
THE DESIGN, DEVELOPMENT AND EVALUATION
OF A VISUAL PROGRAMMING TOOL FOR NOVICE

PROGRAMMERS: PSYCHOLOGICAL AND
PEDAGOGICAL EFFECTS OF INTRODUCTORY
PROGRAMMING TOOLS ON PROGRAMMING

KNOWLEDGE OF GREEK STUDENTS

IOANNIS VASILEIOU VASILOPOULOS

A thesis submitted in partial fulfilment of the requirements of Teesside University for
the degree of Doctor of Philosophy

SCHOOL OF SOCIAL SCIENCES AND LAW
TEESSIDE UNIVERSITY

TEESSIDE, UNITED KINGDOM

May 2014

i

Declaration

While registered as a candidate for the degree of Doctor of Philosophy the author

has not been registered for any other award with any other university or institution.

No part of the material in this thesis has been submitted for any degree or other

qualification at any other institution by the author or, to the best of his knowledge and

belief, by any other person. The thesis describes the author’s original work.

ii

Abstract

This thesis reports a research project that aims to improve the teaching and learning

of introductory programming from a pedagogical and psychological

viewpoint. Towards this aim, seven principles for designing educational

programming tools for novices were identified by reviewing literature regarding

novices’ difficulties and using a theoretical framework defined by the psychological

theories of Constructivism and Cognitive Load Theory. This set of design principles

was not only theoretically identified, but its pedagogical impact was also empirically

tested. For this reason, Koios, a new programming tool, was designed and

developed as a manifestation of the combined set of principles. Empirical studies

were conducted by a way of a quasi-experimental design in two different Greek

secondary-education institutions. The independent variable was compliance with the

set of the seven principles. Students’ level of programming skills (procedural

knowledge) was the dependent variable, while the quality of their mental models in

the domain of introductory programming (declarative knowledge) was the potential

mediator. The effect of compliance with the set of principles on students’

programming skills and mental-model quality was explored via Koios’

evaluation. Declarative- and procedural-knowledge measurements, as well as a

practical test, were used to collect data, which were analysed using ANOVA and

hierarchical multiple regression. The major conclusions drawn from this study are:

(a) compliance with the set of design principles does not affect the development of

novices’ procedural and declarative programming knowledge, (b) a programming tool

that highly complies with this set facilitates novices in the application of their

procedural programming knowledge during program creation and (c) programming

tools, declarative and procedural knowledge are independent components in

iii

learning to program. However, it was also concluded that the two knowledge types

and a programming tool that highly complies with the set contribute significantly to

novices’ programming performance. This study contributes to knowledge by

theoretically identifying and empirically testing a set of design principles for

educational programming software, and by producing and scientifically evaluating a

programming tool as an embodiment of this set. Through this evaluation, the

suggestion of Koios as a practically useful programming tool for novices seems to be

well supported.

iv

Acknowledgements

First and foremost, I would like to acknowledge the invaluable help of and express

my gratitude to Professor Paul van Schaik, the Director of Studies of this research

project. Paul maintained a high level of professionalism in our working relation and

provided continuous support, constant guidance, useful ideas, and thoughtful

comments. This was a unique learning experience and without his excellent

supervision and expertise I would not have made it this far. I really hope that this

work reflects the level of supervision provided by Paul. I would also like to thank my

second supervisor Professor Mike Lockyer for his ideas and suggestions. However,

this project would not have started without the consulting and guidance of Professor

Georgios Antonopoulos, who continued to be a helpful advisor and supporter

throughout this research project. Special thanks to Dr. Aggeliki Prayati for her

support and important advice throughout this project. I would also especially like to

thank Ioannis Zafeiropoulos, the visual artist who contributed to the redesign of the

dialogue windows of Koios Version 1. A special thanks to Vasileios Kerchoulas for

making the necessary arrangements regarding the first round of data collection.

Naturally, I would like to attribute my thanks to a number of fellow teachers for

facilitating the execution of empirical study and participating in the rating task,

especially Konstantina Avgeri, Dimitra Therianou, Vasileios Theocharis, Alexis

Prasoulis, Ioannis Toskas, Dimhtrios Rigas, Aggelos Verykios, Vera Gerasimatou,

Konstantina Plessa and Alexis Lazanas. Last, but not least I would like to thank

Vasili, Frida and Kosta for their support.

Thank you all.

v

Abbreviations

ANCOVA Analysis of covariance

ANOVA Analysis of variance

B Unstandardised regression coefficient

CLT Cognitive Load Theory

CS Computer science

CSE Computer science education

DV Dependent variable

F F-test

GUI Graphical user interface

HCI Human-computer interaction

HMR Hierarchical multiple regression

IDE Integrated development environment

IDEs Integrated development environments

IT Information technology

IV Independent variable

M Mediator

M Mean

n Number of cases

N Total number of cases

OO Object-oriented

p Significance probability

PL Programming language

PLs Programming languages

vi

PSA Pathfinder scaling algorithm

R Pearson’s product moment correlation coefficient

R2 Squared multiple correlation coefficient

SD Standard deviation

SE Standard error

SPSS Statistical Package for the Social Sciences

t t-test

VIF Variance inflation factor

WYSIWYG What you see is what you get

α Probability of Type I error

β Probability of Type II error

vii

Table of Contents

Declaration... i

Abstract..ii

Acknowledgements...iv

Abbreviations .. v

Table of Contents...vii

List of Appendices... x

List of Tables..xii

List of Figures ... xviii

Chapter One: Introduction ... 1

1.1 Overview.. 3

1.2 Teaching and Learning Programming ... 3

1.3 Programming Environments, Novices’ Difficulties and Psychology of

Programming... 5

1.4 Research Approach... 13

1.5 Research Outcomes.. 18

1.6 Structure of Thesis .. 19

Chapter Two: Literature Review.. 21

2.1 Overview.. 25

2.2 Learning theories... 25

viii

2.3 Learning Objectives of Teaching Programming... 50

2.4 Difficulties Experienced by and Misconceptions of Novice Programmers ... 54

2.5 Seven Design Principles.. 69

2.6 Educational Programming Languages and Integrated Development

Environments for Novice Programmers... 87

2.7 Knowledge and Mental Models.. 106

2.8 Conclusions... 122

Chapter Three: The Koios Programming Environment 125

3.1 Overview.. 128

3.2 Design of Koios ... 128

3.3 Development of Koios ... 143

3.4 Differences between Versions of Koios ... 169

3.5 Conclusions... 172

Chapter Four: Method, Data Collection and Data Analysis 173

4.1 Overview.. 176

4.2 Method .. 176

4.3 Data Collection .. 193

4.4 Data Analysis... 204

4.5 Conclusions... 231

Chapter Five: Results ... 232

5.1 Overview.. 235

5.2 First Round of Data Collection... 235

ix

5.3 Second Round of Data Collection.. 274

5.4 Conclusions... 316

Chapter Six: Discussion, Conclusions and Future Work 320

6.1 Recap of Thesis and Chapter Overview .. 322

6.2 Discussion ... 322

6.3 Conclusions... 344

6.4 Summary of Contribution to Knowledge .. 346

6.5 Future Work... 349

6.6 Closing Remarks ... 355

References.. 357

x

List of Appendices

Appendix A: Interview Study with Greek Teachers of Computer Science..... 398

A.1. Consent Form.. 399

A.2. Interview Questions ... 401

A.3. Executive Summary Report on Interviews with Greek Teachers 403

Appendix B: The Koios Programming Environment and Characteristics 407

B.1. The Koios Programming Environment ... 408

B.2. Syntax of Koios.. 409

B.3. Grammar of Language Supported by Koios .. 411

B.4. Errors Detected by Koios... 416

Appendix C: Material for Data-Collection ... 423

C.1. Evaluating Compliance of Programming Tools with the Set of Design

Principles ... 424

C.2. Consent Form for Parents/Guardians of Secondary-Education Participants427

C.3. Information for Secondary-Education Participants 429

C.4. Lessons/Measurements Plan for Secondary-Education Quasi-

Experiments…… ... 430

C.5. Classroom Examples Used in the Secondary-Education Quasi-

Experiments…. .. 432

C.6. Homework Assignments Used in the Secondary-Education Quasi-

Experiments... 436

xi

C.7. Material for Every Declarative-Knowledge Measurement for Secondary-

Education Quasi-Experiments (First and Second Round) 440

C.8. First Procedural-Knowledge Test for Secondary-Education Quasi-Experiment

(First Round).. 443

C.9. Second Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (First Round) .. 444

C.10. Third Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (First Round) .. 446

C.11. Cross-Tabulation Results for the Procedural-Knowledge Tests Used in the

Secondary-Education Quasi-Experiment of the First Round 448

C.12. First Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (Second Round) ... 452

C.13. Second Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (Second Round) ... 454

C.14. Third Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (Second Round) ... 456

C.15. Practical Test for Secondary-Education Quasi-Experiment (Second

Round)… ... 459

C.16. Marking Scheme for Practical Test.. 461

xii

List of Tables

Table 2.1 Incorporation of the Seven Design Principles by non-Greek Educational

PLs and IDEs... 90

Table 2.2 Incorporation of the Seven Design Principles by Greek Educational PLs

and IDEs…………………………………………………………………………….101

Table 3.1 Design Choices with Arguments in Favour and Against 139

Table 3.2 Menus and Menu Items of Koios .. 146

Table 3.3 Colour and Font Style of Each Programming Item 162

Table 4.1 Satisfaction Levels of Design Principles (Independent Variable) for the

Four Programming Environments Used in the Quasi-Experimental Designs. 185

Table 4.2 Analysis Plan for Procedural-Knowledge Data 214

Table 4.3 Analysis Plan for Declarative-Knowledge Data of the First Round 220

Table 4.4 Analysis Plan for Declarative-Knowledge Data of the Second Round.... 224

Table 4.5 Dependent Variables that Violated Assumptions of Parametric Tests.... 230

Table 5.1 Descriptive Statistics for the Scores of the First Procedural-Knowledge

Measurement (First Round) ... 238

Table 5.2 Results of Regression Analysis for the Scores of the First Procedural-

Knowledge Measurement (First Round) .. 239

Table 5.3 Descriptive Statistics for the Scores of the Second Procedural-Knowledge

Measurement (First Round) ... 240

Table 5.4 Results of Regression Analysis for the Scores of the Second Procedural-

Knowledge Measurement (First Round) .. 241

xiii

Table 5.5 Descriptive Statistics for the Scores of the Third Procedural-Knowledge

Measurement (First round) .. 243

Table 5.6 Results of Regression Analysis for the Scores of the Third Procedural-

Knowledge Measurement (First Round) .. 243

Table 5.7 Descriptive Statistics for the Outcome Variables of the First Declarative-

Knowledge Measurement (First Round) .. 251

Table 5.8 Results of Regression Analysis for Links in Common of the First

Declarative-Knowledge Measurement (First Round) 252

Table 5.9 Results of Regression Analysis for Difference between Observed and

Expected Number of Links in Common of the First Declarative-Knowledge

Measurement (First Round) ... 253

Table 5.10 Results of Regression Analysis for Similarity of the First Declarative-

Knowledge Measurement (First Round) .. 254

Table 5.11 Results of Regression Analysis for Difference between Observed and

Expected Similarity by Chance of the First Declarative-Knowledge

Measurement (First Round) ... 255

Table 5.12 Results of Regression Analysis for Information of the First Declarative-

Knowledge Measurement (First Round) .. 256

Table 5.13 Descriptive Statistics for the Outcome Variables of the Second

Declarative-Knowledge Measurement (First Round) 258

Table 5.14 Results of Regression Analysis for Difference between Observed and

Expected Number of Links in Common of the Second Declarative-Knowledge

Measurement (First Round) ... 260

xiv

Table 5.15 Results of Regression Analysis for Difference between Observed and

Expected Similarity by Chance of the Second Declarative-Knowledge

Measurement (First Round) ... 261

Table 5.16 Results of Regression Analysis for Information of the Second Declarative-

Knowledge Measurement (First Round) .. 262

Table 5.17 Descriptive Statistics for the Outcome Variables of the Third Declarative-

Knowledge Measurement (First Round) .. 264

Table 5.18 Results of Regression Analysis for Links in Common of the Third

Declarative-Knowledge Measurement (First Round) 265

Table 5.19 Results of Regression Analysis for Difference between Observed and

Expected Number of Links in Common of the Third Declarative-Knowledge

Measurement (First Round) ... 266

Table 5.20 Descriptive Statistics for the Scores of the First Procedural-Knowledge

Measurement (Second Round).. 277

Table 5.21 Results of Regression Analysis for the Scores of the First Procedural-

Knowledge Measurement (Second Round) ... 278

Table 5.22 Descriptive Statistics for the Scores of the Second Procedural-Knowledge

Measurement (Second Round) .. 279

Table 5.23 Results of Regression Analysis for the Scores of the Second Procedural-

Knowledge Measurement (Second Round) ... 280

Table 5.24 Descriptive Statistics for the Scores of the Third Procedural-Knowledge

Measurement (Second Round).. 281

xv

Table 5.25 Results of Regression Analysis for the Scores of the Third Procedural-

Knowledge Measurement (Second Round) ... 282

Table 5.26 Descriptive Statistics for the Outcome Variables of the First Declarative-

Knowledge Measurement (Second Round) ... 288

Table 5.27 Descriptive Statistics for the Outcome Variables of the Second

Declarative-Knowledge Measurement (Second Round) 291

Table 5.28 Results of Regression Analysis for Links in Common of the Second

Declarative-Knowledge Measurement (Second Round) 292

Table 5.29 Results of Regression Analysis for Difference between Observed and

Expected Number of Links in Common of the Second Declarative-Knowledge

Measurement (Second Round).. 293

Table 5.30 Results of Regression Analysis for Similarity of the Second Declarative-

Knowledge Measurement (Second Round) ... 294

Table 5.31 Results of Regression Analysis for Difference between Expected and

Observed Similarity by Chance of the Second Declarative-Knowledge

Measurement (Second Round).. 295

Table 5.32 Results of Regression Analysis for Information of the Second Declarative-

Knowledge Measurement (Second Round) ... 296

Table 5.33 Descriptive Statistics for the Outcome Variables of the Third Declarative-

Knowledge Measurement (Second Round) ... 299

Table 5.34 Results of Regression Analysis for Links in Common of the Third

Declarative-Knowledge Measurement (Second Round) 300

xvi

Table 5.35 Results of Regression Analysis for Difference between Observed and

Expected Number of Links in Common of the Third Declarative-Knowledge

Measurement (Second Round).. 301

Table 5.36 Results of Regression Analysis for Similarity of the Third Declarative-

Knowledge Measurement (Second Round) ... 302

Table 5.37 Results of Regression Analysis for Difference between Expected and

Observed Similarity by Chance of the Third Declarative-Knowledge

Measurement (Second Round).. 303

Table 5.38 Results of Regression Analysis for Information of the Third Declarative-

Knowledge Measurement (Second Round) ... 304

Table 5.39 Descriptive Statistics for Practical-Test Scores 306

Table 5.40 Results of Regression Analysis for the Practical-Test Scores (Second

Round)… ... 307

Table 5.41 Descriptive Statistics for the Six Programming Aspects 309

Table 5.42 Summary of Procedural-Knowledge Results for Both Rounds of Data

Collection ... 317

Table 5.43 Summary of Declarative-Knowledge Results for Both Rounds of Data

Collection ... 318

Table C.1. Plan of Lessons and Measurements... 430

Table C.2. Results of Cross-Tabulation Analysis on the Scores of the First

Procedural-Knowledge Test (First Round)... 449

Table C.3. Results of Cross-Tabulation Analysis on the Scores of the Second

Procedural-Knowledge Test (First Round)... 450

xvii

Table C.4. Results of Cross-Tabulation Analysis on the Scores of the Third

Procedural-Knowledge Test (First Round)... 451

Table C.5. Marking Scheme for the First Program Of Practical Test...................... 461

Table C.6. Marking Scheme for the Second Program Of Practical Test................. 461

Table C.7. Marking Scheme for the Third Program Of Practical Test 462

xviii

List of Figures

Figure 2.1. Example of a PFNET (retrieved from the Interlink website:

http://interlinkinc.net/KNOT.html). ... 117

Figure 3.1. Welcome screen of Koios... 145

Figure 3.2. The main window of Koios programming environment......................... 146

Figure 3.3. Icons of programming items. .. 147

Figure 3.4. The first dialogue window for declaring a variable................................ 149

Figure 3.5. The second dialogue window for declaring a variable.......................... 150

Figure 3.6. An error message regarding the name of a variable. 151

Figure 3.7. An information message for successful variable declaration................ 151

Figure 3.8. A program with a variable... 152

Figure 3.9. The first dialogue window of a for-statement.. 154

Figure 3.10. A help message regarding a for-statement. 155

Figure 3.11. The dialogue window for selecting variables for a for-statement........ 155

Figure 3.12. The dialogue window for entering the initial expression of a for-

statement. .. 156

Figure 3.13. The dialogue window for entering the condition of a for-statement. ... 157

Figure 3.14. The dialog window for entering the step of a for-statement................ 158

Figure 3.15. The completed dialogue window of a for-statement. 159

Figure 3.16. An information message for successfully adding a for-statement. 159

Figure 3.17. The first dialogue window of a write statement................................... 160

Figure 3.18. A dialogue window of a write statement with two items...................... 160

xix

Figure 3.19. An information message for successfully adding a write statement. .. 161

Figure 3.20. The graphical view of a program. ... 161

Figure 3.21. The textual view of a program. ... 162

Figure 3.22. A dialogue window with warnings produced by the Check command.164

Figure 3.23. Message after running the Check command...................................... 165

Figure 3.24. Message after running the Compile command................................... 165

Figure 3.25. A program in Program Execution mode. .. 167

Figure 3.26. A snapshot of the execution of a program.. 168

Figure 3.27. The dialogue window for creating a write statement in Koios Version

0…………. ... 170

Figure 3.28. The dialogue window for creating a write statement in Koios Version

1…………. ... 171

Figure 3.29. A program in Program Execution mode in Koios Version 0................ 171

Figure 3.30. A program in Program Execution mode in Koios Version 1................ 172

Figure 4.1. Basic research design. ... 180

Figure 4.2. The baseline PFNET.. 207

Figure 5.1. Mean scores for each group over the three procedural-knowledge

measurements (first round).. 237

Figure 5.2. Mean scores of Links in Common for each group over the three

measurements (first round).. 248

Figure 5.3. Mean scores of Difference between Observed and Expected Number of

Links in Common for each group over the three measurements (first round).248

xx

Figure 5.4. Mean scores of Similarity for each group over the three measurements

(first round). ... 249

Figure 5.5. Mean scores of Difference between Observed and Expected Similarity by

Chance for each group over the three measurements (first round). 249

Figure 5.6. Mean scores of Information for each group over the three measurements

(first round). ... 250

Figure 5.7. Mean scores for each group over the three procedural-knowledge

measurements (second round). ... 276

Figure 5.8. Mean scores of Links in Common for each group over the three

measurements (second round). ... 284

Figure 5.9. Mean scores of Difference between Observed and Expected Number of

Links in Common for each group over the three measurements (second

round)…... 285

Figure 5.10. Mean scores of Similarity for each group over the three measurements

(second round)... 285

Figure 5.11. Mean scores of Difference between Observed and Expected Similarity

by Chance for each group over the three measurements (second round). 286

Figure 5.12. Mean scores of Information for each group over the three

measurements (second round). ... 286

Figure 5.13. Mean scores for each programming aspect per group....................... 308

Figure C.1. A slide that was used in the presentation of the 78 concept pairs. 442

CHAPTER 1: INTRODUCTION 1

Chapter One

Introduction

The limits of my language mean the limits of my world.

(Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)

CHAPTER 1: INTRODUCTION 2

Contents

1.1 Overview.. 3

1.2 Teaching and Learning Programming.. 3

1.3 Programming Environments, Novices’ Difficulties and Psychology of

Programming ... 5

1.3.1 Programming Languages and Integrated Development Environments 6

1.3.2 Misconceptions in Novices .. 8

1.3.3 Cognitive Psychology and Programming... 10

1.4 Research Approach ... 13

1.5 Research Outcomes .. 18

1.6 Structure of Thesis... 19

CHAPTER 1: INTRODUCTION 3

1.1 Overview

The first chapter of this thesis aims to introduce the reader to the research project

reported in this thesis. Hence, this chapter discusses the research background that

this study was based on, the research hypotheses proposed and explored by this

study and the research strategy I employed to test the validity of these hypotheses.

Finally, a brief summary of this project’s outcomes is presented. This chapter

concludes with an outline of the thesis’ structure.

1.2 Teaching and Learning Programming

The notion of programming in computer science (CS) involves the conception and

implementation in a programming language (PL) of the steps required for guiding a

computer system to perform a specific task or to produce a specific output or result.

Programming is interwoven into the evolution of CS, because it provides the means

not only to exploit new advances in hardware, but also to implement evolutionary

ideas and research findings in software. Furthermore, the degree of computers’

penetration in science, telecommunications and entertainment renders their use an

inextricable part of contemporary everyday life. The full exploitation of the

capabilities computers offer, as well as the customisation of these capabilities to

individual needs, requires sufficient knowledge of the way computers operate.

Programming assists people to familiarise themselves with technology, improves

computer literacy and provides a more detailed view and clarification of the

operations performed by computers. Furthermore, a computer in the hands of a

programmer can be a powerful tool for producing creative and innovative

applications, regardless of whether their intended use is personal, professional,

CHAPTER 1: INTRODUCTION 4

scientific or artistic. It is, therefore, not surprising that programming instruction has

been included in many, CS and non-CS tertiary courses as well as in secondary

education.

However, teaching and learning programming is considered a difficult and

challenging activity by both instructors and students. The causes of this difficulty as

well as the ways to deal with these have been an active research area since 1970

(1981). A research approach employed within this context, is to study the teaching

and learning of programming from a psychological point of view. This approach

introduced the field of the psychology of programming (Hoc, Green, Samurçay &

Gilmore, 1990; Soloway & Spohrer, 1989; Weinberg, 1971). Thus, research in this

field aims at helping novices to cope with the potentially demanding and frustrating

task of programming by exploring the way humans learn and revealing the

underlying cognitive processes that are taking place.

Since the early 1970s, the following research topics emerged as the most dominant

in the psychology of programming (Robins, Rountree & Rountree, 2003; Winslow,

1996).

 Common mistakes made by novices.

 Skills expert programmers have acquired.

 Characteristics of programming languages (PLs) and integrated development

environments (IDEs) that are designed exclusively for teaching introductory

programming.

 Design (or specification) of the proper pedagogy and curricula for CS courses

in primary, secondary and tertiary education.

 Selection of the appropriate programming paradigm for teaching.

CHAPTER 1: INTRODUCTION 5

 Application of knowledge-acquisition theories in the context of programming

instruction.

 Definition of ‘learning to program’ and the kinds of skill that must be

developed through it.

This is not a rigid categorisation, but rather a grouping of research topics that are

found in the research literature, as these topics are not mutually exclusive. Thus, a

particular study may focus on a specific topic and still be related to one or more of

the other topics. This is the case for the research project reported in this thesis.

Although it focuses on the design and development of a new programming tool and

its evaluation, it takes into consideration findings and theoretical principles from

various studies and theories. More precisely, these studies and theories focused on

the difficulties experienced by novices and on the cognitive processes involved in

teaching and learning programming.

1.3 Programming Environments, Novices’ Difficulties and Psychology of

Programming

The design and development of the programming tool used and evaluated in this

study, was influenced by (a) the features of existing educational software, (b) the

problems novices are facing and (c) theories that explore human learning.

Furthermore, its evaluation was based on quantitative techniques of knowledge

measurement, proposed in the research literature. Research on these topics aims to

improve novices’ performance in an introductory programming course. Therefore,

introducing elements of these topics in the design of the developed programming

tool should be an advantage because it would better support its users in learning to

CHAPTER 1: INTRODUCTION 6

program. The following sections outline previous work that constituted the basis for

this study.

1.3.1 Programming Languages and Integrated Development Environments

The creation of programs involves the expression of an algorithmic solution in a

series of well-defined steps, using programming concepts (Murnane, 1993). The

main reason for developing an educational programming language (PL) and an

integrated development environment (IDE) for teaching is to assist students in writing

programs, namely to convert the algorithmic steps of a solution to PL’s commands.

The skill of creating programs is considered important in the context of teaching and

learning programming. Thus, it is desirable for educational PLs and IDEs to facilitate

its users, especially novices, in the development and application of this skill. This

can be achieved by simplifying the process of expressing an algorithm via a PL’s

programming concepts and by supporting its users in this task with relevant

information. A second goal is to promote a deeper understanding of how computers

execute programs (Goldweber, Bergin, Lister & McNally, 2006). A third goal is to

motivate novices to be engaged in learning to program. In order to accomplish these

three goals, PLs and IDEs tend to incorporate a commonly accepted set of features.

These features include (a) a simple and readable syntax, (b) a small and orthogonal

group of instructions and (c) the prevention of errors (Georgatos, 2002; Kelleher &

Pausch, 2005; Mannila & de Raadt, 2006; McIver & Conway, 1996).

A plethora of educational PLs and IDEs has been developed to assist the

introductory teaching of programming. The following grouping proposed by Gross

and Powers (2005b) summarises trends in educational programming software in five

categories, based on its main design rationale.

CHAPTER 1: INTRODUCTION 7

 Microworlds: learning environments based on manipulating objects (for

example turtles or robots) with simple commands.

 Visual programming environments (iconic and textual): IDEs integrating visual

characteristics for code creation. Code can be in graphical or textual form.

 Flow model environments: tools that support program creation with the use of

connections between programming objects, for example by creating

flowcharts.

 Object workbench environments: software designed for object-oriented (OO)

programming with visual support and manipulation.

 Algorithm realisation environment (kinaesthetic, multimedia, animation,

graphics): programming tools offering multiple types of presentation (visual,

aural) of the execution of algorithms.

The following three techniques are proposed in the literature for the evaluation of

educational PLs and IDEs. First, using the anecdotal technique, an instructor

presents his/her personal view on the efficiency of the software by assessing its use

in a classroom. Second, with the use of the analytical technique, a set of criteria is

determined and the evaluation of the software is based on whether the software

meets these criteria. Third, the empirical technique is based on the analysis of

observational quantitative and/or qualitative data. These data are collected using

various measures, such as students’ scores in homework and exams, usage

statistics provided by the software and surveys (Gross & Powers, 2005a; Mannila &

de Raadt, 2006; Powers et al., 2006).

CHAPTER 1: INTRODUCTION 8

1.3.2 Misconceptions in Novices

A different approach in supporting novices to learn programming successfully is by

uncovering their frequent misconceptions in the programming domain. The study of

the problems, which novices are confronted with in their introductory programming

course, has been an active research area for at least 40 years (Youngs, 1974). The

findings of these studies have identified the following factors as especially

problematic for novices. A first finding is that the syntax and semantics of PLs are a

major source of errors for non-experienced programmers (Gomes & Mendes, 2007).

Errors, also known as bugs, occur in syntax when the individual grammatical

elements of a programming statement do not follow a specific order imposed by a

particular PL. Syntax errors are usually detected by the compiler or the interpreter of

PLs. Executing programs with semantic errors could produce unintended or

undesired output. These kinds of error can only be detected during programs’

execution and occur when a part or a whole programming statement is assumed to

perform a certain function, which in reality it does not. Although syntax errors are not

a formidable hindrance to creating programs, semantic errors seem to be particularly

troublesome for novices (Allwood, 1986). A second finding is that, even in the case

where syntax and semantics of statements are known, novices lack the ability to

produce a programming solution (Lahtinen, Ala-Mutka & Järvinen, 2005). In this

case, students fail to use the acquired programming knowledge in order to form and

express a solution with the constructs of a PL, even though they are able to solve the

problem using non-programming concepts and by means of paper and pencil. This

is also reported as a lack of programming strategy (Robins et al., 2003). A third

finding is that novice programmers possess a superficial knowledge of programming

constructs already taught (Winslow, 1996). However, Spohrer and Soloway (1989)

CHAPTER 1: INTRODUCTION 9

argued that bugs are produced, to a larger extent, by the deficiencies in program

planning than by the misconceptions of programming constructs. A fourth finding is

that beginners rely on their experience from conversations with other humans to help

them with their interaction with computers during programming. This experience is

responsible for two problems. First, students try to understand programming

statements and their operation by interpreting the words that form these statements

in the context of their everyday use (Bonar & Soloway, 1983, 1989). This results in

misinterpreting the actual operation of programming statements. Second, novices

expect from a computer to respond to programming statements in an anthropocentric

way. Namely, they assume that the computer is able to view all the commands of a

program at once and comprehend what the user intends to accomplish with the

specific program. Moreover, the computer is expected to implicitly infer any

programming statements or data that the user neglected to provide. This is what

Pea (1984) called a superbug. This problem is further exacerbated by a fifth finding,

a fact that eludes naive programmers: a command is executed within the

computational environment that has been created by the execution of previous

commands. This could be attributed to the lack of familiarisation with the PL’s

notional machine (Robins et al., 2003). The notional machine of a specific PL is a

simple abstract model that provides a framework, within which the execution of a

program, written in this PL, can be traced and explained (du Boulay, O'Shea & Monk,

1999). This helpful tool can assist novice and experienced programmers in

comprehending the way that a program runs and anticipating its output. Thus,

insufficient knowledge of the notional machine could be a source of confusion,

especially for novices. Finally, a sixth finding is that another problematic aspect of

programming for novices is debugging, namely the detection and correction of

CHAPTER 1: INTRODUCTION 10

programming errors (Allwood, 1986). Except for having poor error-detection skills,

novices have to confront the cryptic error-messages communicated by the compilers

or interpreters of PLs. Commercial PLs are often selected for teaching programming

in introductory courses, due to their wide professional acceptance. However, this

type of PLs is designed for experienced programmers and they offer a very technical

wording of errors, which may be incomprehensible especially to novice

programmers. Thus, students often find themselves not only being unable to correct

their bugs but also deprived from any assistance by the PL in doing so.

1.3.3 Cognitive Psychology and Programming

Knowledge from the discipline of cognitive psychology has been used for improving

the teaching and learning programming as well as dealing with novices’ deficits.

These aims can be achieved by employing learning theories and revealing the

cognitive mechanisms engaged in programming. Two dominant learning theories,

namely Constructivism and Cognitive Load Theory (CLT), have provided a

theoretical framework for facilitating programming instruction.

Constructivism, introduced by Jean Piaget in 1967, argues that new knowledge is

formed based on previous experiences and knowledge already acquired. New

experiences and information combined with previous knowledge in a dynamic

operation add to (process of assimilation) or modify (process of accommodation)

existing knowledge structures. The basic building block of knowledge was defined

by Piaget as a schema (Sjøberg, 2007). A schema is an internal hierarchical

cognitive structure that represents a set of attributes of a concept from the real world.

Two types of information are contained in a schema, declarative and procedural

knowledge. Declarative knowledge internalises the theoretical nature of a concept,

CHAPTER 1: INTRODUCTION 11

namely what the concept defines. In the case that this concept has a practical

application, procedural knowledge describes the way this concept can be used.

Schemata allow the processing of complex knowledge as a single unit of information

(Chalmers, 2003; Werhane, Hartman, Moberg, Englehardt & Pritchard, 2009). Ben-

Ari (2001) was one of the first to investigate the implications of Constructivism in CS

education.

CLT, introduced by John Sweller (1988), describes the learning process based on

three types of memory - sensory, working and long-term - and three types of

cognitive load - extraneous, germane and intrinsic. Knowledge is elaborated by

working memory and stored in the form of schemata in long-term memory. CLT

supports learning by reducing the extraneous cognitive load – that is load imposed

on working memory by inappropriately designed teaching material (see Chapter

2.2.2.1) – and by increasing germane cognitive load – that is load on working

memory related to learning (see Chapter 2.2.2.1). A successful management of

extraneous and germane cognitive load is achieved through instructional design

(Caspersen & Bennedsen, 2007; Chipperfield, 2004). The benefits of applying CLT

and instructional design in teaching programming have been explored to a large

extent by Shaffer, Doube and Tuovinen (2003), van Merriënboer (1990a, 1990b,

1992), and White and Sivitanides (2003) .

A cognitive structure that is hypothesised to support learning of complex systems is

mental models. They were introduced by Kenneth Craik in 1943 by the term of

‘small-scale models’. Philip Johnson-Laird revisited the term in 1983 and argued

that human reasoning and understanding depends on mental models (Westbrook,

2006). A mental model is considered as an extension of schema, with additional

information for the use and adaptation of the knowledge existing in the schema.

CHAPTER 1: INTRODUCTION 12

Mental models are used by humans as subjective organisational structures that

simplify the learning of complex systems. These structures facilitate the

understanding of a particular system’s operation, the conceptualisation of system

parts that are not directly visible or accessible to its user, the description of the

underlying processes that take place within this system and the prediction of

possible states of the system (Darabi, Nelson & Seel, 2009). Mental models have

been used to measure knowledge acquisition of different systems’ users. For

example, Cooke and Rowe (1997) used mental models to measure knowledge

acquisition in avionics troubleshooting, NASA mission control tasks and personal

relationships. Similar studies have been conducted in the context of CS and

programming. In particular, mental models have been used to study the relation

between them, self-efficacy and programming skills (Ramalingam, LaBelle &

Wiedenbeck, 2004), to evaluate the understanding of recursive procedures by

students (Kurland & Pea, 1985), to assess programming and debugging skills of

students (Cañas, Bajo & Gonzalvo, 1994), to investigate the evolution and

differences of procedural and OO experts (Corritore & Wiedenbeck, 1999), to predict

success of pupils in introductory programming course (Caspersen & Bennedsen,

2007), and to measure students’ knowledge of programming concepts (Ma,

Ferguson, Roper, Ross & Wood, 2009).

Despite the wealth of international research studies and findings, only a handful of

researchers have published findings from CS educational research in Greece.

Evidently, only a small number of Greek educational software environments has

been developed for teaching introductory programming. The Greek PLs and IDEs

documented in the international literature are AnimPascal (Satratzemi, Dagdilelis &

Evagelidis, 2001), LECGO (Kordaki, 2009, 2010), ObjectKarel (Satratzemi,

CHAPTER 1: INTRODUCTION 13

Xinogalos & Dagdilelis, 2003; Xinogalos, Satratzemi & Dagdilelis, 2006), DAVE

(Vrachnos & Jimoyiannis, 2008), WIPE (Efopoulos, Dagdilelis, Evangelidis &

Satratzemi, 2005; Efopoulos, Evangelidis & Dagdilelis, 2005) and X-Compiler

(Dagdilelis, Evangelidis, Satratzemi, Efopoulos & Zagouras, 2003; Evangelidis,

Dagdilelis, Satratzemi & Efopoulos, 2001).

Based on these findings, the motivating force behind this research project was to

provide a new educational programming tool to facilitate secondary- and tertiary-

education students in their effort to learn programming, with a particular interest in

Greek novice programmers. The term ‘Greek novice programmers’ does not refer in

any way to the ethnicity of the students, but rather to novice programmers that study

in Greek educational institutes. Hence, this term is always used in this thesis with

the latter meaning. The following section discusses the approach adopted to

effectuate this objective.

1.4 Research Approach

The motive behind my engagement with this project is to improve the teaching and

learning of programming from a psychological and pedagogical point of view. Thus,

the three primary aims of this research project are (a) the identification of important

design principles for educational programming software, (b) the design and

implementation of a new programming tool based on these principles and (c) the

empirical evaluation of the new programming tool in educational institutes and the

assessment of its impact on novice programmers. The first aim was accomplished

by identifying misconceptions in novices, using the theoretical framework defined by

constructivism and CLT and by reviewing the international research literature. A

number of interviews with CS teachers in Greek educational institutes took place in

CHAPTER 1: INTRODUCTION 14

order to further inform decisions and conclusions regarding the problems that

novices face and the desired characteristics of educational software for teaching

introductory programming. As a result, the following set of seven design principles

was identified: (a) match of users’ natural language with the linguistic attributes of

the PL and IDE, (b) syntax and semantics of instructions supported by the PL, (c)

visualisation, (d) abstraction of commands provided by the PL, (e) small set of

instructions, (f) provision of error messages and (g) a high level of interaction with

the IDE. The following main research question is addressed in this project.

How important is the set of the seven principles as a pedagogical consideration for

educational programming software engineering?

In order to answer this question, the effect of compliance of programming tools with

these design principles on mental–model quality and programming skills of novices

as well as the effect of the quality of novices’ mental models on their programming

skills was studied. More specifically, the following hypotheses were tested:

H1: novice students who use a programming environment with a high level of

compliance with the set of the seven design principles develop a higher level of

programming skills than novice students who use programming environments that

partially comply with this set.

H2: novice students who use a programming environment with a high level of

compliance with the set of the seven design principles construct richer mental

models in the domain of programming than novice students who use programming

environments that partially comply with this set.

H3: the effect of programming environment on programming skills in novice students

is mediated by the quality of their mental models.

CHAPTER 1: INTRODUCTION 15

The testing of these hypotheses could take place through the accomplishment of the

second and third aim of this project. Therefore, I designed and developed a new

educational programming tool, Koios, which embodied the combined set of the

seven principles and highly complies with it. In order to investigate the effect of

compliance with the set of the design principles, Koios was evaluated in Greek high-

schools. The evaluation of Koios and data collection was based on a quasi-

experimental design. In this design, two other popular educational PLs and IDEs,

Glossomatheia (Nikolaidhs, 2008) and MicroworldsPro (LCSI, 2008), with a lower

level of compliance with the set of principles than Koios, were used and compared

with Koios. At the time this study took place, Glossomatheia was a popular choice

for teaching introductory and advanced programming in Greek high-schools, while

MicroworldsPro was the official recommendation for introductory programming in

high-schools by the Greek Ministry of Education, Life-long Learning and Religious

Affairs, as of 2008.

More specifically and according to the quasi-experimental design, the level of

compliance with the set of principles was the independent variable. The

independent variable had three levels, varying in their degree of compliance, the

Koios prototype (high level of compliance), Glossomatheia (partial compliance) and

MicroworldsPro (partial compliance). The dependent variable of the experiment was

the acquired level of programming skills of pupils. The quality of students’ mental

models was the mediator. In particular, it was investigated whether the level of

compliance significantly affected students’ programming skills and the quality of their

mental models. Additionally, whether the effect on students’ programming skills was

mediated by their mental models was investigated as well. Each level of the

independent variable/programming tool corresponded with one quasi-experimental

CHAPTER 1: INTRODUCTION 16

group. I taught the introductory programming course for each quasi-experimental

group for 12 weeks of lessons, according to the official CS curriculum of the Greek

Ministry of Education (Pedagogical Institute, 2004). The following 13 programming

constructs were taught over this period: integer, arithmetic expression, string, output-

statement, input-statement, variable, assignment-statement, iteration-statement,

procedure, procedure call, input parameter, logical condition and conditional

statement. Each quasi-experimental group used the corresponding programming

tool for lessons and exercises during the study. In order to reduce variability

between groups as much as possible, the same theoretical notes, examples,

homework, teaching plan, method and material as well as procedural- and

declarative-knowledge tests were used for all quasi-experimental groups.

In order to assess the quality of participants’ mental models (declarative knowledge),

three tests took place. The first one was administered before the beginning of the

experimental manipulation, the second one after five weeks of lessons and the third

one at the end of the study. The pairwise comparison technique (Cooke, 1994) was

used to measure the mental models of students. The Pathfinder scaling algorithm

(Goldsmith & Johnson, 1990) was used to create a Pathfinder network (PFNET), a

non-hierarchical network representation of a mental model for each participant. The

PFNET of each participant was compared with a baseline network. The closeness of

the two networks was a measure for the quality of participants’ mental model.

The level of programming skills (procedural knowledge) that students acquired was

measured via tests specifically designed for this study. The items of these tests

required from participants to predict the output of programs, complete missing

programming statements and modify existing programs. Students’ procedural

knowledge was measured three times. The first measurement took place after three

CHAPTER 1: INTRODUCTION 17

weeks of lessons, the second one after five weeks of lessons and the third one at the

end of the study. Students’ score in each procedural-knowledge test represented

students’ level of procedural knowledge at the time of the measurement.

Based on this quasi-experimental design, a first round of collecting data and

evaluating the Koios prototype took place within the school year 2009-2010. In order

to provide further evidence to test the three hypotheses, a second round of

evaluation and data collection took place within the school year 2010-2011. The

second round of data collection followed the quasi-experimental design and research

plan that were used in the first round, with the following exceptions. In the second

round, an improved version of Koios was used. The new version was developed

based on observations from the first data collection and comments made by the

supervisory team. The procedural-knowledge tests of the second round were refined

versions of the ones used in the first round. The refinements were intended to make

the new versions of the tests more sensitive to differences in students’ procedural

knowledge and were based on statistical analysis of the procedural-knowledge

scores of the first round. Finally, a practical test was added after the final

declarative- and procedural-knowledge measurement. During the practical test,

students were asked to create three programs using only the programming

environment that their group had been assigned to.

The validity of the three research hypotheses was tested through the statistical

analysis of the collected data of both rounds. For this purpose, ANOVA and

hierarchical multiple regression analysis were employed. Moreover, the set of the

following covariates was taken into consideration during analysis: gender,

participant’s GPA without CS, participant’s GPA from previous year, homework

CHAPTER 1: INTRODUCTION 18

frequency, duration of lesson, (group) size, day of week, hour of day and gaps

between lessons.

This research project’s contribution to knowledge is three-fold: (a) it theoretically

identified seven design principles for designing educational programming tools for

novice programmers, (b) Koios, a new programming tool was designed and

developed based on a set of research-based scientific principles and (c) the

identified set of design principles was empirically validated and Koios was empirically

evaluated through quasi-experimental research. In the following section a brief

outline of the main findings of this research is presented.

1.5 Research Outcomes

This section outlines three major conclusions of this study. All findings are

thoroughly presented in Chapter Five and discussed in Chapter Six.

A first conclusion, based on the results, is that none of the three hypotheses were

supported. This means that, at the end of the quasi-experiments, the mental–model

quality and programming skills of Koios users were not significantly different from

those of Glossomatheia and MicroworldsPro users. Moreover, a mediation effect

(MacKinnon, 2008) of the quality of students’ mental models on their programming

skills could not be established. This suggests that programming tool, procedural and

declarative knowledge are independent components in the process of learning

programming.

However, a second conclusion highlights the importance of programming tool,

procedural and declarative knowledge in learning to program. From the results of

the practical test, it was concluded that a programming tool with a high compliance

with this set of principles can facilitate the application of procedural programming

CHAPTER 1: INTRODUCTION 19

knowledge by novices during program creation. Finally, the third conclusion was that

both types of knowledge in combination with a programming tool that complies highly

with the design principles set contribute to a successful performance in an

introductory programming course.

1.6 Structure of Thesis

In this chapter an introduction to the research reported in this thesis was presented.

Moreover, a brief description of the research approach I followed to complete this

project was discussed. Finally, this study’s contribution to knowledge, as well as its

major findings, were reported.

Chapter Two reviews the international literature on research areas with respect to

the context of this study. The set of the seven design principles are also discussed

in this chapter. The gaps in knowledge that this thesis attempts to fill are outlined in

this chapter as well.

The third chapter documents the design and development of the Koios prototype –

the educational tool used in this research – and its compliance with the seven design

principles. Both the design choices made during the development and the features

of Koios are discussed in this chapter.

Chapter Four reports the method used in this project. More particularly, the Design,

Participants, Material and equipment, Procedure and Data analysis of this

experiment are presented. Data collection is also discussed in this chapter.

The fifth chapter presents the results from data analysis. Results for the procedural-

and declarative-knowledge data of the first round are presented first. The results of

the second round follow, using the same presentation order. Finally, the results of

CHAPTER 1: INTRODUCTION 20

the practical test are presented. These results were used to test hypotheses H1, H2

and H3.

Finally, Chapter Six discusses the findings of this study based on the results

presented in the previous chapter in relation to the research literature. Furthermore,

this chapter discusses limitations, sources of potential bias, conclusions and

contribution to knowledge of the research that was undertaken, and outlines

suggestions for future work.

CHAPTER 2: LITERATURE REVIEW 21

Chapter Two

Literature Review

CHAPTER 2: LITERATURE REVIEW 22

Contents

2.1 Overview.. 25

2.2 Learning Theories.. 25

2.2.1 Constructivism and Computer Science Education....................................... 27

2.2.1.1 Theory of constructivism. .. 27

2.2.1.2 Constructivism in computer science education. 30

2.2.2 Cognitive Load Theory and Computer Science Education 33

2.2.2.1 Basic concepts of cognitive load theory. ... 33

2.2.2.2 Principles of instructional design based on cognitive load theory.......... 39

2.2.2.3 Criticism of cognitive load theory... 44

2.2.2.4 Cognitive load theory in computer science education. 46

2.2.3 Relation of Constructivism and Cognitive Load Theory to This Project 49

2.3 Learning Objectives of Teaching Programming ... 50

2.4 Difficulties Experienced by and Misconceptions of Novice Programmers........ 54

2.4.1 Difficulties with Syntax of Programming Languages. 55

2.4.2 Misconceptions Regarding the Semantics of Programming Languages...... 57

2.4.3 Difficulties with Problem-Solving, Programming Strategies and Programming

Plans. .. 61

2.4.4 Difficulties with Error Messages... 63

2.4.5 Difficulties with Tracing and Debugging Programs 64

2.4.6 Other Difficulties .. 66

CHAPTER 2: LITERATURE REVIEW 23

2.4.7 Programming Behaviour and the Nature of Novices' Programming

Knowledge... 66

2.4.8 Difficulties Experienced by and Misconceptions of Novice Programmers in

Greece... 68

2.5 Seven Design Principles .. 69

2.5.1 Match of Users’ Natural Language with the Linguistics Attributes of the

Programming Language and the Integrated Development Environment 69

2.5.2 Syntax and Semantics of Instructions Supported by the Programming

Language... 72

2.5.3 Visualisation .. 75

2.5.4 Abstraction of Commands Provided by the Programming Language 80

2.5.5 Small Set of Instructions.. 82

2.5.6 Provision of Error Messages.. 83

2.5.7 A High Level of Interaction with the Integrated Development Environment . 84

2.5.8 Further Issues Regarding the Seven Design Principles 85

2.6 Educational Programming Languages and Integrated Development

Environments for Novice Programmers ... 87

2.6.1 International Educational Programming Languages and Integrated

Development Environments... 88

2.6.2 Greek Educational Programming Languages and Integrated Development

Environments... 100

2.6.3 Overview of Surveying Educational Programming Languages and Integrated

Development Environments... 105

CHAPTER 2: LITERATURE REVIEW 24

2.7 Knowledge and Mental Models.. 106

2.7.1 Declarative and Procedural Knowledge in the Programming Domain 107

2.7.2 Measurement of Declarative and Procedural Knowledge 111

2.7.2.1 Mental models... 111

2.7.2.2 The measurement of declarative knowledge through mental models –

Pathfinder Scaling Algorithm ... 116

2.7.2.3 Measurement of procedural knowledge .. 121

2.8 Conclusions ... 122

CHAPTER 2: LITERATURE REVIEW 25

2.1 Overview

This chapter discusses the literature that informs the research that was conducted in

this project. The first section presents two pedagogical theories, namely

Constructivism and Cognitive Load Theory. The two theories provide the theoretical

background for this study. The second section reviews the difficulties that novice

programmers face during their introductory course. Based on the first two sections,

a set of seven design principles is identified and discussed in the third section. The

fourth section reviews international and Greek education software for novice

programmers and focuses on its relation to the identified set of the seven principles.

The fifth section is concerned with psychological methods for measuring

programming knowledge. In particular, declarative and procedural programming

knowledge, mental models and the Pathfinder scaling algorithm are discussed. This

chapter concludes with a summary of important findings that are obtained from the

literature review and a statement of how this project aims to contribute to knowledge.

2.2 Learning Theories

Three primary aims of this project are (a) the identification of design principles for

educational programming software, (b) the design and implementation of a new

programming tool as an embodiment of these principles and (c) the evaluation of the

new tool in educational institutes and the assessment of its impact on novice

programmers. Learning theories can define a theoretical framework for enabling the

accomplishment of the first two aims and interpreting the findings of this study. From

various theories that propose a model of human learning, two dominant theories,

Constructivism and Cognitive Load Theory, were selected to inform the theoretical

CHAPTER 2: LITERATURE REVIEW 26

background of this research for the following reasons. Constructivism considers

learning as an active process of knowledge construction. Thus, within an

educational context and proper guidance, a learner can construct himself/herself

his/her knowledge of a domain. In the domain of programming, the educational

context and the proper guidance can, in part, be provided by specially designed

educational software for programming instruction. Moreover, the design principles

for educational programming software can be identified via principles of

constructivism. Furthermore, LOGO (1980), one of the first and most influential

educational programming languages, was inspired by constructivism. Cognitive

Load Theory examines how people process information and proposes a set of

guidelines for managing this information for successful learning. Therefore,

integrating these guidelines in the design and implementation of the context and

interface of educational programming tools could result to the improvement of the

learning effectiveness of these tools. Moreover, both theories are quite popular in

Computer Science Education (CSE) literature.

Of course, other learning theories could be considered. However, choosing a small

set of theories could avoid possible conflicts between them and reduce unnecessary

complexity of the theoretical framework for this research.

Therefore, this section discusses the theory of Constructivism and Cognitive Load

Theory. First, the theory of Constructivism is presented, followed by Cognitive Load

Theory. At the end of this section, the relation of the two theories to this project is

explained.

CHAPTER 2: LITERATURE REVIEW 27

2.2.1 Constructivism and Computer Science Education

2.2.1.1 Theory of constructivism.

Constructivism is an epistemological theory, a theory of knowledge and how can it

be acquired by human beings, and was introduced by Jean Piaget (1896 -1980).

According to Piaget, knowledge is not a part of an objective world and therefore the

quest for an absolute truth is not feasible. Constructivism describes the acquisition

of knowledge as an active and repetitive process of combining new experiences with

existing ones. This means that each of us constructs new knowledge based on our

personal experiences. Therefore, theoretically, when individuals with different

experiences acquire knowledge of a concept, this knowledge is differently

constructed by each individual (Ben-Ari, 2002; Sjøberg, 2007). However, in

practice, the knowledge that is acquired by each individual could introduce some

misconceptions due to previous experiences, but it is unlikely to vary substantially

between individuals because it regards the same specific concept.

The basic building block of knowledge used in this process is a cognitive structure

called schema. The term schema was introduced by Piaget, but it was earlier

described in the experiments of Frederic Bartlett (1932). According to Bartlett,

people perceive and understand the world through a network of unconscious mental

structures. Later, the term was revisited from an educational viewpoint by Anderson

(1977), which led to schema theory.

According to Piaget, a schema contains information not only about a concept, but

also about the vocabulary, the actions and the experiences related to the specific

concept. Piaget’s theory describes two major processes that facilitate knowledge

acquisition, namely assimilation and accommodation. Assimilation occurs when a

person is confronted with new information and attempts to explain it using pre-

CHAPTER 2: LITERATURE REVIEW 28

existing knowledge, concepts or ideas. The result of assimilation is the addition of

new information into existing schemata. Accommodation is a process

complementary to assimilation and takes place when a person modifies already

existing schemata to conform to new information or experiences. Therefore, these

two processes promote the construction and modification of one’s knowledge

according to one’s experiences and perception of the world.

However, Piaget’s work focused more on cognitive development of children rather

than learning per se. With the term development a series of long-term changes in a

person’s knowledge, skills and beliefs is described. According to his theory, the

processes involved in cognitive development are adaptation and equilibrium.

Adaptation is considered to be the modification of behaviour to meet a set of

circumstances and it takes place via the processes of assimilation and

accommodation. Equilibrium is defined as the ability to bring balance between a

child’s accumulated knowledge and the external world. Particularly, this ability is

responsible for allowing children to correct any incongruities between reality and

their perception of reality and effectively continue with their development. Perhaps

the most influential idea of Piaget’s theory is that cognitive development occurs in

stages. These are developmental stages that each child has to go through as it

grows older. Each stage is considered as a series of thinking patterns and forms the

basis on which the next stage will be constructed. The rate at which a child passes

through these stages may be different due to personal characteristics, but each child

must pass through all the stages with a specific order. These developmental stages

as well as their predefined order are (a) the sensorimotor stage, (b) the pre-

operational stage, (c) the concrete operational stage and (d) formal operational stage

(Chalmers, 2003; Ma, 2007; Seifert & Sutton, 2009; Werhane et al., 2009).

CHAPTER 2: LITERATURE REVIEW 29

This body of work was only a means to Piaget’s end, which was to study the nature

and acquisition of knowledge and how humans learn to think logically.

Unsurprisingly, Piaget himself was not very interested in providing a method for

effective teaching and learning. However, during the1970s academics and teachers

began to pay attention to the ideas of Jean Piaget about personal development and

the developmental stages. This was the beginning of constructivism as a learning

theory. The aim of this field is to study the implications of applying Piaget’s theories

into science education. Constructivist theories became and still are very popular,

because they focus on the active role of the person who acquires knowledge or, in

an educational context, the active role of the ‘learner’. The scientific branch of

constructivist theory that studies the state and attitude of students during the learning

process is called individual or cognitive constructivism. Sjøberg (2007) presents the

following ideas as a commonly accepted theoretical basis of cognitive

constructivism: (a) learners actively construct their own knowledge, (b) students

bring their explanations about many phenomena to the learning process, (c) learners

have their own preconceptions about the world; many of these are common between

learners and usually supported by culture and society, (d) a number of these

preconceptions are inconsistent with scientific facts and often hard to change, (e)

knowledge in the human mind is represented in cognitive structures of concepts that

can be modelled and partly described, (f) effective instruction needs to acknowledge

and engage learners’ preconceptions and (g) knowledge may be a personal

construction through an active process, but this process is influenced by many

factors ‘outside’ the learner, such as teachers, co-learners and instructional material.

The study of other factors that influence knowledge construction, ‘outside’ the

learner, is the origin of different ‘types’ of constructivism, such as social (often with

CHAPTER 2: LITERATURE REVIEW 30

reference to Lev Vygotsky), simple, radical, contextual, sociotransformative and

sociocultural constructivism.

Criticism against constructivism is mostly concerned with its epistemology and its

philosophy, but it appears to hardly affect its status and application as a learning

theory (Ben-Ari, 2001). Because only the educational implications of constructivism,

not its epistemological theory, are relevant to this work, further discussion of its

critique seems to be out of the scope of this thesis

2.2.1.2 Constructivism in computer science education.

A number of research studies in the field of CSE have implicitly referred to

constructivist ideas. However, one of the first explicit study of the implications of

applying cognitive constructivism in CSE was conducted by Ben-Ari (1998, 2001).

He studied the difficulties students faced while they were using a what-you-see-is-

what-you-get (WYSIWYG) word processor. His major findings were that (a) CS

novices lack a cognitive structure, to which they can refer, in order to construct

effective knowledge from their interaction with a computer – he called this cognitive

structure an effective model – and (b) the computer constitutes an accessible

ontological reality. The latter finding means that students, who hold a model with

misconceptions about a task performed by a computer, are faced with an immediate

exposure of these misconceptions during the actual performance of the task by a

computer. Furthermore, he concluded that novices cannot create a correct model of

computers based on their intuition and experiences from the physical world, as they

can do in other scientific disciplines. He also suggested that constructivist principles

should be taken into consideration in the design of software and programming

languages for educational purposes.

CHAPTER 2: LITERATURE REVIEW 31

Since then, the study of applying constructivist ideas in CSE has become popular

and a number of research studies have focused on this topic. The tutoring system

InSTEP (Odekirk-Hash & Zachary, 2001) was designed to provide a constructivist

learning experience for engineering students in an introductory programming class.

Their findings showed that the users who had feedback from InSTEP required less

help from teaching assistants in solving problems than the users who had no

feedback from InSTEP. However, both groups required about the same time to

complete the task and in a subsequent test, they did not perform significantly

differently. Influenced by Ben-Ari’s conclusion regarding students lacking an

effective model of computers, Powers (2004) decided to teach computer architecture

as the introductory computing course, but he did not report any results about its

effectiveness. Gonzalez (2004) adopted a constructivist approach in creating

teaching material and activities for introductory programming classes with different

learning styles. His findings suggested that constructivist activities facilitated

students’ understanding of the programming material. However, students with

programming experience did not find the activities challenging. Lui, Kwan, Poon and

Cheung (2004) developed a set of guidelines influenced by constructivism in order to

help weak students succeed in an introductory programming course using C. Their

results showed that students improved their performance and confidence in

programming, they were able to perform better in homework and exams, and the fail

rate of the course was reduced. A pedagogical strategy based on a constructivist

approach was presented and implemented by Hadjerrouit (2005) for teaching

object-oriented (OO) programming. He reported that students improved their

problem solving skills and understanding of software engineering concepts. Based

on constructivism, Vagianou (2006) presented a conceptual framework, which is

CHAPTER 2: LITERATURE REVIEW 32

called program working storage, for facilitating the understanding of complex

programming concepts and challenging novices’ preconceptions. Her findings were

that, at the end of the course, the users of this framework were able to provide

theoretical explanations of programming concepts, apply these concepts practically

in exercises and create small programming projects. A set of measureable learning

milestones within a curriculum context for improving instruction of programming was

proposed by Mead et al. (2006). Constructivism was one of the theoretical

underpinnings of their work. Beynon (2009), based on Ben-Ari’s work, presented

three case studies on how empirical models can be used from a constructivist

viewpoint to teach the bubblesort algorithm, solve Sudoku puzzles and recognize

groups from their abstract multiplication tables. Milner (2010) referred to

constructivism to explain why the concept of ‘static’ in Java is often difficult to grasp.

A visual programming environment was developed by Lee (2011) in order to help

teachers programmatically produce their teaching material from a constructivist point

of view. Finally, Teague and Lister (2014) administered a reversibility programming

task in order to determine how well could novice programmers produce code that

would cancel out the result of a program’s execution. Reversibility is an ability

supposedly developed by learners at the concrete operational stage, the third one of

the developmental stages proposed by Piaget. They interpreted their findings using

think aloud data based on neo-Piagetian stages and discussed the application of

neo-Piagetian theory on novice programmers.

Research on the implications of applying constructivism in CSE seems to focus on

providing pedagogical guidelines on how to effectively teach CS-related subjects.

However, as Sjøberg noted, “a set of principles for learning do not directly translate

into a set of recommendations for good teaching. One cannot logically deduce a

CHAPTER 2: LITERATURE REVIEW 33

scientifically based pedagogy from a theory of learning” (Sjøberg, 2007, p. 9).

Unsurprisingly, the findings of Odekirk-Hash and Zachary (2001) suggest that

learning can be facilitated by incorporating constructivist ideas in the design of

software, which is used for introductory programming. This topic, however, seems to

have drawn very little attention in research. Because of the small number of studies

in this topic, further investigation is required for the potential benefits of applying

constructivism in the design of educational software for introductory programming.

2.2.2 Cognitive Load Theory and Computer Science Education

2.2.2.1 Basic concepts of cognitive load theory.

Cognitive constructivism proposes a framework in which, one interacts with new

experiences and information as well as with already acquired knowledge in order to

expand one’s knowledge. However, the hypothesised learning processes that take

place in the human mind during knowledge acquisition are described by Cognitive

Load Theory (CLT). CLT was introduced by John Sweller (1988) and is a theory that

puts forward a model of how new information is processed by the human brain and a

method for achieving effective learning.

Human memory can be divided in three parts: (a) sensory memory, (b) working

memory and (c) long-term memory (Raaijmakers, 1993). Sensory memory receives

all sensory stimuli from the outside world and forwards them into working memory. A

stimulus can be retained in sensory memory for only a small fragment of time and if it

is not forwarded to working memory is considered lost.

Working – or short-term – memory is hypothesised to be the place where all

conscious processing of information occurs. Its main characteristic is its

CHAPTER 2: LITERATURE REVIEW 34

hypothesised limited capacity. According to Miller (1956) working memory can hold

seven plus or minus two items at a time, although these figures can be tripled

through proper training (Caspersen & Bennedsen, 2007). However, when items

must be processed rather than just be held in working memory, extra limitations are

imposed. This happens, because the processing of items requires working-memory

capacity. This allows the processing of only four items plus or minus one

simultaneously (Sweller, van Merriënboer & Paas, 1998). Recently, Paas and

Sweller (2012) amended the application of working-memory limitations. They argued

that these limitations are crucial, only when novel biologically secondary information

is processed (originating from social or cultural environments, for example reading or

solving problems).

All the processed information is stored in long-term memory in the form of schemata.

The term schema is used in CLT with respect to schema theory, the work of

Anderson (1977), who expanded Piaget’s concept of schema. According to Sweller,

van Merriënboer and Paas, “a schema categorizes elements of information

according to the manner in which they will be used” (Sweller et al., 1998, p. 255) ,

but it can also consist of problem-solving rules (Sweller et al., 1998, p. 257). The

capacity of long-term memory is believed to be virtually limitless and the

management of information that is held there takes place unconsciously. When

relevant schemata are required for recalling or processing, they can be retrieved

from long-term memory and placed in working memory.

Schemata not only serve as cognitive structures for storing knowledge, but also as

organisational structures that enable the processing of a large amount of information.

During instruction or learning, schemata continue to change and incorporate more

information. New information, in combination with the learner’s prior knowledge,

CHAPTER 2: LITERATURE REVIEW 35

reorganises and rearranges the learner’s schemata so it can be stored in them and

thus be ‘learned’. This is a conscious and active process and its practice over a long

period of learning results to more complex schemata. Through this process, low-

level schemata are combined to create high-level schemata that contain larger

quantities of more complex information. The construction of even more complex

schemata makes feasible the processing of large amounts of information, because

each schema is processed in working memory as one item. Working memory is able

to process a schema as a single item, even if it is too complex or it contains much

information. Therefore, the more sophisticated a schema is, the more information in

working memory can be processed, without imposing extra load on working

memory’s capacity. Thus, a first way to overcome the limitations of working memory

is by complex schema construction (Ayres & van Gog, 2009; Caspersen &

Bennedsen, 2007; Sweller, 1988; Sweller et al., 1998).

A second way to deal with working memory’s limitations is by schema automation.

Schema automation describes the unconscious and effortless recall and processing

of schemata in working memory. In order to execute a task or solve a problem that

is not yet mastered, the conscious processing of relevant schemata must take place

in working memory. As one’s abilities improve in performing the specific task or

problem solving, less and less conscious effort is required for its performance or

solving similar problems. When one becomes an expert in the particular task or

problem-solving area, then one performs the task or solves the problem

automatically, namely without any conscious effort or use of working memory. Thus,

when an expert performs a task or solves a problem from the domain of his/her

expertise, he/she can perform it effortlessly and correctly with a reduction in the use

of working-memory resources. Because of this reduction, working-memory

CHAPTER 2: LITERATURE REVIEW 36

resources are available for effectively addressing more complex problems or tasks

(Ayres & van Gog, 2009; Sweller, 1988; Sweller et al., 1998).

Obviously, a high level of schema construction and schema automation are

identifying qualities of an expert in any specific domain. Thus, the aim of instruction

should be enabling novices develop such a high level of schema construction and

automation. The main concern of CLT is to provide the appropriate framework in

order to accomplish that aim. Given the presumable limitations of working memory

(Raaijmakers, 1993), the learning content and the instructional environment, CLT

distinguishes three types of cognitive load: (a) intrinsic, (b) extraneous and (c)

germane cognitive load.

Intrinsic cognitive load is the load imposed on working memory by the nature of the

subject taught. This type of cognitive load is considered to be manageable, but not

amenable to change. The main source of intrinsic cognitive load is the element

interactivity of the subject. The level of element interactivity is determined by the

number of the elements of a task or subject that can be successfully learned without

needing to refer to their relation with other elements. In order to process new

information correctly, a number of items – in most cases schemata – that interact

with the new information must be present in working memory. Especially in complex

domains, the number of the elements that a learner must hold simultaneously in

working memory is high. This allows little or no space at all for the processing of

new information in working memory, which in turn results to poor schema

construction. However, if the subject has low element interactivity, there are no

serious obstacles in learning, because only a few elements need simultaneous

processing. This way, the necessary space in working memory for effective

manipulation of new information is provided. The level of element interactivity differs

CHAPTER 2: LITERATURE REVIEW 37

between people according to a person’s expertise. For example, solving linear

equations can be a subject with low element interactivity for a math professor, but a

subject with high element interactivity for a secondary-school student, who is just

beginning to learn how to solve them. This can be explained by the schemata about

linear equations that these two persons have. Obviously, the math professor’s

schemata are far more complex and sophisticated than the schemata of the

secondary-school student. This difference in schema complexity, allows the math

professor to treat a linear equation as a single element of information. However, the

student, who is just a novice in this kind of equations, has available only low-level

schemata. In order for the student to solve the equation, all the relevant low-level

schemata need to be processed simultaneously in working memory. Thus, the same

problem presents different degrees of element interactivity for different individuals

(Chandler & Sweller, 1991; Sweller, 1994; Sweller et al., 1998).

The cognitive load produced by the instructional material is called extraneous

cognitive load. This type of load is caused mostly by poorly designed material and it

is additive to intrinsic cognitive load. The poor design of material hinders schema

construction, instead of fostering it. When new information is presented, a certain

amount of mental effort is required for its comprehension by learners. If the

presentation of new material is properly designed, then the extraneous cognitive load

is low. Nonetheless, if the new information is not well presented, learners must put

in extra effort to extract and collect the necessary information from the poorly

designed presentation. This additional effort increases extraneous cognitive load

and occupies space in working memory, which otherwise could be used for

processing the new information. However, this observation is valid only when the

intrinsic cognitive load is high. In the case of low intrinsic cognitive load, extraneous

CHAPTER 2: LITERATURE REVIEW 38

cognitive load seems not to affect the learning process. This occurs because a low

intrinsic cognitive load leaves enough space in working memory for the management

of extraneous cognitive load. Recently, Sweller (2010) attributed extraneous

cognitive load to element interactivity of instructional material and methods. This

formulation does not change the origin and properties of extraneous load.

Obviously, instructional material and methods can be altered in a way that their

unnecessarily high element interactivity can be lowered and, in turn, extraneous load

can be reduced. However, this formulation seems to propose element interactivity

as a common basis for explaining both intrinsic and extraneous cognitive load.

According to CLT, in order to improve learning, extraneous cognitive load must be

reduced. This reduction is achieved through instructional design. Instructional

design offers educational guidelines that enable the presentation of new material in a

way that minimise the extraneous cognitive load (Chandler & Sweller, 1991; Sweller,

1994; Sweller et al., 1998).

A third kind of cognitive load, which was added in CLT later, is germane cognitive

load. A high cognitive load was observed, when learners were presented with

instructional material with high variability. However, this load was related to neither

intrinsic nor extraneous cognitive load. This type of load was considered beneficial

because it facilitated schema construction and transfer of learning. Hence, germane

cognitive load was introduced to explain the load on working memory that is useful

for schema construction and automation. Recently, Sweller (2010) redefined the

term, suggesting that germane cognitive load should be related to working-memory

resources that are allocated to process intrinsic load, rather than with a certain type

of cognitive load. Since the introduction of the concept of germane cognitive load,

instructional design has focused not only on managing intrinsic load and reducing

CHAPTER 2: LITERATURE REVIEW 39

extraneous cognitive load, but also on increasing germane cognitive load. However,

because germane cognitive load is additive to the other two types of load, it is a

crucial condition for instructional design to avoid cognitive overload. Cognitive

overload can occur when the working-memory limits are exceeded by the sum of the

various types of cognitive load. This way, the resources of working memory are

allocated for processes that foster learning and schema construction, while

processes that prevent these functions are controlled by minimising their harmful

effects (Paas & van Merriënboer, 1994; Sweller et al., 1998; van Merriënboer &

Sweller, 2005).

2.2.2.2 Principles of instructional design based on cognitive load

theory.

Over the decades of research in the application of CLT in various disciplines,

researchers have demonstrated seven techniques that reduce extraneous cognitive

load. These techniques are: (a) the goal-free effect, (b) the worked-example effect,

(c) the completion problem effect, (d) the split-attention effect, (e) the modality effect,

(f) the redundancy effect and (g) the expertise reversal effect (Chong, 2005; Sweller

et al., 1998; van Merriënboer & Sweller, 2005; van Mierlo, Jarodzka, Kirschner &

Kirschner, 2011).

The first technique is called the goal-free effect. During problem-solving instruction,

a common practice is that an initial and a final (goal) state of a problem are given

and learners have to produce a solution, moving from the initial to the final state of

the problem. Many students, lacking a schema for solving the particular problem

(problem-solving strategy), do not work forward to solve the problem, but they resort

to means-end analysis. The application of this method involves moving (backwards)

CHAPTER 2: LITERATURE REVIEW 40

from the final to the initial state of the problem by passing through the minimum

possible number of different states between the final and initial state and applying

available problem-solving operators (Sweller, 1988). This strategy poses a

significant extraneous load on working memory. This happens because learners

have to bear in mind the initial state, the final state, the possible states of the

problem and the available problem-solving operators as well as valid ways to apply

the operators and move between states of the problem. It also offers little support

for schema construction. The goal-free effect suggests that a problem should be

presented without a final state, so that learners would engage the problem creatively,

without having a final state of a problem as a goal. In this case, a learner needs to

remember only the current state of the problem and the operators that can be

applied to it. This combination is considered to help schema construction. However,

this technique can be applied only when the problem space has a few alternatives

available.

The second technique is the worked-example effect. By studying worked examples

learners seem to be able to focus on the steps that are required to solve a problem

and to abstract a generalised strategy for solving similar problems. A worked

example is a problem that is presented together with its solution. The solution has

the form of the detailed steps that an expert would take to solve it. The study of

these examples is supposed to be more beneficial than just solving the actual

problems. However, worked examples can be beneficial only if they are studied fully

and carefully by learners. Furthermore, an overuse of worked examples without any

novel problem-solving tasks may be not effective, because learners may be content

to follow a stereotyped method to solve problems, instead of coming up with new

CHAPTER 2: LITERATURE REVIEW 41

and innovative solutions (Paas & van Merriënboer, 1994; van Merriënboer,

Schuurman, de Croock & Paas, 2002).

The third technique, the completion problem effect, is complementary to the worked-

example effect. In this case, a worked example is presented, but not in its entirety.

Some steps of the solution are missing and learners are asked to complete them.

Completion problems are an intermediate stage between worked examples, which

offer a full solution, and conventional problems, which offer no solution. This

technique engages learners in the solution of a problem more actively than merely

studying a worked example, but with the necessary guidance, which is not provided

in a conventional problem. In this case, similarly to the worked-examples effect,

extraneous cognitive load is kept low and schema construction is facilitated.

Furthermore, learners focus on and actively participate in the creation of the solution.

Nevertheless, the construction of a completion problem requires delicate

consideration, because careful decisions must be made on which parts of the

problem should be presented and which parts should be omitted (van Merriënboer,

1990b, 1992; van Merriënboer, Schuurman, et al., 2002).

The split-attention effect is a fourth technique demonstrated by CLT researchers. In

many disciplines, such as math and physics, the presentation of a problem consists

of a textual part and a graphical part (pictures, diagrams). In most cases, the text

contains data or information that refer to the associated diagram or picture. The

correct understanding of the problem requires that the data or information are

analysed with reference to the associated diagram or picture. To accomplish that,

one must retain in working memory both the graphical and the textual part and the

references between them. However, this causes an increase in the extraneous

cognitive load and only a small portion of working memory can be allocated to the

CHAPTER 2: LITERATURE REVIEW 42

solution of the problem. An integrated presentation of the graphical and textual parts

can reduce the extraneous cognitive load. In this case, the learner needs not to split

his/her attention between two or more sources of information and mentally combine

them. Instead, he or she may focus on the integrated source and collect the

required information.

A fifth technique is the modality effect. Baddeley (1992) proposed a model of

working memory, that consisted of a system, the central executive, that classifies the

incoming information in working memory, shifts between tasks and retrieval

strategies, manages attention and co-ordinates two slave systems: (a) the

phonological loop and (b) the visuo-spatial sketchpad. The phonological loop is

responsible for processing auditory information, while the visuo-spatial sketchpad

processes visual and spatial information. Later, Baddeley (2000) added a third slave

system in the model, the episodic buffer, which is responsible for binding visual,

spatial and auditory information chronologically. This model suggests that the

processing of visual and auditory information uses different resources of working

memory and hence, this processing can take place in parallel. Therefore, audio and

visual data can be processed simultaneously, and thus expanding the capacity of

working memory. Based on this principle, instructional material can be designed in

such way that combines audio and visual information. For example, a problem can

be presented with explanatory spoken text. Obviously, this occurs only when the

visual and audio information are combined in a way that support each other. This

means that neither the visual nor the audio information should be complex enough to

require extra cognitive resources for processing it. In the case that a badly designed

graphical component or a long auditory text is used, there may be an increase in the

extraneous cognitive load, instead of a decrease (Leahy & Sweller, 2011).

CHAPTER 2: LITERATURE REVIEW 43

A sixth technique is the redundancy effect. This effect occurs, when a number of

different self-contained sources present the same information. A self-contained

source of information provides information that can be understood on its own,

without any reference to other material. When two or more self-contained sources of

information present the same material in different forms, cognitive resources are

required for the integration of the different forms and their processing. Apparently,

the specific material could be understood by occupying less working-memory space,

if it was presented only once. Thus, the redundant presentation of the same material

causes an increase of extraneous cognitive load. The redundancy effect can be

dealt with by removing multiple self-contained sources of information. This is so,

because “integrated information is very hard to ignore” (Sweller et al., 1998, p. 284).

The seventh and final technique is the expertise reversal effect (van Merriënboer &

Sweller, 2005). The six effects that were discussed before, can improve the

instruction of novices. However, as novices gain more experience, the instructional

techniques that were helpful for novices, seem to have no effect or even to hamper

learning. This observation denotes a relationship between cognitive load effects and

level of expertise. Therefore, a critical factor for designing an instructional method is

the consideration of the level of expertise and prior knowledge of learners. For

example, in the case of the completion problem effect, no expertise reversal effect is

detected, as long as the presented information in the completion problems is

gradually reduced (fading worked examples) as learners gain expertise.

The discussion of managing intrinsic cognitive load and increasing germane

cognitive load is less extensive than of the reduction of extraneous cognitive load.

As mentioned previously, the use of completion programs has also been suggested

for the increase of germane cognitive load. A second method to increase germane

CHAPTER 2: LITERATURE REVIEW 44

cognitive load is to present examples with high variability. The presentation of

multiple examples seems to enable learners to identify similar features between

problems that are relevant to their solutions.

A method proposed to manage intrinsic cognitive load is to follow a simple-to-

complex or a low-to-high fidelity strategy. The main aim of these strategies is to

produce a learning environment or a presenting sequence of the material in a way

that the element interactivity is reduced. It is important to note that the total number

of the elements of a task or subject and their interrelations is not reduced, because

this would result to poor learning outcomes. The information of the learning material

is distributed between lessons in a manner that enables a learner to process each

lesson’s information without having to retain a significant number of elements and

interrelations in working memory (Paas, Renkl & Sweller, 2003; Paas & van

Merriënboer, 1994; van Merriënboer & Sweller, 2005; van Mierlo et al., 2011).

2.2.2.3 Criticism of cognitive load theory.

Despite its wide acceptance (Ayres & van Gog, 2009; Paas, Van Gog & Sweller,

2010; Verhoeven, Schnotz & Paas, 2009), CLT has been recently subjected to some

criticism. Moreno (2006) questioned the effectiveness of worked examples, because

a number of studies yielded results that contradicted CLT’ s predictions and reported

some methodological issues in CLT research. Schnotz and Kürschner (2007)

revisited the three types of cognitive load, the requirements for learning and

instructional design principles. They suggested that intrinsic load can be fixed for

specific learning conditions, but instructional design should adjust it and occasionally

increase it according to the desired learning outcome and learners’ expertise. They

also identified other sources of extraneous load in addition to element interactivity,

CHAPTER 2: LITERATURE REVIEW 45

such as interactivity and retention of relevant information, interactivity of irrelevant

information and unnecessary allocation of time and resources in easy tasks.

Germane cognitive load was associated only with cognitive processes that are

involved in learning activities which are more cognitively demanding than the

performance of simple tasks. Furthermore, they argued that germane load can be

constrained, not only by working-memory limitations, but also by intrinsic load and

motivation. They also proposed that learning does not necessarily use working-

memory resources and that schema construction and automation can take place

without the involvement of germane load. In addition to unnecessary high element

interactivity, unnecessary mental effort and low intrinsic load were considered as

factors for hindering learning. They also recommended the modification of intrinsic

load according to a learner’s level of expertise and the adjustment of germane load

according to the intrinsic load of the learning task. De Jong (2010) raised a number

of issues regarding the conceptual accuracy, research methods and external validity

of CLT. He argued that the three types of cognitive load cannot be clearly

distinguished from each other because (a) they are used to describe different entities

(for instance, intrinsic load stems from “objects”, while germane load stems from

“processes”) and (b) the type of load that is produced by a cognitive process can be

interpreted according to a learner’s expertise and learning outcome (for example, the

load of a process can be germane for a novice, but extraneous for an expert).

Moreover, based on these arguments, he questioned the additive nature of the three

loads. De Jong also scrutinised the measurement of cognitive load in relevant

studies. His major criticism was the lack of a standard measure that can directly and

reliably measure cognitive load and cognitive overload. Ideally, such a measure

should also be able to identify each of the three types of cognitive load and not allow

CHAPTER 2: LITERATURE REVIEW 46

any speculative interpretations of the measurement results. Furthermore, he

discussed methodological issues of research, such as participants who are included

in the study, but not interested in learning the domain, duration and different learning

conditions between CLT studies and warned about the potential implications of

cognitive overload during an empirical study. The problematic nature of these issues

was noted by Moreno (2010) as well, who also questioned the ability of CLT to

predict the effects of instructional design. Finally, Kalyuga (2011) argued that the

concept of germane cognitive load, as defined in the basic CLT, is not required for

describing mental activities involved in effective learning and understanding; these

activities could be described by intrinsic load. However, Kalyuga (2011) seemed to

acknowledge the redefinition of germane cognitive load as proposed by Sweller

(2010) (see Section 2.2.2.1).

2.2.2.4 Cognitive load theory in computer science education.

The implications of applying CLT as well as of its effects in CSE have been

investigated by a number of studies. One of the major contributors to CLT and to the

study of its application in computer science and programming is Jeroen van

Merriënboer. He investigated instructional approaches and tactics for introductory

programming in high school (van Merriënboer, 1990a; van Merriënboer & Krammer,

1987). He compared the program completion with the program generation strategy

and found the former to be more effective than the latter with regard to program

construction (van Merriënboer, 1990b, 1992). He and Paas (1990) studied schema

acquisition and automation and how they can be facilitated in the context of

elementary programming. Moreover, van Merriënboer and Kirschner (2007)

introduced the 4C/ID model, a method for designing instructional programmes for

CHAPTER 2: LITERATURE REVIEW 47

complex skills acquisition (van Merriënboer, Clark & de Croock, 2002; van

Merriënboer, Kirschner & Kester, 2003). Mayer and Moreno (2002, 2003)

investigated how CLT can aid multimedia learning and the design of such tools, and

proposed a cognitive theory of multimedia learning. Their work produced a set of

guidelines for multimedia design; for instance, an explanation is more effectively

presented by images and words than by words alone, and words and pictures should

be presented simultaneously. The theoretical basis of their work was the following

research fields: (a) dual coding theory – visual and auditory information are

processed separately, (b) CLT and (c) constructivism. Garner (2002a, 2002b) used

the completion problem effect to produce CORT, an interface tool that allowed

students to complete missing lines of code in programs. A statistical analysis of

exam marks, average time spent on problems and average estimation of help

required by students revealed that the exam marks between users and non-users of

CORT did not differ significantly. However, users of CORT required significantly less

help and time to complete the programs than non-users of CORT (Garner, 2009).

Tuovinen (2000) proposed a way of applying CLT effects in computer education, with

an emphasis on the significance of learners’ existing computer knowledge. Schafer

et al. (2003) proposed an application of CLT in CSE, based on the demonstrated

effects of CLT. Abdul-Rahman and du Boulay (2014) investigated the effect of

different worked-examples strategies on the quality of programming-knowledge

schemata regarding loops acquired by learners using cognitive load measurements

and taking into account learning style. No significant differences between groups

were overall detected and the subjectivity of cognitive load measurements was

acknowledged as a possible explanation for the inconsistency of their results.

CHAPTER 2: LITERATURE REVIEW 48

Caspersen and Bennedsen (2007) created an instructional design based on CLT

and other theories for teaching OO programming. The instructional design was used

for four years, but it was not formally evaluated. CLT and constructivism were two of

the theoretical foundations for the cognitive-based curricular approach proposed by

Mead et al. (2006) for programming. Gray, Clair, James and Mead (2007)

developed fading worked examples for specific programming concepts. An

integration of CLT and HCI principles was presented by Hollender, Hofmann,

Deneke and Schmitz (2010) in the context of educational software. Their review

showed that there is common ground between CLT and HCI, namely the reduction of

unnecessary load in users’ mind. They also proposed two (unnamed) models, which

integrate basic ideas of the two theories, for research purposes. The first model

explores the extraneous cognitive load produced by the mere use of the software,

while the second integrates the three types of cognitive load into the concept of

usability. Furthermore, they noted that usability principles alone are not sufficient for

successful learning.

It seems that CLT, despite its criticism, has inspired a number of researchers to

study its application in teaching various subjects that belong in CSE including

programming. Nevertheless, the way that CLT principles could influence the design

of educational tools for novice programmers is a topic that has been rather neglected

by researchers, with the exception the work of Garner (2002a, 2002b, 2009).

Although I agree with some points of critique, like the subjectiveness of cognitive

load measures or the unclear borders between the various types of cognitive load,

this project is concerned with neither introducing a teaching strategy for

programming based on CLT nor measuring cognitive load. Therefore, CLT concepts

that are still controversial can be overlooked. This study is, however, concerned with

CHAPTER 2: LITERATURE REVIEW 49

identifying a set of design principles for educational software that aims to support

learning of programming and, designing and implementing a programming tool as a

manifestation of this set. In this context, CLT can be useful in informing these design

principles as well as providing guidelines for the design of the educational tool.

Therefore, for this thesis, CLT provides a theoretical background for reducing

harmful cognitive load rather than a pedagogical framework for the instruction of

programming.

2.2.3 Relation of Constructivism and Cognitive Load Theory to This Project

This section reviewed two theories of cognitive psychology that are quite popular in

CSE. The majority of the studies focus on their application in providing a theoretical

framework for teaching and learning CS subjects, including programming. These

two theories have provided a combined conceptual basis for a very small number of

studies that were discussed in the previous section (Mayer & Moreno, 2002, 2003;

Mead et al., 2006). However, this is not the case for the design of an educational

tool that facilitates learners during their introductory programming course.

This project considers constructivism and CLT as its theoretical underpinnings, not

only for identifying design principles that are supposed to improve the teaching and

learning of programming, but also for designing an educational programming tool,

which manifests these design principles. It is important to note that the literature

review revealed that the two theories have apparently never been combined in the

design and development of educational software for programming. This combination

seems to provide a promising and intriguing theoretical foundation as well as a

challenging framework for the design and development of the educational

programming tool.

CHAPTER 2: LITERATURE REVIEW 50

2.3 Learning Objectives of Teaching Programming

In order to correctly identify the obstacles that novices face during their introductory

programming course, it is important to define the educational objectives of computer

programming instruction. Therefore, possible objectives of ‘learning to program’ are

discussed and the stance of this thesis on this matter follow.

Despite the numerous studies in computer science education research, the

fundamental question of ‘what should the learning objectives of programming

instruction be ?’ has not yet received a widely accepted answer (Blackwell, 2002b).

The answers that have been proposed until now include various topics, which range

from mathematical theory (Dijkstra, 1989; Pair, 1990) to learning taxonomies.

Initially, programming was related to mathematical theorems. For example, Hoare

(1969), who developed the Quicksort sorting algorithm, suggested that programmers

could establish the properties of their programs through the application of

mathematical axioms and theorems. This approach, however, is nowadays scarcely

adopted, probably, due its prerequisite for a rigorous mathematical background.

A more traditional answer has to do with learning the syntax, semantics and features

of the PL used in the introductory programming course (McGill & Volet, 1997).

Knowing the syntax and semantics of a PL is an important aspect of programming.

This kind of knowledge is required for someone to be able to create programs in a

particular PL. Nevertheless, from an educational viewpoint, the mere knowledge of

these surface attributes does not guarantee that someone has developed any deep

understanding of the programming domain and real programming skills.

Consequently, this type of knowledge acquisition could be better described as

programming language instruction rather than programming instruction.

CHAPTER 2: LITERATURE REVIEW 51

Furthermore, Pea and Kurland (1987) supported that idea that learning to program

has little to do with learning the syntax and features of a PL.

One of the widely adopted answers to the previous fundamental question relates

programming-knowledge acquisition with the development of problem-solving skills

(Black, 2006; Caspersen & Bennedsen, 2007; Dagdilelis, Satratzemi & Evangelidis,

2004; Deek & Espinosa, 2005; Koppelman, 2008; Porter & Calder, 2003; Sheard,

Simon, Hamilton & Lönnberg, 2009; Tu & Johnson, 1990; Wiedenbeck, 1985). A

typical programming course includes, to a larger or smaller degree, solving various

(scientific or every-day) problems through the creation of suitable programs. In this

context, a novice programmer should not only know a set of programming

constructs, but he/she should also be able to use these constructs in order to solve

problems programmatically. More specifically, in computer-programming, problem-

solving involves (a) identifying the necessary steps to deal successfully with a

particular problem, (b) convert these steps into an algorithm and (c) correctly

translate the algorithm into a program, using the commands and formal syntax

provided by a PL. Linn (1985) argued that this level of competence is reached

through a series of cognitive accomplishments. This series has three stages: (a)

learning the language features, (b) learning how to design programs for solving

problems and (c) developing problem-solving skills, which are transferable in other

programming languages or similar domains, for example math or physics. However,

it is suggested that “problem solving is necessary, but not sufficient for programming”

(Robins et al., 2003, p. 160).

A similar suggestion with focus on Linn’s second stage of cognitive accomplishments

was proposed by Elliot Soloway (1986). He has greatly contributed in this field and

together with James Spohrer presented in the book ‘Studying the Novice

CHAPTER 2: LITERATURE REVIEW 52

Programmer’ (1989), one of the early and thorough collections of studies in novices’

difficulties. Soloway suggested that learning to program means learning to create

mechanisms and explanations. According to him, a mechanism is a series of actions

that produce a desired result and an explanation is a justification of this mechanism’s

design. In the programming domain, a mechanism is equivalent to a program and

an explanation to the knowledge of how and why a program must be created in a

certain way. He emphasised that goals and plans in program creation are crucial

components and should be explicitly presented and taught. He also supported the

idea that this method will enable novices to know how and why a specific piece of

code should be produced.

Du Boulay (1989) introduced the term of the notional machine, which is a mental

representation of the computing mechanism defined by the constructs of a specific

PL. The main purpose of a notional machine is to facilitate the understanding of the

interaction between a program in a specific PL, the computer and the user. This

mechanism allows programmers to know which constructs of the specific PL they

should use, understand how a program runs, predict its output, modify it, debug it

and gain awareness of hidden states of the program-computer-user interaction.

Therefore, the understanding a PL’s notional machine is of high importance and

could be considered as a main learning objective of programming instruction,

although it was never explicitly formulated as such.

Finally, another method for defining the learning outcomes of programming

instruction is the use of learning taxonomies. A learning taxonomy is a set of

learning stages ordered in a specific way; it is used for developing the learning

objectives of a course, the appropriate material and assessment methods. Learning

taxonomies are generic systems that distinguish the learning objectives in the

CHAPTER 2: LITERATURE REVIEW 53

following three domains: (a) cognitive, (b) affective and (c) psychomotor and can be

applied in different disciplines (Fuller et al., 2007). Accordingly, taxonomies have

been used in programming instruction for the design of courses, the design of

educational materials, and the assessment and analysis of students’ attitude towards

exercises. The only taxonomies that have been applied in programming instruction

are Bloom’s taxonomy (Fitzgerald, Simon & Thomas, 2005; Fuller et al., 2007), a

revised version of Bloom’s taxonomy (Fuller et al., 2007) and the Structure of the

Observed Learning Outcome (SOLO) taxonomy (Fuller et al., 2007; Lister, Simon,

Thompson, Whalley & Prasad, 2006). Bloom’s taxonomy consists of six levels of

performance: (a) knowledge, (b) comprehension, (c) application, (d) analysis, (e)

synthesis and (f) evaluation. Each level is based on the skills that were developed at

levels preceding it. The revised version of Bloom’s taxonomy replaced the nouns

that are describing the levels of performance with verbs and has the following six

categories: (a) remember, (b) understand, (c) apply, (d) analyse, (e) evaluate and (f)

create. The SOLO taxonomy has the following five levels: (a) prestructural, (b)

unistructural, (c) multistructural, (d) relational and (e) extended abstract. These

levels are used to evaluate a learner’s understanding of what is taught. However,

the levels of the three taxonomies appear to be unable to properly describe the skills

that are developed in applied disciplines, like the teaching and learning of

programming (Fuller et al., 2007).

The diversity of the definitions about the learning objectives of teaching and learning

programming reveals that there is not much unanimity on the subject. However, two

underlying aspects are common amongst the most popular definitions. The first one

is that programming instruction aims to promote the understanding of programming

concepts. The second one is that programming instruction aims to enable a

CHAPTER 2: LITERATURE REVIEW 54

programmer to communicate his/her ideas and directions to a computer using these

programming concepts in the form of programs (Pair, 1990). Cognitive psychology

defines these two aspects as types of knowledge. More specifically, the first one is

considered as declarative knowledge and the second one as procedural knowledge

(Davies, 1993; de Jong & Ferguson-Hessler, 1996). Therefore, this thesis considers

the fostering of declarative and procedural knowledge in the domain of introductory

programming as the learning objective of programming instruction (Palumbo, 1990).

This description is also supported by constructivism. According to constructivism,

knowledge acquisition involves the creation and modification of schemata.

Schemata are knowledge structures that contain declarative and procedural

knowledge (de Jong & Ferguson-Hessler, 1996). Hence, learning is viewed as a

process of acquiring declarative and procedural knowledge. Therefore, learning to

program can be described as the acquisition of declarative and procedural

programming knowledge. Because of the importance that these types of knowledge

have in this project, they are further discussed in Section 2.7.1.

2.4 Difficulties Experienced by and Misconceptions of Novice Programmers

In order to improve the teaching and learning of programming, it is critical to identify

what is hampering it. Two crucial factors that hamper programming instruction are

the misconceptions that novices have and the difficulties that they face in their

introductory course. Thus, this section is concerned with the misconceptions and

difficulties of novices that are reported in international literature.

The term ‘misconception’ is preferably used in this section, instead of the term

‘mistake’, because from a constructivist viewpoint, what is considered a mistake is

just a corollary of a learner’s misconception(s). Therefore, it is more useful to locate

CHAPTER 2: LITERATURE REVIEW 55

and identify what learners seem to misunderstand than the results of these

misunderstandings, namely their mistakes.

A novice programmer is considered to be a learner, who is engaged in programming

instruction and has no previous programming experience. As the novice develops

his/hers programming skills, he/she progresses through the following stages of

programming efficacy: advanced beginner programmer, competent programmer,

proficient programmer and expert programmer (Robins et al., 2003).

It has been reported that the majority of novices acquires only a low level of

programming knowledge and skills during their first programming course (Garner,

Haden & Robins, 2005; Kurland, Pea, Clement & Mawby, 1989; Linn & Dalbey,

1989; Winslow, 1996). This can be attributed, to a large extent, to the factors that

make programming difficult for novices. Thus, the identification of these factors can

not only provide a means for supporting novices through their first experience with

programming, but also can be a guide for the improvement of the teaching methods,

PLs and tools that are employed in programming instruction. A presentation of the

most common and important difficulties and misconceptions of novices, which was

greatly aided by the review of Robins et al. (2003), follows.

2.4.1 Difficulties with Syntax of Programming Languages.

A commonly cited difficulty that novice programmers face is the syntax of a PL

(Gomes & Mendes, 2007; Guibert, Girard & Guittet, 2004; Simon et al., 2007;

Teague & Roe, 2008). The syntax of a PL is a set of rules on how to correctly write

code in this PL and defines the correct spelling and order of commands as well as

the available punctuation marks (Hristova, Misra, Rutter & Mercuri, 2003). If the

commands of a program are not written according to the PL’s syntax then the

CHAPTER 2: LITERATURE REVIEW 56

program cannot be executed and the computer informs the user of the syntactic

errors. Once these errors are corrected then the program can be executed. The

syntax of most PLs is designed to enable experienced programmers to write code

fast and efficiently. This design principle regarding the PL’s syntax often leads to a

set of unnatural rules. These rules are unnatural in the sense that they are different

from the ones that people use in human languages. Consequently, this unfamiliar

syntax is difficult and time-consuming for a novice to grasp. Furthermore, having to

remember the PL’s unnatural syntax during the demanding task of program creation

makes this task even more demanding by increasing intrinsic cognitive load.

Some examples of how a PL’s syntax can become a source of difficulties for novices

follow. Many PLs use a semicolon to denote the end of programming statements.

However, with certain statements, for example an IF statement, the use of a

semicolon will result to syntactic error (Ross, 2000). In other cases, for example in a

WHILE statement, it is not wrong to use a semicolon, but it substantially changes the

function of the statement (du Boulay, 1989). Because only a syntactically correct

program can be executed, Grandell, Peltomäki and Salakoski (2005) suggested that

novice students may put considerable effort in producing a syntactically correct

program at the expense of producing an algorithmically correct program. McIver and

Conway (1996) mentioned the concepts of syntactic synonym, syntactic homonym

and elision. The first concept describes a syntactic feature of PLs, which allows that

a particular programming statement can be used in programs following two or more

different syntactic expressions. The second concept refers to the case where

different statements follow the same syntax. Elision, the third concept, is the

syntactical feature that allows omitting a specific part of a statement. Obviously, the

three concepts can be quite problematic for novice programmers, in other words a

CHAPTER 2: LITERATURE REVIEW 57

novice can mix up different syntaxes when entering a statement or different

statements with the same syntax and be baffled when a part of syntax can be

omitted.

Many studies tend to ignore syntactical errors because they account only for a small

percent of novices’ errors (Allwood, 1986) or because they can be easily detected by

the compiler/interpreter of the PL (McIver, 2000). However, syntax is a source of

problems for novices that must not and cannot be overlooked. Evidently, studies still

report the “persistence, frequency, and uniform distribution of problems relating to

basic syntactic details” (Garner et al., 2005, p. 178) and that they “have a substantial

impact on the experience of learning to program” (McIver, 2000, p. 7).

2.4.2 Misconceptions Regarding the Semantics of Programming Languages.

The semantics of PLs can be a source of misconceptions for novices (Corritore &

Wiedenbeck, 1999; Youngs, 1974). The semantics of a PL describes how to derive

meaning from this PL’s commands. As in the case of PLs’ syntax, semantics was

designed to offer efficiency in code development, neglecting its naturalness. A

semantic error is committed when programmers suppose that a command performs

a certain action, which, in reality, it does not perform. Semantic errors occur

because of novices’ misconceptions about programming concepts. When a student

fails to learn that a programming construct has a specific functionality in a program

or he/she fails to correctly understand the specific functionality, then the student

holds a misconception of the specific programming concept. These misconceptions

can be generated by: (a) insufficient knowledge of programming concepts and (b)

knowledge associated with natural language and human interaction (Guibert et al.,

2004).

CHAPTER 2: LITERATURE REVIEW 58

The first source of novices’ misconceptions is misunderstanding or lacking to

understand how a programming concept can be used in a program. Programming

concepts are the building blocks of programs and their understanding is very

important in programming. Nevertheless, these concepts are generally difficult for

novices to grasp. One reason for this is that they are designed based on the

operations that computers can perform. Novices, however, have no everyday

experience with similar constructs from other domains that would enable them to

spontaneously use concepts in the programming domain (Rogalski & Samurçay,

1990). This can make programming concepts seem unnatural and foreign to

humans. The fact that, to a greater or lesser extent, the learning and understanding

of every programming construct can be problematic for novices and be a potential

source of semantic errors is supported by numerous studies. For each of the

following programming concepts there is at least one study, which reports that the

particular programming concept in a certain PL can be difficult for novices: variables

(du Boulay, 1989; Rogalski & Samurçay, 1990; Samurçay, 1989), input/output

statements (Dagdilelis et al., 2004; Ebrahimi, 1994; Putnam, Sleeman, Baxter &

Kuspa, 1989), assignment statement (Ebrahimi, 1994; Kaczmarczyk, Petrick, East &

Herman, 2010; Putnam et al., 1989), iteration statements (Putnam et al., 1989;

Rogalski & Samurçay, 1990), conditional statements (Ebrahimi, 1994; Putnam et al.,

1989; Rogalski & Samurçay, 1990; Ross, 2000), arrays (du Boulay, 1989), recursion

(George, 2000; Kahney, 1989), functions/procedures (Milne & Rowe, 2002),

parameters (Grandell, Peltomäki, Back, Salakoski & 2006) and classes (Kinnunen &

Malmi, 2008).

The second source of misconception about programming constructs is knowledge

students bring from their experience with other humans and natural language

CHAPTER 2: LITERATURE REVIEW 59

(Spohrer & Soloway, 1989). When novices attempt to interpret the meaning of

commands, they often find themselves at an impasse due to their limited

programming knowledge. Novices, having nowhere else to draw conclusions from,

turn to natural language semantics to interpret the meaning of commands (Bonar &

Soloway, 1983; Kurland & Pea, 1989). For example, Ala-Mutka (2004) reported that

the ‘while’ iteration-statement was interpreted by novices as a statement that is

executed continuously, instead of a statement that tests its condition in every

iteration. Similarly, Pane, Myers and Ratanamahatana (2001) reported that the word

‘then’, often used in conditional statements as consequently, was associated by the

participants of their study with the sequential form of programs. Furthermore, Bonar

and Soloway (1989) reported that novices have problems when they attempt to

transfer a step-by-step solution, which is expressed in natural language, into a

program.

Equally problematic can be the experience of human interaction that novices bring in

their interaction with computers. Novice programmers are not aware of the low-level

processes computers use to execute commands and process data (Ben-Ari, 2001).

This lack of information can lead novices to base their interaction with computers on

their previous interaction experiences, which are mostly built on human interaction.

Thus, novices often expect from computers to react as humans would do. Pea

(1984) called this attitude, namely expecting computers to interact as if they had a

secret mind of their own, the ‘superbug’. He classified the “conceptual

misunderstandings (or ‘bugs’)” (Pea, 1984, p. 3) into three categories according to

their source: parallelism bugs, intentionality bugs and egocentrism bugs. Parallelism

bugs are generated by the assumption that computers can process or be ‘aware’ of

two or more commands at the same time. Intentionality bugs are produced when

CHAPTER 2: LITERATURE REVIEW 60

programmers expect from computers to guess or speculate what they intend to

accomplish based on the programming statements and data they provide in a

program. Egocentrism bugs are created when programmers expect that computers

can go beyond what they write and understand what they mean. Novices tend to

forget that computers can process only one command at time and that each

command operates in the programming environment that has been created by the

execution of previous commands. Instead, they assume that computers can have a

full view of a program, make sense of this program, infer the programmer’s intention

and even correct or fill in any wrong or missing details of the program, according to

the intended result.

However, Spohrer and Soloway (1989) argued that misconceptions about

programming concepts are not as extensive as believed. They suggested that this

belief is so popular, because teachers relate bugs to the programming constructs

that should be used to correct them. Therefore, teachers could suppose that novices

have problems with correcting these bugs, because of novices’ misconceptions

about the semantics of these constructs. Spohrer and Soloway (1986, as cited in

Simon et al., 2007) also found that only few of the bugs in their participants’

programs could be attributed to participants’ misconceptions, while the majority of

the bugs was associated with the logic of programs.

Overall, semantics errors can be very problematic and frustrating for novice

programmers, even if they are not as common as believed. Programmers use the

available programming concepts of PLs to transform a series of actions into a

program. In the case that novices lack a clear understanding of one or more

concepts or they interpret their functionality wrongly, the correct transformation of

these actions into a program becomes extremely difficult or impossible.

CHAPTER 2: LITERATURE REVIEW 61

Furthermore, due to their nature, semantic errors are more difficult to detect than

syntactic errors; moreover, compilers and interpreters, with the exception of static

semantic errors, cannot inform programmers about them.

2.4.3 Difficulties with Problem-Solving, Programming Strategies and

Programming Plans.

The high level of connection between problem-solving and programming was

discussed in Section 2.3. In a typical programming course students are asked to

solve problems programmatically. Winslow (1996) described how problem-solving is

applied in programming in four stages: (a) students must understand the problem,

(b) produce a solution for the problem and transfer it to the programming domain

(translate it into a computer-equivalent form), (c) create a program based on the

computer-equivalent form using a PL and (d) execute and (if necessary) correct the

program. The second stage has proven to be a very difficult task. Lister et al.

(2004) reported that many students are not able to abstract a problem from its

description. An explanation for this phenomenon could be that students lack in

general problem-solving skills (Gomes & Mendes, 2007; McCracken et al., 2001).

However, it is reported that even when students know the solution they are unable to

transfer it into the programming domain, in other words express it in the form of a

computer program (Winslow, 1996). Furthermore, Green and Petre (1996)

introduced the term closeness of mapping to describe the mental distance between

the problem domain and the programming domain. They argued that the greater this

distance is, the more difficult the solution to the problem becomes.

A very significant difficulty is that the majority of novices, even when they have

overcome problems with syntax and semantics, are bewildered about how to use the

CHAPTER 2: LITERATURE REVIEW 62

programming concepts they know in programs. This difficulty is often cited in the

international literature (Lahtinen et al., 2005; McCracken et al., 2001; Porter &

Calder, 2003; Simon et al., 2007). In order to describe the processes involved in the

generation of structured solutions to problems in the form of pseudocode as well as

their transformation to programs, the terms programming strategies and

programming plans were introduced. Programming strategies describe knowledge

of how to use programming constructs to produce solutions for problems (de Raadt,

2008), while programming plans are stereotypical predefined solutions in the form of

code that perform a specific action, for example averaging the elements of an array

(Soloway & Ehrlich, 1984). Programming strategies seem to describe what cognitive

psychology defines as procedural programming knowledge. Accordingly, syntax and

semantics of PLs are components of declarative programming knowledge.

Various difficulties for novices have been identified regarding programming

strategies and plans. Soloway (1986) demonstrated that when experts engage in

program creation, they recognise a number of programming goals and employ their

programming strategies and plans to achieve these goals. They have formed a large

set of programming strategies and plans over time through practice and problem-

solving, and are able to retrieve and modify the required information from this set.

Novices lack this accumulated body of strategies and plans, and therefore must

devise their own plans instead of retrieving them (Robins et al., 2003). This activity

can be extremely challenging and demanding. Spohrer and Soloway (1989)

proposed nine categories of problems that could cause difficulties in program

creation for novices: (a) summarisation problem, (b) optimisation problem, (c)

previous-experience problem, (d) specialisation problem, (e) natural-language

problem, (f) interpretation problem, (g) boundary problem, (h) unexpected-cases

CHAPTER 2: LITERATURE REVIEW 63

problem and (i) cognitive-load problem. Spohrer, Soloway and Pope (1989) found

that novices inappropriately combined different plans, thus producing a ‘merged

plan’, in order to implement two plans with the same code. Because, the plans

should not have been combined in the first place, this combination was only an extra

source of problems. De Raadt, Watson and Toleman (2006) proposed that the

explicit instruction of goals and plans would be beneficial for novices. Crucially,

Gilmore (1990) suggested that programming plans are insufficient without the

knowledge of how to apply them, namely programming strategies.

Spohrer and Soloway (1989) argued that a majority of bugs in novices programs is

related to the plan-composition problems that novices have rather than to

misconceptions about programming constructs. However, Ebrahimi (1994)

demonstrated that plan-composition problems and misconceptions about

programming constructs are highly correlated. He calculated the correlation

between plan-composition problems and programming-concept problems across four

PLs (Pascal, C, Fortran and LISP) and the values of r ranged from 0.91 to 0.97. Not

surprisingly, he stated that “that knowledge of Plan Composition and Language

Constructs is indispensable to the understanding of basic programming” (Ebrahimi,

1994, p. 477). Furthermore, Kranch (2012) suggested that novices should first

familiarise themselves adequately with the basic programming concepts in order to

tackle successfully more complex issues, such as programming strategies and

plans.

2.4.4 Difficulties with Error Messages

Novices are reported to have problems with the error messages produced by

compilers and interpreters (Marceau, Fisler & Krishnamurthi, 2011; Nienaltowski,

CHAPTER 2: LITERATURE REVIEW 64

Pedroni & Meyer, 2008; Simon et al., 2007). Once again, the design choices that

were adopted for making PLs fast and efficient seem to be a source of problems for

novices.

The wording of errors messages can be very cryptic for novices and, practically,

novices find it hard to understand them (Allwood, 1986). This, to a very large extent,

can be attributed to their poor design and the way compilers parse programs (Traver,

2010). Often these messages do not point exactly to the command that should be

corrected. Furthermore, they scarcely provide useful information, from novices’

viewpoint, on how the particular error should be fixed. This can result into taking

unnecessary or, even worse, incorrect actions in order to respond to error

messages. Other reasons that reinforce the difficulties of novices with error

messages include possible mismatch of linguistic attributes between novices’ natural

language and the PL and/or IDE, a lack of experience and the limitations of human

memory and attention (Traver, 2010).

2.4.5 Difficulties with Tracing and Debugging Programs

Two tasks that are required for programming and are difficult for novices to perform

are tracing and debugging their programs, respectively. The tracing of a program

has to do with reading, understanding and mentally following a program and its

execution, while the debugging task has to do with detecting and correcting program

errors.

Lister et al. (2004) reported that students have more problems reading a program

than writing one. They also considered reading and tracing skills as perquisites for

problem-solving. The distinction between the abilities to read a program and write

one was emphasised by Winslow (1996) as well. Vainio and Sajaniemi (2007)

CHAPTER 2: LITERATURE REVIEW 65

identified four problematic aspects of program-tracing (a) single-value tracing, (b)

inability to distinguish between functions and structures, (c) inability to use external

representations and (d) inability to raise abstraction level in order to manage

cognitive load. Strategies that novices use to read and understand programs were

studied by Fitzgerald et al. (2005), who concluded that these strategies are applied

poorly. They noted that this could indicate that novices lack efficient knowledge to

read and trace code. Despite the problems novices have with reading programs,

Manilla (2007) noted that they seem to determine the difficulty of a program based

on the effort required to produce it rather than to read it.

Allwood (1986) reported that novices have difficulties with error detection; they

devote a large proportion of their time to this and are reluctant to take actions for

correcting their errors. An explanation for this phenomenon could be the limited

programming knowledge that novices have. Because of their limited knowledge

novices do not examine many hypotheses for the origin of program errors and thus,

often select an incorrect hypothesis, which aggravates this problem further (Gilmore,

1991). Perkins, Hancock, Hobbs, Martin and Simmons (1986) categorised novices

according to their attitude towards program errors in three groups: (a) stoppers, (b)

movers and (c) tinkerers. Stoppers were considered students that stumbled on a

problem and could not continue without help. Movers were considered students who

attempted to overcome their errors by successfully modifying their programs.

Students, who modified their program continuously and randomly, often producing

more errors than corrections, were considered as tinkerers. Generally, detecting and

correcting program errors seem to be very difficult tasks for novices. However,

identifying programming errors is considered to be more difficult than correcting them

(Robins et al., 2003).

CHAPTER 2: LITERATURE REVIEW 66

2.4.6 Other Difficulties

Du Boulay (1989) used the term ‘notional machine’ to refer to a model that describes

how the system makes “sense of the program” (du Boulay, 1989, p. 287). The

notional machine of a PL is defined by the programming commands of the PL and

thus each PL has a different notional machine. The notional machine provides a

basis for predicting and anticipating the behaviour of running programs written in the

specific PL. Du Boulay argued that there are difficulties with understanding the

notional machine and how the textual representations of programs relate to it. The

importance of the notional machine was stressed out by Berry and Kölling (2014), as

they designed a notional machine for the BlueJ programming environment and

software that visualises diagrams of this notional machine. However, the

effectiveness of this tool has not yet been formally tested.

Another difficulty that novices have is that they find it hard to elaborate their

weaknesses and problems with respect to programming (Allwood, 1986; Mannila,

2007). This phenomenon not only renders some of the difficulties that novices have

obscure, but also prevents the in-depth analysis of the already known ones.

2.4.7 Programming Behaviour and the Nature of Novices' Programming

Knowledge

Based on the difficulties discussed in the previous sections, some general remarks

can be made about the novice programmers’ behaviour and nature of their

knowledge. In their review, Robins et al. (2003) discuss the exploratory nature and

opportunistic design that novices employ during programming. Novices employ

CHAPTER 2: LITERATURE REVIEW 67

‘depth-first’ and ‘bottom-up’ strategies when they write programs (Rist, 1989) and

develop code by trial-and-error (Allan & Kolesar, 1997). Furthermore, when they are

in an impasse, they resort to previously-written code and modify it without a specific

purpose until the compiler produces no errors, but without being able to justify their

course of actions (Gaspar & Langevin, 2007).

Many students seem to comprehend programming structures in isolation and have

fragile and fragmented knowledge of programming constructs and regular

programming tasks (Lister et al., 2004; Mannila, 2007). Fragile knowledge is

considered to be insufficient knowledge or inability to use knowledge appropriately

(Ko & Myers, 2005). Novices comprehend programs two times slower than experts

and form only half of the chunk levels that experts do (Kranch, 2012). Novice

programmers usually understand code based on the surface characteristics of

programs, such as syntax, create programs ‘line by line’ instead of a more structured

approach and are unable to efficiently use already acquired knowledge (Clear et al.,

2008; Kurland et al., 1989; Lahtinen et al., 2005; Mayer, 1989). They also fail to

recognise basic patterns in programs and comprehend programs as a whole (Fix,

Wiedenbeck & Scholtz, 1993). Programming representations of novices vary greatly

and their type of programming knowledge is more context-specific (Allwood, 1986).

A final remark concerns how correctness of programs is perceived by students.

Novices consider programs to be correct, even if they cannot be executed, as long

as they contain a ‘core’ of correct statements (Kolikant & Mussai, 2008).

CHAPTER 2: LITERATURE REVIEW 68

2.4.8 Difficulties Experienced by and Misconceptions of Novice Programmers

in Greece.

My profession at the time that this research was conducted was CS teacher in Greek

educational institutes. This included the teaching of introductory programming

courses. This fact motivated me to study the current state of international and Greek

introductory programming education and to contribute to its improvement.

Therefore, the teaching and learning of programming in Greece is of special interest

for this project. However, only one review, regarding the difficulties students face

during programming instruction in Greek secondary schools, was found in the

international literature.

Dagdilelis et al. (2004) presented the major difficulties of novice programmers in

Greek secondary schools. They reported that students have problems with input

statements, variables and data structures, have misconceptions about programming

constructs, engage in an anthropomorphic communication with computers and have

difficulties creating programs. Not surprisingly, their findings are similar to the ones

mentioned in the international literature.

I conducted a small-scale interview study with teachers of computer science, who

teach programming in Greek secondary and tertiary institutes. One of the reasons

for doing this was to further provide evidence about the actual problems of novices in

Greek educational institutes. Therefore, a part of this small-scale study was

concerned with the difficulties that novices face during programming instruction. The

interviews revealed that students cannot combine elements of their programming

knowledge effectively to create programs, hold misconceptions about programming

constructs and have problems with programming commands. My findings are in

agreement with those reported by Dagdilelis et al. (2004) as well as with those

CHAPTER 2: LITERATURE REVIEW 69

reported in the international literature. These findings as well as an executive

summary of this small-scale study are reported in Appendix A.3.

2.5 Seven Design Principles

The discussion of constructivism and CLT, as well as the difficulties of novice

programmers during their introductory programming course, provides the framework

for identifying design principles for educational PLs and IDEs. Seven principles were

identified as important for the design of educational software for introductory

programming. These are: (a) match of users’ natural language with the linguistic

attributes of the PL and IDE, (b) syntax and semantics of instructions supported by

the PL, (c) visualisation, (d) abstraction of commands provided by the PL, (e) small

set of instructions, (f) provision of error messages and (g) a high level of interaction

with the IDE. These principles are presented and discussed in the following

subsections.

2.5.1 Match of Users’ Natural Language with the Linguistics Attributes of the

Programming Language and the Integrated Development Environment

The vast majority of PLs and IDEs discussed in international literature are in the

English language. This is no surprise, because English is the natural language for a

very large proportion of the people that design and use these PLs and IDEs.

Furthermore, English is spoken by over 335 million people around the world (Paul,

Simons & Fennig, 2013). However, people who want or need to use this software

and are non-native English speakers need to have at least an elementary

understanding of English (Kodama, Sato & Miyazaki, 2000). For information

CHAPTER 2: LITERATURE REVIEW 70

technology (IT) professionals, who are non-native English speakers, this constitutes

no obstacle, because a significant number of them possess this elementary

understanding. Nevertheless, things are very different for novice programmers who

are non-native English speakers, have a scarce understanding of English and have

to work with these tools. Furthermore, programming with these tools becomes

virtually impossible for novices who do not speak English at all. As the discipline of

programming is introduced in secondary schools or even elementary schools,

students are more likely to lack an elementary understanding of English. This could

also be the case for older people who would like (or have) to engage in

programming, but their knowledge of English is insufficient.

A central aspect of programming involves the mental mapping of a plan to a program

using the programming constructs of a PL. However, if the linguistic attributes of this

PL are foreign to its users, then this mapping must be performed in two stages. The

first stage is the mapping of the plan to an equivalent form, in users’ natural

language, of computer programs. The second one is the mapping of this equivalent

form in users’ natural language to a program consisting of programming constructs

with foreign linguistic attributes. Perhaps, the paramount necessity to avoid the two

mappings could be presented in a clearer way with the following example.

A popular analogy for programming instruction is the learning of a foreign language

(Black, 2006; du Boulay, 1989). Obviously, the learning of a foreign language

involves translation of words. When the linguistic attributes of PLs are foreign to

novices, they must translate them to their natural language. Thus, programming with

the foreign linguistics attributes of PLs results to using a translation of a translation.

If we take the analogy further, this is equivalent of learning a foreign language

through another foreign language, for example an English speaker learns German by

CHAPTER 2: LITERATURE REVIEW 71

translating the English words first in Spanish, and in turn, the Spanish words in

German.

The futility of this undertaking is obvious. What may be less obvious is that between

these mappings critical information for knowledge acquisition might be lost or

misunderstood. These mappings are not necessarily straightforward and in many

cases they are characterised by a degree of ambiguity. Programming constructs are

already problematic for novices, even when they are in novices’ natural language

(see Section 2.4.2). In the case of novices who are non-native speakers of the

language incorporated by the PL and IDE, this phenomenon could be further

exacerbated by the additional and ambiguous mappings between foreign and mother

language. Thus, more misconceptions may be created, which potentially may be

more difficult to correct. Furthermore, people who do not understand the exact

meaning of programming concepts used to solve problems may develop poor

problem-solving skills.

The following analysis, based on CLT, provides further support for this principle.

Evidently, the translations that a novice who is not fluent with the linguistic attributes

of the PL and IDE need to make require cognitive resources in working memory.

This requirement reduces even more the limited capacity of working memory.

Programming, however, is known to be cognitively demanding (Mow, 2008). Thus,

the additional reduction of cognitive resources makes learning programming more

difficult. Moreover, ineffective schemata may be formed, due to an increase in

extraneous cognitive load produced by managing the translation and comprehension

of programming concepts at the same time. Traver (2010) noted that the mismatch

between novice’s mother tongue and the linguistic attributes of PL and IDEs could be

one of the reasons that novices have trouble with error messages.

CHAPTER 2: LITERATURE REVIEW 72

It is also reported that IDEs should match the linguistic attributes of the users’ native

language and the mental mappings novices have to do during programming should

be minimised (Pane & Myers, 2000; Pane et al., 2001). Barnes, Fincher and

Thompson (1997) suggested that it is easier for novices to solve problems in their

native language before transferring the solution to programs. As previously

discussed, if the PL and IDE do not match students’ linguistics attributes an

additional mapping is required. Furthermore, Pillay and Jugoo (2005) reported that

programming ability is positively influenced when the language of programming

instruction is the same with the natural language of students. Moreover, readability,

which is the level of effortlessness that is required to read something, of programs is

a crucial factor for program comprehension (Georgatos, 2002; Murnane, 1993).

Apparently, programs in users’ native language would be easier read than programs

in a foreign language.

Therefore, in order to effectively facilitate the teaching and learning of programming,

the linguistic characteristics of the PL and IDE should match as close as possible

those of its users. Ideally, these characteristics should be the same.

2.5.2 Syntax and Semantics of Instructions Supported by the Programming

Language

Instructions of PLs convey their meanings to programmers through their semantics.

Additionally, with the exception of visual programming languages, the programs

written in a particular PL are subjected to the rules of the PL’s syntax. Thus, the

syntax and semantics of the instructions supported by a textual PL are the features

that render the programs in this PL readable and meaningful. Without these

features, programs in textual PLs would be incomprehensible, not unlike a text in an

CHAPTER 2: LITERATURE REVIEW 73

unknown language. Therefore, syntax and semantics are two major features that

characterise each PL and consequently, its design.

The difficulties caused by the syntax and semantics of PLs were discussed in

Sections 2.4.1 and 2.4.2, respectively. Based on these difficulties as well as on

suggestions mentioned in international literature, the following design guidelines

concerning syntax and semantics of programming statements can be proposed.

Syntax is only a means to communicating with computers. However, syntax is a

source of many problems for novices, because it can feel very unnatural. An

approach to alleviate this difficulty is the design and implementation of natural-

language PLs (Myers, Pane & Ko, 2004; Riker, 2010), like Pegasus (Knöll & Mezini

2006). However, this approach suffers from its own weaknesses, for instance

ambiguity of naturalness’ definition, the openness of natural language and a lack of

consistency (Green, 1990a; Pane et al., 2001; Yin, 2010). Furthermore, a certain

level of formality is unavoidable or even preferred for natural-language PLs

(Bruckman & Edwards, 1999). In addition, readability, simplicity and consistency

achieved (for instance, by avoiding syntactic synonyms) seem to be more important

features of syntax than naturalness (Deek & Espinosa, 2005; Gupta, 2004; McIver &

Conway, 1996; Pane & Myers, 1996). Particularly, the readability of programs

provided by syntax is more important than the provided writeablity, in other words the

ease of writing programs (Georgatos, 2002). Gaspar, Langevin and Boyer went

even further so as to propose the “hypothesis that ‘syntax doesn’t really matter’ to

novice programmers’ education” (Gaspar, Langevin & Boyer, 2008, p. 210). They

also referred to attempts that used visual tools as alternative replacements of syntax.

Additionally, Kahler (2002) stated that syntax can be problematic for students even

when they understand how to complete a programming task.

CHAPTER 2: LITERATURE REVIEW 74

Semantics can be another source of difficulties for novices and especially a source

of misconceptions and a complicated problem to cope with. The semantics of PLs

should facilitate the transition from human thinking to programming concepts

(Kaasbøll, 1999). However, this is quite difficult because the words used in

programming commands do not support a direct mapping between the use of these

words in natural language and the use of these words in commands (Kurland & Pea,

1985). Moreover, semantics should be as unambiguous as possible and prevent

possible conflicts with previous non-programming knowledge of novices. Ideally,

semantics should promote programming concepts’ understanding rather than

hindering it (Pane & Myers, 1996). Moreover, different syntax should be used to

distinguish different semantics; for example, parentheses should be used either to

include the elements of arrays or to include the parameters of functions, but not in

both cases (McIver & Conway, 1996). Semantics should also be simple to

understand (du Boulay et al., 1999) and consistent with non-programming

knowledge (Gupta, 2004; Pane & Myers, 1996).

These syntactic and semantic features should be taken into consideration when

designing educational PLs. Consideration should also be given to the degree of

implementation of each feature as well as the balancing between features. For

example, excessively natural syntax can significantly improve readability, but it can

also produce syntactic synonyms or reinforce semantic misconceptions, for example

anthropomorphic characteristics of computers (Pane et al., 2001). Overall,

syntactical and semantic features that promote simplicity and understanding for

novices should be favoured over powerful or efficient characteristics that are

preferred for experienced programmers.

CHAPTER 2: LITERATURE REVIEW 75

2.5.3 Visualisation

Visualisation is widely believed to be very helpful for novice programmers. However,

there is much scepticism as to whether this is true (Amershi, Carenini, Conati,

Mackworth & Poole, 2008; Lahtinen, 2008; Mulholland, 1997; Myers, Ko & Burnett,

2006).

Visualisation in programming can be divided in two large categories. The first one is

program visualisation or programming visualisation, whilst the second is visual

programming. Programming visualisation involves the use of graphics to facilitate

program understanding, after programs have been created via a textual PL. In

contrast, visual programming uses graphical means to produce programs (Hu, 2004;

Myers, 1990; Navarro-Prieto & Cañas, 2001; Price, Baecker & Small, 1993). Visual

programming can be further categorised in graphical interactions systems and

visual-language systems. The distinction between the two categories is that in the

first category the system records and ‘learns’ from users’ actions, while in the

second, the spatial layout of visual symbols specifies programs. These visual

symbols can be (a) control/data flow diagrams, (b) icons, (c) tables/forms or (d)

others (Kiper, Howard & Ames, 1997).

Researchers have discussed the potential advantages of incorporating visualisations

for programming instruction in classrooms. A number of reasons that make graphics

so appealing to use are mentioned by Petre, Blackwell and Green (1998). For

example, graphics provide information which can be easily understood because it is

presented in a dense form and at a higher level of abstraction. Petre et al. (1998)

argued that visualisations can make concrete concepts more abstract and thus,

facilitate their grasp. They also suggested that visualisations could be advantageous

for novices by presenting the sequence of program execution. Du Boulay et al.

CHAPTER 2: LITERATURE REVIEW 76

(1999) underlined the importance of being able to view specific components and

functions of the notional machine. This can be accomplished by dynamically

describing the states of the notional machine through pictures or text. In particular,

this approach can be rather useful in examining the activities of the notional machine

during program execution by means of graphical or textual traces (du Boulay et al.,

1999). Brusilovsky (1994) suggested that the semantics of programming concepts

should be visually disclosed during execution. Furthermore, he argued that “visibility

provides a feedback for exploratory learning and problem solving” (Brusilovsky,

1994, p. 108). This is quite interesting for its pedagogical implications from a

constructivist viewpoint, because constructivism underlies the active construction of

knowledge by learners and particularly explanatory learning under proper guidance.

Hence, feedback from programming visualisations can help novices correctly

construct and explore programming knowledge. Specifically for systems that support

visual programming, Green and Petre (1996) argued that the creation of programs in

visual languages could be considered easy due to the relaxed syntax restrictions, the

provided level of abstraction and the freedom of choosing the order, in which to

proceed with program creation.

In addition, the benefits of visualisation can be supported by CLT. According to CLT

techniques and especially the modality effect (discussed in Section 2.2.2.2), the

presentation of information in a graphic form can reduce cognitive load. Hence, if

some programming components are displayed graphically, novices can retain more

cognitive resources for problem-solving and program creation.

Many studies support the claims that visualisations can be beneficial for novices by

reporting positive results of incorporating visualisations in programming education.

Kasurinen, Purmonen and Nikula (2008) used visualisation in introductory

CHAPTER 2: LITERATURE REVIEW 77

programming courses to increase students’ motivation. They reported a 10%

improvement in exercise grades and passing rates and, based on these results and

literature, they suggested that there is a need for visualisation in introductory

courses. Ebel and Ben-Ari (2006) reported an improvement in students’ behaviour in

class when using program visualisation. George (2000) reported that diagrammatic

traces helped novices acquire better mental models of recursion than students who

did not use diagrammatic traces. Ramadhan, Deek and Shihab (2001) found that

visualisations make program diagnosis systems more efficient in supporting its

users. They also reported that the dynamic visualisation of program behaviour could

help novices acquire a clear mental model of programming and improve their

problem-solving skills. Sajaniemi and Kuittinen (2003) used program visualisation

and specifically program animation, to distinguish the roles of variables in programs.

They reported that participants improved their program comprehension and program-

writing skills. Moons and De Backer (2009) used visualisations in a programming

tool for an object-oriented course. Their aim was to facilitate novice programmers in

understanding programming concepts, debugging their programs and increase their

motivation. However, they did not report any results for the effectiveness of their

tool. Lieber, Brandt and Miller (2014) used an IDE extension that provided always-

on, real time visualisation of programs’ execution to help users deal with their

misconceptions about their ideas of what a piece of code does and what it actual

does. They tested this IDE with graduate students, who had programming

experience and professionals and reported positive results in both experiments.

Vihavainen, Airaksinen and Watson (2014), in their meta-analysis, reviewed the pre-

intervention and post-intervention pass rates of 60 studies that employed 13 different

categories of teaching approaches for improving introductory programming. The

CHAPTER 2: LITERATURE REVIEW 78

results revealed that interventions using visual programming tools was among the

top five based on absolute and realised improvement of pass rates.

Nevertheless, there are also empirical studies on the effectiveness of visualisations

in programming that did not verify the expected effects. Myers (1990) highlighted a

number of problems with visualisations, for instance they are neither suitable for

large programs or data sets nor portable. Ihantola, Karavirta, Korhonen and

Nikander (2005) reported that developing multi-language visualisations – versions of

the same visualisation in different languages – is often neglected. Hundhausen

(2002) draws attention to the fact that visualisations in class, under particular

circumstances, can also be a source of distraction. A similar remark was made by

Petre (1995), who argued that novices might not get the expected help out of

visualisations, because they lack the knowledge to explore visualisations effectively.

Green and Petre (1996) noticed that making changes in visually created programs

requires a considerable amount of effort and time. More important, Hundhausen,

Douglas and Stasko (2002) concluded that visualisations are rendered effective by

the way they are used and not by their context. Furthermore, they noted that

visualisation with activities within a constructivism framework were more successful

than with activities within other theoretical frameworks. Naps et al. (2002) reached a

similar conclusion about the use of visualisations, namely that visualisations can

have a positive effect on novices only when novices adopt an active role towards

them.

A relevant issue is how information should be represented in a visualisation. Larkin

and Simon (1987) discussed how diagrammatic representations can be more

beneficial in problem-solving than textual representations. They mentioned that

diagrams can present more information, make visible implicit information and support

CHAPTER 2: LITERATURE REVIEW 79

useful indexing of information. However, they remarked that diagrams can be used

effectively by those who have sufficient knowledge to do so. Edwards (2005) noted

that diagrams can convey compact information, but fail to represent details,

especially when they are large. Blackwell, Whitley, Good and Petre (2001)

discussed the applications of diagrams and particularly flowcharts in visual

programming. They concluded that diagrams can be helpful for novices in certain

programming tasks, like tracing control flow, but not for the entire programming

activity. Similar arguments for the beneficial use of flowcharts in program creation

were made by Scott (2010). Navarro-Prieto and Cañas mentioned that pictorial

representations and especially icons can “be helpful because they facilitate the

access to semantic information” (Navarro-Prieto & Cañas, 2001, p. 810). Flowcharts

and icons have been used as visual PL notation for procedural and object-oriented

courses (Calloni, Bagert & Haiduk, 1997; Scott, 2010)

Furthermore, there is also an ongoing debate on whether a graphical or a textual

representation of programs is more beneficial for novices (Green, 1990b). Both

approaches have been found to have positive effects and the superiority of one

representation over the other has not yet been determined. Calloni and Bagert

(1994; 1995) reported that the users of an iconic programming environment

performed better in exam scores and syntax understanding than users of textual

languages, PASCAL and C++, respectively. Similarly, Cilliers, Calitz and Greyling

(2005) reported that using a programming tool with icons in an introductory

programming course improved the performance and passing rates of novices. They

also suggested that a textual representation of programs alone is not beneficial for

novices with respect to their program understanding and writing skills. Nevertheless,

textual forms seem to provide better representation for large programs, while

CHAPTER 2: LITERATURE REVIEW 80

graphics are better for smaller programs (Blackwell et al., 2001; Edwards, 2005;

Pane & Myers, 1996).

In conclusion, visualisation in programming can be beneficial for students as long as

it engages them in an active learning role. More particularly, program visualisation

could be used for presenting explicitly program execution and supporting the

understanding of semantics, while visual programming could be effective for creating

small programs with the use of diagrams and icons.

2.5.4 Abstraction of Commands Provided by the Programming Language

Abstraction is a mechanism that allows humans to deal with a problem or situation

by hiding irrelevant details. For example, one does not need to know the exact way

that a car pedal works in order to drive. It suffices to know that stepping on the

accelerator or the brake pedal makes the car move or stop, respectively. At this

level, the exact workings of these pedals provide no useful information and thus it

can be ignored. However, for a car mechanic this kind of information is crucial and

necessary. Hence, the context within which an abstraction is used, determines the

level of the abstraction. Furthermore, abstraction fosters a reduction in extraneous

cognitive load by hiding unnecessary information (McIver, 2000; Shaffer et al., 2003)

The ability to abstract is fundamental in many science disciplines, including

programming (Blackwell, 2002a; Gomes & Mendes, 2007; Hazzan, 2003). In fact,

the nature of programming includes a constant use of abstractions in various levels,

because there is no direct mapping between problem domain and programming

domain (Green & Petre, 1996). Hence, abstraction is a valuable skill for

programmers as well as an important feature of programming languages.

Programmers use abstractions to solve problems and create programs (Návrat,

CHAPTER 2: LITERATURE REVIEW 81

1996), while PLs use abstraction to provide programming concepts with a certain

level of detail, which facilitates programming (Pane & Myers, 1996). The abstract

concepts of programming become more concrete via their implementation in a PL in

the form of commands. However, the details of commands’ implementation are

hidden from users. Thus, the implementation choices of these programming

concepts in a PL determine the level of abstraction (or concreteness) of PL’s

commands (Návrat, 1996).

Abstraction is examined in this thesis as a feature of PLs. Achieving the appropriate

level of abstraction for a PL is difficult (Green & Petre, 1996). This is especially true

in the case of PLs for novice programmers. The level of abstraction of commands

provided by PLs for novices should enable them to perform various operations

without being difficult to use (Gupta, 2004). McIver and Conway (1996) proposed

that the abstraction level of commands should be as close as possible to the

abstraction level of the problem domain and should be neither too high nor too low.

In particular, the abstraction level of commands should be high enough to hide

unnecessary technical details, for example how an output command is implemented,

and to allow users to focus more on the functionality of commands, for instance what

the programming effect of an output command is. This approach not only reduces

potential cognitive load produced by irrelevant details, but also hides details that

could be distracting. However, a high level of abstraction could obscure critical

information that is required for the comprehension of commands and possibly cause

misconceptions. Furthermore, abstractions at the appropriate level could make a

program more understandable (Green & Petre, 1996).

CHAPTER 2: LITERATURE REVIEW 82

2.5.5 Small Set of Instructions

The majority of PLs for novice programmers consists of a small set of programming

instructions (Dagdilelis et al., 2004). An educational PL is not a software tool for

producing professional programs. Therefore, the full capabilities of a professional PL

are not required. Thus, an educational PL could be either a mini-language or a sub-

language. A mini-language supports only the programming constructs that are

fundamental in introductory programming, while a sub-language is a subset of a

professional PL and supports only the commands that implement basic programming

constructs (Brusilovsky, 1994). Given that the basic programming constructs, like

input, output, iteration and conditional statements, need to be supported, the

emerging set of programming commands would be rather small.

The commands that would be included in this set should also meet a high-level of

orthogonality. That is, the dependence between the commands of the set should be

as little as possible. Thus, there should be only one way for performing a specific

action (Georgatos, 2002; Wiedenbeck, 1985).

The implication of this design principle can have some positive effects. A small set

of programming concepts would be easier to learn (Gupta, 2004). The syntax of

these concepts could be simpler, because there would be only a few syntactic rules

to remember (McIver & Conway, 1996). This way, syntactic synonyms and

homonyms could be avoided. Furthermore, semantics could become clearer to

novices, because it would be easier to distinguish between programming commands

of a small set. Moreover, it is apparent that a small number of instructions can

contribute to the minimisation of intrinsic cognitive load during programming

(Brusilovsky, 1994).

CHAPTER 2: LITERATURE REVIEW 83

2.5.6 Provision of Error Messages

As discussed in Section 2.4.4, error messages are a major source of difficulties for

novice programmers. Not only novices are confused by the complexity of error

messages, but they can also extract little information on how to fix them. Error

messages can be useful in learning programming, only when programmers can

understand and use them (McIver & Conway, 1996). Various recommendations

have been proposed towards the aim of making error massages more

comprehensible and supportive for novice programmers. Provision of ‘good error

messages’ is one of the usability heuristics proposed by Nielsen (1993).

Furthermore, du Boulay et al. suggested that error messages “form an important

window into the machine” (du Boulay et al., 1999, p. 267). The term machine in the

previous phrase refers to the notional machine of the PL.

Allwood (1986) suggested that error messages should be more detailed and

informative instead of consisting of a couple of words. However, Nienaltowski et al.

(2008) reported that the length of error messages is not as important as is their

placement and their form. Similarly, the importance of enhanced error messages for

novice programmers was investigated by Denny, Luxton-Reilly and Carpenter

(2014). They developed CodeWrite, a web-based tool that provided enhanced error

messages and examples on how to correct them. However, no significant

differences were found in the debugging performance of programmers between the

control group and the group that used CodeWrite. Possible explanation for their

findings were that errors were simple and could be corrected without the use of

CodeWrite and that the additional information was not used by students – they did

not pay much attention or could not be used in their code. Marceau et al. (2011),

after examining students’ responses to error messages, recommended that the

CHAPTER 2: LITERATURE REVIEW 84

presentation of error messages should use simple non-technical language and

colours to highlight code. Colour should be used to highlight location in the code of

commands reported by error messages. Similar suggestions were recommended by

McIver and Conway (1996) and Traver (2010). Traver (2010) also proposed that

error messages should be specific, context-insensitive, non-hostile towards users

and avoid anthropomorphic characteristics. Du Boulay and Matthew (1984)

proposed that special checkers should be used for programs created by novices.

These checkers should provide understandable and informative error messages

before compilation. Only after a program has successfully passed all checkers

should it be submitted for compilation. Thus, the error-checking function of

compilers should be set apart from its function of producing intermediate code.

2.5.7 A High Level of Interaction with the Integrated Development

Environment

The term interaction describes a process of exchanging “information, responses and

feedback between the learner and the computer” (Jih & Reeves, 1992, p. 40) and it

is hypothesised to increase learners’ performance and motivation. According to

constructivism, the active involvement of students in knowledge construction is very

important. Students can learn from their own discovery, but this does not

necessarily lead to effective learning. Effective learning aims at constructing

knowledge structures that represent reality sufficiently, accurately and consistently

and this can be achieved through proper guidance, usually, provided by teachers

(Ben-Ari, 2001). For example, visualisations seem to have positive pedagogical

effects for novice programmers, only when novices are actively engaged in them

(Hundhausen et al., 2002). Du Boulay et al. (1999) suggested that interaction with

CHAPTER 2: LITERATURE REVIEW 85

the system of a PL can decrease the distance between its notional machine and its

users. Therefore, engaging novices in an active communication with the IDE, by

providing a high level of interaction, could be beneficial in programming, especially

during the creation of programs. It is important, though, that this active

communication promotes effective learning.

A high level of interaction between the IDE and its users could be achieved through

the provision of proper guidance throughout the creation of programs and thus foster

effective learning. This could also result in error minimisation or prevention.

Providing guidance could also reduce extraneous cognitive load. Guidance can

bypass actions like recalling or decision-making that can increase cognitive load.

Therefore, providing guidance can help novices to carry on with cognitive-demanding

activities using fewer working-memory resources, for example dealing with novel

math problems. Furthermore, a high level of interaction could make IDEs more

appealing to novices and increase motivation. Interaction in IDEs could be used for

presenting the notional machine, the notation, the input, the output, the editor and

the debugger (Romero, du Boulay, Robertson, Good & Howland, 2009).

2.5.8 Further Issues Regarding the Seven Design Principles

The majority of the design principles seem to focus on and address the difficulties of

novice programmers. However, these principles can have pedagogical effects as

well. Examining the seven design principles from the viewpoint of constructivism

and CLT, the following assertions for their pedagogical impact can be made. The

clear presentation of just the necessary programming concepts and the hiding of

other irrelevant information can reduce extraneous cognitive load and increase

germane cognitive load. In addition, this can also be achieved by adopting the

CHAPTER 2: LITERATURE REVIEW 86

linguistic attributes of users’ native language for the PL and IDE and using less

unnatural syntax and more understandable semantics. Furthermore, providing an

appropriate level of abstraction of programming commands, a small set of

instructions and easily comprehensible error messages can also contribute to the

management of intrinsic and the reduction of extraneous cognitive load.

Visualisation and a high level of interaction with the IDE can help in the assimilation

and accommodation of knowledge by engaging users in an active role throughout

the process of learning to program. Users can employ these features to meet their

personal learning needs in order to individually and actively construct their

knowledge structures of programming concepts.

With the exception of the work of Pane and Myers (1996), McIver and Conway

(1996) and Kelleher and Pausch (2005), there seems to be little research on

determining principles for educational programming software that could support

novices. This is evident especially when one considers the vast literature that exists

on the difficulties that novices have during introductory computer programming.

Although the work presented in this thesis was inspired and motivated by the work of

the latter six authors, it is different and complementary to the existing body of work

with respect the following two factors. First, the design principles presented here

were identified not only through novices’ difficulties but also from pedagogical

theories, which provided the theoretical basis for well-documented educational

research. Second, the set of design principles, except from having been identified

based on theoretical arguments, was empirically studied as well. This was

accomplished by designing, implementing and evaluating an enhanced educational

programming environment, which served as a manifestation of applying the

combined set of design principles (see Chapters 3 and 4).

CHAPTER 2: LITERATURE REVIEW 87

It may be possible to identify and add more design principles to this set. However,

retaining a small number of design principles, without compromising the quality and

impact of this set, can be advantageous. First, a small combined set of principles

can be relatively easy to implement. Second, as the number of principles increases,

there has to be some trade-off between their application (Pane & Myers, 1996).

Therefore, by selecting and keeping only a small number of the potentially most

effective design principles, a maximum use of their effects can be achieved without

the undesirable results of conflicts between them.

2.6 Educational Programming Languages and Integrated Development

Environments for Novice Programmers

As discussed in the previous section, a part of this project is designing and

implementing a new educational programming environment, based on the set of

seven design principles. The great number of existing educational PLs and IDEs is

revealed by a prominent review study by Kelleher and Pausch (2005) as well as

similar studies by other authors (Deek & McHugh, 1998; Pears et al., 2007).

Naturally, this project is based on and influenced by previous PLs and IDEs for

novices. Therefore, this section discusses the most-cited and prominent PLs and

IDEs that were designed and implemented especially for introductory programming.

The PLs and IDEs are reviewed through the prism of the seven design principles.

This means that their review focuses on how they comply with the seven design

principles. Because the state of affairs in programming education and pedagogical

programming software in Greece is of particular interest for this study, the following

distinction is made. First, international (non-Greek) educational PLs and IDEs are

reported, while Greek PLs and IDEs for novices follow.

CHAPTER 2: LITERATURE REVIEW 88

2.6.1 International Educational Programming Languages and Integrated

Development Environments

This subsection presents non-Greek PLs and IDEs for novice programmers. In

particular, the degree and/or the type of compliance of these PLs and IDEs with the

seven design principles is discussed. The selection of the programming tools to be

presented was based on the following criteria. First, the programming tool should be

mentioned in the international literature. Second, the target group of the software is

novice programmers. Third, the tool supports, as a minimum, the basic

programming concepts, regardless of the computational paradigm, for example

procedural or object-oriented. Fourth, the programming software is not specialised

for a specific educational aim, for instance the teaching of sorting algorithms. Fifth,

these PLs and IDEs were developed after 1998 (10 years before the commencing of

this study). Predating software is possibly obsolete at present due to advances in

technology, and in pedagogical and psychological research.

In order to display this review more efficiently, tabular layout was chosen. The first

column of Table 2.1 shows the name of the programming tool, each of the following

seven columns reports compliance with each of the seven design principle and the

final column presents the method(s) used for its empirical evaluation. The aim of this

review is to investigate and present the level of compliance of the selected

educational tools with the set of principles as well as to report the methods used to

evaluate these tools. However, it was decided that the results of the reported

evaluations would not be presented in Table 2.1, because (a) presenting evaluation

results does not inform nor contribute to the aim of this review and (b) results from

different evaluation methods cannot be used to make meaningful comparisons

between tools. References for the bibliographic sources of each programming tool

CHAPTER 2: LITERATURE REVIEW 89

and its evaluation method(s) are shown in the first and last columns of the table,

respectively. The degree and/or type of compliance of a particular PL and IDE with

each design principle may or may not be reported in the source(s) that presents the

programming tool. The latter case is reported in the table as N/R. However, the

degree or type of compliance may not be explicitly reported, but it may be inferred

from the description of the programming tool. In this case, the degree or type of

compliance is reported within brackets. For example, the linguistic attributes of a

programming tool may not be explicitly reported. However, a figure displaying the

tool may be provided and hence, it can be used to infer the tool’s linguistic attributes.

If a design principle is not applicable to a programming tool, then this is reported as

N/A.

The level of interaction between users and each IDE is reported using the following

three categories: low, medium and high. The level of interaction provided by each

IDE corresponds with one of the three categories regarding the interaction between

the IDE and its users during the creation and execution of programs. This involves

using dialogue boxes, providing information and preventing errors during program

creation, controlling the execution of programs and providing feedback regarding

programs’ execution. The most important non-Greek educational PLs and IDEs as

well as their relation to the seven design principles are presented chronologically in

Table 2.1

CHAPTER 2: LITERATURE REVIEW 90

Table 2.1
Incorporation of the Seven Design Principles by non-Greek Educational PLs and IDEs

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

FLINT
(Ziegler &
Crews, 1999)

[English] N/A Visual
programming,
visualisation of
program
execution

N/R N/R Syntax
errors are
not possible

[High] N/R

GRAIL
(McIver,
2000; McIver
& Conway,
1999)

[English] Natural-
language-
like syntax
and
semantics

N/R [High] Yes N/R N/R Numbers of syntax
and logical errors
(McIver, 2000)

InSTEP
(Odekirk-
Hash &
Zachary,
2001)

[English] Syntax and
semantics
of C
language

N/R [Abstraction
level of C
language]

[No] Suggestion
s of
possible
solutions

[Medium] Students’
understanding of
programs (Odekirk-
Hash & Zachary,
2001)

HANDS
(Pane &
Myers, 2006;
Pane, Myers
& Miller,
2002)

[English] Verbose
natural-
language-
like syntax
and
semantics

Visual
representation
of difficult
textual
elements

[High] [No] [N/R] [High] Students’
programming
performance on
tasks (Pane et al.,
2002)

CHAPTER 2: LITERATURE REVIEW 91

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

DrJava
(Allen,
Cartwright &
Reis, 2003;
Allen,
Cartwright &
Stoler, 2002;
Hsia,
Simpson,
Smith &
Cartwright,
2005; Reis &
Cartwright,
2004)

[English] Syntax and
semantics
of Java
language

N/R [Abstraction
level of
Java
language]

Provides
three levels
regarding the
size of the
sets of
commands

Locations of
errors in the
code are
highlighted

[High] N/R

Jerro
(Sanders &
Dorn, 2003)

[English] Syntax and
semantics
of both Java
and C
languages

Microworld,
visualisation of
program
execution

[High] [Yes] N/R [Medium] Students’
satisfaction
regarding the tool
(questionnaire)
(Sanders & Dorn,
2003)

CHAPTER 2: LITERATURE REVIEW 92

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

Jeliot (Ben-
Ari et al.,
2011; Ben-
Bassat Levy,
Ben-Ari &
Uronen,
2003)

[English] Syntax and
semantics
of Java
language

Program
animation

[Abstraction
level of
Java
language]

[No] N/R [High] Paper-and-pencil
programming
assignments (Ben-
Bassat Levy et al.,
2003), prediction of
programs’
execution,
interviews with
students to
measure tool’s
effectiveness,
video record of
lesson, eye
movement
tracking, program
comprehension
analysis, and
teachers’ views on
animation and
experiences (Ben-
Ari et al., 2011)

CHAPTER 2: LITERATURE REVIEW 93

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

BlueJ
(Kölling,
Quig,
Patterson &
Rosenberg,
2003)

[English] Syntax and
semantics
of Java
language

Visualisation of
programming
elements

[Abstraction
level of
Java
language]

[No] Explanatory
error
messages,
lines with
errors
highlighted,
suggestions
of possible
solutions

[High] Students’ views on
tool’s usefulness,
tool’s best/worst
aspect and how
helpful was the tool
in understanding
OO programming
and passing the
course
(questionnaire)
(van Haaster &
Hagan, 2004)

JPie
(Goldman,
2004a,
2004b)

[English] Syntax and
semantics
of Java
language

Visual
programming

[Abstraction
level of
Java
language]

No Immediate
but low-
detailed
error
messages

[High] N/R

jGRASP
(Hendrix,
James H.
Cross &
Larry, 2004)

[English] Syntax and
semantics
of Java
language

Visualisation of
programming
elements

[Abstraction
level of
Java
language]

[No] N/R High N/R

CHAPTER 2: LITERATURE REVIEW 94

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

VIP
(Virtanen,
Lahtinen &
Järvinen,
2005)

[English] Syntax and
semantics
of C++
language

Visualisation of
program
execution

[Abstraction
level of C++
language]

[Yes] N/R [High] Students’ views on
tool’s usefulness
(questionnaire) and
usage of tool
(Virtanen et al.,
2005)

RAPTOR
(Carlisle,
Wilson,
Humphries &
Hadfield,
2005)

[English] Syntax and
semantics
of both
Pascal and
C
languages

Visual
programming,
visualisation of
program
execution

[Abstraction
level of
Pascal and
C
languages

[No] Syntax
errors are
not possible

[High] Properties of
students’ programs
and students’
views on tool’s
features
(questionnaire)
(Carlisle et al.,
2005)

ProGuide
(Areias &
Mendes,
2007)

Portuguese N/A Visual
programming

N/R Yes Natural-
language
error
messages,
visual
element
highlighted

[High] N/R

Karel J Robot
(Bergin,
Stehlik,
Roberts &
Pattis, 2005)

[English] Syntax and
semantics
of Java
language

Microworld,
visualisation of
program
execution

N/R [Yes] N/R N/R N/R

CHAPTER 2: LITERATURE REVIEW 95

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

B# (Greyling,
Cilliers &
Calitz, 2006)

[English] Syntax and
semantics
of Pascal
language

Visual
programming,
visualisation of
program
execution

[Abstraction
level of
Pascal
language]

[Yes] Syntax
errors are
not possible

[High] N/R

ALVIS Live!
(Hundhausen
& Brown,
2007;
Hundhausen,
Farley &
Brown, 2009)

[English] Syntax and
semantics
of SALSA
pseudo
code
language

Visual
programming,
visualisation of
programming
elements,
visualisation of
program
execution

[Abstraction
level of
SALSA
language]

[Yes] Dynamic
feedback on
commands’
syntactic
correctness

[High] Students’ views on
tool’s usability
(questionnaire),
video analysis of
program creation
process, participant
observation,
artefact collection,
properties of
student’s programs
and time spent on
task by students
(Hundhausen &
Brown, 2007;
Hundhausen &
Brown, 2008;
Hundhausen et al.,
2009)

CHAPTER 2: LITERATURE REVIEW 96

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

ELP (Truong,
2007)

[English] Syntax and
semantics
of Java, C
and C#
languages

N/R [Abstraction
of Java, C
and C#
languages]

[No] Friendly
error
messages,
links to lines
with errors

[Medium] Students’ and
teachers’ views on
tool features
(questionnaire)
(Truong, 2007)

Alice (Bishop-
Clark, Courte,
Evans &
Howard,
2007)

[English] [Natural-
language-
like syntax
and
semantics]

Visual
programming,
3D microworld

[High] [No] Syntax
errors are
not possible

[High] Students’
confidence in
programming,
enjoyment of
programming and
understanding of
programming
concepts
(questionnaire),
students’ reflective
essays (Bishop-
Clark et al., 2007)

PEN (Nishida
et al., 2008)

Japanese Constructs
based on
Japanese
words

Visualisation of
program
execution

N/R N/R N/R [Medium] Students’
expectations for
the programming
lessons
(questionnaire),
students’
impressions
(Nishida et al.,
2008)

CHAPTER 2: LITERATURE REVIEW 97

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

Turtlet
(Kasurinen et
al., 2008)

[English] Syntax and
semantics
of Python
language

Microworld,
visualisation of
program
execution

[Abstraction
level of
Python
language]

[No] N/R [Medium] Students’ views on
tool’s usefulness
(questionnaire)
(Kasurinen et al.,
2008)

Progranimate
(Scott, 2010;
Scott,
Watkins &
McPhee,
2008)

[English] Syntax and
semantics
of Java,
Visual
Basic.NET
and Visual
Basic 6
languages

Visual
programming,
visualisation of
program
execution

[Abstraction
level of
Java, Visual
Basic.Net
and Visual
Basic 6
languages]

[Yes] Meaningful
error
messages

[High] Students’ views on
tool’s features,
usability and
efficacy
(questionnaire)
(Scott, 2010)

ViLLE
(Rajala,
Laakso, Kaila
& Salakoski,
2008)

[English] Syntax and
semantics
of Java,
pseudo
code and
C++
languages

Visualisation of
program
execution

[Abstraction
level of
Java,
pseudo
code and
C++
languages]

[No] N/R [High] Properties of
students’ programs
(Rajala et al.,
2008)

CORT
(Garner,
2009)

[English] Syntax and
semantics
of Visual
Basic

N/R [Abstraction
level of
Visual Basic
language]

[No] N/R [Low] Time spent on
programs and
average amount of
help asked by
students, program
understanding and
program creation
(Garner, 2009)

CHAPTER 2: LITERATURE REVIEW 98

Table 2.1 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

Scratch
(Resnick et
al., 2009)

[English] [Natural-
language-
like syntax
and
semantics]

Visual
programming,
visualisation of
program
execution

[High] [No] Errors are
not possible

High Students’
experiences with
the tool
(questionnaire)
(Malan & Leitner,
2007)

Jype
(Helminen &
Malmi, 2010)

[English] [Syntax and
semantics
of Python
language]

Visualisation of
program
execution

[Abstraction
level of
Python
language]

[No] N/R High N/R

Greenfoot
(Henriksen &
Kölling, 2004;
Kölling, 2010)

[English] Syntax and
semantics
of Java
language

Microworld,
visualisation of
program
execution

[Abstraction
level of
Java
language]

[No] No
particular
attention
was paid to
providing
good error
messages

[High] No formal studies
were carried out

FLIP (Good,
2011)

[English] C-like
language

Visual
programming,
visualisation of
program
execution

[Abstraction
level of C
language]

[No] N/R [High] N/R

CodeSkulptor
(Tang, Rixner
& Warren,
2014)

[English] [Syntax and
semantics
of Python
language]

Visualisation of
program
execution

[Abstraction
level of
Python
language]

Yes N/R [High] N/R

Note. PLs = Programming Languages; IDEs = Integrated Development Environments; N/A = not applicable; N/R = not reported; [] = the type/degree of
compliance is not reported, but inferred.

CHAPTER 2: LITERATURE REVIEW 99

Table 2.1 contains the results for 27 international programming tools for educational

programming. Only two of these tools are not in the English language, namely

ProGuide and PEN, which are in the Portuguese and the Japanese language,

respectively. The majority of the tools adopted the syntax and semantics of popular

professional PLs, like Java and C/C++. Only, three tools, Alice, Scratch and PEN,

implemented a more natural-like approach for the syntax and semantics of their PLs.

With the exception of InStep, CORT and ELP, incorporation of visualisation is a

design choice followed by all programming tools. This fact could underlie the

instinctive appeal to and importance of visualisation for improving programming

instruction. Its most popular form is the visualisation of program execution, followed

by visual programming. The PLs of these tools support overall a high level of

abstraction, but is not reported for PEN. However, the majority of the reviewed work

do not explicitly mention the level of abstraction provided, probably because it is

difficult to define. Provision of error messages is a design principle that is not

considered or reported. However, half of the reviewed programming tools support

some form of help for novices regarding error messages. All programming tools,

except for CORT, appear to provide a medium to high interaction level between

users and their IDE.

Overall, most of the reviewed tools do not seem to support all seven design

principles and appear to have been designed without considering (at least, a high

level of) compliance with the combined set of principles. From the methods that

were used for the evaluation of these tools, two seem to be the most popular. The

first one is using questionnaires to collect users’ opinions and views regarding

programming tools’ features and usefulness. The second one is the analysis of

programs’ properties, for example correctness or output of programs created by

CHAPTER 2: LITERATURE REVIEW 100

students. The latter method can provide a measure of students’ understanding of

applying programming knowledge. The review of Greek educational software

follows.

2.6.2 Greek Educational Programming Languages and Integrated

Development Environments

The research reported in this thesis is especially concerned with the present state of

computer programming education in Greece. Therefore, the available tools that

support and facilitate the teaching and learning of introductory programming are very

important for this study. Thus, educational software that is developed for Greek

novice programmers is discussed in this section.

The criteria for selecting and the layout of presenting the educational software follow

that of Section 2.6.1 and Table 2.1, respectively. One additional criterion was

introduced for this review: whether the evaluation of the educational PL and/or IDE

took place only in Greek educational institutes. The aim of this additional criterion is

to include educational software that was developed with regard to novice

programmers in Greece.

Hence, Table 2.2 shows, Greek PLs and IDEs that were designed for Greek novice

programmers and how they relate to the seven principles. The software is listed in

chronological order.

CHAPTER 2: LITERATURE REVIEW 101

Table 2.2
Incorporation of the Seven Design Principles by Greek Educational PLs and IDEs

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

X-Compiler
(Dagdilelis et
al., 2003;
Evangelidis
et al., 2001)

[English PL
- Greek
IDE]

Greek
Pascal-like
language

Visualisation of
program
execution

[Abstraction
level of
Pascal
language]

Yes Errors
message in
natural
language,
suggestions
of possible
solutions

[Medium] N/R

AnimPascal
(Satratzemi
et al., 2001)

[English] Syntax and
semantics
of Pascal
language

Visualisation of
program
execution

[Abstraction
level of
Pascal
language]

N/R Line with
error
highlighted

[Medium] Properties of
student’s programs
(Satratzemi et al.,
2001)

CHAPTER 2: LITERATURE REVIEW 102

Table 2.2 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

objectKarel
(Satratzemi
et al., 2003;
Xinogalos et
al., 2006)

[English] Syntax and
semantics
of Karel++
language

Microworld,
visualisation of
program
execution

[High] Yes Line with
error
reported,
errors
message in
natural
language

High Properties of
students’ programs
(Satratzemi et al.,
2003); Students’
difficulties,
properties of
students’ programs
and students’
views on tool’s
usability and
educational
effectiveness
(questionnaire)
(Xinogalos et al.,
2006)

CHAPTER 2: LITERATURE REVIEW 103

Table 2.2 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

WIPE
(Efopoulos,
Dagdilelis, et
al., 2005;
Efopoulos,
Evangelidis,
et al., 2005)

[English] Syntax and
semantics
of Pascal
language

Visualisation of
program
execution

[Abstraction
level of
Pascal
language]

Yes Error
messages
in natural
language,
suggestions
for possible
solutions

[Medium] Classroom
observations,
properties of
students’
programs,
comparative
evaluation with
Borland Pascal,
interviews with
teachers and
students’ views on
tool’s features
(questionnaire)
(Efopoulos,
Dagdilelis, et al.,
2005; Efopoulos,
Evangelidis, et al.,
2005)

DAVE
(Vrachnos &
Jimoyiannis,
2008)

[Greek] [Greek
Pascal-like
language]

Algorithm
visualisation

[High] [Yes] N/R [Medium] N/R

CHAPTER 2: LITERATURE REVIEW 104

Table 2.2 (continued)

Design Principle
Name Natural

Language
of PL and

IDE

Syntax and
Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Evaluation
method

LECGO
(Kordaki,
2009, 2010)

[English PL
- Greek
IDE]

Syntax and
semantics
of C
language

Graphical
Output:
Geometrical
shapes

[Abstraction
level of C
language]

N/R N/R [High] Properties of
students’
programs,
students’ difficulties
and questions, and
graphic functions
used (Kordaki,
2010)

Note. PLs = Programming Languages; IDEs = Integrated Development Environments; N/A = not applicable; N/R = not reported; [] = the
type/degree of compliance is not reported, but inferred.

CHAPTER 2: LITERATURE REVIEW 105

The results presented in Table 2.2 reveal that only six programming tools have been

developed for introductory programming in Greece and are reported in the

international literature. Furthermore, the majority of these PLs and IDEs present a

low level of compliance with the set of design principles. Users’ natural language,

syntax and semantics, level of abstraction and small set of commands appear not to

have been considered in the design of those PLs. This is the case for the linguistic

attributes of and the level of interaction with IDEs as well. Only three out of six tools

support error messages in natural language. However, visualisation features seem

to have been incorporated in all PLs and IDEs.

As in the case of international educational software, most of the tools were evaluated

using questionnaires that measured tools’ usability and properties of students’

programs, such as correctness and number of missing or misplaced commands.

Furthermore, with the exception of WIPE (Efopoulos, Dagdilelis, et al., 2005;

Efopoulos, Evangelidis, et al., 2005) and LECGO (Kordaki, 2010), the effectiveness

of each tool on the programming performance of students was not evaluated in

comparison with the effectiveness of other tools (McIver, 2002; Vogts, Calitz &

Greyling, 2008).

2.6.3 Overview of Surveying Educational Programming Languages and

Integrated Development Environments

The overall conclusions of reviewing international and Greek PLs and IDEs for

novices are the following. A considerable portion of the PLs and IDEs were

designed in the English language. Furthermore, a great number of the analysed

educational programming tools incorporated the unfriendly syntax and semantics of

professional PLs. Visualisation was integrated in various forms by the majority of

CHAPTER 2: LITERATURE REVIEW 106

PLs and IDEs. The level of abstraction of PLs was almost never explicitly reported

and probably not considered, while the design principle of providing understandable

and helpful error messages was often neglected. Most of IDEs support a medium to

high level of interaction with their users.

Finally, the evaluation methods that were employed were based on students’ views

on tools’ usability and properties of students’ programs. However, the level and

quality of programming knowledge that students actually acquired by using the

specific tool cannot be fully assessed by either method (see Section 2.7 for a

discussion of how to measure students’ programming knowledge). Moreover, most

of programming tools were not evaluated by comparing their impact on students with

the impact of other programming tools (Vogts et al., 2008). This comparison,

however, is essential, because comparing a new programming tool with a ‘traditional’

one can provide evidence for its effectiveness and establish its superiority.

In order to overcome the weaknesses of the reported evaluation methods, a more in-

depth method, which involves knowledge measurement, can be employed for the

evaluation of programming tools. Therefore, the following section discusses

declarative and procedural programming knowledge, how it can be elicited and

measured, and its relation to this thesis.

2.7 Knowledge and Mental Models

In Section 2.3, the learning objectives of programming instruction were reviewed.

Two underlying ideas were identified as common amongst the different learning

objectives. First, learning programming involves the acquisition of knowledge

regarding programming concepts. Second, learning programming involves the

development of knowledge on how to use these concepts in program creation.

CHAPTER 2: LITERATURE REVIEW 107

Cognitive psychology defines these types of knowledge as declarative and

procedural knowledge, respectively. As mentioned in Section 2.3, this thesis

considers learning to program as the acquisition of declarative knowledge and the

development of procedural knowledge in the programming domain (Palumbo, 1990;

Shaffer et al., 2003). Hence, the first part of this section discusses declarative and

procedural knowledge in programming. The second part discusses mental models

as a method for measuring declarative knowledge.

2.7.1 Declarative and Procedural Knowledge in the Programming Domain

Cognitive psychology defines declarative or conceptual knowledge as the knowledge

about constructs, facts, principles and their interrelations (de Jong & Ferguson-

Hessler, 1996). Declarative knowledge is hypothesised to be stored in the form of

schemata (Ormerod, 1990) or propositional networks (McGill & Volet, 1997). This

type of knowledge is consciously accessible and processed, and can be

communicated through speech (Robillard, 1999). In the programming domain,

declarative knowledge refers to knowledge of programming concepts, syntax and

semantics of PLs (Palumbo, 1990).

Procedural knowledge is defined as knowing how to effectively use, if it is applicable,

the concepts of declarative knowledge and especially in problem-solving situations

(de Jong & Ferguson-Hessler, 1996). Procedural knowledge “is usually associated

with very efficient automatic behaviours” (Harvey & Anderson, 1996, p. 71) and is

often represented by production rules (Ormerod, 1990). A production rule has the

form of an if-then statement, namely IF <condition> THEN <action>. In the case that

a condition is validated to be true, then the related action is triggered. Actions can

be either physical activities or mental processes. When a production rule is

CHAPTER 2: LITERATURE REVIEW 108

mastered within a domain, it can be applied to other but similar domains (Harvey &

Anderson, 1996). Procedural knowledge is hard to describe verbally and the

methods of applying it usually cannot be forgotten (Robillard, 1999) . The

development of procedural programming knowledge seems to be more cognitively

challenging than of declarative programming knowledge (Palumbo, 1990).

Moreover, expertise seems to be more associated with procedural knowledge than

declarative knowledge (Rose, Rose & McKay, 2007). Specifically in programming,

procedural knowledge enables one to use programming concepts, syntax and

semantics (declarative programming knowledge) to create programs. Hundhausen

et al. (2002) also noted that visualisation in programming instruction seems to affect

more procedural than declarative programming knowledge.

A challenging question that is still unanswered is which type of knowledge is

acquired first. Anderson (1982) postulated that programming knowledge is first

acquired as declarative knowledge. This knowledge is initially used through general

procedural rules that are applicable in the programming domain. This way

declarative knowledge is transformed into production rules, which are the basis for

procedural knowledge acquisition. This transformation is called proceduralisation.

Through practice, the application of procedural knowledge becomes more

spontaneous and less cognitively demanding. Obtaining experience in the domain

leads to improvements in the quality of declarative and procedural knowledge, and

their use becomes faster and more effective. However, McGill and Volet (1997)

reported that there is evidence that a certain level of procedural knowledge can be

acquired just by mere observation and can be applied without extensive possession

of declarative knowledge. Furthermore, based on other sources, they noted that

fundamental procedural knowledge can even enable the acquisition of complex

CHAPTER 2: LITERATURE REVIEW 109

declarative knowledge. This finding seems to contradict hypothesis H3 proposed in

this thesis and according to which the effect of programming tool on procedural

knowledge (programming performance) is mediated by declarative knowledge

(mental-model quality). However, Anderson’s (1982) postulation – that declarative

knowledge is acquired first – and the mental-model hypothesis (Kellog & Breen,

1990) – the richer one’s mental-model quality becomes in a domain, the better one

performs in the particular domain – support the idea that mental-model quality in the

programming domain can affect programming performance and more specifically, as

the former improves so does the latter. Therefore, the testing of hypothesis H3 is

especially interesting from a research viewpoint.

Not surprisingly, declarative and procedural programming knowledge have been

used in various topics of CSE studies, with the following findings. Procedural

knowledge in the programming domain can be applicable to several PLs as long as

they use the same programming paradigm, for instance procedural programming (de

Raadt, 2008). This is the case for declarative knowledge regarding semantics and

programming constructs as well (Harvey & Anderson, 1996). However, declarative

knowledge of syntax seems to be related to a particular PL (Shneiderman & Mayer,

1979). Wiedenbeck (1985) noted that novice programmers tend to rely more on

declarative knowledge than procedural knowledge. As they progress to become

experts, they rely less and less on declarative knowledge and procedural knowledge

becomes more significant. A similar finding is presented by Harvey and Anderson

(1996), who reported that once declarative knowledge has become “proceduralized,

there is no further need for declarative instruction” (Harvey & Anderson, 1996, p. 93).

Van Merriënboer (1990a) proposed some methods for developing declarative and

procedural instruction in programming. These methods include the teaching of

CHAPTER 2: LITERATURE REVIEW 110

concrete models, program plans and worked-out examples. McGill and Volet (1997)

studied how declarative and procedural programming knowledge are related to

syntactic and conceptual knowledge. Syntactic and conceptual knowledge are used

in the educational computing literature, and refer to facts and rules of PLs and to the

comprehension of programming concepts and principles, respectively. They

concluded that the set of declarative and procedural knowledge describes a different

type of knowledge from the set of syntactic and conceptual knowledge, and the two

sets of knowledge do not overlap. Furthermore, they attested that the sole

distinction between declarative and procedural knowledge is adequate for CSE

research. Declarative and procedural knowledge, although they can be

distinguished, are hardly isolated from each other in practice. The nature of

programming knowledge that novice programmers have was presented in Section

2.4.7.

There is also a third type of knowledge with respect to knowing the conditions under

which declarative and procedural knowledge should be used. This type of

knowledge is called conditional knowledge and is assumed to be general, not related

to specific context, acquired after much experience and hierarchically above

declarative and procedural knowledge. Conditional knowledge is used for tackling

problem-solving situations, directing actions when information is missing, and

provide diagnosis and alternatives when errors occur (McGill & Volet, 1997).

However, this thesis is not concerned with this type of knowledge; due to its

metacognitive characteristics, it offers no useful assessment of novices’ performance

within this project’s context.

The scarce use of in-depth measures, such as declarative and procedural

programming knowledge, for evaluating PLs and IDEs for introductory programming

CHAPTER 2: LITERATURE REVIEW 111

instruction is evident not only from this section, but also from Sections 2.6.1 and

2.6.2. As proposed by Ben-Ari, “techniques, which elicit the internal structures of the

student, are far more helpful than research that measures performance alone” (Ben-

Ari, 2001, p. 67). Therefore, measuring declarative and procedural programming

knowledge can provide a more objective and meaningful way to study the impact of

educational PLs and IDEs. How these two types of knowledge can be measured is

discussed in the following section.

2.7.2 Measurement of Declarative and Procedural Knowledge

In order to measure knowledge, it first must be elicited. In turn, eliciting knowledge

requires a fundamental awareness of its form and structure. A proposal for

representing the structure of already acquired knowledge is the theory of mental

models (Carley & Palmquist, 1992).

2.7.2.1 Mental models

The notion of mental models was introduced by Craik (1943). He described mental

models as small-scale representations for internalising objects of the external world.

These structures are used for explaining, reasoning and predicting our interaction

with these objects. The term was revisited in 1983 by Philip Johnson-Laird as well

as by Dedre Gentner and Albert Stevens (George, 2000). Johnson-Laird (1983)

argued that mental models are a mechanism that humans employ in order to perform

cognitive activities, such as understanding, reasoning and decision-making.

According to him, mental models are analogical and static representations of

situations, which reflect the situations’ structure. He noted that the closer the

CHAPTER 2: LITERATURE REVIEW 112

structure of a situation and the structure of its mental model are, the more useful the

mental model becomes. The papers collected by Gentner and Stevens (1983)

viewed mental models as a means of comprehending, explaining and interacting with

complex physical systems and technological contraptions (Greca & Moreira, 2000).

Norman (1983) postulated that mental models can convey one’s belief about the

system they describe, are influenced by the observable states of the system, and

provide understanding and prediction of a system’s behaviour. However, mental

models are described as incomplete, unstable, implicit, without rigid boundaries,

unscientific and subjective to time-delayed modifications (Ma, 2007). Mental models

are a way of coping with complex situations or systems, which include overwhelming

details and their processing involves managing significant intrinsic cognitive load.

Thus, mental models may be formed as described above as an attempt to balance

between the high demands in cognitive resources, and the successful explanation

and prediction of interaction with the situation or system. However, due to their

dynamic nature they can be modified through instruction (Bayman & Mayer, 1984) or

interaction with systems (Norman, 1983). Furthermore, Bayman and Mayer (1984)

noted that individual users build different mental models in spite of going through

similar hands-on instruction. This can be explained by another function of mental

models, which is to provide a framework for incorporating new knowledge (Darabi et

al., 2009; Gentner & Stevens, 1983; Jih & Reeves, 1992; Ma, 2007). This function is

also consistent with the constructivist theory that postulates that new knowledge is

acquired and organised based on previous knowledge. Mental models also help

individuals to successfully deal with novel and problem-solving situations and

mentally accessing invisible states of systems (Bayman & Mayer, 1984).

CHAPTER 2: LITERATURE REVIEW 113

The work of Johnson-Laird, and Gentner and Stevens had a strong impact on the

field. However, the notion of mental models is until today vague and this lack of a

clear definition is a source of criticism (Johnson-Laird, 1989). More recent definitions

have described mental models as ‘‘a schema plus cognitive processes for

manipulating and modifying the knowledge stored in a schema” (Merrill, 2002, p.

278), ‘‘a rich mental representation of how a task domain is organized” (van

Merriënboer & Kirschner, 2007, p. 285), “ad hoc cognitive constructions of relevant

elements within the domain to address a present problem” (Darabi et al., 2009, p.

724) and “a mental model is generally knowledge about the task or the system that

facilitates understanding, explanation and prediction” (Cooke & Rowe, 1997, p.

185).

Despite a lack of agreement on their definition, mental models have been used for

measuring knowledge acquisition in a variety of situations. These include avionics

troubleshooting, NASA mission control tasks, personal relationships (Cooke & Rowe,

1997), the use of electronic calculators (Young, 1981) and chemical-engineering

instruction (Darabi et al., 2009).

Similarly, mental-model research has been applied in studies of computer

programming. Robins et al. (2003) underlined the fact that novice programmers

must hold a number of different mental models. These include the mental model of

the problem domain, the mental models of programming constructs, the mental

model of the intended program, the mental model of the program that is actually

written, the mental model of programs’ execution and the notional machine.

Corritore and Wiedenbeck (1999) used mental models to investigate the differences

between procedural and object-oriented experts. Bayman and Mayer (1983)

associated learning to program with building correct mental models of programming

CHAPTER 2: LITERATURE REVIEW 114

concepts. Ma et al. (2008; 2009) reported that novices hold incorrect mental models

of basic programming constructs, even after the completion of an introductory

programming course. The authors used visualisation and cognitive conflict to

improve the incorrect mental models with important, but possibly short-term effects.

Scott, Watkins and McPhee (2008) used flowchart visualisation in a programming

IDE to aid students establish accurate mental models of program execution. They

presented preliminary results that considered the IDE beneficial, but without any

further details about the effect of flowchart visualisation on students’ mental model of

execution. George (2000) studied the use of diagrammatic traces in recursion.

Without the use of diagrammatic traces students tended to think of recursion as

iteration, while explicit use of diagrammatic traces helped in building a correct mental

model of recursion. Ramalingam et al. (2004) reported that mental models of

students positively influenced self-efficacy and, in turn, both positively influenced

programming performance. Cañas et al. (1994) investigated the effect of visually

tracing the execution of programs on students’ mental models. They reported that

students who used the visualisation technique possessed mental models of

programming concepts based on the semantic characteristics of these concepts,

while students who did not use the visualisation techniques organised the concepts

based on their syntactic characteristics. However, no significant differences were

observed between the two groups in their programming performance. The authors

noted “a possible disassociation between the acquisition and understanding of

conceptual-declarative knowledge and the use of this knowledge to perform a

procedural task” (Cañas et al., 1994, p. 809). They postulated that this phenomenon

occurred because, at the very first stages of learning, it is possible that the formation

of mental models is influenced by learning conditions, for example the use of the

CHAPTER 2: LITERATURE REVIEW 115

visualisation technique. However, after this stage, mental models do not further

change until a significant improvement has been made in procedural knowledge.

Moreover, their results supported the idea that, at the first stages of learning, the

quality of mental models does not seem to significantly affect performance. This

explanation can be further supported by the observation that mental models’

modification requires time and by McGill and Volet’ s (1997) remark that procedural

knowledge can be correctly used before a proper development of declarative

knowledge. The apparent inconsistency between this finding and (mediation)

hypothesis H3 was discussed in Section 2.7.1.

Evidently, mental models can be a useful tool in computer-programming research.

However, it has sporadically been used as an evaluative measure of PLs and IDEs.

Thus, it is not only helpful, but also interesting, from a research viewpoint, to include

mental models in this study. Because of lacking a formal definition, it is important to

state what mental models mean in the context of this study. Hence, in this project,

mental models are viewed as dynamic knowledge structures, which hold information

that includes declarative knowledge (Banks & Millward, 2007). Therefore, from this

point forward, mental models are considered as representations of declarative

knowledge.

In order to elicit mental models, various techniques have been proposed. These

include concept-elicitation methods, data-collection methods and structural analysis.

The selection of a technique is made according to its suitability for eliciting a

particular type of knowledge (Cooke, 1994; Marhan, Micle, Popa & Preda, 2012).

Carley and Palmquist (1992) proposed that “mental models can be represented as

networks of concepts” and “the meaning of a concept for an individual is embedded

in its relations to other concepts in the individual’s mental model” (Carley &

CHAPTER 2: LITERATURE REVIEW 116

Palmquist, 1992, p. 602). Furthermore, expert performance in a scientific domain

seems to be associated more with the structure and interrelations of the acquired

concepts (mental model) of the specific domain rather than the simple acquisition of

domain-specific concepts (Rose et al., 2007). This is also true in the case of

programming (Lau, 2009). Therefore, the structural analysis of mental models

seems to be the most appropriate technique for eliciting mental models, at least for

the purposes of this study. According to Cooke (1994), structural analysis can be

performed using multidimensional scaling, clustering routines, network scaling, free

association tasks, question-answering protocols, graph construction tasks and

concept maps. Amongst these methods, the network scaling technique and

specifically the Pathfinder Scaling Algorithm seems to produce the most desired

outcomes for this study (for more details see Section 2.7.2.2).

2.7.2.2 The measurement of declarative knowledge through mental

models – Pathfinder Scaling Algorithm

The network scaling method produces a graphical representation of concepts’

relation in the form of a network. The strength of a relation between two concepts is

depicted by the spatial distance between them. In order to analyse the structure

between a set of concepts, the Pathfinder Scaling Algorithm (PSA) (Schvaneveldt,

1990) takes as input a rating for each pair (pair rating) of concepts. Therefore, for a

set of n concepts, the number of pair ratings is n x (n - 1) / 2. Each rating denotes

how closely two particular concepts are related. PSA analyses the ratings for all

possible pairs of concepts and produces a non-hierarchical network of concepts.

The distance between the concepts represents the relation between the concepts.

The closer two concepts are, the stronger their relations is. These networks are

CHAPTER 2: LITERATURE REVIEW 117

called PFNETs and can serve as a good representation of mental models

(Goldsmith, Johnson & Acton, 1991). An example of a PFNET can be seen in Figure

2.1.

Figure 2.1. Example of a PFNET (retrieved from the Interlink website:
http://interlinkinc.net/KNOT.html).

The use of PSA in structural analysis of mental models is preferred over other

available techniques for the following reasons. First and foremost, PSA can accept

an expert’s PFNET and use it as a baseline. Hence, the closeness between

participants’ PFNET and an expert’s PFNET can be estimated and an objective

assessment of knowledge structure can be obtained. The closeness of two PFNETs

is denoted by the similarity index and ranges from 0 (minimum) to 1(maximum)

(Goldsmith & Johnson, 1990). Second, the similarity between an expert’s and

novices’ PFNETs can be used to test the mental-model hypothesis. That is, the

CHAPTER 2: LITERATURE REVIEW 118

higher quality of an individual’s mental model of a domain, the better the individual’s

task performance in the particular domain (Kellog & Breen, 1990). Third, PSA

seems to represent concepts interrelations more meaningfully and be more

predictive than multidimensional scaling (Cooke, 1994). Fourth, PSA can represent

non-hierarchical networks, which clustering algorithms cannot (Cooke, 1994). Fifth,

PSA provides more effective and faster data collection and data analysis procedures

from participants than questioning-answering protocols and graph construction tasks.

Finally, PSA can estimate the consistency of ratings of pairs for a set of concepts

and determine how carefully the rating task was done or could be performed by

raters. This measure is denoted by the coherence index. Values of coherence

above 0.20 are considered indicative of a carefully performed rating task.

The assessment of structural knowledge and mental models with the Pathfinder

algorithm has been used in various studies. Goldsmith and Johnson (1990)

discussed and empirically studied the applicability of structural analysis in classroom

learning. They used raw proximities, multidimensional scaling distances, Pathfinder

graph-theoretic distances and closeness of PFNETs to compare students’ and

instructor’s representations of statistics. They concluded that between the four

measures, Similarity of PFNETs was the best predictor of course performance.

Furthermore, they noted that as students advanced during their statistics course,

their knowledge representations changed and became similar to instructor’s

representation. Gillan, Breedin and Cooke (1992) used PSA to compare declarative-

knowledge representations between a group of HCI-human factors experts and a

group of HCI-software development experts. A third group of HCI non-experts was

used as a control group. Cooke and Rowe (1997) used the network similarity index

CHAPTER 2: LITERATURE REVIEW 119

that was provided by PSA to measure mental models in the domains of mission

control tasks, avionics troubleshooting and personal relationships. Rose et al.

(2007) studied the development of knowledge structures of novice accountants

during instruction and use of a decision aid. They compared novices’ with experts’

networks, obtained by PSA, in order to monitor the development of knowledge

structures. They noted that PSA successfully measured changes in knowledge

structures as these developed. Serrano, Quirin, Botia and Cordón (2009) used

PFNETs to simplify the representation of multi-agent systems. They reported that

PFNETs representations facilitated the understanding and debugging of these

systems. Chen (2011) incorporated PFNETs in a personalised diagnosis and

remedial learning system. The system compared the PFNETs of an expert and a

novice user. Based on the differences between the two PFNETs novice’s

misconceptions were identified and reported.

Despite the advantages that PSA offers, this method has been used only in a small

number of computer-programming studies. Cooke and Schvaneveldt (1988) studied

how four different groups of programmers cognitively organised 16 programming

concepts. The four groups were defined as naive, novice, intermediate and

advanced and differed in their programming experience, which ranged from zero to

one, from one to two, from two to three and three or more years of experience,

respectively. The authors used PSA to produce the PFNETs of participants as well

as an average PFNET per group. Their findings were that as experience decreased

(a) more concepts were incorrectly defined and (b) within-group consensus on the

semantic relation between concepts decreased as well. Trumpower and Goldsmith

(2004) studied the effect of structural aids and specifically interactive overviews on

structural knowledge of computer-programming concepts. They used the definitions

CHAPTER 2: LITERATURE REVIEW 120

of 12 programming concepts to create three interaction overviews. The first was

structured alphabetically, the second randomly and the third according the

knowledge structure of experts. Each structured interaction overview was presented

to a group of students. The knowledge acquired by each group was evaluated by

eliciting students’ knowledge structures using PSA and performing a procedural-

knowledge task, namely predicting the output of a sorting program. Their results

revealed that the group which was presented with the experts’ knowledge structure

produced better knowledge structures and performed better in the task than the

other two groups. This result was attributed to the visible structure of the interaction

overview. These findings support the idea that the structure of experts’ knowledge

can be used to help novices in achieving expertise in a domain. Furthermore, it may

be interesting and useful from a pedagogical viewpoint that this structure together

with the underlying information can be conveyed visually from experts to novices.

Lau and Yuen (2010) studied the effect of gender and learning style on mental

models of sorting-algorithm instruction. Additionally, Lau and Yuen (2011) studied

the effect of gender, learning style, mental models, prior composite academic ability

and medium of instruction on programming performance. In both cases they

employed PSA to evaluate the mental models of participants. In the first (2010)

study they reported that the mental models of females and concrete learners were

more similar to one expert’s mental model than the mental models of men and

abstract learners, respectively. In the second (2011) study, their findings supported

the idea that programming performance can be influenced by the quality of mental

models – this is predicted by mental-model hypothesis (Kellog & Breen, 1990) –,

learning style, prior academic ability and medium of instruction, but not by gender.

However, they reported that gender can affect the quality of mental models. In

CHAPTER 2: LITERATURE REVIEW 121

particular, females’ mental models were more similar to the expert’s mental model

than males’ mental models in the second study as well. They speculated that this

possibly occurred because the expert was a female and suggested further

investigation. Furthermore, they provided evidence for the idea that the more similar

a student’s and an expert’s mental model get, the better the student’s performance

becomes. Exceptionally, Kahler (2002) used PSA and backward thinking to

measure procedural programming knowledge. She reported a significant positive

correlation between similarity index and project score, but only in one of the three

measurements. However, Kahler’s approach of employing PSA as a measure of

procedural knowledge has not been repeated until now, at least to my knowledge.

This can be attributed to lack of strong evidence that PSA can indeed represent

procedural knowledge appropriately.

2.7.2.3 Measurement of procedural knowledge

Measuring procedural programming knowledge is more straightforward than

declarative programming knowledge. This is true at least at the level that this project

is concerned with.

Procedural knowledge, the ability to select and follow a series of proper actions to

achieve a specific goal can be measured in a deterministic decision environment by

posing a problem and asking for the rules or steps to successfully solve this problem

(Rose et al., 2007). The aim of developing programming skills is to learn how to

correctly construct a program that addresses a particular problem. This involves

using all programming concepts one knows or a subset to create a feasible and valid

programming solution to the particular program. Thus, the programming skills of

CHAPTER 2: LITERATURE REVIEW 122

students are considered as their procedural knowledge of the domain of

programming.

In order to assess students’ procedural programming knowledge specially designed

items can be used. In order to respond to these items students need to use their

procedural knowledge. These items can include prediction of programs’ output,

filling in missing commands, modifying existing programs and creating new ones. In

order to measure procedural programming knowledge, Lau and Yuen (2011)

developed tasks of predicting the output of a program and filling in missing

commands of programs. Similarly, prediction tasks were administered by

Trumpower and Goldsmith (2004) as procedural-test items. Kurland et al. (1989)

used scores of specifically-constructed and typical class-tests to measure

programming performance.

2.8 Conclusions

After the introduction, the first section of this chapter presented two popular

pedagogical theories that have influenced the teaching and learning of programming,

namely constructivism and CLT. The second section presented the various views on

the learning outcomes of introductory programming instruction. The third section

reviewed the difficulties that novice programmers face during their introductory

programming course. Based on these sections, a set of seven design principles for

educational programming software was identified and discussed in the fourth

section. These design principles are (a) match of users’ natural language with the

linguistic attributes of the PL and IDE, (b) syntax and semantics of instructions

supported by the PL, (c) visualisation, (d) abstraction of commands provided by the

PL, (e) a small set of instructions, (f) provision of error messages and (g) a high level

CHAPTER 2: LITERATURE REVIEW 123

of interaction with the IDE. The fifth section examined international and Greek

educational programming tools and their relation to the set of design principles.

Finally, the sixth section was concerned with aspects of cognitive psychology about

knowledge and its measurement in the programming domain. In particular,

declarative and procedural programming knowledge, mental models in the domain of

introductory programming and the Pathfinder scaling algorithm, an algorithm for

assessing structural knowledge, were presented and discussed.

From the review of the literature, the following gaps in knowledge are identified.

First, constructivism and CLT, have not been used as a combined theoretical

background for the design of programming tools for novices. Second, the impact of

a set of design principles for educational programming software has rarely been

empirically studied. Third, declarative knowledge, in combination with procedural

knowledge, may reveal a more in-depth knowledge of concepts. However, the

impact of programming tools on declarative and procedural programming knowledge

that novices acquire by their use is almost never examined. Fourth, the

effectiveness of a new educational programming tool has scarcely been evaluated

by comparing it to the effectiveness of educational software already used for

programming instruction. Fifth, linguistic attributes of PLs and IDEs are a very

important factor in the design of programming tools. However, only a small number

of evaluations regarding introductory programming tools with Greek linguistic

attributes for Greek novices are reported in the international literature and the

available tools have various shortcomings in terms of compliance with the set of

identified design principles. Sixth, the effect of the seven design principles on the

mental models and programming skills of novices has not been studied in depth.

CHAPTER 2: LITERATURE REVIEW 124

This project aims to contribute to knowledge by addressing these gaps through the

pursuit of three aims. The first aim, which was accomplished and discussed in

Section 2.5, was to identify a set of scientific principles based on constructivism and

CLT, as well as on novices’ difficulties, for the design of introductory programming

tools. The second and third aims are:

 to design and implement a new Greek programming tool as an embodiment of

this set of scientific principles for introductory programming courses in

Greece;

 to evaluate the new programming tool and assess its impact on the

programming performance of novices through quasi-experimental research

and, via this evaluation, test hypotheses H1, H2 and H3.

Testing hypotheses H1, H2 and H3 involves the investigation of the effect of

compliance with this set on the quality of novices’ mental models and programming

skills as well as to explore a potential mediation effect of the novices’ mental-model

quality on their programming skills. The following chapter describes the design and

implementation of a new Greek programming tool. This new tool is called Koios and

it was developed as a manifestation of the application of the seven design principles.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 125

Chapter Three

The Koios Programming

Environment

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 126

Contents

3.1 Overview.. 128

3.2 Design of Koios.. 128

3.2.1 Compliance with the Seven Design Principles... 129

3.2.1.1 Linguistic attributes of Koios (first design principle)............................. 129

3.2.1.2 Koios’ set of commands (fifth design principle). 129

3.2.1.3 Program creation with Koios (third, sixth and seventh design

principles)… .. 130

3.2.1.4 Notations supported by Koios. .. 132

3.2.1.5 Syntax and semantics of commands supported by Koios (second design

principle).. 132

3.2.1.6 Abstraction level of commands supported by Koios (fourth design

principle).. 133

3.2.1.7 Program execution with Koios (third and seventh design principles). . 133

3.2.2 Design Choices beyond the Seven Design Principles 134

3.2.2.1 Programming paradigm supported by Koios. 135

3.2.2.2 Koios’ provision for comments in programs... 136

3.2.2.3 Values of expressions and conditions during execution. 136

3.2.2.4 Minor design choices... 137

3.3 Development of Koios.. 143

3.3.1 Koios’ User-interface ... 144

3.3.2 Creating Programs with the Koios Programming Environment.................. 148

3.3.3 Executing Programs with the Koios Programming Environment................ 163

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 127

3.4 Differences between Versions of Koios ... 169

3.5 Conclusions ... 172

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 128

3.1 Overview

The third chapter of this thesis presents the new programming tool that was

developed as a manifestation of the application of the combined set of seven design

principles (see Section 2.5). This programming tool is called Koios and was named

after a titan from Greek mythology, who is related to the concept of intelligence and

the quest for knowledge. The second section of this chapter discusses the choices

regarding the design of Koios, while the third section discusses the development of

Koios. This is followed by a comparison of two versions of Koios that were

developed. Due to the nature of the research project that is reported in this thesis,

the design and implementation of Koios is primarily presented from an educational

point of view.

3.2 Design of Koios

The following section describes the design process of Koios. The set of the seven

design principles provided the groundwork for this process. Naturally, the design

process was influenced by previous studies relevant to this subject as well. Thus, a

number of design choices were inspired by or based on recommendations that were

proposed in the work of Pane and Myers (1996), McIver (2000), Kelleher and

Pausch (2005) and Mannila and de Raadt (2006). The design with respect to the set

of the seven design principles is discussed first. Important design choices beyond

this set of principles follow.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 129

3.2.1 Compliance with the Seven Design Principles

As discussed in Chapter Two (see Sections 2.5.8 and 2.8), the set of the seven

design principles formed the cornerstone of Koios’ design. Achieving a high level of

compliance between Koios and the set of the design principles was the fundamental

guideline during the design process. The results of following this guideline follow.

3.2.1.1 Linguistic attributes of Koios (first design principle).

The prototype of Koios was designed for novice programmers who study in Greek

educational institutes. Therefore, according to the first design principle (see Section

2.5.1) Koios was developed in the Greek language.

3.2.1.2 Koios’ set of commands (fifth design principle).

Determining the concepts that should constitute the curriculum of an introductory

programming course continues to be a topic for research. However, this topic is

beyond the scope of this project. Therefore, the concepts that would be supported

by Koios were determined by (a) the fifth design principle (see Section 2.5.5), (b) the

target users of Koios and (c) CS curricula of educational institutes. Following the

fifth design principle, Koios should incorporate a small set of programming

commands (see Section 2.5.5). The target audience of Koios is novice programmers

and thus all the basic programming concepts should be supported. Moreover,

because the evaluation of Koios was going to take place in Greek educational

institutes, the curricula of these institutes should also be considered. The minimum

common set of concepts that emerged from a review of these curricula are: constant,

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 130

variable, array, arithmetic operators, relational operators, logical operators, input-

statement, output-statement, assignment-statement, conditional statement, iteration-

statement, function and procedure. These concepts are also included in the majority

of introductory modules in programming in secondary and tertiary education across

the world. The adoption of this set of programming constructs by this study does not

present any drawbacks, because the effect of principles under investigation is in

principle not affected by the programming concepts included in a curriculum.

Furthermore, this set of constructs facilitated the evaluation and data-collection

process in Greek educational institutes, because it did not interfere with their CS

programme of studies.

3.2.1.3 Program creation with Koios (third, sixth and seventh design

principles).

In order to allow novices to focus on the programming concepts during program

creation, it was decided that the cognitive load imposed by the syntax of commands

should be minimised (Gaspar et al., 2008; Grandell et al., 2005; McIver, 2000;

Myers, 1990; Scott, 2010). Thus, the users of Koios can create their programs only

in a graphical/visual way (Petre et al., 1998), as specified by the third design

principle – visualisation (see Section 2.5.3). Visual programming is a rather

inefficient method for creating large programs (see Section 2.5.3). However, the

programs that are typically created in an introductory course are usually small.

Therefore, creating small programs by means of visual programming can be a

powerful method for program creation, especially for programming tools for novices.

A list of icons represents the available programming commands. The choice was

made to represent commands in the form of images instead of text because images

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 131

seem to facilitate the construction of mental models and schemas (Tudoreanu &

Kraemer, 2008). A programming command can be added into a program by

dragging-and-dropping or copying-and-pasting its icon into the program (Lee & Ko,

2011).

Dropping or pasting a command’s icon in programs initiates a dialogue session

between users and Koios via dialogue boxes. During this process, the user is

guided through the creation of a command and all the necessary parameters

regarding it are requested from users. Thus, the detection of syntax errors during

the creation of each command can be facilitated and immediate feedback can be

returned to users (Grandell et al., 2005) via error messages. Following the sixth

design principle – provision of error messages (see Section 2.5.6), these error

messages were designed to provide comprehensible descriptions of errors and,

whenever possible, directions for correcting them. Hence, the functionality of an

interpreter is simulated, which is considered pedagogically beneficial for novice

programmers (Gaspar et al., 2008). Moreover, this process can sustain a high level

of interaction between Koios and users, as defined by the seventh design principle

(see Section 2.5.7). Most important, following this process, a command is added in

the program only when its parameters are specified correctly, which guarantees that

programs are always without syntax errors and can be executed at any time. This

process could also reduce extraneous cognitive load (see Section 2.2.2.1), because

users do not need to recall the syntactic rules and required parameters for correctly

creating a command (Gaspar et al., 2008; Scott, 2010). Moreover, novices can be

guided by Koios through the creation of each command, focusing on the

programming concepts and their functionality.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 132

3.2.1.4 Notations supported by Koios.

However, a basic parameter that was always considered throughout the design

process was that Koios should be a programming tool for the initial stages of

programming instruction and therefore, should provide features that would make the

transition to PLs for professionals as smooth as possible. For this reason, programs

can be viewed in a graphical or a textual way (Pane et al., 2001; Petre et al., 1998).

Furthermore, this approach underlies the distinction between designing a program

and writing code (van Merriënboer, 1990a). The textual view provides a ‘traditional’

textual code that follows a specific set of syntactic and semantic rules, and is created

automatically by the graphical representation of the program. For more formal and

technical details regarding the syntax and the grammar of the language that is

supported by Koios see Appendices B.2 and B.3 .

3.2.1.5 Syntax and semantics of commands supported by Koios

(second design principle).

The syntax and semantics of the programming commands were designed according

to the second design principle, which suggests that natural syntax and clear

semantics of commands should be supported by PLs (see Section 2.5.2). I

attempted to produce a syntax that feels natural (at least, in the Greek language),

while it conforms to a certain level of formality. Because the textual form of

programs is created automatically and syntactic rules do not need to be

remembered, the phrasing of commands in textual view can be verbose and be more

descriptive than typical programming commands. This, in turn, can make the textual

form of programs more readable and informative. Likewise, the semantics of the

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 133

commands were designed to convey their programming meaning and to be as clear

as possible. To accomplish this aim, the auto-generated code follows conventional

rules of indentation and different combination of colours and font styles are used to

distinguish different programming constructs (see Section 3.3.3 and Table 3.3).

Thus, understanding each command’s function in a program is facilitated and

novices are familiarised with the formal structure that they will possibly encounter

when moving on to a commercial PL.

3.2.1.6 Abstraction level of commands supported by Koios (fourth

design principle).

Furthermore, considering the fourth design principle (see Section 2.5.4), special care

was taken so that commands provide the appropriate level of abstraction for novices.

This level should allow programmers to understand the basic function of each

command and its properties, while hiding unnecessary technical details.

3.2.1.7 Program execution with Koios (third and seventh design

principles).

Programs are executed in a new window, which shows these in textual form. The

textual view of programs during execution was preferred over the graphical view

because otherwise the textual representation of programs could be neglected.

Users of Koios create their programs in a graphical way and, thus, they are required

to pay much attention to this form of programming. If the textual form of programs is

not presented during the process of executing a program, then it is possible that

users could pay little attention to this form. However, at present, the dominant way

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 134

of creating programs is by using text and a visual representation of large programs is

inefficient. Thus, involvement with the textual form of programs is important for any

novice programmer. The textual form of programs supported by Koios can be more

readable and informative (see Section 3.2.1.5) than the textual form of programs

supported by other programming tools. Therefore, presenting programs in textual

form during execution draws users’ attention to this form as well.

In order to make programs’ execution more comprehensible and reduce working-

memory load, each command is highlighted while it is being executed, and

explanatory and commentary messages are shown regarding the function of the

command (du Boulay et al., 1999; Petre et al., 1998). Two features that further

increase the interaction between Koios and users, following the seventh design

principle, which suggests a high level of interaction between IDEs and users (see

Section 2.5.7) are the following. First, buttons that can start, pause and terminate as

well as control the speed of programs’ execution are available. Second, data input

during execution is performed via dialogue windows.

3.2.2 Design Choices beyond the Seven Design Principles

The core of designing Koios was based on the seven design principles. However, in

order to produce a state-of-the-art programming tool, additional design choices were

required for this process. The most important of these choices that I had to make

during the design of Koios follow.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 135

3.2.2.1 Programming paradigm supported by Koios.

The first design choice was the programming paradigm that Koios would support.

The two most dominant paradigms are the procedural and the object-oriented (OO)

paradigm. Despite the ongoing debate on the appropriateness of each paradigm

(Corritore & Wiedenbeck, 2001; Duke, Salzman, Burmeister, Poon & Murray, 2000;

Milne & Rowe, 2002; Wiedenbeck & Ramalingam, 1999; Wiedenbeck, Ramalingam,

Sarasamma & Corritore, 1999), the procedural paradigm was selected. This choice

was made based on the set of programming constructs that are supported by Koios.

This set can be supported by both paradigms, but it does not contain any OO

concepts. Thus, the selection of the OO paradigm would require the introduction of

unnecessary programming concepts, which, in turn, would increase

extraneous/intrinsic cognitive load (see Section 2.2.2.1). Therefore, the procedural

paradigm seemed more suitable. Apart from the increased complexity introduced by

the OO paradigm (Rist, 1996), I find the procedural paradigm more appropriate for

introductory programming courses, because it seems that the OO paradigm is not

more ‘natural’, easier or powerful than the procedural paradigm as hypothesised

(Détienne, 1997; Green, 1990a; Wiedenbeck et al., 1999), OO concepts are difficult

for novices to understand (Milne & Rowe, 2002) and novices need less time to

familiarise themselves with the procedural paradigm (McCracken et al., 2001).

Moreover, the curriculum in which Koios was used and the other tools that were

compared in this research use the procedural paradigm.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 136

3.2.2.2 Koios’ provision for comments in programs.

The second design choice was that the prototype of Koios does not need to support

comments. The inclusion of comments in programs is recognised as a helpful

source in reading and understanding code and a good programming habit.

However, the findings presented by Barr, Holden, Phillips and Greening (1999) and

Grandell et al. (2005) suggest that the inclusion of comments by novices may yield

undesired results. A number of students in the study of Barr et al. (1999) inserted

comments that were similar to the code that they had written and in other cases

comments did not explain or were not relevant to the code. Grandell et al. (2005)

reported that over 65% of the participants in their study did not include comments in

their code and that the quality of the comments did not always match the quality of

the program. They also reported that reasons for omitting comments could be that

students consider comments unnecessary for small programs, that the inclusion of

comments delays the programming process and that properly conveying their

programming ideas via comments is hard. Based on these findings, it was decided

that providing a feature for inserting comments is not necessary, at least in the first

versions of Koios.

3.2.2.3 Values of expressions and conditions during execution.

A third design choice was to omit the presentation of values of expressions and

conditions during execution. A mere presentation of values of expressions and

conditions during execution may lead users to a passive stance because they are

aware that information is always available. Because of this availability of

information, users may be less attentive and not track all the changes in these

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 137

values. This choice, however, is expected to increase users’ cognitive load, because

they will have to retain more information in their memory regarding these values.

However, because of the active engagement with this information, this extra

cognitive load could be germane (Hundhausen et al., 2002; Tudoreanu & Kraemer,

2008) and, thus, reveal more about programs’ execution than a simple presentation

of values. In order to assist users in this task, Koios notifies them when the values of

variables change, via relevant explanations and comments during execution. The

new values are not revealed, but a description regarding the change is available.

Although this choice partially violates the requirement for visibility (du Boulay et al.,

1999; Pane & Myers, 2000), it was followed in order to engage users in a more

active tracing of programs’ execution. Furthermore, omitting the presentation of

changed values aims at serving the following purpose as well. To overcome the lack

of this type of information students are intended to take up a useful program- tracing

and debugging practice; that of monitoring the values of variables, expressions or

conditions, in which they are interested, by using an output statement to show these

values on screen during execution.

3.2.2.4 Minor design choices.

During the design process I faced a number of minor design issues. I dealt with

these issues by producing arguments that were in favour of and arguments that were

against a specific proposal regarding each design question. Based on these

arguments a choice was made for each design issue. These choices were primarily

made with respect to the educational benefit of novice programmers, and not without

overlooking the likelihood that these choices could slow down the programming

process for more advanced programmers. The nature of these issues allows for

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 138

their brief presentation in tabular layout. Each row of the first column of Table 3.1

presents a design choice. In some cases, a sentence in parentheses follows and

describes how this design choice was refined in Koios’ programming environment.

The second column presents arguments that were considered for accepting this

proposal, while the third column presents arguments that were considered for

rejecting it. These choices and arguments are presented in Table 3.1.

CHAPTER 3: KOIOS 139

Table 3.1
Design Choices with Arguments in Favour and Against

Design choice Arguments in favour Arguments against
Identifiers are not case-sensitive and
specifically all letters are capital.

There would be no confusion between
identifiers with the same name in
uppercase, lowercase or any possible
combination.

Many commercial programming
languages are case-sensitive.

The names of constants, variables, and
arrays will be unique within the scope
of each procedure and/or function.

Different items (constants, variables
and arrays) of different
procedures/functions can share the
same name, highlighting the concept of
scope.

Different items (constants, variables
and arrays) with the same name that
belong to different functions and/or
procedures could be mistakenly
considered as the same item.

The names of global constants,
variables and arrays cannot be the
same as the names of local constants,
variables, arrays and parameters and
vice versa.

Allowing the same names could cause
confusion regarding which one of the
objects that share the same name is
used in each case.

This is not allowed by the majority of
programming languages.

This could be a good example of how
local scope overrides (shadows) global
scope. However, perhaps this is too
complicated for novices.

Constants, variables and arrays can be
declared everywhere in programs.
(Koios automatically moves all
declarations in the beginning of a
function/procedure before compilation.)

It is not necessary to declare items in a
particular part of a program, but one
can declare an item whenever or
wherever is needed.

One would have to search the whole
program to locate items’ declaration,
instead of looking at a specific part of
the program.

Constants, variables and arrays can be
either initialised or uninitialized during
their declaration. The default selection
is to be initialised.

An uninitialised variable/array may
cause errors during the execution of
programs.

In this way a clear distinction can be
made between constants that have to
be initialised and variables that do not.

CHAPTER 3: KOIOS 140

Table 3.1 (continued)
Design choice Arguments in favour Arguments against

Moving (cutting) constants from one
location of programs to another
location of the same program is
allowed.

(Koios allows moving items only if they
are not used by other commands.)

If an item is created in an inappropriate
location of programs, it can be very
easily reallocated to the right one.

Alterations of the same program can
be done without deleting and
recreating parts of a program.

Moving an item may affect other
commands of programs, for example
moving a variable that is used in a for-
statement.

Copying items from one program or
location of a program to another
location or program is not permitted.

A copied item would probably need
some modifications in order to properly
work in its new location and this could
cause more errors than just creating a
new one.

The process of creating a new item
has equal or lower level of complexity
than the process of modifying a copied
item.

A copy of already created items cannot
be reused and identical objects have to
be created from scratch.

Arrays cannot be passed as
parameters into functions or
procedures.

In many modern and commercial
languages arrays are passed as
pointers into functions or procedures,
but the concept of pointers could be
considered too advanced for novices.

Some programs could be easier
implemented if arrays could be passed
as parameters.

CHAPTER 3: KOIOS 141

Table 3.1 (continued)
Design choice Arguments in favour Arguments against

Only one-dimensional and two-
dimensional arrays are supported.

Arrays with more than two dimensions
are generally not used in introductory
programming courses.

The representation and manipulation of
one-dimensional and two-dimensional
arrays could be relatively easy and
comprehensible for students.

Once programming examples of one-
dimensional and two-dimensional
arrays are understood, the use of
multi-dimensional arrays becomes
more a problem-solving tool rather
than an educational aim.

More advanced programming
examples may require the use of multi-
dimensional arrays.

Functions have a return type, while
procedures do not.

The use and role of functions and
procedures in programs can be easily
clarified and distinguished.

Some commercial languages do not
have a special implementation of
procedures.

Different functions and procedures
cannot have the same name.

In order for functions and procedures
to share the same name, they should
be able to be overloaded and the
concept of polymorphism would have
to be introduced, but this concept could
be considered too advanced for
novices.

More advanced programs could use
overloaded functions.

CHAPTER 3: KOIOS 142

Table 3.1 (continued)
Design choice Arguments in favour Arguments against

The name of functions or procedures
cannot be the same as the name of
their parameters.

Parameters can be distinguished from
their functions or procedures.

The symbols == and != will be used for
equality an inequality operators,
respectively.

A clear distinction between the equality
operator (=) in mathematics and the
assign (=) operator in many popular
programming languages can be made.

The transition to a commercial
programming language will be
smoother as users will have been
familiarised with these symbols (==, !=)
that are widely used in popular
commercial programming languages.

The words equal to and not equal to could
be used respectively instead of symbols.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 143

Naturally, the design process was not and could not be limited to the choices that are

reported here. Therefore, the most significant design choices were presented in this

section. Further choices regarding the development and implementation of Koios

are discussed in the following section.

3.3 Development of Koios

The Koios programming environment was developed in Java, using the NetBeans

IDE – versions 6.5 and 6.7 – and Java Development Kit 6. I chose to develop Koios

in Java because it is hardware-independent and platform-independent (Gosling &

McGilton, 1996). This means that, theoretically, Java applications can run in any

hardware configuration, for example on a desktop or a tablet PC, and on any

operating system, such as MS Windows, Mac OS X and GNU/Linux, provided that

the Java Virtual Machine is installed. Thus, Koios can run on any machine that has

that Java Virtual Machine installed. This way, hardware-dependence, a ‘deadly sin’

of PLs for novices, according to McIver and Conway (1996), is avoided.

Three versions of Koios have been developed at present. Two versions of Koios -

Version 0 and Version 1 (see Section 3.4) - are in Greek and were used in the two

rounds of data collection, respectively (See Section 4.3). The development of the

Koios prototype Version 0 started in February 2009 and ended in September 2009,

while Version 1 was developed between June 2010 and October 2010. The third

one is a translation in English of the Greek version of Koios Version 1. It was

developed for illustrative reasons as well as for people that may be interested in this

software (users, researchers and others) and are unfamiliar with the Greek

language. In this section, snapshots of the English version of Koios are used to

demonstrate the implementation and present the software. This demonstration aims

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 144

at highlighting important features of the Koios programming environment that are

intended to facilitate novices in the creation and execution of their programs.

3.3.1 Koios’ User-interface

Koios was developed to have a simple user-interface, in order to make it easier for

novice programmers to use it and avoid exposing them to more complex features,

such as managing a project workspace (DePasquale, Lee & Pérez-Quiñones, 2004).

When Koios runs for the first time and the New Program button is clicked the

welcome screen in Figure 3.1 appears.

This screen provides information about how to use the interface, and how to create

and run programs. This screen can be set not to appear anymore when it is not

needed. When the OK button of the welcome screen is clicked, the main window of

Koios appears (see Figure 3.2) and a new program can be created. Thus, from this

point on Koios is in Program Creation mode.

As can be seen from Figure 3.2, the user-interface of Koios in Program Creation

mode displays a menu bar, a toolbar, a status bar and three main windows: (a) the

Program window, (b) the Programming Commands window and (c) the Properties

window. The menu bar contains six drop-down menus. The toolbar contains 12

icons that are shortcuts for frequently-used menu items, such as saving files or

compiling and running programs. The items of each drop-down menu are shown in

Table 3.2.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 145

Figure 3.1. Welcome screen of Koios.

The Program window can show programs in a graphical or a textual view. The

desired view can be selected from the tabs that are located in the lower left corner of

the window. This window also provides a number of buttons for manipulating the

icons of programming items. These buttons are located on the right side of the

window.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 146

Figure 3.2. The main window of Koios programming environment.

Table 3.2
Menus and Menu Items of Koios

Menu Menu Items
File New Program

Open
Save
Save As
Save All
Page Setup (print preferences)
Print
Exit

Edit Undo
Redo
Cut
Paste
Find

View Show Programming Commands window
Show Properties window
Show Line Numbers
Full screen

Program Check (see Section 3.3.3)
Compile
Run

Options Advanced User
Export Java Program
Export Program as Image File
Show Information at Start-up

Help About

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 147

The Programming Commands window contains all the available programming

commands, which are grouped in six categories. Based on the programming

constructs that were chosen to be supported by Koios (see Section 3.2.1), the

programming commands/items that were implemented are constants, variables,

arrays, write, read, assign, call, if-statement, for-statement, while-statement, do-

while-statement, return procedures and functions. Each programming command is

represented by an icon. The icons of the available programming commands and

their grouping can be seen in Figure 3.3.

Figure 3.3. Icons of programming items.

The Properties window shows all the available properties of the programming item

that is selected, for example name and value. This can be used to quickly show the

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 148

properties of an item by selecting its icon. The properties cannot be changed from

the Properties window. This can be done only by double-clicking on the item’s icon.

The reasons for this choice are explained in Section 3.3.2.

3.3.2 Creating Programs with the Koios Programming Environment

In order to further increase the usability of Koios, two user-modes are offered,

namely Simple User mode and Advanced User mode. Advanced User mode

enables all programming items (see Figure 3.3), while Simple User mode makes

available only the programming items of variable, input-statement, output-statement,

call-statement, assign-statement, if-statement, for-statement and procedure. This

distinction was made because, according to the planned experiments (See Section

4.2.2), Koios was going to be evaluated in secondary and tertiary educational

institutes Greece. The programming constructs that are included in the CS

curriculum of secondary institutes are those available in the Simple User mode, while

those included in the CS curriculum of tertiary institutes are available in the

Advanced User mode.

New commands/items can be added to a program by selecting an icon from the

Programming Commands window and dragging-and-dropping or copying-and-

pasting it to the program. In order to prevent errors, only valid commands are

allowed to be entered in programs, for example the icon of a return statement can be

added in functions but not in procedures. When a new item is dropped or pasted in

the program a dialogue between Koios and users is triggered to guide them through

the creation of the command and determine its properties.

In order to demonstrate the process of program creation with Koios, the creation of a

program that was used in data collection (See Appendix C.5) is presented here.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 149

This is a simple program often used in introductory programming courses and its aim

is to display the numbers from 1 to 10 using a for-statement. This program requires

an integer variable, a for-statement and an output statement. First, an integer

variable with the name COUNTER must be declared. Selecting the variable icon

from the Programming Commands window and dragging-and-dropping it to the

MAIN PROCEDURE () icon in the Program window initiates a dialogue between

Koios and users that guides them through the declaration of variables. The dialog

windows involved in this action can be seen in Figure 3.4 and Figure 3.5.

Figure 3.4. The first dialogue window for declaring a variable.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 150

Figure 3.5. The second dialogue window for declaring a variable.

Whenever the Next and Finish buttons are clicked, the properties entered so far are

checked. If a property is not entered correctly, then an error message appears in a

dialogue window. For example, if an identifier (that is a name of a variable, constant,

array, function or procedure) that begins with a number is entered as the name for a

variable, then the error message in Figure 3.6 appears.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 151

Figure 3.6. An error message regarding the name of a variable.

When all the properties have been entered correctly, a variable icon is created in the

MAIN PROCEDURE () and the declaration of the variable is completed. A message

appears informing the user that a variable has been successfully declared (see

Figure 3.7).

Figure 3.7. An information message for successful variable declaration.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 152

Hence, only items with no errors are entered in the program; therefore the program

is always in a syntax-error-free state. The result of the addition of the variable in the

program is shown in Figure 3.8.

Figure 3.8. A program with a variable.

In the status bar a message appears on the left side that describes the last action

that was performed. On the right side of the status bar a balloon appears that

provides information about the status of programs. This balloon appears any time

that a change in a program occurs. A change in a program can be an addition of, a

deletion of, cutting and pasting, and moving up or down programming items. These

actions can be performed by the buttons provided on the right side of the Program

window.

As can be seen in Figure 3.8, the items of a program are represented as icons and

are associated with brief text, which reads programming items’ most important

properties. The aim of this is not only to help users to identify different programming

items that have the same icon, but also to prevent them from splitting their attention

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 153

between graphical view and Properties window or even textual view by providing

critical information regarding items’ properties (Shaffer et al., 2003). Each

programming item is represented by a node, which consists of an icon and the

associated text. The nodes of programs are organised in a tree structure. This

structure is used for the representation of files and folders by the majority of

operating systems. This choice of organising programming items/nodes in a tree

structure was made for three reasons. First, it is possible that this view can convey

the concept that there can be two categories of nodes/programming items (a)

compound statements, which are represented by nodes/programming items that can

‘include’ one or more nodes, like the if-statement and for-statements and (b) simple

statements, which are represented by nodes/programming items that cannot, like an

output statement. Hence, a parallel could be drawn; compound statements

resembles the functionality of folders, while simple statements the functionality of

files. The term functionality here is used with respect to their ability of containing or

not containing other nodes/items. Second, users may be already familiar with the

tree view from their interaction with computers’ operating system. Even if this is not

the case, this representation could be a good metaphor for distinguishing the

functionality of these two categories. Third, this view can provide a good mechanism

for showing/hiding the nodes/programming items within a node/item, such as the

commands within a for-statement. Thus, the size of the visible program can be

adjusted. This can be accomplished either for individual nodes by clicking on the

handle of nodes (represented by a + or a – sign within a rectangle box) or for the

entire program by using the Expand and Collapse buttons in the Programming

window.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 154

The next action is to add a for-statement. Following the same steps with the creation

of variables, the dialogue for the addition of a for-statement begins. The first

dialogue window is shown in Figure 3.9.

Figure 3.9. The first dialogue window of a for-statement.

In this dialogue window the name of the variable that will be included in the for-

statement is selected. From the three buttons that can be used for selecting

programming items, only the Select Variable button is enabled, because in this

program the only item that has been declared is a variable. If input parameters or

arrays had been declared as well, the associated buttons would have been enabled.

If users need help with properties of a for-statement, they can click on the Help

button. In this case a help message appears and can be seen in Figure 3.10. All the

dialogue windows of every programming item include a Help button when it is

required.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 155

Figure 3.10. A help message regarding a for-statement.

When the Select Variable button is clicked, a new window appears that shows all the

variables that are declared in this program and are global or within the scope of the

subprogram that the for-statement is added to. This window is shown in Figure 3.11.

Figure 3.11. The dialogue window for selecting variables for a for-statement.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 156

In this program only the variable COUNTER is declared and therefore only this

variable is shown in the window of Figure 3.11. When the variable is selected three

new windows appears consecutively. Each window asks users to enter the initial

expression, the condition and the step that are required for the for-statement. The

three windows, in their order of appearance are shown in Figure 3.12, Figure 3.13

and Figure 3.14, respectively.

Figure 3.12. The dialogue window for entering the initial expression of a for-
statement.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 157

Figure 3.13. The dialogue window for entering the condition of a for-statement.

In these dialogue windows, the expressions and conditions are checked and if errors

are detected, an error message appears and each dialogue window remains visible

until a correct expression or condition is entered. As can be seen from Figure 3.12,

Figure 3.13 and Figure 3.14, the Select Function button is enabled, although there

are no user-defined functions in the program. This is because Koios further assists

users by providing nine built-in functions: (a) integer_part, (b) square_root, (c)

cosine, (d) sine, (e) tangent, (f) e_to_power_of, (g) logarithm, (h) power and (i)

absolute_value.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 158

Figure 3.14. The dialog window for entering the step of a for-statement.

Once the initial expression, condition and step have been entered correctly, the

window of Figure 3.9 appears again with the completed information (see Figure

3.15). After the Finish button of the dialog window has been clicked, an information

message (see Figure 3.16) appears and the statement is added in the program.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 159

Figure 3.15. The completed dialogue window of a for-statement.

Figure 3.16. An information message for successfully adding a for-statement.

Next, an output statement will be added within the node of the for-statement. The

first dialogue window for adding a write statement can be seen in Figure 3.17. This

statement should be used to print the value of COUNTER together with a message.

Therefore, a string is added first in the statement by clicking the Add String button.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 160

Figure 3.17. The first dialogue window of a write statement.

Because the value of COUNTER is an integer number the Add Arithmetic

Expression button is clicked in order to include the variable COUNTER in this write

statement. After adding the two items, the dialog window is updated and can be

seen in Figure 3.18.

Figure 3.18. A dialogue window of a write statement with two items.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 161

The order that the items are printed can change using the Up and Down buttons.

Again, when the Finish button is clicked an information message regarding the

addition of a write statement in the program appears (see Figure 3.19).

Figure 3.19. An information message for successfully adding a write statement.

The program is now ready. The graphical and textual view of this program can be

seen in Figure 3.20 and Figure 3.21, respectively.

Figure 3.20. The graphical view of a program.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 162

Figure 3.21. The textual view of a program.

Figure 3.21 shows the text code that is automatically generated from the graphical

view of the program. Different combination of colours and font styles are used for

formatting the text in order to underline the different programming constructs. Table

3.3 presents the colour and font style that are used to represent each programming

construct in Koios.

Table 3.3
Colour and Font Style of Each Programming Item

Programming Item Colour Font Style
Global constant Green Italics
Local constant Black Italics
Global variable/array Green Plain
Local variable/array Black Plain
Reserved word Light blue Bold
Name of function/procedure Black Bold
Number Beige Plain
Character/string Dark orange Plain
Boolean Grey Plain

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 163

The data presented in Table 3.3 show that the same combination of font style and

colour is used for both local variables and local arrays. This is also the case for the

categories of global variables and arrays, functions and procedures, and characters

and strings. The choice to represent local and global programming items of these

categories using the same combination of font style and colour for each category

was made so that the semantic relation between the items of each category could be

denoted. However, the items of each category can be further distinguished by their

attributes, for example a left square bracket always comes after the name of an

array, but never after the name of variable. The combinations presented in Table 3.3

resemble those that are used in NetBeans.

Finally, the properties of a programming item can only be updated by double-clicking

its node. This action initiates a dialogue between Koios and users, similar to the one

that it is initiated during the creation of the item, which guides users through the

update process. Users can update the properties of a programming item only by

double-clicking on its node; this choice was made so they can correctly complete the

update process through dialogue windows. The next section is concerned with

programs’ execution with Koios.

3.3.3 Executing Programs with the Koios Programming Environment

In order to demonstrate how programs are executed in the Koios programming

environment, execution of the program (see Figure 3.20 and Figure 3.21) that was

created in Section 3.3.2 is presented. This program displays the numbers from 1 to

10 using a for-statement.

In order to foster good programming habits in novices and to help them produce

efficient programs, Koios provides a Check command. This command performs

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 164

three actions on the current program. First, it reorders the nodes of constants,

variables and arrays and moves them at the beginning of the procedure or function

that are declared. Because declarations of these items are allowed everywhere in

the program, this action guarantees that every item is declared before it is used.

Second, it checks whether are there any constants, variables or arrays that are

declared but not used and any variables or array elements that are used without

initialisation. In the first case the name of the item is reported, while in the second

the name of the item as well as the statement that includes it are reported, see

Figure 3.22. Third, it detects any non-syntax errors. For a detailed presentation of

the errors detected by Koios see Appendix B.4.

Figure 3.22. A dialogue window with warnings produced by the Check command.

Users are advised to run the Check command during program creation and before

compiling the program. However, if this action is omitted the Compile command

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 165

automatically runs the Check command before the compilation of the program.

When the Check or Compile command are executed the balloon in the status bar

informs users whether warnings or/and errors exist or the program has no errors

(see Figure 3.23 and Figure 3.24).

Figure 3.23. Message after running the Check command.

Figure 3.24. Message after running the Compile command.

An important decision regarding the development of the Koios programming

environment was with respect to the implementation of its compiler. As discussed in

Section 3.2.1.3, the design choice regarding the creation of programs with Koios was

that programs would be created only by means of visual programming. Given that

(a) programs created with Koios are always syntax-error-free and (b) the textual

code is syntax-error-free as well - because it is automatically generated -, the

necessity of compiler mechanisms that check for syntactic and grammatical

correctness is questionable. In fact, what is required is the mechanism of compilers

that produce executable code. However, this is a big research topic in itself.

Therefore, and in order to avoid reinventing the wheel, the chosen solution was to

use an existing compiler. Deciding which compiler would be appropriate though, is a

matter that comes with a number of technical parameters. In order not to further

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 166

complicate this matter, I came up with a simple but efficient solution. As explained in

the beginning of Section 3.3, Koios can be executed only in a system that has the

Java Virtual Machine installed. In fact, a system that has the Java Virtual Machine

installed can execute any program in Java. Therefore, the solution was to transform

the programs that are created with Koios to equivalent Java programs. Thus, every

time the Compile command of Koios runs, the efficient and powerful compiler of Java

is used to compile the programs that have been created with Koios and produce the

executable files of these programs. These programs can in turn be executed within

the Koios programming environment.

This choice was also made because it can familiarise novices with the advanced

form of programs of professional PLs. Thus, Koios includes the Export Java

Program command, which can produce the equivalent Java version of the programs

created using Koios. Naturally, these Java programs can be viewed and executed

using any Java programming environment.

Once a program contains no errors it can be executed by running the Run command.

This action changes Koios’ mode from Program Creation to Program Execution - a

mode used for tracing programs’ execution. The main window of Program Execution

mode is shown in Figure 3.25.

At the top of the window there are control buttons for starting, pausing and stopping

the execution and a slide bar for adjusting its speed. When the Play button is clicked

the execution of the program begins. During execution the statement that is being

executed is highlighted in yellow in the Execution window of the Program Execution

mode.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 167

Figure 3.25. A program in Program Execution mode.

In the case of a compound statement, for example a for-statement, the end

statement is highlighted in orange (see Figure 3.26). The output of running

programs is shown in the Output window of the Program Execution mode.

An important and unique feature of Koios is the Comments/Description window. This

window provides messages with overall information about the statement that is being

executed at the time. This information includes a brief description of its properties,

how this statements works, what is the result of its execution and how it affects the

control flow of the program (if applicable).

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 168

Figure 3.26. A snapshot of the execution of a program.

Thus, using the Play/Pause buttons and these messages users are facilitated in

understanding and tracing the execution of the code in a constructivist way, at their

own pace and with minimum help from instructors. A step-by-step execution of

programs is not supported explicitly by this version of Koios; however, the

Play/Pause buttons could be used to simulate this type of execution.

This section presented some important features of Koios through a case of creating

and executing a simple program. These features were designed and developed with

the primary aim of producing a programming environment that is based on the

combined set of the seven design principles and thus could serve as an efficient tool

for improving the teaching and learning of introductory programming. However, a

secondary aim was that this tool could also serve as a stepping stone for the

transition of novices to more advanced and powerful professional PLs.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 169

3.4 Differences between Versions of Koios

As mentioned in Section 3.3, two Greek versions of Koios have been developed until

today, namely Version 0 and Version 1. Both versions were used in data collection

and more specifically, Version 0 in the first round of data collection and Version 1 in

the second round (see Section 4.3). A discussion of the differences between the two

versions follows.

Version 1 was the result of redesigning Version 0 based on students’ comments from

the first round of data collection (see Section 4.3.2.1) and suggestions made by the

supervisory team. The improvements in Version 1 included (a) the replacement or

redesign of a number of dialogue windows in order to make their use simpler, (b) the

replacement, where appropriate, of words with symbols, (c) the inclusion of a Help

button in dialog windows for creating/modifying statements, which would provide

information regarding the functionality and the creation/modification process of

statements, (d) the addition of tooltips to all buttons that inform users about them and

(e) the visibility of buttons regarding constants, arrays, and functions only in

Advanced User mode. These buttons are visible only in Advanced User mode

because the programming items of constants, arrays, and functions are available

only in this mode (see Section 3.3.2). Hence, in Simple Use mode there is no need

to show buttons that do not provide any functionality. This way Koios’ interface

remains as simple as possible. It is important to note that a visual artist was involved

in the redesign of these dialogue windows. He contributed to overall design matters.

More specifically, he was consulted on matters regarding colour combination, font-

size, type and colour, and spatial arrangement of items on dialogue windows. Two

samples of the modifications made can be seen in Figure 3.27, Figure 3.28, Figure

3.29 and Figure 3.30. Although these dialogue windows are from the Greek versions

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 170

of Koios, they can illustrate the rationale and results of modifications. Thus, the

dialogue window for creating an output statement in Koios Version 0 and Version 1

can be seen in Figure 3.27 and Figure 3.28 , respectively. The new dialogue window

(Figure 3.28) was intended to be simpler, more compact and pleasant to the eye

than the old one (Figure 3.27). In particular, the following modifications took place

(a) the buttons were grouped closer, (b) the text above each button in the old window

was removed and incorporated in the new window as the tool tip of the specific

button, (c) a help button was added, (d) symbols were added in the captions of the

up and down buttons and (e) the font colour of parts of text was changed. Similarly,

Figure 3.29 and Figure 3.30 show the main window during Program Execution mode

in Koios Version 0 and Version 1, respectively.

Figure 3.27. The dialogue window for creating a write statement in Koios Version 0.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 171

Figure 3.28. The dialogue window for creating a write statement in Koios Version 1.

Figure 3.29. A program in Program Execution mode in Koios Version 0.

CHAPTER 3: THE KOIOS PROGRAMMING ENVIRONMENT 172

Figure 3.30. A program in Program Execution mode in Koios Version 1.

3.5 Conclusions

This chapter discussed the design and development of the Koios programming

environment. Design and implementation issues regarding the set of the seven

design principles as well as issues beyond this set were presented. The process of

addressing these issues and the final decisions, based on which the interface and

functionality of Koios was developed, were reported. In order to highlight important

features of Koios that support and facilitate novices during the programming process,

an example of creating and executing a program with Koios was demonstrated. The

following chapter presents the evaluation of Koios in Greek educational institutes.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 173

Chapter Four

Method, Data Collection and

Data Analysis

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 174

Contents

4.1 Overview.. 176

4.2 Method .. 176

4.2.1 Research Hypotheses ... 176

4.2.2 Research Design... 178

4.2.2.1 Basic research design. .. 179

4.2.2.2 Refinement of the basic research design. 180

4.2.2.3 Method of first quasi-experiment – secondary education. 183

4.2.2.4 Method of second quasi-experiment – tertiary education. 188

4.3 Data Collection .. 193

4.3.1 First Round of Data Collection .. 193

4.3.1.1 Preparations and arrangements for the first round of data collection.

.. 193

4.3.1.2 First round of data collection in secondary education...................... 194

4.3.1.2.1Declarative-knowledge data collection (first round). 197

4.3.1.2.2Procedural-knowledge data collection (first round). 198

4.3.2 Second Round of Data Collection ... 199

4.3.2.1 Preparations and arrangements for the second round of data

collection. .. 199

4.3.2.2 Second round of data collection in secondary education. 201

4.3.2.2.1Declarative-knowledge data collection (second round)............... 202

4.3.2.2.2Procedural-knowledge data collection (second round). 202

4.3.2.2.3Practical test (second round). ... 203

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 175

4.3.3 Data Collection for Declarative-Knowledge Baseline 203

4.4 Data Analysis... 204

4.4.1 Variables Used In Data Analysis ... 204

4.4.1.1 Variables regarding procedural-knowledge data. 205

4.4.1.2 Variables regarding declarative-knowledge data............................. 205

4.4.1.3 Variables regarding practical-test data. ... 209

4.4.1.4 Variables considered for covariates. ... 209

4.4.2 Data Analysis Plan .. 212

4.4.2.1 Analysis plan for procedural-knowledge data. 212

4.4.2.1.1Analysis plan for procedural-knowledge data of the first round... 213

4.4.2.1.2Analysis plan for procedural-knowledge data of the second

round…... 215

4.4.2.2 Analysis plan for declarative-knowledge data. 215

4.4.2.2.1Analysis plan for declarative-knowledge data of the first round. . 216

4.4.2.2.2Analysis plan for declarative-knowledge data of the second

round…... 222

4.4.2.3 Analysis plan for practical-test data... 226

4.4.2.4 Technical matters regarding data analysis. 227

4.4.3 Considerations Regarding Assumptions of Parametric Tests. 229

4.5 Conclusions... 231

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 176

4.1 Overview

The three primary aims of the research project reported in this thesis are (a) to

identify a set of design principles for educational programming software, (b) to

design and develop a programming tool as an embodiment of this combined set of

principles and (c) to evaluate this new programming tool and assess its impact on

novice programmers. The way that the first two aims were accomplished was

discussed in the previous two chapters. In particular, Chapter Two reviewed the

relevant literature and identified a set of seven design principles. The design and

development of Koios, the programming tool that embodied this set was presented in

Chapter Three. The fourth chapter of this thesis discusses the method that was

employed to study the effect of programming tools’ compliance with this set on

novice programmers’ knowledge and skills via the evaluation of the Koios

programming environment. Furthermore, this chapter reports the process of

collecting data for this study as well as the techniques that were employed for the

analysis of the collected data.

4.2 Method

This section discusses the three research hypotheses and the research method

followed to test them. First, the research hypotheses are presented, whilst the

research designs that were produced to test them follow.

4.2.1 Research Hypotheses

As reported in Section 2.4.8, at the time this study was conducted, my profession

was teaching CS subjects in Greek secondary schools and tertiary institutes. One of

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 177

the subjects that I taught was introduction to programming. This motivated me to

research the current state of international and, particularly, Greek introductory

programming education and to identify a set of design principles for educational

programming software. Using this combined set of the seven design principles (see

Section 2.5), I designed and implemented Koios (see Chapter Three), a new

programming tool that could help novices succeed in their first programming course.

Hence, the following research question was crucial for the research reported in this

thesis.

How important is compliance with this set of the seven design principles as a

pedagogical consideration for educational software engineering?

The importance of compliance of educational programming tools with the combined

set of design principles can be assessed from its pedagogical impact on their users.

Naturally, the effect of compliance with a set of design principles on people cannot

be directly measured. However, the effect of software that highly complies with this

set on outcomes in its users could be used as an indirect measurement of the effect

of compliance with the set. The pedagogical aim of an educational programming tool

is to facilitate the acquisition of knowledge in the domain of programming. Thus, the

expected pedagogical impact for novice programmers who use Koios is the

acquisition of programming knowledge (see Sections 2.3). Knowledge in the

programming domain can be categorised in declarative and procedural programming

knowledge (see Section 2.7.1). More specifically, declarative programming

knowledge can be represented by learners’ mental models (see Sections 2.7.1 and

2.7.2.1), while procedural programming knowledge can be measured by the level of

learners’ programming skills (see Section 2.7.1 and 2.7.2.2). Therefore, the

importance of compliance with the set of design principles can be determined by

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 178

measuring the direct effect of Koios on the quality of mental models and

programming skills of its users. Furthermore, the application of the mental-model

hypothesis (Kellog & Breen, 1990) in the domain of programming instruction predicts

that students with a rich mental model develop a higher level of programming skills

than students with a poor mental model. In order to test the mental-model

hypothesis, the existence of any indirect effect of Koios on users’ programming skills,

which could be mediated by their mental models should, therefore, be examined as

well. Thus, to formally address the question presented in the beginning of this

section, the following three research hypotheses are proposed.

H1: novice students who use a programming environment with a high level of

compliance with the set of the seven design principles develop a higher level of

programming skills than novice students who use programming environments that

partially comply with this set.

H2: novice students who use a programming environment with a high level of

compliance with the set of the seven design principles construct richer mental

models in the domain of programming than novice students who use programming

environments that partially comply with this set.

H3: the effect of programming environment on programming skills in novice students

is mediated by the quality of their mental models.

4.2.2 Research Design

This section presents the research design that was produced in order to test the

three research hypotheses. First a basic research design is presented. A number of

reasons for modifying and refining the basic research design follow. Finally, the

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 179

results of these refinements, two quasi-experimental designs, which were produced

for conducting the study, are discussed.

4.2.2.1 Basic research design.

In order to test the three research hypotheses, the following basic research design

was produced. The variable under investigation is compliance with the combined set

of design principles. As discussed in the previous section, the effect of compliance

with a set of design principles cannot be directly measured, but it can be measured

by the effect that software, which was designed with a high level of compliance with

this set, has on outcomes in its users.

Hence, to study the effect of compliance with the seven design principles, at least

one programming tool with partial or no compliance and one with a high level of

compliance with the set are required and need to be compared. Therefore, the

independent variable (IV) of this design was the level of compliance with the set of

design principles. The different levels of the independent variable (Pedhazur &

Pedhazur Schmelkin, 1991) were programming tools with different levels of

compliance with the set. Koios was designed as a programming tool with a high

degree of compliance with the set of principles (see Chapter Three). Thus, Koios

was assigned to the level of the independent variable that highly complies with the

set of principles. The dependent variable (DV) (Pedhazur & Pedhazur Schmelkin,

1991) was the level of programming skills of novice programmers. The quality of

novices’ mental models was the mediator (M) (Baron & Kenny, 1986; MacKinnon,

2008). Figure 4.1 presents this basic research design graphically.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 180

Figure 4.1. Basic research design.

The assignment of the Koios programming environment to a level of the independent

variable not only allowed the testing of the three research hypotheses, but it also

enabled (a) Koios’ evaluation as a programming tool, (b) the assessment of its

impact on novices and (c) its comparison with ‘standard’ software that is already

used for teaching programming. This was accomplished by planning and conducting

an empirical study based on the basic research design. Hence, this basic research

design was further refined in two quasi-experimental designs in order to meet the

emerging requirements of the empirical study.

4.2.2.2 Refinement of the basic research design.

The reasons for and details of the refinement of the basic research design are as

follows. First, the evaluation of Koios was planned to take place in Greek

educational institutes. A first reason for this decision was that Koios had specifically

been designed to support Greek novice programmers, as, in my experience, there

was a lack of suitable tools for this purpose at the time the research that is reported

in this thesis started. A second reason was that I was certified to teach students of

Greek secondary and tertiary institutes because my profession was teaching CS

Programming skills
(procedural knowledge)

Mental models
(declarative knowledge)

Independent variable
(software’s level of

compliance)

Mediator

Dependent Variable

Koios (high level of
compliance)

Programming Tool 2
(partial compliance)

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 181

subjects in Greek educational institutes. This population of students was identified

as appropriate for providing the sample of research participants that could be

involved in the evaluation of Koios. Thus, I was more likely to get approval for

evaluating Koios in Greek institutes than in other international institutes.

Second, for the empirical study and Koios’ evaluation, I decided to use quasi-

experimental designs (Pedhazur & Pedhazur Schmelkin, 1991) instead of traditional

experimental designs, because random assignment of participants in experimental

groups was not practically possible. In order to increase the probability of an

educational institute accepting to participate in this study, Koios’ evaluation had to

cause as less interference as possible with its programme of CS studies. This

included working with the class-groups of students that were predefined by the

administration services of the institute. Thus, a random allocation of students in

experimental groups was not possible.

Third, Koios was developed as a programming tool for the initial stages of teaching

and learning programming in both secondary and tertiary level. However, a

difference in programming knowledge between students of secondary and tertiary

education was expected. The first reason for this is that the curriculum of Greek

secondary education includes fewer programming concepts than the majority of

curricula of Greek tertiary institutes. The second reason is that the teaching period

for introductory programming courses in secondary and tertiary education is on

average at least 12 and 14 weeks, respectively. Finally, the minimum number of

lectures and laboratory courses for introductory programming in tertiary institutes is

two and two per week, respectively and their duration is 45 minutes. In contrast, in

secondary schools, there is only one lesson per week, which ranges from 35 to 45

minutes. All these factors suggested that the development of programming skills in

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 182

secondary and tertiary education would be different. More specifically, students in

tertiary education were expected to develop richer declarative and procedural

programming knowledge.

Fourth, this empirical study was based on the CS curricula of participating institutes

and incorporated in actual lessons of introductory programming. The aim of this

decision was twofold. The first and more important aim was that, this way, the study

took place in ‘real’ learning environments. The second aim, as explained in a

previous paragraph, was to comply as much as possible with the programme of CS

studies of educational institutes, in order to facilitate their participation in this study.

The decision of this study taking place in Greek secondary and tertiary institutes

presented no particular methodological problems or drawbacks for the following

reasons. First, all secondary schools in Greece follow the same CS curriculum,

which is dictated by the Greek Ministry of Education. Second, tertiary institutes in

Greece can form their own CS curriculum, but in practice, their curricula for

introductory programming include all programming concepts under investigation by

this study. The implications of this decision with respect to conducting this study in

secondary schools were that, according to the official CS curriculum, (a) the duration

of a quasi-experiment should be at least 12 weeks of lessons, (b) the duration of

each lesson would be determined by the official timetable, which is the same for all

secondary schools and ranges from 35 to 45 minutes, and (c) a specific set of

programming concepts (see Section 3.3.2) had to be taught. The implications of this

decision regarding this study in tertiary-education institutes were that (a) its duration

should be between 14 and 16 weeks, (b) a minimum of two lectures and two

laboratories courses should take place per week and (c) each lecture/laboratory

course should last for 45 minutes.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 183

Therefore, in order to test the three research hypotheses and evaluate Koios two

quasi-experimental designs were produced. The first quasi-experimental design was

used to study the effects of compliance with the set of principles, via the use of

Koios, on the declarative and procedural programming knowledge of pupils that were

studying in Greek secondary schools. Accordingly, the second quasi-experimental

design was going to be used to study the effects of compliance with these principles,

via the use of Koios, on the declarative and procedural programming knowledge of

students that were studying in Greek tertiary institutions. A presentation of the two

quasi-experimental designs follows.

4.2.2.3 Method of first quasi-experiment – secondary education.

The first quasi-experimental design was used for evaluating Koios and testing the

three research hypotheses with secondary-school students. First, the software that

was included in this quasi-experimental design is briefly introduced, followed by the

details of this design.

At the time the research reported in this thesis started, there were two popular

programming environments in Greek secondary-level education that were used for

teaching introductory programming: Glossomatheia (Nikolaidhs, 2008) and

MicroworldsPro (LCSI, 2008). Glossomatheia was a programming tool that was

widely used in secondary schools for teaching introductory programming. It supports

the procedural paradigm and Greek Pascal-like syntax and semantics. The second

programming tool, MicroworldsPro, was introduced in 2009 by the Greek Ministry of

Education as the official recommendation for teaching introductory programming.

MicroworldsPro is a LOGO-based programming environment. The Greek version of

MicroworldsPro was used in the experiment. LOGO (Papert, 1980) was one of the

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 184

first PLs that was specially designed for children with no programming experience

(McIver, 2000). However, the creators of LOGO did not give special consideration to

its linguistic attributes (Murnane, 1993) and its importance has been decreasing over

the years, mostly because of its design, which seems to target only infant users

(Grandell et al., 2005). Glossomatheia and MicroworldsPro were considered to

partially comply with the set of the seven design principles. For more details about

how the compliance of the programming tools with the design principles was

evaluated see Appendix C.1.

Design. The first quasi-experimental design was based on the basic research

design that was discussed in the previous section (Section 4.2.2.1). The

independent variable was the level of compliance with the set of the seven design

principles and had three levels, which varied in their degree of compliance. Koios

represented the level of the independent variable with high compliance, while

Glossomatheia and MicroworldsPro represented each of the two levels of the

independent variable with partial compliance. The different levels of compliance of

these tools with the set of design principles are presented in Table 4.1.

The data presented in Table 4.1 show that Glossomatheia and MicroworldsPro fully

comply with the first and fifth design principles, namely they are in the Greek

language and provide a small set of instructions. In contrast, the error messages

provided by MicroworldsPro were designed with a low level of compliance with the

sixth design principle, while Glossomatheia partially complies with this principle. The

two programming tools partially comply with the remaining four design principles.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 185

Table 4.1
Satisfaction Levels of Design Principles (Independent Variable) for the Four
Programming Environments Used in the Quasi-Experimental Designs

Design Principle
Name Natural

Language
of PL and

IDE

Syntax
and

Semantics

Visualisation Level of
Abstraction

Small Set of
Instructions

Provision
of Error

Messages

Level of
Interaction

with the
IDE

Koios       

Glossomatheia  ½ ½ ½  ½ ½

MicroworldsPro  ½ ½   X ½

C X X X ½ X X X

Note. Koios was used by secondary-school pupils and was going to be used by university
students. Glossomatheia and MicroworldsPro were used only by secondary-school pupils. C
was going to be used only by university students.

As was previously discussed, Koios was designed with a high level of compliance

with the seven design principles. Finally, C was designed with a low level of

compliance with the set of design principles, with the exception of partially complying

with the design principle regarding the level of commands’ abstraction.

The level of students’ programming skills (procedural knowledge) was the dependent

variable. The quality of pupils’ mental models (declarative knowledge) was the

mediator. Participants’ GPA without CS, Participants’ GPA from previous year,

Gender, Day of Week, Hour of Day, Size, Gaps between Lessons, Homework

Frequency and Duration of Lesson were variables that were considered for

candidate covariates and tested for possibly affecting the effect of independent

variable on dependent variable (see Section 4.4.1.4).

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 186

Participants. Participants were third-grade secondary-school students with no

previous formal instruction in programming. Students’ demographic details are

presented in Section 4.3.1.2 and 4.3.2.2 . Statistical power analysis revealed that a

total of 66 secondary-school pupils were required in order to detect a large effect

size (η2= 0.138) with a significance level of 0.05 and a statistical power of 0.80.

Procedure. Each independent-variable level, namely each programming tool,

corresponded with one quasi-experimental group of secondary-school students.

Based on the results of statistical power analysis, each of the three quasi-

experimental groups should consist of at least 22 participants – students. Each

group used the corresponding programming tool for its introductory programming

course for nine lessons (12 weeks including three knowledge measurements, see

Section 4.2.2.2). The programming concepts, teaching method, classroom

examples, homework and teaching material were the same for all experimental

groups. However, there was a necessary slight variation in the teaching material for

each of the three groups in order to appropriately present the corresponding

programming tool.

The validity of the hypotheses H1 and H2 was tested via procedural-knowledge and

declarative-knowledge measurements, respectively. The programming knowledge of

the following 13 programming concepts that were taught was measured: integer,

arithmetic expression, string, output-statement, input-statement, variable,

assignment-statement, iteration-statement, procedure, procedure call, input

parameter, logical condition and conditional statement. The knowledge of these

concepts is considered to provide a basic understanding of introductory

programming, at least at the level of lower secondary-education. Three declarative-

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 187

knowledge measurements of students’ mental models took place. These

measurements were scheduled for the beginning, the middle (after five lessons since

the beginning) and the end (after nine lessons since the beginning) of the quasi-

experiment, respectively. Although it was expected that students would not possess

declarative programming knowledge in the beginning of the experiment, the three

measurements used the same set of pairs of programming concepts so that the

development of the students’ mental models could be monitored throughout the

three mental models’ measurements.

The measurement of students’ programming skills was planned as well. Three

procedural-knowledge measurements were scheduled and administered after three,

five and nine lessons since the beginning of the quasi-experiment, respectively. A

procedural-knowledge measurement was not scheduled for the beginning of the

study, because it was expected that students would not possess procedural

programming knowledge. Instead, the first procedural-knowledge measurement took

place after three lessons, when, in principle, a low level of procedural programming

knowledge should have been developed. The development of procedural-

knowledge was not monitored in the same way as the development of declarative

knowledge, because different items had to be used in the three procedural-

knowledge tests, in order to detect the level of students’ programming skills.

Nevertheless, the second measurement of declarative and procedural programming

knowledge took place successively in the same lesson. This was also the case for

the third measurement of declarative and procedural programming knowledge.

Measuring procedural and declarative knowledge in the same lesson allowed for

testing hypothesis H3. This hypothesis examines whether programming tool has an

indirect effect on students’ programming skills by mediation of their mental models.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 188

Thus, the collection of data regarding students’ programming skills and mental

models, at the same occasion, facilitated the testing of this hypothesis’ validity.

Material. Students’ mental models were measured using ratings of concept pairs

(see Section 2.7.2.2). The programming skills of students were assessed with

procedural-knowledge tests (see Section 2.7.2.3). More details about this material

are presented in the section regarding data collection (see Section 4.3).

Data Analysis. For the analysis of collected data, correlation analysis, analysis of

variance, simple and hierarchical multiple regression (Field, 2009; Pedhazur, 1997;

Pedhazur & Pedhazur Schmelkin, 1991) were employed. These techniques were

used for testing the direct and indirect effect of the independent variable on the

quality of students’ mental models and level of programming skills. The Pathfinder

scaling algorithm (see Section 2.7.2.2) was used to compare novices’ and experts’

mental models in order to determine the quality of students’ mental models (Cooke &

Schvaneveldt, 1988). Mediation analysis (Baron & Kenny, 1986; MacKinnon, 2008)

was used to test the indirect effect of mental models on programming skills.

Assessments of homework, grades from other relevant subjects (for example

mathematics and physics), and grade point average were used as covariates. More

details about the data analysis techniques that were employed can be found in the

section that discusses data analysis (see Section 4.4).

4.2.2.4 Method of second quasi-experiment – tertiary education.

The first quasi-experiment was produced with respect to studying the effect of

compliance with the set of principles on secondary-education students. The second

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 189

quasi-experiment aimed to study the same effect on tertiary-education students. As

with the case of the first quasi-experiment, this design is a refinement of the basic

research design, which was discussed in Section 4.2.2.1, in order to meet the

requirements of the empirical study. Hence, this design has a number of similarities

with the first quasi-experimental design. Because the details of the first design were

thoroughly discussed in the previous section (see Section 4.2.2.3), this section

mostly focuses on the rationale, issues and details that differentiated this quasi-

experimental design from the first one.

Design. The independent variable of this design was the level of compliance with

the set of the seven design principles as well. However, in this design, it had only

two levels that varied in their degree of compliance. Koios was the level of the

independent variable with high compliance, while C (Kernighan & Ritchie, 1988) was

the level of the independent variable with partial compliance. C together with Java

(Gosling & McGilton, 1996) are two general-purpose, powerful, professional and

popular PLs. Moreover, they are the two most widely used PLs for introductory

programming courses in tertiary education worldwide. Although both of these PLs

could be used in this design, it was decided to include only C. Java supports the OO

programming paradigm, while C the procedural paradigm. For reasons that were

discussed in Section 3.2.2.1, the procedural paradigm is preferred over the OO

paradigm for novices. Thus, Java was excluded and C was the only level of the

independent variable with partial compliance. Glossomatheia and MicroworldsPro

were excluded from this design as well. MicroworldsPro is considered a PL for

children and not complex enough for tertiary education (Grandell et al., 2005;

Jenkins, 2002; McIver, 2000). Glossomatheia is not totally unsuitable for tertiary

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 190

programming courses, but professional PLs, such as Java and C, are usually

preferred for the majority of these courses. In any case, Glossomatheia and

MicroworldsPro were already used in the first quasi-experimental design and thus,

their inclusion in this design as well, was deemed not necessary. Table 4.1 presents

the different levels of compliance of Koios and C with the set of design principles. As

previously reported, Koios was designed and developed with a high level of

compliance with the set of design principles. Contrary, C seems to have a low level

of compliance with this set, with the exception of the level of commands’ abstraction.

Appendix C.1 provides more details about how the compliance of programming

tools with the set of principles was evaluated. As in the first quasi-experiment, the

level of students’ programming skills (procedural knowledge) was the dependent

variable, while the quality of their mental models (declarative knowledge) was the

mediator.

Participants. Participants were going to be university students, who had no previous

programming experience at a tertiary level. Statistical power analysis revealed that a

total of 44 university students were required in order to detect a large effect size (η2=

0.138) with a significance level of 0.05 and statistical power of 0.80.

Procedure. As in the first quasi-experiment, each independent-variable level,

namely each programming tool, was going to correspond with a quasi-experimental

group. Based on the results of power analysis, each quasi-experimental group was

going to consist of at least 22 university students. Each group was going to use its

corresponding programming tool for the first half of the winter semester. In the

second half of the same semester, both groups were going to use C as their

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 191

programming tool, in a follow-up study. This way two additional aims were going to

be accomplished. First, the pedagogical impact of Koios and C as introductory PLs

was going to be assessed. Furthermore, the comparison between the pedagogical

impact of Koios and C could provide evidence about the superiority of one

programming tool over the other, regarding their suitability as programming tools for

tertiary introductory-programming courses. Second, as novices progress, the use of

professional, non-educational PLs, such as C, becomes a necessity. The degree of

preparation, which is provided by the use of Koios, for this transition could be

assessed by this quasi-experimental design as well.

As in the case of the first design, declarative-knowledge and procedural-knowledge

measurements were planned for testing hypotheses H2 and H1, respectively. The

knowledge of 19 programming concepts was going to be measured in this design:

integer, arithmetic expression, string, output-statement, input-statement, variable,

array, array index, assignment-statement, iteration-statement, procedure, procedure

call, function, function call, input parameter, return-statement, return argument,

logical condition and conditional statement. The concepts in this set are considered

to provide a fundamental understanding of introductory programming at tertiary level.

However, increasing the size of this set would result in an unrealistic duration of

declarative-knowledge measurement, due of the increasing numbers of possible

concept pairs (see Section 2.7.2.2). Again, three declarative-knowledge

measurements were going to take place. The first one was scheduled for the

beginning of the semester, before any experimental manipulation. The second one

was scheduled for the middle of the semester, before both groups were going to use

C. The third one was scheduled for the end of the semester. Three procedural-

knowledge measurements were planned as well. The three measurements were

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 192

scheduled for the beginning, the middle and the end of the semester, respectively.

In this design, the first procedural-knowledge measurement was scheduled for the

beginning of the semester, because university students were expected to have some

previous programming experience from secondary education. In each of the three

measurements, the declarative-knowledge and procedural-knowledge measurement

were going to take place successively. Thus, the data collected in each

measurement were going to be used for testing hypothesis H3 (see Section 4.2.2.3).

Feedback provided at the end of the winter semester was going to be used to create

an improved version of Koios. This design was planned to be repeated in the spring

semester, with one variation; the improved version of Koios was going to be the

independent-variable level with high compliance.

Material. As in the case of the first design, the quality of students’ mental models

was going to be measured using ratings of pair concepts (see Section2.7.2.2).

Similarly, the level of students’ programming skills was going to be assessed with

procedural-knowledge tests (see Section 2.7.2.3).

Data Analysis. The analysis techniques used in the first design were going to be

used for this design as well.

For reasons that are explained in the next section, the second quasi-experiment was

eventually not conducted. Only the first quasi-experiment was conducted. However,

both quasi-experiments received research ethics approval by Teesside University’s

Research Ethics Committee. The next section discusses how this design was

implemented in the data collection procedure.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 193

4.3 Data Collection

This section reports matters regarding the collection of data that was conducted

based on the first quasi-experimental design. Data collection consisted of two

rounds. The second round was added in the data-collection scheme, in order to

provide further evidence to test the three research hypotheses. Section 4.3.1

presents the first round of data collection, while Section 4.3.2 presents the second

round. The differences between the two rounds are reported in Section 4.3.2.1.

4.3.1 First Round of Data Collection

4.3.1.1 Preparations and arrangements for the first round of data

collection.

Initially, I contacted several secondary and tertiary institutes to discuss their

participation in this study. Staff from a high-school in the city of Lefkas and two

tertiary institutes, the Technical Educational Institute of Patras and the Technical

Educational Institute of Lefkas, were contacted and agreed to participate. However,

data were collected only in the secondary school for the following reasons.

A formal letter from the Director of Studies for conducting the study was requested

by the tertiary institute in Patras. The Director of Studies sent the letter, but a reply

was never returned and thus data collection could not be conducted in this institute.

In the case of the tertiary institute in Lefkas, three students volunteered to take part

in the study. Obviously, this sample size (N = 3) would yield results with low

statistical power. Therefore, this experiment had to be cancelled and thus, no data

collection was conducted in tertiary institutes during the first round.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 194

4.3.1.2 First round of data collection in secondary education.

The first round of data collection began in the 23rd of November 2009 and ended in

the 07th of May 2010. A total of 72 third-grade participants – 41 male and 31 female

students – were informed about the study before its beginning. Participants lived in

the wider area of Lefkas city and their average age was 14 years. Due to

participants’ age, a consent form (see Appendix C.2), together with information about

the study (see Appendix C.3), were given to be signed by each participant’s

parent(s)/guardian(s) before the study.

The school had four classes in the third grade, namely G1, G2, G3 and G4 and each

class had 22, 23, 17 and 10 students, respectively. According to the directions of the

Greek Ministry of Education for CS lessons in high-schools, each class is further

divided in two subclasses - groups. Thus, each class was divided in two, forming

eight school-groups in total, namely G1A, G1B, G2A, G2B, G3A, G3B G4A and G1B.

In order to follow the quasi-experimental design for secondary education, the school-

groups G1A and G1B, G2A and G2B, and G3A, G3B, G4A and G4B used

Glossomatheia, the Koios prototype (Version 0) and MicroworldsPro, respectively, as

their programming tool. The exact day and school hour that CS lessons took place

for each school-group were scheduled by the administration of the school.

During the study, the absence of students, remarks and comments made by

students and any gaps between lessons were recorded. Each school-group had a

school hour of CS lesson per week. If for some reason, for example a school trip, a

school-group missed its lesson, then this was recorded as a gap between lessons.

The particular lesson was not actually missed – it was held later in the schedule –

rather the opportunity to be held on the particular occasion was missed.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 195

In order to minimise the differentiation of conditions between the experimental

groups, I decided to give all the lessons for the eight school-groups myself. This

decision could ascertain that the teaching material, classroom examples, homework

and teaching method would remain as similar as possible for all school-groups.

Moreover, having an active role in the learning environment could make my

presence in the classroom seem more ‘natural’ than just being a passive observer.

However, this decision could increase bias because the person giving the lessons

and conducting the experiment was the same. Bias that could be introduced by this

decision as well as the efforts made to decrease potential bias in this research

project are discussed in Section 6.2.3.

The study was conducted according to a plan for lessons and knowledge

measurements that I prepared and can be found in Appendix C.4. This plan was

based on the official CS curriculum for third grade of High School in Greece as well

as on the quasi-experimental design for secondary education. I also prepared the

teaching material for the lessons for all groups.

The teaching material for each lesson included (a) some theoretical notes regarding

the programming concepts in discussion, (b) how this programming concept is

represented by a programming statement in a programming tool, (c) one or more

programs in which the programming statement is used, as classroom example(s)

and (d) homework. The only necessary difference in teaching material between

groups was the information regarding the programming tool that each group was

using. For example, the same theoretical notes, examples and homework regarding

variables were used for all groups. However, the demonstration of a variable

declaration was different for each group according to the programming tool in use.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 196

The classroom examples that were used in the first round of data collection can be

found in Appendix C.5. These examples were based on directions and suggestions

from the Greek CS student’s book for the third grade (Pedagogical Institute, 2004).

Similarly, homework assignments of the first round of data collection can be found in

Appendix C.6. Homework assignments were given at the end of each lesson, were

not compulsory and aimed to engage students in further reflection on programming

concepts. Each assignment was based on the example program that was

demonstrated during the lesson in classroom (see Appendix C.5). In each

homework assignment, students were asked to complete a program using either

natural language or the commands of the programming tool that they were using in

classroom. The first commands of each program were provided in order to

encourage students and avoid the often-cited problem of not knowing how to begin

with program creation. The provided commands, however, were not crucial for

completing the program, thus the key programming concepts had to be completed by

students. Students were asked to complete these programs using only paper and

pencil. This decision was made because it was expected that many students may

not have access to a computer with ‘their’ programming tool installed at home and

school’s computer lab was available only during lessons. Because students could

use help to complete programs at home, the mark of their homework was not

considered as a measure of students’ performance, but only as a gauge of their

motivation. Each assignment was due for submission at the beginning of the

following lesson. However, overdue assignments were accepted, because they

were only used to measure motivation. The submitted assignments were corrected

by me and returned to students with comments. I noted that almost all students who

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 197

returned homework assignments preferred to use programming-language

commands rather than natural language.

It is important to note that the material for lessons as well as for procedural-

knowledge measurements that are presented in this thesis are in a generic form.

This means that the actual material used in the study was further modified to be

consistent with the programming tool of each experimental group. The discussion of

declarative-knowledge and procedural-knowledge data collection follow.

4.3.1.2.1 Declarative-knowledge data collection (first round).

Based on the first quasi-experimental design (see Section 4.2.2.3), participants’

declarative knowledge (mental models) of 13 programming concepts: integer,

arithmetic expression, string, output-statement, input-statement, variable,

assignment-statement, iteration-statement, procedure, procedure call, input

parameter, logical condition and conditional statement was measured. Three

declarative-knowledge measurements took place during the first round of data

collection. The three measurements were scheduled for the beginning, after five

lessons and at end of the study, respectively, and ratings of pairs of concepts were

used as a declarative-knowledge elicitation method (see Section 2.7.2.2). Students’

declarative knowledge of all 13 concepts was measured in every occasion, although

in the first and second measurement students had not been taught all 13 concepts.

Because the assessment of students’ mental models and the monitoring of their

development required that the same baseline – experts’ mental models – had to be

used to interpret every measurement, the baseline should incorporate all 13

concepts. Therefore, in order to make meaningful and valid comparisons between

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 198

students’ and experts mental models, students’ mental models of all 13 concepts

had to be measured in every declarative-knowledge measurement.

In each measurement, a randomised set of all possible pairs of the 13 concepts (see

Appendix C.7) was presented to the students of each school-group. Using

presentation software, each pair was presented in a slide (for an example of these

slides, see Figure C.1 in Appendix C.7), which changed automatically every 10

seconds. The total duration of every declarative-knowledge measurement was 13

minutes, because 13 concepts can form a number of 78 different pairs and each pair

was presented for 10 seconds. Students rated each pair and noted their rating on an

answer sheet, which at the end of the measurement was returned to me. This

procedure was followed in each declarative-knowledge measurement, with the

exception of the first measurement. During the first occasion and before the actual

measurement, an example was demonstrated with non-CS concepts so that

students could familiarise themselves with the rating task.

4.3.1.2.2 Procedural-knowledge data collection (first round).

According to the quasi-experimental design (see Section 4.2.2.3), three procedural-

knowledge measurements were scheduled and administered during the study with

secondary-education students. The first one was scheduled after three lessons, the

second after five lessons and the third after nine lessons since the beginning of the

study. The second and third procedural-knowledge measurements were

administered immediately after the second and third declarative-knowledge

measurements, respectively. The reasons for this are explained in the description of

the quasi-experimental design (Section 4.2.2.3).

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 199

In the first and second procedural-knowledge measurement, unlike the declarative-

knowledge measurements, only a subset of the 13 concepts was measured. This

subset was determined by the concepts that had been taught by the time of each

measurement. However, the third procedural-knowledge test measured all 13

programming concepts. The items used in each test to measure procedural

knowledge included tasks of predicting program output, modifying program

statement(s) and completing missing statement(s) (see Section 2.7.2.3). The first,

second and third procedural-knowledge test of the first round as well as the concepts

based on which procedural knowledge was measured by each test are presented in

Appendices C.8, C.9 and C.10, respectively.

The third measurement of declarative and procedural knowledge concluded the first

round of data collection in May 2010. The time until the beginning of the following

academic year was used to prepare the second round of data collection, which is

discussed in the following section.

4.3.2 Second Round of Data Collection

4.3.2.1 Preparations and arrangements for the second round of data

collection.

Using observations, feedback and the collected data of the first round of data

collection, three important improvements were made for the second round of data

collection: (a) an improved version of Koios was developed, (b) revised versions of

the three procedural-knowledge tests were produced and (c) a practical test was

added in the data-collection scheme. More details on these improvements follow.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 200

Participants of the first round did not make any comments about the Koios prototype

Version 0, with one exception. During the first two weeks, there were a few

comments by students regarding the complexity of the graphical user interface (GUI)

of Koios. Thus, it was decided to design and develop an improved version of Koios

(Version 1). The improvements of Version 1 were discussed in Section 3.4.

Students who used Koios Version 1 did not make any particular comments regarding

GUI complexity or any other aspect of Koios.

The results of the analysis of the procedural-knowledge data were used to refine the

three procedural-knowledge tests of the second round. The aim of this refinement

was to make the revised versions better in discriminating students’ procedural

knowledge among the three different programming tools. In order to accomplish this,

the results of procedural-knowledge measurements of the first round were

statistically analysed. Cross-tabulation analysis was used to identify relatively easy

and relatively difficult items of tests, which were modified accordingly. The results of

cross-tabulation analysis are reported in Appendix C.11.

Finally, a practical test was added to the data-collection scheme. The aim of this test

was to measure students’ performance while they were using the programming tool

assigned to their group to create new programs on their own. This is deemed to be

very important, as the declarative- and procedural-knowledge tests did not involve

using any programming tool. Therefore, the practical test could provide evidence

regarding the effectiveness of each programming tool and demonstrate how helpful

each tool could be for students during actual program creation.

As in the case of the first round, I contacted staff from several secondary and tertiary

educational institutes in Greece to inform them about the study and discuss their

participation. This time, staff from a high-school in the city of Patras accepted to

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 201

take part in the study. Unfortunately, no replies were received from tertiary institutes.

Thus, the second round of data collection was conducted only in a secondary school

as well.

4.3.2.2 Second round of data collection in secondary education.

The second round of data collection took place between the 01st of November 2010

and the 02nd of May 2011 and 75 third-grade high-school students participated.

Participants – 42 male students and 33 female students – lived in the city of Patras

and their average age was 14 years. As in the case of the first round (see Section

4.3.1.2), students were informed about the study (see Appendix C.3) and consent

forms (see Appendix C.2) were given to be signed by their parent(s)/guardian(s)

before the beginning of the study.

This school had five classes in the third-grade, but after administration’s decision

only three classes, namely G1, G3 and G5, participated in the study. G1, G3 and G5

had 24, 26 and 24 students, respectively. For CS lessons, these classes were

divided in two, according to the directions of the Greek Ministry of Education. Thus,

the school-groups G1A, G1B, G3A, G3B, G5A and G5B were formed. This quasi-

experiment was based on the quasi-experimental design for secondary-education

(see Section 4.2.2.3). Hence, groups G1A and G1B, G3A and G3B, and G5A and

G5B used Koios Version 1, Glossomatheia and MicroworldsPro, respectively, as

their programming tool for the duration of the study. Each school-group had one

school hour of CS lesson per week. The day and school hour of CS lessons per

group were determined by the administration of the school.

Because the aim of the second round of data collection was to gather more evidence

to test the three hypotheses, the second round was conducted based on the material

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 202

used for the first round of data collection. More particularly, a practical test was

added after the final knowledge measurement in the plan of lessons and knowledge

measurements (see Appendix C.4) of the first measurement. The classroom

examples (see Appendix C.5) and homework (see Appendix C.6) used in the first

round were used in this round as well. This was the case for the material for

declarative-knowledge measurements, but not for the material for procedural-

knowledge measurements. In their place, the revised procedural-knowledge

material was used. The material for the knowledge measurements is further

discussed in the following sections.

4.3.2.2.1 Declarative-knowledge data collection (second round).

The three declarative-knowledge measurements took place at the beginning, after

five lessons and after nine lessons, just as in the case of the first round of data

collection. Likewise, declarative-knowledge was measured using ratings of concept

pairs and, thus, the material (see Appendix C.7) used in first round was used in this

round as well.

4.3.2.2.2 Procedural-knowledge data collection (second round).

As in the first round of data collection, this round’s three procedural-knowledge tests

were administered after three, five and nine weeks. However, in the second round,

some or all subitems of 10 items for measuring students’ procedural knowledge were

modified – three, four and three items were changed in the first, second and third

procedural-knowledge test, respectively. These items were identified by conducting

cross-tabulation analysis on the scores of procedural-knowledge tests of the first

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 203

round (see Appendix C.11) and were revised versions of the ones used in the first

round. The items were revised so they could better discriminate procedural

knowledge among experimental groups. The first, second and third procedural-

knowledge tests with revised items are presented in Appendices C.12, C.13 and

C.14 , respectively.

4.3.2.2.3 Practical test (second round).

During the first round of data collection, a number of lessons were missed and thus,

there was not any time available for a practical exercise with the programming tools

in classroom. However, this was feasible during the second round and therefore, a

practical test was scheduled for the following week after the final measurements of

procedural and declarative knowledge. During this test, students were asked to

create, in class, three programs with the programming tool they had been using

during the quasi-experiment. The practical test can be found in Appendix C.15.

Students were asked to save the programs they had created. All programs were

collected from students’ computers by me.

The administration of the practical test concluded the second round of data

collection. The following section discusses the data collection from teachers for

producing a baseline knowledge network.

4.3.3 Data Collection for Declarative-Knowledge Baseline

In order to evaluate students’ mental models of programming knowledge, a

reference model was required as a baseline. For the creation of this baseline, the

mental models regarding the 13 programming concepts of 10 CS teachers were

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 204

measured. Like in the case of students’ declarative-knowledge measurements, it

involved the use of ratings of concept pairs and hence the same material (see

Appendix C.7) was used to measure CS teachers’ mental models. Before the rating

task, teachers were given information and consent forms for their participation in the

study as well as instructions for performing it.

The ratings of the 10 teachers were not collected at one occasion. Teachers

performed the rating task in batches, during both rounds of data collection. On every

occasion, after completing the task, they returned their ratings to me.

The data collected during both rounds through the process described in this section

were submitted for analysis. The following section reports the techniques that were

used for analysing these data.

4.4 Data Analysis

This section discusses the techniques used for analysing the data of declarative and

procedural knowledge. First, the variables included in the analysis are reported.

The techniques and statistical tests used to analyse the data of knowledge

measurements and the practical test follow. Finally, the checks that were made to

determine whether the data met the assumptions of parametric tests are presented.

4.4.1 Variables Used In Data Analysis

In this section, the variables used in data analysis are presented and explained. The

variables regarding procedural knowledge are presented first, and are followed by

the variables regarding declarative knowledge and the practical test. Finally, the

variables considered as covariates are discussed.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 205

4.4.1.1 Variables regarding procedural-knowledge data.

The scores of each procedural-knowledge test were used as the variable that

represented the levels of students’ procedural knowledge at the time of

measurement. The tests were marked by me, but an external marker was asked to

mark the tests as well, for reasons of reliability. The rationale for marking each item

was the following. If the answer was completely correct, it received 100% of points,

answers with minor errors received 75% of points, answers with medium errors

received 50% of points, answers with serious errors received 25% of points, while if

there was no answer or it was irrelevant it received zero points. A total score was

calculated by summing the marks per item or subitem (see Appendices C.8, C.9,

C.10, C.11, C.13 and C.14 for maximum numbers of marks per [sub]item).

4.4.1.2 Variables regarding declarative-knowledge data.

In Section 2.7.2.2, the process that the Pathfinder scaling algorithm (PSA) uses to

analyse pair ratings was described. The PCKNOT software (Sitze, 1992) was used

to run the PSA, with students’ ratings of the 78 programming-concept pairs as input

data. These ratings were used to produce data proximity files, which is a specific

format for inputting ratings to PCKNOT. The output of PCKNOT for a data proximity

file is a PFNET – a knowledge organisation network. Thus, a PFNET was produced

by PCKNOT for each participant, which represented the participant’s mental model

of the 13 concepts at the time of each measurement. The produced networks were

compared with a baseline PFNET and their similarity was calculated by PCKNOT.

The baseline network was created by averaging the proximity data files of two

teachers. Although 10 teachers completed the rating task and therefore 10 proximity

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 206

data files were available, only two teachers’ ratings were included in the baseline.

The ratings of eight teachers were excluded due to their low values of coherence

(see Section 2.7.2.2). The coherence index of a proximity data set is calculated by

PCKNOT and measures the consistency of the data in the set. The PCKNOT

manual (Sitze, 1992) suggests that a coherence value less than 0.20 indicates that

the rating task was not or could not be taken seriously. The two proximity data files

used had coherence values above or equal to 0.20. The two proximity data files

could be averaged in two ways. The first was to use PCKNOT to produce the

average PFNET of the two proximity data files. The second was to average the

ratings of the two proximity data files and then use the averaged ratings to produce a

PFNET. Both PFNETS were created, but the PFNET of the first case was selected

because it presented a higher coherence value (= 0.25). This approach was used by

Rose et al. (2007) to produce the baseline PFNET in their study as well. The PFNET

that was used as a baseline network is shown in Figure 4.2.

The baseline PFNET presented in Figure 4.2, displays the presumed relationships

between the 13 programming concepts that were produced by averaging the two

PFNETs. A link that connects two programming concepts denotes that, according to

the rater(s), a relationship is supposed to exist between them. The strength of this

relationship is represented by the spatial distance of the two concepts; the closer the

two concepts are, the stronger their relationship is.

Because students and teachers were asked to rate the strength of the relationship

between pairs of concepts using a minimum and maximum value, namely one

(unrelated) and ten (strongly related), respectively, these values were used as cut-

offs.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 207

Figure 4.2. The baseline PFNET.

This means that if the strength of a relationship between two concepts was rated

with a value outside the range of the cut-off values, then the distance between the

two concepts was treated as infinite and no link would be created between them.

Missing ratings from students’ and teachers’ answer sheets were substituted by

imputation. Using this technique, the missing ratings in an answer sheet were

replaced by the average value of the existing ratings in the sheet. After the

comparison of each PFNET with the baseline PFNET, PCKNOT produced the

following nine measures regarding the similarity of comparing two networks (for

example, the baseline and a student’s network).

1. The observed number of links that the two networks have in common.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 208

2. The expected number of links that the networks could have in common by

chance.

3. The difference between the observed and the expected by chance number

of links in common of the two networks.

4. Similarity, which equals to common links / (total links – common links).

5. The expected similarity by chance.

6. The difference between the observed and the expected similarity by

chance.

7. The probability of exactly this number of links in common by chance.

8. The probability of this many or more links in common by chance

(TailProb).

9. Information, which is associated with the TailProb and equals to log2

(1/TailProb).

In order to choose which of the eight measures, in addition to Similarity, would be

used as variables of declarative knowledge, the bivariate correlations between all

measures were calculated. These correlations were calculated based on the results

of two comparisons: (a) every teacher’s PFNET with the rest of teachers’ PFNETs

and (b) all PFNETs produced by students’ ratings over the three measurements of

the first round with the baseline PFNET. The correlation matrix of the nine measures

revealed that the measures that presented a high correlation (r > 0.90, p < 0.01)

with Similarity were: Links in Common, Difference between Observed and Expected

Number of Links in Common, Difference between Observed and Expected Similarity

by Chance and Information. Thus, it was decided to use these five measures as

variables of declarative knowledge for statistical analysis. The high correlation

values between Similarity and the selected variables could cause issues with

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 209

collinearity in statistical analysis. However, each of the five declarative-knowledge

variables was included in a different regression model and thus collinearity was not

an issue in this data analysis.

4.4.1.3 Variables regarding practical-test data.

The scores of the practical test was the variable that represented students’

performance in the practical test. I marked the programs produced during the

practical test using a marking scheme, which can be found in Appendix C.16. The

same scheme was used by an external marker to mark the programs of the practical

test for reasons of reliability.

4.4.1.4 Variables considered for covariates.

For the analysis of the collected data, the following variables were considered as

candidate covariates.

1) Gender – students’ gender. Although gender has not been identified as a

predictor of programming performance, it was decided to examine its effect on

programming knowledge to establish the generality of the findings.

2) Participant’s GPA without CS – the grade point average during the current

school year was considered as a possible covariate, because it could provide

a measure of participants’ overall learning performance. However, GPA

included the mark for CS, which might had been affected by the quasi-

experiment. In order to increase the independence between this co-covariate

and the DV, the mark for CS was removed and GPA was recalculated without

it. The final grade in mathematics was another covariate candidate, but it

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 210

correlated highly with Participant’s GPA without CS. Further investigation

proved Participant’s GPA without CS to have higher correlations with the

outcome variables than the final math grade and therefore to be a better

predictor. Thus, Participant’s GPA without CS was included in the analysis,

but the math grade was not.

3) GPA from previous year – the grade point average according to the

performance of the student during the previous school year (the year before

the year of the study). This variable could provide a gauge of students’

overall learning performance during the school year before their participation

in the study.

4) Homework Frequency – the number of homework assignments returned by a

student could be a measure of a student’s motivation in the course. In fact,

this variable was used in the analysis in three parts in order to be more

precise: Homework Frequency until the first procedural-knowledge

measurement, Homework Frequency until the second procedural-knowledge

measurement and Homework Frequency until the third procedural-knowledge

measurement. Each of the three parts was the number of homework

assignments returned by a student before the first, second and third

procedural-knowledge measurement, respectively.

5) Duration of Lesson – this variable represented lessons’ duration in minutes for

each group per week. The school hours differed to their duration, according

to their order in the timetable of the school. As a general rule, the first school

hours lasted longer than the school hours towards the end of the school day.

This differentiation could be considered as an unsystematic factor that could

affect the performance of the experimental groups.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 211

6) Size – the number of participants in each group varied due to school

administrative reasons. This variation could influence groups’ performance

and therefore, it was included in the analysis. Furthermore, the correlation

between size and the final procedural-knowledge measurement was

statistically significant, r (68) = 0.34, p < 0.01.

7) Day of Week – the day of the week that lessons took place for each group.

Different groups having lessons on different days should be tested for

affecting, as an unsystematic factor, the performance of the experimental

groups. Because no linear relationship between covariate and dependent

variable or mediator was expected, this variable was coded as categorical.

8) Hour of Day – the data of this variable represented the school hour that

lessons took place for each group. For the same reasons as with Day of

Week, this covariate was treated as categorical.

9) Gaps between Lessons – this variable represented any gaps between

consecutive lessons, except for Christmas and Easter breaks. While the

lessons order was the same for all groups, for a number of reasons beyond

my control, each lesson did not take place in the same week for all groups.

For example, some groups had no gaps between the first procedural-

knowledge measurement and the lesson before this measurement, while

others had one or two gaps between the measurement and the previous

lesson. The temporal distance between lessons could be an unsystematic

factor and should be tested for. Therefore, the temporal gaps between

lessons were included in the analysis as a categorical covariate. As with

Homework Frequency, this variable was used in the analysis in three parts:

Gaps until the first procedural-knowledge measurement, Gaps until the

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 212

second procedural-knowledge measurement and Gaps until the third

procedural-knowledge measurement. Naturally, each of the three parts

represented the gaps between lessons for each group until the first, second

and third procedural-knowledge measurement, respectively.

4.4.2 Data Analysis Plan

This section explains the techniques and statistical tests used for analysing the

collected data. The techniques and statistical tests used for analysing declarative-

knowledge data are presented first, while for procedural-knowledge and practical-

test data follow.

4.4.2.1 Analysis plan for procedural-knowledge data.

The aim for analysing procedural-knowledge data, namely students’ scores in

procedural-knowledge tests, was to provide evidence for testing (a) the first step of

mediation analysis and (b) hypothesis H1. The first step of testing the mediation

hypothesis is to establish whether the independent variable has a significant effect

on the dependent variable, while according to hypothesis H1, Koios users develop a

higher level of procedural knowledge than the users of Glossomatheia and

MicroworldsPro. Furthermore, whether the candidate covariates had a significant

effect on the dependent variable was also examined.

Therefore, the results of analysing procedural-knowledge data were used to

determine whether (a) programming tool (independent variable) had a significant

effect on procedural-knowledge scores (dependent variable), (b) there were any

specific significant differences in the mean programming performance between

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 213

quasi-experimental groups and (c) any covariate explained a significant percentage

of variance in the procedural-knowledge scores. The statistical tests that can

produce these results are: (a) analysis of variance (ANOVA), when there is no

interest in including covariates in analysis and (b) analysis of covariance (ANCOVA)

and hierarchical multiple regression (HMR) when covariates should be included

(Field, 2009). However, running ANCOVA as HMR was preferred, because of its

flexibility and because its results include model fit, percentage of explained variance,

b-values and their statistical significance for the variables included in every

regression model. Thus, the effects of the independent variable and covariates on

the dependent variable could be better interpreted. The final decision concerned

which covariates should be included in the analysis. This decision was made based

on the data regarding the covariates acquired in each round of data collection, in

particular only covariates that were significantly correlated with the dependent

variable were selected. Thus, the selection and analysis of covariates is examined

separately for each round in the following sections.

4.4.2.1.1 Analysis plan for procedural-knowledge data of the first round.

A simple regression analysis was conducted for each one of the nine covariates as

the independent variable and the procedural-knowledge scores as the dependent

variable, in order to determine which of the covariates were significant. Several

variables were significant predictors of the procedural-knowledge scores in each

measurement. However, three important observations were made. First, some

covariates presented high values of variance inflation factor (VIF), which indicated a

strong linear relationship with other covariates and thus, possible bias in the

regression model. Second, the only common significant predictor in the three

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 214

measurements was Participant’s GPA without CS. Third, when the programming

tool was included in the regression model of each measurement, all covariates that

were significant before the inclusion ceased to be, with the exception of Participant’s

GPA without CS. Therefore, and in order to provide more cohesive and comparable

analysis results across the three procedural-knowledge tests, Participant’s GPA

without CS was included as the only covariate in the regression model. The plan

used for the data analysis of the three procedural-knowledge measurements during

the first round is reported in Table 4.2.

Table 4.2
Analysis Plan for Procedural-Knowledge Data
Procedural-
Knowledge

Measurement

Independent
Variable

Dependent
Variable

Statistical
Test

Covariates

First Programming
tool

Scores of the
first procedural-
knowledge test

HMR GPA without CS

Second Programming
tool

Scores of the
second
procedural-
knowledge test

HMR GPA without CS

Third Programming
tool

Scores of the
third procedural-
knowledge test

HMR GPA without CS

Each row of Table 4.2 refers to a procedural-knowledge measurement of the first

round. The first column reports the measurement, during which the data were

collected. The second and third columns report the variables used as the

independent variable and the dependent variable, respectively. The fourth column

reports the statistical test(s) used for analysis, while the last column reports the

covariates included in the analysis of each measurement’s data.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 215

4.4.2.1.2 Analysis plan for procedural-knowledge data of the second round.

The covariates that were significant predictors of procedural-knowledge scores of the

second round were determined using the method used for the first round. The

results presented patterns, which were similar to the ones of the first round. More

precisely, the only covariate that remained significant, in all three measurements,

after the inclusion of programming tool in the regression model, was Participant’s

GPA without CS. Hence, the analysis plan for the procedural-knowledge data of the

first round was used for the second round as well (see Table 4.2.)

4.4.2.2 Analysis plan for declarative-knowledge data.

The aim of analysing declarative-knowledge data was to provide evidence for testing

(a) the second step of mediation analysis and (b) hypothesis H2. The second step of

mediation analysis determines if the mediator has a significant effect on the

dependent variable. Hypothesis H2 predicts that Koios users will acquire richer

mental models than the users of Glossomatheia and MicroworldsPro. Moreover,

whether the candidate covariates had a significant effect on mediator was

investigated as well.

Therefore, analysis results of declarative-knowledge data were used to determine

whether (a) programming tool (independent variable) had a significant effect on

students’ mental models (mediator), (b) there were any specific significant

differences in the quality of mental models between experimental groups and (c) any

covariate explained a significant percentage of variance in the declarative-knowledge

data. Declarative knowledge was represented by Links in Common, Difference

between Observed and Expected Number of Links in Common, Similarity, Difference

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 216

between Observed and Expected Similarity by Chance, and Information (see Section

4.4.1.2). As discussed in the previous section, the statistical tests that can produce

the desired results are: (a) ANOVA, if no covariates should be included in analysis

and (b) ANCOVA and HMR when covariates should be included. For reasons

explained in the previous section, ANCOVA was performed as HMR. Again, the final

decision was to decide which covariates should be included in the analysis. This

decision, just as in the case of procedural-knowledge data, was based on the

collected data in each round. The following sections report this process as well as

the analysis plan for each round.

4.4.2.2.1 Analysis plan for declarative-knowledge data of the first round.

First declarative-knowledge measurement

The first declarative-knowledge measurement took place in the beginning of the

study, before any experimental manipulation. Thus, no covariates were considered

for inclusion, with two exceptions. Gender and Participant’s GPA from previous year

could be significant predictors of the five declarative-knowledge variables, because

students’ rating task could be affected by their gender and/or their previous learning

performance. Hence, simple regression analyses with Participant’s GPA from

previous year and Gender as independent variables and each of the five declarative-

knowledge variables as dependent variables were conducted. Gender was not a

significant predictor of the five variables, all F < 1. Therefore, Gender was not

included in the regression model. However, Participant’s GPA from previous year

was a significant predictor and was included as a covariate in the analysis of the first

declarative-knowledge measurement’s data.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 217

Second declarative-knowledge measurement

In the second declarative-knowledge measurement, the following analysis was used

to determine which of the covariates, was a significant predictor of the outcome

variables. A simple regression analysis was conducted with each of the outcome

variables as the dependent variable and each of the covariates as the independent

variable. The results of these analyses showed that Day of Week was a significant

predictor of Difference between Observed and Expected Number of Links in

Common, F (4,65) = 3.16, p < 0.025; Difference between Observed and Expected

Similarity by Chance, F (4,65) = 3.25, p < 0.025; and Information, F (4,65) = 3.90, p

< 0.01. Gaps between Lessons was determined to be a significant predictor of

Difference between Observed and Expected Similarity by Chance, F (5, 64) = 2.81, p

< 0.025. Based on these results the following decisions regarding the analysis of the

second measurement’s data were made.

Because no covariate was a significant predictor of Links in Common and Similarity,

it was decided to run a one-way ANOVA for each variable. In both cases

programming tool was the fixed factor. It was decided to include Day of Week as a

covariate in the regression models of Difference between Observed and Expected

Number of Links in Common, Difference between Observed and Expected Similarity

by Chance and Information. It was decided to include Gaps between Lessons as a

covariate in the regression model of Difference between Observed and Expected

Similarity by Chance. However, the results of HMR analysis of Difference between

Observed and Expected Similarity by Chance with Day of Week, Gaps between

Lessons and programming tool as predictors presented high values of variance

inflation factor (VIF), which suggested the existence of collinearity in the data. More

specifically, the VIF values for Day of Week and Gaps between Lessons were 45.60

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 218

and 36.43, respectively. The correlations of these predictors with the outcome

variable showed that Gaps between Lessons correlated higher with the outcome

variable than Day of Week; therefore the latter variable was excluded from the

regression model.

The data of Day of Week and Gaps between Lessons were entered in the analysis

using the technique of criterion scaling (Pedhazur, 1997). This technique produces

the predicted scores of a categorical variable for an outcome variable and is

described in Section 4.4.2.4 .

Furthermore, the analysis results of the first declarative-knowledge measurement

indicated that with respect to Difference between Observed and Expected Number of

Links in Common, the participants of the Koios and the Glossomatheia groups came

from different populations. In order to investigate whether this unsystematic variation

between groups affected their performance in the second measurement of this

variable, it was decided to use its scores in the first measurement as a covariate.

Third declarative-knowledge measurement

Likewise, in order to examine whether any covariates were significant predictors of

the outcome variables in the third declarative-knowledge measurement, regression

analysis was conducted. A simple regression analysis was conducted with each of

the outcome variables as the dependent variable and each of the covariates as the

independent variable. The results showed that Day of Week was a significant

predictor of Links in Common, F (4, 65) = 2.72, p < 0.05. Based on these results, it

was decided to include Day of Week as a covariate in the HMR analysis of this

variable. For the coding of the categorical covariate Day of Week, the criterion

scaling method was used (Pedhazur, 1997), which produced the predicted scores of

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 219

Day of Week for this outcome variable. For more details about and reasons for

using criterion scaling see Section 4.4.2.4.

Moreover, data analysis of the first declarative-knowledge measurement showed that

regarding Difference between Observed and Expected Number of Links in Common,

the participants of the Koios and the Glossomatheia groups came from different

populations. In order to account for any variation in groups’ performance caused by

this initial difference, it was decided to include the scores of Difference between

Observed and Expected Number of Links in Common in the first measurement as a

covariate in this HMR analysis of this variable.

For each of the remaining declarative-knowledge variables, a one-way ANOVA was

conducted with programming tool as the fixed factor. Based on these findings, the

analysis plan for the declarative-knowledge data of the first round is reported in

Table 4.3. The information in this table follows the presentation scheme of Table

4.2.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 220

Table 4.3
Analysis Plan for Declarative-Knowledge Data of the First Round
Declarative-
Knowledge

Measurement

Independent
Variable

Dependent Variable Statistical
Test

Covariates

First

Programming
tool

Links in common

HMR GPA from previous year

Difference between observed and
expected number of links in
common

Similarity

Difference between observed and
expected similarity

Information

Second

Programming
tool

Links in common ANOVA

Difference between observed and
expected number of links in
common

HMR Difference Between Observed and
Expected Number of Links in Common
(first declarative-knowledge
measurement)

Predicted Value of Day of Week
Similarity ANOVA

Difference between observed and
expected similarity

HMR Predicted Value of Gaps Between
Lessons

Information HMR Predicted Value of Day of Week

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 221

Table 4.3 (continued)
Declarative-
Knowledge

Measurement

Independent
Variable

Dependent Variable Statistical
Test

Covariates

Third

Programming
tool

Links in common HMR Predicted Value of Day of Week

Difference between observed and
expected number of links in
common

HMR Difference Between Observed and
Expected Number of Links in Common
(first declarative-knowledge
measurement)

Similarity ANOVA

Difference between observed and
expected similarity

ANOVA

Information ANOVA

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 222

4.4.2.2.2 Analysis plan for declarative-knowledge data of the second round.

First declarative-knowledge measurement

Because declarative-knowledge was measured for the first time before any

experimental manipulation, no covariates were considered for inclusion in the

analysis, except for Gender and Participant’s GPA of previous year. Both variables

were non-significant predictors. Thus, a one-way ANOVA was conducted for each

variable, with it as the dependent variable and programming tool as the fixed factor.

Second declarative-knowledge measurement

The data analysis of the first declarative-knowledge measurement revealed that the

students assigned to the Koios and the MicroworldsPro groups and students

assigned to the Glossomatheia group came from different populations. This was

confirmed by the t-tests of the groups’ mean scores. Naturally, these scores were

achieved before any experimental manipulation. Their results showed that the

means of the Koios and the Glossomatheia groups were significantly different, while

the means of the Koios and MicroworldsPro groups were not. Because of the initial

differences between the experimental groups, it was decided to use the variables of

the first measurement as covariates in the HMR analyses of the second

measurement’s data. This way, it could be determined whether the unsystematic

variation between groups played an important role in significantly differentiating the

groups in following measurements.

Furthermore, a simple regression analysis was conducted with each outcome

variable of this measurement as the dependent variable and each of the nine

covariates as the predictor. The aim of this step was to test whether any of the

covariates were a significant predictor. The outcome was that none of the covariates

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 223

were significant predictors of this measurement’s variables. Therefore, only the

declarative-knowledge variables from the first measurement were included as

covariates in the analysis of this measurement’s data.

Third declarative-knowledge measurement

Because of the initial difference in populations of the Koios, the MicroworldsPro and

the Glossomatheia groups, the variables of the first declarative-knowledge

measurement were used as predictors in the analysis of this measurement’s data as

well. Moreover, a simple regression with each of this measurement’s variables as

the dependent variable and each of the covariates as the predictor was carried out.

The purpose of these regression analyses was to investigate whether any of the

covariates were significant predictors of this measurement’s variables. The results

showed that Homework Frequency until the third procedural-knowledge

measurement was a significant predictor of Similarity, Difference between Expected

and Observed Similarity by Chance and Information, F (1,68) = 4.58, p < 0.05; F

(1,68) = 4.27, p < 0.05; and F (1,68) = 4.90, p < 0.05, respectively.

Therefore, the following decisions regarding analysis were made. In the regression

model of Links in Common, this variable’s scores in the first measurement was

included as a covariate. This was the case for the regression model of Difference

between Observed and Expected Number of Links in Common. The regression

models for the three remaining variables included Homework Frequency until the

third procedural-knowledge measurement together with the data of each variable in

the first measurement as covariates. The analysis plan for the declarative-

knowledge data of the second round is presented in Table 4.4.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 224

Table 4.4
Analysis Plan for Declarative-Knowledge Data of the Second Round

Declarative-
Knowledge

Measurement

Independent
Variable

Dependent Variable Statistical
Test

Covariates

First

Programming
tool

Links in common

ANOVA

Difference between observed and
expected number of links in common

Similarity

Difference between observed and
expected similarity

Information

Second

Programming
tool

Links in common

HMR

Links in common (first declarative-knowledge
measurement)

Difference between observed and
expected number of links in common

Difference between observed and expected
number of links in common (first declarative-
knowledge measurement)

Similarity Similarity (first declarative-knowledge
measurement)

Difference between observed and
expected similarity

Difference between expected and observed
similarity by chance (first declarative-knowledge
measurement)

Information Information (first declarative-knowledge
measurement)

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 225

Table 4.4 (continued)
Declarative-
Knowledge

Measurement

Independent
Variable

Dependent Variable Statistical
Test

Covariates

Third

Programming
tool

Links in common

HMR

Links in common (first declarative-knowledge
measurement)

Difference between observed and
expected number of links in common

Difference between observed and expected
number of links in common (first declarative-
knowledge measurement)

Similarity Similarity (first declarative-knowledge
measurement)

Homework frequency until the third procedural-
knowledge measurement

Difference between observed and
expected similarity

Difference between expected and observed
similarity by chance (first declarative-knowledge
measurement)

Homework frequency until the third procedural-
knowledge measurement

Information Information (first declarative-knowledge
measurement)

Homework Frequency until the third procedural-
knowledge measurement

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 226

Finally, it is important to note that the effect of procedural knowledge on declarative

knowledge was also investigated. Although, there is little evidence that procedural

programming knowledge can affect declarative programming knowledge, this has

been proposed as a plausible hypothesis, at least for the early stages of

programming (McGill & Volet, 1997). Therefore, the five declarative-knowledge

variables measured in the second and third occasion were regressed on procedural-

knowledge scores of the second and third measurement, respectively. This was the

case for the data of both rounds. The results revealed that the procedural-

knowledge had a significant effect on declarative knowledge only in the second

measurement of the first round. Therefore, no consistent evidence was found to

support this hypothesis.

4.4.2.3 Analysis plan for practical-test data.

Analysis of the practical-test scores aimed to examine whether (a) programming tool

significantly affected students’ performance in the practical test, (b) any specific

significant differences in performance existed between the experimental groups and

(c) any covariates could explain a significant percentage of variance in the scores.

In order to determine if any of the two types of knowledge was important in using the

programming tool (practical test), the correlations between the scores of the practical

test, the five variables of the final declarative-knowledge measurement and the

scores of the final procedural-knowledge test were calculated. The correlations

revealed that Information and the procedural-knowledge scores of the third

measurement correlated significantly with the practical-test scores, r (66) = 0.31, p <

0.01 and r (66) = 0.49, p < 0.001, respectively. However, the correlations between

programming tool and Information, programming tool and procedural-knowledge

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 227

scores of the third measurement, and Information and procedural-knowledge scores

of the third measurement were extremely low, r (70) = 0.00, p > 0.05; r (70) = 0.01, p

> 0.05 and r (70) = 0.06, p > 0.05, respectively. From the nine covariates only

Participant’s GPA without CS was used as a predictor. The first reason was that its

correlation with practical-test scores was significant, r (66) = 0.51, p < 0.001. The

second reason was that in analysis of procedural-knowledge scores Participant’s

GPA without CS was the only one of the nine covariates used (see Section 4.4.2.1).

As already explained in previous sections, ANCOVA was conducted as HMR

analysis to analyse the practical-test scores. The dependent variable was practical-

test scores, while the programming tool was the independent variable. Participant’s

GPA without CS, the scores of Information and procedural-knowledge test measured

in third occasion were included in the regression model as covariates.

4.4.2.4 Technical matters regarding data analysis.

This section provides technical information about the data analysis that was

conducted. Furthermore, the method of criterion scaling that was used is explained.

ANOVA, simple and hierarchical multiple regression analysis were performed using

the SPSS software. Programming tool (independent variable) was coded as a

categorical variable using dummy variable coding. Scores of declarative-knowledge,

procedural-knowledge and practical-test were all treated as interval variables. With

respect to covariates, Gender, Day of Week, Hour of Day, Size and Gaps between

Lessons were coded as categorical variables. The covariates Participants’ GPA

without CS, Participants’ GPA from previous year, Homework Frequency and

Duration of Lesson were treated as interval variables.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 228

As the number of categorical variables and/or their categories increases, the use of

these variables in analysis becomes more difficult. A technique for managing a large

number of categories is using a coding method called criterion scaling (Pedhazur,

1997). According to this method a categorical variable is transformed to a single

vector. Each individual’s score in this vector is represented by individual’s predicted

score, in other words the criterion mean of the group to which the individual belongs.

Because the number of categories involved in data analysis was rather high, this

technique was used to transform categorical covariates into single vectors. Thus,

the criterion scaled covariates, instead of the original categorical covariates, were

used in data analysis. This is the reason that results in Chapter Five report

transformed covariates as Predicted Value of, followed by the name of the covariate.

Criterion scaling was applied to the following covariates: Hour of Lesson, Day of

Week, Gaps between Lessons and Size.

This technique, however, requires a further adjustment. Criterion scaling is used to

transform a categorical variable with k categories to a signal vector, which in turn, is

used in the place of the categorical variable in analysis. The degrees of freedom

reported in analysis results include the degrees of freedom of the transformed

variable, which is one. However, the correct calculation of degrees of freedom

should include the degrees of freedom of the categorical variable, namely k-1,

instead of one. Thus, the degrees of freedom, and consequently, the results of

statistical tests must be adjusted to include the degrees of freedom of the original

categorical variable.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 229

4.4.3 Considerations Regarding Assumptions of Parametric Tests.

The results that are produced from the statistical tests reported in previous sections

are valid only if the data used in these tests meet a set of assumptions. This set of

assumptions is described as assumptions of parametric tests and assumes that the

collected data (a) are normally distributed, (b) have homogenous variances, (c) are

measured at least at interval level and (d) are independent across participants (Field,

2009). Because the third and fourth assumption were met due to the design of data

collection, the collected data were checked for the first two assumptions.

The knowledge-measurement data of both rounds and practical-test scores were

investigated by employing histograms, q-q plots, Kolomogorov-Smirnov test and

Levene’s test (Field, 2009). This data exploration showed that many variables in

both rounds violated either assumption or even both of them. Several

transformations were tested for these variables, so their distribution would not violate

the assumptions. However, the transformations resulted in no significant

improvements. Based on these findings it was decided to use the variables in their

original form.

Violation of normality did not raise any concerns, because ANOVA and ANCOVA run

as HMR, which were used in this statistical data analysis, are robust against this type

of violation. However, when variances are heterogeneous and groups’ sample sizes

are not equal, the efficient use of these methods requires to set the significance level

from 0.05 to 0.025, to compensate for the lack of homogeneity (Keppel, Saufley &

Tokunaga, 1992). Because the sample sizes of the groups in all measurements

were unequal, when homogeneity of variance was broken, the significance level was

set to 0.025. A brief presentation of the cases of the collected data violating

assumptions of normality and homogeneity of variance by is presented in Table 4.5.

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 230

Table 4.5
Dependent Variables that Violated Assumptions of Parametric Tests

Note. N/A = not applicable, because a practical test was not administered in the first round of
data collection.

First Round of Data
Collection

Second Round of Data
Collection

Dependent Variable Normality Homogeneity
of Variance

Normality Homogeneity
of Variance

Links in Common
(first measurement) x √ x x
Difference between Observed and
Expected Number of Links in
Common (first measurement)

√ √ x √

Similarity
(first measurement) √ √ x x
Difference between Observed and
Expected Similarity by Chance
(first measurement)

√ √ x x

Information
(first measurement) x √ x x
Procedural-knowledge Scores
(first measurement) x √ √ √
Links in Common
(second measurement) x x x √
Difference between Observed and
Expected Number of Links in
Common (second measurement)

√ x √ x

Similarity
(second measurement) √ x √ x
Difference between Observed and
Expected Similarity by Chance
(second measurement)

√ x √ x

Information
(second measurement) x x x x
Procedural-knowledge Scores
(second measurement) x √ x √
Links in Common
(third measurement) x √ x √
Difference between Observed and
Expected Number of Links in
Common (third measurement)

√ √ x √

Similarity
(third measurement) √ √ √ √
Difference between Observed and
Expected Similarity by Chance
(third measurement)

√ √ x √

Information
(third measurement) x x x √
Procedural-knowledge Scores
(third measurement) x x √ √
Practical-test Scores N/A N/A x √

CHAPTER 4: METHOD, DATA COLLECTION AND DATA ANALYSIS 231

4.5 Conclusions

This chapter discussed matters of designing and running an empirical study, during

which data were collected for testing three research hypotheses and evaluating the

Koios programming environment. More specifically, after presenting the three

research hypotheses under investigation, research designs for testing these

hypotheses were discussed. Based on this design, a scheme for data collection was

planned. The details of, plans for and material used in the two rounds of data

collection followed. Finally, the variables, statistical tests and techniques used in the

analysis of the collected data were discussed. The results of this data analysis are

reported in the following chapter.

CHAPTER 5: RESULTS 232

Chapter Five

Results

CHAPTER 5: RESULTS 233

Contents

5.1 Overview.. 235

5.2 First Round of Data Collection ... 235

5.2.1 First Step of Mediation Analysis – Procedural Knowledge 236

5.2.1.1 Descriptive statistics for procedural-knowledge measurements.......... 237

5.2.1.2 First procedural-knowledge measurement. ... 238

5.2.1.3 Second procedural-knowledge measurement. 240

5.2.1.4 Third procedural-knowledge measurement. .. 242

5.2.2 Second Step of Mediation Analysis – Declarative Knowledge................... 244

5.2.2.1 Descriptive statistics for declarative-knowledge measurements. 245

5.2.2.2 First declarative-knowledge measurement.. 250

5.2.2.3 Second declarative-knowledge measurement..................................... 257

5.2.2.4 Third declarative-knowledge measurement... 263

5.2.3 Check of Multiple Regression Assumptions... 269

5.2.4 Summary of the Results of the First Round of Data Collection.................. 271

5.3 Second Round of Data Collection.. 274

5.3.1 First Step of Mediation Analysis – Procedural knowledge 274

5.3.1.1 Descriptive statistics for procedural-knowledge measurements.......... 276

5.3.1.2 First procedural-knowledge measurement. ... 277

5.3.1.3 Second procedural-knowledge measurement. 279

5.3.1.4 Third procedural-knowledge measurement. .. 280

5.3.2 Second Step of Mediation Analysis – Declarative Knowledge................... 283

5.3.2.1 Descriptive statistics for declarative-knowledge measurement. 283

CHAPTER 5: RESULTS 234

5.3.2.2 First declarative-knowledge measurement.. 287

5.3.2.3 Second declarative-knowledge measurement..................................... 290

5.3.2.4 Third declarative-knowledge measurement... 298

5.3.3 Practical Test... 305

5.3.4 Check of Multiple Regression Assumptions... 311

5.3.5 Summary of the Results of the Second Round of Data Collection............. 314

5.4 Conclusion ... 316

CHAPTER 5: RESULTS 235

5.1 Overview

In the first two chapters the aims and rationale of this research project were

presented, the international literature was reviewed in this research’s context and

seven design principles were identified and discussed. The design, implementation

and features of the Koios prototype programming environment were examined in

Chapter Three. Chapter Four described the method, more particularly Design,

Participants, Material and equipment, Procedure, data collection and data analysis,

of this experiment. In this chapter, the results of two rounds of collection are

presented. First, procedural-knowledge results and declarative-knowledge results of

the first round are presented. Second, the same type of results is reported for the

second round; the results of the practical test, which was only administrated in the

second round, follow. This chapter concludes with a brief summary of results.

5.2 First Round of Data Collection

In this section, the results of the analysis of declarative- and procedural-knowledge

data that were collected during the first round are presented. First, the results for the

procedural-knowledge measurements are reported, followed by the results for the

declarative-knowledge measurements. The analysis outcomes of the knowledge

data were used to test hypotheses H1, H2 and H3 (mediation hypothesis).

In statistical tests, a significance level of 0.05 was used. For the analysis of

variables which violated homogeneity of variance (see Table 4.5), the significance

level was adjusted to 0.025 (Keppel, 1991). However, the inferential statistical tests

used in these analyses (ANOVA and ANCOVA run as multiple regression) are robust

CHAPTER 5: RESULTS 236

against the violation of the assumption of normality (Lorenzen & Anderson, 1993, p.

41).

5.2.1 First Step of Mediation Analysis – Procedural Knowledge

For mediation analysis, the procedure proposed by MacKinnon (2008) was used.

The first step of mediation analysis establishes whether the independent variable

(IV) significantly affects the dependent variable (DV). In this case, the effect of

compliance with the set of principles represented by programming tool (IV) on

procedural knowledge (DV) of students was tested, as per hypothesis H1 was

tested. According to this hypothesis the users of Koios develop a higher level of

procedural knowledge of programming concepts than the users of Glossomatheia

and MicroworldsPro.

The level of procedural knowledge was measured via specific tests. The items of

these tests required from participants to predict the output of programs, complete

missing programming statements and modify existing programs. These items were

designed to measure the procedural knowledge of concepts, which had already been

taught up to the time of each measurement. The scores of these tests ranged from

zero (minimum) to 20 (maximum). The three procedural-knowledge measurements

were administered after three, five and nine weeks of lessons, since the beginning of

the study. The final measurement was at the end of the study. For a detailed

discussion on the design of this experiment and the procedure of the first round of

data collection see Section 4.2.2.3 and Section 4.3.1, respectively. Moreover, a

reliability analysis of marking the tests of the three procedural-knowledge

measurements was carried out, as to ascertain the reliability of assessing

procedural-knowledge scores. For more details about the procedure used to mark

CHAPTER 5: RESULTS 237

the procedural-knowledge tests as well as to assess its reliability, see Section

4.4.1.1. For reasons discussed in Section 4.4.2.1.1 , it was decided that

Participant’s grade point average (GPA) without CS would be the only covariate in

the hierarchical multiple regression (HMR) analysis of all procedural-knowledge

scores. This predictor was entered in the first regression model, followed by the two

dummy variables representing the independent variable programming tool in the

second model.

5.2.1.1 Descriptive statistics for procedural-knowledge

measurements.

The mean scores of the three procedural-knowledge tests for all three groups (Koios,

Glossomatheia and MicroworldsPro) are presented in Figure 5.1.

Figure 5.1. Mean scores for each group over the three procedural-knowledge
measurements (first round).

The minimum and maximum values per test were 0 and 20, respectively. Therefore,

the minimum and maximum values of y-axis are 0 and 20, respectively. Examination

00
02
04
06
08
10
12
14
16
18
20

1st 2nd 3rd

M
ea

n
Sc

or
es

Procedural-knowledge Measurement

Glossomatheia
group
Koios group

MicroworldsPro

CHAPTER 5: RESULTS 238

of Figure 5.1 seems to reveal that the mean performance of each group was better in

the second measurement than its performance in the first one. Nonetheless, the

mean score of each group in the third measurement seems slightly lower than its

mean score in the second measurement, but higher than its mean score in the first

one. In the following sections the results of inferential statistical analysis are

presented separately for each measurement, based on the analysis plan presented

in Section 4.4.2.1.1

5.2.1.2 First procedural-knowledge measurement.

The first measurement of procedural knowledge was taken in the beginning of the

fourth week of lessons and it took approximately 10-15 minutes to complete. Six

programming concepts were measured: integer, arithmetic expression, string,

output-statement, input-statement and variable. The reliability of the eight items of

this test was high, Cronbach’s alpha = 0.72, while the marking of the first procedural-

knowledge test was reliable, r (15) = 0.76. Table 5.1 presents descriptive statistics

for this variable.

Table 5.1
Descriptive Statistics for the Scores of the First Procedural-Knowledge Measurement
(First Round)

Group n Mean SD SE Cohen’s d
Koios 21 5.27 5.41 1.18
Glossomatheia 22 10.64 3.58 0.76 -1.17
MicroworldsPro 24 6.15 4.42 0.90 -0.18
Total 67 7.35 5.03 0.61

Note. Because not all pupils attended the test session, sample size was reduced in Koios
group.

As can be seen in Table 5.1, the mean scores of all three groups were overall

between relatively low and medium values, ranging approximately from five to 10. In

particular, the mean score for the Koios, the Glossomatheia and the MicroworldsPro

CHAPTER 5: RESULTS 239

groups was 5.27, 10.64 and 6.15, respectively. Likewise, the standard deviation

(SD) for each group was 5.41, 3.58 and 4.42, respectively. According to Cohen’s

(1988) recommendations1, the standardised difference of the group scores between

Koios and Glossomatheia represented a large effect size, while between the Koios

and the MicroworldsPro groups indicated a rather small effect size. The outcome of

HMR analysis, with Participant’s GPA without CS in the first model and the dummy

variables representing programming tool in the second, is reported in Table 5.2.

Table 5.2
Results of Regression Analysis for the Scores of the First Procedural-Knowledge
Measurement (First Round)

Predictor B SE β t
Model 1

Constant -8.16 3.43 *-2.38
Participant’s GPA without CS 0.99 0.22 0.49 ***4.58

Model 2
Constant -8.64 3.23 *-2.68
Participant’s GPA without CS 0.89 0.20 0.44 ***4.47
Glossomatheia vs Koios 4.88 1.21 0.46 ***4.02
MicroworldsPro vs Koios 1.39 1.19 0.13 1.17

Note. R2 = 0.24 for Model 1; ΔR2 = 0.16 for Model 2 (p < 0.001). * p < 0.05, *** p < 0.001

Analysis of the data showed that 24% of variance in the scores of the first

procedural-knowledge test was explained by GPA without CS, R2 = 0.24, F (1, 65) =

20.96, p < 0.001. This percentage was significant and thus, Participant’s GPA

without CS was a significant predictor of procedural knowledge. The additional

percentage of variance explained, when programming tool was added in the model,

was 16% and was statistically significant, ΔR2 = 0.16, Fchange (2, 63) = 8.61, p <

0.001. Therefore, programming tool was a significant predictor. GPA without CS

was a significant predictor of the outcome variable in the second model as well, t

1 According to Cohen’s (1988) conventions for d, values of 0.20, 0.50 and 0.80 represent a small,
moderate and large effect size, respectively.

CHAPTER 5: RESULTS 240

(63) = 4.47, p = < 0.001. With respect to the group means, students of the

Glossomatheia group tended to have significantly higher scores than students of the

Koios group, t (63) = 4.02, p < 0.001, but no significant difference was observed in

the mean scores between the MicroworldsPro and the Koios groups, t (63) = 1.17, p

> 0.05.

According to these results, hypothesis H1 should be rejected. However, the first

step of mediation was established, because the independent variable programming

tool significantly affected the dependent variable student’s procedural knowledge.

5.2.1.3 Second procedural-knowledge measurement.

The second procedural-knowledge test took place in the beginning of the sixth week

of lessons and just before the second declarative-knowledge measurement. The

nine items of the second test were found to be highly reliable, Cronbach’s alpha =

0.78. This test measured the concepts of integer, arithmetic expression, string,

output-statement, input-statement, variable and assignment-statement and took

approximately 15-20 minutes to administer. The reliability of marking this

measurement’s procedural-knowledge tests was high, r (15) = 0.82. Table 5.3

presents descriptive statistics for the scores of the second procedural-knowledge

measurement.

Table 5.3
Descriptive Statistics for the Scores of the Second Procedural-Knowledge
Measurement (First Round)

Group N Mean SD SE Cohen’s d
Koios 23 9.89 5.56 1.16
Glossomatheia 21 13.90 4.20 0.92 -0.81
MicroworldsPro 26 10.07 4.82 0.94 -0.03
Total 70 11.16 5.16 0.62

Note. Because not all pupils attended the test session, sample size was reduced in
Glossomatheia group.

CHAPTER 5: RESULTS 241

As Table 5.3 presents, the mean scores of the three groups were approximately from

10 to 14. Given that the minimum and maximum values of the test were 0 and 20,

respectively, these means are middle-range values. Specifically, the mean and SD

for the Koios, the Glossomatheia and the MicroworldsPro groups were 9.89 and

5.56, 13.90 and 4.20 and, 10.07 and 4.82, respectively. Based on Cohen’s (1988)

recommendations, a large effect size was detected for the difference in the mean

scores of the Koios and the Glossomatheia groups. A small effect size was detected

for the mean difference of the Koios and the MicroworldsPro groups. The results of

HMR analysis of this test’s scores, with Participant’s GPA without CS and

programming tool as predictors, are shown in Table 5.4.

Table 5.4
Results of Regression Analysis for the Scores of the Second Procedural-Knowledge
Measurement (First Round)

Predictor B SE β t
Model 1

Constant -7.46 3.26 *-2.29
Participant’s GPA without CS 1.19 0.21 0.57 ***5.78

Model 2
Constant -7.38 3.28 *-2.25
Participant’s GPA without CS 1.10 0.20 0.53 ***5.45
Glossomatheia vs Koios 3.22 1.25 0.29 *2.58
MicroworldsPro vs Koios 0.76 1.18 0.07 0.65

Note. R2 = 0.33 for Model 1; ΔR2 = 0.07 for Model 2 (p < 0.05). *p < 0.05, *** p < 0.001

The results of the first model indicated that Participant’s GPA without CS accounted

for a statistically significant proportion of variance in the scores of the second test.

Particularly, 33% of variance in the scores was explained by GPA without CS, R2 =

0.33, F (1, 68) = 33.43, p < 0.001 and this predictor was significant. The addition of

programming tool to the regression model explained an extra 7% of variance in the

scores; this additional variance was statistically significant as well, ΔR2 = 0.07,

Fchange (2, 66) = 3.58, p < 0.05. Thus, programming tool was a significant predictor of

CHAPTER 5: RESULTS 242

the second test’s scores, as was Participant’s GPA without CS, t (66) = 5.45, p <

0.001. The comparison of the mean scores showed that the Glossomatheia group

students achieved significantly higher scores than students of the Koios group, t (66)

= 2.58, p < 0.05, but the mean scores of the MicroworldsPro and the Koios groups

were not significantly different, |t| < 1.

Based on the results, hypothesis H1 had to be rejected for this measurement.

However, the independent variable programming tool had a significant effect on the

dependent variable level of procedural knowledge; thus the first step of mediation

was established for this measurement.

5.2.1.4 Third procedural-knowledge measurement.

The final measurement of procedural knowledge occurred after nine weeks of

lessons – at the end of the study – and just before the final measurement of

declarative knowledge. This test measured all 13 programming concepts, namely

integer, arithmetic expression, string, output-statement, input-statement, variable,

assignment-statement, iteration-statement, procedure, procedure call, input

parameter, logical condition and conditional statement. The test took approximately

20-25 minutes to administer. The 10 items of the third test, presented high reliability,

Cronbach’s alpha = 0.81. The reliability of marking the procedural-knowledge tests

of the third measurement was high, r (15) = 0.83. The data of this measurement

violated both the assumptions of normality and homogeneity of variance and

therefore the significance level for this variable’s analysis was reduced to 0.025.

Table 5.5 shows descriptive statistics for the scores of this measurement.

CHAPTER 5: RESULTS 243

Table 5.5
Descriptive Statistics for the Scores of the Third Procedural-Knowledge
Measurement (First round)

Group n Mean SD SE Cohen’s d
Koios 22 9.30 5.52 1.18
Glossomatheia 22 12.99 3.03 0.64 -0.83
MicroworldsPro 26 7.68 5.77 1.13 0.28
Total 70 9.86 5.40 0.65

The mean scores of the three groups were ranging approximately from 8 to 13.

These values were relatively low to medium, because the minimum and maximum

values of the scores were 0 and 20 respectively. In particular, the mean for the

Koios, the Glossomatheia and the MicroworldsPro groups was 9.30, 12.99 and 7.68,

respectively, while the SD was 5.52, 3.03 and 5.77, respectively. Values of Cohen’s

d (1988) indicated a large effect size for the difference between the mean scores of

the Koios and the Glossomatheia groups and a small effect size for the mean-score

difference between the Koios and the MicroworldsPro groups. Table 5.6 presents

the HMR results for the scores of the final procedural test, using Participant’s GPA

without CS and programming tool as predictors.

Table 5.6
Results of Regression Analysis for the Scores of the Third Procedural-Knowledge
Measurement (First Round)

Predictor B SE β t
Model 1

Constant -10.33 3.35 **-3.09
Participant’s GPA without CS 1.29 0.21 0.60 ***6.11

Model 2
Constant -9.26 3.29 **-2.82
Participant’s GPA without CS 1.17 0.20 0.54 ***5.85
Glossomatheia vs Koios 3.25 1.23 0.28 *#2.64
MicroworldsPro vs Koios -0.74 1.19 -0.07 -0.63

Note. R2 = 0.35 for Model 1; ΔR2 = 0.10 for Model 2 (p < 0.01). *#p < 0.025, ** p < 0.01,
*** p < 0.001

CHAPTER 5: RESULTS 244

The results of the first regression model showed that 35% of the variance in the

scores was explained by GPA without CS, R2 = 0.35, F (1, 68) = 37.31, p < 0.001.

The percentage of the explained variance was significant and therefore, GPA without

CS was a significant predictor of the final scores. Results of the second model

showed that an additional 10% of variance in the scores was explained by the

inclusion of programming tool in the regression model, ΔR2= 0.10, Fchange (2, 66) =

6.08, p < 0.01.

This additional (10%) percentage was statistically significant, so programming tool

was a statistically significant predictor. Participant’s GPA without CS was a

significant predictor of procedural knowledge in the second model as well, t (66) =

5.85, p < 0.001. The mean-score difference between the Glossomatheia and the

Koios groups revealed that students of the Glossomatheia group tended to perform

better in this test than the students of the Koios group, t (66) = 2.64, p < 0.025.

Nonetheless, no significant difference was reported between the mean performance

of the MicroworldsPro and the Koios groups, |t| < 1.

These results supported the rejection of hypothesis H1 for this final measurement.

The significant effect of programming tool (IV) on the scores of the final procedural-

knowledge measurement (DV) yielded that the first step of mediation hypothesis was

true for the final measurement.

5.2.2 Second Step of Mediation Analysis – Declarative Knowledge

The second step of mediation analysis is to test whether an experimental effect of

the independent variable (IV) on the mediator (M) exists. In this case, this step

investigated whether programming tool (IV) used by students affected their

declarative knowledge, represented by their mental models (M). Furthermore, in this

CHAPTER 5: RESULTS 245

step hypothesis H2 was tested using inferential statistics. The aim was to test if the

students, who use Koios as their programming tool, construct richer mental models

than the users of Glossomatheia and MicroworldsPro.

The five variables selected as the main representatives of declarative knowledge

were: Links in Common, Difference between Observed and Expected Number of

Links in Common, Similarity, Difference between Observed and Expected Similarity

by Chance and Information. They were measured in the beginning of the study, after

five and after nine weeks of lessons since the study commenced. The final

measurement was taken at the end of the study. These variables were measures of

similarity between a desired baseline knowledge-network and the networks students

produced during declarative-knowledge measurements. For a detailed discussion of

the five variables and the selection procedure, and the design of this experiment see

Section 4.4.1.2 and Section 4.2.2.3, respectively.

5.2.2.1 Descriptive statistics for declarative-knowledge

measurements.

The mean scores of Links in Common, Difference between Observed and Expected

Number of Links in Common, Similarity, Difference between Observed and Expected

Similarity by Chance and Information for each of the three groups over the three

measurements are presented in Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5 and

Figure 5.6, respectively. In each of the following figures, the y-axis ranges from the

minimum to the maximum value of the variable that is analysed. In order to provide

more information for examining these figures the maximum and minimum value of

each declarative-knowledge variable were calculated.

CHAPTER 5: RESULTS 246

The maximum values of the five variables were calculated using the baseline

knowledge-network. More precisely, the value for each variable when the baseline

network was compared with itself was considered as maximum value for the specific

variable. The maximum values for Links in Common, Difference between Observed

and Expected Number of Links in Common, Similarity, Difference between Observed

and Expected Similarity by Chance and Information were 19, 14.37, 1.00, 0.86 and

59.22, respectively.

The variable Links in Common measured the common links between two networks.

If two networks have no links in common, then the value of Links in Common is zero.

The values of this variable cannot be negative, because negative values do not

make sense for measuring common links. Therefore, the minimum value for Links in

Common was zero. Similarity measured the closeness of the two networks as a

proportion of Links in Common, while Information a probability associated with Links

in Common. For more details on the three measures, see Chapter 4, Section

4.4.1.2. Because the calculation of each of the latter two variables was based on a

multiplication with Links in Common, the minimum value for each of the two variables

was zero as well.

The estimation of minimum values for Difference between Observed and Expected

Number of Links in Common and Difference between Observed and Expected

Similarity by Chance required the expected values of Links in Common and

Similarity, respectively. For any two networks, N1 and N2, these expected values

are computed based on (a) all possible networks that have as many links and nodes

as N1 has and (b) all possible networks that have as many links and nodes as N2

has. Then, each network of (a) is combined with all the networks of (b). For every

combination, the value of Links in Common is calculated and the expected value of

CHAPTER 5: RESULTS 247

Links in Common is the average of the calculated values. The same procedure is

used to estimate the expected value of Similarity. Given that (a) all networks of this

study had 13 nodes, (b) the baseline network had 19 links, (c) the number of links of

a student’s network could range from 1 to 78 and (d) the calculation of all possible

networks with 13 nodes and n number of links is based on combinations, the number

of all possible different networks is

78!
n! 78 – n !

. (1)

Therefore, it is obvious that cumbersome calculations were involved in the estimation

of the minimum values of Difference between Observed and Expected Number of

Links in Common and Difference between Observed and Expected Similarity by

Chance. In addition, the exact value of these minima would add little information to

the illustrative purposes of the figures. Therefore, the minimum values of Difference

between Observed and Expected Number of Links in Common and Difference

between Observed and Expected Similarity by Chance observed in this round of

data collection were used as minimum values in the figures; they were -3.63 and -

0.11, respectively.

The examination of these figures revealed that in the first declarative-knowledge

measurement, the mean scores of all variables for the three groups were very low.

In the second measurement, the mean score of each group seemed higher than its

score in the first measurement for all variables. From the second to the final

measurement, an apparent slight decline was noticed in the performance’s level of

each group for all variables. Overall, the mean scores of all variables over the three

measurements were very low, possibly an indication of a floor effect.

CHAPTER 5: RESULTS 248

Figure 5.2. Mean scores of Links in Common for each group over the three
measurements (first round).

Figure 5.3. Mean scores of Difference between Observed and Expected Number of
Links in Common for each group over the three measurements (first round).

00

02

04

06

08

10

12

14

16

18

1st 2nd 3rd

Li
nk

s
in

 C
om

m
on

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

-04

-02

00

02

04

06

08

10

12

1st 2nd 3rd

D
iff

er
en

ce
 b

et
w

ee
n

O
bs

er
ve

d
an

d
Ex

pe
ct

ed
 N

um
be

r o
f L

in
ks

 in
 C

om
m

on

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

CHAPTER 5: RESULTS 249

Figure 5.4. Mean scores of Similarity for each group over the three measurements
(first round).

Figure 5.5. Mean scores of Difference between Observed and Expected Similarity by
Chance for each group over the three measurements (first round).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1st 2nd 3rd

Si
m

ila
rit

y

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

-0.11

-0.01

0.09

0.19

0.29

0.39

0.49

0.59

0.69

0.79

1st 2nd 3rd

D
iff

er
en

ce
 b

et
w

ee
n

O
bs

er
ve

d
an

d
Ex

pe
ct

ed
 S

im
ila

rit
y

by
 C

ha
nc

e

Declerative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

CHAPTER 5: RESULTS 250

Figure 5.6. Mean scores of Information for each group over the three measurements
(first round).

These five measures were used in inferential statistical analysis as variables of

declarative knowledge. Each of the following three sections describes the results for

each declarative-knowledge measurement. These results of the second step of

mediation analysis were used to test hypothesis H2.

5.2.2.2 First declarative-knowledge measurement.

The first declarative-knowledge measurement took place at the beginning of this

round of data collection. Descriptive statistics for the variables, included in the

analysis, are presented in Table 5.7. The mean values of all five variables, shown in

Table 5.7, were very low. More particularly, the means for the Koios, the

Glossomatheia and the MicroworldsPro groups for Links In Common, Difference

between Observed and Expected Number of Links in Common, Similarity, Difference

00

10

20

30

40

50

1st 2nd 3rd

In
fro

m
at

io
n

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

CHAPTER 5: RESULTS 251

between Observed and Expected Similarity and Information were 3.30, 3.95 and

3.96; -0.74, -0.22 and -0.65; 0.10, 0.12 and 0.11; -0.03, -0.01 and -0.02; and 0.63,

0.73 and 0.59, respectively. The SD for the same groups and variables were 1.74,

1.43 and 1.35; 1.46, 1.01 and 1.23; 0.06, 0.04 and 0.04; 0.05, 0.04 and 0.04; and

0.82, 0.67 and 0.65, respectively. Cohen’s d (1988) indicated small to medium effect

sizes for the differences between the means of the Koios and the Glossomatheia

groups for the five variables.

Table 5.7
Descriptive Statistics for the Outcome Variables of the First Declarative-Knowledge
Measurement (First Round)
Variable Group n Mean SD SE Cohen’s d
Links in common Koios 23 3.30 1.74 0.36

Glossomatheia 21 3.95 1.43 0.31 -0.40
MicroworldsPro 25 3.36 1.35 0.27 -0.04
Total 69 3.52 1.52 0.18

Difference between
observed and
expected number of
links in common

Koios 23 -0.74 1.46 0.30
Glossomatheia 21 -0.22 1.01 0.22 -0.41
MicroworldsPro 25 -0.65 1.23 0.25 -0.06
Total 69 -0.55 1.25 0.15

Similarity Koios 23 0.10 0.06 0.01
Glossomatheia 21 0.12 0.04 0.01 -0.39
MicroworldsPro 25 0.11 0.04 0.01 -0.05
Total 69 0.11 0.05 0.01

Difference between
observed and
expected similarity

Koios 23 -0.03 0.05 0.01
Glossomatheia 21 -0.01 0.04 0.01 -0.38
MicroworldsPro 25 -0.02 0.04 0.01 -0.05
Total 69 -0.02 0.04 0.01

Information Koios 23 0.63 0.82 0.17
Glossomatheia 21 0.73 0.67 0.15 -0.14
MicroworldsPro 25 0.59 0.65 0.13 0.06
Total 69 0.65 0.71 0.09

Note. Because not all pupils attended the test session, sample size was reduced in
Glossomatheia group.

CHAPTER 5: RESULTS 252

The effect sizes represented by the differences between the means of the Koios and

the MicroworldsPro groups for the five measures were very small. As explained in

Section 4.4.2.2.1, because this measurement occurred before any experimental

manipulation, the covariates that were considered for inclusion in the analysis were

Gender and Participant’s GPA of previous year. However, Gender was not a

significant predictor of any of the five variables and therefore, Gender was not

included in the regression models. The results of HMR analysis for the five

declarative-knowledge variables with Participant’s GPA of previous year in the first

model and programming tool in the second model follow. In Table 5.8 are reported

the results for Links In Common.

Table 5.8
Results of Regression Analysis for Links in Common of the First Declarative-
Knowledge Measurement (First Round)

Predictor B SE β t
Model 1

Constant 6.26 1.25 ***5.00
Participant’s GPA of previous year -0.16 0.08 -.027 *-2.17

Model 2
Constant 6.10 1.31 ***4.64
Participant’s GPA of previous year -0.18 0.08 -0.29 *-2.31
Glossomatheia vs Koios 0.82 0.45 0.27 1.84
MicroworldsPro vs Koios 0.23 0.45 0.08 0.51

Note. R2 = 0.07 for Model 1; ΔR2 = 0.06 for Model 2 (p > 0.05). * p < 0.05, *** p < 0.001

The first model of regression showed that 7% of variance in this outcome variable

was explained by Participant’s GPA of previous year, R2 = 0.07, F (1, 59) = 4.70, p <

0.05. This percentage was significant and Participant’s GPA of previous year was a

significant predictor. The results of the second model revealed that an additional

percentage of 6% was explained by programming tool, which was not significant ΔR2

= 0.06, Fchange (2, 57) = 1.82, p > 0.05. Therefore, programming tool was not a

significant predictor in the second model, but Participant’s GPA of previous year

CHAPTER 5: RESULTS 253

was, t (57) = -2.31, p < 0.05. However, no significant differences were observed

between the Glossomatheia and the Koios groups, t (57) = 1.84, p > 0.05 and

between the MicroworldsPro and the Koios groups, |t| < 1. The results of HMR

analysis for Difference between Observed and Expected Number of Links in

Common are reported in Table 5.9.

Table 5.9
Results of Regression Analysis for Difference between Observed and Expected
Number of Links in Common of the First Declarative-Knowledge Measurement (First
Round)

Predictor B SE β t
Model 1

Constant 2.43 0.97 *2.50
Participant’s GPA of previous year -0.18 0.06 -0.37 **-3.07

Model 2
Constant 2.23 1.01 *2.20
Participant’s GPA of previous year -0.19 0.06 -.039 **-3.19
Glossomatheia vs Koios 0.71 0.35 0.29 *2.07
MicroworldsPro vs Koios 0.26 0.35 0.11 0.74

Note. R2 = 0.14 for Model 1; ΔR2 = 0.06 for Model 2 (p > 0.05). * p < 0.05, ** p < 0.01

The percentage of variance in this outcome variable explained by Participant’s GPA

of previous year was 14%, R2 = 0.14, F (1, 59) = 9.42, p < 0.01. This proportion was

significant and thus, this predictor was significant as well. In the second model, the

addition of programming tool explained an extra 6% of variance, ΔR2 = 0.06, Fchange

(2, 57) = 2.20, p > 0.05. The extra variance (6%) explained by programming tool

was not significant and therefore, programming tool was a non-significant predictor.

However, in the second model, Participant’s GPA of previous year was a significant

predictor, t (57) = -3.19, p < 0.01. A significant difference was observed between the

mean scores of the Glossomatheia and the Koios groups, t (57) = 2.07, p < 0.05.

The Glossomatheia users seem to have performed better in this variable than the

Koios users. Nonetheless, no significant differences were observed between the

CHAPTER 5: RESULTS 254

MicroworldsPro and the Koios users, |t| < 1. The results of HMR analysis for

Similarity are reported in Table 5.10.

Table 5.10
Results of Regression Analysis for Similarity of the First Declarative-Knowledge
Measurement (First Round)

Predictor B SE β t
Model 1

Constant 0.21 0.04 ***5.53
Participant’s GPA of previous year -0.01 0.00 -0.32 *-2.63

Model 2
Constant 0.20 0.04 ***5.10
Participant’s GPA of previous year -0.01 0.00 -0.34 **-2.74
Glossomatheia vs Koios 0.03 0.01 0.27 1.93
MicroworldsPro vs Koios 0.01 0.01 0.10 0.66

Note. R2 = 0.11 for Model 1; ΔR2 = 0.06 for Model 2 (p > 0.05). * p < 0.05, ** p < 0.01,
*** p < 0.001

The results of the first model showed that 11% of variance in Similarity was

explained by Participant’s GPA of previous year, R2 = 0.11, F (1, 59) = 6.90, p <

0.05. This predictor was significant, as was the variance it explained. The inclusion

of the programming tool in the second model explained an additional 6% of variance

in Similarity, ΔR2 = 0.06, Fchange (2, 57) = 1.93, p > 0.05. Neither this percentage

(6%) nor programming tool as predictor was significant. However, Participant’s GPA

of previous year was a significant predictor in this model, t (57) = -2.74, p < 0.01. No

significant differences in mean scores were observed between the Glossomatheia

and the Koios groups, t (57) = 1.93, p > 0.05, or between the MicroworldsPro and the

Koios groups, |t| < 1. Table 5.11 reports the results of HMR analysis for Difference

between Observed and Expected Similarity by Chance.

CHAPTER 5: RESULTS 255

Table 5.11
Results of Regression Analysis for Difference between Observed and Expected
Similarity by Chance of the First Declarative-Knowledge Measurement (First Round)

Predictor B SE β t
Model 1

Constant 0.08 0.03 *2.41
Participant’s GPA of previous year -0.01 0.00 -0.36 **-3.01

Model 2
Constant 0.08 0.04 *2.11
Participant’s GPA of previous year -0.01 0.00 -0.38 **-3.12
Glossomatheia vs Koios 0.02 0.01 0.28 1.98
MicroworldsPro vs Koios 0.01 0.01 0.10 0.71

Note. R2 = 0.13 for Model 1; ΔR2 = 0.06 for Model 2 (p > 0.05). * p < 0.05, ** p < 0.01

The first model showed that 13% of the variance in this variable was explained by

Participant’s GPA of previous year, R2 = 0.13, F (1, 59) = 9.05, p < 0.01. This

explained proportion as well as this model’s predictor was significant. The results of

the second model revealed that programming tool explained an extra 6% of variance

in this variable, which was not significant, ΔR2 = 0.06, Fchange (2, 57) = 2.02, p > 0.05.

Therefore, programming tool was not a significant predictor in this model. However,

Participant’s GPA of previous year was a significant predictor in the second model as

well, t (57) = -3.12, p < 0.01. The differences of the mean score between the

Glossomatheia and the Koios groups and between the MicroworldsPro and the

Koios groups were non-significant, t (57) = 1.98, p < 0.05 and |t| < 1, respectively.

The results of HMR analysis for Information are presented in Table 5.12.

The proportion of variance in the final declarative-knowledge variable of the first

measurement that was explained by Participant’s GPA of previous year was 11%, R2

= 0.11, F (1, 59) = 7.38, p < 0.01. The explained proportion was significant and thus,

Participant’s GPA of previous year was a significant predictor of Information.

CHAPTER 5: RESULTS 256

Table 5.12
Results of Regression Analysis for Information of the First Declarative-Knowledge
Measurement (First Round)

Predictor B SE β t
Model 1

Constant 2.16 0.57 **3.81
Participant’s GPA of previous year -0.09 0.03 -0.33 *-2.71

Model 2
Constant 2.13 0.61 *3.52
Participant’s GPA of previous year -0.10 0.04 -0.35 *-2.75
Glossomatheia vs Koios 0.23 0.21 0.16 1.13
MicroworldsPro vs Koios 0.05 0.21 0.03 0.23

Note. R2 = .11 for Model 1; ΔR2 = .02 for Model 2 (p > .05). *p < .01, ** p < .001

The inclusion of programming tool in the second model explained an additional

percentage of 2% in Information’s variance, ΔR2 = 0.02, Fchange < 1. This additional

proportion (2%) was non-significant and thus, programming tool was a non-

significant predictor. In the second model, Participant’s GPA of previous year was a

significant predictor, t (57) = -2.75, p < 0.01. The difference in the mean scores for

Information between the Glossomatheia and the Koios groups was not significant, t

(57) = 1.13, p > 0.05. This was the case for the difference in the mean scores for

Information between the MicroworldsPro and the Koios groups, |t| < 1.

The analysis of the data revealed that programming tool had no effect on students’

mental models. This result is not surprising, because no experimental manipulation

had been applied to the three groups when this measurement was taken. Therefore,

it was meaningless to test the validity of hypothesis H2 and the second step of

mediation.

Furthermore, no significant differences between the mean scores of the Koios group

and each of the other two groups were observed for the five variables, with one

exception. The mean score of the Glossomatheia group was significantly higher

than the mean score of the Koios group for Difference between Observed and

CHAPTER 5: RESULTS 257

Expected Number of Links in Common. It is important to note that, because this

variable was measured before any experimental manipulation, this difference

indicated that for this variable, the participants of the Koios and the Glossomatheia

groups came from different populations. However, the results suggest that for the

specific variable, the participants of the Koios and the MicroworldsPro groups came

from the same population. Furthermore, the results also confirmed that for the

remaining four variables, the participants of the three groups came from the same

population.

5.2.2.3 Second declarative-knowledge measurement.

Declarative knowledge was measured for a second time, in the beginning of the sixth

week of lessons and just before the second procedural-knowledge measurement.

Table 5.13 presents a set of descriptive statistics for the five variables measured on

this occasion.

The mean values in Table 5.13 were rather low for all variables. The means for the

Koios, the Glossomatheia and the MicroworldsPro groups for Links In Common,

Difference between Observed and Expected Number of Links in Common, Similarity,

Difference between Observed and Expected Similarity and Information were 5.09,

4.19 and 4.73; 0.79, 0.22 and 0.26; 0.16, 0.16 and 0.14; 0.03, 0.01 and 0.01; and

2.15, 1.23 and 1.20, respectively. The SD for the same groups and variables were

2.94, 1.81 and 1.07; 2.44, 1.56 and 1.50; 0.10, 0.06 and 0.06; 0.09, 0.06 and 0.05;

and 2.46, 1.31 and 1.03, respectively.

CHAPTER 5: RESULTS 258

Table 5.13
Descriptive Statistics for the Outcome Variables of the Second Declarative-
Knowledge Measurement (First Round)
Variable Group n Mean SD SE Cohen’s d
Links in common Koios 23 5.09 2.94 0.61

Glossomatheia 21 4.19 1.81 0.39 0.36
MicroworldsPro 26 4.73 2.07 0.41 0.14
Total 70 4.69 2.32 0.28

Difference
between
observed and
expected number
of links in
common

Koios 23 0.79 2.44 0.51
Glossomatheia 21 0.22 1.56 0.34 0.27
MicroworldsPro 26 0.26 1.50 0.29 0.26
Total 70 0.42 1.87 0.22

Similarity Koios 23 0.16 0.10 0.02
Glossomatheia 21 0.14 0.06 0.01 0.34
MicroworldsPro 26 0.14 0.06 0.01 0.25
Total 70 0.15 0.07 0.01

Difference
between
observed and
expected
similarity

Koios 23 0.03 0.09 0.02
Glossomatheia 21 0.01 0.06 0.01 0.29
MicroworldsPro 26 0.01 0.05 0.01 0.29
Total 70 0.02 0.07 0.01

Information Koios 23 2.15 2.46 0.51
Glossomatheia 21 1.23 1.31 0.29 0.46
MicroworldsPro 26 1.20 1.03 0.20 0.52
Total 70 1.52 1.74 0.21

Note. Because not all pupils attended the test session, sample size was reduced in
Glossomatheia group.

According to Cohen’s (1988) suggestions, small to medium effect sizes were

detected between the mean differences of the Koios and the Glossomatheia groups

and of the Koios and the MicroworldsPro groups for the five measures. None of the

variables of this measurement met the assumption of homogeneity of variance and

therefore the significance level for their analyses was reduced to 0.025. The

analysis of this measurement’s variables followed the plan presented in Section

4.4.2.2.1.

CHAPTER 5: RESULTS 259

In the following analyses, in order to code the categorical covariates Day of Week

and Gaps between Lessons the method of criterion scaling (Pedhazur, 1997) was

used. For more details on the reason this technique was used, see Section 4.4.2.4

The results of ANOVA for Links in Common and Similarity were not significant, F < 1

and F < 1, respectively. Furthermore, planned contrasts revealed no significant

differences between the Koios and each of the other two groups for these two

variables. The results of planned contrasts between the Koios and the

Glossomatheia groups for Links in Common and Similarity were t (67) = 1.28, p >

0.05 and t (67) = 1.26, p > 0.05, respectively. For the same variables the outcome of

contrasts between the Koios and the MicroworldsPro groups were |t| < 1 and |t| < 1,

respectively. Table 5.14 reports the results of HMR analysis with Difference

between Observed and Expected Number of Links in Common as the dependent

variable.

In the first model the predicted value of Day of Week and Difference between

Observed and Expected Number of Links in Common of the first measurement were

entered, while the dummy variables of programming tool were included in the

second. Data analysis showed that scores of Difference between Observed and

Expected Number of Links in Common of the first measurement and Day of Week

explained 17% of variance in Difference between Observed and Expected Number

of Links in Common of the second measurement, R2 = 0.17, F (5,61) = 2.53, p >

0.025. Difference between Observed and Expected Number of Links in Common of

the first measurement was not a significant predictor, |t| < 1.

CHAPTER 5: RESULTS 260

Table 5.14
Results of Regression Analysis for Difference between Observed and Expected
Number of Links in Common of the Second Declarative-Knowledge Measurement
(First Round)

Predictor B SE β t
Model 1

Constant -0.01 0.25 -0.05
Difference Between Observed
and Expected Number of Links in
Common (First Declarative-
Knowledge Measurement)

0.03 0.19 0.02 0.18

Predicted Value of Day of Week 1.05 0.31 0.42 **3.38
Model 2

Constant -0.40 0.50 -0.80
Difference Between Observed
and Expected Number of Links in
Common (First Declarative-
Knowledge Measurement)

0.07 0.20 0.05 0.37

Predicted Value of Day Of Week 1.25 0.38 0.50 **3.30
Glossomatheia vs Koios 0.37 0.60 0.09 0.62
MicroworldsPro vs Koios 0.58 0.62 0.15 0.94

Note. R2 = 0.17 for Model 1; ΔR2 = 0.01 for Model 2 (p > 0.05). ** p < 0.01

However, Day of Week was significant predictor of this variable in the first model, t

(61) = 3.38, p < 0.01. The results of the second model revealed that programming

tool alone explained a non-significant proportion of 1% of variance in this variable,

ΔR2 = 0.01, Fchange < 1. Therefore, the programming tool students were using was a

non-significant predictor of this variable in the second model, as was Difference

between Observed and Expected Number of Links in Common of the first

measurement, |t| < 1. However, Day of Week was a significant predictor in the

second model as well, t (59) = 3.30, p < 0.01. No significant differences in the mean

score of this variable between the Glossomatheia and the Koios users were found, |t|

< 1. This was the case for the Koios and the MicroworldsPro users as well, |t| < 1.

The results of HMR analysis for Difference between Observed and Expected

Similarity by Chance are shown in Table 5.15.

CHAPTER 5: RESULTS 261

Table 5.15
Results of Regression Analysis for Difference between Observed and Expected
Similarity by Chance of the Second Declarative-Knowledge Measurement (First
Round)

Predictor B SE β t
Model 1

Constant 0.00 0.01 0.00
Predicted Value of Gaps
Between Lessons

1.00 0.26 0.42 ***3.86

Model 2
Constant 0.00 0.02 -0.02
Predicted Value of Gaps
Between Lessons

1.01 0.28 0.43 **3.59

Glossomatheia vs Koios 0.00 0.02 -0.03 -0.20
MicroworldsPro vs Koios 0.00 0.02 0.03 0.18

Note. R2 = 0.18 for Model 1; ΔR2 = 0.00 for Model 2 (p > 0.05). ** p < 0.01, *** p < 0.001.

The first model of regression analysis showed that 18% of variance in Difference

between Observed and Expected Similarity by Chance was explained by Gaps

between Lessons, R2 = 0.18, F (5,64) = 2.79 , p < 0.025. It also showed that Gaps

between Lessons was a significant predictor of this variable, t (64) = 3.86, p < 0.001.

The inclusion of programming tool did not explain any additional percent of variance

in this variable, ΔR2 = .00, Fchange < 1. Consequently, programming tool was a non-

significant predictor of this variable. Nonetheless, Gaps between Lessons was a

significant predictor in the second model, t (62) = 3.59, p < 0.01. Students of the

Glossomatheia and the Koios groups had mean scores with no significant

differences for this variable, |t| < 1. Similarly, the mean scores of the MicroworldsPro

and the Koios users did not differ significantly, |t| < 1.

HMR analysis with Information as the dependent variable was conducted with Day of

Week in the first model and the categorical variables of programming tool in the

second model. The outcome can be seen in Table 5.16.

CHAPTER 5: RESULTS 262

Table 5.16
Results of Regression Analysis for Information of the Second Declarative-Knowledge
Measurement (First Round)

Predictor B SE β T
Model 1

Constant 0.00 0.42 0.00
Predicted Value of Day of
Week

1.00 0.25 0.44 ***4.04

Model 2
Constant -0.19 0.79 -0.24
Predicted Value of Day of
Week

1.06 0.33 0.47 **3.26

Glossomatheia vs Koios 0.07 0.57 0.02 0.11
MicroworldsPro vs Koios 0.20 0.58 0.06 0.35

Note. R2 = 0.19 for Model 1; ΔR2 = 0.00 for Model 2 (p > 0.05). ** p < 0.01, *** p < 0.001

Analysis of the data revealed that Day of Week explained 19% of the variance in

Information, R2 = 0.19, F (4, 65) = 3.90, p < 0.001 and that it was a significant

predictor, t (65) = 4.04, p < 0.001. The results of the second model showed that no

additional variance in Information was explained by programming tool, ΔR2 = 0.00,

Fchange < 1. Thus, in the second model, programming tool was not a significant

predictor, but Day of Week was, t (63) = 3.26, p < 0.01. No significant differences

were observed between the means of the Glossomatheia and the Koios groups, |t| <

1 and of the MicroworldsPro and the Koios groups, |t| < 1.

After five weeks of lessons, the main effect of programming tool on all five variables

was not significant. Planned contrasts and t-test values revealed that the

programming tool used by students, was non-significant in differentiating the quality

of mental models, constructed in the context of introductory programming.

Nonetheless, Day of Week was a significant predictor of Difference between

Observed and Expected Number of Links in Common and Information. Moreover,

Gaps between Lessons was a significant predictor of Difference between Observed

and Expected Similarity by Chance.

CHAPTER 5: RESULTS 263

Evidence was found for neither hypothesis H2 nor the second step of mediation

analysis. In order to further investigate whether a mediation effect could be detected

the correlations between each of the five variables (M) and the scores of the second

procedural-knowledge test (DV) were calculated. However, no significant

correlations (all < 0.30) were found and therefore, the mediator seemed to have no

significant effect on the dependent variable. Thus, programming tool (IV) could not

affect procedural knowledge (DV) via mediation of the mental models.

5.2.2.4 Third declarative-knowledge measurement.

The final declarative-knowledge measurement took place at the end of the first round

of data collection. Table 5.17 presents descriptive statistics for the measured

variables.

The mean scores of the three groups were relatively low for the five variables. More

particularly, the means for the Koios, the Glossomatheia and the MicroworldsPro

groups for Links In Common, Difference between Observed and Expected Number

of Links in Common, Similarity, Difference between Observed and Expected

Similarity and Information were 4.95, 3.91 and 4.08; 0.41, -0.12 and -0.35; 0.45, 0.12

and 0.12; 0.01, -0.01 and -0.01; and 1.41, 0.94 and 0.78, respectively. The SD for

the same groups and variables were 1.94, 1.66 and 1.38; 1.69, 1.42 and 1.39; 0.06,

0.06 and 0.04; 0.06, 0.05 and 0.05; and 1.57, 1.04 and 0.72, respectively.

Compared with Cohen’s (1988) standards, the difference of the group means

between Koios and Glossomatheia indicated a medium to large effect size for Links

in Common and small to medium effect sizes for the remaining variables. The effect

sizes represented by the mean differences of the Koios and the MicroworldsPro

groups were medium to large for the five variables.

CHAPTER 5: RESULTS 264

Table 5.17
Descriptive Statistics for the Outcome Variables of the Third Declarative-Knowledge
Measurement (First Round)
Variable Group n Mean SD SE Cohen’s d
Links in common Koios 22 4.95 1.94 0.41

Glossomatheia 22 3.91 1.66 0.35 0.58
MicroworldsPro 26 4.08 1.38 0.27 0.53
Total 70 4.30 1.70 0.20

Difference
between
observed and
expected number
of links in
common

Koios 22 0.41 1.69 0.36
Glossomatheia 22 -0.12 1.42 0.30 0.34
MicroworldsPro 26 -0.35 1.39 0.27 0.50
Total 70 -0.04 1.51 0.18

Similarity Koios 22 0.15 0.06 0.01
Glossomatheia 22 0.12 0.06 0.01 0.48
MicroworldsPro 26 0.12 0.04 0.01 0.54
Total 70 0.13 0.05 0.01

Difference
between
observed and
expected
similarity

Koios 22 0.01 0.06 0.01
Glossomatheia 22 -0.01 0.05 0.01 0.35
MicroworldsPro 26 -0.01 0.05 0.01 0.49
Total 70 0.00 0.05 0.01

Information Koios 22 1.41 1.57 0.34
Glossomatheia 22 0.94 1.04 0.22 0.35
MicroworldsPro 26 0.78 0.72 0.14 0.53
Total 70 1.03 1.16 0.14

All variables of this measurement, except for Information, met the assumptions of

normality and homogeneity of variance. Therefore, the significance level was

reduced to 0.025 only for the analysis of Information. The plan for analysing the data

of this measurement was discussed in Section 4.4.2.2.1. For the coding of the

categorical covariate Day of Week the criterion scaling method was used (Pedhazur,

1997). For more details about criterion scaling and the reasons for using it, see

Section 4.4.2.4. Table 5.18 presents the results of HMR analysis for Links in

CHAPTER 5: RESULTS 265

Common, with Day of Week in the first model and the dummy variables of

programming tool in the second.

Table 5.18
Results of Regression Analysis for Links in Common of the Third Declarative-
Knowledge Measurement (First Round)

Predictor B SE β t
Model 1

Constant 0.00 1.29 0.00
Predicted Value of Day of Week 1.00 0.30 0.38 **3.38

Model 2
Constant 0.30 1.93 0.15
Predicted Value of Day of Week 0.95 0.39 0.36 *2.45
Glossomatheia vs Koios -0.27 0.58 -0.07 -0.46
MicroworldsPro vs Koios -0.01 0.58 0.00 -0.02

Note. R2 = 0.14 for Model 1; ΔR2 = 0.01 for Model 2 (p > 0.05). * p < 0.05, ** p < 0.01

The results of the first model of regression analysis revealed that Day of Week

accounted for 14% of variance in the scores of Links in Common, R2 = 0.14, F (4,65)

= 2.72 , p < 0.05 and that it was a significant predictor t (65) = 3.38, p < 0.01. The

results of the second model showed that programming tool was a non-significant

predictor of this variable’s scores, as it explained 1% of variance, ΔR2 = 0.01, Fchange

< 1. In the second model, Day of Week was a significant predictor, t (63) = 2.45, p <

0.05. Nonetheless, the difference between the means of the Glossomatheia and the

Koios groups for this variable was not significant, |t| < 1, as was the difference

between the means of the MicroworldsPro and the Koios groups, |t| < 1. The results

of the HMR analysis of Difference between Observed and Expected Number of Links

in Common, with the scores of the specific variable of the first measurement and

programming tool as predictors are reported in Table 5.19.

CHAPTER 5: RESULTS 266

Table 5.19
Results of Regression Analysis for Difference between Observed and Expected
Number of Links in Common of the Third Declarative-Knowledge Measurement (First
Round)

Predictor B SE β t
Model 1

Constant -0.14 0.20 -0.72
Difference Between Observed
and Expected Number of Links
in Common (First Declarative-
Knowledge Measurement)

-0.19 0.15 -0.16 -1.32

Model 2
Constant 0.28 0.34 0.83
Difference Between Observed
and Expected Number of Links
in Common (First Declarative-
Knowledge Measurement)

-0.19 0.15 -.016 -1.31

Glossomatheia vs Koios -0.38 0.46 -0.12 -0.83
MicroworldsPro vs Koios -0.84 0.44 -0.27 -1.91

Note. R2 = 0.03 for Model 1; ΔR2 = 0.05 for Model 2 (p > 0.05).

The results of the first model showed that Difference between Observed and

Expected Number of Links in Common of the first measurement explained 3% of the

variance in the scores of the same variable, when it was measured in the third

measurement, R2 = 0.03, F (1,65) = 1.74, p > 0.05. The addition of programming

tool in the second model explained an extra 5% in the variance of the dependent

variable, which was not significant, ΔR2 = 0.05, Fchange (2, 63) = 1.84, p > 0.05.

Therefore, programming tool was not a significant predictor of the dependent

variable. Difference between Observed and Expected Number of Links in Common

of the first measurement was not a significant predictor either, t (63) = -1.31, p >

0.05. Moreover, no significant differences were observed in the mean scores

between the Glossomatheia and the Koios groups, |t| < 1. This was the case for the

difference in the mean scores between the MicroworldsPro and the Koios groups, t

(63) = -1.91, p > 0.05.

CHAPTER 5: RESULTS 267

The results of ANOVA for Similarity, Difference between Observed and Expected

Similarity by Chance and Information were F (2, 67) = 2.10, p > 0.05; F (2, 67) =

1.54, p > 0.05; and F (2, 67) = 1.89, p > 0.05, respectively. Hence, in the final

measurement, the main effect of programming tool on students’ mental models was

not significant.

The planned comparisons of the Koios and the Glossomatheia groups for Similarity,

Difference between Observed and Expected Similarity by Chance and Information

were t (67) = 1.75, p > 0.05; t (67) = 1.25, p > 0.05; and t (67) = 1.36, p > 0.05,

respectively. The planned contrasts for these three variables between the Koios and

the MicroworldsPro groups were t (67) = 1.82, p > 0.05; t (67) = 1.70, p > 0.05; and t

(67) = 1.90, p > 0.05, respectively. The results of the planned comparison revealed

that the differences in the mean scores for Similarity, Difference between Observed

and Expected Similarity by Chance and Information were not significant neither

between the Koios and the Glossomatheia groups nor between the Koios and the

MicroworldsPro groups.

However, some of these results varied when the one-tailed probability was

considered. With respect to Difference between Observed and Expected Number of

Links in Common, Koios users seem to have performed better than MicroworldsPro

users in this variable, when the one-tailed probability of the t-test was considered, t

(63) = -1.91, p < 0.05 one-tailed only, d = 0.50 (see Table 5.19). The group

difference between Koios and Glossomatheia for this variable was not-significant,

even when one-tailed probability was considered, |t| < 1. The one-tailed

comparisons of the Koios and the Glossomatheia groups for Similarity, Difference

between Observed and Expected Similarity by Chance and Information were t (67) =

1.75, p < 0.05 one-tailed only, d = 0.48; t (67) = 1.25, p > 0.05; and t (67) = 1.36, p >

CHAPTER 5: RESULTS 268

0.05, respectively. The planned contrasts for the three variables between the Koios

and the MicroworldsPro groups were t (67) = 1.82, p < 0.05 one-tailed only, d = 0.54;

t (67) = 1.70, p < 0.05 one-tailed only, d = 0.49; and t (67) = 1.90, p > 0.025 one-

tailed only, respectively. According to hypothesis H2, students who learn to program

using Koios construct richer mental models than those constructed by students who

use tools that do not highly comply with the set of seven principles. The group

means in Table 5.17 were consistent with this one-tailed hypothesis. The results of

the planned contrasts in the expected direction were significant for Difference

between Observed and Expected Number of Links in Common, Similarity, and

Difference between Observed and Expected Similarity by Chance. In particular,

students in the Koios group constructed significantly richer mental models than

students in the MicroworldsPro group, when the mental models were measured

based on Difference between Observed and Expected Number of Links in Common,

and Difference between Expected and Observed Similarity by Chance. On these

measures, the mental models of the Koios and the Glossomatheia users showed no

significant difference. When the mental models were measured by Similarity, the

Koios users seemed to have created significantly richer mental models than those

formed by both the Glossomatheia and the MicroworldsPro users. However, the

one-tailed results cannot be accepted and used to test the research hypotheses

because hypotheses H1 and H2 were not proposed as directional and thus, one-

tailed testing was not planned for analysing the data of this declarative-knowledge

measurement.

Hence – based on the (two-tailed) results – hypothesis H2 was not confirmed for this

measurement. Furthermore, the effect of programming tool (IV) on pupils’ mental

models (M) was not significant overall. To further investigate the possibility of an

CHAPTER 5: RESULTS 269

existing mediation effect, the correlations between each of the five variables (M) and

the scores of the third declarative-knowledge measurement (DV) were computed.

All correlations were non- significant and below 0.20, which means that the

dependent variable appeared not to be affected by the mediator. Hence, no

mediation effect could be established between programming tool (IV) and procedural

knowledge (DV) through mental models.

5.2.3 Check of Multiple Regression Assumptions

In order to test whether the regression models used in the analysis of the procedural-

and declarative-knowledge data were biased, further checks had to be made. These

checks examined the existence of any outliers or influential cases, the validity of

homoscedasticity and assumptions of linear relationship between outcome and

predictors, and independence of errors. For each multiple regression analysis

conducted, residual statistics, histogram, p-p plot of the standardised residual, plot of

the standardised residual against standardised predicted values and the Durbin-

Watson statistic test were employed to that end (Field, 2009).

Residual statistics revealed four (Case 29, Case 33, Case 37 and Case 64), three

(Case 29, Case 57 and Case 63) and three (Case 59,Case 70 and Case 72)

extreme cases with standardised residual outside the limits of minus two and two for

the first, second and third procedural-knowledge measurement, respectively. In the

first declarative-knowledge measurement, one (Case 17), three (Case 16, Case 69

and Case 72), one (Case 17), four (Case 16, Case 38, Case 69 and Case 72) and

four (Case 16, Case 38, Case 69 and Case 72) extreme cases were found in the

regression analysis of Links in Common, Difference between Observed and

Expected Number of Links in Common, Similarity, Difference between Observed and

CHAPTER 5: RESULTS 270

Expected Similarity by Chance and Information, respectively. In the second

declarative-knowledge measurement, two (Case 32 and Case 42), three (Case 24,

Case 32 and Case 42) and three (Case 24, Case 29 and Case 42) extreme cases

were observed in the regression analysis of Difference between Observed and

Expected Number of Links in Common, Difference between Expected and Observed

Similarity by Chance and Information, respectively. Finally, two (Case 27 and Case

34) and three (Case 27, Case 29 and Case 33) extreme cases were found when

Links In Common and Difference between Observed and Expected Number of Links

in Common of the third declarative-knowledge measurement were analysed,

respectively. To determine if these cases were potential outliers or influential,

Cook’s distance, three and two times the average leverage, Mahalanobis distance,

covariance ratio and DFBeta statistics were calculated for each case (Field, 2009).

The investigation of these statistics revealed that these cases were neither influential

nor outlying.

Histograms and the p-p plots of the standardised residual against standardised

predicted values were plotted for each of the seven HMR analyses. Their

examination indicated that assumptions of homoscedasticity and linear relationship

between outcome and predictors were tenable for all the cases.

The values of Durbin-Watson statistic calculated during analysis of the first, second

and third procedural-knowledge data set were 2.10, 1.61 and 2.10, respectively. For

the models used in the analysis of Links in Common, Difference between Observed

and Expected Number of Links in Common, Similarity, Difference between Observed

and Expected Similarity by Chance and Information of the first declarative-

knowledge measurement, the values of the Durbin–Watson statistic were 1.32, 1.41,

1.30, 1.41 and 1.51, respectively. For the regression models used in the analysis of

CHAPTER 5: RESULTS 271

the declarative-knowledge data of the second measurement, the Durbin-Watson

statistic was 2.53, 2.60 and 2.59 for Difference between Observed and Expected

Number of Links in Common, Difference between Expected and Observed Similarity

by Chance, and Information, respectively. Finally, for Links In Common and

Difference between Observed and Expected Number of Links in Common of the third

measurement, the values of the Durbin–Watson statistic were 2.37 and 2.39,

respectively. These values suggested that the residuals of each data set were

independent. Additionally, VIF and tolerance values provided no evidence of

multicollinearity in any of the 13 analyses.

As explained in Section 4.4.2, HMR analysis was used to perform ANCOVA and in

order to obtain valid results from ANCOVA, the assumption of homogeneity of

regression slopes must be met. Therefore, for every HMR analysis performed in this

round of data collection that included at least one covariate, an additional ANCOVA

was conducted that included the main effects of the independent variable and the

covariate(s) as well as the interaction term between them (Field, 2009). The results

revealed that none of the interaction terms explained a significant percentage of

variance. Therefore, the assumption of homogeneity of regression slopes was not

violated in any of the performed HMR analyses.

5.2.4 Summary of the Results of the First Round of Data Collection

The first measurement of students’ declarative knowledge took place in the

beginning of the first round of data collection. The results of this measurement

showed that there was no main effect of programming tool on all five variables.

Planned contrasts revealed no significant differences between the means of the

three groups for all five variables, with one exception. Students of the

CHAPTER 5: RESULTS 272

Glossomatheia group performed better than the students of the Koios group for

Difference between Observed and Expected Number of Links in Common.

Furthermore, Participant’s GPA of previous year was a significant predictor for all

five variables.

The first procedural-knowledge measurement was conducted after three weeks

since the beginning of the study. In this measurement, the main effect of

programming tool on the programming skills developed for the concepts of integer,

arithmetic expression, string, output command, input command and variable was

significant. Participant’s GPA without CS was determined to be significant predictor

of students’ programming skills for this set of concepts as well. The Glossomatheia

users achieved significantly higher procedural-knowledge scores for these concepts

than the Koios users, but the users of MicroworldsPro did not.

After five weeks of lessons from the beginning of the study, the second procedural-

and declarative-knowledge measurements took place. The main effect of

programming tool on procedural knowledge of the following concepts: integer,

arithmetic expression, string, output-statement, input-statement, variable and

assignment-statement was significant. Again, Participant’s GPA without CS was a

significant predictor of the programming skills acquired until this measurement.

Moreover, the Glossomatheia group’s mean score of procedural knowledge was

significantly higher than the mean score of the Koios group. No significant difference

between the mean scores of the MicroworldsPro and the Koios groups was noticed.

Thus, the first step of mediation analysis was successful for this measurement. The

results of the second declarative measurement showed that the main effect of

programming tool on participants’ mental models was non-significant. Likewise, the

differences between the mean score of the Koios group and each of the other two

CHAPTER 5: RESULTS 273

groups were not significant for the five variables. The second step of mediation

analysis was not verified for this measurement, because students’ declarative

knowledge did not seem to have a significant effect on their procedural knowledge.

Hence, the mediator seemed to have no significant effect on the dependent variable

and therefore, no mediation effect could be established. In this measurement, Day

of Week was a significant predictor of Difference between Observed and Expected

Number of Links in Common and Information. The data of Difference between

Observed and Expected Similarity by Chance were significantly predicted by Gaps

between Lessons.

The procedural and declarative knowledge of participant was measured for a last

time at the end of the study, after nine weeks of lessons. The main effect of

programming tool on the programming skills – regarding the 13 concepts – that were

developed throughout this study was significant. Participant’s GPA without CS was

found to be a significant predictor. Students using Glossomatheia seem to have

performed better in this final procedural-knowledge test than students using Koios.

However, no significant differences in the levels of procedural knowledge between

the users of Koios and MicroworldsPro were observed. Hence, the first step of

mediation analysis was successful for this measurement. The analysis of the

declarative-knowledge measurement showed that the main effect of programming

tool on participants’ mental models was not significant. Consequently, the effect of

the independent variable on the mediator could not be confirmed and thus, no

mediation analysis could take place. Moreover, the planned comparisons between

the Koios and each of the other two groups on the third declarative-knowledge test

revealed that the Koios users did not seem to construct significantly richer mental

models than the users of Glossomatheia and MicroworldsPro. Finally, in this third

CHAPTER 5: RESULTS 274

measurement, the covariate Day of Week was a significant predictor of the variable

Links in Common.

5.3 Second Round of Data Collection

This section reports the results for the second round of data collection, using the

same structure as that used to report the results of the first round (see Section 5.2).

The results for procedural knowledge are presented first. The outcomes for

declarative knowledge follow. These results were used to test hypotheses H1 and

H2 as well as the mediation hypothesis H3. Finally, the results of the practical test

are presented.

A significance level of 0.05 was used in the following analyses. In the case of data

violating the assumption of homogeneity of variances (see Table 4.5), analysis was

carried out with an adjusted significance level of 0.025 (Keppel et al., 1992). No

adjustment of the significance level was considered when the normality assumption

was broken, because the inferential statistical methods used in the following

analyses (ANOVA and ANCOVA run as multiple regression) are robust against

violation of normality (Lorenzen & Anderson, 1993).

5.3.1 First Step of Mediation Analysis – Procedural knowledge

As with the case of the first round of data collection, the results for procedural

knowledge were used to test the validity of hypothesis H1 and the first step of

mediation analysis. Hypothesis H1 claims that users of Koios develop a higher level

of procedural knowledge than users of Glossomatheia and MicroworldsPro. The first

CHAPTER 5: RESULTS 275

step of mediation analysis checks if programming tool (IV) significantly affects

participants’ procedural knowledge (DV).

The tests used for the three procedural-knowledge measurements in the second

round of data collection were revised versions of the ones used in the first round.

The revisions were based on students’ performance in each item of the tests and

changes were made so that they would become more ‘sensitive’ in discriminating the

level of procedural knowledge between quasi-experimental groups. For more details

on these revisions see Section 4.3.2.1. The minimum and maximum mark of each

test was 0 and 20, respectively. The three procedural-knowledge measurements

took place after three, five and nine weeks of lessons – just like the measurements

of the first round. For a detailed discussion of the data-collection procedure of the

second round see Section 4.3.2. In order to assess how reliable the marking of the

procedural-knowledge tests was, a reliability analysis (Field, 2009) of the marking

was conducted. More details on how these tests were marked and how the reliability

of marking was measured are reported in Section 4.4.1.1

Finally, in the analysis of this round’s procedural-knowledge data, Participant’s GPA

without CS was the only covariate that was used as a predictor. The reasons for this

choice were discussed in Section 4.4.2.1.2. Thus, Participant’s GPA without CS was

entered in the first HMR model and the categorical variables of programming tool

were included in the second model. The plan used for analysing procedural-

knowledge data was presented in Section 4.4.2.1.2.

CHAPTER 5: RESULTS 276

5.3.1.1 Descriptive statistics for procedural-knowledge

measurements.

In Figure 5.7 the mean scores of procedural knowledge for the three groups over the

three measurements are presented. Values of y-axis range from 0 (minimum) to 20

(maximum).

Figure 5.7. Mean scores for each group over the three procedural-knowledge
measurements (second round).

As can be seen in Figure 5.7, the scores of the three measurements for the Koios,

the Glossomatheia and the MicroworldsPro groups were from relatively low to

medium. The mean score of each group in the second measurement seems higher

than its score in the first measurement. Nevertheless, the score of each group in the

third measurement seems lower than its score in the second. The results of

inferential statistical analysis for each one of the three measurements follow.

00
02
04
06
08
10
12
14
16
18
20

1st 2nd 3rd

M
ea

n
Sc

or
es

Procedural-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro

CHAPTER 5: RESULTS 277

5.3.1.2 First procedural-knowledge measurement.

The first procedural-knowledge measurement took place after three weeks of

lessons and took approximately 15 minutes to complete. This test measured the

procedural knowledge of the following programming concepts: integer, arithmetic

expression, string, output command, input command and variable. The nine items of

this test were found to be reliable, Cronbach’s alpha = 0.79. The marking of the first

procedural-knowledge test was reliable as well, r (15) = 0.78. Descriptive statistics

for the test’s scores are reported in Table 5.20.

Table 5.20
Descriptive Statistics for the Scores of the First Procedural-Knowledge Measurement
(Second Round)

Group n Mean SD SE Cohen’s d
Koios 21 7.40 5.33 1.16
Glossomatheia 25 11.21 5.37 1.07 -0.71
MicroworldsPro 19 11.42 6.15 1.41 -0.70
Total 65 10.04 5.81 0.72

Note. Because not all pupils attended the test session, sample size was reduced in Koios
and MicroworldsPro groups.

As can be seen in Table 5.20, the mean scores of the three groups were relatively

low and ranged approximately from 7 to 11. More specifically, the mean and SD for

the Koios, the Glossomatheia and the MicroworldsPro groups were 7.40 and 5.33,

11.21 and 5.37 and, 11.42 and 6.15, respectively. The difference between the

means of the Koios and the Glossomatheia groups indicated a medium to large

effect size, when compared with Cohen’s (1988) recommendation. This was also

the case for the difference of group means between the Koios and the

MicroworldsPro groups. The results of HMR analysis with Participants GPA without

CHAPTER 5: RESULTS 278

CS in the first model, programming tool in the second and procedural-knowledge

scores as the dependent variable are presented in Table 5.21.

Table 5.21
Results of Regression Analysis for the Scores of the First Procedural-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant -14.38 4.39 **-3.28
Participant’s GPA without CS 1.44 0.26 0.58 ***5.62

Model 2
Constant -15.50 4.24 **-3.65
Participant’s GPA without CS 1.38 0.25 0.55 ***5.55
Glossomatheia vs Koios 2.99 1.37 0.25 *2.18
MicroworldsPro vs Koios 3.50 1.46 0.28 *2.40

Note. R2 = 0.33 for Model 1; ΔR2 = 0.07 for Model 2 (p < 0.05). * p < 0.05, ** p < 0.01, ***
p < 0.001

Analysis of data showed that Participant’s GPA without CS alone explained 33% of

variance in the scores of the first procedural-knowledge measurement, R2 = 0.33, F

(1, 63) = 31.57, p < 0.001. Participant’s GPA without CS, as a predictor, was

statistically significant. The results of the second model of regression showed that

programming tool accounted for an extra 7% of variance in the scores, ΔR2 = 0.07,

Fchange (2, 61) = 3.50, p < 0.05. This extra proportion (7%) was statistically significant

and thus, programming tool was a significant predictor. GPA without CS was a

significant predictor in this model as well, t (61) = 5.55, p < 0.001. Both

Glossomatheia and MicroworldsPro users seem to have performed significantly

better in this test than Koios users, t (61) = 2.18, p < 0.05 and t (61) = 2.40, p < 0.05,

respectively. Therefore, hypothesis H1 was rejected. The experiment plan did not

include a declarative-knowledge measurement at the same time with this first

procedural-knowledge measurement and thus, it was not feasible to investigate any

mediation effect.

CHAPTER 5: RESULTS 279

5.3.1.3 Second procedural-knowledge measurement.

After five weeks of lessons since the beginning of the study, procedural knowledge

was measured for a second time. This test took approximately 15-20 minutes to

complete and measured the procedural knowledge of integer, arithmetic expression,

string, output-statement, input-statement, variable and assignment-statement. The

ten items of this test were found to be highly reliable, Cronbach’s alpha = 0.85. The

reliability of marking this test was high, r (15) = 0.84. Table 5.22 presents descriptive

statistics for this test’s scores.

Table 5.22
Descriptive Statistics for the Scores of the Second Procedural-Knowledge
Measurement (Second Round)

Group N Mean SD SE Cohen’s d
Koios 21 10.73 5.53 1.21
Glossomatheia 26 13.32 5.35 1.05 -0.48
MicroworldsPro 19 11.76 4.62 1.06 -0.20
Total 66 12.05 5.25 0.65

Note. Because not all pupils attended the test session, sample size was reduced in
Glossomatheia and MicroworldsPro groups.

From Table 5.22, it is shown that the mean scores for the three groups ranged

approximately from 11 to 13. In particular, the mean for the Koios, the

Glossomatheia and the MicroworldsPro groups was 10.73, 13.32 and 11.76,

respectively, while the SD was 5.52, 5.35 and 4.62, respectively. The effect size

represented by the comparison of means between the Koios and the Glossomatheia

groups was medium, based on Cohen’s (1988) standards. However, the difference

in the group means between Koios and MicroworldsPro indicated a small effect size.

Table 5.23 presents the results of HMR analysis with Participant’s GPA without CS

and the dummy variables of programming tool as predictors and this measurement’s

scores as the dependent variable.

CHAPTER 5: RESULTS 280

Table 5.23
Results of Regression Analysis for the Scores of the Second Procedural-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant -12.77 3.86 **-3.31
Participant’s GPA without CS 1.46 0.23 0.63 ***6.48

Model 2
Constant -12.77 3.87 **-3.30
Participant’s GPA without CS 1.44 0.23 0.62 ***6.25
Glossomatheia vs Koios 1.30 1.23 0.12 1.06
MicroworldsPro vs Koios -0.23 1.32 -0.02 -0.17

Note. R2 = 0.40 for Model 1; ΔR2 = 0.02 for Model 2 (p > 0.05). ** p < 0.01, *** p < 0.001

The results of Table 5.23 shows that Participant’s GPA without CS was a significant

predictor in the first model and explained 40% of variance in the scores, R2 = 0.40, F

(1, 64) = 41.96, p < 0.001. In the second model, the additional proportion of variance

explained by programming tool was 2% and it was non-significant, ΔR2 = 0.02,

Fchange < 1. Hence, programming tool had no significant effect on this test’s scores.

However, GPA without CS was a significant predictor in the second model, t (62) =

6.25, p < 0.001. No significant difference in the mean performance between the

Glossomatheia and the Koios groups were observed, t (62) = 1.06, p > 0.05. This

was also the case for the difference in the mean scores between the MicroworldsPro

and the Koios groups, |t| < 1. Hence, hypothesis H1 had to be rejected. Moreover,

the first step of mediation analysis was not successful, because no significant effect

of programming tool (IV) on the test scores (DV) was detected.

5.3.1.4 Third procedural-knowledge measurement.

The third and final measurement of procedural knowledge was conducted at the end

of the study, namely after nine weeks of lessons. It took approximately 20-25

CHAPTER 5: RESULTS 281

minutes to administer and measured all the 13 programming concepts. Reliability

analysis showed that the third procedural-knowledge test was reliable, Cronbach’s

alpha = 0.78. However, an improvement in this test’s reliability, Cronbach’s alpha =

0.82, would be achieved if the last item were deleted. Because the pattern of the

results was identical, regardless of whether the last item was removed, it was

decided to report the results of the analysis of the scores with highest reliability.

Hence, in this one and following analyses, the scores of the third procedural-

knowledge test were computed based on all the items of the test except for the last

one. The marking procedure of the third measurement’s procedural-knowledge tests

was highly reliable, r (15) = 0.81. Table 5.24 presents descriptive statistics for the

grades of this measurement.

Table 5.24
Descriptive Statistics for the Scores of the Third Procedural-Knowledge
Measurement (Second Round)

Group n Mean SD SE Cohen’s d
Koios 22 7.28 5.11 1.09
Glossomatheia 24 10.27 4.63 0.94 -0.62
MicroworldsPro 24 7.45 5.44 1.11 -0.03
Total 70 8.36 5.18 0.62

The data in Table 5.24 show that the scores of the final measurement were low to

medium and ranged approximately from 7 to 10. More specifically, the mean and SD

for the Koios, the Glossomatheia and the MicroworldsPro groups were 7.28 and

5.11, 10.27 and 4.63 and, 7.45 and 5.44, respectively. The difference in the mean

score between the Koios and the Glossomatheia groups presented a medium to

large effect size, according to Cohen’s (1988) suggestions. However, the effect size

indicated by the mean difference between the Koios and the MicroworldsPro groups

was small. In Table 5.25, the results of HMR analysis with this test’s scores as the

dependent variable, Participant’s GPA as the predictor in the first model and the

CHAPTER 5: RESULTS 282

dummy variables of programming tool as the predictor in the second model, are

reported.

Table 5.25
Results of Regression Analysis for the Scores of the Third Procedural-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant -15.51 3.75 ***-4.13
Participant’s GPA without CS 1.42 0.22 0.61 ***6.42

Model 2
Constant -15.44 3.67 ***-4.21
Participant’s GPA without CS 1.39 0.22 0.60 ***6.37
Glossomatheia vs Koios 2.03 1.20 0.19 1.69
MicroworldsPro vs Koios -0.58 1.19 -0.05 -0.49

Note. R2 = 0.38 for Model 1; ΔR2 = 0.05 for Model 2 (p > 0.05). *** p < 0.001

The results of the first model showed that Participant’s GPA without CS accounted

for the 38% of variance in the scores, R2 = 0.38, F (1, 68) = 41.21, p < 0.001. GPA

without CS was a significant predictor, t (68) = 6.42, p < 0.001. Programming tool

explained an additional 5% of variance in the scores, ΔR2 = 0.05, Fchange < 1. This

percentage was non-significant and thus, programming tool had no significant effect

on the scores. Nonetheless, GPA without CS was a significant predictor in the

second model as well, t (66) = 6.37, p < 0.001. The difference in the mean

performance between the Glossomatheia and the Koios groups was non-significant t

(66) = 1.69, p > 0.05, as was the difference in the mean performance between the

MicroworldsPro and the Koios groups, |t| < 1. Based on the latter results, hypothesis

H1 was rejected. Because no significant effect of programming tool (IV) on

procedural-knowledge scores (DV) was detected, the first step of mediation analysis

could not be supported.

CHAPTER 5: RESULTS 283

5.3.2 Second Step of Mediation Analysis – Declarative Knowledge

As with the case of the first round of data collection, the selected five variables to

represent the measured declarative knowledge were: Links in Common, Difference

between Observed and Expected Number of Links in Common, Similarity, Difference

between Observed and Expected Similarity by Chance and Information. For a more

detailed discussion on these variables and the selection process, see Section

4.4.1.2.

Based on the results of the three declarative-knowledge measurements, the validity

of hypothesis H2 and the second step of mediation analysis were tested. According

to hypothesis H2, Koios users construct richer mental models (declarative

knowledge) in the domain of introductory programming than Glossomatheia- and

MicroworldsPro users. The second step of mediation analysis determines if

programming tool (IV) has a significant effect on mental models (M).

5.3.2.1 Descriptive statistics for declarative-knowledge

measurement.

The descriptive statistics for the three groups over the three declarative-knowledge

measurements for Links in Common, Difference between Observed and Expected

Number of Links in Common, Similarity, Difference between Observed and Expected

Similarity by Chance and Information are presented in Figure 5.8, Figure 5.9, Figure

5.10, Figure 5.11 and Figure 5.12, respectively. The maximum values for Links in

Common, Difference between Observed and Expected Number of Links in Common,

Similarity, Difference between Observed and Expected Similarity by Chance and

Information were 19.00, 14.37, 1.00, 0.86 and 59.22, respectively.

CHAPTER 5: RESULTS 284

The minimum value for Links in Common, Similarity and Information was zero. The

minimum values for Difference between Observed and Expected Number of Links in

Common and Difference between Observed and Expected Similarity by Chance

were -5.12 and -0.15, respectively. These two values were the minimum observed

for each variable in this round of data collection. For a short discussion on the

computation of minimum and maximum values, see Section 5.2.2.1. The minimum

and maximum value of the y-axis in each of the following figures is set to the

minimum and maximum value of the variable that is analysed.

Figure 5.8. Mean scores of Links in Common for each group over the three
measurements (second round).

00

02

04

06

08

10

12

14

16

18

1st 2nd 3rd

Li
nk

s
in

 C
om

m
on

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

CHAPTER 5: RESULTS 285

Figure 5.9. Mean scores of Difference between Observed and Expected Number of
Links in Common for each group over the three measurements (second round).

Figure 5.10. Mean scores of Similarity for each group over the three measurements
(second round).

-05

-03

-01

01

03

05

07

09

11

13

1st 2nd 3rd

D
iff

er
en

ce
 b

et
w

ee
n

O
bs

er
ve

d
an

d
Ex

pe
ct

ed
N

um
be

r o
f L

in
ks

 in
 C

om
m

on

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1st 2nd 3rd

Si
m

ila
rit

y

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

CHAPTER 5: RESULTS 286

Figure 5.11. Mean scores of Difference between Observed and Expected Similarity
by Chance for each group over the three measurements (second round).

Figure 5.12. Mean scores of Information for each group over the three
measurements (second round).

-0.15

0.05

0.25

0.45

0.65

0.85

1st 2nd 3rd

D
iff

er
en

ce
 b

et
w

ee
n

O
bs

er
ve

d
an

d
Ex

pe
ct

ed
 S

im
ila

rit
y

by
 C

ha
nc

e

Declerative-Knowledge Measurement

Glossomatheia group
Koios group
MicoroworldsPro group

00

10

20

30

40

50

1st 2nd 3rd

In
fo

rm
at

io
n

Declarative-Knowledge Measurement

Glossomatheia group
Koios group
MicroworldsPro group

CHAPTER 5: RESULTS 287

As can be seen from the five figures, the scores of the three groups over the three

measurements were overall low for each of the variables, possibly indicating a floor

effect. The mean score of each group in the second measurement seems relatively

higher than its mean score in the first measurement for all five variables. An

apparent relative improvement in the mean score of each group was observed from

the second to the third measurement for all variables, as well.

The five variables of declarative knowledge were used in inferential statistical

analysis. In the following three sections the results of analysing the data collected in

the first, second and third declarative-knowledge measurement are presented.

5.3.2.2 First declarative-knowledge measurement.

The first declarative-knowledge measurement took place at the beginning of the

second round of data collection. Table 5.26 presents descriptive statistics for the

five variables.

The mean scores of the three groups for the five variables were overall low.

According to Cohen’s (1988) recommendations, medium to large effect sizes seem

to have been observed based on the differences of the mean scores between the

Koios and the Glossomatheia groups for all variables. More particularly, the means

for the Koios, the Glossomatheia and the MicroworldsPro groups for Links In

Common, Difference between Observed and Expected Number of Links in Common,

Similarity, Difference between Observed and Expected Similarity and Information

were 4.04, 2.75 and 3.30; -0.32, -1.51 and -0.96; 0.12, 0.08 and 0.10; -0.01, -0.05

and -0.03; and 0.90, 0.27 and 0.43, respectively. The SD for the same groups and

variables were 2.29, 1.16 and 1.22, 1.63, 1.08 and 1.13; 0.06, 0.04 and 0.04; 0.06,

0.04 and 0.04; and 1.12, 0.40 and 0.49, respectively. Moreover, small to medium

CHAPTER 5: RESULTS 288

effect sizes were observed in the mean difference between the Koios and the

MicroworldsPro groups for the five variables. The analysis of this measurement’s

data followed the analysis plan presented in Section 4.4.2.2.2.

Table 5.26
Descriptive Statistics for the Outcome Variables of the First Declarative-Knowledge
Measurement (Second Round)
Variable Group n Mean SD SE Cohen’s d
Links in common Koios 24 4.04 2.29 0.47

Glossomatheia 20 2.75 1.16 0.26 0.69
MicroworldsPro 23 3.30 1.22 0.25 0.40
Total 67 3.40 1.73 0.21

Difference between
observed and
expected number of
links in common

Koios 24 -0.32 1.63 0.33
Glossomatheia 20 -1.51 1.08 0.24 0.85
MicroworldsPro 23 -0.96 1.13 0.24 0.46
Total 67 -0.90 1.39 0.17

Similarity Koios 24 0.12 0.06 0.01
Glossomatheia 20 0.08 0.04 0.01 0.75
MicroworldsPro 23 0.10 0.04 0.01 0.41
Total 67 0.10 0.05 0.01

Difference between
observed and
expected similarity

Koios 24 -0.01 0.06 0.01
Glossomatheia 20 -0.05 0.04 0.01 0.82
MicroworldsPro 23 -0.03 0.04 0.01 0.45
Total 67 -0.03 0.05 0.01

Information Koios 24 0.90 1.12 0.23
Glossomatheia 20 0.27 0.40 0.09 0.72
MicroworldsPro 23 0.43 0.49 0.10 0.53
Total 67 0.55 0.80 0.10

Note. Because not all pupils attended the test session, sample size was reduced in
Glossomatheia group.

For more details about using Participant’s GPA of previous year instead of

Participant’s GPA without CS as covariate in the analysis of the declarative-

knowledge data of the first measurement, see Section 4.4.2.1.1. The significance

level used for Difference between Observed and Expected Number of Links in

CHAPTER 5: RESULTS 289

Common was 0.05. For the remaining four variables, it was adjusted to 0.025, due

to violation of the assumption of homogeneity of variance.

The results of ANOVA for Links in Common, Difference between Observed and

Expected Number of Links in Common, Similarity, Difference between Observed and

Expected Similarity by Chance and Information were F (2, 64) = 3.30, p > 0.025; F

(2, 64) = 4.45, p < 0.05, ε2 = 0.11; F (2, 64) = 3.72, p > 0.025; F (2, 64) = 4.29, p <

0.025, ε2 = 0.11; and F (2, 64) = 4.11, p < 0.025, ε2 = 0.10, respectively. These

results seem to indicate a significant difference between means of the three groups

for Difference between Observed and Expected Number of Links in Common,

Difference between Observed and Expected Similarity by Chance and Information.

The results of planned contrasts between the Koios and the Glossomatheia groups

for the five variables were t (64) = 2.57, p < 0.025, d = 0.69; t (64) = 2.99, p < 0.01, d

= 0.85; t (64) = 2.71, p < 0.01, d = 0.75; t (64) = 2.91, p < 0.01, d = 0.82; and t (64) =

2.73, p < 0.01, d = 0.72, respectively. The outcomes of planned comparisons

between the Koios and the MicroworldsPro groups for the five measures were t (64)

= 1.51, p > 0.05; t (64) = 1.67, p > 0.05; t (64) = 1.54, p > 0.05; t (64) = 1.65, p >

0.05; and t (64) = 2.08, p > 0.025, respectively.

As this measurement occurred before any experimental manipulation, these results

revealed that the participants of this study did not come from the same population.

Specifically, students allocated to the Koios group performed significantly better than

the students of the Glossomatheia group in all variables, while no significant

differences were found between students allocated to the Koios and the

MicroworldsPro groups. Participants – of the Koios and the Glossomatheia groups –

coming from different populations could also explain the medium to large effect sizes

that were observed for the differences in the outcome variables between these two

CHAPTER 5: RESULTS 290

groups. Moreover, because this measurement was taken before any experimental

manipulation, it was meaningless to check the validity of the second step of

mediation.

5.3.2.3 Second declarative-knowledge measurement.

The second measurement of declarative knowledge was taken at the sixth week of

lessons and just before the second procedural-knowledge test. The descriptive

statistics for the variables, presented in Table 5.27, revealed an overall low

achievement in the five measures by the three groups. More specifically, the means

for the Koios, the Glossomatheia and the MicroworldsPro groups for Links In

Common, Difference between Observed and Expected Number of Links in Common,

Similarity, Difference between Observed and Expected Similarity and Information

were 4.71, 5.08 and 4.16; 0.25, 0.37 and -0.34; 0.15, 0.15 and 0.12; 0.01, 0.01 and -

0.01; and 1.25, 1.30 and 0.64, respectively. The SD for the same groups and

variables were 1.93, 2.04 and 1.38; 1.67, 1.51 and 0.98; 0.06, 0.06 and 0.04; 0.06,

0.06 and 0.03; 1.11, 1.41 and 0.41, respectively.

Following Cohen’s (1988) suggestions, the differences in the mean value between

the Koios and the Glossomatheia groups for the five variables represented small

effect sizes. The effect sizes indicated by the mean differences between the Koios

and the MicroworldsPro groups were low to medium for the first four variables. The

effect size of the mean difference in Information between the Koios and the

MicroworldsPro groups was medium to large.

CHAPTER 5: RESULTS 291

Table 5.27
Descriptive Statistics for the Outcome Variables of the Second Declarative-
Knowledge Measurement (Second Round)
Variable Group n Mean SD SE Cohen’s d
Links in common Koios 21 4.71 1.93 0.42

Glossomatheia 26 5.08 2.04 0.40 -0.18
MicroworldsPro 19 4.16 1.38 0.32 0.33
Total 66 4.70 1.85 0.23

Difference between
observed and expected
number of links in
common

Koios 21 0.25 1.67 0.36
Glossomatheia 26 0.37 1.51 0.30 -0.07
MicroworldsPro 19 -0.34 0.98 0.23 0.43
Total 66 0.12 1.45 0.18

Similarity Koios 21 0.15 0.06 0.01
Glossomatheia 26 0.15 0.06 0.01 -0.11
MicroworldsPro 19 0.12 0.04 0.01 0.43
Total 66 0.14 0.05 0.01

Difference between
observed and expected
similarity

Koios 21 0.01 0.06 0.01
Glossomatheia 26 0.01 0.06 0.01 -0.05
MicroworldsPro 19 -0.01 0.03 0.01 0.47
Total 66 0.00 0.05 0.01

Information Koios 21 1.25 1.11 0.24
Glossomatheia 26 1.30 1.41 0.28 -0.04
MicroworldsPro 19 0.64 0.41 0.09 0.71
Total 66 1.09 1.13 0.14

Note. Because not all pupils attended the test session, sample size was reduced in Koios
and MicroworldsPro groups.

For the analysis of Links in Common a significance level of 0.05 was used. Due to

the violation of homogeneity of variance by the remaining four variables, a

significance level of 0.025 was used for their analysis. Based on the analysis plan

described in Section 4.4.2.2.2, the results of analysing the data of this measurement

follow. The HMR results for Links in Common are presented in Table 5.28.

CHAPTER 5: RESULTS 292

Table 5.28
Results of Regression Analysis for Links in Common of the Second Declarative-
Knowledge Measurement (Second Round)

Predictor B SE β t
Model 1

Constant 3.89 0.51 ***7.59
Links in Common(First Declarative-
Knowledge Measurement)

0.22 0.13 0.21 1.65

Model 2
Constant 3.66 0.69 ***5.30
Links in Common(First Declarative-
Knowledge Measurement)

0.25 0.14 0.25 1.82

Glossomatheia vs Koios 0.60 0.58 0.16 1.03
MicroworldsPro vs Koios -0.53 0.58 -0.14 -0.91

Note. R2 = 0.05 for Model 1; ΔR2 = 0.06 for Model 2 (p > 0.05). *** p < 0.001

The data of Links in Common collected in the first measurement accounted for 5% of

variance in the data of the second measurement, R2 = 0.05, F (1, 56) = 2.71 , p >

0.05; this predictor was non-significant. When programming tool was added in the

model, it explained an extra 6% of variance in Links in Common of the second

measurement, ΔR2 = 0.06, Fchange (2, 54) = 1.91 , p > 0.05, which was a non-

significant proportion, as well. Thus, programming tool was not a significant

predictor; neither was Links in Common of the first measurement, t (54) = 1.82, p >

0.05. The mean difference between the Glossomatheia and the Koios groups was

non-significant, t (54) = 1.03, p > 0.05, as was the mean difference between the

MicroworldsPro and the Koios groups, |t| < 1. The outcome of HMR analysis for

Difference between Observed and Expected Number of Links in Common of the

second measurement is shown in Table 5.29.

CHAPTER 5: RESULTS 293

Table 5.29
Results of Regression Analysis for Difference between Observed and Expected
Number of Links in Common of the Second Declarative-Knowledge Measurement
(Second Round)

Predictor B SE β t
Model 1

Constant 0.04 0.21 0.18
Difference between Observed and
Expected Number of Links in Common
(First Declarative-Knowledge
Measurement)

0.07 0.13 0.07 0.53

Model 2
Constant 0.25 0.30 0.85
Difference between Observed and
Expected Number of Links in Common
(First Declarative-Knowledge
Measurement)

0.04 0.15 0.04 0.27

Glossomatheia vs Koios -0.10 0.47 -0.04 -0.22
MicroworldsPro vs Koios -0.70 0.46 -0.24 -1.51

Note. R2 = 0.01 for Model 1; ΔR2 = 0.05 for Model 2 (p > 0.05).

The data of Difference between Observed and Expected Number of Links in

Common measured the first time explained 1% of variance in this measurement’s

data, R2 = 0.01, F < 1. Consequently, this was a non-significant predictor. In the

second model, an additional 5% of variance was explained by programming tool,

ΔR2 = 0.05, Fchange (2, 54) = 1.38, p > 0.05, but this percentage was not significant

either. Therefore, programming tool was not a significant predictor. In the second

model, the Difference between Observed and Expected Number of Links in Common

of the first measurement was not a significant predictor, as well, |t| < 1. No

significant differences in the mean performance was observed between the

Glossomatheia and the Koios groups, |t| < 1, or between the MicroworldsPro and the

Koios groups, t (54) = -1.51, p > 0.05. The results of HMR analysis of Similarity

scores are reported in Table 5.30.

CHAPTER 5: RESULTS 294

Table 5.30
Results of Regression Analysis for Similarity of the Second Declarative-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant 0.12 0.01 ***8.09
Similarity (First Declarative-
Knowledge Measurement)

0.16 0.13 0.16 1.25

Model 2
Constant 0.13 0.02 ***6.06
Similarity (First Declarative-
Knowledge Measurement)

0.16 0.14 0.17 1.17

Glossomatheia vs Koios 0.01 0.02 0.05 0.32
MicroworldsPro vs Koios -0.02 0.02 -0.21 -1.38

Note. R2 = 0.03 for Mode 1; ΔR2 = 0.06 for Model 2 (p > 0.05). *** p < 0.001

The first regression model showed that Similarity of the first measurement was not a

significant predictor; it accounted for 3% of the variance in Similarity of the second

measurement, R2 = 0.03, F (1, 56) = 1.56, p > 0.05. The addition of programming

tool in the second model, explained an extra 6% of the variance in Similarity, ΔR2 =

0.06, Fchange (2, 54) = 1.68, p > 0.05. This percentage was non-significant. Hence, in

the second model, neither programming tool, nor Similarity of the first measurement,

t (54) = 1.17, p > 0.05, were significant predictors. The mean score of the Koios

group was not significantly different than the mean score of the Glossomatheia

group, |t| < 1 and the mean score of the MicroworldsPro group, t (54) = -1.38, p >

0.05.

The next HMR analysis was conducted with Difference between Expected and

Observed Similarity by Chance as the dependent variable with this variable’s data

obtained from first measurement as the predictor in the first model and programming

tool in the second. The results are presented in Table 5.31.

CHAPTER 5: RESULTS 295

Table 5.31
Results of Regression Analysis for Difference between Expected and Observed
Similarity by Chance of the Second Declarative-Knowledge Measurement (Second
Round)

Predictor B SE β t
Model 1

Constant 0.00 0.01 0.09
Difference between Expected and
Observed Similarity by Chance (First
Declarative-Knowledge Measurement)

0.09 0.13 0.09 0.68

Model 2
Constant 0.01 0.01 0.88
Difference between Expected and
Observed Similarity by Chance (First
Declarative-Knowledge Measurement)

0.05 0.14 0.05 0.35

Glossomatheia vs Koios -0.01 0.02 -0.06 -0.35
MicroworldsPro vs Koios -0.03 0.02 -0.25 -1.64

Note. R2 = 0.01 for Model 1; ΔR2 = 0.05 for Model 2 (p > 0.05).

The results revealed that Difference between Expected and Observed Similarity by

Chance of the first measurement was a non-significant predictor and it explained 1%

of the variance in the second measurement’s data, R2 = 0.01, F < 1. Programming

tool accounted for an additional 5% of this variable’s variance, ΔR2 = 0.05, Fchange (2,

54) = 1.52, p > 0.05. The extra proportion (5%) explained by programming tool was

not significant either. Thus, in the second model, programming tool was a non-

significant predictor and so was Difference between Expected and Observed

Similarity by Chance of the first measurement, |t| < 1. The mean difference between

the Glossomatheia and the Koios groups and between the MicroworldsPro and the

Koios groups were both non-significant, |t| < 1 and t (54) = -1.64, p > 0.05,

respectively.

The final variable measured in the second declarative-knowledge measurement was

Information. A HMR was used for the analysis of Information and its results are

reported in Table 5.32.

CHAPTER 5: RESULTS 296

Table 5.32
Results of Regression Analysis for Information of the Second Declarative-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant 0.91 0.14 ***6.46
Information (First Declarative-
Knowledge Measurement)

0.08 0.14 0.07 0.54

Model 2
Constant 1.28 0.24 ***5.35
Information (First Declarative-
Knowledge Measurement)

-0.03 0.15 -0.03 -0.21

Glossomatheia vs Koios -0.30 0.29 -0.17 -1.05
MicroworldsPro vs Koios -0.71 0.30 -0.37 *#-2.40

Note. R2 = 0.01 for Model 1; ΔR2 = 0.10 for Model 2 (p > 0.05). *# p < 0.025, *** p <
0.001

The results showed that Information of the first measurement explained 1% of the

variance in this measurement’s Information and that it was a non-significant

predictor, R2 = 0.01, F < 1. In the second model, programming tool accounted for an

extra 10% of variance in Information, ΔR2 = 0.10, Fchange (2, 54) = 2.92, p > 0.05, but

this percentage was not significant either. Thus, programming tool was not a

significant predictor. Neither was Information of the first measurement in the second

model, |t| < 1. No significant difference was observed in the mean scores between

the Glossomatheia and the Koios groups, t (54) = -1.05, p > 0.05. However, based

on the scores of Information measured in this occasion, Koios users seemed to have

constructed significantly richer mental models than MicroworldsPro users, t (54) = -

2.40, p < 0.25.

Because the difference between the means of the Koios and the MicroworldsPro

groups represented a medium effect size for Difference between Observed and

Expected Number of Links in Common, Similarity and Difference between Expected

and Observed Similarity by Chance, but the analysis of these variables yielded no

significant results, a retrospective power analysis was conducted to ascertain that

CHAPTER 5: RESULTS 297

the statistical tests used in these analyses had enough statistical power to detect an

effect. In particular, the power of the t-test between the Koios and the

MicroworldsPro groups for each of these three variables was investigated using

G*Power (Faul, Erdfelder, Buchner & Lang, 2009; Faul, Erdfelder, Lang & Buchner,

2007). This experiment was designed to be able to detect a large effect size, namely

for the t-test the intended effect size was d = 0.80. The power for the intended effect

sizes of the t-tests that were used to compare the Koios and the MicroworldsPro

groups for Difference between Observed and Expected Number of Links in

Common, Similarity and Difference between Expected and Observed Similarity by

Chance was 0.58. This value suggested that these t-tests had medium to high

statistical power, but less than the conventional power level of 0.80.

The results of the second declarative-knowledge test revealed that the declarative-

knowledge variables of the first measurement did not significantly affect the variables

measured in this occasion. The mean performance of the Glossomatheia and the

Koios groups was not significantly different for each of the five variables. This was

the case for the mean performance of the MicroworldsPro and the Koios groups for

the first four variables. Nonetheless, the mental models of Koios users were

significantly better than those of MicroworldsPro users, when measured by

Information. Overall, with the exception of the latter case, Koios users did not seem

to have constructed better mental models than Glossomatheia- and MicroworldsPro

users, and therefore, hypothesis H2 had to be rejected. The findings also revealed

that programming tool (IV) was not a significant predictor of the five variables and

consequently, of participants’ declarative knowledge (M). Thus, programming tool

did not have a significant effect on declarative knowledge and therefore, the

conditions described in the second step of mediation were not met. To further

CHAPTER 5: RESULTS 298

investigate the relationship between this measurement’s declarative-knowledge data

(M) and procedural-knowledge scores (DV), the correlation of each variable with the

procedural-knowledge scores was calculated. However, all correlations (< 0.20)

were non-significant and therefore the existence of a mediation effect could not be

supported.

5.3.2.4 Third declarative-knowledge measurement.

The final declarative-knowledge measurement was taken at the end of this round,

after nine weeks of lessons and just before the final procedural-knowledge test.

Descriptive statistics for this measurement’ variables are presented in Table 5.33.

From Table 5.33, it can be seen that participants’ performance was rather low in all

variables, regardless of the group they belonged to. In particular, the means for the

Koios, the Glossomatheia and the MicroworldsPro groups for Links In Common,

Difference between Observed and Expected Number of Links in Common, Similarity,

Difference between Observed and Expected Similarity and Information were 4.86,

5.21 and 5.00; 0.52, 0.58 and 0.61; 0.15, 0.16 and 0.16; 0.02, 0.02 and 0.02; and

1.56, 1.61 and 1.58, respectively. The SD for the same groups and variables were

2.14, 2.23 and 1.84; 1.93, 1.80 and 1.58; 0.07, 0.07 and 0.06; 0.07, 0.07 and 0.06;

and 1.44, 1.92 and 2.06, respectively. Small effect sizes were observed for the

differences in the mean values between the Koios and the Glossomatheia groups for

all variables, based on Cohen’s d (1988). This was the case for the mean

differences between the Koios and the MicroworldsPro groups for all variables.

A significance level of 0.05 was used for this measurement’s analyses, because

only normality was violated for all variables.

CHAPTER 5: RESULTS 299

Table 5.33
Descriptive Statistics for the Outcome Variables of the Third Declarative-Knowledge
Measurement (Second Round)
Variable Group n Mean SD SE Cohen’s d
Links in
common

Koios 22 4.86 2.14 0.46
Glossomatheia 24 5.21 2.23 0.45 -0.16
MicroworldsPro 24 5.00 1.84 0.38 -0.07
Total 70 5.03 2.05 0.25

Difference
between
observed and
expected
number of
links in
common

Koios 22 0.52 1.93 0.41
Glossomatheia 24 0.58 1.80 0.37 -0.03
MicroworldsPro 24 0.61 1.58 0.32 -0.05
Total 70 0.57 1.75 0.21

Similarity Koios 22 0.15 0.07 0.01
Glossomatheia 24 0.16 0.07 0.01 -0.08
MicroworldsPro 24 0.16 0.06 0.01 -0.05
Total 70 0.16 0.07 0.01

Difference
between
observed and
expected
similarity

Koios 22 0.02 0.07 0.01
Glossomatheia 24 0.02 0.07 0.01 -0.01
MicroworldsPro 24 0.02 0.06 0.01 -0.04
Total 70 0.02 0.07 0.01

Information Koios 22 1.56 1.44 0.31
Glossomatheia 24 1.61 1.92 0.39 -0.03
MicroworldsPro 24 1.58 2.06 0.42 -0.01
Total 70 1.58 1.81 0.22

This analysis followed the plan presented in Section 4.4.2.2.2. The HMR results for

Links in Common of the third measurement are presented in Table 5.34. The data of

Links in Common of the first measurement explained 1% of the variance in this

measurement’s Links in Common and was not a significant predictor, R2 = 0.01, F <

1. The inclusion of programming tool in the model explained an additional 2% of the

variance, which was not significant, ΔR2 = 0.02, Fchange < 1.

CHAPTER 5: RESULTS 300

Table 5.34
Results of Regression Analysis for Links in Common of the Third Declarative-
Knowledge Measurement (Second Round)

Predictor B SE β t
Model 1

Constant 4.66 0.57 ***8.18
Links in Common (First Declarative-
Knowledge Measurement)

0.09 0.15 0.08 0.61

Model 2
Constant 4.30 0.79 ***5.42
Links in Common (First Declarative-
Knowledge Measurement)

0.13 0.16 0.12 0.86

Glossomatheia vs Koios 0.65 0.68 0.15 0.96
MicroworldsPro vs Koios 0.03 0.63 0.01 0.05

Note. R2 = 0.01 for Model 1; ΔR2 = 0.02 for Model 2 (p > 0.05). *** p < 0.001

Therefore, programming tool was not a significant predictor. This was also the case

for Links in Common of the first measurement, |t| < 1. The mean scores of the

Glossomatheia and the Koios groups, as well as of the MicroworldsPro and the

Koios groups, were not significantly different, |t| < 1 and |t| < 1, respectively. The

HMR results of Difference between Observed and Expected Number of Links in

Common are reported in Table 5.35.

The results from Model 1 show that the data of this variable’s first measurement

explained none of the variance in the data of the third measurement and it was a

non-significant predictor, R2 = 0.00, F < 1. The second model revealed that 1% of

the variance in Difference between Observed and Expected Number of Links in

Common of the third measurement was explained by programming tool, ΔR2 = 0.01,

Fchange < 1. This percentage was not significant and therefore programming tool was

not a significant predictor. The Difference between Observed and Expected Number

of Links in Common from the first measurement was not a significant predictor in the

second model either, |t| < 1.

CHAPTER 5: RESULTS 301

Table 5.35
Results of Regression Analysis for Difference between Observed and Expected
Number of Links in Common of the Third Declarative-Knowledge Measurement
(Second Round)

Predictor B SE β t
Model 1

Constant 0.61 0.26 *2.32
Difference between Observed and
Expected Number of Links in Common
(First Declarative-Knowledge
Measurement)

0.05 0.16 0.04 0.29

Model 2
Constant 0.54 0.39 1.37
Difference between Observed and
Expected Number of Links in Common
(First Declarative-Knowledge
Measurement)

0.08 0.18 0.06 0.43

Glossomatheia vs Koios 0.29 0.62 0.08 0.47
MicroworldsPro vs Koios 0.04 0.57 0.01 0.07

Note. R2 = 0.00 for Model 1; ΔR2 = 0.01 for Model 2 (p > 0.05). * p < 0.05

The mean difference between the Glossomatheia and the Koios groups and between

the MicroworldsPro and the Koios groups were both non-significant, |t| < 1 and |t| <

1, respectively.

According to the analysis plan presented in Section 4.4.2.2.2, in the next three

analyses, the covariate Homework Frequency until the third procedural-knowledge

measurement was also included in the first regression model. The HMR results of

Similarity, obtained from the third measurement, are presented in Table 5.36. The

first model of data analysis showed that the two predictors explained 10% of

variance in Similarity of the third measurement, R2 = .10, F (2,60) = 3.37, p < 0.05.

The predictor Homework Frequency until the third procedural-knowledge

measurement was a significant one, t (60) = 2.56, p < 0.05, but Similarity of the first

measurement was not, |t| < 1. The addition of programming tool accounted for an

extra 1% of variance in this variable, ΔR2 = 0.01, Fchange < 1.

CHAPTER 5: RESULTS 302

Table 5.36
Results of Regression Analysis for Similarity of the Third Declarative-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant 0.14 0.02 ***7.26
Homework Frequency until the Third
Procedural-Knowledge Measurement

0.01 0.00 0.31 *2.56

Similarity (First Declarative-Knowledge
Measurement)

0.03 0.16 0.02 0.18

Model 2
Constant 0.15 0.03 ***5.46
Homework Frequency until the Third
Procedural-Knowledge Measurement

0.01 0.00 0.33 *2.54

Similarity (First Declarative-Knowledge
Measurement)

0.02 0.18 0.02 0.11

Glossomatheia vs Koios 0.00 0.02 0.01 0.04
MicroworldsPro vs Koios -0.02 0.02 -0.10 -0.68

Note. R2 = 0.10 for Model 1; ΔR2 = 0.01 for Model 2 (p > 0.05). * p < 0.05, *** p < 0.001

This extra proportion was not significant, which means that programming tool was

not a significant predictor. This was also the case for Similarity of the first

measurement, |t| < 1, but not for Homework Frequency until the third procedural-

knowledge measurement, which was a significant predictor in this model, t (58) =

2.54, p < 0.05. No significant differences were observed between the means of

neither the Glossomatheia and the Koios groups, |t| < 1, nor the MicroworldsPro and

the Koios groups, |t| < 1. Next, Difference between Expected and Observed

Similarity by Chance was analysed using HMR and the results are presented in

Table 5.37. Data analysis revealed that the two predictors of the first model

explained 9% of variance in Difference between Expected and Observed Similarity

by Chance of the third measurement, R2 = 0.09, F (2,60) = 2.81, p > 0.05. This

variable’s data, at the first measurement, was not a significant predictor, |t| < 1, while

the covariate Homework Frequency until the third procedural-knowledge

measurement was, t (60) = 2.36, p < 0.05.

CHAPTER 5: RESULTS 303

Table 5.37
Results of Regression Analysis for Difference between Expected and Observed
Similarity by Chance of the Third Declarative-Knowledge Measurement (Second
Round)

Predictor B SE β t
Model 1

Constant 0.01 0.01 0.71
Homework Frequency until the Third
Procedural-Knowledge Measurement

0.01 0.00 0.29 *2.36

Difference between Expected and
Observed Similarity by Chance (First
Declarative-Knowledge Measurement)

-0.01 0.17 0.00 -0.04

Model 2
Constant 0.01 0.01 0.88
Homework Frequency until the Third
Procedural-Knowledge Measurement

0.01 0.00 0.32 *2.39

Difference between Expected and
Observed Similarity by Chance (First
Declarative-Knowledge Measurement)

-0.03 0.19 -0.02 -0.17

Glossomatheia vs Koios -0.01 0.02 -0.04 -0.23
MicroworldsPro vs Koios -0.01 0.02 -0.10 -0.66

Note. R2 = 0.09 for Model 1; ΔR2 = 0.01 for Model 2 (p > 0.05). * p < 0.05

The inclusion of programming tool in the model explained an additional 1% of

variance, which was not significant, ΔR2 = 0.01, Fchange < 1. Homework Frequency

was a significant predictor in this model, t (58) = 2.39, p < 0.05. However, Difference

between Expected and Observed Similarity by Chance of the first measurement was

not a significant predictor, |t| < 1. This was also the case for programming tool,

because the additional percent of variance explained by it was non-significant. The

mean values of the Glossomatheia and the Koios groups, as well as of the

MicroworldsPro and the Koios groups, were not significantly different, |t| < 1 and |t| <

1, respectively. Finally, the results of HMR analysis for Information are reported in

Table 5.38.

CHAPTER 5: RESULTS 304

Table 5.38
Results of Regression Analysis for Information of the Third Declarative-Knowledge
Measurement (Second Round)

Predictor B SE β t
Model 1

Constant 1.33 0.32 ***4.17
Homework Frequency until the Third
Procedural-Knowledge
Measurement

0.26 0.11 0.29 *2.34

Information (First Declarative-
Knowledge Measurement)

-0.15 0.29 -0.07 -0.54

Model 2
Constant 1.58 0.50 **3.18
Homework Frequency until the Third
Procedural-Knowledge
Measurement

0.29 0.12 0.32 *2.43

Information (First Declarative-
Knowledge Measurement)

-0.23 0.31 -0.10 -0.73

Glossomatheia vs Koios -0.24 0.64 -0.06 -0.37
MicroworldsPro vs Koios -0.51 0.61 -0.13 -0.84

Note. R2 = 0.09 for Model 1; ΔR2 = 0.01 for Model 2 (p > 0.05). * p < 0.05, ** p< 0.01, ***
p < 0.001

The results revealed that the predictors of the first model accounted for 9% of

variance in Information of the last measurement, R2 = 0.09, F (2,60) = 2.80, p > 0.05.

The covariate Homework Frequency until the third procedural-knowledge

measurement was a significant predictor, t (60) = 2.34, p < 0.05, whilst Information of

the first measurement was not, |t| < 1. In the second model, programming tool

explained an extra 1% of variance in Information of the third measurement, ΔR2 =

0.01, Fchange < 1. The additional explained proportion of variance was not significant

and thus, neither was programming tool as a predictor. The variable Information of

the first measurement, was not a significant predictor for this model either, |t| < 1.

Nonetheless, Homework Frequency until the third procedural-knowledge

measurement was a significant predictor, for this model, t (58) = 2.43, p < 0.05. The

difference in the mean scores between the Glossomatheia and the Koios groups

CHAPTER 5: RESULTS 305

were non-significant, |t| < 1. This was also the case for the difference between the

MicroworldsPro and the Koios groups, |t| < 1.

The analysis outcome of the final declarative-knowledge measurement revealed that

the group mean of Koios was not significantly different from the group means of

Glossomatheia and of MicroworldsPro for all variables. Consequently, hypothesis

H2 had to be rejected. Furthermore, programming tool (IV) had no significant effect

on all declarative-knowledge variables (M). A further investigation of the mediation

hypothesis included the estimation of the correlation between each declarative-

knowledge variable and procedural-knowledge scores (DV) of this measurement.

The extremely low correlations (< 0.06) were not significant, which suggested that

procedural knowledge was presumably not affected by declarative knowledge.

Therefore, no mediation effect was detected and the second step of mediation could

not be established for the final measurement.

5.3.3 Practical Test

The practical test took place the week following the final procedural- and declarative-

knowledge measurement. Students had to create three programs using only the

programming tool which they had been using during the second round of data

collection. For more details about the practical test and its design, see Section

4.3.2.2.3. The programs that students produced were evaluated using an

assessment scheme (see Section 4.4.1.3) and the minimum and maximum score of

the practical test was 0 and 20, respectively. The reliability of the practical test’s

items was high, Cronbach’s alpha = 0.77. The reliability of marking the programs of

the practical test was high as well, r (15) = 0.79. For more details about the

procedure used to assess the reliability of marking the practical test’s programs, see

CHAPTER 5: RESULTS 306

Section 4.4.1.3. The scores of the test violated the assumption of normality, but not

that of homogeneity of variances. Hence, a significance level of 0.05 was used for

the analysis. Descriptive statistics for the scores of the practical test are presented

in Table 5.39.

Table 5.39
Descriptive Statistics for Practical-Test Scores

Group n Mean SD SE Cohen’s d
Koios 23 14.22 9.70 2.02
Glossomatheia 25 8.38 7.28 1.46 0.69
MicroworldsPro 22 7.34 8.29 1.77 0.76
Total 70 9.97 8.86 1.06

As can be seen from Table 5.39, the mean values of the Glossomatheia and the

MicroworldsPro groups were approximately eight and seven, respectively. The

mean score of the Koios group was approximately 14; almost twice the mean score

of each of the other two groups. The SD for the Koios, the Glossomatheia and the

MicroworldsPro groups was 9.70, 7.28 and 8.29, respectively. The effect size

observed in the mean difference between the Koios and the Glossomatheia groups,

as well as between the Koios and the MicroworldsPro groups, was, in both cases,

medium to large, according to Cohen’s (1988) recommendations. The analysis of

practical test was based on the plan described in Section 4.4.2.3. The results of

HMR of the practical-test scores are presented in Table 5.40.

In the first regression model, Participant’s GPA without CS was the only predictor. It

was a significant predictor and explained 26% of variance in the scores, R2 =0 .26, F

(1, 64) = 21.87, p < 0.001. In the second model, Information of the third

measurement was added, which accounted for an extra 5% of variance, R2 = 0.31, F

(2, 63) = 13.98, p < 0.001.

CHAPTER 5: RESULTS 307

Table 5.40
Results of Regression Analysis for the Practical-Test Scores (Second Round)

Predictor B SE β t
Model 1

Constant -23.07 7.18 **-3.21
Participant’s GPA without CS 1.98 0.42 0.50 ***4.68

Model 2
Constant -22.28 6.99 **-3.19
Participant’s GPA without CS 1.82 0.42 0.47 ***4.37
Information (Third Declarative-
Knowledge Measurement)

1.13 0.51 0.23 *2.19

Model 3
Constant -14.55 7.49 -1.94
Participant’s GPA without CS 1.10 0.50 0.28 *2.18
Information (Third Declarative-
Knowledge Measurement)

1.19 0.50 0.25 *2.39

Scores of the Third Procedural-
Knowledge Measurement

0.52 0.22 0.30 *2.38

Model 4
Constant -11.78 6.31 -1.87
Participant’s GPA without CS 1.24 0.43 0.32 **2.92
Information (Third Declarative-
Knowledge Measurement)

1.19 0.41 0.25 **2.88

Scores of the Third Procedural-
Knowledge Measurement

0.59 0.19 0.34 **3.12

Glossomatheia vs Koios -8.35 1.86 -0.45 ***-4.49
MicroworldsPro vs Koios -8.98 1.87 -0.47 ***-4.81

Note. R2 = 0.26 for Model 1; ΔR2 = 0.05 for Model 2 (p < 0.05); ΔR2 = 0.06 for Model 3
(p < 0.05); ΔR2 = 0.21 for Model 4 (p < 0.001). * p < 0.05, ** p <0 .01, *** p < 0.001

Both Participant’s GPA without CS and Information were significant predictors, t (63)

= 4.37, p < 0.001 and t (63) = 2.19, p < 0.05, respectively. In Model 3, the scores of

the third procedural-knowledge test were included. The additional variance

explained was 6%, R2 = 0.37, F (3, 62) = 11.89, p < 0.001. In this model,

Participants GPA without CS, Information and the procedural-knowledge scores of

the final measurement were all significant predictors, t (62) = 2.18, p < 0.05; t (62) =

2.39, p < 0.05; t (62) = 2.38, p < 0.05, respectively. Finally, the dummy variables of

programming tool were introduced in the regression model. They accounted for an

CHAPTER 5: RESULTS 308

additional 21% of variance in the scores, ΔR2 =0 .21, Fchange (2, 60) = 14.62, p <

0.001 and a total 57% of variance was explained by all predictors, R2 = 0.57, F (5,60)

= 16.12, p < 0.001. Programming tool explained a significant proportion of variance

and therefore it was a significant predictor. This was also the case for Participants

GPA without CS, Information and the procedural-knowledge scores of the third

measurement, t (60) = 2.92, p < 0.01, t (60) = 2.88, p < 0.01 and t (60) = 3.12, p <

0.01, respectively. Finally, after controlling for these predictors, it was revealed that

Koios users performed significantly better than Glossomatheia users, t (60) = 4.49, p

< 0.001 and significantly better than MicroworldsPro users, t (60) = 4.81, p < 0.001.

To further investigate the aspects in which Koios users achieved higher scores than

users of MicroworldsPro and Glossomatheia, an in-depth analysis of the practical-

test scores was performed. Figure 5.13 presents each group’s scores with respect

to aspects of creating and executing a program.

Figure 5.13. Mean scores for each programming aspect per group.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Sc
or

es

Programing aspect

Koios group

Glossomatheia
group

MicroworldsPro
group

CHAPTER 5: RESULTS 309

The aspects considered were: creating variables, overall use of commands (input-

statement, output-statement, assignment-statement, iteration-statement, conditional

statement and creating and calling a procedure), correctness of program syntax,

correctness of command order, executability of the program and correctness of

program execution. The maximum mark for each aspect was one. The grades

achieved by the students of each group were averaged over the three programs for

each aspect. Hence, the scores for each aspect ranged from zero (minimum) to one

(maximum). From Figure 5.13 it can be seen that students who used Koios to create

the programs of the practical test, seemed to have performed better than the users

of the other two programming tools on all aspects. The values of mean, standard

deviation and Cohen’s d (1988) of the three groups for the six programming aspects

are presented in Table 5.41.

Table 5.41
Descriptive Statistics for the Six Programming Aspects

Group
Koios Glossomatheia MicroworldsPro

Programming
Aspect Mean SD Mean SD

Cohen’s
d Mean SD

Cohen’s
d

Creating
Variables 0.50 0.35 0.33 0.35 0.49 0.19 0.30 0.96
Use of
Commands 0.56 0.57 0.39 0.48 0.32 0.32 0.46 0.46

Correctness
of Program
Syntax 0.19 0.18 0.11 0.14 0.53 0.10 0.15 0.56

Correctness
of Command
Order 0.46 0.50 0.27 0.33 0.47 0.27 0.39 0.43

Executability
of the
Program 0.62 0.48 0.19 0.30 1.09 0.21 0.38 0.95

Correctness
of Program
Execution 0.20 0.39 0.08 0.15 0.43 0.12 0.32 0.23

CHAPTER 5: RESULTS 310

More specifically, the mean for the Koios, the Glossomatheia and the

MicroworldsPro groups for Creating Variables, Use of Commands, Correctness of

Program Syntax, Correctness of Command Order, Executablity of the Program and

Correctness of Program Execution were 0.50, 0.33 and 0.19; 0.56, 0.39 and 0.32;

0.19, 0.11 and 0.10; 0.46, 0.27 and 0.27; 0.62, 019 and 0.21; 0.20, 0.08 and 0.12,

respectively. Likewise, the SD for the three groups and the six programming aspects

were 0.35, 0.35 and 0.30; 0.57, 0.48 and 0.46; 0.18, 0.14 and 0.15; 0.50, 0.33 and

0.39; 0.48, 0.30 and 0.38; and 0.39, 0.15 and 0.32, respectively. The sizes of

groups are reported in Table 5.39. As can be seen from Table 5.41 and according to

Cohen’s recommendations (1988), the effect sizes observed for the difference of the

mean scores between the Koios and the Glossomatheia groups for (a) creating

variables, (b) overall use of commands, (c) correctness of program syntax, (d)

correctness of command order, (e) executability of the program and (f) correctness

of program execution were (a) medium, (b) relatively low to medium, (c) medium, (d)

medium, (e) large and (f) medium, respectively. The effect sizes represented by the

differences of the mean scores for the six programming aspects between the Koios

and the MicroworldsPro groups were (a) large, (b) medium, (c) medium, (d) medium,

(e) large and (f) small, respectively.

In order to identify which differences in mental-model quality seemed to be

responsible for the practical-test performance, the following analysis was conducted.

From the produced mental models of the final declarative-knowledge measurement,

the five ones with the lowest similarity and the five ones with the highest similarity

with the baseline mental model were selected. One set of concept links was

determined by identifying the common links between the five mental models with the

lowest similarity and the baseline mental model. Similarly, the common links

CHAPTER 5: RESULTS 311

between the top-five mental models and the baseline mental model formed a second

set of concept links. Comparing these two set of concept links the differences in the

quality between the mental models with highest and lowest similarity were identified.

In particular, the links that were different between the two sets were connecting the

following concepts:

 integer and input command

 integer and iteration

 variable and input parameter

 variable and assignment

 variable and input command, and

 variable and logical condition

The links between these concepts seem to have differentiate the performance in the

practical test. More specifically, students, whose mental models included these

links, seemed to perform better in the practical test than students, whose mental

models did not include them.

5.3.4 Check of Multiple Regression Assumptions

In the second round of data collection, three regression models were used to

analyse procedural-knowledge data, ten regression models for the data analysis of

the second and third declarative-knowledge measurement and one regression model

to analyse the practical-test scores. The bias of each of these regression models

was tested with the use of the following checks. For each model, the existence of

outliers or influential cases, the assumptions of homoscedasticity and linear

relationship between outcome and predictors and the independence of errors were

CHAPTER 5: RESULTS 312

tested. In order to perform these checks, residual statistics, histogram, p-p plot of

the standardised residual, plot of the standardised residual against standardised

predicted values and the Durbin-Watson statistic test were used (Field, 2009).

Three (Case 22, Case 39 and Case 53), two (Case 5 and Case 74) and two (Case

19 and Case 56) extreme cases, with standardised residual less than minus two or

greater than two, were detected from the residual statistics in the case of the first,

second and third measurement, respectively. The residual statistics revealed two

(Case 9 and Case 35), one (Case 9), two (Case 9 and Case 35), two (Case 9 and

Case 12) and two (Case 12 and Case 35) extreme cases for Links in Common,

Difference between Observed and Expected Number of Links in Common, Similarity,

Difference between Observed and Expected Similarity by Chance and Information of

the second declarative-knowledge measurement, respectively. In the case of the

third declarative-knowledge measurement, the extreme cases observed for the five

latter variables were three (Case 3, Case 10 and Case 11), four (Case 3, Case 10,

Case 41 and Case 60), four (Case 3, Case 10, Case 41 and Case 60), three (Case

10, Case 41 and Case 60) and three (Case 3, Case 41 and Case 60), respectively.

Finally, two extreme cases (Case 6 and Case 15) were detected in the practical-test

scores. For each one of these cases, Cook’s distance, three and two times the

average leverage, Mahalanobis distance, covariance ratio and DFBeta statistics

were computed (Field, 2009). The examinations of these statistics revealed that

none of these cases were influential or outlying.

For each regression analysis of practical-test score, procedural- and declarative-

knowledge data, histograms and the p-p plots of the standardised residual against

standardised predicted values were plotted. Their investigation confirmed that

CHAPTER 5: RESULTS 313

assumptions of homoscedasticity and linear relationship between outcome and

predictors were met for all the cases.

The Durbin-Watson statistic was calculated for the three procedural-knowledge data

analyses. Its value was 1.69, 1.87 and 1.83 for the first, second and third analysis,

respectively. The value of Durbin-Watson statistic for Links in Common, Difference

between Observed and Expected Number of Links in Common, Similarity, Difference

between Observed and Expected Similarity by Chance and Information of the

second declarative-knowledge measurement were 1.56, 1.53, 1.47, 1.51 and 1.40,

respectively. For the five latter variables measured in the final measurement were

2.22, 2.17, 2.20, 2.16 and 2.14, respectively. Finally the Durbin-Watson statistic for

the regression analysis of the practical-test scores was 1.90. The specific values

indicated that the residuals in each analysis were independent. In addition, VIF and

tolerance values revealed that no multicollinearity existed in any of the analysed data

sets.

Finally, because HMR analysis was used to perform ANCOVA (see Section 4.4.2),

the validity of the assumption of homogeneity of regression slopes should also be

checked. Therefore, for every HMR analysis performed that included at least one

covariate, this assumption was checked by conducting an additional ANCOVA that

included the main effects of the independent variable and the covariate(s) as well as

the interaction term between them (Field, 2009). More specifically, in the analysis of

the practical-test scores, in which three covariates – Participants GPA without CS,

Information and the final procedural-knowledge scores – were used, the terms that

were included in the model of the ANCOVA were (a) the main effect of the

independent variable and each of the covariates, (b) the interaction term between

the independent variable and each of the covariates, (c) the interaction terms

CHAPTER 5: RESULTS 314

between Participants GPA without CS and Information as well as between

Participants GPA without CS and the final procedural-knowledge scores, (d) the

interaction terms between (i) the independent variable, Participants GPA without CS

and Information, (ii) the independent variable, Participants GPA without CS and the

final procedural-knowledge scores, and (iii) the independent variable, Participants

GPA without CS, Information and the final procedural-knowledge scores. In all

cases the variance explained by the interaction terms was not significant and thus,

the assumption of homogeneity of regression slopes was met for all HMR analyses.

5.3.5 Summary of the Results of the Second Round of Data Collection

Declarative knowledge was initially measured in the beginning of the second round

of data collection and before any experimental manipulation. The analysis of the

data showed that programming tool was a significant predictor of three of the five

declarative-knowledge variables. Planned contrasts revealed that students allocated

to the Koios and the MicroworldsPro groups came from the same population, but

students allocated to Glossomatheia group did not.

The first procedural-knowledge measurement was taken in the beginning of the

fourth week of lessons after the second round had started. The results showed that

both programming tool and Participant’s GPA without CS were significant predictors.

Moreover, the mean scores of the MicroworldsPro and the Glossomatheia groups

were significantly higher than the mean score of the Koios group and therefore

hypothesis H1 was rejected for this measurement.

The second procedural- and declarative-knowledge measurements took place

consecutively and after five weeks of lessons. The results for the procedural-

knowledge data revealed that Participant’s GPA without CS was the only significant

CHAPTER 5: RESULTS 315

predictor of this’ measurements scores. No significant differences were found

between the mean score of the Koios and each of the other two groups. Hence,

hypothesis H1 was not accepted and the first step of mediation analysis was not

valid. The analysis outcome of the declarative-knowledge data showed that no

significant differences between the mean scores of the three groups were detected,

with one exception: the users of Koios scored significantly better in Information than

the users of MicroworldsPro. Results also revealed that there were no significant

predictors and students’ declarative knowledge was not affected by programming

tool. Therefore, hypothesis H2 was rejected and the second step of mediation was

not successful.

The final procedural- and declarative-knowledge measurements took place at the

end of the second round of data collection, namely after nine lessons since the

beginning of the study. The results of procedural knowledge showed that, in the final

test, Participant’s GPA without CS was the sole predictor of the scores. Again no

significant differences were observed between the mean performance of the Koios

group and each of the other two groups. Thus, hypothesis H1 was rejected and the

first step of mediation was not successful for this measurement. The analysis of the

declarative-knowledge data revealed that no significant differences were observed

between the means of the three groups and that programming tool had no effect on

participants’ declarative knowledge. Therefore, hypothesis H2 was rejected and the

second step of mediation was not successful. The covariate Homework Frequency

until the third procedural-knowledge measurement was a significant predictor of

Similarity, Difference between Expected and Observed Similarity by Chance and

Information of the third measurement.

CHAPTER 5: RESULTS 316

Finally, the results of analysing the scores in the practical test revealed that

Participants GPA without CS, Information and the procedural-knowledge scores of

the third measurement were significant predictors of the practical-test scores.

Furthermore, students of the Koios group achieved significantly higher scores in the

practical test than students of both the Glossomatheia and the MicroworldsPro

groups.

5.4 Conclusions

In this chapter, the results of the two rounds of data collection were reported. First

the results for the procedural-knowledge data of the first round were presented,

followed by the outcome of the declarative-knowledge data. The results of the

second round were reported following the same presentation order and followed by

results of the practical test. Using the outcome for procedural- and declarative-

knowledge data, the validity of hypothesis H1, hypothesis H2 and mediation

hypothesis H3 for each measurement was examined. Tables 5.42 and 5.43 present

the results of both rounds synoptically. In the next chapter, the discussion of these

findings follows.

CHAPTER 5: RESULTS 317

Table 5.42
Summary of Procedural-Knowledge Results for Both Rounds of Data Collection

Validity of
Hypothesis

H1
First Step

of
Mediation

Hypothesis

Significant Predictors

First Round of Data Collection
First Procedural-Knowledge
Scores

x √ Programming tool Participant’s
GPA without CS

Second Procedural-
Knowledge Scores

x √ Programming tool Participant’s
GPA without CS

Third Procedural-Knowledge
Scores

x √ Programming tool Participant’s
GPA without CS

Second Round of Data Collection
First Procedural-Knowledge
Scores

x √ Programming tool Participant’s
GPA without CS

Second Procedural-
Knowledge Scores

x x Participant’s GPA without CS

Third Procedural-Knowledge
Scores

x x Participant’s GPA without CS

Practical-Test Scores Koios group performed
significantly better than
Glossomatheia and
MicroworldsPro groups

Participant’s GPA without CS

Programming tool

Information of Third
Declarative-Knowledge
Measurement

Procedural-Knowledge Scores
of the Third Measurement

CHAPTER 5: RESULTS 318

Table 5.43
Summary of Declarative-Knowledge Results for Both Rounds of Data Collection

Validity of
Variable Hypothesis

H2
Second
Step of

Mediation
Hypothesis

Significant Predictors

First Round of Data Collection
First Declarative-Knowledge Measurement

Links in Common x x Participant’s GPA of
previous year

Difference between Observed and
Expected Links in Common

x x Participant’s GPA of
previous year

Similarity x x Participant’s GPA of
previous year

Difference between Observed and
Expected Similarity by Chance

x x Participant’s GPA of
previous year

Information x x Participant’s GPA of
previous year

Second Declarative-Knowledge Measurement
Links in Common x x

Difference between Observed and
Expected Links in Common

x x Day of Week

Similarity x x

difference between Observed and
Expected Similarity by Chance

x x Gaps Between
Lessons

Information x x Day of Week

Third Declarative-Knowledge Measurement

Links in Common x x Day of Week

Difference between Observed and
Expected Links in Common

x x

Similarity x x

Difference between Observed and
Expected Similarity by Chance

x x

Information x x

Second Round of Data Collection
First Declarative-Knowledge Measurement

Links in Common x x

Difference between Observed and
Expected Links in Common

x √

Similarity x x

CHAPTER 5: RESULTS 319

Table 5.43 (continued)

Validity of
Variable Hypothesis

H2
Second
Step of

Mediation
Hypothesis

Significant Predictors

Difference between Observed and
Expected Similarity by Chance

x √

Information x √

Second Declarative-Knowledge Measurement
Links in Common x x

Difference between Observed and
Expected Links in Common

x x

Similarity x x

Difference between Observed and
Expected Similarity by Chance

x x

Information x x

Third Declarative-Knowledge Measurement
Links in Common x x

Difference between Observed and
Expected Links in Common

x x

Similarity x x Homework
Frequency until the
Third Procedural-
Knowledge
Measurement

Difference between Observed and
Expected Similarity by Chance

x x Homework
Frequency until the
Third Procedural-
Knowledge
Measurement

Information x x Homework
Frequency until the
Third Procedural-
Knowledge
Measurement

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 320

Chapter Six

Discussion, Conclusions and

Future Work

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 321

Contents

6.1 Recap of Thesis and Chapter Overview .. 322

6.2 Discussion ... 322

6.2.1 Summary of the Main Findings .. 323

6.2.2 Explanation and Interpretation of the Main Findings.................................. 324

6.2.2.1 Examination of the effect of the independent variable......................... 325

6.2.2.2 Alternative explanations regarding the effect of the independent

variable.. 330

6.2.2.3 Explanation and interpretation of remaining findings........................... 336

6.2.3 Sources of Potential Bias in This Study... 339

6.2.4 Limitations of the Research ... 341

6.3 Conclusions ... 344

6.4 Summary of Contribution to Knowledge... 346

6.5 Future Work ... 349

6.5.1 Future Work Regarding Tool Development ... 349

6.5.2 Future Research.. 351

6.6 Closing Remarks ... 355

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 322

6.1 Recap of Thesis and Chapter Overview

This is the sixth and final chapter of this thesis. Chapter One introduced the reader

to the research project reported in this thesis. The aim of this project is to improve

the teaching and learning of programming for novices from a pedagogical and

psychological point of view. Therefore, a set of seven principles for designing

educational programming software was identified and discussed in the second

chapter. Chapter Two also reviewed the relevant literature. Furthermore, a new

programming tool, Koios, was designed and developed as an embodiment of the

combined set of design principles. The third chapter explained the design and

development process of Koios. An empirical study was designed and conducted in

order to determine the importance of compliance with this set of principles. This was

accomplished through the evaluation of Koios in Greek secondary educational

institutes. The method, data collection and data analysis used in this study were

described in Chapter Four. The results of analysing the collected data were reported

in the fifth chapter of this thesis. This chapter discusses the reported results,

outlines the conclusions that can be drawn from them, identifies this study’s

contribution to knowledge and proposes possible directions for future work.

6.2 Discussion

This section discusses the results reported in Chapter Five. First, a summary of the

main findings is outlined, followed by their interpretations and explanations.

Potential sources of bias are reported next and finally the limitations of this research

are presented.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 323

6.2.1 Summary of the Main Findings

The results of analysing declarative- and procedural-knowledge data of both rounds

of data collection (see Table 5.42 and Table 5.43) revealed that, at the end of the

study, novice programmers who used Koios – a programming tool with a high

compliance with the set of the seven design principles – seem to have developed

neither a higher level of programming skills nor richer mental models in the domain

of introductory programming than novice programmers who used Glossomatheia and

MicroworldsPro – programming software with partial compliance with this set. In

other words, no significant effect of the compliance with the set of design principles

on students’ development of procedural and declarative programming knowledge

was observed. Furthermore, examination of the results suggested that students’

mental models (declarative programming knowledge) could not have mediated any

effect of the programming environment on students’ programming performance

(procedural programming knowledge). Therefore, overall, not enough evidence was

found to support the three research hypotheses under investigation by this research

project (see Section 4.2.1) and thus the null hypothesis for each of the three

research hypotheses could not be rejected. Nevertheless, according to the results,

the variable Participant’s GPA without CS significantly predicted the procedural-

knowledge scores in all measurements of both rounds of data collection.

Moreover, the results of analysing the practical-test scores indicated that Koios users

performed significantly better in the specific test than users of Glossomatheia and

MicroworldsPro. Participant’s GPA without CS, the scores on the third procedural-

knowledge test and the scores on Information2 in the third declarative-knowledge

measurement were significant predictors of students’ performance in the practical

2 Information was a declarative-knowledge variable and associated with the probability of two
PFNETs having at least a certain number of links in common by chance.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 324

test. Moreover, an in-depth analysis of the practical-test scores revealed that Koios

users appeared to perform better than users of Glossomatheia and MicroworldsPro

in the following six programming aspects: creation of variables, overall use of

commands, correctness of syntax, correctness of command order, executability of

the program and correctness of program execution. It is important to note that the

effect sizes of the differences in the mean scores of the practical test between the

Koios and the Glossomatheia groups as well as between the Koios and the

MicroworldsPro groups were large according to Cohen’s (1988) conventions for the

effect-size measure d.

Finally, a minor observation is that Glossomatheia users seem to have developed a

significantly higher level of procedural knowledge than both Koios and

MicroworldsPro users within the first three weeks of the study. However, this effect

decayed in the long run and after the fifth lesson no strong evidence to support its

existence was found.

6.2.2 Explanation and Interpretation of the Main Findings

The scores of both types of programming knowledge were overall low for all groups

in both rounds of data collection according to the scales used to measure them (see

Section 5.2.1.1 and Section 5.2.2.1). This finding indicated that participants found

the declarative- and procedural-knowledge tests rather difficult, which, in turn,

resulted, in my interpretation, in observing a floor effect (Pedhazur & Pedhazur

Schmelkin, 1991). Moreover, regardless of the overall mean levels of acquired

knowledge, no significant differences between the three groups in the mean level of

procedural knowledge (dependent variable) and declarative knowledge (mediator)

were observed. Hence, a significant effect of compliance with the set of seven

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 325

principles (independent variable) on the dependent variable and mediator could not

be detected in both rounds. Consequently, a mediation effect could not be detected

as well. Possible reasons for these results follow. First, the possibility that the

independent variable compliance with the set of seven principles could not have a

significant effect on dependent variable and mediator is examined. Second, other

factors that could have prevented the independent variable from having a significant

effect are explored.

6.2.2.1 Examination of the effect of the independent variable.

The explanation for the lack of mediation that should be considered first is the

presumed effectiveness of a programming tool with a high level of compliance with

the set of principles on students’ development of programming knowledge. This

means that, perhaps, the use of this type of programming tool may not significantly

affect the programming performance of novices. Or, in other words, compliance with

the identified set of the seven design principles may not play an important role in

affecting the development of procedural and declarative programming knowledge in

an introductory programming course.

However, a significant effect of Koios on students’ performance in the practical test

was observed. This fact demonstrates that even if a programming tool that

embodies the set of principles may not significantly influence the development of

procedural and declarative programming knowledge, it can be more helpful for

novices and facilitate the application of their procedural programming knowledge

during program creation. The results of the practical test seem to support the idea

that programming tool, declarative and procedural knowledge are independent

components because no significant correlations between them were observed (see

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 326

Section 4.4.2.3). Nevertheless, the notion that this type of programming tool

together with a certain level of procedural and declarative programming knowledge

are all required for a successful programming performance is also supported by the

results. More specifically, the results of the practical test revealed that procedural-

and declarative-knowledge scores as well as programming tool – a programming tool

with high compliance with the set of principles (Koios) versus tools without high

compliance (MicroworldsPro and Glossomatheia) – were significant predictors of the

practical-test scores.

The seven design principles were identified using not only novices’ difficulties that

are reported in research literature, but also a framework that was defined by

combining the theories of Constructivism and Cognitive Load Theory. The

pedagogical justification for the selection of the seven design principles based on

this theoretical framework was briefly discussed in Section 2.5.8. More particularly,

by adopting the linguistic attributes of users’ native language for the PL and IDE,

unnecessary mappings between foreign and natural language are avoided and thus,

extraneous cognitive load is reduced. This is also achieved by easily

comprehensible error messages, because such messages can help users

understand and locate errors without having to refer to other sources and to split

their attention. An appropriate level of abstraction of programming commands,

which hides irrelevant information about them, while presenting only their necessary

attributes could also reduce extraneous cognitive load as well as properly manage

intrinsic cognitive load. This seems to be the case for a small set of instructions,

which introduces the appropriate element interactivity for effective learning without

increasing extraneous cognitive load through the introduction of unnecessary

programming commands. More natural syntax and understandable semantics

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 327

appear to facilitate the understating of programming concepts and produce fewer

misconceptions and, thus, the formation of better schemata about them. This seems

to be supported by Visualisation and a high level of interaction with the IDE as well.

The latter two principles seem to actively engage users in assimilating and

accommodating new knowledge at their own ‘learning pace’ by visually conveying

implicit information, facilitating the understanding of programming concepts and

providing a more user-friendly and interactive way of program creation and

execution, during which guidance and on-time information are always available. This

latter feature is very important from a constructivist viewpoint because it can support

exploratory learning. Moreover, these seven principles were also identified as

potential ways of addressing issues such as syntax and errors, which are often-cited

in the relevant research literature as problematic for novices. This further supports

the selection of these principles from a pedagogical viewpoint. However, particular

interpretations regarding the effectiveness of each design principle separately cannot

be valid because these principles were treated and tested as a combined set, not as

individual principles.

Based on these characteristics, the combined set of seven principles seems to

provide very important pedagogical guidelines for the design of PLs and IDEs. This

is because theoretically together they can (a) reduce extraneous cognitive load, (b)

provide a proper management of intrinsic cognitive load, (c) allocate more working-

memory resources to the processing of new information, (d) facilitate the

understanding of programming concepts and reduce possible misconceptions, (e)

actively engage users in program creation and execution, (f) provide an easier and

more comprehensible way of program creation and (g) present a more clear view

and support a better understanding of program execution. Therefore, the combined

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 328

set of the seven principles appears to be able to define a promising learning

environment for novice programmers.

As discussed in Section 2.5.8, additional principles could be included in this set,

however, as their number increases, so does the complexity of and the trade-off

between their application. Nevertheless, a number of other principles were also

taken into account during the design and implementation of Koios, for example

closeness of mapping or viscosity (Pane & Myers, 1996). Closeness of mapping

suggests that mental distance between the task and the programming domain

should be as close as possible. However, closeness of mapping is a principle that

can be more effectively applied in task-specific PLs, for example PLs for electronics

(Green & Petre, 1996) than non-task-specific PLs. Viscosity describes the amount of

effort that is required for a small change in programs. The application of viscosity,

although important, is rather not expected to yield a large educational effect.

Therefore, the selection process of the principles was aiming in including principles,

the application of which could be as wide as possible and have a potential large

pedagogical effect in the context of designing educational programming software.

Thus, within the time limitations of this research project, the principles that were

identified as such, were the ones that were included in the set.

Moreover, the theoretical framework, which contributed to identifying the seven

design principles, can also be used to interpret the findings of this research. First,

taking this framework into account, the finding that compliance with the principles

had no significant effect on the development of declarative and procedural

programming knowledge seems surprising. This is because Koios was designed

with a high level of compliance with the set of design principles. The theoretical

framework was used to identify a set of design principles in such manner that it

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 329

would be possible for a programming tool, which embodies this set, to have an

important pedagogical impact, in terms of learning to program, on its users.

Therefore, a programming tool with a high level of compliance was supposed to

assist its users in acquiring a substantial level of programming knowledge. However,

this framework also highlights the influence of other factors, such as time or teaching

method and material, in the learning process. If these factors are not properly

considered or provided in a learning environment, then, instead of promoting the

learning process, they may hinder it. Whether these factors could have affected the

outcome of this study is examined in Section 6.2.2.2. Second, the observed effect of

Koios on students’ performance during the practical test seems to be the result of its

high compliance with the seven design principles. Because Koios was designed as

a manifestation of the combined set, it was expected to facilitate its users in

acquiring a sufficient level of declarative and procedural programming knowledge.

This effect was not detected; however, Koios seems to have facilitated its users in

the application of their procedural knowledge during program creation. The

particular effect, although not anticipated, positively influenced students’

performance with respect to procedural knowledge. Thus, this outcome could be

considered as a pedagogical improvement generated by the compliance with set of

principles, which, to a certain extent, derived from the theoretical framework defined

in this study.

Therefore, although a high compliance with the set of design principles was not

found to play the anticipated pedagogical role, that is to support students in acquiring

declarative and procedural programming knowledge, the idea that a high compliance

with this set could play this role under different conditions could, perhaps, be further

investigated. This is because there is evidence to suggest that high compliance with

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 330

this set seems to play a different pedagogical role regarding procedural

programming knowledge and more specifically, that of facilitating the application of

procedural programming knowledge.

6.2.2.2 Alternative explanations regarding the effect of the

independent variable.

Examining the case that compliance with this set could indeed significantly affect the

development of participants’ programming knowledge, the following factors could be

identified as responsible for preventing this from taking place during this study: (a)

the assessment of programming tools’ compliance with the set of principles, (b) the

duration of lessons as well as that of each of the two studies as a whole, (c) the

number of programming concepts in the CS curriculum, (d) the teaching method and

material used in the two studies and (e) the potential imprecision of measurement. A

discussion of these factors follows.

First, perhaps the compliance of the three programming tools used in this research

project with the set of design principles was assessed inaccurately. This could result

in assessing programming tools with similar compliance with the set of design

principles as if they had different levels of compliance. In turn, mapping these tools

with different levels of the independent variable, according to the basic research

design (see section 4.2.2.1), would not yield any significant changes in the

dependent variable between the performances of the quasi-experimental groups. In

order to avoid this research pitfall, an assessment protocol was produced (see

Appendix C.1). This protocol was used to assess the compliance of each

programming tool with the set of design principles as objectively as possible. The

use of this protocol resulted in a comparison between the programming tools

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 331

regarding their levels of compliance with the design principles (see Table 4.1), which

indicated that there was a difference in their compliance with set of design principles.

More specifically, according to the assessment, Koios highly complied with the

principles, while Glossomatheia and MicroworldsPro only partially complied.

However, the development and/or application of the protocol could be subjected to

bias, because I was the person who produced the protocol, developed Koios and

conducted the research. This and other sources of bias that could threat the internal

validity of this study are further discussed in Section 6.2.3. In addition, alternative

methods for assessing compliance between this set and programming tools could

also be proposed. A first method could involve the assessment of compliance

between the set of principles and programming tools by CS teachers. Different

teachers could assess the level of compliance between the seven principles and a

specific programming tool using a protocol (for instance, the one produced for this

study, see Appendix C.1) and predefined levels – for example, low, medium and

high. The assessments of teachers could then be averaged per programming tool

and an overall assessment per programming tool could be produced. In a second

method, one particular teacher could use two or more different programming tools in

order to decide whether the tools differ in their compliance with a specific principle.

In this case, further assessments regarding the level of compliance between the

specific principle and each tool could be provided by the teacher.

The second factor that could have prevented compliance with the set of design

principles from having a significant effect on participants’ programming knowledge

was time. From a theoretical point of view as well as based on findings from

empirical programming studies, time is an important factor for learning to program.

Both constructivism and CLT as well as mental-model theory argue that different

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 332

individuals develop their knowledge at a different pace, the influence of declarative

on procedural knowledge is a repetitive process that requires time to take place and

that modification of mental models (declarative and procedural knowledge) is a slow

process (see Sections 2.2.1, 2.2.2, 2.7.1 and 2.7.2.1). Additionally, according to

Winslow’s (1996) suggestion, ten years are approximately required for a novice

programmer to become an expert. This suggestion indicates the importance of time

and exposure to programming concepts in the advancement of programming

performance and experience. The importance of duration and exposure in an

introductory programming course has been highlighted by the work of Palumbo

(1990) as well. Furthermore, McGill and Volet (1997) reported that even after a 12-

week introductory course participants had acquired little programming knowledge.

Taking these findings into consideration, a course of nine lessons, each

approximately 40 minutes long, during which participants were exposed to

programming concepts and practices reported in this thesis, was rather very short.

Students’ involvement in programming lessons, exercises and homework during the

study is estimated to have been an average of 10 hours, which seems relatively

inadequate for a successful course of learning programming.

The number and complexity of programming concepts that were supposed to be

taught during the study is the third factor that could have hindered compliance with

the set of design principles from significantly affecting participants’ performance.

The overall difficulty of programming concepts for novices as well as the

misconceptions regarding these concepts that can arise were extensively presented

in Section 2.4 and particularly in Section 2.4.2. This fact, in combination with the

small amount of time that participants had to elaborate on and work with each new

programming concept, could have rendered the development of a high level of

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 333

relevant declarative knowledge an even more difficult task. This idea could provide a

plausible explanation for the overall low levels of participants’ programming

knowledge observed during both rounds of data collection.

Despite the possible obstacles to knowledge development that the number of

programming concepts and the duration of lessons and quasi-experiments might

have posed in the empirical study, these two factors could not be controlled in order

for the quasi-experiments and evaluation of Koios to take place in a ‘real’ learning

environment of a secondary-education institute. However, these two factors are

basic components of the quasi-experimental design and the limitations that this

design may have introduced to this research are described in Section 6.2.4.

The fourth factor that could have influenced the effect of compliance with the design

principles on the dependent variable is the teaching method and material adopted in

this study. The teaching method was presented in Section 4.2.2.3 and part of the

teaching material can be found translated in English in Appendix C. Apparently, this

is a factor with serious implications in any educational setting and its importance is

pointed out by CLT (see Section 2.2.2). Inappropriate teaching material and/or

method could result in ineffective knowledge development, for example by increasing

extraneous cognitive load or mismanaging intrinsic cognitive load, and thus,

hampering a possible significant effect of programming tool. Therefore, an attempt

to follow the guidelines of CLT was made not only for the design and development of

Koios, but also for the teaching method and material used in this study. Although

following these guidelines does not guarantee successful learning, it provides a

framework within which suitable material for effective learning can be produced.

The fifth possible cause for why the expected effect did not occur is the accuracy of

the knowledge measurements. From my experience, the rating task used to

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 334

measure declarative programming knowledge could have been quite demanding.

This was particularly pointed out by the fact that only two of the ten PFNETs

submitted by teachers were usable to form the baseline PFNET (see Section

4.4.1.2). This was due to low values of coherence presented by the ratings of eight

teachers. According to the PCKNOT manual (Sitze, 1992), low coherence values in

ratings is indicative of participants who could not or did not take the rating task

seriously. Thus, if teachers who have experience with programming concepts and

their application produced ratings with low coherence values, then this could mean

that some features of the rating task may be relatively difficult. Additionally, if more

PFNETs could be included in the construction of the baseline PFNET, then it could,

perhaps, be more accurate and representative of teachers’ declarative knowledge.

This finding suggests that the low level of declarative knowledge that students may

develop during an introductory programming course may not be sufficient for an

effective performance in the rating task. Thus, an additional and, perhaps, simpler

measurement of declarative knowledge could be introduced in the data collection

scheme. This measurement could include items that would require students to use

their declarative knowledge to address them. Taking into consideration that

declarative knowledge is supposed to be easy to communicate verbally, these items

could be simple questions regarding the declarative knowledge of programming

concepts. For instance, “why in the development of programs do we use an output

statement?” (McGill & Volet, 1997). However, the scores on Information – a variable

produced by PCKNOT – in the final measurement of the second round was a

significant predictor of the practical test scores. This indicates that using pair ratings

and PCKNOT could produce meaningful measurements of declarative knowledge.

Therefore, a delicate combination of the two methods could be used for a more

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 335

precise declarative-knowledge measurement. For example, declarative-knowledge

questions could be used for initial measurements or when a low level of declarative

knowledge is expected, while ratings of paired concepts could replace them or be

additionally employed when more complex declarative knowledge is expected to

have been developed. Moreover, correlations between the scores of the two

declarative-knowledge measurements with one or more dependent variables, such

as procedural-knowledge scores, could be used to determine which one of the two

declarative-knowledge measurements seems to be more sensitive per occasion.

Nevertheless, it seems that there were not similar problems regarding the accuracy

of procedural-knowledge measurements. Although the items of the three

procedural-knowledge tests of the first round were created from scratch, they turned

out to be overall good in discriminating students’ procedural knowledge among the

three quasi-experimental groups. This was determined by cross-tabulation analysis

on the scores of these items (see Appendix C.11). The results revealed that

students’ responses to the majority of tests’ items presented, in my interpretation,

neither a ceiling nor a floor effect, in other words, tests’ items were neither too easy

nor too difficult. Nevertheless, items that were not very sensitive were refined for the

second round of data collection, thus making the items of procedural-knowledge

tests of the second round, presumably, more sensitive in discriminating procedural

knowledge between groups. Possible bias regarding the assessment of students’

responses to these items is discussed in Section 6.2.3.

Although, the items used for assessing students programming skills seem to have

provided good measurements, qualitative techniques for measuring programming

skills could be included in the data collection scheme as well, for example interviews

with students and thinkaloud protocols. During these interviews students could be

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 336

given a number of procedural-knowledge items, like the ones used in the procedural-

knowledge tests, and asked to explain their response to particular items.

Additionally, students could be presented with a piece of code and asked to create

and explain the control flow of this piece of code or walk the interviewer through the

execution of the code. This way, students’ understanding with respect to procedural

knowledge of programming concepts could be tested. Moreover, declarative

knowledge could also be measured by employing this kind of technique. In

particular, the procedural-knowledge items of the interviews could be replaced by

declarative-knowledge items.

Finally, the measurements of declarative and procedural programming knowledge

did not involve the use of any programming tool. This was corrected by the addition

of a practical test in the data-collection scheme (see Sections 4.3.2.1 and 4.3.2.2.3).

6.2.2.3 Explanation and interpretation of remaining findings.

One interesting but not surprising finding was that the variable Participant’s GPA

without CS was a significant predictor of procedural-knowledge and practical-test

scores. A number of variables have been reported as significant predictors of

programming performance, for example students’ mark in maths (Bennedssen &

Caspersen, 2008; Pillay & Jugoo, 2005). Participants’ math score was a significant

predictor of programming performance in this study as well. However, participants’

math score presented a high correlation with Participant’s GPA without CS and, of

the two variables, the latter presented a higher correlation with procedural-

knowledge scores (see Section 4.4.1.4). Therefore, Participant’s GPA without CS

was used in the place of participant’s math score. This finding is not surprising when

one considers that Participant’s GPA without CS was selected to represent

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 337

participants’ overall learning performance at school. Thus, a person with a high

overall learning performance is, presumably, expected to present this level of

performance in individual subjects as well, such as learning to program.

Furthermore, this study corroborated the finding from previous studies that gender

does not affect programming performance (Kahler, 2002; Lau & Yuen, 2010, 2011;

Linn, 1985; Pillay & Jugoo, 2005).

Overall, a low level of procedural and declarative programming knowledge was

acquired by participants during the study. This is not a surprising outcome for a –

rather short – first programming course, as similar findings were reported by Garner

et al. (2005), Kurland, Pea, Clement and Mawby (1989), Linn and Dalbey (1989),

Winslow (1996) and McGill and Volet (1997). More specifically and with respect to

the practical-test results, the correlation between the scores of the practical test and

the third procedural-knowledge measurement appeared to be higher than the

correlation between the scores of the practical test and Information on the third

knowledge measurement (see Section 4.4.2.3). This might support the idea that

participants relied more on their procedural knowledge than on their declarative

knowledge to deal with the practical test. This was expected because the application

of procedural programming knowledge was supposed to be more important than the

use of declarative programming knowledge in order to efficiently respond to the

items of the practical test. Moreover, this finding could also be explained by the

postulation of McGill and Volet (1997) that a certain level of procedural knowledge

can be acquired and applied by simple observation and before one develops a high

level of declarative knowledge. The same assumption was discussed and supported

by Schnotz and Kürschner (2007) as well. Additionally, based on this postulation

and the observed levels of programming knowledge acquired by participants, it could

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 338

be assumed that overall participants acquired a higher level of procedural than

declarative programming knowledge. This assumption could also be supported by

the hypothesis of Cañas et al. (1994) that mental models, after their initial formation,

do not change substantially before a significant improvement in procedural

knowledge and that mental models seem not to affect performance, at least at the

early stages of learning. Nonetheless, the hypothesis of Cañas et al (1994) together

with the supposedly slow modification of mental models (Ma, 2007) could also

explain the observed low levels of declarative knowledge acquired by students. The

overall low level of programming knowledge acquired by students could also indicate

that they did not develop more complex forms of knowledge than those of declarative

and procedural programming knowledge. This indication could also support the

choice of measuring only declarative and procedural programming knowledge.

Although various types of knowledge have been acknowledged (de Jong &

Ferguson-Hessler, 1996), the distinction of programming knowledge between

declarative and procedural as the only relevant forms of knowledge seems justified,

in the context of this research project, for the following two reasons. First, the

majority of research in psychology of programming mostly uses only two types of

knowledge: declarative and procedural, whilst only one additional type is identified:

strategic or conditional knowledge (Anderson, 1982; Anderson, Conrad & Corbett,

1989; McGill & Volet, 1997; Palumbo, 1990). This is also suggested by the relevant

literature review reported in Section 2.7. Moreover, strategic or conditional

knowledge describes knowing when and where to apply declarative and procedural

knowledge and is supposed to be hierarchically higher and more complex than them.

The acquisition of a certain level of declarative and procedural knowledge is

assumed before the development of strategic or conditional knowledge. However,

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 339

this level was not observed in this study. Second, McGill and Volet (1997) argued

that “a simple distinction between declarative and procedural knowledge is sufficient

for educational computing purposes and there is no need for a complex

model.”(McGill & Volet, 1997, p. 292).

6.2.3 Sources of Potential Bias in This Study

Bias can be a threat to the validity of a study and distort its outcomes and

conclusions (Pedhazur & Pedhazur Schmelkin, 1991). Therefore, it is important to

identify possible sources of bias in research because the acknowledgement and

investigation of these sources could potentially minimise bias in future research.

Naturally, this research project was, to a certain degree, potentially subject to bias.

The main source of bias for this study could be the fact that I was the person who

designed and developed Koios, prepared the teaching material, gave the lessons

and collected procedural and declarative-knowledge data. The evident conflict of

interests and potential bias could genuinely affect the validity of this study.

Therefore, three possible causes of as well as the measures taken to reduce bias

are analysed.

First, as discussed in Section 6.2.2.2, the assessment of compliance of the

programming tools involved in this study with the set of design principles could be

biased because I designed Koios and also measured compliance. Moreover, the

allocation of the programming tools to the levels of the independent variable was

based on this assessment. In order to obtain an objective assessment of

compliance a protocol was developed and used. For more details about this

protocol, see Appendix C.1.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 340

A second feature that could introduce bias to the quasi-experiments that were

conducted was the teaching material and the teaching method used. Again, it is not

difficult to imagine the potential threats for objectiveness that could arise from having

developed Koios and giving all the lessons to three quasi-experimental groups. An

example would be elaborating more on programming concepts with the Koios group

than with the Glossomatheia and MicroworldsPro groups. This is used only as an

example and, to my best knowledge, it did not take place. This type of bias was

perhaps more difficult to detect and control than the first type. The measure taken to

minimise this was to produce generic teaching material in terms of theory, examples

and homework for each lesson. This material was later accordingly modified for

each group to describe the use of each programming tool within the context of each

lesson. Thus, the only necessary differences in the teaching material between the

three groups were the details of using each programming tool. The teaching process

during class was heavily based on this material in order to have a uniform teaching

method across experimental groups.

Finally, because I marked the practical and procedural-knowledge tests and also

developed Koios, I could possibly be more tolerant to errors made by students of the

Koios group than with errors made by students of the MicroworldsPro and the

Glossomatheia groups. Making the marking process more objective involved the

production of two marking schemes, one for procedural-knowledge tests (see

Section 4.4.1.1) and one for practical test (see Appendix C.16), respectively.

Moreover, an external marker was recruited to mark a sample of students’

responses. External marker’s assessment was used to calculate the reliability of

marking procedural-knowledge tests as well as the practical test. High reliability

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 341

values were observed for marking these tests (see Sections 5.2.1, 5.3.1 and 5.3.3),

which indicated an accurate initial marking.

6.2.4 Limitations of the Research

The outcomes of a research project are affected not only by potential bias, but also

by its inherent limitations. These limitations should be acknowledged as well. A

discussion of the identified limitations of the research reported in this thesis follow.

The main limitation of this research design was that in order to increase the

possibility of this empirical study taking place in ‘real’ learning environments, such as

secondary or tertiary educational institutes, the research design had to be based on

an existing curriculum and programme of studies. The details of and the reasons for

this choice were discussed in Section 4.2.2. Although this choice facilitated the

execution of the empirical study, it also caused a number of restrictions. More

specifically, I could not have control over the following features: (a) the selection and

the number of programming concepts to be taught, (b) the length of the study, (c) the

duration of lessons, (d) any ‘gaps’ between consecutive lessons and (e) class size.

The first two features were constant for all quasi-experimental groups and could not

be accounted for. However, the latter three varied across groups and thus, their

effect could be controlled for by including these features as covariates in data

analysis. In addition, gender was identified as another potential confounding

variable and included in data analysis. This, by all means, does not suggest that all

potential confounding variables were identified. Presumably, there could be a

number of variables that could influence the outcome of this study, but the

identification of all these variables is not possible. Consequently, these variables

were not included in data analysis and thus, not accounted for.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 342

A second limitation posed by conducting the empirical study at educational institutes

was that an experimental design could not be used for the data collection. Instead, a

quasi-experimental design was used because a random allocation of participants to

experimental groups was not possible. Random allocation is used to eliminate any

systematic initial differences between experimental groups. Therefore, the existence

of this type of difference between groups could not be ruled out nor its absence

claimed. However, initial differences between groups were detected and particularly

during the first declarative-knowledge measurement of the second round of data

collection (see Sections 4.4.2.2.2 and 5.3.2.2). This difference could not even be

explained by students’ performance in the school year before the year that data

collection took place, because GPA from previous year was not a significant

predictor of the outcome variables of this round’s first declarative-knowledge

measurement (see Section 4.3.2.2.1). Because this measurement took place before

any experimental manipulation, this difference was treated as an initial difference

between the experimental groups and was used as a covariate in the analysis of the

data collected in the following measurements. Notably, results did not reveal any

significant differences to be existing before the experimental manipulation between

groups in both rounds.

The third limitation was with respect to the age of participants. Because data

collection in tertiary institutes was not feasible for reasons explained in Sections

4.3.1.1 and 4.3.2.1, all participants were students in secondary schools and

particularly of the third grade of high-school. The reasons for this were that (a)

participants of this study were required to have no previous school training in

programming and (b) the introductory programming course for students in the Greek

educational system is included in the CS curriculum of the third grade of high-school.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 343

Thus, whether the effect of compliance with the seven design principles on pupils’

programming knowledge is influenced by their age could not be investigated, so

effectively the variable age was eliminated by making it effectively a constant

(Pedhazur & Pedhazur Schmelkin, 1991). As conducting data collection in tertiary

institutes was not feasible, not only was access prohibited to participants of different

ages but this also posed the following limitations.

The fourth limitation was that a programming tool with high compliance with the set

of principles was not evaluated as a programming tool for tertiary level. The

evaluation of Koios in tertiary institutes could provide more evidence to examine its

effect on the acquisition of programming knowledge by tertiary students. More

specifically, the effect of compliance with the seven principles on developing

declarative and procedural knowledge of programming concepts for tertiary-level

introductory courses (see Section 4.2.2.4) could be studied. Hypotheses H2 and H1

proposed in this project suggest that users of Koios would develop richer mental

models and higher level of procedural knowledge, respectively, than users of C

during such courses. Moreover, at least one practical test with tertiary students

could be scheduled. Based on the findings of the practical test during the quasi-

experiment in secondary education, Koios users would be expected to perform better

in creating programs on their own than C users.

The fifth limitation had to do with comparing educational programming tools with

professional, non-educational programming languages, such as C, widely used as

programming tools for introductory programming courses in tertiary education. This

comparison was not possible and thus, a conclusion with respect to determining

which of the two types of programming tool is more suitable for tertiary education

could not be reached. The findings of the quasi-experiment with secondary-

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 344

education students suggest that Koios would better facilitate its users in the

application of their procedural programming knowledge than C during program

creation. This is because Koios was superior to Glossomatheia and MicroworldsPro

in the practical test, while C had an even poorer compliance with the seven

principles than Glossomatheia and MicroworldsPro. In addition, the effectiveness of

a programming tool, which was developed as a manifestation of the combined set of

the seven principles, as a ‘stepping stone’ to a professional programming language

could not be investigated.

Finally, due to low sample size a valid exploratory factor analysis of procedural-

knowledge tests was not possible (Field, 2009). Exploratory factor analysis could be

used to reveal the factor structure of potential underlying components of procedural

programming knowledge measured by items of the relevant tests. Thus, a relation

between these potential components could not be identified and used for producing

tests that, perhaps, could elicit procedural-knowledge more accurately and be used

to measure the effect of programming tool on individual components.

6.3 Conclusions

This section presents the conclusions that can be drawn from the results reported in

Chapter Five and after considering the issues discussed in Section 6.2. The main

conclusion, based on the results, is that none of the three research hypotheses were

supported. This means that novice programmers who use a programming tool with a

high level of compliance with the set of the seven design principles do not develop

significantly different levels of procedural (programming skills) and declarative

(mental models) programming knowledge from novice programmers who use

‘standard’ educational programming software during an introductory programming

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 345

course. Moreover, it could not be established that the quality of students’ mental

models is a mediator of the effect of compliance on programming skills. These

results suggest that programming tool, procedural and declarative knowledge are

independent components in the process of learning to program.

However, their importance is highlighted by a second conclusion. From the results

of the practical test, it was concluded that both types of knowledge, programming

tool (tools varying in their compliance with the seven design principles) and overall

academic performance in subjects other than CS are independent influential

predictors of successful performance in an introductory programming course.

The third tentative conclusion can be drawn from the results of the practical test as

well. Users of a programming tool with a high compliance with the set of design

principles appear to perform better than users of ‘standard’ software in the following

six programming aspects: creation of variables, overall use of commands,

correctness of syntax, correctness of command order, executability of the program

and correctness of program execution.

A fourth conclusion is that a successful teaching of the 13 programming concepts –

integer, arithmetic expression, string, output-statement, input-statement, variable,

assignment-statement, iteration-statement, procedure, procedure call, input

parameter, logical condition and conditional statement – in nine lessons of

approximately 40 minutes each, is rather unrealistic, regardless of the programming

tool used. This could, perhaps, be accomplished by reducing the number of

programming concepts or by increasing the number of lessons and/or their duration.

Of course, the combination of both suggestions could be even more effective.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 346

The fifth and last conclusion is that students’ GPA is a significant independent

predictor of students’ procedural knowledge. Students’ GPA is a significant predictor

of students’ performance in practical tests as well.

6.4 Summary of Contribution to Knowledge

This section outlines in which respects the research project presented in this thesis

makes an original contribution to knowledge. First, the main contribution of this

study is to identify and suggest a set of scientific principles for the design of

introductory educational programming tools (see Section 2.5). Thus, this set can be

used as a framework for designing and developing pedagogical programming tools

or even educational software outside the domain of programming, if and where this

is applicable. However, this set was not only identified as an important set of

principles through literature review, but it was also empirically tested. Contributions

to knowledge by the design and execution of the empirical study follow.

Designing and developing a new Greek programming tool, Koios, as an embodiment

of this set of design principles (see Chapter Three) is a second contribution to

knowledge. Koios was evaluated in Greek secondary educational institutes through

quasi-experimental research. Furthermore, its educational impact was compared

with the impact of software that had already been used, at the time that this study

took place, for teaching and learning programming in these institutes (see Chapter

Four). Through this evaluation and comparison, the suggestion of Koios as an

effective programming tool for an introductory programming course seems to be well

supported.

A third contribution to knowledge of this study is by proposing the method used to

evaluate Koios and compare it with other software as a guideline for conducting

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 347

similar research and/or comparing educational software programs. Particular

important are the techniques that were developed to measure students’

programming knowledge. Naturally, this is only a methodological suggestion for

future studies and there is space for improvement and adaptation of the method

according to requirements of each study. For example, a practical test could be

administered after each procedural-knowledge measurement or a comparison

between programming tools that support different programming paradigms could

take place. A number of suggestions regarding the design and execution of future

studies of this type follows in Section 6.5.2. Furthermore, the results of this type of

study seem to provide a basis for informed choices in terms of software’s

educational effectiveness.

The empirical study of the effect of compliance with the set of design principles on

the development of novices’ programming knowledge through the evaluation of

Koios is a fourth contribution to knowledge. The results of this study provided no

evidence to establish a relationship between compliance with this set of design

principles and the acquisition of programming knowledge by novices, in the context

of an introductory course for learning to program. However, it was discovered that

procedural and declarative programming knowledge are independent components,

at least at the early stages of learning programming. This can be interesting from a

theoretical viewpoint because it seems to offer a better insight in the relationship

between procedural and declarative programming knowledge during the early stages

of their development. If this, or better the absence of a strong, relationship between

the two types of knowledge is taken into account, then new research ideas can be

proposed (see Section 6.5.2) for determining the factors that influence the

development of declarative and procedural programming knowledge. Furthermore,

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 348

their interrelation and the level of their development, at which this relation begins to

form, could be investigated. From an educational point of view, being aware of a

possible disassociation between the two types of knowledge could be used for a

more effective design of teaching methods and/or material regarding introductory

programming courses.

A fifth contribution of this research is identifying that compliance with this set of

principles can facilitate the application of procedural programming knowledge by

novices during program creation. In this manner, not only the educational

significance of the set of design principles is demonstrated, but also the area where

this effect seems to be particularly strong is revealed. Therefore, following this set of

principles when designing programming software for novices appears to be an

important consideration.

Finally, this study contributes to knowledge by determining that procedural and

declarative knowledge as well as a programming tool’s compliance with design

principles contribute to successful performance in an introductory programming

course. Obviously, these factors are only but part of the features that are needed for

an effective course. However, recognising even a part of the necessary ‘ingredients’

for a successful introductory programming course is a valuable knowledge. This

knowledge can improve course design and make it more efficient, and improve

students’ performance. Overall, this knowledge seems to provide useful information

for improving the teaching and learning of programming for novices, which is an

important aim of the research project reported in this thesis.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 349

6.5 Future Work

I have identified two directions that can be followed with respect to the development

of this work: (a) future work regarding tool development, involving the Koios

programming environment and (b) future work regarding research. First,

suggestions for Koios are presented, followed by suggestions for further research.

6.5.1 Future Work Regarding Tool Development

A number of modifications that should be considered first include some choices that

were rejected during the design of the Koios prototype. Thus, such modifications

could include inserting comments during the creation of programs and making the

states of variables, expressions and conditions visible in every step of programs’

execution. The inclusion of comments is considered good programming practice that

helps programmers read and understand code. The presentation of values of

variables, expressions and conditions increases the visibility of the notional machine

and, in turn, facilitates the understanding of programming concepts (du Boulay et al.,

1999; Pane & Myers, 2000). However, whether the provision of these features by

programming tools is necessary within the context of an introductory programming

course was discussed in Sections 3.2.2.2 and 3.2.2.3. Therefore, the provision of

these features by programming tools should be optional and teachers or individual

users could decide, according to their requirements, whether these features should

be enabled or disabled. Furthermore, additional modes could be provided with

respect to the execution of programs. Hence, programs could be executed in a step-

by-step mode, allow users to return to a previous state in execution and overall

provide simple features of professional debuggers. Similarly, these modes could be

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 350

used to increase the visibility of the notional machine and, more particularly, expose

the intermediate states and steps during program execution.

Another major goal of modifications could be to further increase Koios’ compliance

with the seven design principles. For instance, increasing users’ attention during

programs’ execution. This could engage users in a more focused trace of programs’

execution and thus, enable users to better understand programs’ execution.

Increasing users’ attention could be achieved by posing questions regarding

programs’ state to students during execution, like VILLE does (Rajala et al., 2008).

Demonstrated techniques of CLT (see Section 2.2.2.2) could be a considerable

source of inspiration in further increasing compliance. For example, based on the

modality effect, the comments produced by Koios in Program Execution mode could

be provided in an oral, instead of a visual, form (Shaffer et al., 2003; Stefik &

Gellenbeck, 2011; van der Veer, 1989). Thus, a new functionality could be added to

Koios that would use a text-to-speech system to read out loud these comments.

Moreover, considering the completion problem effect, Koios could support a number

of predefined programs that would be missing a number of commands according to

users’ level of expertise for them to complete.

Other suggestions may involve making visible the graphical view together with the

textual view during execution and being able to create programs in a textual manner.

The first suggestion could allow users to follow programs’ execution in the graphical

view, which is the one they use to create programs, while the second one could

familiarise users with the ‘traditional’ way of creating programs. Nevertheless, the

latter suggestion could be considered rather impractical given the verbose syntax of

Koios’ programs, which, however, increases the readability of programs and,

presumably, renders them easier to understand.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 351

6.5.2 Future Research

Suggestions for future work can be made with respect to the design and execution of

the type of empirical studies as the one reported in this thesis. Addressing the

limitations of the current study could be a good starting point.

More particularly, running an experiment based on the quasi-experimental design for

tertiary education (see Section 4.2.2.4) would be the main suggestion. The results of

such experiment could reveal potential effects of Koios on the development of

tertiary students’ programming knowledge. Moreover, the results of comparing

Koios with a professional programming environment within the context of CS

education could be quite informative about their suitability as programming tools.

Additionally, experiments with tertiary as well as with secondary students would

benefit from a random allocation of participants to experimental groups, which could

cancel out any systematic initial differences. Running such experiments in ‘real’

learning environments is not, however, an easy task due to administrative reasons.

Distance-learning courses could be employed to overcome problems posed by

administrative reasons, but in this case, the absence of physical classes could,

perhaps, introduce more serious problems. For example, the lack of physical

presence of participants during lessons and knowledge measurements could result

in collecting unreliable data or missing out important observations regarding the use

of programming tools and overall performance. Based on the theoretical framework

defined by constructivism and Cognitive Load Theory, it would also be useful to

explore the effect of both the number of programming concepts and the time

students are exposed to these concepts during similar experiments. This way, not

only the effect of two important pedagogical factors on learning to program could be

studied, but also an optimal exposure for specific sets of programming concepts

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 352

could be determined. Suggestions regarding these parameters, based on the results

of the experiment described in this thesis, would be to increase duration and number

of lessons or decrease the number of programming concepts, or even both. In the

case of a sufficient sample size (at the very least N > 100) a factor analysis could be

performed in order to identify any existing patterns in the measurement structure of

procedural knowledge tests.

The addition of the practical test in the second round of this study revealed a

significant effect and with a large magnitude. Thus, further improvements to the

research design could be made by including one or two additional practical tests.

Perhaps, the introduction of qualitative measurements, for instance interviews with

students or teachers, in the research design could help obtaining useful information

for improving Koios. Moreover, a follow-up study could be conducted to investigate

any possible long-term effects on students’ knowledge development. However,

running a follow-up study with high-school students of the third grade is not easy,

because students’ progression to the next grade involves moving to a different type

of school. Thus, students from a particular school have a range of schools they can

go to and they usually do not end up all in the same school. However, a follow-up

study would presumably be more feasible with tertiary-education students who take

an introductory programming course in their first year and who can be ‘followed up’

in subsequent years of study.

Based on the absence of a strong relationship between procedural and declarative

programming knowledge, at least during the early stages of learning programming,

research suggestions can be made in terms of knowledge measurement. Based on

(a) the results of analysing declarative-knowledge data of both rounds and the ideas

that (b) mental models, after their initial formation, do not substantially change before

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 353

a significant improvement in procedural knowledge (Cañas et al., 1994), and (c)

mental models are overall subject to slow change (Ma, 2007), two measurements of

declarative knowledge – one in the beginning and the second in the end of the study

– seem to be sufficient for a meaningful monitoring of declarative-knowledge

development during a short introductory programming course. In such courses, the

overall level of the acquired declarative knowledge is rather low and its modification

is not very rapid – this is supported by the findings of this and other research projects

(Cañas et al., 1994; Garner et al., 2005; Linn & Dalbey, 1989; McGill & Volet, 1997)

as well as by mental-model theory (Ma, 2007) – and thus, a more frequent

measurement of declarative knowledge does not offer useful information. In

contrast, procedural knowledge appears to change faster than declarative

knowledge in introductory courses and presumably its application can take place

without extensive relying on declarative knowledge. Therefore, procedural-

knowledge and practical tests could be employed as the main methods for assessing

the level of acquired knowledge. The data obtained from these tests could provide

more information regarding the development of procedural knowledge and its

application. For example, a ‘mini’ procedural-knowledge and practical test could be

administered every two or three lessons or after the completion of teaching each

programming concept. After the teaching of two or three concepts, a more complex

procedural-knowledge and practical test regarding these concepts could be

administered. Alternatively, the final declarative-knowledge measurement of a set of

programming concepts could take place when students have reached a significant

level of procedural knowledge with respect to this set, regardless of the number of

lessons required to reach it. However, the number of lessons required for reaching

this level could indicate the perceived difficulty of this set.

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 354

From a theoretical point of view, exploring the following research question that has

emerged from examining the results and drawing conclusions could reveal more

information regarding the relationship between compliance with the set of principles

and the development and application of procedural programming knowledge.

Cognitive Load Theory and constructivism could provide an important theoretical

background for tackling the following research question: why does compliance with

the set of the seven design principles facilitate the application of procedural

knowledge, but not its development?

This theoretical background could also be used to identify pedagogical requirements

and needs that novice programmers may have during an introductory programming

course and design it accordingly. Curriculum, teaching methods and material are

aspects of this course that could be defined by the theoretical framework of

constructivism and CLT. The findings of this research suggest that introductory

courses may be more successful if they focus more on the development of

procedural programming knowledge, without, however, neglecting the importance of

declarative knowledge.

Finally, it could be worthwhile to explore the possibility of identifying a less

programming-oriented and more generic version of this set of principles, where this

is possible, for designing educational software that could be used by novices in

scientific domains where the application of procedural knowledge is important. This

new set could be based on the set identified by this research and modified using the

following rationale. The principles that are too specific and have meaning only within

a programming context, namely syntax and semantics of instructions supported by

the PL, level of abstraction provided by the PL and small set of instructions, should

not be included in the new, more generic set. However the remaining principles,

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 355

namely match of users’ natural language with the linguistics attributes of the

software, visualisation, provision of error messages and high level of interaction with

the IDE could be generalised and meaningful for designing educational software for

different educational disciplines. In fact, at least some of these principles have

already been recognised as principles of usable design (for example Nielsen, 1993).

For example, providing a high level of interaction with the IDE is a principle that it

can be incorporated in various educational programs, regardless of the subject that

is learned. Obviously, this is not the exact set of principles identified by this study.

Nevertheless, this ‘core’ of principles could be suggested as a good starting point for

educational-software design, which could be further improved or refined according to

the scientific domain. For instance, this core of principles could be used as a basis

for designing educational software for math or physics.

6.6 Closing Remarks

From my viewpoint, the main aim set at the beginning of this study has to a large

extent been accomplished. In my opinion, the identification of this set of principles,

the effect that this seems to have on the application of procedural programming

knowledge and the conclusions drawn from this study could be used to improve the

teaching and learning of programming. Towards this aim, Koios, the programming

tool that I developed as a manifestation of this set of design principles and was

empirically evaluated, can be used as well. However, I believe that a programming

tool cannot be a panacea for the difficulties of novice programmers during their first

course, but rather contribute to students’ learning. In ongoing attempts to improve

teaching and learning of programming, other factors and their improvement should

also be considered, for instance curricula, teaching methods and material, learning

CHAPTER 6: DISCUSSION, CONCLUSIONS AND FUTURE WORK 356

conditions and, perhaps, most important, the teachers. Thus, Koios is suggested as

an enhanced programming tool that, within an overall enhanced learning

environment, could be used to help novice programmers learn programming.

Therefore, I conclude by paraphrasing and transferring Ludwig Wittgenstein’s (1922)

famous quote in the programming domain: do the limits of a first programming

language mean the limits of novices’ programming world? At the present time this

does not seem to be the case.

REFERENCES 357

References

Abdul-Rahman, S.-S. & du Boulay, B. (2014). Learning programming via worked-

examples: Relation of learning styles to cognitive load. Computers in Human

Behavior, 30(0), 286-298.

Ala-Mutka, K. (2004). Problems in learning and teaching programming Codewitz

Needs Analysis: Institute of Software Systems, Tampere University of

Technology,Finland.

Allan, V. H. & Kolesar, M. V. (1997). Teaching computer science: A problem solving

approach that works. SIGCUE Outlook, 25(1-2), 2-10. doi:

10.1145/274375.274376

Allen, E., Cartwright, R. & Reis, C. (2003). Production programming in the

classroom. SIGCSE Bulletin, 35(1), 89-93. doi: 10.1145/792548.611940

Allen, E., Cartwright, R. & Stoler, B. (2002). Drjava: A lightweight pedagogic

environment for Java. SIGCSE Bulletin, 34(1), 137-141. doi:

10.1145/563517.563395

Allwood, C. M. (1986). Novices on the computer: A review of the literature.

International Journal of Man-Machine Studies, 25(6), 633-658.

Amershi, S., Carenini, G., Conati, C., Mackworth, A. K. & Poole, D. (2008).

Pedagogy and usability in interactive algorithm visualizations: Designing and

evaluating cispace. Interacting with Computers, 20(1), 64-96. doi:

http://dx.doi.org/10.1016/j.intcom.2007.08.003

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-

406.

Anderson, J. R., Conrad, F. G. & Corbett, A. T. (1989). Skill acquisition and the lisp

tutor. Cognitive Science, 13(4), 467-505.

REFERENCES 358

Anderson, R. C. (1977). The notion of schemata and the educational enterprise:

General discussion of the conference. In R. C. Anderson, R. J. Spiro & W. E.

Montague (Eds.), Schooling and the acquisition of knowledge (pp. 415-431).

Hillsdale, NJ: Erlbaum.

Areias, C. & Mendes, A. (2007). A tool to help students to develop programming

skills. 2007 international conference on Computer systems and technologies,

Bulgaria.

Ayres, P. & van Gog, T. (2009). State of the art research into cognitive load theory.

Computers in Human Behavior, 25(2), 253-257.

Baddeley, A. (1992). Working memory. Science, New Series, 255(5044), 556-559.

Baddeley, A. (2000). The episodic buffer: A new component of working memory?

Trends in Cognitive Sciences, 4(11), 417-423.

Banks, A. P. & Millward, L. J. (2007). Differentiating knowledge in teams: The effect

of shared declarative and procedural knowledge on team performance. Group

Dynamics: Theory, Research, and Practice, 11(2), 95-106.

Barnes, D. J., Fincher, S. & Thompson, S. (1997). Introductory problem solving in

computer science. 5th Annual Conference on the Teaching of Computing,

Centre for Teaching Computing, Dublin City University, Dublin 9, Ireland.

Baron, R. M. & Kenny, D. A. (1986). The moderator-mediator variable distinction in

social psychological research: Conceptual, strategic and statistical

considerations. Journal of personality and social psychology, 51(6), 1173-

1182.

Barr, M., Holden, S., Phillips, D. & Greening, T. (1999). An exploration of novice

programming errors in an object-oriented environment. SIGCSE Bulletin,

31(4), 42-46. doi: 10.1145/349522.349392

REFERENCES 359

Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology.

Cambridge, England: Cambridge University Press.

Bayman, P. & Mayer, R. E. (1983). A diagnosis of beginning programmers'

misconceptions of basic programming statements. Communications of the

ACM, 26(9), 677-679. doi: 10.1145/358172.358408

Bayman, P. & Mayer, R. E. (1984). Instructional manipulation of users' mental

models for electronic calculators. International Journal of Man-Machine

Studies, 20(2), 189-199.

Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE

Bulletin 30(1), 257-261. doi: http://doi.acm.org/10.1145/274790.274308

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of

Computers in Mathematics and Science Teaching, 20(1), 45-73.

Ben-Ari, M. (2002). From theory to experiment to practice in CS education. Koli

Calling: Second Annual Finnish/Baltic Sea Conference on Computer

ScienceEducation, Koli, Finland.

Ben-Ari, M., Bednarik, R., Ben-Bassat Levy, R., Ebel, G., Moreno, A., Myller, N. et al.

(2011). A decade of research and development on program animation: The

jeliot experience. Journal of Visual Languages & Computing, 22(5), 375-384.

Ben-Bassat Levy, R., Ben-Ari, M. & Uronen, P. A. (2003). The jeliot 2000 program

animation system. Computers & Education, 40(1), 1-15. doi:

http://dx.doi.org/10.1016/S0360-1315(02)00076-3

Bennedssen, J. & Caspersen, M. E. (2008). Abstraction ability as an indicator of

success for learning computing science? 4th international Workshop on

Computing Education Research, Sydney, Australia.

REFERENCES 360

Bergin, J., Stehlik, M., Roberts, J. & Pattis, R. (2005). A gentle introduction to the art

of object-oriented programming in Java. Retrieved from

http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

Berry, M. & Kölling, M. (2014). The state of play: A notional machine for learning

programming. Proceedings of the 2014 conference on Innovation and

Technology in Computer Science Education, Uppsala, Sweden.

Beynon, M. (2009). Constructivist computer science education reconstructed.

Innovation in Teaching And Learning in Information and Computer Sciences,

8(2), 73-90.

Bishop-Clark, C., Courte, J., Evans, D. & Howard, E. V. (2007). A quantitative and

qualitative investigation of using Alice programming to improve confidence,

enjoyment and achievement among non-majors. Journal of Educational

Computing Research, 37(2), 193-207.

Black, T. R. (2006). Helping novice programming students succeed. Journal of

Computing Sciences in Colleges, 22(2), 109-114.

Blackwell, A. F. (2002a). First steps in programming: A rationale for attention

investment models. IEEE 2002 Symposia on Human Centric Computing

Languages and Environments (HCC'02).

Blackwell, A. F. (2002b). What is programming? 14th Workshop of the Psychology of

Programming Interest Group, Brunel University, London,UK.

Blackwell, A. F., Whitley, K. N., Good, J. & Petre, M. (2001). Cognitive factors in

programming with diagrams. Artificial Intelligence Review, 15(1-2), 95-114.

doi: 10.1023/a:1006689708296

REFERENCES 361

Bonar, J. & Soloway, E. (1983). Uncovering principles of novice programming. 10th

ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, Austin, Texas.

Bonar, J. & Soloway, E. (1989). Preprogramming knowledge: A major source of

misconceptions in novice programmers. In E. Soloway & J. C. Spohrer (Eds.),

Studying the novice programmer (pp. 325-353). Hillsdale, NJ: Erlbaum.

Bruckman, A. & Edwards, E. (1999). Should we leverage natural-language

knowledge? An analysis of user errors in a natural-language-style

programming language. SIGCHI conference on Human factors in computing

systems: the CHI is the limit, Pittsburgh, Pennsylvania, United States.

Brusilovsky, P. (1994). Teaching programming to novices : A review of approaches

and tools. ED-MEDIA 94 - World Conference on Educational Multimedia and

Hypermedia, Vancouver, British Columbia, Canada.

Calloni, B. A. & Bagert, D. J. (1994). Iconic programming in baccii vs. Textual

programming: Which is a better learning environment? 25th SIGCSE

symposium on Computer science education, Phoenix, Arizona, United States.

Calloni, B. A. & Bagert, D. J. (1995). Iconic programming for teaching the first year

programming sequence. Frontiers in Education Conference on 1995.

Proceedings., 1995 vol 1. - Volume 01.

Calloni, B. A., Bagert, D. J. & Haiduk, H. P. (1997). Iconic programming proves

effective for teaching the first year programming sequence. 28th SIGCSE

technical symposium on Computer science education.

Cañas, J. J., Bajo, M. T. & Gonzalvo, P. (1994). Mental models and computer

programming. International Journal of Human-Computer Studies, 40(5), 795-

811.

REFERENCES 362

Carley, K. & Palmquist, M. (1992). Extracting, representing, and analyzing mental

models. Social Forces, 70(3), 601-636.

Carlisle, M. C., Wilson, T. A., Humphries, J. W. & Hadfield, S. M. (2005). Raptor: A

visual programming environment for teaching algorithmic problem solving.

ACM SIGCSE Bulletin, 37(1), 176-180.

Caspersen, M. E. & Bennedsen, J. (2007). Instructional design of a programming

course: A learning theoretic approach. 3rd international workshop on

Computing education research, Atlanta, Georgia, USA.

Chalmers, P. A. (2003). The role of cognitive theory in human-computer interface.

Computers in Human Behavior, 19(5), 593-607.

Chandler, P. & Sweller, J. (1991). Cognitive load theory and the format of instruction.

Cognition and Instruction, 8(4), 293-332.

Chen, L.-H. (2011). Enhancement of student learning performance using

personalized diagnosis and remedial learning system. Computers &

Education, 56(1), 289-299.

Chipperfield, B. (2004). Cognitive load theory and instructional design, from

http://www.usask.ca/education/coursework/802papers/chipperfield/

Chong, T. S. (2005). Recent advances in cognitive load theory research:Implications

for instructional designers. Malaysian Online Journal of Instructional

Technology, 2(3), 106-117.

Cilliers, C., Calitz, A. & Greyling, J. (2005). The effect of integrating an iconic

programming notation into CS1. ACM SIGCSE Bulletin, 37(3), 108-112.

Clear, T., Edwards, J., Lister, R., Simon, B., Thompson, E. & Whalley, J. (2008). The

teaching of novice computer programmers: Bringing the scholarly-research

REFERENCES 363

approach to australia. 10th conference on Australasian computing education,

Wollongong, NSW, Australia.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).

Hillsdale, New Jersey: Erlbaum.

Cooke, N. J. (1994). Varieties of knowledge elicitation techniques. International

Journal of Human-Computer Studies, 41(6), 801-849.

Cooke, N. J. & Rowe, A. L. (1997). Measures of mental models: A synthesis of

evaluative data. Training Research Journal, 3, 185-207.

Cooke, N. J. & Schvaneveldt, W. (1988). Effects of computer programming

experience on network representations of abstract programming concepts.

International Journal of Man-Machine Studies 29(4), 407-427. doi:

http://dx.doi.org/10.1016/S0020-7373(88)80003-8

Corritore, C. L. & Wiedenbeck, S. (1999). Mental representations of expert

procedural and object-oriented programmers in a software maintenance task.

International Journal of Human-Computer Studies, 50(1), 61-83. doi:

10.1006/ijhc.1998.0236

Corritore, C. L. & Wiedenbeck, S. (2001). An exploratory study of program

comprehension strategies of procedural and object-oriented programmers.

International Journal of Human-Computer Studies, 54(1), 1-23.

Craik, K. (1943). The nature of explanation. Cambridge, UK: Cambridge University

Press.

Dagdilelis, V., Evangelidis, G., Satratzemi, M., Efopoulos, V. & Zagouras, C. (2003).

Delys: A novel microworld-based educational software for teaching computer

science subjects. Computers & Education, 40(4), 307-325.

REFERENCES 364

Dagdilelis, V., Satratzemi, M. & Evangelidis, G. (2004). Introducing secondary

education students to algorithms and programming. Education and

Information Technologies, 9(2), 159-173.

Darabi, A. A., Nelson, D. W. & Seel, N. M. (2009). Progression of mental models

throughout the phases of a computer-based instructional simulation:

Supportive information, practice, and performance. Computers in Human

Behavior, 25(3), 723-730.

Davies, S. (1993). Models and theories of programming strategy. International

Journal of Man-Machine Studies, 39(2), 237-267.

de Jong, T. (2010). Cognitive load theory, educational research, and instructional

design: Some food for thought. Instructional Science, 38(2), 105-134.

de Jong, T. & Ferguson-Hessler, M. G. M. (1996). Types and qualities of knowledge.

Educational Psychologist, 31(2), 105-113. doi: 10.1207/s15326985ep3102_2

de Raadt, M. (2008). Teaching programming strategies explicitly to novice

programmers. PhD thesis, University of Southern Queensland.

de Raadt, M., Watson, R. & Toleman, M. (2006). Chick sexing and novice

programmers: Explicit instruction of problem solving strategies. 8th

Australasian Conference on Computing Education, Hobart, Australia.

Deek, F. P. & Espinosa, I. (2005). An evolving approach to learning problem solving

and program development: The distributed learning model. International

Journal on E-Learning, 4(4), 409-426.

Deek, F. P. & McHugh, J. A. (1998). A survey and critical analysis of tools for

learning programming. Computer Science Education, 8(2), 130-178.

Denny, P., Luxton-Reilly, A. & Carpenter, D. (2014). Enhancing syntax error

messages appears ineffectual. Proceedings of the 2014 Innovation and

REFERENCES 365

Technology in Computer Science Education Conference - ITICSE 2014,

Uppsala, Sweden.

DePasquale, P., Lee, J. A. N. & Pérez-Quiñones, M. A. (2004). Evaluation of

subsetting programming language elements in a novice's programming

environment. ACM SIGCSE Bulletin, 36(1), 260-264. doi:

http://doi.acm.org/10.1145/1028174.971392

Détienne, F. (1997). Assessing the cognitive consequences of the object-oriented

approach: A survey of empirical research on object-oriented design by

individuals and teams. Interacting with Computers, 9(1), 47-72.

Dijkstra, E. W. (1989). On the cruelty of really teaching computing science.

Communications of the ACM, 32(12), 1398-1404.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J. C.

Spohrer (Eds.), Studying the novice programmer (pp. 283-299). Hillsdale, NJ:

Erlbaum.

du Boulay, B. & Matthew, I. A. N. (1984). Fatal error in pass zero: How not to

confuse novices. Behaviour & Information Technology, 3(2), 109-118. doi:

10.1080/01449298408901742

du Boulay, B., O'Shea, T. & Monk, J. (1999). The black box inside the glass box:

Presenting computing concepts to novices. International Journal of Human-

Computer Studies, 51(2), 265-227.

Duke, R., Salzman, E., Burmeister, J., Poon, J. & Murray, L. (2000). Teaching

programming to beginners - choosing the language is just the first step.

Australasian conference on Computing education, Melbourne, Australia.

REFERENCES 366

Ebel, G. & Ben-Ari, M. (2006). Affective effects of program visualization. 2nd

international workshop on Computing education research, Canterbury, United

Kingdom.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan

composition. International Journal of Human-Computer Studies, 41(4), 457-

480. doi: http://dx.doi.org/10.1006/ijhc.1994.1069

Edwards, J. (2005). Subtext: Uncovering the simplicity of programming. 20th annual

ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, San Diego, CA, USA.

Efopoulos, V., Dagdilelis, V., Evangelidis, G. & Satratzemi, M. (2005). Wipe: A

programming environment for novices. 10th annual SIGCSE conference on

Innovation and technology in computer science education

Efopoulos, V., Evangelidis, G. & Dagdilelis, V. (2005, 5-8 July 2005). Wipe - pilot

testing and comparative evaluation. 5th IEEE International Conference on

Advanced Learning Technologies, 2005. ICALT 2005.

Evangelidis, G., Dagdilelis, V., Satratzemi, M. & Efopoulos, V. (2001). X-compiler:

Yet another integrated novice programming environment. IEEE International

Conference on Advanced Learning Technologies.

Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. (2009). Statistical power analyses

using g*power 3.1: Tests for correlation and regression analyses. Behavior

Research Methods, 41, 1149-1160.

Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. (2007). G*power 3: A flexible

statistical power analysis program for the social, behavioral, and biomedical

sciences. Behavior Research Methods, 39, 175-191.

REFERENCES 367

Field, A. (2009). Discovering statistics using spss; and sex, drugs and rock'n'roll.

London: Sage.

Fitzgerald, S., Simon, B. & Thomas, L. (2005). Strategies that students use to trace

code: An analysis based in grounded theory. 1st international workshop on

Computing education research, Seattle, WA, USA.

Fix, V., Wiedenbeck, S. & Scholtz, J. (1993). Mental representations of programs by

novices and experts. INTERACT '93 and CHI '93 conference on human

factors in computing systems, Amsterdam, The Netherlands.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova,

J. et al. (2007). Developing a computer science-specific learning taxonomy.

SIGCSE Bulletin, 39(4), 152-170. doi: 10.1145/1345375.1345438

Garner, S. (2002a). Colors for programming: A system to support the learning of

programming. Informing Science & IT Education Conference (InSITE), Cork,

Ireland.

Garner, S. (2002b). Reducing the cognitive load on novice programmers. World

Conference on Educational Multimedia, Hypermedia and Telecommunications

2002, Denver, Colorado, USA.

Garner, S. (2009). A quantitative study of a software tool that supports a part-

complete solution method on learning outcomes. Journal of Information

Technology Education, 8, 285-310.

Garner, S., Haden, P. & Robins, A. (2005). My program is correct but it doesn't run:

A preliminary investigation of novice programmers' problems. 7th Australasian

conference on Computing education - Volume 42, Newcastle, New South

Wales, Australia.

REFERENCES 368

Gaspar, A. & Langevin, S. (2007). Restoring "coding with intention" in introductory

programming courses. 8th ACM SIGITE conference on Information

technology education, Destin, Florida, USA.

Gaspar, A., Langevin, S. & Boyer, N. (2008). Redundancy and syntax-late

approaches in introductory programming courses. Journal of Computing

Sciences in Colleges, 24(2), 204-212.

Gentner, D. & Stevens, A. (1983). Mental models. Hillsdale,NJ: Erlbaum.

Georgatos, F. (2002). How applicable is Python as first computer language for

teaching programming in a pre-university educational environment, from a

teacher’s point of view? MSc thesis, Universiteit van Amsterdam, Amsterdam.

George, C. E. (2000). Experiences with novices: The importance of graphical

representations in supporting mental models 12 th Annual Workshop of the

Psychology of Programming Interest Group Cozenza Italy.

Gillan, D. J., Breedin, S. D. & Cooke, N. J. (1992). Network and multidimensional

representations of the declarative knowledge of human-computer interface

design experts. International Journal of Man-Machine Studies, 36(4), 587-615.

Gilmore, D. J. (1990). Expert programming knowledge: A strategic approach. In J.-M.

Hoc, T. R. G. Green, R. Samurçay & D. J. Gilmore (Eds.), Psychology of

Programming (pp. 223-234). Retrieved from

http://www.cl.cam.ac.uk/teaching/1011/R201/

Gilmore, D. J. (1991). Models of debugging. Acta Psychologica, 78(1 - 3), 151-172.

doi: http://dx.doi.org/10.1016/0001-6918(91)90009-O

Goldman, K. J. (2004a). A concepts-first introduction to computer science. 35th

SIGCSE technical symposium on Computer science education, Norfolk,

Virginia, USA.

REFERENCES 369

Goldman, K. J. (2004b). An interactive environment for beginning Java

programmers. Science of Computer Programming, 53(1), 3-24.

Goldsmith, T. E. & Johnson, P. J. (1990). A structural assessment of classroom

learning Pathfinder associative networks: Studies in knowledge organization

(pp. 241-254): Ablex Publishing Corp.

Goldsmith, T. E., Johnson, P. J. & Acton, W. H. (1991). Assessing structural

knowledge. Journal of Educational Psychology, 83(1), 88-96.

Goldweber, M., Bergin, J., Lister, R. & McNally, M. (2006). A comparison of different

approaches to the introductory programming course. 8th Australasian

Conference on Computing Education - Volume 52, Hobart, Australia.

Gomes, A. & Mendes, A. J. (2007). Learning to program - difficulties and solutions.

International Conference on Engineering Education – ICEE 2007, Coimbra,

Portugal.

Gonzalez, G. (2004). Constructivism in an introduction to programming course.

Journal of Computing Sciences in Colleges, 19(4), 299-305.

Good, J. (2011). Learners at the wheel: Novice programming environments come of

age. 1-24. doi: 10.4018/ijpop.2011010101

Gosling, J. & McGilton, H. (1996). The Java language environment.

Grandell, L., Peltomäki, M., Back, R.-J., Salakoski, T. & (2006). Why complicate

things?: Introducing programming in high school using Python. 8th Austalian

conference on Computing education - Volume 52, Hobart, Australia.

Grandell, L., Peltomäki, M. & Salakoski, T. (2005). High-school programming - a

beyond-syntax analysis of novice programmers' difficulties. 5th Koli Calling

International Conference on Computer Science Education.

REFERENCES 370

Gray, S., Clair, C. S., James, R. & Mead, J. (2007). Suggestions for graduated

exposure to programming concepts using fading worked examples. 3rd

international workshop on Computing education research, Atlanta, Georgia,

USA.

Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and

modelling. International Journal of Science Education, 22(1), 1-11. doi:

10.1080/095006900289976

Green, T. R. G. (1990a). The nature of programming. In J.-M. Hoc, T. R. G. Green,

R. Samurçay & D. J. Gilmore (Eds.), Psychology of Programming (pp. 23-44).

Retrieved from http://www.cl.cam.ac.uk/teaching/1011/R201/

Green, T. R. G. (1990b). Programming languages as information structures. In J. M.

Hoc, T. R. G. Green, R. Samurçay & D. J. Gilmore (Eds.), Psychology of

Programming. Retrieved from http://www.cl.cam.ac.uk/teaching/1011/R201/

Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming

environments: A ‘cognitive dimensions’ framework. Journal of Visual

Languages & Computing, 7(2), 131-174. doi:

http://dx.doi.org/10.1006/jvlc.1996.0009

Greyling, J. H., Cilliers, C. B. & Calitz, A. P. (2006, 10-13 July 2006). B#: The

development and assessment of an iconic programming tool for novice

programmers. 7th International Conference on Information Technology Based

Higher Education and Training, 2006. ITHET '06.

Gross, P. & Powers, K. (2005a). Evaluating assessments of novice programming

environments. 1st international workshop on Computing education research,

Seattle, WA, USA.

REFERENCES 371

Gross, P. & Powers, K. (2005b). Work in progress - a meta-study of software tools

for introductory programming. 35th ASEE/IEEE Frontiers in Education,

Indianapolis, IN.

Guibert, N., Girard, P. & Guittet, L. (2004). Example-based programming: A pertinent

visual approach for learning to program. Working conference on Advanced

visual interfaces, Gallipoli, Italy.

Gupta, D. (2004). What is a good first programming language? Crossroads, 10(4), 7-

7. doi: http://doi.acm.org/10.1145/1027313.1027320

Hadjerrouit, S. (2005). Constructivism as guiding philosophy for software engineering

education. SIGCSE Bulletin, 37(4), 45-49. doi: 10.1145/1113847.1113875

Harvey, L. & Anderson, J. R. (1996). Transfer of declarative knowledge in complex

information-processing domains. Human-Computer Interaction, 11(1), 69-96.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of

mathematics and in the learning of computer science. Computer Science

Education, 13(2), 95-22.

Helminen, J. & Malmi, L. (2010). Jype - a program visualization and programming

exercise tool for Python. 5th international symposium on Software

visualization, Salt Lake City, Utah, USA.

Hendrix, T. D., James H. Cross, II & Larry, A. B. (2004). An extensible framework for

providing dynamic data structure visualizations in a lightweight IDE. SIGCSE

Bulletin, 36(1), 387-391. doi: 10.1145/1028174.971433

Henriksen, P. & Kölling, M. (2004). Greenfoot: Combining object visualisation with

interaction. 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, Vancouver, BC,

CANADA.

REFERENCES 372

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.

Communications of the ACM 12(10), 576-580. doi:

http://doi.acm.org/10.1145/363235.363259

Hoc, J.-M., Green, T. R. G., Samurçay, R. & Gilmore, D. J. (1990). Psychology of

programming Retrieved from http://www.cl.cam.ac.uk/teaching/1011/R201/

Hollender, N., Hofmann, C., Deneke, M. & Schmitz, B. (2010). Integrating cognitive

load theory and concepts of human-computer interaction. Computers in

Human Behavior, 26(6), 1278-1288.

Hristova, M., Misra, A., Rutter, M. & Mercuri, R. (2003). Identifying and correcting

Java programming errors for introductory computer science students.

SIGCSE Bulletin, 35(1), 153-156. doi: 10.1145/792548.611956

Hsia, J. I., Simpson, E., Smith, D. & Cartwright, R. (2005). Taming Java for the

classroom. SIGCSE Bulletin, 37(1), 327-331. doi: 10.1145/1047124.1047459

Hu, M. (2004). Teaching novices programming with core language and dynamic

visualisation. 17th Annual Conference of the National Advisory Committee on

Computing Qualifications (NACCQ), Christchurch, New Zeland.

Hundhausen, C. D. (2002). Integrating algorithm visualization technology into an

undergraduate algorithms course: Ethnographic studies of a social

constructivist approach. Computers & Education, 39(3), 237-260. doi:

10.1016/s0360-1315(02)00044-1

Hundhausen, C. D. & Brown, J. L. (2007). What you see is what you code: A "live"

algorithm development and visualization environment for novice learners.

Journal of Visual Languages & Computing, 18(1), 22-47. doi:

http://dx.doi.org/10.1016/j.jvlc.2006.03.002

REFERENCES 373

Hundhausen, C. D. & Brown, J. L. (2008). Designing, visualizing, and discussing

algorithms within a CS 1 studio experience: An empirical study. Computers &

Education, 50(1), 301-326.

Hundhausen, C. D., Douglas, S. A. & Stasko, J. T. (2002). A meta-study of algorithm

visualization effectiveness. Journal of Visual Languages & Computing, 13(3),

259-290.

Hundhausen, C. D., Farley, S. F. & Brown, J. L. (2009). Can direct manipulation

lower the barriers to computer programming and promote transfer of training?:

An experimental study. ACM Transactions on Computer-Human Interaction,

16(3), 1-40. doi: 10.1145/1592440.1592442

Ihantola, P., Karavirta, V., Korhonen, A. & Nikander, J. (2005). Taxonomy of

effortless creation of algorithm visualizations. 1st international workshop on

Computing education research, Seattle, WA, USA.

Jenkins, T. (2002). On the difficulty of learning to program. 3rd Annual Conference of

the LTSN Centre for Information and Computer Sciences.

Jih, H. J. & Reeves, T. C. (1992). Mental models: A research focus for interactive

learning systems. Educational Technology Research and Development, 40(3),

39-53. doi: 10.1007/bf02296841

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of

language, inference and consciousness. Cambridge, UK Cambridge

University Press.

Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), The foundations

of cognitive science. Cambridge, MA, USA: The MIT Press.

Kaasbøll, J. J. (1999). Exploring didactic models for programming. Norwegian

informatics Tapir, Trondheim

REFERENCES 374

Kaczmarczyk, L. C., Petrick, E. R., East, J. P. & Herman, G. L. (2010). Identifying

student misconceptions of programming. 41st ACM technical symposium on

Computer science education, Milwaukee, Wisconsin, USA.

Kahler, S. E. (2002). A comparison of knowledge acquisition methods for the

elicitation of procedural mental models. PhD thesis, North Carolina State

University, Raleigh.

Kahney, H. (1989). What do novice programmers know about recursion? In E.

Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 209-

228). Hillsdale, NJ: Erlbaum.

Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really

need? Educational Psychology Review, 23(1), 1-19.

Kasurinen, J., Purmonen, M. & Nikula, U. (2008). A study of visualization in

introductory programming. 20th Annual Workshop of PPIG, Lancaster, United

Kingdom.

Kelleher, C. & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy

of programming environments and languages for novice programmers. ACM

Computing Surveys, 37(2), 83-137.

Kellog, W. A. & Breen, T. J. (1990). Using pathfinder to evaluate user and system

models. In R. W. Schvaneveldt (Ed.), Pathfinder associative networks:

Studies in knowledge organization. (pp. 179-196). Norwood, NJ: Ablex.

Keppel, G. (1991). Design and analysis: A researcher’s handbook. Upper Saddle

River, NJ: Prentice Hall.

Keppel, G., Saufley, W. & Tokunaga, H. (1992). Introduction to design and analysis:

A student's handbook (2nd ed.). USA: Freeman.

REFERENCES 375

Kernighan, B. & Ritchie, D. (1988). The C programming language (2nd edition):

Prentice Hall.

Kinnunen, P. & Malmi, L. (2008). CS minors in a CS1 course. 4th international

Workshop on Computing Education Research, Sydney, Australia.

Kiper, J. D., Howard, E. & Ames, C. (1997). Criteria for evaluation of visual

programming languages. Journal of Visual Languages & Computing, 8(2),

175-192. doi: http://dx.doi.org/10.1006/jvlc.1996.0034

Knöll, R. & Mezini , M. (2006). Pegasus: First steps toward a naturalistic

programming language. 21st ACM SIGPLAN symposium on Object-oriented

programming systems, languages, and applications, Portland, Oregon, USA.

Ko, A. J. & Myers, B. A. (2005). A framework and methodology for studying the

causes of software errors in programming systems. Journal of Visual

Languages & Computing(16), 41-84.

Kodama, E., Sato, K. & Miyazaki, M. (2000). Natural language programming for

multimedia information. 7th International Conference on Parallel and

Distributed Systems: Workshops.

Kolikant, Y. B.-D. & Mussai, M. (2008). So my program doesn't run!" Definition,

origins, and practical expressions of students' (mis)conceptions of

correctness. Computer Science Education, 18(2), 135-151.

Kölling, M. (2010). The Greenfoot programming environment. ACM Transactions on

Computing Education, 10(4), 1-21. doi: 10.1145/1868358.1868361

Kölling, M., Quig, B., Patterson, A. & Rosenberg, J. (2003). The BlueJ system and its

pedagogy. Computer Science Education, 13(4), 249-286.

REFERENCES 376

Koppelman, H. (2008). Pedagogical content knowledge and educational cases in

computer science: An exploration. Informing Science & IT Education

Conference (InSITE), Varna, Bulgaria.

Kordaki, M. (2009). Beginners’ programming attempts to accomplish a multiple-

solution based task within a multiple representational computer environment.

World Conference on Educational Multimedia, Hypermedia and

Telecommunications 2009, Honolulu, HI, USA.

Kordaki, M. (2010). A drawing and multi-representational computer environment for

beginners' learning of programming using C: Design and pilot formative

evaluation. Computers & Education, 54(1), 69-87.

Kranch, D. (2012). Teaching the novice programmer: A study of instructional

sequences and perception. Education and Information Technologies, 17(3),

291-313. doi: 10.1007/s10639-011-9158-8

Kurland, D. M. & Pea, R. D. (1985). Children's mental models of recursive logo

programs. Journal of Educational Computing Research, 1(2), 235-244.

Kurland, D. M. & Pea, R. D. (1989). Children's mental models of recursive logo

programs. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice

programmer (pp. 325-325). Hillsdale, NJ: Erlbaum.

Kurland, D. M., Pea, R. D., Clement, C. & Mawby, R. (1989). A study of the

development of programming ability and thinking skills in high school

students. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice

programmer. Hillsdale, NJ: Erlbaum.

Lahtinen, E. (2008). Students' individual differences in using visualizations:

Prospects of future research on program visualizations. 8th International

Conference on Computing Education Research, Koli, Finland.

REFERENCES 377

Lahtinen, E., Ala-Mutka, K. & Järvinen, H.-M. (2005). A study of the difficulties of

novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.

Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten

thousand words. Cognitive Science, 11(1), 65-100.

Lau, W. W. F. (2009). Exploring the relationships among gender, learning style,

mental model, and programming performance: Implications for learning and

teaching of computer programming. PhD thesis, The University of Hong Kong,

Hong Kong.

Lau, W. W. F. & Yuen, A. H. K. (2010). Promoting conceptual change of learning

sorting algorithm through the diagnosis of mental models: The effects of

gender and learning styles. Computers & Education, 54(1), 275-288.

Lau, W. W. F. & Yuen, A. H. K. (2011). Modelling programming performance:

Beyond the influence of learner characteristics. Computers & Education,

57(1), 1202-1213.

LCSI. (2008). Lcsi - soloutions - microworlds pro, from

http://www.microworlds.com/solutions/mwpro.html

Leahy, W. & Sweller, J. (2011). Cognitive load theory, modality of presentation and

the transient information effect. Applied Cognitive Psychology, 25(6), 943-951.

doi: 10.1002/acp.1787

Lee, M. J. & Ko, A. J. (2011). Personifying programming tool feedback improves

novice programmers' learning. 7th international workshop on Computing

education research, Providence, Rhode Island, USA.

Lee, Y.-J. (2011). Empowering teachers to create educational software: A

constructivist approach utilizing etoys, pair programming and cognitive

apprenticeship. Computers & Education, 56(2), 527-538.

REFERENCES 378

Lieber, T., Brandt, J. R. & Miller, R. C. (2014). Addressing misconceptions about

code with always-on programming visualizations. Proceedings of the 32nd

annual ACM conference on Human factors in computing systems, Toronto,

Ontario, Canada.

Linn, M. C. (1985). The cognitive consequences of programming instruction in

classrooms. Educational Researcher, 14(5), 14-29.

Linn, M. C. & Dalbey, J. (1989). Cognitive consequences of programming instruction.

In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp.

57-81). Hillsdale, NJ: Erlbaum.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M. et al.

(2004). A multi-national study of reading and tracing skills in novice

programmers. ITiCSE on Innovation and technology in computer science

education, Leeds, United Kingdom.

Lister, R., Simon, B., Thompson, E., Whalley, J. L. & Prasad, C. (2006). Not seeing

the forest for the trees: Novice programmers and the solo taxonomy. SIGCSE

Bulletin, 38(3), 118-122. doi: 10.1145/1140123.1140157

Lorenzen, T. & Anderson, V. (1993). Design of experiments: A no-name approach.

New York: Marcel Dekker.

Lui, A. K., Kwan, R., Poon, M. & Cheung, Y. H. Y. (2004). Saving weak programming

students: Applying constructivism in a first programming course. ACM

SIGCSE Bulletin, 36(2), 72-76. doi: 10.1145/1024338.1024376

Ma, L. (2007). Investigating and improving novice programmers’ mental models of

programming concepts. PhD thesis, University of Strathclyde.

Ma, L., Ferguson, J., Roper, M., Ross, I. & Wood, M. (2008). Using cognitive conflict

and visualisation to improve mental models held by novice programmers. 39th

REFERENCES 379

SIGCSE technical symposium on Computer science education, Portland, OR,

USA.

Ma, L., Ferguson, J., Roper, M., Ross, I. & Wood, M. (2009). Improving the mental

models held by novice programmers using cognitive conflict and jeliot

visualisations. 14th annual ACM SIGCSE conference on Innovation and

technology in computer science education, Paris, France.

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York:

Erlbaum.

Malan, D. J. & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM

SIGCSE Bulletin 39(1), 223-227. doi:

http://doi.acm.org/10.1145/1227504.1227388

Mannila, L. (2007). Novices' progress in introductory programming courses.

Informatics in education, 6(1), 139-152.

Mannila, L. & de Raadt, M. (2006). An objective comparison of languages for

teaching introductory programming. 6th Baltic Sea conference on Computing

education research: Koli Calling 2006, Uppsala, Sweden.

Marceau, G., Fisler, K. & Krishnamurthi, S. (2011). Mind your language: On novices'

interactions with error messages. 10th SIGPLAN symposium on New ideas,

new paradigms, and reflections on programming and software, Portland,

Oregon, USA.

Marcotty, M. & Ledgard, H. (1986). The world of programming languages. Berlin:

Springer-Verlag.

Marhan, A. M., Micle, M. I., Popa, C. & Preda, G. (2012). A review of mental models

research in child-computer interaction. Procedia - Social and Behavioral

Sciences, 33(0), 368-372.

REFERENCES 380

Mayer, R. E. (1989). The psychology of how novices learn computer programming.

In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp.

129-159). Hillsdale, NJ: Erlbaum.

Mayer, R. E. & Moreno, R. (2002). Aids to computer-based multimedia learning.

Learning and Instruction, 12(1), 107-119.

Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia

learning. Educational Psychologist, 28(1), 43-52.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D. et

al. (2001). A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. ITiCSE on Innovation and

technology in computer science education, Canterbury, UK.

McGill, T. J. & Volet, S. E. (1997). A conceptual framework for analysing students'

knowledge of programming. Journal of Research on Computing in Education,

29(3), 276-297.

McIver, L. (2000). The effect of programming language on error rates of novice

programmers. 12th Annual Workshop of Psychology of Programmers Interest

Group (PPIG), Corigliano.

McIver, L. (2002). Evaluating languages and environments for novice programmers.

14th Workshop of the Psychology of Programming Interest Group, Brunel

University, UK.

McIver, L. & Conway, D. (1996). Seven deadly sins of introductory programming

language design. 1996 International Conference on Software Engineering:

Education and Practice (SE:EP '96).

McIver, L. & Conway, D. (1999). Grail: A zeroth programming language. International

Conference on Computing in Education, Chiba, Japan.

REFERENCES 381

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S. et al. (2006). A

cognitive approach to identifying measurable milestones for programming skill

acquisition. ACM SIGCSE Bulletin, 38(4), 182-194. doi:

http://doi.acm.org/10.1145/1189136.1189185

Merrill, M. D. (2002). Knowledge objects and mental models. In D. Wiley (Ed.), The

instructional use of learning objects (pp. 262-280). Bloomington, IN: Agency

for Instructional Technology and the Association for Educational

Communications and Technology.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on

our capacity for processing information. Psychological Review, 63(2), 81-97.

Milne, I. & Rowe, G. (2002). Difficulties in learning and teaching programming—

views of students and tutors. Education and Information Technologies, 7(1),

55-66.

Milner, W. W. (2010). Concept development in novice programmers learning Java.

PhD thesis, The University of Birmingham, Birmingham.

Moons, J. & De Backer, C. (2009). Rationale behind the design of the eduvisor

software visualization component. Electronic Notes in Theoretical Computer

Science, 224(0), 57-65.

Moreno, R. (2006). When worked examples don't work: Is cognitive load theory at an

impasse? Learning and Instruction, 16(2), 170-181.

Moreno, R. (2010). Cognitive load theory: More food for thought. Instructional

Science, 38(2), 135-141.

Mow, I. T. C. (2008). Issues and difficulties in teaching novice computer

programming. In M. Iskander (Ed.), Innovative techniques in instruction

REFERENCES 382

technology, e-learning, e-assessment, and education (pp. 199-204): Springer

Netherlands.

Mulholland, P. (1997). Using a fine-grained comparative evaluation technique to

understand and design software visualization tools. 7th workshop on

Empirical studies of programmers, Alexandria, Virginia, USA.

Murnane, J. S. (1993). The psychology of computer languages for introductory

programming courses. New Ideas in Psychology, 11(2), 213-228.

Myers, B. A. (1990). Taxonomies of visual programming and program visualization.

Journal of Visual Languages & Computing, 1(1), 97-123. doi:

http://dx.doi.org/10.1016/S1045-926X(05)80036-9

Myers, B. A., Ko, A. J. & Burnett, M. M. (2006). Invited research overview: End-user

programming. CHI '06 extended abstracts on Human factors in computing

systems, Montréal, Québec, Canada.

Myers, B. A., Pane, J. F. & Ko, A. (2004). Natural programming languages and

environments. Communications of the ACM, 47(9), 47-52. doi:

10.1145/1015864.1015888

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C. D.

et al. (2002). Exploring the role of visualization and engagement in computer

science education. ITiCSE on Innovation and technology in computer science

education, New York, NY, USA.

Navarro-Prieto, R. & Cañas, J. J. (2001). Are visual programming languages better?

The role of imagery in program comprehension. International Journal of

Human-Computer Studies, 54(6), 799-829.

Návrat, P. (1996). A closer look at programming expertise: Critical survey of some

methodological issues. Information and Software Technology, 38(1), 37-46.

REFERENCES 383

Nielsen, J. (1993). Usability engineering. San Diego, CA: Academic Press.

Nienaltowski, M. M.-H., Pedroni, M. & Meyer, B. (2008). Compiler error messages:

What can help novices? 39th SIGCSE technical symposium on Computer

science education, Portland, OR, USA.

Nikolaidhs, S. (2008). Spinet - γλωσσομάθεια, from

http://www.spinet.gr/glossomatheia/

Nishida, T., Harada, A., Yoshida, T., Nakamura, R., Nakanishi, M., Toyoda, H. et al.

(2008). Pen: A programming environment for novices - overview and practical

lessons -. World Conference on Educational Multimedia, Hypermedia and

Telecommunications 2008, Vienna, Austria.

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A.

Stevens (Eds.), Mental models (pp. 7-14). Hillsdale, NJ: Erlbaum.

Odekirk-Hash, E. & Zachary, J. L. (2001). Automated feedback on programs means

students need less help from teachers. SIGCSE Bulletin, 33(1), 55-59. doi:

10.1145/366413.364537

Ormerod, T. (1990). Human cognition and programming. In J.-M. Hoc, T. R. G.

Green, R. Samurçay & D. J. Gilmore (Eds.), Psychology of Programming (pp.

63-82). Retrieved from http://www.cl.cam.ac.uk/teaching/1011/R201/

Paas, F., Renkl, A. & Sweller, J. (2003). Cognitive load theory and instructional

design: Recent developments Educational Psychologist, 38(1), 1-4.

Paas, F. & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory:

Using the human motor system and collaboration to support the learning of

complex cognitive tasks. Educational Psychology Review, 24(1), 27-45.

REFERENCES 384

Paas, F., Van Gog, T. & Sweller, J. (2010). Cognitive load theory: New

conceptualizations,specifications, and integrated research perspectives.

Educational Psychology Review, 22(2), 115-121.

Paas, F. & van Merriënboer, J. J. G. (1994). Variability of worked examples and

transfer of geometrical problem-solving skills: A cognitive-load approach.

Journal of Educational Psychology, 86(1), 122-133.

Pair, C. (1990). Programming, programming languages and programming methods.

In J.-M. Hoc, T. R. G. Green, R. Samurçay & D. J. Gilmore (Eds.), Psychology

of Programming (pp. 9-19). Retrieved from

http://www.cl.cam.ac.uk/teaching/1011/R201/

Palumbo, D. B. (1990). Programming language/problem-solving research: A review

of relevant issues Review of Educational Research, 60(1), 65-89.

Pane, J. F. & Myers, B. A. (1996). Usability issues in the design of novice

programming systems (school of computer science technical report cmu-CS-

96-132). Pittsburgh, PA: Carnegie Mellon University.

Pane, J. F. & Myers, B. A. (2000). The influence of the psychology of programming

on a language design: Project status report. 12th Annual Meeting of the

Psychology of Programmers Interest Group, Corigliano Calabro, Italy.

Pane, J. F. & Myers, B. A. (2006). More natural programming languages and

environments. In H. Lieberman, F. Paternò & V. Wulf (Eds.), End user

development (Vol. 9, pp. 31-50). Netherlands: Springer.

Pane, J. F., Myers, B. A. & Miller, L. B. (2002). Using hci techniques to design a

more usable programming system. IEEE 2002 Symposia on Human Centric

Computing Languages and Environments (HCC'02).

REFERENCES 385

Pane, J. F., Myers, B. A. & Ratanamahatana, C. A. (2001). Studying the language

and structure in non-programmers' solutions to programming problems.

International Journal of Human - Computer Studies, 54(2), 237-264. doi:

10.1006/ijhc.2000.0410

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York,

NY: Basic Books.

Paul, L. M., Simons, G. F. & Fennig, C. D. (2013). Ethnologue: Languages of the

world Retrieved February, 2013, from

http://www.ethnologue.com/statistics/size

Pea, R. D. (1984). Language-independent conceptual "bugs" in novice programming.

Technical report no. 31. Journal of Educational Computing Research, special

issue on “Novice Programming”.

Pea, R. D. & Kurland, D. M. (1987). On the cognitive effects of learning computer

programming Mirrors of minds: Patterns of experience in educational

computing (pp. 147-177). Norwood, NJ: Ablex Publishing Corp.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J. et al.

(2007). A survey of literature on the teaching of introductory programming.

ACM SIGCSE Bulletin 39(4), 204-223.

Pedagogical Institute. (2004). Pedagogical institute - computer science - studies

framework from http://www.pi-schools.gr/content/index.php?lesson_id=1

Pedhazur, E. J. (1997). Multiple regression in behavioral research : Explanation and

prediction (3rd ed.). London: Harcourt Brace College Publishers.

Pedhazur, E. J. & Pedhazur Schmelkin, L. (1991). Measurement, design, and

analysis: An integrated approach. Hillside, NJ. : Erlbaum.

REFERENCES 386

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. & Simmons, R. (1986). Conditions

of learning in novice programmers. Journal of Educational Computing

Research, 2(1), 37-55.

Petre, M. (1995). Why looking isn't always seeing: Readership skills and graphical

programming. Communications of the ACM, 38(6), 33-44. doi:

10.1145/203241.203251

Petre, M., Blackwell, A. F. & Green, T. R. G. (1998). Cognitive questions in software

visualisation. In J. Stasko, J. Domingue, M. Brown & B. A. Price (Eds.),

Software visualization: Programming as a multi-media experience (pp. 453-

480). Cambridge, MA: MIT Press.

Pillay, N. & Jugoo, V. R. (2005). An investigation into student characteristics

affecting novice programming performance. SIGCSE Bulletin, 37(4), 107-110.

doi: 10.1145/1113847.1113888

Porter, R. & Calder, P. (2003). Applying patterns to novice programming problems.

2002 conference on Pattern languages of programs - Volume 13, Melbourne,

Australia.

Powers, K. (2004). Teaching computer architecture in introductory computing: Why?

And how? 6th Australasian Conference on Computing Education - Volume 30,

Dunedin, New Zealand.

Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. J., Proulx, V. et al.

(2006). Tools for teaching introductory programming: What works? ACM

SIGCSE Bulletin, 38(1), 560-561.

Price, B. A., Baecker, R. M. & Small, I. S. (1993). A principled taxonomy of software

visualization. Journal of Visual Languages & Computing, 4(3), 211-266. doi:

http://dx.doi.org/10.1006/jvlc.1993.1015

REFERENCES 387

Putnam, R. T., Sleeman, D., Baxter, J. A. & Kuspa, L. K. (1989). A summary of

misconceptions of high school basic programmers. In E. Soloway & J. C.

Spohrer (Eds.), Studying the novice programmer (pp. 301-313). Hillsdale, NJ:

Erlbaum.

Raaijmakers, J. G. W. (1993). The story of the two-store model: Past criticisms,

current status, and future directions Attention and performance xiv: Synergies

in experimental psychology, artifical intelligence, and cognitive neuroscience

(pp. 467-488). Cambridge, MA, USA: MIT Press.

Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski, T. (2008). Effectiveness of program

visualization: A case study with the ville tool. Journal of Information

Technology Education 7, 15-32.

Ramadhan, H. A., Deek, F. & Shihab, K. (2001). Incorporating software visualization

in the design of intelligent diagnosis systems for user programming. Artificial

Intelligence Review, 16(1), 61-84. doi: 10.1023/a:1011078011415

Ramalingam, V., LaBelle, D. & Wiedenbeck, S. (2004). Self-efficacy and mental

models in learning to program. 9th annual SIGCSE conference on Innovation

and technology in computer science education, Leeds, United Kingdom.

Reis, C. & Cartwright, R. (2004). Taming a professional IDE for the classroom.

SIGCSE Bulletin, 36(1), 156-160. doi: 10.1145/1028174.971357

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,

K. et al. (2009). Scratch: Programming for all. Communications of the ACM,

52(11), 60-67. doi: 10.1145/1592761.1592779

Riker, A. (2010). Natural language in programming: An English syntax-based

approach for reducing the difficulty of first programming language acquisition.

MSc thesis, Brandeis University.

REFERENCES 388

Rist, R. (1989). Schema creation in programming. Cognitive Science, 13, 389-414.

Rist, R. (1996). Teaching eiffel as a first language. Journal of Object-Oriented

Programming, 9, 30-41.

Robillard, P. N. (1999). The role of knowledge in software development.

Communications of the ACM, 42(1), 87-92. doi: 10.1145/291469.291476

Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming:

A review and discussion Computer Science Education, 13(2), 137-172.

Rogalski, J. & Samurçay, R. (1990). Acquisition of programming knowledge and

skills. In J.-M. Hoc, T. R. G. Green, R. Samurçay & D. J. Gilmore (Eds.),

Psychology of Programming. Retrieved from

http://www.cl.cam.ac.uk/teaching/1011/R201/

Romero, P., du Boulay, B., Robertson, J., Good, J. & Howland, K. (2009). Is

embodied interaction beneficial when learning programming? 3rd International

Conference on Virtual and Mixed Reality: Held as Part of HCI International

2009, San Diego, CA.

Rose, J. M., Rose, A. M. & McKay, B. (2007). Measurement of knowledge structures

acquired through instruction, experience, and decision aid use. International

Journal of Accounting Information Systems, 8(2), 117-137.

Ross, R. (2000). Going backwards: Introductory programming languages. SIGACT

News, 31(4), 65-73. doi: 10.1145/369836.571185

Sajaniemi, J. & Kuittinen, M. (2003). Program animation based on the roles of

variables. 2003 ACM symposium on Software visualization, San Diego,

California.

Samurçay, R. (1989). The concept of variable in programming: Its meaning and use

in problem-solving by novice programmers. In E. Soloway & J. C. Spohrer

REFERENCES 389

(Eds.), Studying the novice programmer (pp. 161-177). Hillsdale, NJ:

Erlbaum.

Sanders, D. & Dorn, B. (2003). Classroom experience with jeroo. Journal of

Computing Sciences in Colleges, 18(4), 308-316.

Satratzemi, M., Dagdilelis, V. & Evagelidis, G. (2001). A system for program

visualization and problem-solving path assessment of novice programmers.

ACM SIGCSE Bulletin, 33(3), 137-140.

Satratzemi, M., Xinogalos, S. & Dagdilelis, V. (2003). An environment for teaching

object-oriented programming: Objectkarel 3rd IEEE International Conference

on Advanced Learning Technologies.

Schnotz, W. & Kürschner, C. (2007). A reconsideration of cognitive load theory.

Educational Psychology Review, 19(4), 496-508.

Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in knowledge

organization. Norwood, NJ: Ablex.

Scott, A. (2010). Using flowcharts, code and animation for improved comprehension

and ability in novice programming. PhD thesis, University of Glamorgan,

South Wales, UK.

Scott, A., Watkins, M. & McPhee, D. (2008, 7-11 April 2008). E-learning for novice

programmers; a dynamic visualisation and problem solving tool. Information

and Communication Technologies: From Theory to Applications, 2008. ICTTA

2008.

Seifert, K. & Sutton, R. (2009). Educational psychology Retrieved from

http://globaltext.terry.uga.edu/booklist?cat=Education

REFERENCES 390

Serrano, E., Quirin, A., Botia, J. & Cordón, O. (2009). Debugging complex software

systems by means of pathfinder networks. Information Sciences, 180(5), 561-

583.

Shaffer, D., Doube, W. & Tuovinen, J. (2003). Applying cognitive load theory to

computer science education. 15th Workshop of the Psychology of

Programming Interest Group, Keele UK.

Sheard, J., Simon, S., Hamilton, M. & Lönnberg, J. (2009). Analysis of research into

the teaching and learning of programming. 5th international workshop on

Computing education research workshop, Berkeley, CA, USA.

Sheil, B. A. (1981). The psychological study of programming. ACM Computing

Surveys, 13(1), 101-120.

Shneiderman, B. & Mayer, R. (1979). Syntactic/semantic interactions in programmer

behavior: A model and experimental results. International Journal of

Computer & Information Sciences, 8(3), 219-238.

Simon, B., Fitzgerald, S., McCauley, R., Haller, S., Hamer, J., Hanks, B. et al.

(2007). Debugging assistance for novices: A video repository. ITiCSE on

Innovation and technology in computer science education, Dundee, Scotland.

Sitze, K. L. (1992). Pcknot: Interlink. Retrieved from http://interlinkinc.net/KNOT.html

Sjøberg, S. (2007). Constructivism and learning. In E. Baker, B. McGaw & P.

Peterson (Eds.), International Encyclopaedia of Education 3rd Edition.

Retrieved from

http://folk.uio.no/sveinsj/Constructivism_and_learning_Sjoberg.pdf

Soloway, E. (1986). Learning to program = learning to construct mechanisms and

explanations. Communications of the ACM, 29(9), 850-858. doi:

10.1145/6592.6594

REFERENCES 391

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge.

Software Engineering, IEEE Transactions on, SE-10(5), 595-609. doi:

10.1109/tse.1984.5010283

Soloway, E. & Spohrer, J. C. (Eds.). (1989). Studying the novice programmer.

Hillsdale, NJ: Erlbaum.

Spohrer, J. C. & Soloway, E. (1989). Novice mistakes: Are the folk wisdoms correct?

In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp.

401-416). Hillsdale, NJ: Erlbaum.

Spohrer, J. C., Soloway, E. & Pope, E. (1989). A goal/plan analysis of buggy pascal

programs. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice

programmer (pp. 355-399). Hillsdale, NJ: Erlbaum.

Stefik, A. & Gellenbeck, E. (2011). Empirical studies on programming language

stimuli. Software Quality Journal, 19(1), 65-99. doi: 10.1007/s11219-010-

9106-7

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.

Cognitive Science, 12(2), 257-285.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design.

Learning and Instruction, 4(4), 295-312.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane

cognitive load. Educational Psychology Review, 22(2), 123-138.

Sweller, J., van Merriënboer, J. J. G. & Paas, F. (1998). Cognitive architecture and

instructional design. Educational Psychology Review 10(3), 251-296.

Tang, T., Rixner, S. & Warren, J. (2014). An environment for learning interactive

programming. Proceedings of the 45th ACM Technical Symposium on

Computer Science Education - SIGCSE 2014, Atlanta, GA, USA.

REFERENCES 392

Teague, D. & Lister, R. (2014). Programming: Reading, writing and reversing.

Proceedings of the 2014 conference on Innovation and Technology in

Computer Science Education, Uppsala, Sweden.

Teague, D. & Roe, P. (2008). Collaborative learning: Towards a solution for novice

programmers. 10th conference on Australasian computing education -

Volume 78, Wollongong, NSW, Australia.

Traver, V. J. (2010). On compiler error messages: What they say and what they

mean. Advances in Human-Computer Interaction, 2010, 1-26. doi:

10.1155/2010/602570

Trumpower, D. L. & Goldsmith, T. E. (2004). Structural enhancement of learning.

Contemporary Educational Psychology, 29(4), 426-446.

Truong, N. (2007). A web-based programming environment for programmers. PhD

thesis, Queensland University of Technology, Brisbane.

Tu, J.-J. & Johnson, J. R. (1990). Can computer programming improve problem-

solving ability? SIGCSE Bulletin, 22(2), 30-33. doi: 10.1145/126445.126451

Tudoreanu, M. E. & Kraemer, E. (2008). Balanced cognitive load significantly

improves the effectiveness of algorithm animation as a problem-solving tool.

Journal of Visual Languages & Computing, 19(5), 598-616. doi:

http://dx.doi.org/10.1016/j.jvlc.2008.01.001

Tuovinen, J. E. (2000). Optimising student cognitive load in computer education.

Australasian conference on Computing education, Melbourne, Australia.

Vagianou, E. (2006). Program working storage: A beginner's model. 6th Baltic Sea

conference on Computing education research: Koli Calling 2006, Uppsala,

Sweden.

REFERENCES 393

Vainio, V. & Sajaniemi, J. (2007). Factors in novice programmers' poor tracing skills.

Paper presented at the Proceedings of the 12th annual SIGCSE conference

on Innovation and technology in computer science education, Dundee,

Scotland.

van der Veer, G. C. (1989). Individual differences and the user interface.

Ergonomics, 32(11), 1431-1449. doi: 10.1080/00140138908966916

van Haaster, K. & Hagan, D. (2004). Teaching and learning with BlueJ: An

evaluation of a pedagogical tool. Information Science and Information

Technology Education Joint Conference, Rockhampton, QLD, Australia.

van Merriënboer, J. J. G. (1990a). Instructional strategies for teaching computer

programming: Interactions with the cognitive style reflection-impulsivity.

Journal of Research on Computing in Education, 23(1), 45-53.

van Merriënboer, J. J. G. (1990b). Strategies for programming instruction in high

school: Program completion vs. Program generation. Journal of Educational

Computing Research, 6(3).

van Merriënboer, J. J. G. (1992). Strategies for computer-based programming

instruction: Program completion vs. Program generation. Journal of

Educational Computing Research, 8(3), 365-394.

van Merriënboer, J. J. G., Clark, R. E. & de Croock, M. B. M. (2002). Blueprints for

complex learning: The 4c/id-model. Educational Technology Research and

Development, 50(2), 39-61.

van Merriënboer, J. J. G. & Kirschner, P. A. (2007). Ten steps to complex learning: A

systematic approach to four-component instructional design. Mahaw, New

Jersey: Erlbaum.

REFERENCES 394

van Merriënboer, J. J. G., Kirschner, P. A. & Kester, L. (2003). Taking the load off a

learner's mind: Instructional design for complex learning. Educational

Psychologist, 38(1), 5-13.

van Merriënboer, J. J. G. & Krammer, H. P. M. (1987). Instructional strategies and

tactics for the design of introductory computer programming courses in high

school. Instructional Science, 16(3), 251-285.

van Merriënboer, J. J. G. & Paas, F. (1990). Automation and schema acquisition in

learning elementary computer programming: Implications for the design of

practice. Computers in Human Behavior, 6(3), 273-289.

van Merriënboer, J. J. G., Schuurman, J. G., de Croock, M. B. M. & Paas, F. (2002).

Redirecting learners' attention during training: Effects on cognitive load,

transfer test performance and training efficiency. Learning and Instruction,

12(1), 11-37.

van Merriënboer, J. J. G. & Sweller, J. (2005). Cognitive load theory and complex

learning: Recent developments and future directions. Educational Psychology

Review, 17(2), 147-178.

van Mierlo, C., Jarodzka, H., Kirschner, F. & Kirschner, P. A. (2011). Cognitive load

theory and e-learning. In Z. Yan (Ed.), Encyclopedia of Cyberbehavior: IGI

Global.

Verhoeven, L., Schnotz, W. & Paas, F. (2009). Cognitive load in interactive

knowledge construction. Learning and Instruction, 19(5), 369-375.

Vihavainen, A., Airaksinen, J. & Watson, C. (2014). A systematic review of

approaches for teaching introductory programming and their influence on

success. Proceedings of the tenth annual conference on International

computing education research, Glasgow, Scotland, United Kingdom.

REFERENCES 395

Virtanen, A. T., Lahtinen, E. & Järvinen, H.-M. (2005). Vip, a visual interpreter for

learning introductory programming with C++. Koli Calling 2005 Conference,

Koli, Finland.

Vogts, D., Calitz, A. & Greyling, J. (2008). Comparison of the effects of professional

and pedagogical program development environments on novice

programmers. 2008 annual research conference of the South African Institute

of Computer Scientists and Information Technologists on IT research in

developing countries: riding the wave of technology, Wilderness, South Africa.

Vrachnos, E. & Jimoyiannis, A. (2008). Dave: A dynamic algorithm visualization

environment for novice learners. 2008 8th IEEE International Conference on

Advanced Learning Technologies.

Weinberg, G. M. (1971). The psychology of computer programming. New York, N.Y:

Van Nostrand Reinhold Company.

Werhane, P. H., Hartman, L. P., Moberg, D., Englehardt, E. & Pritchard, M. (2009).

Social constructivism, mental models and problems of obedience. EBEN

Annual Conference Athens, Greece.

Westbrook, L. (2006). Mental models: A theoretical overview and preliminary study.

Journal of Information Science, 32(6), 563-579.

White, G. L. & Sivitanides, M. P. (2003). A theory of the relationships between

cognitive requirements of computer programming languages and

programmers’ cognitive characteristics. Journal of Information Systems

Education, 13(1), 59-66.

Wiedenbeck, S. (1985). Novice/expert differences in programming skills.

International Journal of Man-Machine Studies, 23(4), 383-390.

REFERENCES 396

Wiedenbeck, S. & Ramalingam, V. (1999). Novice comprehension of small programs

written in the procedural and object-oriented styles. International Journal of

Human-Computer Studies, 51(1), 71-87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S. & Corritore, C. (1999). A

comparison of the comprehension of object-oriented and procedural programs

by novice programmers. Interacting with Computers, 11(3), 255-282. doi:

http://dx.doi.org/10.1016/S0953-5438(98)00029-0

Winslow, L. E. (1996). Programming pedagogy - a psychological overview. ACM

SIGCSE Bulletin, 28(3), 17-22.

Wittgenstein, L. (1922). Tractatus logico-philosophicus London: Routledge & Kegan

Paul.

Xinogalos, S., Satratzemi, M. & Dagdilelis, V. (2006). An introduction to object-

oriented programming with a didactic microworld: Objectkarel. Computers &

Education, 47(2), 148-171.

Yin, P. (2010). Natural language programming based on knowledge. 2010

International Conference on Artificial Intelligence and Computational

Intelligence - Volume 02.

Young, R. M. (1981). The machine inside the machine: Users' models of pocket

calculators. International Journal of Man-Machine Studies, 15(1), 51-85. doi:

http://dx.doi.org/10.1016/S0020-7373(81)80023-5

Youngs, E. A. (1974). Human errors in programming. International Journal of Man-

Machine Studies, 6(3), 361-376.

Ziegler, U. & Crews, T. (1999). An integrated program development tool for teaching

and learning how to program. SIGCSE Bulletin, 31(1), 276-280. doi:

10.1145/384266.299786

REFERENCES 397

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 398

Appendix A

INTERVIEW STUDY WITH GREEK

TEACHERS OF COMPUTER SCIENCE

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 399

A.1. Consent Form

Participant Identification Number: _______________

PARTICIPANT’S CONSENT FORM (participant’s copy)

Project title: A visual programming language and development environment for

learning and teaching programming in Greece

► I understand that it is completely my decision to take part or not.

► I understand that I do not have to take part and do not have to give a reason

why not.

► I understand that I am free to stop taking part at any time without giving a

reason.

► I understand that results may appear in research publications.

I understand my name or other personal information will not be mentioned.

► I understand that what I say will be recorded by the researcher, be examined

to by anyone other than the research team without my written permission.

► I agree to take part in this study.

Name of Participant ---------------------------- Signature---------------------Date --------

Name of Researcher ---------------------------- Signature----------------------Date ------

Participant Identification Number: _______________

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 400

PARTICIPANT’S CONSENT FORM (researcher’s copy)

Project title: A visual programming language and development environment for

learning and teaching programming in Greece

► I understand that it is completely my decision to take part or not.

► I understand that I do not have to take part and do not have to give a reason

why not.

► I understand that I am free to stop taking part at any time without giving a

reason.

► I understand that results may appear in research publications.

I understand my name or other personal information will not be mentioned.

► I understand that what I say will be recorded by the researcher, be examined

to by anyone other than the research team without my written permission.

► I agree to take part in this study.

Name of Participant ---------------------------- Signature---------------------Date --------

Name of Researcher ---------------------------- Signature----------------------Date ------

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 401

A.2. Interview Questions

1. Which teaching programming languages and/or environments have you used

for introductory programming to novices?

2. Do you use any other programming languages?

3. Which of the above do you nowadays use and what are the reasons of your

choice?

4. Which feature do you consider to be the major advantage of the programming

language and/or environment of your choice?

5. Do you find any disadvantages in the programming language and/or

environment of your choice?

6. What features do you believe a programming language and/or environment

should have to be suitable for teaching and learning programming to novices?

7. How would you describe your teaching method?

8. From your experience, which of the following programming issues do tend

novices to have problems with during the introductory programming course?

 Confuse input/output commands

 Misunderstand the role and use of variables

 Misunderstand the concept of data types

 Misunderstand the use and function of iteration statements

 Misunderstand the use and function of selection statements

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 402

 Misunderstand the use of arrays

 Misunderstand the use of functions

 Even knowing the steps of a solution to a problem and the commands of

the programming language cannot create the program.

 Other

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 403

A.3. Executive Summary Report on Interviews with Greek Teachers

This report concerns a series of interviews with Greek teachers for this research

project. An initial stage of this project is the identification of a set of design principles

for educational programming software. A following stage is to design and implement

a programming tool as an embodiment of this set of principles. Finally, the

effectiveness of this set on novices’ programming performance is studied via the

evaluation of the programming tool.

The set of design principles is derived from pedagogical theories as well as from

common difficulties novices face during their introductory programming module. A

review of the international literature revealed a great deal of appropriate evidence for

identifying the design principles. However, little information is available in the

international literature about the current status of introductory programming

education in Greece. This is the case for the difficulties that Greek novice

programmers face as well. In order to inform the findings that are obtained from the

review of the international literature on this matter, a series of informal interviews

with teachers of computer science was carried out in Greece.

Interviews took place in the cities of Patras and Lefkas, between 01/11/2008 and

09/11/2008. Ethics approval for the interviews had previously been granted in

advance. Four Greek teachers with experience of teaching programming to novices

in secondary and tertiary education volunteered to participate and were informed

about the aim of the research. During these interviews, I was keeping notes on the

following issues:

 the software tool(s) that participants have used to teach programming and

their opinion on its/their effectiveness;

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 404

 the problems that novices face during introductory programming courses,

according to participants’ experience; and

 the desired features for an educational programming tool for teaching and

learning introductory programming

Due to the small number of respondents and questions, the analysis of the data that

were collected from the interviews was rather simple. The answers of all

respondents were categorised per question. Each category was created based on

the answers of the respondents. More specifically, analysis was conducted either by

identifying common answers and emerging patterns or by synthesising all responses

to produce an aggregated/combined response for a category. The results of the

analysis of the interviews follow.

The results of these informal interviews revealed that a set of general-purpose as

well as educational programming languages was used for introductory programming

in Greece. This set includes Basic, Fortran, C, Visual Basic, Java, and

Glossomatheia. The main disadvantages of these languages are that the majority of

these programming languages (a) are too complex and (b) provide features beyond

those that are required for pedagogical purposes. In particular, they lack a user-

friendly environment, they are in the English language and their set of instructions is

too large. Thus, an unnecessary complexity is imposed by the use of these tools,

which retards program creation.

With respect to the problems that novices face, interviews revealed that a major

difficulty is that even when novices know the steps of a solution and the commands

of a programming language they are unable to structure the final program. This

occurs because novices seem to lack the knowledge and experience of using

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 405

programming commands to translate the steps of the solution into a program. Other

major problems that beginners have are distinguishing the commands they should

use in a program and lacking knowledge of how data types, arrays and functions

should be used. Issues that seem to cause fewer problems are input/output

commands, iteration and selection statements. Most of the interviewees commented

that mathematics and computer architecture could lead novices towards a more

analytical and structured way of thinking, which could help them to conceptualise

and create their own programs. These findings are in agreement with the difficulties

of novices that are reported in the international literature and are reviewed in Section

2.4.

According to the interviewees, an educational programming language suitable for

teaching introductory programming should have a set of desirable characteristics in

order to serve its educational purpose. The results of the interviews revealed that

this set should include a visual environment, which would be supportive and simple

to learn and use, a small and simple set of instructions in the Greek language, easy

syntax – close to natural language, and a visual representation of programming

elements. Concisely, a new programming language and integrated development

environment should support the following features:

 graphical development environment, which will help and guide students during

the creation of programs;

 simple syntax in the Greek language;

 semantics that can be easily understood by non-programmers;

 visualisation of basic programming structures and examples;

APPENDIX A: INTERVIEW STUDY WITH GREEK TEACHERS OF COMPUTER SCIENCE 406

 a small set of commands; and

 documentation of the set of instructions and supported features by the

programming language and development environment.

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 407

Appendix B

THE KOIOS PROGRAMMING

ENVIRONMENT AND CHARACTERISTICS

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 408

B.1. The Koios Programming Environment

The Koios software can be found on the attached CD. Requirements for running

Koios and information on how to run and use Koios are in the file ReadMe1st.txt on

the CD. A number of sample programs are also included.

[The CD will be included before submission]

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 409

B.2. Syntax of Koios

The valid symbols that can be used in a program that is written in the programming

language supported by Koios are presented in the form of the state machine

presented in Figure B.1. White spaces are used to separate identifiers, numbers

and symbols as well as to format text code and increase its readability, for example

using indentation.

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 410

0

White space

1

Letter / digit /_ / $

4

digit

Letter

Digit

Identifier

Number

+
+

-
-

*
*

/
/

%
%

5
=

==
=

=

8
>

>=
=

>

[
[

]
]

)
)

(
(

EoF
EoF

Other_ASCII_characters

<=

,
,

;;

}
}

{
{

"
"

.
.

=

<

<

!=

Error

6

7

! =

Letter/ digit / _ / $
_

Identifier

Letter / digit / _ / $
$

Identifier3

2

Figure B.1. The state machine that describes the syntactic rules of Koios.

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 411

B.3. Grammar of Language Supported by Koios

Based on the symbols produced by the lexical analyser (see Figure B.1), the

grammar of the programming language that is supported by Koios follows in Backus-

Naur Form (Marcotty & Ledgard, 1986). According to this form, terms within < > are

non-terminal and can be replaced by the relevant production rule following the ::=

symbol. Terms in bold are terminal, while the | symbol indicates that one or more

terms separated by it, can form a valid instance of the rule. The symbol ε is used to

specify an empty term. Finally, a term suffixed with the symbol * means that this

term can be repeated zero or more times.

<PROGRAM>::= PROGRAM IDENTIFIER <DECLARATIONS> <SUBPROGRAMS>

END OF PROGRAM

<DECLARATIONS>::= (<CON_DECLERATION> | <VAR_DECLARATION> |

<ARRAY_DECLARATION>)*

<CON_DECLERATION>::= CONSTANT IDENTIFIER WITH INITIAL VALUE =

<INIT_VALUES> ;

<INIT_VALUES>::= <IR_NUMBER> | <CHARACTER> | <STRING>

<IR_NUMBER>::= <OPTIONAL-SIGN> NUMBER | <OPTIONAL-SIGN>

NUMBER.NUMBER

<CHARACTER>::= ‘ WHITE_CHARACTER | LETTER | DIGIT | + | - | * | / | % | ! | = | < | > | _
| $ | . | ; | , | [|] | { | } | (|) | EOF | OTHER_ASCII_CHARACTERS ’

<STRING>::= “ <CHARACTER> (<CHARACTER>)* ”

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 412

<VAR_DECLARATION> ::= VARIABLE IDENTIFIER [WITH INITIAL VALUE =

<INIT_VALUES>] ;

<ARRAY_DECLARATION>::= ARRAY IDENTIFIER [NUMBER] (ε | [NUMBER] |

WITH INITIAL VALUES = <ARRAY_VALUES> | [NUMBER] WITH INITIAL

VALUES = <ARRAY_VALUES>) ;

<ARRAY_VALUES>::= <ARRAY_VALUES_1D> | <ARRAY_VALUES_2D>

<ARRAY_VALUES_1D>::= { <INIT_VALUES>, <INIT_VALUES>

(,<INIT_VALUES>)* };

<ARRAY_VALUES_2D>::= { <ARRAY_VALUES_1D>, <ARRAY_VALUES_1D>

(,<ARRAY_VALUES_1D>)*} ;

<SUBPROGRAMS>::= (<PROC_OR_FUNC>)* PROCMAIN (<PROC_OR_FUNC>

) *

<PROCMAIN>::= MAIN ROCEDURE<PROC_OR_FUNC_BODY>END OF MAIN

PROCEDURE

<PROC_OR_FUNC>::=PROCEDURE IDENTIFIER <PROC_OR_FUNC_BODY>

END OF PROCEDURE ID | <DATATYPE> FUNCTION IDENTIFIER

<PROC_OR_FUNC_BODY> END OF FUNCTION IDENTIFIER

<DATATYPE>::= INTEGER | REAL | CHARACTER | BOOLEAN |STRING

<PROC_OR_FUNC_BODY>::= <PROC_ BODY> | < FUNC_BODY>

<PROC_BODY>::= <FORMALPARS> <DECLARATIONS> <SEQUENCE>

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 413

<FUNC_BODY>::= <FORMALPARS> <DECLARATIONS>

<SEQUENCE><RETURN-STAT>

<FORMALPARS>::= (ε | <FORMALPARLIST>)

<FORMALPARLIST>::= <DATATYPE> IDENTIFIER(,<DATATYPE> IDENTIFIER)*

<SEQUENCE>::= <STATEMENT> (<STATEMENT>)*

<STATEMENT>::= ε | <READ_STAT>| <WRITE_STAT> | <IF-STAT> |

<FOR-STAT> | <WHILE-STAT> | <DO-WHILE-STAT> | <ASSIGNMENT-STAT> |

<CALL-STAT>

<READ_STAT>::= READ <READ_ARGUEMS> (,<READ_ARGUEMS>)* ;

<READ_ARGUEMS>:== [<STRING>] IDENTIFIER | [<STRING>] IDENTIFIER

[EXPRESSION] (ε | [EXPRESSION])

<WRITE_STAT>::= WRITE <WRITE_ARGUEMS> (, <WRITE_ARGUEMS>)* ;

<WRITE_ARGUEMS>::= <DATA_ARGUEMS>

<DATA_ARGUEMS>::=<EXPRESSION> | <CHARACTER> | <STRING> |

<CONDITION>

<IF-STAT>::= IF <CONDITION> <SEQUENCE> <ELSEPART> END OF IF

<ELSEPART>::= ε | (ELSE IF <CONDITION> <SEQUENCE>)* | ELSE

<SEQUENCE>

<FOR-STAT>::= FOR <EXPRESSION> AND <CONDITION> LOOP WITH STEP

<EXPRESSION> <SEQUENCE> END OF FOR

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 414

<WHILE-STAT>::= WHILE THE CONDITION <CONDITION> IS VALID REPEAT

<SEQUENCE> END OF WHILE

<DO-WHILE-STAT>::= DO <SEQUENCE> WHILE THE CONDITION

<CONDITION> IS TRUE

<ASSIGNMENT-STAT>::= ASSIGN TO <EXPRESSION> THE EXPRESSION

<EXPRESSION> ;

<CALL-STAT>::= CALL PROCEDURE <IDENTIFIER> <ACTUALPARS> ;

<RETURN-STAT>::= RETURN <DATA_ARGUEMS> ;

<ACTUALPARS>::= (ε| <ACTUALPARLIST>)

<ACTUALPARLIST>::= <ACTUALPARITEM> (, <ACTUALPARITEM>)*

<ACTUALPARITEM>::= <DATA_ARGUEMS>

<CONDITION>::= <BOOLTERM> (OR <BOOLTERM>)*

<BOOLTERM>::= <BOOLFACTOR> (AND <BOOLFACTOR>)*

<BOOLFACTOR>::=NOT (<CONDITION>) | (<CONDITION>) | <EXPRESSION>

<RELATIONAL-OPER> <EXPRESSION> | IDENTIFIER| IDENTIFIER

<ACTUALPARS> | IDENTIFIER [EXPRESSION] (ε | [EXPRESSION]) | TRUE |

FALSE

<EXPRESSION>::= <OPTIONAL-SIGN> <TERM> (<ADD-OPER> <TERM>)*

<TERM> ::= <FACTOR> (<MUL-OPER> <FACTOR>)*

<FACTOR>::= NUMBER | CONSTANT | (<EXPRESSION>) | IDENTIFIER |

IDENTIFIER <ACTUALPARS> | IDENTIFIER [EXPRESSION] (ε | [EXPRESSION])

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 415

<RELATIONAL-OPER>::= == | != | < (ε | =) | > (ε | =)

<ADD-OPER>::= + | -

<MUL-OPER>::= * | / | %

<OPTIONAL-SIGN>::= ε | <ADD-OPER>

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 416

B.4. Errors Detected by Koios

The Koios programming environment can detect a number of errors and notify users

about these with messages, whose wording is meant to be appropriate,

understandable and non-technical. Checks for errors are made during the creation

or modification of a programming item and, if applicable, before dropping or pasting

a programming item. The errors that can be detected regarding each programming

item follow.

Constants

The name of constants

o cannot be empty;

o must start with letter, $ or _;

o must contain only letters, numbers, $ and _;

o cannot be a reserved word.

In the case of global constants, their name

o cannot be an identifier that is already used for another local or global

constant, variable, array or parameter;

o cannot be an identifier that is already used as a parameter of a function

or procedure.

In the case of local constants, their name

o cannot have the same name with the procedure or function within the

same scope;

o cannot have the same name with an input parameter within the same

scope;

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 417

o cannot have the same name with an identifier that is already used for

other local programming items;

o cannot have the same name with a global constant, variable or array.

The initial value of constants must be initialised during the creation of the

constant.

The initial value of integer constants

o must contain only integer numbers;

o must be between Integer.MIN(= -2147483648) and Integer.MAX (=

2147483647).

The initial value of real constants

o must contain only real numbers;

o must be between Float.MIN (= 1.401298464324817E-45f) and

Float.MAX(= 3.4028234663852886E38f).

The initial value of character constants must contain just a single character.

Variables

The name of variables

o cannot be empty;

o must start with letter, $ or _;

o must contain only letters, numbers, $ and _;

o cannot be a reserved word.

In the case of global variables, their name

o cannot be an identifier that is already used for another local or global

constant, variable, array or parameter;

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 418

o cannot be an identifier that is already used as a parameter of a function

or procedure.

In the case of local variables, their name

o cannot have the same name with the procedure or function within the

same scope;

o cannot have the same name with an input parameter within the same

scope;

o cannot have the same name with an identifier that is already used for

other local programming items;

o cannot have the same name with a global constant, variable or array.

The initial value of variables can be either 418ninitialized or initialised. In the

latter case it cannot be empty.

The initial value of integer variables

o must contain only integer numbers;

o must be between Integer.MIN(= -2147483648) and Integer.MAX (=

2147483647).

The initial value of real variables

o must contain only real numbers;

o must be between Float.MIN (= 1.401298464324817E-45f) and

Float.MAX(= 3.4028234663852886E38f).

The initial value of character variables must contain just a single character.

Arrays

The name of arrays

o cannot be empty;

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 419

o must start with letter ,$ or _;

o must contain only letters, numbers, $ and _;

o cannot be a reserved word.

In the case of global arrays, their name

o cannot be an identifier that is already used for another local or global

constant, variable, array or parameter;

o cannot be an identifier that is already used as a parameter of a function

or procedure.

In the case of local arrays, their name

o cannot have the same name with the procedure or function within the

same scope;

o cannot have the same name with an input parameter within the same

scope;

o cannot have the same name with an identifier that is already used for

other local programming items;

o cannot have the same name with a global constant, variable or array.

The dimension(s) of arrays

o cannot be empty;

o must be integer(s);

o must be greater than one.

The initial values of arrays can be either 419ninitialized or initialised. In the latter

case they cannot be empty.

The values of the elements of integer arrays

o must contain only integer numbers;

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 420

o must be between Integer.MIN(= -2147483648) and Integer.MAX (=

2147483647).

The values of the elements of real arrays

o must contain only real numbers;

o must be between Float.MIN (= 1.401298464324817E-45f) and

Float.MAX(= 3.4028234663852886E38f).

The values of the elements of character arrays must contain just a single

character.

The values of the elements of Boolean arrays must be true or false.

Procedures

The name of procedures

o cannot be empty;

o must start with letter, $ or _;

o must contain only letters, numbers, $ and _;

o cannot be a reserved word;

o cannot be an identifier that is already used for another procedure or

function.

The name(s) of parameter(s) of procedures

o cannot be empty;

o must start with letter, $ or _;

o must contain only letters, numbers, $ and _;

o cannot be a reserved word;

o cannot be an identifier that is already used for a global constant,

variable or array;

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 421

o cannot be an identifier that is already used for a local constant, variable

or array;

o cannot be the same with the name of its procedure;

o cannot be the same with the name of a previous

parameter of the same procedure.

Functions

The name of functions

o cannot be empty;

o must start with letter, $ or _;

o must contain only letters, numbers, $ and _;

o cannot be a reserved word;

o cannot be an identifier that is already used for another procedure or

function.

The name(s) of parameter(s) of function

o cannot be empty;

o must start with letter,$ or _;

o must contain only letters, numbers,$ and _;

o cannot be a reserved word;

o cannot be an identifier that is already used for a global constant,

variable or array;

o cannot be an identifier that is already used for a local constant, variable

or array;

o cannot be the same with the name of its procedure;

APPENDIX B: THE KOIOS PROGRAMMING ENVIRONMENT AND CHARACTERISTICS 422

o cannot be the same with the name of a previous parameter of the same

procedure.

The return command of a function

o cannot be missing from the body of the function and all clauses of an if-

statement ;

o can be missing from the body of the function if it is contained in all

clauses of an if-statement ;

o can be missing from all clauses of an if-statement if it is contained in the

body of the function;

o cannot be missing from all clauses of an if-statement if it is contained at

least in one clause;

o cannot have more than one instances in the body of the function or in

each clause of an if-statement;

o must be the last command of the function or of each clause of an if-

statement.

Read commands must have at least one argument.

Call commands cannot be empty.

Assign commands

o At least one variable or array element must be used in an assign

command.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 423

Appendix C

MATERIAL FOR DATA-COLLECTION

APPENDIX C: MATERIAL FOR DATA-COLLECTION 424

C.1. Evaluating Compliance of Programming Tools with the Set of Design

Principles

The criteria that were used for evaluating compliance of Koios, Glossomatheia,

MicroworldsPro and C with each design principle follow.

Match of users’ natural language with the linguistic attributes of the PL and IDE

The main aspect that was checked for deciding on the compliance between PLs and

IDEs and this principle was whether they incorporated users’ natural language.

Because these programming tools were going to be used by Greek students, they

were considered fully compliant with this principle, only if the language used for the

communication and interaction between users and programming tool, namely the PL

and IDE, was the Greek language.

Syntax and semantics of instructions supported by the PL

The following features of PLs and IDEs were taken into account for measuring

compliance with the second principle (a) closeness of PL’s syntax to users’ natural

language, (b) the degree of ease with which commands’ semantics can convey their

functionality and (c) readability. Factors that contribute to the readability of programs

are, for example, the use of different colours for the textual form of different

programming concepts in programs and the indentation of blocks of code to identify

commands that belong to different control flow structures, such as conditional and

iteration statements.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 425

Visualisation

The features used to measure the compliance of programming tools and

visualisation were (a) the amount of information regarding program creation and

modification that is graphically presented, (b) the support of multiple views of

programs (for example, textual or visual), (c) visual control over the execution of

programs and (d) visual feedback and explanations during execution.

Abstraction of commands provided by the PL

The measurement of compliance between the PLs and IDEs and abstraction of

commands was based on the ease of using each command without having an in-

depth knowledge of the technical details regarding its execution and implementation.

For example, using an output statement does not require knowing the type of the

variables used in this statement.

Small set of instructions

Compliance with this principle was measured using the total number of the

commands supported by the PL. Koios, Glossomatheia and MicroworldsPro were

considered to support a small number of commands. This was not the case for C,

which as a professional PL, offers support for advanced programming instructions.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 426

Provision of error messages

In order to decide on the compliance of programming tools and the provision of their

error messages, two factors were considered. The first one was the

comprehensibility and precision of explaining the source of errors. The second was

the accuracy and clarity in describing the actions required for correcting errors.

A high level of interaction with the IDE

The compliance between the last design principle and programming tools was

measured by the degree of interaction between the users and the IDE during

program creation and execution. Features provided by IDEs, which were considered

to provide a higher level of interaction include (a) supporting ‘dialogues’ for error

prevention and guiding users during program creation, (b) users’ control over the

execution of programs and (c) providing immediate feedback to users, for example

with information regarding commands, execution or errors.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 427

C.2. Consent Form for Parents/Guardians of Secondary-Education Participants

Participant Identification Number:_______________

PARTICIPANT’S CONSENT FORM (participant’s copy)

Project title: A Greek visual programming language and development environment
for novice programmers

► I understand that it is completely my decision to take part or not.

► I understand that I do not have to take part and do not have to give a reason
why not.

► I understand that I am free to stop taking part at any time without giving a
reason.

► I understand that results may appear in research publications.

► I understand my name or other personal information will not be mentioned.

► I understand that my written answers within the scope of this module will be
recorded/filed by the researcher and examined by members of the research team
and the computer-science teacher of my class.

► I agree to take part in this study.

Name of Participant ------------------- Signature---------------------Date --------

Name of Researcher ----------------------- Signature----------------Date ------

Participant Identification Number:_______________

APPENDIX C: MATERIAL FOR DATA-COLLECTION 428

PARTICIPANT’S CONSENT FORM (researcher’s copy)

Project title: A Greek visual programming language and development environment
for novice programmers

► I understand that it is completely my decision to take part or not.

► I understand that I do not have to take part and do not have to give a reason
why not.

► I understand that I am free to stop taking part at any time without giving a
reason.

► I understand that results may appear in research publications.

► I understand my name or other personal information will not be mentioned.

► I understand that my written answers within the scope of this module will be
recorded/filed by the researcher and examined by members of the research team
and the computer-science teacher of my class.

► I agree to take part in this study.

Name of Participant ------------------- Signature---------------------Date --------

Name of Researcher ----------------------- Signature----------------Date ------

APPENDIX C: MATERIAL FOR DATA-COLLECTION 429

C.3. Information for Secondary-Education Participants

Thank you for taking part in this study. The aim of the project is to evaluate

programming tools for Greek students of computer programming. You will be asked

to use Koios, MicroworldsPro and Glossomatheia, depending on experimental

condition as your basic tool in the introductory programming module. During this

time you will be asked to take some tests as part of your course evaluation and fill in

some questionnaires. Your views or any comments on your experience during this

course would be more than welcome.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 430

C.4. Lessons/Measurements Plan for Secondary-Education Quasi-Experiments

Table C.1 presents the plan used for conducting the study with secondary-education

students. This plan was based on the official CS curriculum for the third grade of

secondary education in Greece and incorporated the knowledge measurements

according to the quasi-experimental design for secondary-education (see Section

4.2.2.3).

Table C.1.
Plan of Lessons and Measurements

Week Programming
Concept

Example in
Classroom*

Homework
Assignment**

Declarative-
Knowledge

Measurement***

Procedural-
Knowledge

Measurement****
1 Introduction to

experiment
and
presentation
of
programming
environment

At the beginning
of the lesson

2 Output
statement

Lesson 1
Example(s)

Lesson 1
was
introductory
and did not
include any
homework

3 Variables I –
Input
statement

Lesson 2
Example(s)

Lesson 2
Homework

4 Variables II Lesson 3
Example(s)

Lesson 3
Homework

5 Assignment
statement I

Lesson 4
Example(s)

Lesson 4
Homework

At the beginning
of the lesson

6 Assignment
statement II

Lesson 5
Example(s)

Lesson 5
Homework

APPENDIX C: MATERIAL FOR DATA-COLLECTION 431

Table C.1 (continued)

Week Programming
Concept

Example in
Classroom*

Homework
Assignment**

Declarative-
Knowledge

Measurement***

Procedural-
Knowledge

Measurement****
7 Second

declarative-
knowledge
and
procedural-
knowledge
measurement

At the beginning
of the lesson

After declarative-
knowledge
measurement

8 Iteration
Statement

Lesson 6
Example(s)

Lesson 6
Homework

9 Procedures Lesson 7
Example(s)

Lesson 7
Homework

10 Conditional
Statement I

Lesson 8
Example(s)

Lesson 8
Homework

11 Conditional
Statement II

Lesson 9
Example(s)

Lesson 9
Homework

12 Third
declarative-
knowledge
and
procedural-
knowledge
measurement

At the beginning
of the lesson

After declarative-
knowledge
measurement

13 Practical test

(administered
only in the
second round
of data
collection)

* The examples that were used in both rounds of data collection can be found in
Appendix C.5.
** The homework assignments that were used in both rounds of data collection can
be found in Appendix C.6.
*** The declarative-knowledge measurement material that was used in both rounds
of data collection can be found in Appendix C.7.
**** The procedural-knowledge measurement material that were used in the first and
second round of data collection can be found in Appendices C.8, C.9 and C.10 and
Appendices C.11, C.13 and C.14, respectively.
*****The items of the practical test can be found in Appendix C.15

APPENDIX C: MATERIAL FOR DATA-COLLECTION 432

C.5. Classroom Examples Used in the Secondary-Education Quasi-

Experiments

The following example programs were used during the lesson per week.

Lesson 1 Example(s)

Subject: Output statement.

1. Create simple programs that calculate the result of simple arithmetic

expressions with numbers, for example write 25*12 , followed by more

complicated expressions like write (17*3) / (2+5).

2. Create simple programs using strings. Use write command to print simple

messages to screen.

3. Create programs combining strings and arithmetic expressions.

Lesson 2 Example(s)

Subject: Variables I - Input statement.

1. Create a program with a string variable that requests from the user to input

his/her name to the variable and prints the value of the variable to screen.

2. Create a program with an integer variable that requests from the user to input

his/her favourite number to the variable and prints a message and the value of

the variable to screen.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 433

Lesson 3 Example(s)

Subject: Variables II

1. Create a program with a string variable that requests from the user to input

his/her name to the variable and prints a message and the value of the

variable to screen.

2. Create a program with an integer variable that requests from the user to input

a number to the variable and prints a message and the result of multiplying

the value of the variable by two to screen.

Lesson 4 Example(s)

Subject: Assignment statement I

1. Create a program with a string variable STATE that assigns to STATE the

value “water”, prints to screen the value of STATE, assigns to STATE the

value of “ice” and prints again the new value of STATE.

2. Create a program with two integer variables A and B, that assigns the value of

100 to variable A, assigns the value of A to B and prints a message, the value

of A, a second message and the value of B to screen.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 434

Lesson 5 Example(s)

Subject: Assignment statement II

1. Create a program with two integer variables A and B that assigns the value of

100 to variable A, requests from the user to input an integer value to variable

B and prints a message and the sum of variables A and B to screen.

Lesson 6 Example(s)

Subject: Iteration Statement

1. Create a program that uses a for-statement to print to screen the numbers

from one to 10.

2. Create a program with an integer variable A that assigns a value to A and

uses a for-statement to print to screen the products: A * 1, A * 2, …, A * 10 .

3. Create a program with an integer variable A that requests from the user to

input an integer value A and uses a for-statement to print to screen the

products: A * 1, A * 2, …, A * 10.

Lesson 7 Example(s)

Subject: Procedures

1. Create a program with a procedure that prints to screen the numbers from

one to 10.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 435

2. Create a program with an integer variable A and a procedure with an integer

input parameter that prints to screen the second power of the input parameter,

requests from the user to input an integer value to A and calls the procedure

to calculate and print the second power of A.

Lesson 8 Example(s)

Subject: Conditional statement

1. Create a program with an integer variable A that requests from the user to

input an integer value to A and prints a message to screen if the value of A is

positive (>= 0) or negative.

Lesson 9 Example(s)

Subject: Conditional statement II

1. Create a program with two integer variables A and B that requests from the

user to input two integer values to A and B. Assuming that A and B are the

two coefficients of a linear equation (A * X + B = 0) the program either

calculates and prints to screen the solution of the equation or prints to screen

a message informing that the equation does not have a solution.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 436

C.6. Homework Assignments Used in the Secondary-Education Quasi-

Experiments

The following homework assignments were given at the end of each lesson.

Lesson 2 Homework

Subject: Variables I – Input statement.

 Complete the statements of or describe in natural language the steps for

creating a program with a string and an integer variable that requests from

the user to input a name and an age to the variables and prints to screen the

name and the age.

Lesson 3 Homework

Subject: Variables II

 Complete the statements of or describe in natural language the steps for

creating a program with a string and an integer variable that requests from

the user to input a name and an age to the variables and prints to screen: the

message “My name is ”, the value of the string variable, the message “and I

am” and the value of the integer variable.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 437

Lesson 4 Homework

Subject: Assignment statement I

 Complete the statements of or describe in natural language the steps for

creating a program with two integer variables A and B, that assigns the value

of 100 to variable A, assigns the value of A plus 10 to B and prints the

message, the value of A, a second message and the value of B to screen.

Lesson 5 Homework

Subject: Assignment statement II

 Given that ANIMAL is a sting variable and X is an integer variable, write next

to each output statement the result of its execution. Do not forget to consider

possible effects of previous statements on each statement.

o Assign “LION” to ANIMAL

o Output_statement ANIMAL

o Output_statement LION

o Output_statement “ANIMAL”

o Assign DOG to ANIMAL

o Output_statement animal

o Output_statement “I have a” ANIMAL

o Assign 3 to X

APPENDIX C: MATERIAL FOR DATA-COLLECTION 438

o Output_statement X

o Output_statement “X”

o Output_statement 12+5*X

Lesson 6 Homework

Subject: Iteration Statement II

 Complete the statements of or describe in natural language the steps for

creating a program with an integer variable A that requests from the user to

input an integer value A and uses a for-statement to print to screen the

products: A * 11, A * 12, …,A * 20.

Lesson 7 Homework

Subject: Procedures

 Complete the statements of or describe in natural language the steps for

creating a program with an integer variable A and a procedure with an integer

input parameter. The procedure prints to screen the number from one to the

value of the input parameter. The program requests from the user to input an

integer value to A and calls the procedure to print to screen the numbers of

one A.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 439

Lesson 8 Homework

Subject: Conditional Statement

 Complete the statements of or describe in natural language the steps for

creating a program with an integer variable A that requests from the user to

input an integer number to A and prints the absolute value of this number.

Lesson 9 Homework

Subject: Conditional statement II

 Complete the statements of or describe in natural language the steps for

creating a program with two integer variables A and B that requests from the

user to input two integer numbers to A and B prints to screen which is the

greater of the two numbers.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 440

C.7. Material for Every Declarative-Knowledge Measurement for Secondary-

Education Quasi-Experiments (First and Second Round)

The 78 different pairs that were used for ratings of concept pairs during declarative-

knowledge measurement follow. The pairs were randomised before the rating task.

1 integer variable
2 integer string
3 integer input parameter
4 integer assignment
5 integer arithmetic expression
6 integer input command
7 integer conditional statement
8 integer output command
9 integer logical condition

10 integer procedure
11 integer procedure call
12 integer iteration
13 variable string
14 variable input parameter
15 variable assignment
16 variable arithmetic expression
17 variable input command
18 variable conditional statement
19 variable output command
20 variable logical condition
21 variable procedure
22 variable procedure call
23 variable iteration
24 string input parameter
25 string assignment
26 string arithmetic expression
27 string input command
28 string conditional statement
29 string output command
30 string logical condition
31 string procedure
32 string procedure call
33 string iteration
34 input parameter assignment
35 input parameter arithmetic expression
36 input parameter input command
37 input parameter conditional statement

APPENDIX C: MATERIAL FOR DATA-COLLECTION 441

38 input parameter output command
39 input parameter logical condition
40 input parameter procedure
41 input parameter procedure call
42 input parameter iteration
43 assignment arithmetic expression
44 assignment input command
45 assignment conditional statement
46 assignment output command
47 assignment logical condition
48 assignment procedure
49 assignment procedure call
50 assignment iteration
51 arithmetic expression input command
52 arithmetic expression conditional statement
53 arithmetic expression output command
54 arithmetic expression logical condition
55 arithmetic expression procedure
56 arithmetic expression procedure call
57 arithmetic expression iteration
58 input command conditional statement
59 input command output command
60 input command logical condition
61 input command procedure
62 input command procedure call
63 input command iteration
64 conditional statement output command
65 conditional statement logical condition
66 conditional statement procedure
67 conditional statement procedure call
68 conditional statement iteration
69 output command logical condition
70 output command procedure
71 output command procedure call
72 output command iteration
73 logical condition procedure
74 logical condition procedure call
75 logical condition iteration
76 procedure procedure call
77 procedure iteration
78 procedure call iteration

APPENDIX C: MATERIAL FOR DATA-COLLECTION 442

Unrelated Highly
Related

0 1 2 3 4 5 6 7 8 9 10

1. INTEGER VARIABLE

Figure C.1. A slide that was used in the presentation of the 78 concept pairs.
Similar slides were used for each pair during the presentation

APPENDIX C: MATERIAL FOR DATA-COLLECTION 443

C.8. First Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (First Round)

The following items were included in the first procedural-knowledge test. This

measurement took place in the beginning of the fourth lesson (since the beginning of

the study), and it took approximately 10-15 minutes to complete. The procedural

knowledge of integer, arithmetic expression, string, output-statement, input-

statement and variable was measured.

[5 points] Question I: Write under each command the output produced after its
execution:
1. [Output statement] 12*3 [2.5 points if correct]

..
2. [Output statement] “12*3” [2.5 points if correct]

………………………………………………………………..

[5 points] Question II: Given that the value of variable A is 10, write under each
command the output produced after its execution:
1. [Output statement] “A+10” [2.5 points if correct]

……………………………………………………………………………………
2. [Output statement] A+10 [2.5 points if correct]

………………………………………………………………………………..

[5 points] Question III: Complete the statements of or describe in natural language
the steps for writing a program that asks the user for:

1. an integer number [1.75 points if correct]
2. a name [1.75 points if correct]

and prints to screen the values of the two variables: the number <space> the name.
[2.5 points if correct]

[5 points] Question IV: Modify the following program so that instead of printing to
screen the value of A+1, it prints the message “value of A to the power of two =”,
followed by the value of A*A.

[Declare Integer Variable] A
[Input statement] A
[Output statement] A+1

APPENDIX C: MATERIAL FOR DATA-COLLECTION 444

C.9. Second Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (First Round)

The following items were included in the second procedural-knowledge test. This

measurement took place immediately after the second declarative-knowledge

measurement (after five lessons since the beginning of the study) and it took

approximately 15-20 minutes to complete. The procedural knowledge of integer,

arithmetic expression, string, output-statement, input-statement, variable and

assignment-statement was measured.

[10 points] Question I: Write under each group of commands the output produced
after its execution:
1. [Declare Integer Variable] Age

[Assignment statement] Age <- 15
[Output statement] Age + 10 [2.5 points if correct]

..
2. [Declare String Variable] Title

[Assignment statement] Title <- “2nd School”
[Output statement] Title [2.5 points if correct]

………………………………………………………………..
3. [Declare Integer Variable] Mark

[Assignment statement] Mark <- 10
[Assignment statement] Mark <- 20
[Output statement] Mark [2.5 points if correct]

……………………………………………………………………………………
4. [Declare String Variable] Address

[Input statement] Address
[Assignment statement] Address <- “Lefkas 10”
[Output statement] Address [2.5 points if correct]

………………………………………………………………………………..

[5 points] Question II: Complete the statements of or describe in natural language
the steps for writing a program with two integer variables A and B, that

1. assigns the value of 10 to variable A [1.75 points if correct]
2. asks the user to input a value to variable B and [1.75 points if correct]

APPENDIX C: MATERIAL FOR DATA-COLLECTION 445

3. prints to screen the message “A times B equals ” and the result of A*B. [2.5
points if correct]

[5 points] Question III: Modify the following program, so that
1. instead of assigning a value to B, the user inputs a value to B [2.5 points if

correct]
2. it prints to screen the result of A+B, instead of printing the values of A and B

[2.5 points if correct]

[Declare Integer Variable] A
[Declare Integer Variable] B
[Assignment statement] A <- 10
[Assignment statement] B <- 20
[Output statement] A
[Output statement] B

APPENDIX C: MATERIAL FOR DATA-COLLECTION 446

C.10. Third Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (First Round)

The following items were included in the third procedural-knowledge test. This

measurement took place after the third declarative-knowledge measurement (at the

end of the study) and it took approximately 20-25 minutes to complete. The

procedural knowledge of integer, arithmetic expression, string, output-statement,

input-statement, variable, assignment-statement, iteration-statement, procedure,

procedure call, input parameter, logical condition and conditional statement was

measured.

[5 points] Question I: Write under each group of commands the output to be
produced after its execution:
1. [Declare String Variable] City

[Assignment statement] City <- “Lefkas”
[Output statement] “I live in ”, City [1.25 points if correct]

..
2. [Declare Integer Variable] Age

[Declare String Variable] Name
[Assignment statement] Age <- 15
[Assignment statement] Title <- “I am ”
[Output statement] Name , Age [1.25 points if correct]

………………………………………………………………..
3. [Declare Integer Variable] K

[Iteration statement: K = 1 TO 3]
[Output statement] K + 1

[End Iteration statement] [1.25 points if correct]

……………………………………………………………………………………
4. [Declare Integer Variable] Mark

[Assignment statement] Mark <- 8
[If statement] (Mark < 10)

[Output statement] “Failed”
[Else]

[Output statement] “Passed”
[End If statement] [1.25 points if correct]

………………………………………………………………………………..

APPENDIX C: MATERIAL FOR DATA-COLLECTION 447

[5 points] Question II: Complete the statements of or describe in natural language
the steps for writing a program, that

1. requests from the user to input a name [2.5 points if correct]
2. prints the name five times to screen. [2.5 points if correct]

[5 points] Question III: Modify the following program, so that
1. the logical condition checks if A is greater than 100,instead of checking if it is

greater than 0[2.5 points if correct]
2. the output messages are “Value greater than 100” and “Value less than 100”,

respectively [2.5 points if correct]

[Declare Integer Variable] A
[Input statement] A
[If statement] (A>0)

[Output statement] “Value greater than 0”
[Else]

[Output statement] “Value less than 0”
[End If statement]

[5 points] Question IV: Complete the missing commands in the following program,
so that

1. procedure power3 calculates the value of input parameter x to the power of
three and prints it to the screen [2.5 points if correct]

2. the main procedure uses power3 to calculate the value of variable A to the
power of three [2.5 points if correct]

[Procedure power3 (integer variable x)]
[Output statement] …………………………..

[End Procedure]

[Main Procedure]
[Declare Integer Variable] A
[Output statement] A
[Call statement]……………………………….

[End Main Procedure]

APPENDIX C: MATERIAL FOR DATA-COLLECTION 448

C.11. Cross-Tabulation Results for the Procedural-Knowledge Tests Used in

the Secondary-Education Quasi-Experiment of the First Round

The following tables report the results of cross-tabulation analysis that was

performed on the scores that students achieved on items of the procedural-

knowledge tests of the first round of data collection. In each table, the first column

reports the number of the test item, while the second the number of the subitem.

The third and fourth columns report the minimum and maximum scores of each

subitem, respectively. The fifth column reports all the different scores that students

achieved on each subitem. Finally, the sixth column reports the number of students

that achieved the particular score, while the seventh column presents the percentage

of students that achieved this score. The results of cross-tabulation analysis on

students’ scores on the items of the first, second and third procedural-knowledge test

are reported in Table C.2, Table C.3 and Table C.4, respectively.

Based on the results of cross-tabulation analysis of the first procedural-knowledge

test’s scores (Table C.2), the first subitem of the first item seemed to be relatively

easy, while the second and third items seemed to be relatively hard. The results

reported in Table C.3, revealed that the first second and fourth subitems of the first

item seemed to be relatively easy, while the second and third subitems of the second

item and the first subitem of the third item seemed to be relatively hard. Finally, the

results presented in Table C.4 suggested that the first second and fourth subitems of

the first item and the second subitem of the third item seemed to be relatively easy.

The second subitem of the second item and the first and second subitems of the

fourth item seem to be relatively difficult. All (sub)items that were identified as

relatively easy or relatively difficult were modified accordingly in order to become

APPENDIX C: MATERIAL FOR DATA-COLLECTION 449

better in discriminating procedural knowledge among quasi-experimental groups in

the second round of data collection.

Table C.2.
Results of Cross-Tabulation Analysis on the Scores of the First Procedural-
Knowledge Test (First Round).
Item
Number

Subitem
Number

Minimum
Score on
Subitem

Maximum
Score on
Subitem

Score on
Subitem

Number of
Students
Achieving
This Score

Percentage of
Students
Achieving This
Score

1 1 0.000 2.500 0.000 18 26.87%

2.500 49 73.13%

2 0.000 2.500 0.000 37 55.23%
2.500 30 44.77%

2 1 0.000 2.500 0.000 39 58.20%

2.500 28 41.80%

2 0.000 2.500 0.000 27 40.29%

2.500 40 59.71%

3 1 0.000 1.250 0.000 52 77.61%

0.625 1 1.49%

0.938 1 1.49%

1.250 13 19.41%

2 0.000 1.250 0.000 50 74.63%
0.625 1 1.49%

0.938 1 1.49%

1.250 15 22.39%

3 0.000 2.500 0.000 53 79.10%

1.250 5 7.46%

1.875 2 2.99%
2.500 7 10.45%

4 1 0.000 5.000 0.000 44 65.67%

1.250 8 11.94%

2.500 10 14.93%

5.000 5 7.46%

APPENDIX C: MATERIAL FOR DATA-COLLECTION 450

Table C.3.
Results of Cross-Tabulation Analysis on the Scores of the Second Procedural-
Knowledge Test (First Round).

Item
Number

Subitem
Number

Minimum
Score on
Subitem

Maximum
Score on
Subitem

Score on
Subitem

Number of
Students
Achieving
This Score

Percentage of
Students

Achieving This
Score

1 1 0.000 2.500 0.000 9 12.86%

2.500 61 87.14%

2 0.000 2.500 0.000 8 11.43%

2.500 62 88.57%

3 0.000 2.500 0.000 37 52.86%

2.500 33 47.14%

4 0.000 2.500 0.000 11 15.71%

2.500 59 84.29%

2 1 0.000 1.250 0.000 35 50.00%

1.250 35 50.00%

2 0.000 1.250 0.000 49 70.00%

0.625 5 7.14%

1.250 16 22.86%

3 0.000 2.500 0.000 46 65.71%

0.625 1 1.43%

1.250 9 12.86%

2.500 14 20.00%

3 1 0.000 2.500 0.000 45 64.29%

1.250 8 11.43%

2.500 17 24.29%

2 0.000 2.500 0.000 38 54.29%

1.250 3 4.29%

2.500 29 41.43%

APPENDIX C: MATERIAL FOR DATA-COLLECTION 451

Table C.4.
Results of Cross-Tabulation Analysis on the Scores of the Third Procedural-
Knowledge Test (First Round).

Item
Number

Subitem
Number

Minimum
Score on
Subitem

Maximum
Score on
Subitem

Score on
Subitem

Number of
Students
Achieving
This Score

Percentage of
Students

Achieving This
Score

1 1 0.000 1.250 0.000 6 8.57%

1.250 64 91.43%

2 0.000 1.250 0.000 4 5.71%

1.250 66 94.29%

3 0.000 1.250 0.000 34 48.57%

1.250 35 50.00%

4 0.000 1.250 0.000 17 24.29%

1.250 53 75.71%

2 1 0.000 2.500 0.000 39 55.71%

1.250 5 7.14%

2.500 26 37.14%

2 0.000 2.500 0.000 51 72.86%

0.625 1 1.43%

1.250 10 14.29%

1.875 4 5.71%

2.500 4 5.71%

3 1 0.000 2.500 0.000 27 38.57%

1.875 1 1.43%

2.500 42 60.00%

2 0.000 2.500 0.000 23 32.86%

1.250 1 1.43%

1.875 2 2.86%

2.500 44 62.86%

4 1 0.000 2.500 0.000 43 61.43%

1.250 4 5.71%

1.875 1 1.43%

2.500 22 31.43%

2 0.000 2.500 0.000 56 80.00%

1.250 8 11.43%

2.500 6 8.57%

APPENDIX C: MATERIAL FOR DATA-COLLECTION 452

C.12. First Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (Second Round)

The following items were included in the first procedural-knowledge test. This

measurement took place at the start of the fourth lesson since the beginning of the

study and it took approximately 15 minutes to complete. The procedural knowledge

of integer, arithmetic expression, string, output-statement, input-statement and

variable was measured.

[5 points] Question I: Write under each command the output produced after its
execution:
1. [Output statement] (22-2)/2-3*2 [2.5 points if correct]

..
2. [Output statement] “12*3” [2.5 points if correct]

………………………………………………………………..

[5 points] Question II: Given that the value of variable A is 10, write under each
command the output produced after its execution:
1. [Output statement] “A+10” [2.5 points if correct]

……………………………………………………………………………………
2. [Output statement] A+10 [2.5 points if correct]

………………………………………………………………………………..

[5 points] Question III:
a. Fill the missing commands in the following program so that it

1. requests from the user to input an integer number [1.75 points if correct]
2. prints to screen the result of the multiplication of this number by five [1.75

points if correct]

[Declare Integer Variable] Number
………………………………
[Output statement] Number ……………………………

b. Which of the following commands produces the output

APPENDIX C: MATERIAL FOR DATA-COLLECTION 453

The number you entered is [followed by the number entered by
the user]. [2.5 points if correct]

1. [Output statement] “The number you entered is ”
2. [Input statement] “The number you entered is ”, number
3. [Output statement] number, “The number you entered is ”
4. [Output statement] “The number you entered is ”, number

[5 points] Question IV:
a. Which of the following commands would you modify in order to produce the

output:

value of A to the power of two = (followed by the value of A2)

instead of the output:

A+1

[Declare Integer Variable] A
[Input statement] A
[Output statement] A+1

b. Write the command that produces the following output:

value of A to the power of two = [followed by the value of A*A]

APPENDIX C: MATERIAL FOR DATA-COLLECTION 454

C.13. Second Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (Second Round)

The following items were included in the second procedural-knowledge test. This

measurement took place after the second declarative-knowledge measurement

(after five lessons since the beginning of the study) and it took approximately 15-20

minutes to complete. The procedural knowledge of integer, arithmetic expression,

string, output-statement, input-statement, variable and assignment-statement was

measured.

[10 points] Question I: Write under each group of commands the output produced
after its execution:
1. [Declare Integer Variable] Age

[Assignment statement] Age <- 20
[Output statement] “Age/2 =” , Age/2 [2.5 points if correct]

..

2. [Declare String Variable] Title
[Assignment statement] Title <- “6th School” [Output Statement] “I go to the ”,

Title [2.5 points if correct]

………………………………………………………………..

3. [Declare Integer Variable] Mark
[Assignment statement] Mark <- 10
[Assignment statement] Mark <- 20
[Output statement] Mark [2.5 points if correct]

……………………………………………………………………………………

4. [Declare String Variable] Address
[Input statement] Address
[Assignment statement] Address <- “Patras 10”
[Output statement] Address, Address [2.5 points if correct]

………………………………………………………………………………..

APPENDIX C: MATERIAL FOR DATA-COLLECTION 455

[5 points] Question II: Suppose that a program includes two integer variables,
namely P and R,

1. Write (in natural or programming language) the command that assigns value 3
to variable P[1.25 points if correct]

……………………………………………………………

2. Which of the following command requests from the user to input a value to
variable R [1.25 points if correct]

a. [Assignment statement] P
b. [Input statement] R
c. [Output statement] P
d. [Assignment statement] R
e. [Output statement] R
f. [Input statement] P

3. Complete the following command so that it produces the output:
P times R equals (followed by the result of P*R). [2.5 points if correct]

[Output statement]…………………………………………………………

[5 points] Question III:
1. a. Which of the following commands should be modified, so that the value of

B is given by the user (input) B, instead of being assigned to B. [1.25 points if
correct]

b. Write a command that requests from the user to give (input) a value to
variable B[1.25 points if correct]

…………………………………………………………………………………………….

2. Modify the appropriate command(s) of the following program, so that its
execution prints to screen the result of A+B, instead of printing the values of
A and B [2.5 points if correct]

[Declare Integer Variable] A
[Declare Integer Variable] B
[Assignment statement] A <- 10
[Assignment statement] B <- 20
[Output statement] A
[Output statement] B

APPENDIX C: MATERIAL FOR DATA-COLLECTION 456

C.14. Third Procedural-Knowledge Test for Secondary-Education Quasi-

Experiment (Second Round)

The following items were included in the third procedural-knowledge test. This

measurement took place after the third declarative-knowledge measurement (at the

end of the study) and it took approximately 20-25 minutes to complete. The

procedural knowledge of integer, arithmetic expression, string, output-statement,

input-statement, variable, assignment-statement, iteration-statement, procedure,

procedure call, input parameter, logical condition and conditional statement was

measured.

[5 points] Question I: Write under each group of commands the output produced by
its execution:
1. [Declare String Variable] City

[Assignment statement] City <- “in the city of ”
[Output statement] “I live in ”, City, “Patras” [1.25 points if correct]

..

2. [Declare Integer Variable] Age
[Declare String Variable] Name
[Assignment statement] Age <- 7
[Assignment statement] Title <- “I am ”
[Output statement] Title , Age * 2, ”years old” [1.25 points if correct]

………………………………………………………………..

3. [Declare Integer Variable] K
[Iteration statement: K = 1 TO 3]

[Output statement] K + 1
[End Iteration statement] [1.25 points if correct]

……………………………………………………………………………………
……………………………………………………………………………………
……………………………………………………………………………………

4. [Declare Integer Variable] Mark
[Assignment statement] Mark <- 8
[If statement] (Mark + 5 < 10)

[Output statement] “Failed”

APPENDIX C: MATERIAL FOR DATA-COLLECTION 457

[Else]
[Output statement] “Passed”

[End If statement] [1.25 points if correct]

………………………………………………………………………………..

[5 points] Question II:
a. Complete the missing commands in the following program so that

1. it requests from the user to give (input) a name to string variable NAME
[2.5 points if correct]

2. it prints to screen the value of NAME five times [2.5 points if correct]

[Declare String Variable] NAME
………………………………
[Iteration Statement]…………………….

[Output Statement] ……………………………
[End of Iteration Statement]

[5 points] Question III:
1. Modify the following program, so that the logical condition checks whether the

value of variable A is less than 100, instead of greater than 0[2.5 points if
correct]

2. Given the new logical condition, modify the appropriate commands so that the
output of program’s execution is Value greater than 100 (when A>=100) and
Value lesser than 100 (when A<100) [2.5 points if correct]

[Declare Integer Variable] A
[Input statement] A
[If statement] (A>0)

[Output statement] “Value greater than 0”
[Else]

[Output statement] “Value lesser than 0”
[End If Statement]

[5 points] Question IV:
1. Complete the missing commands in the following procedure, so that it

calculates the value of input parameter x to the power of three and prints it to
screen [2.5 points if correct]

[Procedure power3 (integer variable X)]
[Output statement] …………………………..

[End Procedure]

APPENDIX C: MATERIAL FOR DATA-COLLECTION 458

2. Which of the following commands should be used in the main procedure, so
that it calls procedure power3 to calculate the value of variable A to the power
of three [2.5 points if correct]

[Main Procedure]
[Declare Integer Variable] A
[Input statement] A
……………………………….

[End Main Procedure]

a. [Call statement] power3 ()
b. [Output statement] A * A * A
c. [Call statement] power3 (A)
d. [Input statement] A
e. [Call statement] power3 (X)

APPENDIX C: MATERIAL FOR DATA-COLLECTION 459

C.15. Practical Test for Secondary-Education Quasi-Experiment (Second

Round)

The practical test consisted of the following items and was administered only in the

second round of data collection. Students were asked to create the following three

programs with the help of the programming tool they had been using during the

study. The practical test took approximately 30 minutes to complete.

Program 1

Create a program using Koios / Glossomatheia / MicroworldsPro that requests from

the user to give (input) a name to the string variable NAME and an integer number to

integer variable TIMES. The program prints to the screen the value of NAME as

many times as the value of TIMES.

Program 2

Use Koios / Glossomatheia / MicroworldsPro to create a program with a procedure

named OPP. Procedure OPP takes an integer input parameter X and prints to the

screen the opposite number of X, namely -X. The main procedure requests from the

user to give (input) an integer number to the integer variable NUMBER, and with the

use of OPP prints to screen the opposite value of NUMBER.

Note: MicroworldsPro does not support the expression -X, to calculate the opposite

of X. Therefore, the following hint was given to MicroworldsPro users only.

Hint: Calculate –X using the formula: -X = -1 * X.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 460

Program 3

Create a program using Koios / Glossomatheia / MicroworldsPro that requests from

the user to give (input) an integer number to the integer variable GRADE. If the

value of GRADE is less than 10, then the string FAIL will appear on the screen,

otherwise the string PASS will appear on the screen.

APPENDIX C: MATERIAL FOR DATA-COLLECTION 461

C.16. Marking Scheme for Practical Test

The following scheme was used in order to objectively assess the programs

produced by students during the practical test. Each produced program received

specific points for including the appropriate programming element(s) or presenting

particular programming properties. The mark of each program was the sum of the

points received. The maximum number of points awarded for each programming

element/property for the three programs is presented in Tables C.5, C.6 and C.7.

Table C.5.
Marking Scheme for the First Program Of Practical Test

Elements and Properties of Program 1 Points
Declaration of variables. 0.75
Correct syntax of declaration of variables. 0.25
Use of input statement. 1.25
Correct syntax of input statement. 0.50
Use of output statement. 1.25
Correct syntax of output statement. 0.50
Use of iteration statement. 1.75
Correct syntax of iteration statement. 0.75
Correct order of commands. 1.00
The program runs. 1.00
The program runs correctly. 1.00
TOTAL 10.00

Table C.6.
Marking Scheme for the Second Program Of Practical Test

Elements and Properties of Program 2 Points
Declaration of variables. 0.750
Correct syntax of declaration of variables. 0.250
Use of input statement. 0.750
Correct syntax of input statement. 0.250
Use of output statement. 0.750
Correct syntax of output statement. 0.250
Creation of procedure and input parameter. 1.375
Correct syntax of procedure and input parameter creation. 0.625
Calling procedure. 1.375
Correct syntax of procedure calling. 0.625
Correct order of commands. 1.000
The program runs. 1.000
The program runs correctly. 1.000
TOTAL 10.000

APPENDIX C: MATERIAL FOR DATA-COLLECTION 462

Table C.7.
Marking Scheme for the Third Program Of Practical Test

Elements and Properties of Program 3 Points
Declaration of variables. 0.75
Correct syntax of declaration of variables. 0.25
Use of input statement. 0.75
Correct syntax of input statement. 0.25
Use of output statement. 0.75
Correct syntax of output statement. 0.25
Use of conditional statement/formation of the appropriate
condition.

1.75

Correct syntax of conditional statement/condition. 0.75
Use of else statement. 1.00
Correct syntax of else statement. 0.50
Correct order of commands. 1.00
The program runs. 1.00
The program runs correctly. 1.00
TOTAL 10.00

