sources

In order to demonstrate that the method presented as StoryFramer is applicable

to the wide range of narrative synopses that are being targeted, a selection of

synopses that represent a variety of genres and have been taken from a number of

differing sources are used for evaluating this work. The synopses used are shown

in Fig 4.1. The content of each synopsis is dependent on both the author and its

target audience. Differing genres may also utilise unique styles and vocabulary

that introduce a new set of problems.

Synopsis

Scooby‐Doo (1969)
Friends (2003)
House (2004)
The Jungle Book (1967)
Toy Story (1996)
Titanic (1997)
Merchant of Venice (~1605)
A Christmas Carol (1843)
Lord of the Flies (1954)
Odyssey (~675‐725 BC)

Format

TV episode
TV episode
TV episode
Film
Film
Film
Play
Novel
Novel
Poem

Synopsis Source

http://scoobydoo.wikia.com
https://www.imdb.com
http://house.wikia.com
https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org
https://www.nosweatshakespeare.com
https://www.sparknotes.com
https://www.sparknotes.com
https://www.sparknotes.com

Figure 4.1: A table of the synopses used in this work.
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4.2 Natural Language Processing Tools and Annotations

For the task of preprocessing synopses, a number of Natural Language Process-

ing (NLP) techniques are used. NLP toolkits, such as Stanford CoreNLP [48]

provide an array of natural language annotations and analysis tools.

The methods in this chapter utilise three types of annotation: Part-of-Speech

(POS) tagging; syntactic constituency analysis; and typed dependency parsing.

These annotations will be detailed and illustrated using the example sentence

below.

As Scooby follows the workers, he fnds a strange pair of glasses.

Before any analysis can take place, the input sentence has to frst be tok-

enized. This is the process of converting a sequence of characters into a sequence

of tokens (strings with an identifed meaning). In this case, taking an input sen-

tence and converting it into a sequence of words and punctuation as follows:

[As] [Scooby] [follows] [the] [workers] [,] [he] [fnds] [a] [strange] [pair] [of]

[glasses] [.]

4.2.1 Part-of-Speech Tagging

Part-of-Speech (POS) tagging is the process of marking up tokens corresponding

to particular parts of speech, based upon defnition and context, i.e., relationships

with adjacent and related words. Tokens are labelled with POS tags which in-

dicate the token’s part of speech and often other grammatical categories such as

(case, tense, etc.)

The Penn Treebank [49] is an annotated corpus of English that present a sim-

plifed POS tagset that is widely used in NLP, including the CoreNLP toolkit.

The Penn Treebank tagset is used in this work and the more POS tags of interest

are: VB (verbs), NN (nouns) and JJ (adjectives). These tags can also be ex-

tended to include more information, for example, NN (noun, singular or mass)

can be extended to become: NNS (noun, plural), NNP (proper noun, singular)

and NNPS (proper noun, plural).

POS tagging was once a task performed by hand but is now done in the

context of computational linguistics. Using the POS tagger provided with the
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CoreNLP toolkit on the example sentence yields the result below. In addition to

nouns (/NN), verbs (/VB) and adjectives(/JJ); this sentence also includes propo-

sitions (/IN), determiners (/DT) and pronouns (/PRP).

[As/IN] [Scooby/NNP] [follows/VBZ] [the/DT] [workers/NNS] [,/,] [he/PRP]

[fnds/VBZ] [a/DT] [strange/JJ] [pair/NN] [of/IN] [glasses/NNS] [./.]

4.2.2 Syntactic Constituency Analysis

Constituency parsing breaks a text down into sub-phrases. In the syntactic analy-

sis of linguistics, a phrase is a word or a group of words that functions as a single

unit within a grammatical hierarchy. Most phrases contain a key word that iden-

tifes the type and linguistic features of the phrases; also know as the head-word.

The syntactic category of the head-word is used as the name for the category of

the phrase; for example, a phrase whose head-word is a noun is called a noun

phrase.

Figure 4.2 shows a visual representation of a constituency parse tree for the

example sentence. This is a context-free phrase representation of the text. The

phrasal nodes are highlights in green, with POS tags in blue, and the tokens of

the sentence in white.

S

NP VP

NNP

Scooby

VBZ NP

follows DT NNS

the workers

SBAR

IN

As

, NP VP .

S

ROOT

, PRP

he

.NPVBZ

finds NP PP

NP

NNS

glasses

DT JJ NN IN

a strange pair of

Figure 4.2: A Constituency Parse Tree for the example sentence.
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4.2.3 Typed Dependency Parsing

Dependency parsing analyses the grammatical structure of a sentence, establish-

ing relationships between head-words and words which modify those heads. The

(fnite) verb is taken to be the structural centre of clause structure, with all other

words either directly or indirectly connected to the verb by links, called depen-

dencies. Dependency grammar representations are distinct from constituency

grammars, as they lack phrasal nodes. The structure is determined by the rela-

tion between a word and its head.

CoreNLP by default uses the Stanford typed dependencies representation

[20] to provide a simple description of the grammatical relationships in a sen-

tence. Figure 4.3 presents a dependency parse tree and diagram that uses the

Stanford typed dependency representation. The dependency between a depen-

dent and its head-word (parent on the tree) is highlighted in red. Dependencies

are used to label grammatical relationships such as the subjects and objects of

clauses, modifers and conjunctions, amongst others. In the example, Scooby is

the nominal subject (nsubj) of the clause follows.

As  Scooby  follows  the  workers ,  he  finds  a  strange  pair  of  glasses .

IN NNP VBZ DT ,NNS PRP VBZ DT JJ NN IN NNS .
nsubj

mark

det

dobj

advcl

nsubj

punct
dobj

amod

det
case

nmod

punct

‐> finds / VBZ  (root)
    ‐> follows / VBZ  (advcl)
        ‐> As / IN  (mark)
        ‐> Scooby / NNP  (nsubj)
        ‐> workers / NNS  (dobj)
            ‐> the / DT  (det)
    ‐> , / ,  (punct)
    ‐> he / PRP  (nsubj)
    ‐> pair / NN  (dobj)
        ‐> a / DT  (det)
        ‐> strange / JJ  (amod)
        ‐> glasses / NNS  (nmod:of)
            ‐> of / IN  (case)
    ‐> . / .  (punct)

Dependency 
Parse Tree

Dependency Diagram

Figure 4.3: A Typed Dependency Parse Tree and Diagram for the example sen-

tence.
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4.3 Identifying Objects Within Input Synopses

As discussed in Section 4.1, the level of detail that a synopsis describes a narra-

tive in can vary greatly. However, with the core purpose of a synopsis being to

convey a plot summary, as a minimum the audience has to be made aware of the

characters and objects that appear in the story, and how they are involved and par-

ticipate in the narrative events that occur. The identifcation of this information

is the basis for extracting a planning domain model.

4.3.1 Defnition of an Object

In order to identify the objects mentioned in the input text, what is considered

an object in this work needs to be defned. In this work all nouns are consid-

ered objects. The following list provides defnitions for the different noun types

(defnitions taken from [62]):

• Proper nouns - a name identifying a particular person, place, organisation

or thing, e.g. Fred, London, Google, Monday.

• Concrete nouns - referring to people and things that exist physically and

can be seen, touched, heard, tasted or smelled, e.g. dog, coffee, rain, tune.

• Collective nouns - referring to groups of people or things, e.g. gang, team,

government, herd.

• Abstract nouns - abstract nouns refer to ideas, qualities and conditions

which have no physical reality. They can be further categorised into those

of which that are countable (often has a plural form), e.g. ideas, skills,

problems, mistakes; and uncountable abstract nouns, e.g. happiness, dan-

ger, love, news.

The objects identifed suggest likely objects that could be used to populate

output planning domain models, but are also used during the coreference resolu-

tion of pronouns. Because it is possible to use a pronoun to reference any noun,

all nouns should be considered objects such that the correct references can be

identifed. Objects that are mapped to the domain model will be able to partici-

pate in actions if they meet the parameter requirements. There is no clear right
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and wrong answer when it comes to which nouns should be represented as ob-

jects in the domain model, this is decided by the domain author. A case could be

made that any noun could be used as an object in a domain model. Rather than

limit the options available in an extracted domain model, the approach taken is

to identify as many objects as possible.

4.3.2 Identifying Objects in Natural Language

To identify objects in the input synopsis an approach that utilises Natural Lan-

guage Processing (NLP) techniques is required. In this section the method that

StoryFramer uses for this task is presented. The method makes use of the NLP

annotations described in section 4.2.

Object Identifcation Method

Given an input narrative synopsis, objects are identifed on a sentence by sen-

tence basis. Using the CoreNLP toolkit [48], POS and syntactic constituency

parse tree annotations are produced. The POS annotation labels each token of

the sentence with a part-of-speech tag. The syntactic constituency parse tree

Algorithm 1: Object Identifcation Algorithm

Function Main(Input):
// Input is a constituency parse tree

for n in Nodes(Input) do
if n is NP then

CheckChildren (n)

end

end

Function CheckChildren(node):
children = Children(node) 
for child in children do

if child is NOUN then
MakeCandidateObject (child)

end
if child is ADJECTIVE and NoNouns(children) then

// None of the children are nouns

MakeCandidateObject (child)
end

end
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provides a context-free phrasal representation of the sentence structure. The la-

belled POS tags are available in the constituency parse tree, the parent node of

each token node (excluding punctuation) is a POS node.

Starting with the root node of the constituency parse tree, a recursive search is

used to check every node in the tree from left to right. Every time a noun phrase

(NP) node is found, the children are checked to see if any are nouns or adjectives.

All children that are nouns become candidate objects. If an adjective is found and

none of the other children are nouns, the adjective becomes a candidate object.

This method is shown in Algorithm 1.

Object Identifcation Example

Figure 4.4 shows a syntactic constituency parse tree for the following sentence:

A man is driving a pick-up down a road.

Using the method presented in Algorithm 1, the parse tree is searched, look-

ing for every noun phrasal (NP) node. On fnding a noun phrase node, the chil-

dren of the noun phrase node are then checked for potential objects. Any nouns

that are found become candidate objects: (man / NN) and (road / NN). If a noun

phrase node’s children doesn’t contain a noun, adjectives are then searched for

and become candidate objects if found: (pick-up / JJ).
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.

S

ROOT

.

ADVP

NP

NN

road

IN

down

DT

A

NN

man

NP VP

VBZ
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VP

VBG

driving

NP

DT

a

JJ

pick‐up DT

a

Figure 4.4: A Constituency Parse Tree for the sentence, A man is driving a pick-

up down a road. The red dots indicate the nodes that the object identifcation

method searches for.

4.3.3 Extracting Object Names

The object identifcation method fnds tokens (words) that indicate an object

mention. There is no restriction however that object names are limited to sin-

gular words. Such a restriction would reduce the level of detail of which object

names are identifed. It is often possible that a more accurate detailed object

name can be extracted from the sentence by looking to the other surrounding

words. This is why words are frst identifed only as candidate objects. For ex-

ample, an adjective might be used as a way of identifying a specifc object, e.g.

“Red Truck” and “Blue Truck”. The words that surround the candidate word can

provide more information about the object and affect the word’s meaning.

It is also possible that two candidate object words both refer to the same

object. If this is the case only one object should be identifed. Using Figure 4.5

as an example, both the words ’pair’ and ’glasses’ are identifed as candidate

objects, however both words contribute to the name of one object, ’a pair of

glasses’. Additionally the adjective ’strange’ has been used to differentiate these

glasses from a regular pair and should also be included in the extracted objects

name. The ideal and most detailed name that could be extracted in this case
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would be, strange pair of glasses.

Extracting Object Names Method

In order to extract detailed object names, the grammatical relationships between

words (available through typed dependency parsing) are used. As a result of the

previous object identifcation method, some tokens may have been fagged as

candidate objects. Every node in a dependency parse tree represents a token in

the NL sentence. This method locates any fagged candidate object tokens on the

dependency parse tree and checks the grammatical relationships of the candidate

object node to determine whether a more detailed object name can be extracted.

An outline algorithm for extracting object names is shown in Algorithm 2.

Starting with the dependency parse tree annotation for a given sentence, the

nodes in the tree are checked using a recursive search. When a node that has

been identifed as a candidate object is reached, the relationships between the

VP

VBZ NP

finds NP PP

IN NP

of NNS

NNJJDT

a strange pair

glasses

Figure 4.5: A section of the syntactic parse tree for the example sentence, As

Scooby follows the workers, he fnds a strange pair of glasses. The full parse

tree is shown in Figure 4.2. The red dots indicate the nodes that the object iden-

tifcation method searches for, resulting in both pair and glasses being identifed

as candidate objects.
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Algorithm 2: Object Naming Algorithm

Function Main(Input):
// Input is a dependency parse tree

CheckChildren (Input.RootNode)

Function CheckChildren(node):
children = Children(node) 
for child in children do

if child is CANDIDATE OBJECT then
CheckNameModifiers (child)

end
if Children (child) > 0 then

// Recursively check every node

CheckChildren (child)
end

end

node and its children are checked to see if any of the following dependencies are

found:

• Noun Compound (compound) - the compound word is added to the object

name in the order that they appear in the text. This applies for multiple

compound children.

• Adjectival Modifer (amod) - the adjective modifying the object is added

in front of the object name.

• Nominal Modifying Of (nmod:of) - “of” and the child word is added onto

the end of the object name. If a determiner exists between the of and the

child word, it too is added.

It is possible that one of the children that modify a candidate object’s name is

also a candidate object. In this situation, before the child is included in the name

of the object, the same dependency naming checks are applied to its children.

The resulting object name is then added to the original candidate’s name (its

parent) in the appropriate manner. Because the child has been included in another

object’s name, it is no longer recognised as a candidate object is now unfagged;

extracting duplicate objects is therefore avoided.
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Extracting Object Names Example

Figure 4.6 shows a dependency parse tree for the example sentence, As Scooby

follows the workers, he fnds a strange pair of glasses.

Starting with the the root node (fnds), the tree is searched for candidate ob-

jects. The frst candidate objects encountered are Scooby and workers. De-

pendency name checks are applied to the children of both but no name-altering

dependencies are found. The objects are extracted as SCOOBY and WORKERS.

The next candidate object to be reached and checked is pair. Checking the

node’s children, two name-altering dependencies are found: strange/JJ (amod);

and glasses/NNS (nmod:of). On fnding an amod, the word is added to the front

of the object name: (strange + pair). For the nmod:of, the word is added to the

end of the object whilst retaining the ”of”: (pair + of + glasses). The object is

extracted as STRANGE PAIR OF GLASSES.

At the start of the object naming algorithm, glasses was fagged as a can-

didate object. Before the recursive search reached the glasses node it had con-

tributed towards the naming of pair, and in doing so the candidate object fag was

removed. When the node is reached, no duplicate object is extracted.

Figure 4.7 contains two more examples of the object naming method in prac-

‐> finds/VBZ (root)                Extracted Objects
    ‐> follows/VBZ (advcl)         
        ‐> As/IN (mark)
        ‐> Scooby/NNP (nsubj)      ‐ Scooby
        ‐> workers/NNS (dobj)      ‐ workers
            ‐> the/DT (det)
    ‐> ,/, (punct)
    ‐> he/PRP (nsubj)
    ‐> pair/NN (dobj)              ‐ strange pair
        ‐> a/DT (det)                of glasses
        ‐> strange/JJ (amod)
        ‐> glasses/NNS (nmod:of)
            ‐> of/IN (case)

    ‐> ./. (punct)

Figure 4.6: A Dependency Parse Tree for the example sentence. The candidate

objects are highlighted in red. Words and dependency relations involved in the

extraction of object names are highlighted in blue.
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tice. The frst of which illustrates how noun compound dependency relation-

ships are handled using Professor Hyde White as the example. As previously

explained, the order in which the two compound words (Professor and Hyde) are

affxed to the candidate object parent (White) is based upon the order in which

they appear in the NL sentence. The second example shows that not all noun

modifers contribute to an object’s name. In this case the (nmod:poss) depen-

dency indicates that the object is in the possession of another object, thus two

different objects (suit of armour and knight) are extracted.

‐> White/NNP (nmod:with)
        ‐> with/IN (case)
        ‐> Professor/NNP (compound)
        ‐> Hyde/NNP (compound)
        ‐> disappearing/VBG (acl)

Object – Professor Hyde White

‐> suit/NN (nsubj)
      ‐> knight/NN (nmod:poss)
        ‐> a/DT (det)
        ‐> 's/POS (case)
      ‐> armour/NN (nmod:of)
        ‐> of/IN (case)

Object ‐ suit of armour
Object ‐ knight

Figure 4.7: Object name extraction examples
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4.4 Object Selection, Disambiguation and Typing

After all the object mentions that appear in the input sentences have been identi-

fed, the next processing step concerns the selection, disambiguation and typing

of these object mentions. The result of doing so is a typed list of the unique

objects that are present in the synopsis.

4.4.1 Object Selection

StoryFramer is an aid to creating planning domain models, for which there is no

one defnitive correct approach. An aspect of creating planning domain models

is author preference. How the author intends for the domain model to operate

will be a contributing factor when deciding which objects need to be represented

in the model; and consequently how the mentions should be clustered. For this

reason the task of object selection and consequently the clustering of object men-

tions is handled by the author. While author preference has a factor in the selec-

tion of objects, in order to ensure the output domain model is representative of

the input synopsis objects should be included if any of the following are true:

1) The object represents a character or group of characters that are involved in

an event; 2) The object is referenced by a pronoun; or 3) The coreference of a

pronoun is dependent on the object being recognised as such (detailed in Section

4.5.5).

4.4.2 Object Disambiguation

Each unique object mention identifed in the text doesn’t necessarily correspond

to a unique object. It is possible that an object is referenced in the text using

multiple differing named mentions. In the example synopsis, ‘Professor Hyde

White’ is also referred to using: ‘the professor’, ‘Hyde White’ and ‘Jameson

Hyde White: Prof. of Archaeology’. With all of these extracted object mentions

referring to the same object, it would be incorrect to have these mentions mapped

to more than one object in the output domain model. So that each individual

object present in the synopsis is mapped to a singular object in the domain model,

object mentions that refer to the same object need to be clustered and given a

unique identifer.
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Identified Object Mentions

Shaggy
Scooby
Suit of armour
Knight
Fred
Velma
Daphne
London
Prof. of Archaeology
Jameson Hyde White
Hyde White
County Museum
Gang
Museum

Mr. Wickles
Museum Curator
Professor Hyde White
Black Knight
Professor
Workers
Crate
Medieval room
Strange pair of glasses
Glasses
Library

Example Object Clustering

‐ Shaggy
‐ Scooby
‐ Black Knight
     Knight
     Suit of armour
‐ Fred
‐ Velma
‐ Daphne
‐ London
‐ Professor Hyde White
     Prof. of Archaeology
     Jameson Hyde White
     Hyde White
     Professor

‐ Museum
     County Museum
‐ Gang
‐ Mr. Wickles
     Museum Curator
‐ Workers
‐ Crate
‐ Medieval room
‐ Strange pair of glasses
     Glasses
‐ Library

Figure 4.8: An example object clustering. Sorting a list of identifed object

mentions into a disambiguated list of unique object clusters.

The Disambiguation Process

Starting with the list of identifed object mentions, the author will create an ob-

ject cluster to represent each unique object that appears in the the input synopsis.

Object clusters comprise of all the named mentions that appear in the text that

are used to reference the same object. For clusters that contain multiple object

mentions, one of the mentions is selected to act as the object’s unique identifer

going forward. The table shown in Figure 4.8 provides an example object clus-

tering that disambiguates object mentions identifed in the Scooby-Doo example

synopsis.

Collective nouns should be viewed as their own objects for the purposes of

this clustering process. It is however important to understand which individual

objects are being referenced when a collective noun is used. A reference to a

collective noun, is a reference to all of the objects it references. The opposite

however isn’t true; a reference to an object that is part of a collective, isn’t a

reference to the collective itself. In the Scooy-Doo example, the fve main char-

acters are often referred to as a collective group, i.e. “The Gang.” Gang becomes

an object reference that when used refers to the fve members. A reference to the

Gang is a reference to Scooby-Doo as he is one of the members, but a refer-

ence to Scooby-Doo doesn’t reference the collective Gang.
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4.4.3 Object Typing

Through the clustering of object mentions, the objects that appear in the input and

the named object mentions that are used to reference them have been established.

Synopses may include cases of pronominal referencing, i.e. the use of pronouns.

Determining the object or objects that are being referenced when a pronoun has

been used requires a knowledge of an object’s type.

Object typing is also used in modelling planning domains as it allows for

type constraints to be applied to action parameters, providing a mechanic for

controlling the eligibility of object participants.

Five types are used in this work that provide suffcient information such that

the coreferencing of pronouns and some control over action eligibility in the

planning domain can be achieved. The specifcs of how these types are used will

be detailed in the later relevant sections. The types are as follows:

• MCHAR - Male Character

• FCHAR - Female Character

• OTHER - Object/Location/Neutral (Singular)

• OTHERP - Object/Location/Neutral (Plural)

• GROUP - Group or Organisation

The Object Typing Process

Author preference once again plays a part in the typing of the objects, as how

the object mentions were clustered may be contributing factor when assigning a

type. The author will assign one or more of the listed types to each object. The

types given to an object should refect the role that the object plays in the synopsis

and should also be compatible with the pronouns that are used to reference the

object in the text. When assigning multiple types to an object, the object gains

the eligibility that each type provides. By assigning multiple types, the object

can also be referenced by pronouns that are grammatically compatible with each

of the types selected. Figure 4.9 shows an example of how the objects in Scooby-

Doo could be typed.
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Object

‐ Shaggy
‐ Scooby
‐ Black Knight
     Knight
     Suit of armour
‐ Fred
‐ Velma
‐ Daphne
‐ London
‐ Professor Hyde White
     Prof. of Archaeology
     Jameson Hyde White
     Hyde White
     Professor

Type

MCHAR
MCHAR
MCHAR/OTHER

MCHAR
FCHAR
FCHAR
OTHER
MCHAR

Object (cont.)

‐ Museum
     County Museum
‐ Gang
‐ Mr. Wickles
     Museum Curator
‐ Workers
‐ Crate
‐ Medieval room
‐ Strange pair of glasses
     Glasses
‐ Library

Type

OTHER

GROUP
MCHAR

GROUP
OTHER
OTHER
OTHERP

OTHER

Figure 4.9: An example of object typing using the Scooby-Doo object clusters

from Figure 4.8.

In the example given, the task of typing the objects in most cases is trivial

for an author providing they have read the synopsis. The BlackKnight object is a

case where it is appropriate to assign multiple types to an object. In this example

the object was clustered such that the object represents both states that the suit of

armour can be in (alive and lifeless). As this is the case the object is typed to cater

for both these states, becoming both a male character (MCHAR) and an object

(OTHER). The sentence below shows that the object is also referenced using both

male (his) and neutral (its) pronouns, providing additional confrmation that this

typing is warranted.

The suit of armour in the back has come to life and left his containment.

Its eyes glow yellow from inside its helmet.

The author alternatively could have chosen to represent the two states of the

BlackKnight and SuitOfArmour as separate objects. In this case a suitable typ-

ing would be: BlackKnight (MCHAR); and SuitOfArmour (MCHAR/OTHER).

SuitOfArmour is still referenced by male pronouns so would still require the

compatible male typing. With the typing of objects dependent on the author’s

clustering preferences, the responsibility to assign types that are consistent with

the object clusters lies with the author.
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4.5 Pronominal Coreference Resolution

Pronouns, i.e. words used in place of nouns, are widely used in natural lan-

guage to avoid repeating nouns. Pronouns refer to someone or something that

has been mentioned elsewhere in the discourse, this is also known as pronominal

referencing.

With minimal restrictions placed over the synopses that StoryFramer can take

as input, it is very likely that these will include occurrences of pronominal ref-

erencing. In order to correctly extract information from sentences that utilise

pronominal referencing, an understanding of the objects or things that are being

referenced is required.

4.5.1 Exploiting the Available Information

Coreference Resolution is the task of fnding all expressions that refer to the

same entity in the text. Pronouns and other referring expressions are linked to

entities. Coreference resolution is a complex problem that has yet to be solved,

meaning no perfect solution exists. General solutions such as those provided by

the CoreNLP toolkit offer an accuracy of 50-60% [82].

The way these algorithms commonly function is to fnd the frst preceding

entity that is compatible with the expression. If a preceding entity hasn’t been

detected or any information regarding it’s type is unknown, this will often result

in the correct coreference link not being found. In the context of narrative syn-

opses this can be a more prevalent issue, with characters and objects often being

referred to using unique names that CoreNLP will regularly fail to recognise,

e.g., the character House in House M.D. is recognised as an organisation rather

than a male character.

In the context of StoryFramer, information regarding the objects that are

present in the input synopsis and their types is available in the form of the typed

object list. By developing a pronominal coreferencing algorithm that exploits

this available information, errors that are caused by a failure to recognise an

object can be avoided. The goal of StoryFramer’s pronominal coreferencing ap-

proach is to achieve fewer errors than using a general CoreNLP solution in the

given context.
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4.5.2 Pronoun Types That Require Coreferencing

The assumption is made that the input narrative synopses will be written in third-

person and present tense (as discussed in Section 4.1). As this is the case, the

types of pronoun that can appear in the text becomes restricted to: pronouns that

can potentially be referencing objects in the narrative; and those that cannot. The

pronouns that can potentially be referencing objects and require coreferencing

are as follows:

• Subject/Subjective Pronouns - Pronouns that act as the subject of a clause

or sentence. (He, She, It, They)

• Object/Objective Pronouns - Pronouns that act as the object of a clause or

sentence. (Him, Her, It, Them)

• Possessive Adjectives - Possessive adjectives show ownership. These pro-

nouns are technically adjectives because they modify a noun that follows

them. (His, Her, Its, Their)

• Possessive Pronouns - Pronouns that also show ownership, however these

pronouns refer to a previously named or understood noun. (His, Hers, Its,

Theirs)

• Refexive Pronouns - Object pronouns that are used when the subject and

object are the same noun. (Himself, Herself, Itself, Themselves)

For a given pronoun, its type often has an effect on the coreferencing process.

In most cases, depending on the pronoun type and what noun is being referenced

a unique word is used. This makes identifying most types a simple task. There

are however cases where the same word has been used for multiple pronoun

types. One of the most common examples of this is the female reference “Her”

which can be used for both a possessive adjective and an objective pronoun. In

contrast male references are more straightforward with “His” used for a posses-

sive adjective and “Him” for an objective pronoun. This creates the need for a

method that can differentiate between the two types. Possessive adjectives are

named as such because they modify a noun. By looking at the part-of-speech

tags for the next word(s) following the pronoun it is possible to interpret whether

the pronoun is possessive or not. A “Her” followed by a noun or a number of

adjectives that are also modifying a noun is a possessive adjective.
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4.5.3 Pronoun and Object Type Compatibility

Antecedents are words or phrases to which another word (often a relative pro-

noun) refers back to. Coreference algorithms commonly work by fnding the

nearest antecedents to a pronoun and checking to see if any are a compatible

match with the pronoun. In order to do this it has to be known which pronouns

and antecedents are compatible with one another. In the context of StoryFramer,

the antecedents are the objects in the synopsis that have already been identifed,

typed and stored in a typed object list (Section 4.4.3). Every object will have

been assigned at least one type. The compatibility between pronouns and object

types is:

• MCHAR: He, His, Him, Himself.

• FCHAR: She, Her, Hers, Herself.

• OTHER: It, Its, Itself.

• OTHERP: They, Their, Them, Themselves.

• GROUP: They, Their, Them, Themselves.

In cases where an object has multiple types, if one of the types is compatible

with the pronoun being resolved, the antecedent is deemed compatible.

4.5.4 Identifying Sentence Clauses

As part of the coreferencing process the input sentences need to be broken down

into their constituent clauses. In this work a sentence break is defned as a point

separating two clauses within the same sentence. Sentence breaks are identifed

by searching for the following:

• Punctuation - commas, semicolons and colons.

• Coordinating conjunctions - words such as “but” and “and.”

Figure 4.10 shows a section of the example synopsis, broken down into

numbered clauses and highlighting where sentence breaks have been identifed.

There are three exceptions that result in a break no being identifed despite meet-

ing the punctuation or coordinating conjunction criteria. The frst is when a
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[Fred comments on why a knight's suit of armour would be out 
alone in the middle of the night.1][Shaggy jokes that maybe he's 
out for the night.2][Velma chides him for his joke3]|,|[as Daphne 
wonders who it belongs to.4][Fred reads5]|:|["Deliver to Jameson 
Hyde White: Prof. of Archaeology6]|,|[London7]|,|[England."8]
[Shaggy makes another joke about having heard of hide and 
seek9]|,|[but not "Hyde White".10][Velma says that is an English 
name.11][Daphne also finds a delivery slip reading12]|:|["Deliver 
to the County Museum."13][The gang travels to the museum (now the 
next day) where they deliver the knight to the museum 
curator14]|,|[Mr. Wickles.15]
[He thanks them16]|,|[but fears that perhaps it wasn't a good 

idea with Professor Hyde White disappearing.17]

Figure 4.10: A section of the Scooby-Doo example synopsis broken down into

numbered clauses. Identifed sentence breaks are highlighted between two red

lines, | break |.

coordinating conjunction is being used to join two words together, e.g. “hide

and seek,” (Clause 9). A coordinating conjunction is also not considered to be a

sentence break if it directly follows punctuation that is already considered to be

a break (“but” in Clause 17). If an object name contains punctuation or a coor-

dinating conjunction, these are also not identifed as sentence breaks (“Jameson

Hyde White: Prof. of Archaeology” in Clause 6).

Clauses aren’t accurately identifed when using this method from a grammat-

ical viewpoint. When objects are in a list, the separating commas shouldn’t be

considered as signifying a new clause. Although new clauses are being identi-

fed, the resulting breakdown of the sentences is adequate when used with Sto-

ryFramer’s pronominal coreferencing algorithm. Identifying additional ‘clauses’

in the case of lists doesn’t effect the coreferencing result. However, failure to

identify a clause in the text could.
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4.5.5 Pronominal Coreferencing Algorithm

A basic method for coreference resolution would be to fnd the frst antecedent

to a pronoun that is of a grammatically compatible type. For a male pronoun

such as “He”, this would mean fnding the last mentioned male character. How-

ever this isn’t always the case and more accurate results are possible when other

potentially contributing factors are considered.

The correct interpretation may be dependent on a number of other contribut-

ing factors; such as context gained from another part of the story; or the specifc

role interactions an object might have with a verb. There are situations that can

be detected based upon the type of pronoun being coreferenced and the structure

of the surrounding sentence. Being able to identify such situations can result in

the correct coreference being selected, or alternatively antecedents can be ruled

out as possible references.

Given that the NL input is a third-person narrative synopsis (as discussed in

Section 4.1), the assumption is made that for any given pronoun the object(s)

being referred that are being referenced will have been mentioned by name at

some point in the text before the pronoun appears. Thus by using a backwards

search through the preceding input sentences all the objects that the pronoun

references can be found.

It is important that the pronouns are resolved in the same order that they

appear in the text. The reason for this is that all object references prior to the

pronoun in question need to be known. An object reference can either be a named

mention of an object(s), or a pronoun referencing an object(s). It is possible for

a pronoun to be referencing another pronoun, resolving them in order allows for

the correct coreference links to the objects be made.

The new algorithm that has been developed for this decision making process

within the StoryFramer approach is shown in Algorithm 3 and is based upon

other multi-sieve approaches to coreferencing, such as CoreNLP’s deterministic

method [73]. A multi-sieve approach provides an ordering over the rules that are

applied. Commonly rules that check for the most specifc cases are applied frst,

gradually applying more generalised rules. This new algorithm succeeds more

than a general algorithm in this context due to way that it utilises the available

additional information regarding the objects that are present in the synopsis and

their types.
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Algorithm 3: Pronominal Coreferencing Algorithm

Function Main(Input):
for s in Sentences(Input) do

for p in Pronouns(s) do
// Find all objects that match the pronoun’s type

objects = FindMatchingObjects(s,p) 
// Start the sieve mechanism (Sieve 1)

Sieve1(Input,objects,p) 
end

end

Function Sieve1(Input,objects,p):
ApplyRule OBJECTIVE-INFINITIVE-VERB: // Rule 1

if match is found then return match

ApplyRule OBJECTIVE-AFTER-BREAK: // Rule 2

if match is found then return match

ApplyRule REFLEXIVE: // Rule 3

if match is found then return match

ApplyRule OBJECTIVE: // Rule 4

remove unsuitable objects from the list objects

ApplyRule AND-POSSESSIVE: // Rule 5

if match is found then return match

ApplyRule INVOLVED-IN-ACTION: // Rule 6

remove unsuitable objects from the list objects

// At this point, no match was found. So, start Sieve2.

Sieve2(Input,objects,p) 

Function Sieve2(Input,objects,p):
ApplyRule SINGLE-MATCH: // Rule 7

if match is found then return match

ApplyRule MULTIPLE-MATCH: // Rule 8

if match is found then return match

ApplyRule PLURAL-MULTIPLE-MATCH: // Rule 9

if match is found then return match

// At this point, no match was found. Keep executing Sieve2 on previous sentences

until a match is found

s = PreviousSentence(Input,p) 
if s is defned then

objects.add(FindMatchingObjects(s,p))

Sieve2(Input,objects,p) 
end

70



Chapter 4. Preprocessing Input Synopses

Coreference Algorithm Method

StoryFramer’s algorithm utilises two sets of rules that are referred to as Sieve1

and Sieve2. For each pronoun, a list of potential objects is populated with all the

objects that are referenced in the same sentence before the pronoun, providing

they are type compatible with the pronoun. The next step is to apply the 6 rules of

Sieve1 in order. As a result of doing so, either an object reference has been found

and the search terminated, an object has been fagged as ineligible for selection,

or nothing as changed.

At this stage, if an object has not been returned, the 3 rules of Sieve2 are

now applied. If no match is returned after doing so, the list of potential objects

is expanded. The list is expanded by looking to the previous sentence, adding

all of the objects that it references, providing they are type compatible with the

pronoun as before. The rules of Sieve2 are then applied once again, and this

process of expanding the potential object list by looking back to the next previous

sentence and re-applying Sieve2 continues until a match is found.

There is no guarantee that the input has been well-written when using a syn-

opsis that has been written by a human. It is possible that a matching object

hasn’t been mentioned by name before the pronoun. In this case if the search

returns no match, the pronoun isn’t assigned a match and the algorithm moves

onto the next pronoun.

Coreference Algorithm Rules

In this section the nine rules that make up Sieve1 and Sieve2 will be described.

These rules are based solely on the structure of the sentences, the words involved,

and their types. For each rule example sentences are provided to demonstrate its

application. Examples are taken from a variety of narrative synopses in order to

illustrate all of the rules.

SIEVE 1

RULE 1: OBJECTIVE INFINITIVE VERB

The infnitive form is the verb in its basic form (as it would appear in the dic-

tionary). For the defnition of this rule it is assumed that the infnitive form of a

verb is always preceded by the word ’to’. The rule also accepts split infnitives

(constructions where adverbs are inserted between the ’to’ and the root verb).
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Apply Rule When: 1. The pronoun is objective; 2. The pronoun is directly

preceded by a verb in the infnitive form; 3. The last referenced object is type

compatible with the pronoun; 4. At least two different objects have been refer-

enced in the same sentence before the pronoun.

Action: The last referenced object is returned as the match.

Example 1: Lisa Cuddy, the Dean of Medicine, comes looking for House 
to berate him.

(him = House)

RULE 2: OBJECTIVE AFTER BREAK

Apply Rule When: 1. The pronoun is objective; 2. The pronoun occurs after a

sentence break and no object reference exists between the pronoun and the sen-

tence break; 3. The last referenced object is type compatible with the pronoun; 4.

At least two different objects have been referenced in the same sentence before

the pronoun.

Action: The last referenced object is returned as the match.

Example 1: Bagheera speaks to Baloo |and| convinces him the jungle 
isn’t safe for Mowgli.

(him = Baloo)

Example 2: He was part of a smuggling ring, he would steal the paintings 
|and| sell them.

(them = paintings)

RULE 3: REFLEXIVE

Apply Rule When: 1. The pronoun is refexive; 2. Only one object reference

that is type compatible with the pronoun exists before the pronoun in the sen-

tence; 3. If multiple type compatible object references exist before the pronoun

in the sentence, the pronoun is treated instead as objective and Rule 4 is applied.

Action: The only type compatible object reference is returned as the match.

Example 1: Shaggy trips over himself.

(himself = Shaggy)
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RULE 4: OBJECTIVE

Apply Rule When: 1. The pronoun is objective.

Action: The last referenced object becomes ineligible for selection.

Example 1: House thinks the patient has a brain tumour, but Wilson 
asks him to take the case.

(him != Wilson)

RULE 5: AND POSSESSIVE

Apply Rule When: 1. The pronoun is possessive; 2.The pronoun is preceded

by the word ’and’; 3. The last referenced object is type compatible with the

pronoun.

Action: The last referenced object is returned as the match.

Example 1: Mowgli joins the elephant patrol lead by Hathi and his

wife Winifred.

(his = Hathi)

RULE 6: INVOLVED IN AN ACTION

Apply Rule When: 1. The words in between the next named object (going

forwards in the sentence), consists of at least one verb, no sentence breaks, con-

junctions or nouns.

Action: The next named object becomes ineligible for selection.

Example 1: Louie offers to help Mowgli stay in the jungle if he will tell

Louie how to make fre.

(he != Louie)

SIEVE 2

RULE 7: SINGLE MATCH

Apply Rule When: 1. The candidate objects list contains only one match.

Action: The object is returned as the match.

Example 1: Mowgli is playing with his wolf siblings.

(his = Mowgli)
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Example 2: House thinks the patient has a brain tumour, but Wilson 
asks him to take the case.

The objective rule set (him != Wilson), leaving one match remaining, resulting

in (him = House)

Example 3: Louie offers to help Mowgli stay in the jungle if he will tell

Louie how to make fre.

The involved in an action rule set (he != Louie), leaving one match remaining,

resulting in (he = Mowgli)

RULE 8: MULTIPLE MATCH

Apply Rule When: 1. They pronoun isn’t a plural; 2. The candidate objects list

contains more than one match.

Action: Going backwards in the text, fnd the last sentence break that occurred.

Select the frst candidate object to be referenced after this break. If no reference

is found, the next sentence break back is used, and the frst candidate object

reference to occur after that break is selected. This process of going backwards

through the sentence breaks repeats until a match is found.

Example 1: Baloo and Bagheera head home|,| content that Mowgli is

happy with his own kind.

(his = Mowgli)

RULE 9: PLURAL MULTIPLE MATCH

It is possible for a plural pronoun to be referencing a group/organisation, and

object plural, or multiple characters or objects.

Apply Rule When: 1. The pronoun is a plural; 2. The candidate object list

contains more than one match.

Action: The selection process is the same as the ’Multiple Match’ rule, with

an addition. If the match returned is a singular character or object, and other

different characters or objects also exist as candidates; they are all returned as

matches. Associating the pronoun with multiple references.

Example 1: He informs the gang, but when they return the painting is back on

the wall.

(they = Gang)
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Example 2: Velma says the mystery has her baffed|,| and has got Shaggy 
hungry|,| asking when they can eat?

(they = Shaggy & Velma)

As a result of applying the pronoun coreference algorithm on the input syn-

opsis, every pronoun of interest present in the text will now have at least one

object associated to it. This is based on the assumption that the matching ob-

ject(s) for all pronouns will have been mentioned by name in the input sentences

at some point before the pronoun.

4.6 Conclusions

This chapter has described in depth the frst stage of the StoryFramer approach:

the preprocessing of input synopses.

The common features of narrative synopses have been discussed, result-

ing in the defnition of input requirements and the assumptions being made.

Novel methods have been presented for the three preprocessing components: ob-

ject identifcation; object selection, disambiguation and typing; and pronominal

coreference resolution. These methods demonstrate the automation of required

tasks within a semi-automated approach that utilises having an author-in-the-

loop.
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Domain Model Acquisition

This chapter details the domain model acquisition process that is applied to a pre-

processed input synopsis in order to construct a narrative planning domain model

(as shown in Figure 3.5 in Section 3.3). Planning information is extracted from a

preprocessed input synopsis by applying information extraction techniques that

identify both the events that occur during the described narrative and the objects

that participate or are associated with these events. The narrative information

that is extracted from a synopsis is then used for the automated construction of

a planning domain model. Default narrative predicates are introduced to provide

a baseline level of causality between actions and facilitate a method of narrative

control. It is demonstrated that the model is suffcient to be able to reproduce the

original plot. This is shown through the automated creation of a domain model

that can regenerate the input narrative as a plan. The ways in which an author

can interact with the system to generalise the acquired domain model that utilise

the available default predicates are discussed with a view to constructing a model

capable of generating new and plausible story variants.

5.1 Extraction of Planning Information

The core purpose of a synopsis is to convey a plot summary (Section 4.1). In or-

der to achieve this the narrative events that occur need to be described. Narrative

events are events that take place and have an effect on the story being told. The

extraction of such information will form the basis of the planning domain model.

In this section narrative events are defned in the context of this work. The

method used to identify narrative events within natural language synopses using
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information extraction techniques is described. These methods utilise the NLP

annotations described in Section 4.2. A method is then presented for the naming

of narrative events, looking to use relevant information that is present in the sur-

rounding sentence to add more detail to a name where it is available. In addition

to identifying the narrative events, the process developed for the identifcation

of the objects that are associated to each event is detailed. Finally, additional

descriptive information regarding objects and narrative events is extracted. The

method used for this task is referred to as the extraction of properties.

5.1.1 Defnition of a Narrative Event

Narrative events are defned as events that are mentioned in the synopsis that have

an effect on the story. Narrative events can be either: the actions of characters; or

global effects, such as the weather changing. The extraction of this information

will map to actions in the planning domain model.

In order to identify narrative events in the input text, a defnition of what

constitutes a narrative event in natural language is required. In this work a word

is considered to be representing a narrative event if it is verb, with the following

exceptions (defnitions taken from [12]):

• Auxiliary Verbs - Auxiliary verbs (be, do, have, and their variants) come

before main verbs. When this is the case, the main verb associated with

the auxiliary will be considered as a narrative event.

The knight is unmasked - In this example, the verb “is” is an auxiliary to

the main verb “unmasked.”

• Copula Verbs - Also known as linking verbs, copula verbs are used to

provide extra information to a subject. This providing of extra information

is often conveying a property and not a narrative event.

He was part of a smuggling ring - the copula verb “was” is used to provided

extra information about the subject (He).

• Modal Verbs - Modal verbs (could, might, will, etc.) have meanings con-

nected with uncertainty and necessity. They are often used as auxiliaries

to main verbs and don’t convey narrative actions.

He would steal the paintings - The modal verb “would” is used as an aux-

iliary to the main verb “steal.”
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In the same way that there is no defnitive correct or incorrect interpretation

as to what constitutes an object (Section 4.3.1), the same applies to the defnition

of narrative events. What are considered to be the narrative events can vary and

is left to the author’s discretion. Stative verbs, such as those describing emotion,

possession, sense and thought, are examples of verbs that an author may or may

not which to be represented as a narrative event. It is plausible that a change in

a character’s state may represent a crucial plot point that an author would like

included in the resulting planning model. To maximise the options available to

an author, the approach taken is to identify and extract as many verbs that could

potentially represent narrative events as possible.

5.1.2 Identifying Narrative Events

StoryFramer utilises NLP techniques in order to identify possible narrative events

in input synopses. The method for doing so is presented in this section alongside

examples relating to the Scooby-Doo synopsis [78] used throughout this work.

Identifying Narrative Events: Method

Given an input synopsis, narrative events are identifed on a sentence by sen-

tence basis. Each sentence is broken down further into segments that represent

the clauses of a sentence. This is done using the previously identifed sentence

breaks (Section 4.5.4). A dependency parse tree annotation representative of the

entire sentence is produced, as information about the surrounding segments may

be required for additional checks later on.

For each segment a dependency parse tree annotation is obtained using Stan-

ford CoreNLP [48]. The Part-of-Speech (POS) tag of every node in the tree is

then checked, searching for eligible verbs. An eligible verb is a word that: 1)

has a verb (VB) POS tag; 2) does not have an auxilary (aux) or copula (cop)

dependency relation with its parent; 3) is not an identifed object; 4) has not

already been extracted as part of another event. Eligible verbs are then consid-

ered for narrative event extraction, discussed in Section 5.1.3. This process is

represented by the function CheckEligibleVerb() in Algorithm 4.

It is possible for words that aren’t labelled as verbs on the dependency parse

tree to be representing narrative events. This can only occur when a homonym

has been used. This identifcation method is reliant on the POS tags generated
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by CoreNLP. Homonyms are a source of error for CoreNLP as homonyms have

multiple meanings and can often function as differing word types, e.g., a verb

and a noun. The narrative event identifcation algorithm makes an attempt to

recognise situations where a word that has been incorrectly labelled might be

representing a narrative event. It is possible that a noun may be representing a

narrative event when found at the root of a dependency parse tree. When this is

the case the following checks (CheckEligibleNoun() in Algorithm 4) are used to

determine whether the word should be considered for narrative event extraction:

1) the children of the word contain at least one identifed character object; 2)

none of the children have a copula dependency relation with the parent word; 3)

the word is not an identifed object. If all are true, the word is identifed as a

narrative event. The outline Algorithm for this process is shown in Algorithm 4.

Algorithm 4: Narrative Event Identifcation Algorithm

Function Main(Input):
// Input is a NL sentence

SegmentSentence (Input)

for segment in segments do
DPT = GetDependencyParseTree(segment) 
for node in DPT do

CheckEligibleVerb(node) 
end
CheckEligibleNoun(DPT.RootNode) 

end

Identifying Narrative Events: Example

The following sentence taken from the Scooby-Doo synopsis will be used to

demonstrate narrative event identifcation:

A man is driving a pick-up down a road during the night |,| unaware that the

suit of armour in the back has come to life |and| left his containment.

The sentence is then broken down into segments based upon the previous

identifed sentence breaks. As result of doing so the three segments are:

1) A man is driving a pick-up down a road during the night

2) unaware that the suit of armour in the back has come to life

3) left his containment
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‐> driving/VBG (root)
  ‐> man/NN (nsubj)
    ‐> A/DT (det)
  ‐> is/VBZ (aux)
  ‐> pick‐up/JJ (dobj)
    ‐> a/DT (det)
  ‐> road/NN (advmod)
    ‐> down/IN (case)
    ‐> a/DT (det)
  ‐> night/NN (nmod:during)
    ‐> during/IN (case)

    ‐> the/DT (det)

‐> unaware/JJ (root)
  ‐> come/VBN (ccomp)
    ‐> that/IN (mark)
    ‐> suit/NN (nsubj)
      ‐> the/DT (det)
      ‐> armour/NN (nmod:of)
        ‐> of/IN (case)
        ‐> back/NN (nmod:in)
          ‐> in/IN (case)
          ‐> the/DT (det)
    ‐> has/VBZ (aux)
    ‐> life/NN (nmod:to)

      ‐> to/TO (case)

‐> left/VBD (root)
  ‐> containment/NN (dobj)

    ‐> his/PRP$ (nmod:poss)

Segment 1 Segment 2

Segment 3

Figure 5.1: Dependency parse trees for the example sentence segments.

Figure 5.1 shows the dependency parse tree annotations CoreNLP produces

for each of the sentence segments. Starting with the frst segment, every node

in the tree is checked. The root node of segment 1 (driving) is tagged as a verb

(/VBG) and meets the requirements for being identifed as a narrative event. Con-

tinuing the search, the next verb found is (is /VBZ). This node however doesn’t

meet the eligibility criteria due to having an auxiliary dependency relation (aux)

with its parent (driving), and therefore isn’t considered to be a narrative event.

Once every node in a segment’s dependency parse tree has been checked,

the same process is applied to the next segment. The node (come /VBN) from

segment 2 meets the criteria and is identifed as a narrative event. Finally, for

segment 3, (left /VBD) is also identifed.

Figure 5.2 shows two more dependency parse trees for the segments: 1) He

thanks them; and 2) Shaggy wonders what they’re for. These segments provide

examples of other eligibility rules in practice. Segment 1 illustrates a situation

where a homonym has been assigned an incorrect POS tag by CoreNLP. The

node (thanks /NNS) is tagged as a noun despite being used as a verb in this

sentence. Because the node is the root of the dependency parse tree, the noun
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eligibility checks are carried out to determine whether the node is representing a

narrative event. One of the checks requires one of the nodes children to be a node

representing a character object in the story. As a result of the pronoun corefer-

encing (Section 4.5) it was determined that the pronoun (He /PRP) is referencing

the character Mr. Wickles, and therefore the node meets this requirement. The

node meets all of the criteria and is identifed as a narrative event.

Segment 2 provides an example of a verb node (’re /VBP) that isn’t consid-

ered for event extraction due to having a copula (cop) relation with it’s parent.

-> thanks/NNS (root)
  -> He/PRP (nsubj)
  -> them/PRP (dobj)

-> wonders/VBZ (root)
  -> Shaggy/NN (nsubj)
  -> for/IN (ccomp)
    -> what/WP (dobj)
    -> they/PRP (nsubj)
    -> 're/VBP (cop)

Segment 1 Segment 2

Figure 5.2: Dependency parse trees for the segments: 1) He thanks them; and 2)

Shaggy wonders what they’re for.

5.1.3 Extracting Narrative Event Names

Once a word has been identifed as a narrative event, the next stage is to extract

an appropriate name for that event. Ideally the name extracted for a narrative

event should provide enough detail about the event such that the author can easily

understand what is being represented. When a candidate word has been identifed

as a narrative event, it reaches this stage as just a singular verb or noun on a

dependency parse tree. It is often possible to extract a more detailed name that

better represents the event by considering the rest of the sentence. Failing to do

so could drastically confused the meaning of an event. An example of this could

be a character choosing not to carry out an action, which in itself can represent

a major narrative event, e.g., “She didn’t shoot him,” should be extracted as

(DIDN’T SHOOT), and not just the verb (SHOOT).

Depending on an author’s preference it may also be benefcial to combine

multiple verbs into one event where it is appropriate to do so. A sentence may de-

scribe a character performing two actions simultaneously, such as, “Scooby gets
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Algorithm 5: Narrative Event Name Extraction Algorithm

Function ExtractEvent(DPT, node):
// Input is a segment dependency parse tree and a node that was identifed as a

narrative event.

name = GetModifiedName(DPT, node) 
CheckNegatives() 
CheckJointActions() 
return name

Function GetModifiedName(DPT, node):
modifedName = node.word // The following checks can alter the modifedName

variable

for child in node.ChildList do
CheckNounModifiers() 
CheckObjSubj() 
CheckXcomps() 
CheckCompoundPart() 
CheckAdvmod() 
return modifedName

end

annoyed, barking and giving chase.” It may be preferable to extract (BARKING

AND GIVING CHASE) as a singular event, rather than two separate ones.

Extracting Narrative Event Names: Method

When a node has been identifed as a narrative event (Section 5.1.2), it gets

passed onto the narrative event name extraction algorithm, shown in Algorithm 5.

The role of this algorithm is to extract a detailed name for the identifed narrative

event. This is done by considering the surrounding words in the sentence and the

dependency relations provided by the segment dependency parse tree.

Taking the dependency parse tree for the segment and the node that was iden-

tifed as an event, a modifed name is extracted based upon the relations the node

has with its children. Every child is checked for the following relations and the

name modifed appropriately:

• Noun Modifers (nmod:) - Nouns modifying the verb, accompanied by

words such as of, from, to and in, are added to the event name along with

any determiners and adjectives that appear between the verb and the noun.
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• Objects/Subjects (obj/subj) - If a node is a subject or object of the verb and

has not been identifed as a story object, it is added to the event name in

the order that they appeared in the sentence.

• Open Clausal Compliments (xcomp) - These are predictive or clausal com-

pliments with no subject of their own. They are added to the event name in

the order they appear in the sentence, including all the words in between,

apart from identifed story objects.

• Phrasal Verb Particle (compound:prt) - This relation signifes a word that

is a particle of the verb and should be attached in the order they appear.

• Adverb Modifer (advmod) - When an adverb has been used to add more

detail to the event, it is added to the event name in the order they appeared.

The word that has this relation with the parent has to have an adverb POS

tag (/RB), but can’t be wh-adverb (/WRB) such as who and when.

It is possible for multiple modifying relations to be found for a given event

node. When this occurs they are all added to the event name such that they mirror

how they appeared in the sentence. Failure to do so could produce event names

that are diffcult to understand.

When a modifed event name has been returned by the function, a check for

negatives is carried out. This is done by searching for negative auxiliaries to

verbs such as, didn’t, as well as negative words like ‘not’.

The fnal check looks for additional verbs that can form a joint event with the

original. Conjunctions aren’t always considered sentence breaks (Section 4.5.4)

and may be present in a sentence segment when they are being used to join two

words together. If the two words in question are verbs then it is assumed that

whoever is participating in the events are doing so simultaneously, and thus a

joint event can be extracted. The name of the event is extracted by taking the

frst verb and all the words in between it and the second verb, and then affxing

the result of getting the modifed name for the second verb to the end.
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Extracting Narrative Event Names: Example

The same example sentence used in Section 5.1.2 will be used to demonstrate

the extraction of narrative event names.

A man is driving a pick-up down a road during the night |,| unaware that the

suit of armour in the back has come to life |and| left his containment.

For this sentence, three words were identifed as narrative events (DRIVING,

COME and LEFT). Upon identifcation the node and the dependency parse tree

for the relevant segment are passed onto the narrative event name extraction

method (Algorithm 5). The dependency parse trees for the example sentence

segments are shown in Figure 5.3. Also highlighted are the dependency relations

that have an effect on the extraction of the event names.

Starting with (DRIVING) in Segment 1, the children of the node (man, is,

pick-up, road, night) are checked, looking for dependency relations that alter the

‐> driving/VBG (root)
  ‐> man/NN (nsubj)
    ‐> A/DT (det)
  ‐> is/VBZ (aux)
  ‐> pick‐up/JJ (dobj)
    ‐> a/DT (det)
  ‐> road/NN (advmod)
    ‐> down/IN (case)
    ‐> a/DT (det)
  ‐> night/NN (nmod:during)
    ‐> during/IN (case)

    ‐> the/DT (det)

‐> unaware/JJ (root)
  ‐> come/VBN (ccomp)
    ‐> that/IN (mark)
    ‐> suit/NN (nsubj)
      ‐> the/DT (det)
      ‐> armour/NN (nmod:of)
        ‐> of/IN (case)
        ‐> back/NN (nmod:in)
          ‐> in/IN (case)
          ‐> the/DT (det)
    ‐> has/VBZ (aux)
    ‐> life/NN (nmod:to)

      ‐> to/TO (case)

‐> left/VBD (root)
  ‐> containment/NN (dobj)

    ‐> his/PRP$ (nmod:poss)

Segment 1 Segment 2

Segment 3

Figure 5.3: Dependency parse trees for the example sentence segments. The

resulting extracted event names are: (driving during the night), (come to life)

and (left).
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extracted name. The node (night /NN) has an noun modifying (nmod:during)

relation with the verb. The node is therefore added to the event name, along with

the modifying word (during) and any determiners or adjectives (the) children the

noun may have. The result is, (driving during the night). No other children of

the verb have an effect on the event name. Finally, the dependency parse tree is

checked for negatives and potential joint actions but don’t apply in this example.

The extracted narrative event name is (DRIVING DURING THE NIGHT).

The same process is applied to (COME) in Segment 2. The child node (life

/NN) has a noun modifying (nmod:to) relation with the verb and added to the

event name, resulting in (come to life). No other name modifying criteria are met

and thus the extracted narrative event name is (COME TO LIFE). This illustrates

the importance of extracting detailed event names, as the differing meanings of

(come) and (come to life) is a substantial one.

No name modifcation occurs for (LEFT) in Segment 3, but only because

(containment /NN) has been identifed as an object in the story. If this wasn’t the

case, the object/subject rule would apply here and the resulting name would be

(LEFT CONTAINMENT).

Figure 5.4 shows the extraction of four narrative events that illustrate other

name modifcation rules. Segment 1 is an example of a negative event with a

dependency relation (neg). Additionally the node (eyes /NNS) meets the re-

quirements of the object/subject rule and is also incorporated into the name. The

event extracted from the identifed verb (notice /VB) is (DON’T NOTICE EYES).

Segment 2 presents a case where two verbs are joined together (split and

look). Starting with the frst mentioned verb, split, all of the words between it

and the second verb are added to the name. The name modifcation checks are

then applied to the second verb, look, with the result being added to the end of

the name. This results in the event name (SPLIT UP AND LOOK FOR CLUES).

In Segment 3, an open clausal compliment (xcomp) is found. The extracted

name is formed by taking the words as they appeared in the sentence, including

any words in between that aren’t objects, resulting in (BEGIN TO MOVE).

Segment 4 showcases both a phrasal verb particle and an adverb modifer.

The words are added to the name in the order that they appear in the sentence.

The event extracted is (QUICKLY FOLLOWS BEHIND).
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‐> notice/VB (root)
  ‐> they/PRP (nsubj)
  ‐> do/VBP (aux)
  ‐> n't/RB (neg)
  ‐> eyes/NNS (dobj)
    ‐> knight/NN (nmod:poss)
      ‐> the/DT (det)
      ‐> 's/POS (case)
    ‐> glowing/JJ (amod)

‐> split/VBD (root)
  ‐> They/PRP (nsubj)
  ‐> up/RB (advmod)
  ‐> and/CC (cc)
  ‐> look/VB (conj:and)
    ‐> They/PRP (nsubj)
    ‐> clues/NNS (nmod:for)
      ‐> for/IN (case)

‐> begin/VBP (root)
  ‐> workers/NNS (nsubj)
    ‐> Two/CD (nummod)
  ‐> move/VB (xcomp)
    ‐> to/TO (mark)
    ‐> crate/NN (dobj)
      ‐> the/DT (det)

Segment 1 Segment 2

Segment 3

‐> follows/VBZ (root)
  ‐> Shaggy/NNP (nsubj)
  ‐> quickly/RB (advmod)
  ‐> behind/RP (compound:prt)

Segment 4

Figure 5.4: Dependency Parse Trees for the example segments: 1) They don’t

notice the knight’s eyes glowing; 2) They split up and look for clues; 3) Two

workers begin to move the crate; 4) Shaggy quickly follows behind.

5.1.4 Identifying Associated Objects

Once an event has been identifed and suitably named, the next task is to identify

the objects that are participating or are associated with the event. In this section

the approach taken for the identifcation of associated objects is presented. The

method selects objects to be associated with an identifed event based upon the

information available in the surrounding segments of the text.

Identifying Associated Objects: Method

Given a word that has been identifed as a narrative event, a search of the sur-

rounding sentence segments takes place with the aim of identifying objects that

are associated with the event in question. This process comprises the following

steps:
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1. All objects that are referenced either by name or pronominally in the same

segment as the identifed event are added as associated objects.

2. The dependency parse tree for the full sentence is checked to see if the

event node has any children with a subject or object dependency relation.

If the subject/object child is referencing a story object(s) that isn’t already

associated with the event, then the object(s) is added as an associated ob-

ject. The parent of the event node is also checked to see if it’s a story

object. If this is the case it is added as an associated object.

3. If after steps 1 and 2, no associated objects have been found, the search

expands to the surrounding segments. All objects referenced in the next

and previous segments are added to the list of associated objects. If still

no object references were found, the search keeps checking the previous

segment until an object is found or the start of the text has been reached.

4. If the event segment includes an objective pronoun (him, her, it, them)

an additional check takes place. The associated objects must include an

object that is not the object being referenced by the objective pronoun. If

this isn’t true, the objects referenced in previous segments are added until

this is the case.

Algorithm 6: Identify Associated Objects Algorithm

Function GetAssociatedObjects(segments, eventSegment, DPT):
// Input is the segment of the narrative event, the surrounding sentence segments and

a dependency parse tree for the full sentence.

AddSegmentObjectMentions(eventSegment) 
CheckSentenceDPT(DPT) 
ObjectivePronounCheck() 
if no objects found then

CheckNeighbouringSegments() 
if no objects found then

CheckPreviousSegments()// Previous segments are checked until

an object mention is found or the start of the text has been reached.

end

end

Upon completion of these steps, an event will now have a list of objects

(potentially empty) that have been identifed as being associated with that event.
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The method for identifying associated objects for a narrative event is shown in

Algorithm 6.

Identifying Associated Objects: Example

The examples provided will demonstrate the various steps that form the identi-

fying associated objects method.

1) Scooby eventually comes to a stop when he loses it|.| Shaggy doesn’t have

time to stop |and| trips over him.

Example 1) will focus on the two narrative events, stop and trips. For the

event stop, the objects that are mentioned in the same segment (Shaggy) are

added as associated objects. None of the other rules apply, the result is (STOP -

SHAGGY). For the second event trips, the same process is applied. It has already

been determined that the pronoun him is referencing the object Scooby, which

gets added as an associated object. The objective pronoun rule applies in this

situation, and therefore another object (not Scooby) has to be associated with the

event. By adding the objects referenced in the previous segment this is achieved,

resulting in (TRIPS - SCOOBY / SHAGGY).

2) Once freed |,| he discusses the events with the gang about there being no

legend.

Example 2) uses the event freed, to demonstrate what happens when no ob-

ject references are found within the same segment and to show that it can be

appropriate to add references from the next segment and not just previous ones.

The objects referenced in the next segment take priority as the previous segment

belongs to the previous sentence. The resulting associated objects are (FREED -

HYDE WHITE / GANG / LEGEND).

3) He thanks them |but| fears that perhaps it wasn’t a good idea with Professor

Hyde White disappearing.

Fears in Example 3) is an example of when associated objects are added as

a result of checking the dependency parse tree for the full sentence. Figure 5.5

shows the relevant section of the full sentence dependency parse tree. As before,
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‐> He/PRP (root)
  ‐> thanks/NNS (dep)
  ‐> fears/VBZ (acl:relcl)
    ‐> them/PRP (nsubj)
    ‐> ,/, (punct)
    ‐> but/CC (advmod)
    ‐> idea/NN (ccomp)
      ‐> that/IN (mark)
      ‐> perhaps/RB (advmod)
...

(He = Wickles)

(them = Gang)

Figure 5.5: The dependency parse tree used for Example 3.

the objects referenced in the same segment as the event are added as associated

objects (HYDE WHITE). The fears node has a subject child (them/GANG) that

isn’t currently an associated object, as well as a parent (He/WICKLES) that is

also an unassociated object reference. Both of these are therefore added to the

list of associated objects, which results in (FEARS - HYDE WHITE / WICKLES

/ GANG).

5.1.5 Extracting Properties

Synopses aren’t necessarily just a dry list of events and will often include charac-

ter emotions and revelations as a method of conveying the motivations involved.

Identifying such information is not necessary for extracting the plot from a syn-

opsis. This additional descriptive information about objects and events are re-

ferred to as properties in this work. By identifying properties in a synopsis, such

information can then map to predicates in the domain model. These additional

predicates provide the author with more options when defning how the actions

function. Given that StoryFramer is a tool that aids the creation of planning do-

main models, extracting additional information like this facilitates a greater level

of control for the author.

Properties are identifed by checking the nodes of a sentence’s dependency

parse tree. A node meets the requirements for being a property if: 1) The node

has an adjective (JJ) POS tag; 2) The node doesn’t have a subject dependency
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relation with its parent node; 3) The node isn’t an identifed object.

Using the segment, “Scooby gets annoyed” as an example, the event (GETS

ANNOYED - SCOOBY) is extracted. In addition to this the word “annoyed”

meets the requirements for being a property and is identifed as such. How prop-

erties can then be used will be detailed in the next section.

5.2 Automated Planning Model Construction

As discussed in Section 2.2.2, planning problems are modelled by separating

the problem into two parts; a problem domain and a specifc problem instance.

The domain defnes the world and the way in which it operates. The problem

instance then defnes the objects that exist in the world, the initial state, and the

goal criteria for that problem instance. In this work, a problem domain and the

problem instances that can be used with that domain are referred to as being parts

of the same planning model.

Learning planning models is a challenging task given the amount of informa-

tion required. A method is required for constructing a planning model from the

limited information that has been extracted from a input narrative synopsis. This

section will explain how the information extracted from a synopsis is mapped to

a planning model. Default predicates that provide a mechanism for controlling

the causality of actions are introduced, and it is shown that they are suffcient to

be able to recreate the input plot extracted from a synopsis as a plan. The alter-

ations that the author-in-the-loop can then make to produce a more generalised

domain model are discussed in Section 5.3, which when applied can result in a

model capable of the generation of new story variants.

To illustrate the processes in this section, the following short section of the

Scooby-Doo example synopsis [78] will be used:

They split up and look for clues, not knowing that spooky 
eyes in an Indian effigy are watching them. Scooby, Shaggy 
and Velma bump into the Black Knight and have a brief 
altercation. Scooby runs into the fossil exhibit and begins 
gnawing on the bone, but is chased by the Knight. He meets up 

with Shaggy and the two find one of the paintings is missing.

Figure 5.6: A section of the Scooby-Doo example synopsis.
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5.2.1 Problem Domain Construction

A problem domain defnes the world and how it operates through a set of predi-

cates and actions. The predicates defne how a world is represented. They are the

relations and properties of objects that need to exist in order to capture the propo-

sitions of the state. The operators are a set of parameterised actions that describe

the possible behaviours of the world. These actions consist of parameterised sets

of predicates that defne the actions preconditions and effects.

Problem Domain Construction: Actions

The narrative events that have been identifed from an input synopsis will map

to actions in the problem domain. For each narrative event, an action is created

and given the same name as the narrative event. The action parameters are then

added based upon the associated objects that were identifed for the narrative

event. A parameter is added for each associated object, the parameters are typed

to match their associated object’s type. For example, if a narrative event has two

associated objects, (Scooby/MCHAR) and (Shaggy/MCHAR), two parameters

are added to the action in the problem domain. They are then both typed as

MCHAR to match the objects.

A default parameter referred to as the StoryController is also added. The

StoryController is a unique object that is introduced to the planning model in

order to provide a mechanism for controlling causality between actions when

used alongside the default predicates. Every action in the problem domain has to

include the StoryController object as a parameter by default. Predicates are used

in conjunction with the StoryController object in order to capture propositions

that can describe the state of the world. These propositions provide a means of

recording which actions have already taken place in a plan/narrative. By includ-

ing the StoryController as a parameter in every action, orderings can be enforced

between actions, providing a method for controlling causality. The StoryCon-

troller object has to be declared in the initial state of the problem instance that

will be used alongside the problem domain.
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Problem Domain Construction: Default Predicates

In an approach similar to Yordanova [92], default predicates are added to the

preconditions and effects for each action. These provide a mechanism for con-

trolling the causality between actions and the eligibility of participating objects.

The predicates are named (can-Action) and (has-Action), and introduce a base-

line level of causality. These predicates provide a means of tracking the actions

a character has already participated in, as well as the actions that have occurred

throughout the story. The control that these predicates provide is suffcient to be

able to reproduce the original plot as a plan.

The fnal default predicate is called the object availability predicate (avail-

able), and is used for controlling the eligibility of objects participating in actions.

This predicate works in the same way (can-Action) does but isn’t specifc to one

action. An example usage of the object availability predicate would be in the

case of a character dying or becoming trapped. This predicate allows an author

to set a character as ineligible for any action, with the exception of actions that

can resolve the state the character is currently in. This predicate can be viewed

as non-essential as it isn’t required for an automated regeneration of the original

plot. It is however included as a default so that an author editing the domain

model has access to the control that it provides.

Problem Domain Construction: Additional Candidate Predicates

The additional properties that have been extracted from an input synopsis are

mapped to predicates in the problem domain. These aren’t included as default

in any action preconditions or effects. These are included as optional predicates

that an author can utilise if they want to. Additionally a predicate is added to the

problem domain for each unique object as a means of restricting the eligibility of

parameters to that of specifc objects if required, e.g., (scooby ?x). This allows

for the creation of actions that can only be carried out by a specifc character

or object, rather than any character or object that matches the parameter type

becoming an eligible parameter.
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Problem Domain Construction: Example Action Mapping

Starting with the frst sentence segment of the example section, “They split up

and look for clues.” The narrative event (SPLIT UP AND LOOK FOR CLUES)

was identifed along with the associated object (They = GANG). This information

is now mapped to a PDDL action that is given the same name as the narrative

event (SplitUpAndLookForClues).

(:action SplitUpAndLookForClues

:parameters()

:precondition()

:effect())

Once the PDDL has been created, the parameters can be added based upon

the typing of the associated objects. The object (GANG) is typed as a GROUP

in this example and therefore a parameter also of type GROUP is added to the

action. Additionally the default StoryController object that is included in every

action is added to provide a means of controlling causality between actions.

(:action SplitUpAndLookForClues

:parameters(?g - group ?sc - storycontroller)

:precondition()

:effect())

Default predicates can now be added to the action preconditions and effects.

A (can-Action ?x) is added to the preconditions for each parameter so that every

object participating in the action is eligible to do so. Additionally to ensure this is

the case, an (available ?x) predicate is included for every parameter that isn’t the

StoryController. (has-Action) predicates are then added to the effects for each

parameter. By doing so it is possible to track if an action has taken place, or if a

character has been involved in a specifc action.

(:action SplitUpAndLookForClues

:parameters(?g - group ?sc - storycontroller)

:precondition(and (can-SplitUpAndLookForClues ?g)

(available ?g) (can-SplitUpAndLookForClues ?sc))

:effect(and (has-SplitUpAndLookForClues ?g))

(has-SplitUpAndLookForClues ?sc)))
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5.2.2 Automated Regeneration of the Input Plot

One of the aims of this work is to be able to regenerate the plot that is described

by an input synopsis using the planning model that is automatically created from

the extracted narrative information. Being able to recreate the original plot as a

plan shows that the planning model acquired from the extracted information is

representative of the input text.

The default (can-Action) and (has-Action) predicates when used alongside

the StoryController object provide a mechanism for controlling the causality

between actions. It is possible to reproduce the input plot as a plan using the

acquired planning model, with no further input required by an author.

They split up and look for clues, not knowing that spooky 

eyes in an Indian effigy are watching them.

He meets up with Shaggy and the two find one of the paintings 

is missing.

Scooby, Shaggy and Velma bump into the Black Knight and have 

a brief altercation.

Scooby runs into the fossil exhibit and begins gnawing on the 

bone, but is chased by the Knight.

1. split up and look for clues ‐ Gang

2. not knowing – Gang / Spooky Eyes / Indian Effigy

3. watching – Gang / Spooky Eyes / Indian Effigy

4. bump – Shaggy / Velma / Black Knight / Scooby 

5. runs – Scooby / Fossil Exhibit

6. begins gnawing – Scooby / Bone

7. chased – Scooby / Black Knight

8. meets up – Scooby / Shaggy

9. find – Scooby / Shaggy / Paintings

10. missing – Scooby / Shaggy / Paintings

Figure 5.7: The identifed narrative events and object associations for the exam-

ple section.
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Narrative events are extracted in the order that they are mentioned in the

synopsis. The generated plan that conveys the original plot should therefore

maintain this order, along with associating the correct objects with each action.

Figure 5.7 shows the narrative events that were identifed by StoryFramer

(Section 5.1.2) for the example section, including the correct object associations

for each event.

In order to reproduce the original plot as a plan. The extracted identifed

narrative events are mapped to actions in the problem domain specifcally with

this goal in mind. The mapping follows the same process described in Section

5.2.1 with some changes to the preconditions and effects of each action.

Figure 5.8 shows a possible problem domain encoding that would allow for

the original plot to be reproduced as a plan. Using the (can-Action) default pred-

icate in conjunction with the StoryController object, the narrative events can

1. split up and look for clues ‐ Gang

2. not knowing – Gang / Spooky Eyes / Indian Effigy

3. watching – Gang / Spooky Eyes / Indian Effigy

(:action SplitUpAndLookForClues
 :parameters (?g – group ?sc – controller)
 :precondition(and (can‐SplitUpAndLookForClues ?g)
                                  (can‐SplitUpAndLookForClues  ?sc))
 :effect((can‐NotKnowing ?sc)))

(:action NotKnowing
 :parameters (?g – group ?op – otherp ?o – other ?sc – controller)
 :precondition(and (can‐NotKnowing ?g) (can‐NotKnowing ?op)
                                   (can‐NotKnowing ?o) (can‐NotKnowing  ?sc))
 :effect((can‐Watching ?sc)))

(:action Watching
 :parameters (?g – group ?op – otherp ?o – other ?sc – controller)
 :precondition(and (can‐Watching ?g) (can‐Watching ?op)
                                   (can‐Watching ?o) (can‐Watching ?sc))
 :effect((can‐Bump ?sc)))

Figure 5.8: A possible encoding of the problem domain for reproducing the

original plot.
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be ordered to match that of the input. When an action is carried out, the next

action in the sequence is enabled using the StoryController object and a (can-

NextAction ?sc) effect. Alternatively this causality could be achieved by check-

ing to see if a previous action has happened. An action’s effect would become

(has-Action ?sc) with the inclusion of a (has-PreviousAction ?sc) precondition.

To reproduce the original plot, the characters and objects participating in each

action also have to be the same. To ensure this is the case, all parameters have

to meet a (can-Action) precondition. Only the associated objects that have been

extracted with each action will meet these requirements in the problem instance.

Figure 5.9 shows the problem instance that is generated alongside the prob-

lem domain in order to reproduce the three actions that it represents. This can be

applied to the full list of extracted actions to automatically reproduce the plot of

the original input synopsis.

(:objects     Controller – control
                     Gang – group
                     SpookyEyes – otherp
                     IndianEffigy ‐ other )
    
    (:init (can_SplitUpAndLookForClues Controller)
            (can_SplitUpAndLookForClues Gang)
            
            (can_NotKnowing Gang)
            (can_NotKnowing SpookyEyes)
            (can_NotKnowing IndianEffigy)
            
            (can_Watching Gang)
            (can_Watching SpookyEyes)
            (can_Watching IndianEffigy))
    
    (:goal (can_Bump Controller))

Problem

Plan
1. (SplitUpAndLookForClues Controller Gang)
2. (NotKnowing Controller Gang SpookyEyes IndianEffigy)
3. (Watching Controller Gang SpookyEyes IndianEffigy)

Figure 5.9: A problem instance that when used with the domain presented in

Figure 5.8 produces a plan that recreates the original plot for the Scooby-Doo

example.
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5.3 Generalising the Domain Model

By having an author-in-the-loop, the default generated planning model produced

by StoryFramer (Section 5.2.1) can be generalised to facilitate the generation of

new story variants. This section will look at a number of alterations that can

be made by an author to the acquired planning model such that the generation

of new story variants becomes possible. The planning model generated by Sto-

ryFramer represents the input synopsis it has been acquired from, as proven by

its ability to reproduce the original plot as a plan. StoryFramer provides an au-

thor with a model that can be edited to produce a model that meets their specifc

requirements and is capable of fulflling their intended goal.

5.3.1 Editing the List of Actions

The approach taken when extracting narrative events from an input synopsis is

to extract as many as possible, such that the options available to an author at this

stage are not restricted. This results in a problem domain containing an action

for every event that took place, regardless of how minor or major they were in

the context of the narrative.

When planning for narrative generation, the approach taken can be described

as being either high or low level based upon the number of actions that are used

to describe a narrative phase. Take for example the following sequence of ac-

tions: (argue) -> (fght) -> (grab knife) -> (stab). These four actions can be

viewed as describing one narrative phase, that could instead be represented with

a higher level action, (kill). The author decides what level of planning the prob-

lem domain should represent.

The level of the generated planning model is dependent on the input synopsis

it is created from. If the synopsis described narrative phases containing many

actions the resulting planning model will represent the same level of detail. If

an author wants the planning model to plan at a higher level, a number of alter-

ations can be made to the actions present in the problem domain. Actions can be

combined with other actions, clustered into groups and represented by a singular

action, or deleted entirely depending on how an author wants the model to be

used.
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Merging Actions

When StoryFramer extracts narrative events from the natural language input, an

attempt is made to merge actions together where it is appropriate to do so. Often

this is when two verbs are clearly grammatically joined to one another, e.g.,

“Barking and giving chase.” An author may wish to combine actions together in

situations where two events didn’t meet the requires to be automatically merged.

They split up and look for clues, not knowing that spooky eyes in an Indian

Effgy are watching them.

The sentence above shows a situation where an author may choose to sim-

plify a domain model by combining two actions, (not knowing) and (watching).

In addition to this, actions can be renamed if desired. For example renaming the

combination of these two actions, (unaware of being watched) may provide the

action with a name that better represents the events being described.

Clustering Actions

Another method for simplifying the domain model is to cluster actions that de-

scribe similar events in the plot. It is possible that multiple actions exist that all

convey the same event in the narrative. As the input synopses are written by a

human, it is often the case that synonyms are used for actions that occur regu-

larly, in an attempt to avoid sounding repetitive. Where this has purpose from a

storytelling point of view, with regards to planning, the opposite is true. Every

action in a planning domain should represent a unique behaviour and modify the

state of the world in a different manner. By allowing an author to group actions

together based upon their behaviour, this can be achieved.

An author may wish to group multiple low level actions together if they can

all be categorised as a higher level action. If a synopsis describes multiple in-

teractions of characters conversing with each other, then it is likely that multiple

verbs have been used to convey this (says, agrees, replies, asks, explains, etc.). In

this situation an author may decide to cluster these actions together and represent

these behaviours through one, higher level (converse) action.
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Deleting Actions

An author also has the option to delete actions entirely from the domain model.

Depending on how the planning domain is going to be used, some actions will

be representing events that are considered too low of a level to be included in the

model.

It is also possible that an author may wish to add new actions that do not

appear in the input text. However for this work the focus will be on how the

extracted list of actions can be modifed to create new story variants and won’t

include any additional new actions.

5.3.2 Managing Parameter Restrictions

The generality of the domain can be adjusted by changing the parameter restric-

tions of actions. By default, actions are mapped from the extracted list of narra-

tive events and their associated objects. The parameters of actions are typed to

match the types of the associated objects (MCHAR / FCHAR / OTHER / OTH-

ERP / GROUP). The default mapping allows for any object of the same type

to be eligible for a given action. An author can change this to either restrict

the parameters further or relax these restrictions and allow for more objects to

participate in an action where they deem appropriate.

In some cases allowing all objects of the same type to participate in an action

is too relaxed and can caused characters to perform actions that aren’t believable

to an audience. The Scooby-Doo domain is a good example of this, as some ac-

tions are specifc to a character. One event describes Scooby gnawing on a bone;

an action that wouldn’t make sense for any other male character to be doing.

Multiple chase sequences are also present in the text and should always require

the monster character to be participating. The default mapping of the domain

model includes predicates for each unique character as a method of implement-

ing parameter restrictions for specifc characters. Alternatively an author could

create a new predicate to serve a specifc subset of characters. There could po-

tentially be an episode of Scooby-Doo that has multiple monsters that should all

be eligible for monster related actions. Creating a new (monster ?x) predicate

to represent this group of characters and including it as an action precondition

would facilitate this behaviour.

Relaxing parameter restrictions allows for more objects to participate in an
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action and therefore increases the number of possible story variants a domain

model can generate. The relaxing of parameter restrictions should however be

carried out in such a way that the plausibility of output plan isn’t compromised.

This can be done by removing the type requirements and replacing these with

preconditions that allow for a larger group of objects to be eligible. For example

(character ?x) would allow for any character to participate and remove the male

or female constraint.

5.3.3 Defning the Causality Between Actions

The acquired domain model doesn’t defne any causality between actions, but de-

fault (can-Action) and (has-Action) predicates are provided so that such causality

can be implemented. In Section 5.2.2 it was shown that the causality provided by

these predicates is suffcient to be able to reproduce the original plot as a plan.

In order to create a domain model capable of generating new plausible story

variants, a causality between actions that allows for this needs to be defned.

Controlling the Narrative Plot

A StoryController object is added to each action as a parameter as a means of

controlling the plot of a narrative. When this object is used alongside the (has-

Action ?sc) predicate, it provides a record of all the actions that have taken place

in the plan so far. An order can then be forced between actions by including

a precondition that checks to see if another action has already happened, (has-

AnotherAction ?sc).

When reproducing the original plot, a strict order is applied between the ac-

tions in order to replicate the input. Doing so limits the number of possible story

variants to just that of the original. In order to construct a domain model capa-

ble of generating multiple plausible story variants, a more relaxed ordering of

actions is required that uses causality to ensure the fnal narrative is plausible.

Causality should be applied to actions that can only occur in a given or-

der. For example, in the Scooby-Doo example, the monster cannot be unmasked

without frst being caught. Figure 5.10 shows the change required to the domain

model to introduce this ordering between two actions. In this model the mon-

ster can only be unmasked if it has been caught. It is however possible for other

actions to occur in between these two events based upon the current defnitions.
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(:action Caught
 :parameters (?sc – controller ?g – group ?m – other)
 :precondition(and   (monster ?m) (can‐Caught ?g) (can‐Caught ?m))
 :effect(has‐Caught ?sc))

(:action Unmask
 :parameters (?sc – controller ?g – group ?m – other ?c – mchar)
 :precondition(and   (monster ?m) (can‐Unmask?g) (can‐Unmask ?m)
                                    (can‐Unmask?c) (has‐Caught ?sc))
 :effect(has‐Unmask ?sc))

Figure 5.10: Introducing causality between actions

In order to force an action to follow another directly the default (available ?sc)

predicate can be used. Figure 5.11 demonstrates how this can be done. By using

the (available ?sc) predicate the state of the world can be changed into a state

in which only one action is available. This state can be maintained for multiple

consecutive actions until the state is reverted and various other actions become

available again.

Through the use of the default predicates new narratives can be generated

using the constructed domain model that represent a believable action ordering.

(:action Caught
 :parameters (?sc – controller ?g – group ?m – other)
 :precondition(and   (monster ?m) (can‐Caught ?g) (can‐Caught ?m)
                                    (available ?sc))
 :effect(and    (has‐Caught ?sc) (not (available ?sc))))

(:action Unmask
 :parameters (?sc – controller ?g – group ?m – other ?c – mchar)
 :precondition(and   (monster ?m) (can‐Unmask?g) (can‐Unmask ?m)
                                    (can‐Unmask?c) (not (available ?sc))(has‐Caught ?sc)
                                    (not (has‐Unmask ?sc)))
 :effect(and    (has‐Unmask ?sc) (available ?sc)))

Figure 5.11: Forcing an action to directly follow another.
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Character Causality Between Actions

How believable a narrative is depends on more than the order in which the events

occur. Causality between actions has to also be consistent on a character level. It

is important to make sure that the characters and objects that are involved in an

action make sense to be doing so.

The (can-Action) and (has-Action) predicates aren’t restricted to only the Sto-

ryController object, they can also be used for recording previous actions that a

character has been involved in and controlling their eligibility for participating

in actions. By utilising these predicates character causality can be achieved be-

tween actions.

Figure 5.12 demonstrates how parameter causality can be achieved. In the

example Scooby and Shaggy fnd some missing paintings and then go on to in-

form the gang of this discovery. To ensure that the characters are consistent

across both actions, preconditions are included in the second action to check that

the characters involved both meet the (has-Find) requirement. If any other char-

acters other than Scooby and Shaggy were to inform the gang of the discovery,

the narrative wouldn’t make sense.

(:action Find
 :parameters (?sc – controller ?c1 – mchar ?c2 – mchar ?p – otherp)
 :precondition(and   (can‐Find ?c1) (can‐Find ?c2) (can‐Find ?p))
 :effect(and    (has‐Find ?sc) (has‐Find ?c1) (has‐Find ?c2)))

(:action Inform
 :parameters (?sc – controller ?c1 – mchar ?c2 – mchar ?g – group)
 :precondition(and   (can‐Inform?c1) (can‐Inform?c2) (can‐Inform?g)
                                     (has‐Find ?sc) (has‐Find ?c1) (has‐Find ?c2))
 :effect(has‐Inform?sc))

Figure 5.12: Ensuring parameter causality between actions.

Generalised Domain Example

An example of how the generated planning model can be generalised by an au-

thor can be found as part of the worked example in Section 6.7.
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5.4 Conclusions

This chapter detailed the second stage of the StoryFramer approach: the domain

model acquisition process that is applied to preprocessed input synopses.

Methods have been presented for the automated extraction of narrative plan-

ning information from preprocessed synopses. The method developed that auto-

matically constructs a narrative planning model based upon the extracted infor-

mation has been described.

It was shown that the acquired planning model is representative of an input

synopsis by demonstrating that it is capable of automatically reproducing the

original plot described by a synopsis as a plan. Alterations that can be made to

generalise the default planning model by an author have been presented. These

alterations utilise the default predicates and narrative control mechanisms that

the model provides. Through these amendments it was shown that a model can

be created that is capable of generating new story variants.
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Worked Example: The Jungle Book

In order to demonstrate the StoryFramer approach, this chapter presents a de-

tailed worked example that follows the processes involved in producing a gen-

eralised narrative domain model from an input synopsis. This ‘start to fnish’

example of StoryFramer will serve as a proof of concept. The level of interac-

tion that is required by an author in order to facilitate the process will be thor-

oughly documented, illustrating how much of the process StoryFramer is able

to automate. An overview of the StoryFramer approach is presented in Figure

3.5 (Section 3.3) and this chapter follows the same ordering of components. The

components are: 1) Object Identifcation; 2) Object Disambiguation and Typing;

3) Pronominal Coreference Resolution; 4) Extraction of Planning Information;

5) Automated Planning Domain Model Construction; 6) Domain Model Gener-

alisation.

The goal is to take a synopsis that has been sourced online and create a gener-

alised domain model that is capable of creating new story variants. The example

used is that of the Disney 1967 animated flm, The Jungle Book.

6.1 The Input Synopsis

This section presents the input synopsis used throughout this chapter that de-

scribed the plot of The Jungle Book. This synopsis was sourced from Wikipedia,

taken from the page of the 1967 animated flm [91]. The synopsis is presented

sentence by sentence. The sentences are numbered, starting at 0. These num-

bered sentences are used throughout the chapter when discussing the processes

of StoryFramer and presenting the results of each process.
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6.1.1 The Jungle Book Synopsis

0. Mowgli, a young orphan boy, is found in a basket in the deep jungles of India by

Bagheera, a black panther who promptly takes him to a mother wolf who has just had

cubs.

1. She raises him along with her own cubs and Mowgli soon becomes well acquainted

with jungle life.

2. Mowgli is shown ten years later, playing with his wolf siblings.

3. One night, when the wolf tribe learns that Shere Khan, a man-eating Bengal tiger, has

returned to the jungle, they realize that Mowgli must be taken to the ”Man-Village” for

his (and their) own safety.

4. Bagheera volunteers to escort him back.

5. They leave that very night, but Mowgli is determined to stay in the jungle.

6. He and Bagheera rest in a tree for the night, where Kaa, a hungry python, tries to

devour Mowgli, but Bagheera intervenes.

7. The next morning, Mowgli tries to join the elephant patrol led by Colonel Hathi and

his wife Winifred.

8. Bagheera fnds Mowgli, but after a fght decides to leave Mowgli on his own.

9. Mowgli soon meets up with the laid-back, fun-loving bear Baloo, who promises to

raise Mowgli himself and never take him back to the Man-Village.

10. Shortly afterwards, a group of monkeys kidnap Mowgli and take him to their leader,

King Louie the orangutan.

11. King Louie offers to help Mowgli stay in the jungle if he will tell Louie how to make

fre like other humans.

12. However, since he was not raised by humans, Mowgli does not know how to make

fre.

13. Bagheera and Baloo arrive to rescue Mowgli and in the ensuing chaos, King Louie’s

palace is demolished to rubble.

14. Bagheera speaks to Baloo that night and convinces him that the jungle will never be

safe for Mowgli so long as Shere Khan is there.

15. In the morning, Baloo reluctantly explains to Mowgli that the Man-Village is best

for the boy, but Mowgli accuses him of breaking his promise and runs away.

16. As Baloo sets off in search of Mowgli, Bagheera rallies the help of Hathi and his

patrol.

17. However, Shere Khan himself, who was eavesdropping on Bagheera and Hathi’s
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conversation, is now determined to hunt and kill Mowgli himself.

18. Meanwhile, Mowgli has encountered Kaa once again, but thanks to the unwitting

intervention of the suspicious Shere Khan, Mowgli escapes.

19. As a storm gathers, a depressed Mowgli encounters a group of friendly vultures who

accept Mowgli as a fellow outcast.

20. Shere Khan appears shortly after, scaring off the vultures and confronting Mowgli.

21. Baloo rushes to the rescue and tries to keep Shere Khan away from Mowgli, but is

injured.

22. When lightning strikes a nearby tree and sets it ablaze, the vultures swoop in to dis-

tract Shere Khan while Mowgli gathers faming branches and ties them to Shere Khan’s

tail.

23. Terrifed of fre, the tiger panics and runs off.

24. Bagheera and Baloo take Mowgli to the edge of the Man-Village, but Mowgli is still

hesitant to go there.

25. His mind soon changes when he is smitten by a beautiful young girl from the village

who is coming down by the riverside to fetch water.

26. After noticing Mowgli, she ”accidentally” drops her water pot.

27. Mowgli retrieves it for her and follows her into the Man-Village.

28. After Mowgli chooses to stay in the Man-Village, Baloo and Bagheera decide to

head home, content that Mowgli is safe and happy with his own kind.
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6.2 Object Identifcation

The frst stage of the StoryFramer approach is the identifcation of the objects

that appear in the input text. For each sentence, Stanford CoreNLP is used to

generate a constituency parse tree annotation. Objects are identifed based upon

the analysis of these parse trees. The method used for the automated object

identifcation is described fully in Section 4.3.

A visual representation of the object identifcation process is shown in Figure

6.1, using example sentence 0 of the Jungle Book synopsis (Section 6.1.1).

Figure 6.1: A constituency parse tree for the sentence “Mowgli, a young orphan

boy, is found in a basket in the deep jungles of India by Bagheera”.
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Figure 6.2 shows the results of the automated object identifcation for the

Jungle Book synopsis. These results can be compared against a ‘Gold-Standard’

set of objects that have been identifed by hand and are used as part of the eval-

uation (For further details of the Gold-Standards used to evaluate StoryFramer

see Section 7.1.2 and Appendix A.2.2). Correctly identifed objects that match

those of the Gold-Standard are shown in black. The 10 objects highlighted in red

are not considered to be objects and are referred to as additional object errors.

When the results of the automated object identifcation are compared to that of
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Figure 6.2: Object Identifcation: The identifed unique object mentions. Show-

ing correctly identifed objects (black), and additional object errors (red).
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the Gold-Standard, it shows that 100% of the objects present in the text were

successfully identifed, with 10 additional object errors produced.

By identifying 100% of the objects mentioned in the text, an author won’t

be required to add any missed objects at this stage. Identifying all of the objects

mentioned is the top priority for this task. Figure 6.2 shows the list of unique

object mentions. These objects may have appeared multiple times within the text

and it is important to correctly identify each time an object has been mentioned.

The Jungle Book synopsis contains a total of 124 object mentions, 100% of

which were correctly identifed by StoryFramer.

The secondary goal of this task is to minimise the number of additional object

errors that are produced. 10 additional object errors were produced, meaning

that 7.5% of the total identifed object mentions were additional object errors.

When the additional object errors are analysed, the words have to be viewed

in consideration with the context with which they are used. In this case 7 of

the errors are describing narrative events (escort / fght / eavesdropping / hunt /

intervention / rescue / ties) and 3 are adjectives (own / ablaze / content). Of the

7 narrative event errors, 6 are homonyms that can be interpreted as both nouns

and verbs. When such homonyms are present in the synopses, CoreNLP tends

to label these words as nouns and these additional object errors are a result of

this.‘Intervention’ is a special case, with it being a noun that describes the act

of intervening. Given the nature of the errors encountered, the additional object

errors that are produced reasonable and are to be expected.

In general the names that have been extracted for each object make sense

and represent an appropriate level of detail. A few mistakes can also be seen

in these extracted names. A recurring error can be seen when verbs have been

misinterpreted as nouns by CoreNLP. One of the object naming rules allows for

a noun to be added to the identifed object word, e.g., (elephant patrol). When

words have been incorrectly labelled as nouns this can then have an effect on

the naming of objects. (Bagheera Volunteers), (Bagheera rest) and (depressed

Mowgli encounters) are all examples where this is the case. (help of Hathi of

Patrol) is the fnal object that has been poorly named. The dependency relation

graph for the phrase, “help of Hathi and his patrol,” both ‘Hathi’ and ‘patrol’

are given a (nmod:of) relation to ‘help’. The naming rule affxes an ‘of’ and the

related word to the original noun when such a relation is found. With the rule

occurring twice for the same word, it results in a poorly named object.
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6.3 Object Selection, Disambiguation and Typing

When all of the possible objects in the synopsis have been identifed, a selection

is made based upon which objects should be represented in the planning model.

Once selected, they must be disambiguated and typed before the next stages of

the process. By doing so this contextual information can be leveraged for more

accurate pronoun resolution results, as well as providing a means of controlling

object eligibility in the planning model.

This is a task for the author. The reasoning for this is that there is no one

correct answer to selecting which objects should be represented in the planning

model. The selection of objects is dependent on how an author intends to use

the planning model. The role of the object identifcation process is to identify all

possible objects such to not restrict the choice an author has at this point. The

objects that are selected will be referred to as story objects.

For the purpose of this example, story objects are selected from the list of

identifed objects based upon a simple set of requirements. An object is selected

if it meets one of the following criteria:

• It represents a character or group of characters that are involved in a nar-

rative event.

• A pronoun has been used to refer to the object.

• The correct coreferencing of a pronoun is dependent on the object being

recognised as an object, e.g., The Objective Rule (Section 4.5.5).

Once story objects have been selected, they must be disambiguated. As dis-

cussed earlier in Section 4.4.2, it is possible for objects and characters in the

synopsis to have multiple named references. The disambiguation of story objects

refers to the identifcation and clustering of named mentions that are referencing

the same object. As a result of this process all story objects will be represented

by a unique identifer.

One or more of the following types (Section 4.4.3) are then assigned to each

story object: (MCHAR / FCHAR / GROUP / OTHER / OTHERP). These types

defne the pronouns that can be used to reference the object, e.g., a male character

(MCHAR) can be referenced using he, his and him.
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Story Object Alternative Names Type

Mowgli - MCHAR

Bagheera black panther MCHAR

Mother wolf - FCHAR

Wolf siblings - GROUP

Wolf tribe - GROUP

Shere Khan tiger MCHAR

Kaa - MCHAR

Colonel Hathi Hathi MCHAR

Winifred - FCHAR

Baloo - MCHAR

Group of monkeys - GROUP

King Louie Louie MCHAR

Vultures - GROUP

Nearby tree - OTHER

Flaming branches - OTHERP

Beautiful young girl - FCHAR

Water pot - OTHER

Figure 6.3: The typed and disambiguated list of story objects for the Jungle Book

example.

At this stage of processing a typed and disambiguated story object list is pro-

duced, as shown in fgure 6.3. All of the objects selected keep their automatically

identifed names, with the exception of (wife Winifred), who was been renamed

to (Winifred) for clarity. Four of the objects required disambiguation, with other

named mentions being used to reference them in the synopsis. It is important to

note that for the implementation of StoryFramer used in this thesis evaluation,

string matching is used for the identifcation of objects in the text for the follow-

ing automated processes. This means that if a named mention such as “laid-back

fun-loving bear Baloo,” contains the string of another mention used to reference

the object, i.e, “Baloo,” it doesn’t need to be declared as an alternative name.

However if an alternative mention is used that is shorter than the chosen unique

identifer, e.g., “Hathi” and “Colonel Hathi,” then it does need to be declared.

This is a matter of author preference.
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6.4 Pronominal Coreference Resolution

Now than an author has selected, typed and disambiguated the story objects, the

task of pronominal coreference resolution can now be undertaken. The corefer-

ence resolution of pronouns is required because in order to extract the original

plot from the synopsis, a knowledge of which characters and objects are involved

in the events that occur is required. Using Algorithm 3 described in Section 4.5,

the pronouns that are present in the synopsis are resolved in order using a multi-

sieve rule-based approach. The rules look to fnd object references in the nearby

sentences (antecedents) that are of a compatible type to that of the pronoun. The

structure of the surrounding sentence is then used to determine the coreference

where multiple antecedents are present.

The following example sentence taken from the synopsis is used to illustrate

the coreferencing process for three pronouns. The story objects are highlighted

in blue: (wolf tribe = GROUP), (Shere Khan & tiger = MCHAR) and (Mowgli

- MCHAR). The pronouns are highlighted in red, with the superscript number

representing the order in which they are coreferenced. Finally, where sentence

breaks (Section 4.5.4) have been identifed, square brackets have been used to

signify the sentence segments/clauses. Following the example sentence, a de-

scription of how the coreference algorithm applies to each pronoun is given,

detailing how the object references are selected in each situation.

[One night,][ when the wolf tribe learns that Shere Khan,][ a

man-eating Bengal tiger,][ has returned to the jungle,][ they1 realize

that Mowgli must be taken to the “Man-Village” for his2 (and their3)

own safety.]

they1 - this pronoun can either be referencing a group or multiple individual

objects. None of the rules in Sieve 1 apply in this situation. With no object

preceding the pronoun in the same segment, the search is expanded to previous

segments. tiger (an alternative reference for Shere Khan) is the frst antecedent

encountered. Shere Khan however isn’t of a compatible type and thus the search

continues. The two antecedents in the same sentence as the pronoun are wolf

tribe and Shere Khan. Of these, wolf tribe is of a compatible type (GROUP) and

none of the other rules state that this object cannot be the coreference; resulting

in its selection. (they1 = wolf tribe)
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his2 - two antecedents are present in the same segment, Mowgli and wolf tribe.

As it is possible for a pronoun to reference another pronoun, the result of coref-

erencing they1 becomes an eligible antecedent (they1 = wolf tribe). None of

the rules in Sieve 1 apply in this situation, Sieve 2 is used for determining the

coreference selection. Of Mowgli and wolf tribe, Mowgli is the only one type

compatible (MCHAR) with the pronoun and no other rule states that this cannot

be the coreference. (his2 = Mowgli)

their3 - the same two antecedents as his2 are also considered here (Mowgli and

wolf tribe). Once again, none of the rules in Sieve 1 apply here. This time it is

wolf tribe that is type compatible (GROUP) with the pronoun. No rules prevent

this object from being selected as the reference, resulting in its selection as the

coreference. (their3 = wolf tribe)

The pronoun coreference resolution process is applied to every sentence of

the synopsis, until all pronouns have be associated with an object(s) as their

coreference. The pronoun coreference resolution results for the example synop-

sis are shown below. The results are presented sentence-by-sentence, with the

numbers correlating to the sentence numbers of the input synopsis in Section

6.1.1.

0. (0. him = Mowgli)

1. (0. she = Mother wolf) (1. him = Bagheera) (2. her = Mother wolf)

2. (0. his = Mowgli)

3. (0. they = Wolf tribe) (1. his = Mowgli) (2. their = Wolf tribe)

4. (0. him = Mowgli)

5. (0. They = Bagheera/Mowgli)

6. (0. He = Mowgli)

7. (0. his = Colonel Hathi)

8. (0. his = Mowgli)

9. (0. himself = Baloo) (1. him = Baloo)

10. (0. him = Mowgli) (their = Group of monkeys)

11. (0. he = Mowgli)

12. (0. he = King Louie)

13.

14. (0. him = Baloo)
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15. (0. him = Baloo) (1. his = Mowgli)

16. (0. his = Colonel Hathi)

17. (0. himself = Shere Khan) (1. himself = Bagheera)

18.

19.

20.

21.

22. (0. it = Nearby tree) (1. them = Flaming branches)

23.

24.

25. (0. His = Mowgli) (1. he = Mowgli)

26. (0. she = Beautiful Young Girl) (1. her = Beautiful Young Girl)

27. (0. it = Water pot) (1. her = Beautiful Young Girl) (2. her = Beautiful Young Girl)

28. (0. his = Mowgli)

The Jungle Book synopsis contains a total of 35 pronouns that require coref-

erencing. Of these, StoryFramer correctly identifes the coreferences for 30 of

the pronouns, achieving an accuracy of 85.7%. The 5 errors are shown in red.

Coreference Resolution is a very complex task as determining correct corefer-

ences can be dependent on a deep understanding of the language and the context

in which it is being used. The errors produced here show examples of this.

In the morning, Baloo reluctantly explains to Mowgli that the

Man-Village is best for the boy, but Mowgli accuses him of breaking

his promise and runs away.

In order to correctly coreference the pronoun his in this sentence, you would

need the contextual prior knowledge of who originally made the promise, as

well as an understanding of how breaking promises works, i.e., you can’t break

a promise made by someone else.

So that the original plot can be correctly extracted from the synopsis, an

author is required to amend these errors.
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6.5 Extraction of Planning Information

At this stage all of the preprocessing has been carried out and the original plot

can now be identifed and extracted from the input synopsis. In order to do this

the narrative events that occur throughout the story and make up the plot have

to be identifed. Additionally the objects that participate or are involved in each

event have to be identifed to accurately portray the narrative being described.

Narrative events are identifed by searching for words that are likely describ-

ing an action or event. NLP techniques and annotations such as part-of-speech

tagging and dependency relations graphs are used to analyse each sentence and

determine where narrative events should be identifed. The full method for nar-

rative event identifcation is described in Section 5.1.2.

The following example will illustrate how narrative events and the objects

that are associated with them are identifed by StoryFramer.

[1One night,][2 when the wolf tribe learns that Shere Khan,][3 a

man-eating Bengal tiger,][4 has returned to the jungle,][5 they realize

that Mowgli must be taken to the “Man-Village” for his (and their)

own safety.]

Figures 6.4 and 6.5 show the dependency parse trees for each segment of this

example sentence. In this example all of the identifed narrative events are verbs.

The POS tags that indicate a verb have been highlighted in red. For each of the

-> learns/VBZ (root)
  -> when/WRB (advmod)
  -> tribe/NN (nsubj)
    -> the/DT (det)
    -> wolf/NN (compound)
  -> Khan/NNP (nmod:that)
    -> that/IN (case)
    -> Shere/NNP (compound)
  -> ,/, (punct)

-> man-eating/JJ (root)
  -> a/DT (det)
  -> Bengal/NNP (dep)
    -> tiger/NN (dep)
    -> ,/, (punct)  

-> Night/NN (root)
  -> Once/CD (dep)
  -> ,/, (punct)

Segment 2

Segment 3Segment 1

-> returned/VBN (root)
  -> has/VBZ (aux)
  -> jungle/NN (nmod:to)
    -> to/TO (case)
    -> the/DT (det)
  -> ,/, (punct) 

Segment 4

Figure 6.4: Dependency parse trees for the frst 4 segments of the example.
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-> realize/VBP (root)
  -> they/PRP (nsubj)
  -> taken/VBN (ccomp)
    -> that/IN (mark)
    -> Mowgli/NNP (nsubjpass)
    -> must/MD (aux)
    -> be/VB (auxpass)
    -> Man-Village/NNP (nmod:to)
      -> to/TO (case)
      -> the/DT (det)
      -> ``/`` (punct)
      -> ''/'' (punct)
      -> his/PRP$ (nmod:for)
        -> for/IN (case)
        -> their/PRP$ (nmod:and)

Segment 5

          -> -LRB-/-LRB- (punct)
          -> and/CC (case)
          -> -RRB-/-RRB- (punct)
    -> safety/NN (nmod:tmod)
      -> own/JJ (amod)
  -> ./. (punct)

Figure 6.5: The dependency parse tree for segment 5 of the example.

identifed words (learns / returned / realize / taken), the surrounding dependency

relations are checked for additional information that could be included in a suit-

able name for the event. Doing so results in the 4 event names (learns), (returned

to the jungle), (realize) and (taken to the Man-Village).

The fnal stage for extracting narrative events is to identify any objects that

are associated with each action. This is done by seeing which objects are men-

tioned in the same or surrounding sentence segments.

- [2 when the wolf tribe learns that Shere Khan,]

- [3 a man-eating Bengal tiger,][4 has returned to the jungle,]

- [5 they realize that Mowgli must be taken to the “Man-Village” for his (and

their) own safety.]

For the event (learns), both the wolf tribe and Shere Khan are mentioned by

name in the same segment, resulting in (Learns - Wolf tribe / Shere Khan).

To fnd an associated object for the event (returned to the jungle), the previ-

ous segment is checked as no object has been mentioned in the same segment.

Here Shere Khan has been referenced using an alternate mention, tiger. The

event extracted is (Returned to the jungle - Shere Khan).

Finally for both (realize) and (taken to the Man Village), the objects refer-

enced in the same segment are associated with these events. As a result of the

previous coreferencing process the objects being referenced by the pronouns are

known, (they / their = Wolf tribe) and (his = Mowgli). The events are (Realize -

Wolf tribe / Mowgli) and (Taken to the Man Village - Wolf tribe / Mowgli).
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As a result of applying the narrative event extraction process to every sen-

tence in the synopsis, the following events are extracted:

0. (Found in a basket - Bagheera/Mowgli) (Promptly takes wolf - Bagheera/Mowgli/Mother

wolf)

1. (Raises along with own cubs and soon becomes well acquainted - Mother wolf/Mowgli) (Well

acquainted with life - Mother wolf/Mowgli)

2. (Shown later - Mowgli) (Playing - Mowgli/Wolf siblings)

3. (Learns - Wolf tribe/Shere Khan) (Returned to the jungle - Shere Khan) (Realize - Wolf tribe/-

Mowgli) (Taken to the Man Village - Wolf tribe/Mowgli)

4. (Volunteers to escort back - Bagheera/Mowgli)

5. (Leave very - Bagheera/Mowgli) (Determined to stay - Mowgli)

6. (Rest in a tree - Mowgli/Bagheera) (Tries to devour - Mowgli/Kaa) (Intervenes - Bagheera/-

Mowgli/Kaa)

7. (Tries to join - Mowgli/Colonel Hathi/Winifred) (Led - Mowgli/Colonel Hathi/Winifred)

8. (Finds - Bagheera/Mowgli) (Fight - Bagheera/Mowgli) (Decides to leave - Mowgli)

9. (Soon meets up - Mowgli/Baloo) (Promises to raise - Mowgli/Baloo) (Never take to the Man

Village back - Mowgli/Baloo)

10. (Kidnap - Group of monkeys/Mowgli) (Take to leader - Group of monkeys/Mowgli/King

Louie)

11. (Offers to help - King Louie/Mowgli) (Stay in the jungle - King Louie/Mowgli) (Tell to make

- King Louie/Mowgli)

12. (Was not raised humans - Mowgli) (Does not know - Mowgli) (Make fre - Mowgli)

13. (Arrive to rescue Bagheera/Baloo/Mowgli) (ensuing Bagheera/Baloo/Mowgli) (Palace is de-

molished to rubble - King Louie)

14. (Speaks - Bagheera/Baloo) (Convinces - Baloo/Mowgli/Shere Khan/Bagheera)

15. (Morning - Baloo/Mowgli) (Reluctantly explains - Baloo/Mowgli) (Accuses - Mowgli/Baloo)

(Breaking promise - Mowgli/Baloo) (Runs away - Mowgli)

16. (Sets in search of - Baloo/Mowgli) (Rallies the help - Bagheera/Colonel Hathi) (Patrol -

Colonel Hathi)

17. (Eavesdropping - Shere Khan/Bagheera/Colonel Hathi) (Now determined to hunt - Mowgli/Shere

Khan) (Kill - Mowgli/Shere Khan)

18. (Encountered again - Mowgli/Kaa) (Escapes - Mowgli) (Thanks to the unwitting intervention

- Shere Khan)

19. (Storm gathers - Mowgli/Vultures) (Encounters - Mowgli/Vultures) (Accept - Mowgli/Vul-
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tures)

20. (Appears shortly - Shere Khan) (Scaring off - Vultures/Shere Khan) (Confronting - Mowgli/Shere

Khan)

21. (Rushes to the rescue - Baloo) (Tries to keep - Shere Khan/Mowgli/Baloo) (Injured - Baloo)

22. (Lightning strikes - Nearby Tree) (Swoop - Vultures/Shere Khan/Mowgli/Flaming branches)

(Distract - Vultures/Shere Khan/Mowgli/Flaming branches) (Gathers - Vultures/Shere Khan/-

Mowgli/Flaming branches) (Ties to tail - Mowgli/Shere Khan)

23. (Terrifed of fre - Shere Khan) (Panics and runs off - Shere Khan)

24. (Take to the edge - Bagheera/Baloo/Mowgli) (Go there - Mowgli)

25. (Soon mind soon changes - Mowgli/Beautiful young girl) (Smitten from the village - Mowgli/Beau-

tiful young girl) (Coming down by the riverside to fetch down - Mowgli/Beautiful young girl)

26. (Noticing - Mowgli/Beautiful young girl) (Accidentally drops - Beautiful young girl/Water

pot)

27. (Retrieves - Mowgli/Water pot/Beautiful young girl) (follows in the Man-Village - Beautiful

young girl/Mowgli)

28. (Chooses to stay - Mowgli) (Decided to head - Baloo/Bagheera)

In total StoryFramer successfully identifes 70 of the 75 narrative events that

are present in the input synopsis. This comparison is made against a “Gold-

Standard” that has been identifed by hand for evaluation purposes (Appendix

A.2.5). The fve events that weren’t identifed have been included in the list

of events and are highlighted in red to indicate that they were missed. They

are (Rest in a tree), (Fight), (Runs away), (Eavesdropping) and (Ties to tail).

The main verbs here are all homonyms that have multiple interpretations, and in

this case, they weren’t all identifed due to incorrect POS tagging errors. Two

narrative events were identifed that were deemed to not be representing events.

These are referred to as additional errors and are highlighted in blue.

In addition to the identifed narrative events, 135 objects were correctly asso-

ciated with events throughout the synopsis. The 8 object association errors that

occurred have also been highlighted in red. An object association error can either

represent: a missed object association; an incorrect object association; or both,

i.e., it should be swapped for another object.

Once errors regarding the identifed narrative events have been rectifed by an

author, the result is a list of narrative events that represents the plot of The Jungle

Book. This can be used for the automated construction of a planning model.
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6.6 Automated Planning Domain Model Construction

In this work the list of narrative events that has been extracted from the input

and represents the plot of the synopsis is referred to as the plan trace. Using the

plan trace that has been extracted by StoryFramer, a default planning model can

now be constructed. The default planning model represents a basic mapping of

the actions and predicates that introduces methods for controlling the generation

of narratives. The goal of the default planning model is to fully represent the

original plot that it has been created from; provide mechanisms for controlling

narrative generation; and to not restrict the potential uses of the model. From

this default model an author can then make adaptations that result in a more

generalised model that meets their requirements and is capable of generating

new story variants. StoryFramer uses PDDL for defning the planning problem

that is separated into two parts: the problem domain; and the problem instance.

This process is described fully in Section 5.2.

The Problem Domain

Each narrative event that appears in the extracted plan trace is mapped to an

action in the problem domain. The actions are parameterised based upon the

associated objects and their types. An additional parameter along with default

predicates are added in order to introduce a baseline level of causality (Section

5.2.1). These predicates provide a means of controlling object eligibility and

imposing orderings between actions.

In order to demonstrate how narrative events that appear in the plan trace are

mapped to actions in the problem domain, a section of the plan trace for The

Jungle Book (shown below) is used as an example. The three narrative events

have been numbered, with their corresponding action mapping presented on the

next page.

1. (Rest in a tree - Mowgli/Bagheera)

2. (Tries to devour - Mowgli/Kaa)

3. (Intervenes - Bagheera/Mowgli/Kaa)
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1. (:action RestInATree

:parameters(?c1 - mchar ?c2 - mchar ?sc - storycontroller)

:precondition(and (can-RestInATree ?c1) (available ?c1)

(can-RestInATree ?c2) (available ?c2) (can-RestInATree ?sc))

:effect(and (has-RestInATree ?c1) (has-RestInATree ?c2)

(has-RestInATree ?sc)))

2. (:action TriesToDevour

:parameters(?c1 - mchar ?c2 - mchar ?sc - storycontroller)

:precondition(and (can-TriesToDevour ?c1)(available ?c1)

(can-TriesToDevour ?c2) (available ?c2) (can-TriesToDevour ?sc))

:effect(and (has-TriesToDevour ?c1) (has-TriesToDevour ?c2)

(has-TriesToDevour ?sc)))

3. (:action Intervenes

:parameters(?c1 - mchar ?c2 - mchar ?c3 - mchar ?sc - storycontroller)

:precondition(and (can-Intervenes ?c1) (available ?c1)

(can-Intervenes ?c2) (available ?c2) (can-Intervenes ?c3)

(available ?c3) (can-Intervenes ?sc))

:effect(and (has-Intervenes ?c1) (has-Intervenes ?c2)

(has-Intervenes ?c3) (has-Intervenes ?sc)))

The Problem Instance

The typed story objects are included in the problem instance along with the re-

quired default StoryController object that provides a means of controlling causal-

ity between actions. In addition to this it is assumed that the associated objects

for each narrative event in the extracted plan trace are going to be given eligibil-

ity for the corresponding actions in this planning instance. Although this isn’t

necessarily the case it is reasonable to assume that making amendments to the

eligibility of objects will be easier for an author than having to include all of

them by hand. These are included in the initial state using the corresponding

(can-Action ?x) predicate for each action.
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6.7 Domain Model Generalisation

As shown in Section 5.2.2 the control that the StoryController object and the

(can-Action) and (has-Action) predicates introduce is suffcient to be able to gen-

erate a plan representative of the original input story. In this section the default

model is extended, by application of the changes discussed in section 5.3, to cre-

ate a generalised model which is able to generate new story variants. This section

models having a author-in-the-loop, implementing changes to the default Jungle

Book planning model in order to create a model that fulfls an example goal.

6.7.1 An Example Goal for the Generalised Planning Model

In this worked example the default planning domain will be modifed with the

aim of being able to fulfl an example goal. The requirements for meeting that

goal are as follows:

• The planning model must use only the actions and predicates available in

the default mapping. Actions can be merged with one another or removed,

but no new actions can be added by the author. No new predicates can

be added to the domain, restricting the narrative control to that which is

facilitated by the default mapping.

• The start and the end sequences of the original plot are to remain the same.

• A generated narrative must include all 4 “dangerous encounters” that occur

in the original plot. These include: both encounters with the snake Kaa;

The monkey kidnapping; and the fnal confrontation with Shere Khan.

• Sensible orderings and character causality should be enforced between ac-

tions where it makes sense to do so. E.g., (Promises) and (Accuses of

breaking promise) should occur in that order and have the same characters

participate in both.
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6.7.2 Meeting the Requirements of the Example Goal

Generalising the default model such that it meets the requirements of the exam-

ple goal describes a task of rearranging the original plot to generate new story

variants. Action ordering and character causality should be enforced throughout

using only the generative control that is provided by the predicates in the model’s

default mapping.

In order to meet these requirements, a simple plan illustrating the narrative

control that the planning model will have to implement is shown in Figure 6.6.

This plan shows a reduced and simplifed list of actions that represent the original

plot of The Jungle Book. This list can be achieved through merging, renaming

and deleting the events extracted by StoryFramer.

The key required actions have been highlighted in red, including the start and

end sequences (Found in basket) and (Take to edge of village). The remaining

four actions that represent the “dangerous encounters” can occur in any order,

with the exception of (Encountered Kaa again), which can only occur after (Kaa

tries to devour). It wouldn’t make sense to have the (Encountered Kaa again)

action before his frst encounter. Additionally two non-required actions should

also implement a strict ordering for the same reason and these are: (Promises)

-> (Accuses of breaking promise); and (Runs away) -> (Search).

# Found in basket
- Raised by wolves
- Shere Khan returned to Jungle
- Realize taken to Man-Village
- Volunteers to escort
- Determined to stay
# Kaa tries to devour
- Intervenes
- Tries to join patrol
- Fight
- Decides to leave
- Meets up
- Promises
# Kidnap
- Take to leader
- Rescue
- Reluctantly explains 

- Accuses of breaking promise
- Runs away
- Search
- Eavesdropping
# Encountered Kaa again
- Escapes unwitting intervention
- Encounters Vultures
# Confronting
- Rushes to rescue
- Injured
- Ties branches to tail
- Panics and runs off
# Take to edge of village
- Smitten by girl
- Follows into village
- Chooses to stay  

s

e

# - Key Event   - Consecutive Events   - Ordered Events

s – start sequence e – end sequence

Figure 6.6: A plan illustrating how the requirements of the example goal relates

to the actions in the planning domain.
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Consecutive events are a more restricted version of ordered events. In ad-

dition to the events having to occur in a given order, they also have to occur

immediately after one another. For every key event at least one consecutive ac-

tion must occur directly afterwards. If one of the “dangerous events” such as

(Kaa tries to devour) occurred and was not immediately resolved, the audience

would assume that the danger that a character was in came to fruition. This is

an entirely reasonable sequence of events and would produce a new story vari-

ant, however it would not be in keeping with the example goal for this model,

as new actions cannot be created to express such scenarios. The planning model

will therefore require that when an event has occurred that requires immediate

resolution, a consecutive event that achieves this will follow directly afterwards.

The fnal consideration required for meeting the example goal is to enforce

sensible character causality where possible. Given the limitations imposed by the

example goal, this can be achieved by ensuring that characters participate across

multiple actions where consistency is required. Using again the (Promises) and

(Accuses of breaking promise) actions as an example. The characters that partic-

ipate in the (Accuses of breaking promise) action, should also be the characters

that were involved in the original (Promises) action. Failing to do so would result

in a sequence of events that could be interpreted as a character accusing another

of breaking a promise that was never made.

6.7.3 Implementing the Required Changes

By making these changes to the default planning model a generalised model will

be created that meets the example goal and can generate new story variants. The

different alterations that can be made to the model using only the default actions

and predicates are fully described in Section 5.3.

Key Narrative Event Inclusion and Ordering

Ensuring that specifc actions are included in a generated plan is simply done by

declaring the corresponding (has-Action StoryController) in the goal state of the

problem instance. To meet the key event inclusion requirements of the example

goal, the goal state would be defned as follows:
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(:goal (and (has-FoundInBasket StoryController)

(has-KaaTriesToDevour StoryController)

(has-Kidnap StoryController)

(has-EncounterKaaAgain StoryController)

(has-Confronting StoryController)

(has-TakeToEdgeOfVillage StoryController)))

The goal requirements also state that an ordering of the key events needs to

be imposed. The start and end actions should mirror that of the original plot.

This means that the frst action should be (FoundInBasket) and the last actions

are a sequence that starts with the key event (TakeToEdgeOfVillage).

This ordering can be enforced using the default predicates in a number of

ways. The simplest of which is to use the (can-Action) predicates. In order for

the planning model to ensure that the frst action is always (FoundInBasket) the

initial state of the problem instance can be defned such that (can-FoundInBasket

StoryController) is the only action available at the start of the plan. Subsequent

actions can then be enabled through the effects of the (FoundInBasket) action.

The default action can be modifed as follows to meet the requirements:

(:action FoundInBasket

:parameters(?c1 - mchar ?c2 - mchar ?sc - storycontroller)

:precondition(and (can-FoundInBasket ?c1) (available ?c1)

(can-FoundInBasket ?c2) (available ?c2) (can-FoundInBasket ?sc))

:effect(and (has-FoundInBasket ?c1) (has-FoundInBasket ?c2)

(has-FoundInBasket ?sc) (can-KaaTriesToDevour ?sc)

(can-Kidnap ?sc) (can-EncounteredKaaAgain ?sc)

(can-Confronting ?sc) (can-TakeToEdgeOfVillage ?sc)))

So that (TakeToEdgeOfVillage) is the last key narrative event to occur, the

preconditions for the action can be modifed such that all of the other required

events need to have taken place before the conditions can be met.
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(:action TakeToEdgeOfVillage

:parameters(?c1 - mchar ?c2 - mchar ?sc - storycontroller)

:precondition(and (can-TakeToEdgeOfVillage ?c1) (available ?c1)

(can-TakeToEdgeOfVillage ?c2) (available ?c2) (has-Kidnap ?sc)

(can-TakeToEdgeOfVillage ?sc) (has-KaaTriesToDevour ?sc)

(has-EncounteredKaaAagain ?sc) (has-Confronting ?sc))

:effect(and (has-TakeToEdgeOfVillage ?c1) (has-TakeToEdgeOfVillage ?c2)

(has-TakeToEdgeOfVillage ?sc)))

By making these amendments to the default action mappings and having an

initial state where (FoundInBasket) is the only available frst action, the key nar-

rative event requirements will be enforced by the planning model.

Enforcing Consecutive and Ordered Events

The example goal specifes that sensible action ordering should be enforced

where appropriate. In order to achieve this some events must occur in a given or-

der, or immediately after one another. Failing to do so can result in a sequence of

events that the audience may perceive to be unrealistic or confusing. Two types

of event ordering can be implemented using the available default predicates.

The frst method of ordering events can be achieved simply by adding a re-

quirement to the preconditions of an action that requires another event to have

occurred at any point earlier in the narrative. An example of two actions in the

Jungle Book domain where this would be appropriate are the (Promises) and (Ac-

cusesOfBreakingPromise) actions. For a character to accuse another of breaking

a promise without the audience frst seeing that a promise had been made could

result in a confusing plot progression. This ordering can be achieved by making

the following amendments to the (AccusesOfBreakingPromise) action:

(:action AccusesOfBreakingPromise

:parameters(?c1 - mchar ?c2 - mchar ?sc - storycontroller)

:precondition(and (can-AccusesOfBreakingPromise ?c1) (available ?c1)

(can-AccusesOfBreakingPromise ?c2) (available ?c2)

(can-AccusesOfBreakingPromise ?sc) (has-Promises ?sc))

:effect(and(has-AccusesOfBreakingPromise?c1)

(has-AccusesOfBreakingPromise ?c2)(has-AccusesOfBreakingPromise ?sc)))
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The second type of ordering implemented in the planning model allows for

blocks of consecutive actions to be executed immediately after one another. This

ordering can be enforced using the default predicate (Available). When used in

conjunction with the StoryController object, it is possible to set the world into a

state that forces specifc actions. When (Available StoryController) is true, the

world being represented is one where many actions are possible, with no actions

being immediately required. If the world is set to state where the StoryController

isn’t available, only specifc actions are then considered that result in the world

returning to a state where the StoryController is available once again.

The three action sequence of (Kidnap) -> (TakeToLeader) -> (Rescue) will

be used to demonstrate how consecutive actions can be implemented. It is im-

portant to note that the preconditions for every action in the domain model will

now require a condition regarding the availability of the StoryController object.

(Available ?sc) for when multiple actions are possible, (not (Available ?sc)) for

when a specifc action is required.

Figure 6.7 shows how the example actions can be amended so that a con-

secutive ordering is enforced between them by the planning model. The frst

action (Kidnap) sets the StoryController object as unavailable. Additionally the

(can-TakeToLeader ?sc) effect enables the next action in the sequence. (Take-

ToLeader) is given a precondition that allows it to be executed when the Sto-

ryController object is unavailable and becomes the only available action. As this

action is the second action of three, the StoryController remains unavailable and

the next action is enabled. Now (Rescue) becomes the only available action. As

the fnal action in the sequence, the StoryController is made available once again

in the action effects.

The actions that have the ability to return the world to a state where the Sto-

ryController is available are given an additional precondition. This precondition

states that the action isn’t repeatable by default. The reason for this is that if

an unrelated event occurs that sets the StoryController as unavailable, the action

cannot be used to return the StoryController to a state where it is available.

126



Chapter 6. Worked Example: The Jungle Book

(:action Kidnap

:parameters(?g1 - group ?c1 - mchar ?sc - storycontroller)

:precondition(and (can-Kidnap ?g1) (available ?g1) (can-Kidnap ?c1)

(available ?c1) (can-Kidnap ?sc) (available ?sc))

:effect(and (has-Kidnap?g1) (has-Kidnap ?c1) (has-Kidnap ?sc)

(not (available ?sc)) (can-TakeToLeader ?sc)))

(:action TakeToLeader

:parameters(?g1 - group ?c1 - mchar ?sc - storycontroller)

:precondition(and (can-TakeToLeader ?g1) (available ?g1)

(can-TakeToLeader ?c1) (available ?c1) (can-TakeToLeader ?sc)

(not (available ?sc)) (not (has-TakeToLeader ?sc)))

:effect(and (has-TakeToLeader?g1) (has-TakeToLeader ?c1)

(has-TakeToLeader ?sc) (can-Rescue ?sc)))

(:action Rescue

:parameters(?g1 - group ?c1 - mchar ?c2 - mchar

?sc - storycontroller)

:precondition(and (can-Rescue ?g1) (available ?g1) (can-Rescue ?c1)

(available ?c1) (can-Rescue ?c2) (available ?c2) (can-Rescue ?sc)

(not (available ?sc)) (not (has-Rescue ?sc)))

:effect(and (has-Rescue ?g1) (has-Rescue ?c1) (has-Rescue ?c2)

(has-Rescue ?sc) (available ?sc)))

Figure 6.7: Consecutive actions example. (Kidnap), (TakeToLeader) & (Rescue).

Character Causality Across Actions

In addition to enforcing a sensible ordering between actions, the characters that

are participating across actions also have to be doing so in a consistent manner

that makes sense. Character causality across actions can be achieved by utilising

the default (can-Action) and (has-Action) predicates available.

To demonstrate this, the actions (RunsAway) and (Search) will be used as an

example. (RunsAway) is an action that represents one character running away.

(Search) is an ordered action that can occur anytime afterwards, that sees an-

other character searching for the character that ran away. For these actions to
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make sense in the narrative, the character that ran away in the frst action needs

to appear as a parameter in the second to indicate that they are the character be-

ing searched for. Additionally the two characters involved in the second action

(Search), need to be different.

No changes need to be made to the default (RunsAway) action. By default the

(has-RunsAway) effect is added for all of the action’s parameters. This can then

be used in the preconditions of (Search) to identify the character that ran away.

(:action RunsAway

:parameters(?c1 - char ?sc - storycontroller)

:precondition(and (can-RunsAway ?c1)(available ?c1)(can-RunsAway ?sc))

:effect(and (has-RunsAway ?c1) (has-RunsAway ?sc)))

(:action Search

:parameters(?c1 - char ?c2 - char ?sc - storycontroller)

:precondition(and (can-Search ?c1) (available ?c1) (can-Search ?c2)

(available ?c2) (can-Search ?sc) (has-Runsaway ?c2)

(not (?c1 = ?c2)))

:effect(and (has-Search ?c1) (has-Search ?c2) (has-Search ?sc)))

The (Search) action is amended to include the preconditions needed for en-

suring character causality across the actions. Using the equality check available

in PDDL, (not (?c1 = ?c2)) makes sure that the two character parameters are not

the same object.
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6.7.4 Generating New Story Variants

Now that the default planning model has been generalised in accordance with

an example goal, the planning model is capable of generating new story variants

that fulfl said goal.

Figure 6.8 shows an example output plan that the generalised planning model

is capable of generating. The plan is an example of a new story variant which

can be generated using only the default predicates that StoryFramer provides.

1. (FoundInBasket - Bagheera Mowgli)

2. (RaisedByWolves - MotherWolf Mowgli)

3. (ShereKhanReturnedToJungle WolfTribe ShereKhan)

4. (RealizeTakenToManVillage WolfTribe Mowgli)

5. (DeterminedToStay Mowgli)

6. (EncountersVultures Mowgli Vultures)

7. (Confronting Mowgli ShereKhan)

8. (RushesToRescue Bagheera)

9. (Injured Bagheera)

10. (TiesBranchesToTail Vultures FlamingBranches ShereKhan)

11. (PanicsAndRunsOff ShereKhan)

12. (KaaTriesToDevour Mowgli Kaa)

13. (Intervenes Bagheera Mowgli Kaa)

14. (Promises Bagheera Mowgli)

15. (MeetsUp Mowgli Baloo)

16. (EncounteredKaaAgain Mowgli Kaa)

17. (EscapesUnwittingIntervention Baloo Mowgli Kaa)

18. (AccusesOfBreakingPromise Mowgli Bagheera)

19. (Kidnap GroupOfMonkeys Mowgli)

20. (TakeToLeader GroupOfMonkeys Mowgli KingLouie)

21. (Rescue Bagheera Baloo Mowgli)

22. (TakeToEdgeOfVillage Bagheera Baloo Mowgli)

23. (SmittenByGirl Mowgli BeautifulYoungGirl)

24. (FollowsIntoVillage Mowgli BeautifulYoungGirl)

25. (ChoosesToStay Mowgli)

Figure 6.8: An example output plan that the generalised planning model is capa-

ble of generating.
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6.8 Worked Example: Conclusions

The worked example detailed in this chapter demonstrates the StoryFramer ap-

proach that is presented in this work. The goal of the example is to demonstrate

the processes involved in producing a planning model from a natural language

input synopsis and serve as a proof of concept.

The Jungle Book synopsis used was an example of the target input that Sto-

ryFramer has been developed for. The synopsis represents a complex natural

language description of the narrative for which it represents. Characters are ref-

erenced with multiple named mentions, pronouns are used throughout that re-

quire conferencing and narrative events are described by complex multi-clause

sentences.

The ‘start to fnish’ worked example demonstrates the effectiveness of the

automated processes that StoryFramer presents: achieving an object mention

identifcation accuracy of 100%; correctly coreferencing 85.7% of the pronouns

present in the text; and correctly identifying 93.3% of the narrative events that

occur throughout the story. The impressiveness of these results is emphasised

by the types of errors that are encountered, with the majority of errors being

expected due to their heavy reliance on contextual information and a deep under-

standing of natural language.

The worked example demonstrates the level of interaction that is required of

an author in order to obtain the correct results for each process. The tasks com-

pleted by an author throughout the StoryFramer approach are shown to require

a minimal amount of domain modelling expertise, signifying the StoryFramer’s

suitability as a tool supported approach to help non-technical authors with the

creation of narrative planning models.

It was shown that the default mapping of the planning model and the control

it facilitates is suffcient to be able to generate new story variants with an author-

in-the-loop generalising the model through a number of available changes.
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Evaluation

This chapter contains an evaluation of the presented StoryFramer approach.

The constituent components of the StoryFramer approach are individually

examined, with the outputs evaluated. The aim of this evaluation is to assess the

performance of the approach on: the identifcation of objects from multi-clause

sentences (Section 7.2); the coreference resolution of pronouns with multiple ref-

erences across sentences (Section 7.3); and the identifcation of narrative events

within synopses, including the identifcation of objects associated with those

events (Section 7.4). The evaluation will demonstrate the processing capabili-

ties of the approach, highlighting the complexities of each process and focusing

on how the approach deals with such instances.

The level of input that is required of an author in order to obtain the correct

narrative information from the synopses is evaluated, with StoryFramer’s aim

being to minimise the interaction required to that which is necessary. A var-

ied selection of synopses are used as the data set for this evaluation in order to

demonstrate the generality of the approach, in keeping with StoryFramer’s goal

of using online-sourced synopses as input.

An implementation of the StoryFramer approach has been developed in a

prototype system that incorporates the components that are to be evaluated. The

system is written in Java and utilises the Stanford CoreNLP toolkit [48] to pro-

duce the NLP annotations that are required for the various presented methods.

The automated components of the approach are called via command line with

the required input information passed to the components as text fles. For all

of the synopses tested no component took longer than 20 seconds to output the

relevant automated results.
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7.1 Narrative Synopses used in the Evaluation

For the purpose of evaluating the StoryFramer approach, 10 varied synopses have

been selected. These synopses (shown in Table 7.1) provide a challenging data

set for StoryFramer to be evaluated on and were chosen because they: cover

multiple genres; feature a wide variety of subject matter; are sourced from a

number of different online sources; vary in the level of detail they contain; and

feature differing writing styles, vocabulary and language.

Synopsis

Scooby-Doo (1969)
Friends (2003)
House (2004)
The Jungle Book (1967)
Toy Story (1996)
Titanic (1997)
Merchant of Venice (~1605)
A Christmas Carol (1843)
Lord of the Flies (1954)
Odyssey (~675-725 BC)

Genre

Children’s Cartoon
Television Sitcom
Television Medical Drama
Musical Adventure Film
Adventure Comedy Film
Romance & Disaster Film
Shakespeare Play
Dickens Novel
Allegorical Novel
Greek Epic Poem

Synopsis Source

http://scoobydoo.wikia.com
https://www.imdb.com
http://house.wikia.com
https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org
https://www.nosweatshakespeare.com
https://www.sparknotes.com
https://www.sparknotes.com
https://www.sparknotes.com

Table 7.1: A table of the synopses used for the evaluation.

7.1.1 Features of the Synopses

Table 7.2 contains information regarding the quantifable metrics of the data

set. These metrics will form the basis of this evaluation and provide a ‘Gold-

Standard’ by which StoryFramer can be measured against. More information re-

garding the ‘Gold-Standard’ synopsis information can be found in Section 7.1.2.

Sentences and Pronouns

The number of sentences that a synopsis contains indicates either the length of

the plot being described, or the level of detail at which the story is being told. It

is more important to note the average number of object mentions (4.6) and nar-

rative events (2.5) that appear in each sentence. This shows that the majority of

sentences are complex, multi-clause sentences that make for a suitably challeng-

ing evaluation data set. Pronouns are also used throughout all of the synopses.

Only pronouns that require coreferencing have been included in this count.
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Synopsis Sentences Pronouns Object Mentions Narrative Events

Scooby-Doo

Friends

House

The Jungle Book

Toy Story

Titanic

Merchant of Venice

A Christmas Carol

Lord of the Flies

Odyssey

52

5

28

29

24

38

28

34

57

39

79

5

55

35

40

57

32

52

51

67

179

32

100

124

166

192

111

169

261

212

116

18

61

75

90

95

63

76

152

94

Total 334 473 1546 840

Table 7.2: The metrics for each of the evaluation synopses. These represent a

hand-identifed ‘Gold-Standard’ that StoryFramer can be measured against.

Object Mentions

An object mention is when an object is referred to by name in the text. The

defnition of what is considered an object in this work can be found in Section

4.3.1. Characters and physical objects that are present in the story are all con-

sidered objects. Additionally abstract nouns are included in the defnition as the

approach taken is to identify as many objects as reasonably possible, as to not

limit the choice available to the domain author. It is possible to reference any

noun using a pronoun, and thus all nouns should be identifed so that the fol-

lowing coreferencing process isn’t compromised. For a word to be classed as an

object, the word has to be used as a noun within the sentence it is in. Homonyms

that have noun forms but aren’t being used as such, are not considered objects.

Narrative Events

Narrative events are events that have an effect on the story and can be categorised

into either: the actions of characters; and events not caused by caused by charac-

ters, such as the weather changing. The full defnition of a narrative event can be

found in Section 5.1.1. All narrative events that appear in the synopsis should be

identifed by StoryFramer such that the level of detail represented by an acquired

planning model matches that of the input.
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7.1.2 Gold-Standard Synopsis Information

In order to evaluate the automated components of StoryFramer, the correct re-

sults for each task need to frst be determined to provide a ‘Gold-Standard’ that

the components can then be compared against.

For the metrics discussed in Section 7.1.1, the defnitions of what constitutes

a pronoun, object mention and narrative event in this work are given. The gold-

standards produced for each of the evaluation synopses are the result of identify-

ing these metrics in the synopses by hand. Table 7.2 shows the hand-identifed

metric counts for the evaluation synopses.

In addition to these counts, the correct result for each task also needs to be

determined. For the task of pronominal coreference resolution, the correct coref-

erence for each pronoun has been identifed by hand. Determining the correct

coreference of a pronoun is a simple task assuming the sentences have been well

written. If a pronoun was encountered that had an ambiguous coreference it was

ignored and omitted from the evaluation. Additionally pronouns that weren’t

referencing objects, e.g. referencing a previous event, were also ignored and ex-

cluded from the evaluation as these coreferences were deemed unobtainable and

not required in this context.

The fnal gold-standard required for this evaluation is the correct narrative

event object associations. This information was again identifed by hand and

assuming the synopsis sentences are well written this is a straightforward task.

Any object that isn’t clearly associated with a given narrative event was ignored

and omitted from the evaluation. If the correct result of a task cannot be identifed

by a human author then an automated approach isn’t expected to either.

Examples of the ‘Gold-Standard’ evaluation data for two of the evaluation

synopses (Scooby-Doo & The Jungle Book) is presented in Appendix A.
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7.2 Object Identifcation

In this section the performance of the automated object identifcation algorithm

is evaluated. Experiments have been run to determine the accuracy of the method

on the evaluation synopses. An implementation of the method presented in Sec-

tion 4.3 is used for this evaluation. Objects are identifed using the syntactic

constituency parsing and part-of-speech tagging annotations provided by the

CoreNLP toolkit [48].

7.2.1 Object Identifcation: Results

Table 7.3 shows the object identifcation results for the evaluation synopses.

For each synopsis the total number of identifed objects is shown and compared

against the ‘Gold-Standard’ human-identifed result. A number of objects were

identifed that upon review were deemed to not fall under the defnition of an ob-

ject, these are referred to as additional object errors. The Additional % column

signifes what percentage of the identifed object set were additional errors.

The method presented for the identifcation of objects from synopses suc-

cessfully identifes 99.2% of the object mentions that appear across all of the

synopses tested. This shows that the method is very effective at identifying ob-

ject mentions in narrative synopses.

While it is important that all objects mentioned in the text are identifed, the

Synopsis Identifed Gold-Standard % Additional Additional %

Scooby-Doo

Friends

House

The Jungle Book

Toy Story

Titanic

Merchant of Venice

A Christmas Carol

Lord of the Flies

Odyssey

178

32

98

124

166

190

110

168

258

210

179

32

100

124

166

192

111

169

261

212

99.4

100

98.0

100

100

99.0

99.1

99.4

98.9

99.1

10

1

6

10

6

5

3

8

8

7

5.3

3.0

5.8

7.5

3.5

2.6

2.7

4.5

3.0

3.2

Total 1534 1546 99.2 64 4.0

Table 7.3: Results of the object identifcation for the evaluation synopses
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goal of this automated process is to minimise the amount of author interaction

that would be required to reach the gold standard for each synopsis. The perfect

solution would therefore achieve 100% identifcation with no additional object

errors, and thus require no input from an author to reach the gold standard. On

average 4% of the objects identifed by StoryFramer are additional object errors,

meaning that for every 96 correctly identifed object mentions, 4 additional ob-

ject errors are incurred. By achieving a low additional object error percentage,

the authorial action that is required to achieve the ‘Gold-Standard’ is reduced.

7.2.2 Object Identifcation: Discussion

Because this solution is based upon the CoreNLP syntactic constituency parsing

and part-of-speech annotations, any error within the annotation can effect the

object identifcation process. If a word is a homonym with multiple meanings,

the word can be misinterpreted by CoreNLP and given an incorrect POS tag for

the context of the sentence. This in turn can effect the constituent phrases that

form the constituency parse tree. Such situations are the cause of the errors that

are encountered. The correct interpretation of a homonym can required a deep

understanding of the natural language and the context that it has been used in. In

AI this task is referred to as word sense disambiguation (WSD). The diffculty of

WSD is described as an AI-Complete problem [58], a problem whose diffculty

is equivalent to solving the central problem of Artifcial Intelligence, i.e., The

Turing Test. Given the diffculty of understanding natural language, such errors

are expected and somewhat inevitable.

There are two different types of object identifcation error that can occur:

failing to identify an object; and the identifcation of a word that isn’t an object

(additional object error). When a failure to identify an object has occurred, a

noun has been mislabelled as either a verb, adjective or adverb. This then often

results in the word belonging to a phrase that matches the type, as opposed to

a noun phrase, and causing the word to go undetected. Similarly the additional

object errors are caused by the inverse of this mislabelling, other words being

labelled as nouns where they shouldn’t.

The errors encountered by StoryFramer during this process are to be expected

given their diffculty. By only encountering errors of this sort it emphasises the

effectiveness of StoryFramer’s object identifcation algorithm.
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Example Errors from the Synopses

A number of homonym errors are encountered when running the object identif-

cation process on the Scooby-Doo synopsis. Of the errors encountered, 1 object

mention goes undetected and 10 additional objects are identifed incorrectly.

A mention for one of the main characters (Shaggy) goes undetected in a sen-

tence where his name is identifed as an adjective. Every other named mention

of (Shaggy) is correctly identifed. This error will have no effect on the result

of the object identifcation process as the output identifed objects list will in-

clude (Shaggy) due to being identifed elsewhere in the text. If an author selects

(Shaggy) as a story object going forward, the mention that was missed during

object identifcation will now be recognised as an object. This is because string

matching is used to identify the story objects in the text once an object list has

been fnalised by an author.

The additional object errors in Scooby-Doo come in the form of verbs that

have been mislabelled as nouns. These include (chase / stop / trips / thanks /

break / gnawing / crashes). These errors are expected and understandable given

the nature of the problem.
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7.3 Pronominal Coreference Resolution

Coreference resolution is the process of fnding all the expressions in a text that

refer to the same entity. The named object mentions have already been identifed

and disambiguated, leaving only the pronouns present in the synopses in need

of coreferencing. The role of the pronoun coreference resolution process is to

identify the entities that the pronouns present in a synopsis are referring to.

The pronominal coreference resolution method that is presented in Section

4.5 utilises the object information that is available in the context of StoryFramer.

By incorporating object type information into a multi-sieve approach to corefer-

encing, a signifcant increase in accuracy can be achieved.

7.3.1 Pronominal Coreference Resolution: Results

In order to evaluate the performance of StoryFramer’s pronominal coreference

resolution algorithm, the results of running the algorithm on the evaluation syn-

opses are compared against the default coreferencing solution that is available as

part of the CoreNLP toolkit.

Experimental Setup

Both the StoryFramer and CoreNLP approaches are run on the input synopses,

comparing the results against the ‘Gold-Standard’ human identifed references.

An example of a coreference ‘Gold-Standard’ is shown in Appendix A.1.4. If the

entities identifed by one of the solutions matches those of the gold-standard, the

pronoun is judged to have been correctly coreferenced. If multiple entities are

being referenced, they all have to be identifed for the pronoun to be correctly

coreferenced. In the evaluation synopses, one ambiguous pronoun was found

that had no clear antecedent(s). This pronoun was removed from the results as it

had no clear correct answer to compare the solutions against.

Alongside an input synopsis, StoryFramer’s approach uses a typed object

list for the coreferencing process. These lists are created by typing and dis-

ambiguating the identifed objects, following the same process an author using

StoryFramer would go through. An object is selected to be a story object if: 1)

it is considered to be a main object in the story; 2) a pronoun has been used

to reference the object; or 3) the coreference of a pronoun is dependent on the
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object being recognised as a story object. An example of a typed object list can

be found in Appendix A.1.3. The output of StoryFramer’s approach is a list of

every pronoun present in the synopsis, each with one or more associated objects

that represent the objects being referenced. These are then compared against the

gold-standard to determine the results.

To obtain the results for the CoreNLP solution, Stanford CoreNLP (Ver-

sion 3.8.0) was used alongside the (2017-06-09) English model. The coreNLP

pipeline was setup to use the default coreferencing solution (coref). Because the

CoreNLP solution outputs coreference chains that can span an entire synopsis,

each sentence was coreferenced individually. When a sentence was coreferenced

however, the previous 3 sentences as well as the following sentence were also in-

cluded. Therefore if a pronoun was referencing an object from another sentence,

such chains could be identifed. References for each pronoun were then extracted

from the coreference chains if they were present, and then compared against the

gold-standard.

Results

Table 7.4 shows the pronoun coreferencing results for both the StoryFramer and

CoreNLP approaches. The total number of pronouns that require resolving is

shown for each synopsis. The number of correctly resolved pronouns is shown

in (green), and incorrectly resolved (red). On average across all of the synopses,

StoryFramer correctly resolves the references for 83.7% of the pronouns. The

CoreNLP approach achieves an accuracy of 40%.

By utilising the object knowledge available in this context, a signifcant in-

crease in the accuracy of pronoun resolution is achieved in comparison to the de-

fault CoreNLP solution. Having all the objects identifed and typed beforehand

greatly reduces the number of coreferencing errors. Failing to identify particular

objects and their types was a main source of error for the CoreNLP solution. This

is most prominently noticeable in the House synopsis, where the main character

(House) isn’t recognised as a character, the named entity recognition (NER) in-

correctly labels House as an organisation. The knock on effect of this is that no

pronoun that references the character is correctly identifed, contributing towards

the low accuracy of 16.4%. This was a common problem, especially in the nar-

rative synopses that feature more unconventional characters such as, the animals
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Synopsis Pronouns StoryFramer % CoreNLP %

Scooby-Doo

Friends

House

The Jungle Book

Toy Story

Titanic

Merchant of Venice

A Christmas Carol

Lord of the Flies

Odyssey

79

5

55

35

40

57

32

52

51

67

64 / 15

4 / 1

51 / 4

30 / 5

25 / 15

52 / 5

28 / 4

42 / 10

45 / 6

55 / 12

81.0

80.0

92.7

85.7

62.5

91.2

87.5

80.8

88.2

82.1

30 / 49

1 / 4

9 / 46

13 / 22

16 / 24

18 / 39

12 / 20

28 / 24

32 / 19

30 / 37

38.0

20.0

16.4

37.1

40.0

31.6

37.5

53.8

62.7

44.8

Total 473 396 / 77 83.7 189 / 284 40.0

Table 7.4: The pronominal coreferencing results for the StoryFramer algorithm

and the default CoreNLP coreferencing algorithm. The number of correctly

coreference pronouns are shown in (green), incorrect are shown in (red).

in The Jungle Book or the toys in Toy Story. CoreNLP fared best on the Lord of

the Flies synopsis achieving 62.7%. In the synopsis all the main characters (with

the exception of Piggy) have traditional English boys names and the problem of

incorrect character recognition affecting the coreferencing is minimal.

7.3.2 Pronominal Coreference Resolution: Discussion

StoryFramer’s pronoun coreferencing method achieves an accuracy of 83.7%,

which is a signifcant improvement compared to the default CoreNLP alternative.

StoryFramer still encounters a number of errors and the sources of which should

be identifed.

Nearly all the errors encountered during the coreference of pronouns can be

accredited as a contextual error. Contextual errors is the broad category being

used to describe errors that are dependent on the information that is gained from

the text, rather than being directly available within the text itself. The correct

coreference may be dependent on the reader’s understanding of the world and

the characters involved in the situation that is being described. These situations

illustrate the diffculty of understanding natural language, and such errors are

expected.
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Pronominal Coreferencing Error Example

This example has been taken from the evaluation synopses to illustrate the con-

textual coreferencing problems that are encountered. The example looks to re-

solve the pronoun ‘It’ in the following sentences:

At the library they read a book that says the glasses are for jewellers, scientists

and archaeologists like Professor Hyde White. It also says they’re made in

England.

In this example, the previous sentence contains two objects (library) and (book)

that are both type compatible with the pronoun ‘It.’ In order to correctly select

(book) as the item being referenced, a contextual knowledge of the item itself is

required. When such a situation is encountered in StoryFramer the frst object in

the segment is chosen as the coreference, which in this case is wrong. The order

in which the two items appear or which on is chosen isn’t the key to correctly

coreferencing however. The sentence could be rewritten as follows:

They read a book at the library that says the glasses are for jewellers, scientists

and archaeologists like Professor Hyde White. It also says they’re made in

England.

Both sentences convey the same information, but now if StoryFramer were

to coreference the pronoun ‘It,’ the frst object in the segment (book) would be

selected, resulting in a correctly identifed coreference. Although the correct

coreference is identifed, it has only been achieved through chance. In order to

correctly coreference both sentences, an deep understanding of the language and

the specifc objects involved would be required.
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7.4 Narrative Event Identifcation

In this section the identifcation of narrative events and the identifcation of their

associated objects is evaluated. Experiments have been carried out to determine

how accurately this narrative information is extracted from the evaluation syn-

opses. This evaluation uses an implementation of the method presented in Sec-

tion 5.1.2. The approach utilises the CoreNLP dependency parse tree annotation

in order to identify the narrative events within each sentence. Once a narrative

event has been identifed, the objects that are associated with said event also need

to be identifed. A method for the identifcation of associated objects is presented

in Section 5.1.4 that uses information available in the surrounding segments of

the text.

7.4.1 Narrative Event Identifcation: Results

The results of the narrative event identifcation for the evaluation synopses are

shown in Table 7.5. For each synopsis the number of identifed narrative events

is shown against the ‘Gold-Standard’ human identifed events. An example of a

‘Gold-Standard’ for narrative events can be found in Appendix A.1.5. Across the

10 synopses, 95.7% of the narrative events present in the texts were successfully

identifed. This shows the method is very effective at identifying narrative events

that are present in natural language synopses.

Synopsis Identifed Gold-S. % Add. Add. % Objs Obj Err

Scooby-Doo 112 116 96.6 19 14.5 290 21

Friends 16 18 88.9 0 0 27 3

House 59 61 96.7 3 4.8 127 5

The Jungle Book 70 75 93.3 2 2.8 135 8

Toy Story 88 90 97.8 10 10.2 194 20

Titanic 89 95 93.7 8 8.2 196 5

Merchant of Venice 62 63 98.4 2 3.1 108 9

A Christmas Carol 72 76 94.7 8 10.0 109 17

Lord of the Flies 146 152 96.1 20 12.1 239 25

Odyssey 90 94 95.7 7 7.7 173 14

Total 804 840 95.7 79 8.9 1598 127

Table 7.5: Results of the Action identifcation for the evaluation synopses
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Narrative events that were identifed but aren’t considered to be events are

also recorded and referred to as additional event errors. For the synopses tested,

8.9% of the total narrative events identifed were additional event errors. A per-

fect solution would identify 100% of the events and incur no additional event

errors. The goal is to minimise the number of additional event errors without

compromising the identifcation of the ‘Gold-Standard’ narrative events. By

keeping the number of additional errors low, the authorial changes required to

achieve a ‘Gold-Standard’ from StoryFramer’s output is minimal.

The total number of objects that have been identifed as being associated with

the events in each synopsis is recorded, alongside the number of errors incurred

during this process. Object association errors are evaluated against a human

associated gold-standard. Object association errors are defned as the number of

changes that would need to be made to the results of automated association in

order to get to the gold-standard set of objects. These changes are as follows:

1) An object has been missed and should be added; 2) An incorrect object has

been associated and should be removed; and 3) An incorrect object has been

added and should be replaced by another object. 92.1% of the associated objects

have been correctly associated with their respective narrative events, meaning

that only 7.9% require an author’s input to correct them. Again, the goal is to

minimise the level of interaction required of an author to achieve the correct

results.

7.4.2 Narrative Event Identifcation: Discussion

As with the object identifcation and pronoun coreference resolution tasks; the

misinterpretation of homonyms is the main source of error when identifying nar-

rative events in natural language. The method presented for this task is dependent

on the dependency parse tree annotations produced by CoreNLP. As a conse-

quence of this, any error in the parse tree is often refected in the results of the

event identifcation.

For the identifcation of narrative events, the majority of errors came from

verbs being misinterpreted incorrectly as nouns. The other common source of

identifcation errors relate to the handling of verbs: be, do and have. These

verbs are commonly used as auxiliary verbs; i.e., in conjunction with another

verb. Given the example, “He has escaped,” the auxiliary verb has, is ignored
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by StoryFramer as the event is described by the main verb, escaped. ‘Have’

is also often used to convey possession when used in conjunction with a noun,

e.g., “They have a dog.” The event identifcation errors however occur when

‘Have’ is used in conjunction with a noun that is conveying an event, e.g., ”They

have a fght.” Whether possession or a narrative event is being described in this

situation is dependent on the the noun itself, making it a very diffcult problem

to overcome.

Additional identifcation errors are primarily a result of the inverse misinter-

pretation: words being incorrectly interpreted as verbs by CoreNLP. An occasion

where this isn’t the case is where verbs have been used by the author as a story-

telling mechanism, rather than describing a plot event. An example of this are

phrases that are used to describe the chronology of the events, such as, “Follow-

ing this...,” or “As this is going on...”.

Objects are associated with actions based up if the are mentioned in the sur-

rounding sentence segments (clauses). One of the association errors that can

occur are in situations where multiple objects have been mentioned in the same

segment, but associating all of the objects with the event would be incorrect. This

often depends on contextual information relating to the specifcs of a verb and the

implied roles that characters may have. Additionally object associations can be

missed if they are mentioned in a different segment to the verb. Another common

source of error relates to the usage of contextual object identifers. Sometimes

object identifers are used that don’t refer to a static group of objects. The correct

interpretation of these identifers is dependent on the current situation that they

are used in. An Example of such an identifer is, “The others.” When used in

different contexts this identifer can refer to different groups of objects, making

the task of correctly resolving the references very diffcult. If only used once

in a specifc synopsis, this problem can be addressed by treating the identifer

as a static group of objects; however this is not an option if there are multiple

occurrences of the identifer throughout the text.
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Example Narrative Event Errors

The Scooby-Doo synopsis contains examples of the different errors that can oc-

cur during the narrative event identifcation process.

1) The gang return to the museum at night and break in through an upper

window

StoryFramer fails to identify the action (break in) as a narrative event. The

homonym ‘break’ is incorrectly labelled as a noun by CoreNLP and due to this

the action is missed.

2) Scooby, Shaggy and Velma bump into the Black Knight and have a brief

altercation

The sentence above illustrates an example of the word ‘have’ that has been

used in conjunction with a noun describing an event. Here the event (alterca-

tion) goes unidentifed due to the false assumption that a ‘have’ when used in

conjunction with a noun is conveying possession rather than a narrative event.

3) Shaggy makes another joke about having heard of hide and seek, but not

“Hyde White”.

In this example, ‘hide and seek’ is identifed as an additional event due to

being labelled as verbs, although in this context the two words have been used as

a noun in reference to the game.

4) They return with the rest of their group to properly examine it.

Here is an example where an object association has been missed due to the

use of a contextual object identifer. In this case (They = Scooby & Shaggy),

meaning that “the rest of their group” is in reference to the other members that

make up “The Gang,” i.e., Fred, Daphne and Velma.
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7.5 Evaluation: Conclusions

In this chapter the preprocessing and information extraction processes that are

used throughout the StoryFramer approach for acquiring planning models from

narrative synopses have been evaluated.

The evaluation shows that StoryFramer successfully identifes 99.2% of the

object mentions present in the evaluation synopses, and 95.8% of the narrative

events. When the types of errors for these tasks are considered, the impressive-

ness of these results is emphasised. The errors encountered are expected due

to the nature of the problem being faced. In order to overcome the complex

problems that this task poses a deep understanding of natural language would be

required.

The evaluation of the pronoun coreference resolution algorithm presented

in this work and used by StoryFramer revealed a signifcant increase in accu-

racy when compared to a default CoreNLP [48] solution. StoryFramer corefer-

enced 83.7% of the pronouns in the evaluation synopses correctly compared to

the 40% achieved using the CoreNLP method. By leveraging the object infor-

mation available in this context signifcant performance improvements are seen.

This increase in performance will result in the reduction of authorial interac-

tion required when undertaking such a task, increasing the level of automation

provided.

Once the narrative information described in a synopsis has been correctly ex-

tracted, a planning model can then be created from this information. A method

for the automated regeneration of the original plot is presented in Section 5.2.2.

Additionally a default planning model can be created from the extracted infor-

mation with the intention of having an author-in-the-loop generalise the model.

Doing so would allow for the generation of new story variants that suit an au-

thors requirements. Methods for achieving this are presented in Section 5.3. The

worked example chapter provides a proof-of-concept, presenting an example of

a generalised model in Section 6.7.

146



Chapter 8

Conclusion

A novel approach for the acquisition of planning domain models from narrative

synopses has been presented in this thesis. The approach automates a number

of the required stages including: the extraction of narrative information; and

the construction of planning models representative of the input synopses. This

chapter features two sections: the frst presents the contributions of this work

with the second discussing possible future directions.

8.1 Contributions

8.1.1 StoryFramer: An Approach to Narrative Planning Model
Acquisition

The overall contribution presented in this thesis is a semi-automated approach to

the acquisition of narrative planning models from input synopses. An implemen-

tation of the approach was developed throughout the course of this work. The

implementation of StoryFramer required the development of a number of novel

techniques which were combined in the prototype to facilitate the acquisition of

planning domain models from narrative synopses.

The StoryFramer approach is specifcally targeted towards narrative synopses

and the available contextual information is exploited where possible to improve

the accuracy with which information is identifed. The approach also takes ad-

vantage of having an author in-the-loop that can amend errors that would other-

wise propagate throughout the processes of this challenging task. Making such

amendments doesn’t require additional domain modelling expertise, maintaining
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the approaches accessibility towards non-technical creators.

The approach needed to be able to extract the narrative planning information

being described by natural language synopses and then automatically construct

narrative planning domain models that are representative of this extracted infor-

mation. These tasks have been accomplished through the development of new

methods that utilise having an author-in-the-loop and exploit contextual infor-

mation where available.

NLP analysis tools are used in combination with contextual information to

preprocess input synopses such that narrative planning information can then be

extracted from them. The approach consists of methods for: the identifcation of

object mentions; the coreference resolution of pronouns; and the identifcation

of the narrative events that occur throughout the synopses, including the identi-

fcation of objects that are associated with each event.

A method has been developed for the automated construction of planning

domain models that are mapped from the extracted narrative information. A

default mapping representative of the input synopses has been presented that

introduces a baseline level of narrative control through the inclusion of default

predicates and objects.

The worked example (Chapter 6) that presented a start-to-fnish demonstra-

tion of the approach alongside the evaluation of the implemented StoryFramer

approach (Chapter 7) shows that the acquisition of planning models from narra-

tive synopses has been successfully accomplished. The exploitation of contex-

tual information increases the accuracy with which narrative information can be

extracted from synopses. It was also shown that the acquired planning models

are capable of reproducing the original plots of their respective inputs in addition

to the generation of new story variants.

8.1.2 Extraction of Planning Information

A novel approach to the identifcation and extraction of narrative information

from narrative synopses is one of the contributions that has been presented in

this thesis. The approach utilises NLP tools and annotations to analyse the in-

put sentences to identify object mentions and narrative events. The extraction

of narrative information is separated into two tasks: the preprocessing of input

sentences and the identifcation of narrative information.
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The approach developed automatically identifes object mentions within the

text and then utilises the available author-in-the-loop to disambiguate and type

objects before progressing with subsequent tasks. Doing so requires knowledge

of only the story being described and doesn’t introduce a requirement for domain

modelling expertise.

A pronoun coreference resolution algorithm has been developed that exploits

the object information available when determining the correct coreference of a

pronoun. The multi-sieve algorithm managed to achieve signifcant performance

increases over alternatively available methods.

Methods for both the identifcation of narrative events and the objects that

are associated with them have been developed in this work. Evaluation of these

methods showed consistently good performance at identifying the narrative nar-

rative information present in the synopses.

8.1.3 Automated Planning Domain Model Construction

A contribution of this thesis is a method for the automated construction of narra-

tive planning models that are mapped from the extracted narrative information.

Methods are presented that allow either for the original plot to be reproduced

as a plan, or for the construction of a default planning model that can then be

generalised by an author such that it is capable of generating new story variants.

A method for mapping the extracted narrative information to a planning

model has been presented and demonstrated using the Planning Domain Def-

nition Language (PDDL). Default predicates and objects are introduced to facil-

itate a baseline level of narrative control.

It has been shown that the default control given to the planning model is

suffcient to be able to reproduce the original plot as a plan. In doing so it also

shows that the acquired model is representative of the information that it has

been constructed from.

Authors can make amendments to the StoryFramer generated default plan-

ning model using the available predicates to create a more generalised model.

Through these alterations it has been shown that a model capable of generating

new story variants can be produced. The aims regarding the capability of the

acquired narrative planning models set out for this thesis have therefore been

achieved.
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8.2 Future Work

In this work input texts were restricted to that of single third-person narrative

synopses. Future work would look to expand the inputs that StoryFramer could

acquire planning models from. Such extensions could include: frst-person sto-

ries or accounts of events; descriptions of non-narrative domains; multiple syn-

opses regarding the same domain, e.g, multiple episodes of a TV series.

For all the possible extensions mentioned, the approach stays the same, look-

ing to identify the all of the objects and events/actions being described, in ad-

dition to resolving all object/pronoun references that are used. Modifcations

to the approach would be required where necessary in order to handle the dif-

ferences presented by each input. In order to handle frst-person synopses the

coreference resolution algorithm would have to be altered to handle frst-person

pronouns. The object being referenced by the frst person pronouns doesn’t have

to be explicitly stated in the text and would likely require an author’s input to

identify. In order to extend the approach to allow for multiple synopses the way

in which they are handled would need to be defned. The narrative information

could be extracted from each synopsis and combined before a planning model

is constructed representative of this information. The planning model produced

would be able to generate narratives that are a recombination of actions from

across the multiple synopses.
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Evaluation Synopses

A.1 Scooby-Doo

A.1.1 Synopsis Sentences

0. A man is driving a pick-up down a road during the night, unaware that the suit of armour in

the back has come to life and left his containment.

1. Its eyes glow yellow from inside its helmet as it watches the driver.

2. Close by, Scooby and Shaggy are walking home, with the latter complaining that they’re out

so late because the former had to see Star: Dog Ranger of the North Woods, twice; Scooby is

still excited from it.

3. Just then, they hear rustling from the bushes.

4. Scooby pokes his head in and when he takes it out, a frog is on his nose.

5. When it jumps off, Scooby gets annoyed, barking and giving chase.

6. Shaggy quickly follows behind.

7. Scooby eventually comes to a stop when he loses it.

8. Shaggy doesn’t have time to stop and trips over him.

9. They notice the same pick-up truck from before, now abandoned.

10. When they go for a closer look, they see the lifeless suit of armour in the passenger seat.

11. The two are quickly scared off once its head falls off.

12. They return with the rest of their group to properly examine it.

13. Fred comments on why a knight’s suit of armour would be out alone in the middle of the

night.

14. Shaggy jokes that maybe he’s out for the night.

15. Velma chides him for his joke, as Daphne wonders who it belongs to.

16. Fred reads: ”Deliver to Jameson Hyde White: Prof. of Archaeology, London, England.”

17. Shaggy makes another joke about having heard of hide and seek, but not ”Hyde White”.

18. Velma says that is an English name.

19. Daphne also fnds a delivery slip reading: ”Deliver to the County Museum.”

20. The gang travels to the museum (now the next day) where they deliver the knight to the

151



Appendix

museum curator, Mr. Wickles.

21. He thanks them, but fears that perhaps it wasn’t a good idea with Professor Hyde White

disappearing.

22. He goes on to explain about the legend of the Black Knight and how it comes to life when

the moon is full.

23. Velma asks him what Professor Hyde White was doing with it (despite having already found

out beforehand), and replies that the professor was delivering it to the museum all the way from

England.

24. As this is going on, they don’t notice the knight’s glowing eyes.

25. Two workers begin to move the crate, one of them asking Mr. Wickles where to put it.

26. He tells them to put it in the medieval room.

27. As Scooby follows the workers, he fnds a strange pair of glasses.

28. He picks them up, as Daphne calls him, while Fred says they’re leaving.

29. While driving down town, Velma says that the mystery has her baffed, and has got Shaggy

hungry, asking when they can eat?

30. Scooby pops his head up, in agreement, while still wearing the glasses he found.

31. The others notice, and realize he must have found them at the museum.

32. Shaggy wonders what they’re for, with Fred suggesting they go to the library to fnd out.

33. At the library they read a book which says that the glasses are for jewelers, scientists, and

archaeologists like Professor Hyde White.

34. It also says they’re made in England.

35. These two clues indicate that something is defnitely up, and the gang plan on returning to

the museum to investigate.

36. The gang return to the museum at night and break in through an upper window.

37. They split up and look for clues, not knowing that spooky eyes in an Indian effgy are

watching them.

38. Scooby, Shaggy and Velma bump into the Black Knight and have a brief altercation.

39. Scooby runs into the fossil exhibit and begins gnawing on the bone, but is chased by the

Knight.

40. He meets up with Shaggy and the two fnd one of the paintings is missing.

41. He informs the gang, but when they return, the painting is back on the wall.

42. Fred, Daphne, Velma, Shaggy and Scooby follow a trail of paint to a hidden room behind a

sarcophagus and fnd the room full of fnished and unfnished paintings.

43. The Knight appears and chases the gang into the relic room, where Scooby and Shaggy hide

in a World War biplane.

44. Scooby accidentally fips the power, and the plane roars to life, fying erratically around the

room until it fnally crashes, taking the knight down with it.

45. The Knight is unmasked as Mr. Wickles, the curator!

46. He was part of a smuggling ring; he would steal the paintings and sell them, and then paint

fakes of the paintings and put them back on the wall (that explained the hidden room, the missing

painting and the paint drops on the foor).

47. Mr. Wickles knew that Professor Hyde White would know that the paintings were faked, so
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he kidnapped him and thought up this Black Knight ruse.

48. Professor Hyde White is later found tied up in the Indian effgy.

49. Once freed, he discusses the events with the gang about there being no legend and that

Wickles just used it to cover up his mysterious disappearance, explaining he somehow got in the

armor and made him disappear on the way to the museum.

50. Suddenly they see the Black Knight in the museum offce.

51. He lifts up the helmet and is revealed to be Scooby-Doo; the whole gang laughs.

A.1.2 Gold-Standard Object Identifcation

0. man / pick-up / night / road / back / suit of armour / life / containment

1. yellow eyes / helmet / driver

2. Shaggy / Scooby / latter / former / Star / Dog Ranger of the North Woods / Scooby

3. rustling / bushes

4. Scooby / head / frog / nose

5. Scooby

6. Shaggy

7. Scooby

8. Shaggy / time

9. same pick-up truck

10. passenger seat / lifeless suit of armour

11. head

12. rest of group

13. Fred / knight / suit of armour / middle of the night

14. Shaggy / night

15. Velma / joke / Daphne

16. Fred / Jameson Hyde White / Prof. Of Archaeology / London / England

17. Shaggy / joke / Hyde White

18. Velma / English name

19. Daphne / delivery slip / County Museum

20. gang / museum / next day / knight / museum curator / Mr. Wickles

21. good idea / Professor Hyde White

22. legend of the Black Knight / life / moon

23. Velma / Professor Hyde White / professor / museum / way / England

24. knight / eyes

25. workers / crate / Mr. Wickles

26. medieval room

27. Scooby / workers / strange pair of glasses

28. Daphne / Fred

29. town / Velma / mystery / Shaggy

30. Scooby / head / glasses

31. The others / museum
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32. Shaggy / Fred / library

33. library / book / glasses / jewellers / scientists / archaeologists / Professor Hyde White

34. England

35. clues / something / gang / museum

36. gang / museum / night / upper window

37. clues / spooky eyes / Indian effgy

38. Scooby / Shaggy / Velma / Black Knight

39. Scooby / fossil exhibit / bone / knight

40. Shaggy / paintings

41. gang / paintings / wall

42. Fred / Daphne / Velma / Shaggy / Scooby / trail of paint / sarcophagus / hidden room / fn-

ished and unfnished paintings

43. Knight / gang / relic room / Scooby / Shaggy / World War biplane

44. Scooby / power / plane / life / room / knight

45. Knight / Mr. Wickles / curator

46. part of a smuggling ring / paintings / fakes of the paintings / wall / hidden room / missing

painting / paint / foor

47. Mr. Wickles / Professor Hyde White / paintings / Black Knight / ruse

48. Professor Hyde White / Indian effgy

49. events / gang / legend / Wickles / mysterious disappearance / armour / way / museum

50. Black Knight / museum offce

51. helmet / Scooby-Doo / whole gang

A.1.3 Typed and Disambiguated Object List

Driver (man) - MCHAR

Pick-up - OTHER

Black Knight (suit of armour / knight’s suit of armour / knight) - MCHAR OTHER

Containment - OTHER

Scooby (Scooby-Doo) - MCHAR

Shaggy - MCHAR

Star: Dog Ranger - OTHER

Head - OTHER

Frog - OTHER

Fred - MCHAR

Velma - FCHAR

Daphne - FCHAR

Professor Hyde White (Jameson Hyde White: Prof. of Archaeology / Hyde White / the profes-

sor) - MCHAR

Delivery Slip - OTHER

Museum (County Museum) - OTHER
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Gang - GROUP

Mr. Wickles (Wickles) - MCHAR

Legend - OTHER

Workers - GROUP

Crate - OTHER

Medieval Room - OTHER

Glasses - OTHERP

Mystery - OTHER

Library - OTHER

Book - OTHER

Spooky Eyes - OTHERP

Indian Effgy - OTHER

Fossil Exhibit - OTHER

Painting - OTHER

Paintings - OTHERP

Unfnished Paintings - OTHERP

Sarcophagus - OTHER

Hidden Room - OTHER

Relic Room - OTHER

Plane (World War Biplane) - OTHER

A.1.4 Gold-Standard Pronoun Coreference

0. (0. his = Black Knight)

1. (0. its = Black Knight) (1. its = Black Knight) (2. it = Black Knight)

2. (0. they’re = Scooby/Shaggy) (1. it = Star: Dog Ranger)

3. (0. they = Scooby/Shaggy)

4. (0. his = Scooby) (1. he = Scooby) (2. it = head) (3. his = Scooby)

5. (0. it = Frog)

6. -

7. (0. he = Scooby) (1. it = Frog)

8. (0. him = Scooby)

9. (0. they = Scooby/Shaggy)

10. (0. they = Scooby/Shaggy) (1. they = Scooby/Shaggy)

11. (0. The two = Scooby/Shaggy) (1. its = Black Knight)

12. (0. they = Scooby/Shaggy) (1. their = Scooby/Shaggy) (2. it = Black Knight)

13. -

14. (0. he’s = Black Knight)

15. (0. him = Shaggy) (1. his = Shaggy) (2. it = Black Knight)

16. -

17. -
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18. -

19. -

20. (0. they = Gang)

21. (0. He = Mr. Wickles) (1. them = Gang) (2. it = -)

22. (0. he = Mr. Wickles) (1. it = Black Knight)

23. (0. him = Mr. Wickles) (1. it = Black Knight) (2. it = Black Knight)

24. (0. they = Gang)

25. (0. them = Workers) (1. it = Crate)

26. (0. He = Mr. Wickles) (1. them = Workers) (2. it = Crate)

27. (0. he = Scooby)

28. (0. he = Scooby) (1. them = Glasses) (2. him = Scooby) (3. they’re = Fred/Daphne/Scooby)

29. (0. her = Velma) (1. they = Shaggy/Velma)

30. (0. his = Scooby) (1. he = Scooby)

31. (0. he = Scooby) (1. them = Glasses)

32. (0. they’re = Glasses) (1. they = Fred/Shaggy)

33. (0. they = Fred/Shaggy)

34. (0. It = Book)

35. -

36. -

37. (0. They = Gang) (1. them = Gang)

38. -

39. -

40. (0. he = Scooby) (1. the two = Scooby/Shaggy)

41. (0. he = Scooby) (1. they = Gang)

42. -

43. -

44. (0. it = Plane) (1. it = Plane)

45. -

46. (0. He = Mr. Wickles) (1. he = Mr. Wickles) (2. them = Paintings) (3. them = Paintings)

47. (0. he = Mr. Wickles) (1. Professor Hyde White)

48. -

49. (0. he = Professor Hyde White) (1. it = Legend) (2. his = Professor Hyde White) (3. he =

Mr. Wickles) (4. him = Professor Hyde White)

50. (0. they = Professor Hyde White/Gang)

51. (0. He = Black Knight)

A.1.5 Gold Standard Narrative Events

0. (Driving during the night - Driver/Pick-up) (Come to life - Black Knight) (Left - Black

Knight/Containment)

1. (Eyes glow yellow as it watches - Black Knight/Driver)
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2. (Walking home - Scooby/Shaggy) (Complaining - Scooby/Shaggy/Star: Dog Ranger) (See -

Scooby/Shaggy/Star: Dog Ranger) (Still excited - Scooby/Star: Dog Ranger)

3. (Hear rustling from the bushes - Scooby/Shaggy)

4. (Pokes - Scooby/Head) (Takes out - Scooby/Head/Frog)

5. (Jumps off - Frog) (Gets annoyed - Scooby) (Barking and giving chase - Scooby)

6. (Quickly follows behind - Shaggy)

7. (Eventually come to a stop - Scooby/Frog) (loses - Scooby/Frog)

8. (trips - Shaggy/Scooby)

9. (Notice the same truck - Scooby/Shaggy/Pick-up)

10. (Go for closer look - Scooby/Shaggy) (See - Scooby/Shaggy/Black Knight)

11. (Quickly scared off - Scooby/Shaggy/Black Knight/Head) (Falls off - Scooby/Shaggy/Black

Knight/Head)

12. (Return with the rest of the group - Scooby/Shaggy) (Properly examine - Gang/Black Knight)

13. (Comments - Fred/Black Knight)

14. (Jokes - Shaggy/Black Knight)

15. (Chides for joke - Velma/Shaggy) (Wonders who it belongs to - Daphne/Black Knight)

16. (Reads - Fred) (Deliver - Professor Hyde White)

17. (Makes another joke - Shaggy) (Heard of hide and seek - Shaggy)

18. (Says - Velma)

19. (Finds - Daphne/Delivery Slip) (Deliver to the museum - Daphne/Delivery Slip)

20. (Travels - Gang/Museum/Black Knight) (Deliver to the curator - Gang/Museum/Black Knight/Mr.

Wickles)

21. (Thanks - Mr. Wickles/Gang) (Fears it wasn’t a good idea - Mr. Wickles/Gang/Professor

Hyde White) (Disappearing - Professor Hyde White)

22. (Goes on to explain - Mr. Wickles/Legend/Black Knight) (Comes to life - Black Knight)

23. (Asks what doing with - Velma/Professor Hyde White/Black Knight/Mr. Wickles) (Already

found out beforehand - Velma/Professor Hyde White/Black Knight/Mr. Wickles) (Replies deliv-

ering from England - Mr. Wickles/Velma/Professor Hyde White/Black Knight)

24. (Don’t notice eyes - Gang/Black Knight)

25. (Begin to move - Workers/Crate) (Asking where to put - Workers/Crate/Mr. Wickles)

26. (Tells to put - Workers/Crate/Mr. Wickles/Medieval Room)

27. (Follows - Scooby/Workers) (Finds - Scooby/Glasses)

28. (Picks up - Scooby/Glasses) (Calls - Daphne/Scooby) (Says leaving - Fred/Daphne/Scooby)

29. (Driving - Velma) (Says baffed - Velma/Mystery) (Has got hungry - Shaggy/Mystery) (Ask-

ing when eat - Shaggy/Velma)

30. (Pops up - Scooby/Head) (Still wearing - Scooby/Glasses) (Found - Scooby/Glasses)

31. (Realize must have found - Gang/Scooby/Glasses/Museum)

32. (Wonders - Shaggy/Glasses) (Suggesting go to library to fnd out - Fred/Shaggy/Library)

33. (Read - Fred/Shaggy/Book/Glasses/Library) (Says - Fred/Shaggy/Book/Glasses/Library/Pro-

fessor Hyde White)

34. (Says made in England - Book/Glasses)

35. (Clues indicate something is up - ) (Plan on returning - Gang/Museum) (Investigate - Gang/-
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Museum)

36. (Return - Gang/Museum) (Break in - Gang/Museum)

37. (Split up and look for clues - Gang) (Not knowing - Gang/Spooky Eyes/Indian Effgy)

(Watching Gang/Spooky Eyes/Indian Effgy)

38. (Bump - Scooby/Shaggy/Velma/Black Knight) (Altercation - Scooby/Shaggy/Velma/Black

Knight)

39. (Runs - Scooby/Fossil Exhibit) (Begins gnawing - Scooby) (Chased - Black Knight/Scooby)

40. (Meets up - Scooby/Shaggy) (Find - Scooby/Shaggy/Paintings) (Missing - Scooby/Shaggy/-

Paintings)

41. (Informs - Shaggy/Gang) (Return - Gang)

42. (Follow a trail - Fred/Velma/Daphne/Shaggy/Scooby) (Find Hidden Room - Fred/Velma/-

Daphne/Shaggy/Scooby/Hidden Room/Sarcophagus)

43. (Appears - Black Knight) (Chases - Gang/Relic Room/Black Knight) (Hide - Scooby/Shag-

gy/Plane)

44. (Accidentally fips power - Scooby) (Roars to life - Plane) (Flying erratically around the

room - Plane) (Crashes - Plane) (Taking down - Black Knight/Plane)

45. (Unmasked - Mr. Wickles/Black Knight)

46. (Steal - Mr. Wickles/Paintings) (Sell - Mr. Wickles/Paintings) (Paint fakes - Mr. Wick-

les/Paintings) (Put back on wall - Mr. Wickles/Paintings) (Explained hidden room - Hidden

Room/Paintings)

47. (Knew he would know they were faked - Mr. Wickles/Professor Hyde White/Paintings)

(Kidnapped - Mr. Wickles/Professor Hyde White) (Thought up this ruse - Mr. Wickles/Black

Knihgt)

48. (Found - Professor Hyde White/Indian Effgy) (Tied up - Professor Hyde White/Indian Ef-

fgy)

49. (Freed - Professor Hyde White/Gang) (Discusses the events - Professor Hyde White/Gang)

(Cover up mysterious disappearance - Professor Hyde White/Mr. Wickles/Legend) (Explaining

he somehow got in the armour - Mr. Wickles) (Made him disappear on the way - Professor Hyde

White/Mr. Wickles/Museum)

50. (Suddenly see in the offce - Professor Hyde White/Gang/Black Knight/Museum)

51. (Lifts up the helmet - Black Knight) (Revealed to be - Black Knight/Scooby) (Laughs - Gang)
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A.2 The Jungle Book

A.2.1 Synopsis Sentences

0. Mowgli, a young orphan boy, is found in a basket in the deep jungles of India by Bagheera, a

black panther who promptly takes him to a mother wolf who has just had cubs.

1. She raises him along with her own cubs and Mowgli soon becomes well acquainted with jun-

gle life.

2. Mowgli is shown ten years later, playing with his wolf siblings.

3. One night, when the wolf tribe learns that Shere Khan, a man-eating Bengal tiger, has returned

to the jungle, they realize that Mowgli must be taken to the ”Man-Village” for his (and their) own

safety.

4. Bagheera volunteers to escort him back.

5. They leave that very night, but Mowgli is determined to stay in the jungle.

6. He and Bagheera rest in a tree for the night, where Kaa, a hungry python, tries to devour

Mowgli, but Bagheera intervenes.

7. The next morning, Mowgli tries to join the elephant patrol led by Colonel Hathi and his wife

Winifred.

8. Bagheera fnds Mowgli, but after a fght decides to leave Mowgli on his own.

9. Mowgli soon meets up with the laid-back, fun-loving bear Baloo, who promises to raise

Mowgli himself and never take him back to the Man-Village.

10. Shortly afterwards, a group of monkeys kidnap Mowgli and take him to their leader, King

Louie the orangutan.

11. King Louie offers to help Mowgli stay in the jungle if he will tell Louie how to make fre like

other humans.

12. However, since he was not raised by humans, Mowgli does not know how to make fre.

13. Bagheera and Baloo arrive to rescue Mowgli and in the ensuing chaos, King Louie’s palace

is demolished to rubble.

14. Bagheera speaks to Baloo that night and convinces him that the jungle will never be safe for

Mowgli so long as Shere Khan is there.

15. In the morning, Baloo reluctantly explains to Mowgli that the Man-Village is best for the

boy, but Mowgli accuses him of breaking his promise and runs away.

16. As Baloo sets off in search of Mowgli, Bagheera rallies the help of Hathi and his patrol.

17. However, Shere Khan himself, who was eavesdropping on Bagheera and Hathi’s conversa-

tion, is now determined to hunt and kill Mowgli himself.

18. Meanwhile, Mowgli has encountered Kaa once again, but thanks to the unwitting interven-

tion of the suspicious Shere Khan, Mowgli escapes.

19. As a storm gathers, a depressed Mowgli encounters a group of friendly vultures who accept

Mowgli as a fellow outcast.

20. Shere Khan appears shortly after, scaring off the vultures and confronting Mowgli.

21. Baloo rushes to the rescue and tries to keep Shere Khan away from Mowgli, but is injured.

22. When lightning strikes a nearby tree and sets it ablaze, the vultures swoop in to distract Shere
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Khan while Mowgli gathers faming branches and ties them to Shere Khan’s tail.

23. Terrifed of fre, the tiger panics and runs off.

24. Bagheera and Baloo take Mowgli to the edge of the Man-Village, but Mowgli is still hesitant

to go there.

25. His mind soon changes when he is smitten by a beautiful young girl from the village who is

coming down by the riverside to fetch water.

26. After noticing Mowgli, she ”accidentally” drops her water pot.

27. Mowgli retrieves it for her and follows her into the Man-Village.

28. After Mowgli chooses to stay in the Man-Village, Baloo and Bagheera decide to head home,

content that Mowgli is safe and happy with his own kind.

A.2.2 Gold-Standard Object Identifcation

0. Mowgli / young orphan boy / basket / deep jungles of India / Bagheera / black panther / mother

wolf / cubs

1. own cubs / Mowgli / jungle life

2. Mowgli / years / wolf siblings

3. wolf tribe / Shere Khan / man-eating Bengal tiger / jungle / Mowgli / Man-Village

4. Bagheera / head / frog / nose

5. Mowgli / jungle

6. Bagheera / tree / night / Kaa / hungry python / Mowgli

7. Mowgli / elephant patrol / Colonel Hathi / Winifred

8. Bagheera / Mowgli

9. Mowgli / laid-back fun-loving bear Baloo / Man-Village

10. group of monkeys / Mowgli / leader / King Louie / orangutan

11. King Louie / Mowgli / jungle / Louie / fre / other humans

12. humans / Mowgli / fre

13. Bagheera / Baloo / Mowgli / ensuing chaos / King Louie / palace / rubble

14. Bagheera / Baloo / night / jungle / Mowgli / Shere Khan

15. morning / Baloo / Mowgli / Man-Village / best / boy / promise

16. Baloo / Mowgli / Bagheera / Hathi / patrol

17. Shere Khan / Bagheera / Hathi / conversation / Mowgli 18. Mowgli / Kaa / suspicious Shere

Khan

19. storm / depressed Mowgli / group of friendly vultures / Mowgli / fellow outcast

20. Shere Khan / vultures / Mowgli

21. Baloo / Shere Khan / Mowgli

22. lightning / nearby tree / vultures / Shere Khan / Mowgli / faming branches / tail

23. fre / tiger

24. Bagheera / Baloo / Mowgli / edge of the Man-Village

25. mind / beautiful young girl / village / riverside / water

26. Mowgli / water pot
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27. Mowgli / Man-Village

28. Mowgli / Man-Village / Baloo / Bagheera / home / own kind

A.2.3 Typed and Disambiguated Object List

Mowgli - MCHAR

Bagheera (panther) - MCHAR

Mother wolf - FCHAR

Wolf siblings - GROUP

Wolf tribe - GROUP

Shere Khan (tiger) - MCHAR

Kaa - MCHAR

Colonel Hathi (Hathi) - MCHAR

Winifred - FCHAR

Baloo - MCHAR

Monkeys - GROUP

King Louie (Louie) - MCHAR

Vultures - GROUP

Tree - OTHER

Flaming branches - OTHERP

Young girl - FCHAR

Water pot - OTHER

A.2.4 Gold-Standard Pronoun Coreference

0. (0. him = Mowgli)

1. (0. she = Mother wolf) (1. him = Mowgli) (2. her = Mother wolf)

2. (0. his = Mowgli)

3. (0. they = Wolf tribe) (1. his = Mowgli) (2. their = Wolf tribe)

4. (0. him = Mowgli)

5. (0. They = Bagheera/Mowgli)

6. (0. He = Mowgli)

7. (0. his = Colonel Hathi)

8. (0. his = Mowgli)

9. (0. himself = Baloo) (1. him = Mowgli)

10. (0. him = Mowgli) (their = Group of monkeys)

11. (0. he = Mowgli)

12. (0. he = Mowgli)

13.

14. (0. him = Baloo)
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15. (0. him = Baloo) (1. his = Baloo)

16. (0. his = Colonel Hathi)

17. (0. himself = Shere Khan) (1. himself = Shere Khan)

18.

19.

20.

21.

22. (0. it = Nearby tree) (1. them = Flaming branches)

23.

24.

25. (0. His = Mowgli) (1. he = Mowgli)

26. (0. she = Beautiful Young Girl) (1. her = Beautiful Young Girl)

27. (0. it = Water pot) (1. her = Beautiful Young Girl) (2. her = Beautiful Young Girl)

28. (0. his = Mowgli)

A.2.5 Gold Standard Narrative Events

0. (Found in a basket - Bagheera/Mowgli) (Promptly takes wolf - Bagheera/Mowgli/Mother

wolf)

1. (Raises along with own cubs and soon becomes well acquainted - Mother wolf/Mowgli) (Well

acquainted with life - Mother wolf/Mowgli)

2. (Shown later - Mowgli) (Playing - Mowgli/Wolf siblings)

3. (Learns - Wolf tribe/Shere Khan) (Returned to the jungle - Shere Khan) (Realize - Wolf tribe/-

Mowgli) (Taken to the Man Village - Wolf tribe/Mowgli)

4. (Volunteers to escort back - Bagheera/Mowgli)

5. (Leave very - Bagheera/Mowgli) (Determined to stay - Mowgli)

6. (Rest in a tree - Mowgli/Bagheera) (Tries to devour - Mowgli/Kaa) (Intervenes - Bagheera/-

Mowgli/Kaa)

7. (Tries to join - Mowgli/Colonel Hathi/Winifred) (Led - Mowgli/Colonel Hathi/Winifred)

8. (Finds - Bagheera/Mowgli) (Fight - Bagheera/Mowgli) (Decides to leave - Mowgli)

9. (Soon meets up - Mowgli/Baloo) (Promises to raise - Mowgli/Baloo) (Never take to the Man

Village back - Mowgli/Baloo)

10. (Kidnap - Group of monkeys/Mowgli) (Take to leader - Group of monkeys/Mowgli/King

Louie)

11. (Offers to help - King Louie/Mowgli) (Stay in the jungle - King Louie/Mowgli) (Tell to make

- King Louie/Mowgli)

12. (Was not raised humans - Mowgli) (Does not know - Mowgli) (Make fre - Mowgli)

13. (Arrive to rescue Bagheera/Baloo/Mowgli) (ensuing Bagheera/Baloo/Mowgli) (Palace is de-

molished to rubble - King Louie)

14. (Speaks - Bagheera/Baloo) (Convinces - Baloo/Mowgli/Shere Khan/Bagheera)

15. (Reluctantly explains - Baloo/Mowgli) (Accuses - Mowgli/Baloo) (Breaking promise -
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Mowgli/Baloo) (Runs away - Mowgli)

16. (Sets in search of - Baloo/Mowgli) (Rallies the help - Bagheera/Colonel Hathi)

17. (Eavesdropping - Shere Khan/Bagheera/Colonel Hathi) (Now determined to hunt - Mowgli/Shere

Khan) (Kill - Mowgli/Shere Khan)

18. (Encountered again - Mowgli/Kaa) (Escapes - Mowgli) (Thanks to the unwitting intervention

- Shere Khan)

19. (Storm gathers - Mowgli/Vultures) (Encounters - Mowgli/Vultures) (Accept - Mowgli/Vul-

tures)

20. (Appears shortly - Shere Khan) (Scaring off - Vultures/Shere Khan) (Confronting - Mowgli/Shere

Khan)

21. (Rushes to the rescue - Baloo) (Tries to keep - Shere Khan/Mowgli/Baloo) (Injured - Baloo)

22. (Lightning strikes - Nearby Tree) (Swoop - Vultures/Shere Khan/Mowgli/Flaming branches)

(Distract - Vultures/Shere Khan/Mowgli/Flaming branches) (Gathers - Vultures/Shere Khan/-

Mowgli/Flaming branches) (Ties to tail - Mowgli/Shere Khan)

23. (Terrifed of fre - Shere Khan) (Panics and runs off - Shere Khan)

24. (Take to the edge - Bagheera/Baloo/Mowgli) (Go there - Mowgli)

25. (Soon mind soon changes - Mowgli/Beautiful young girl) (Smitten from the village - Mowgli/Beau-

tiful young girl) (Coming down by the riverside to fetch down - Mowgli/Beautiful young girl)

26. (Noticing - Mowgli/Beautiful young girl) (Accidentally drops - Beautiful young girl/Water

pot)

27. (Retrieves - Mowgli/Water pot/Beautiful young girl) (follows in the Man-Village - Beautiful

young girl/Mowgli)

28. (Chooses to stay - Mowgli) (Decided to head - Baloo/Bagheera)
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