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Abstract 

This thesis focuses on the development of an innovative location-based scheduling 

methodology and a computer-based model for improving earthwork operations in 

road construction projects. Analysis of existing planning and scheduling practices in 

road construction projects conducted in the course of this research concluded that 

planning, scheduling and resource allocation are largely dependent on subjective 

decisions. Also, shortcomings exist due to the distinct characteristics of earthworks, 

e.g. one-off projects with uncertain site conditions and soil characteristics, causing 

delays and cost overruns of projects.  

 

The literature review found that existing linear scheduling methods provide 

inaccurate location-based information about earthworks and fail to integrate different 

productivity rates. A survey was used to capture and analyse industrial practices and 

issues related to delays and cost overruns. This analysis revealed that the accurate 

location-based information is vital for efficient resource planning and progress 

monitoring. Following these findings, a theoretical framework and specification 

were developed to automate location-based scheduling and visualisation of 

information. A prototype model was developed by integrating road design data, 

sectional quantities, productivity rates, unit cost, site access points, and arithmetic 

algorithms. The algorithms underpinning the model enable the generation of time-

location plans automatically as a key output of the model. Weekly progress profiles, 

space congestion plans, and cost S-curves are the other outputs. A cut-fill algorithm 

was developed to identify optimum quantities of earthwork and its associated costs. 

  

Experiments were conducted with design data provided by a road construction 

company to demonstrate the model‟s functionality. Sensitivity analysis was used to 

identify the critical factors relating to earthwork scheduling. It was found that the 

model is capable of generating time-location plans, considering the critical factors 

and location aspects. Finally, the model was evaluated using a case study and 

validated by road construction professionals using an indirect comparison method. It 

was concluded that the model is a valuable tool for producing location-based 

scheduling, optimising resource planning and assisting in the communication of 

scheduling information from the location viewpoints in the earthwork projects. 
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Chapter 1 

INTRODUCTION 

 

1.1  Introduction 

 

The construction industry has distinct characteristics in comparison with other 

industries. These include one-off projects, site production, and temporary 

organisation (Koskela, 2000). The planning and scheduling processes of construction 

projects are challenging tasks and the decisions taken in the planning stage have a 

major impact on the success of project execution from its early imaginary stage to 

the project completion stage (Ahmed and Walid, 2002). Planning and scheduling 

tasks involve careful allocation of resources along with space/location in linear 

construction projects. Resource allocation includes the distribution of construction 

equipment, materials and workers at the correct locations when necessary throughout 

construction operations. Failure to select the optimum activities and the correct 

allocation of resources in relation to locations can have an adverse effect on project 

cost, duration, space congestion, and the safety of site works in construction projects 

(Mawdesley et al, 2004). 

 

In order to innovate and to contribute to the enhancement of the scheduling process, 

this research study was undertaken to develop a methodology and a computerised 

model for the earthworks scheduling and visualisation of the scheduling information 

from a location viewpoint in road construction projects. The research study devises a 

decision-support tool to assist construction managers in resource scheduling and to 

communicate the scheduling information effectively in relation to location 

throughout earthwork construction operations. The study examines existing 

techniques and tools already used to develop a design specification for a prototype 

model, using Information Technology (IT) techniques relevant to the construction 

industry for information storage, processing, visualisation and communications.  

 

The remainder of this chapter outlines the research background, statement of 

problem, objectives, methodology, contributions, scope and limitations, and 

organisation of this thesis, with a brief introduction to each chapter. 
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1.2   Research Background   

 

This section presents the overview of the construction industry and road 

construction, and outlines the importance and characteristics of earthwork 

operations. 

 

1.2.1 Overview of construction industry 

 

The construction industry represents a significant part of the Gross Domestic Product 

(GDP) and employment worldwide. It plays an important role in reactivating 

economic cycles following a downturn and represents one of the key economic 

indicators. For example, the second largest output in the EU is the UK construction 

output, and construction contributes 8.2% of the national Gross Value Added (GVA) 

according to an annual report of UK construction statistics (BERR, 2007). 

 

A report published by the National Audit Office (NAO) UK in 2005 indicated that 

45% of construction projects carried out by government departments/agencies were 

over budget, and 37% of construction projects were delivered behind schedule. It 

revealed that a key contributory factor to the poor performance of construction 

projects was the lack of effective planning, streamlined procurement and 

communication amongst construction companies, consultants, clients, subcontractors 

and suppliers (NAO, 2005).  

 

A report produced by Bourn (2007), and published by NAO, highlighted that road 

development and improvement projects costs were 40% higher than the initial  cost 

estimates prepared before 2003 (considered as the base year). The largest increase in 

construction costs occurred due to inflation, design changes, underestimating of 

structural requirements, changes in interconnecting roads, meeting stakeholder 

requirements, increased complexity of projects, and unforeseen works such as the 

discovery of archaeological remains and weather patterns. The other major factors 

included in increased production costs were the cost of preliminary works (site setup, 

erection of temporary facilities and site transport), and the costs of re-routing utilities 

(gas, water and electricity). The Bourn report (2007) pointed out that accurate 
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estimating could reduce the variation in project cost and time. The development of 

an advanced planning and scheduling system for road construction projects can 

therefore be considered as an important contribution towards reducing construction 

cost by providing improved scheduling and visualisation of the processes involved.  

 

1.2.2  Overview of road construction 

 

Castro (2005) conducted a study that analysed a total of 145 road construction 

projects in both Europe and Africa, including new roads, refurbishing roads and 

upgrading roads, but excluding gravel roads, tunnels and bridges. He found that the 

earthworks component represented around 19.58% of the monetary value of all 

activities in road construction projects (see Table 1.1 below). 

 

Table 1.1 Percentage of earthworks, drainage and pavement in road works (Castro, 2005) 

Earthworks Drainage Pavement Road 

Furniture 

Minor 

Structures 

Miscellaneous Site 

Establishment 

19.58% 11.78% 44.58% 6.10% 4.35% 8.89% 4.72% 

 Total 100% 

 

However, the earthworks component in terms of monetary value was found to be 

different when the main contracts included only three activities: earthworks, 

drainage, and pavement separately (see Table 1.2). 

 

Table 1.2 Percentage of earthworks, drainage and pavement in road works (Castro, 2005) 

Type of works Area Earthworks Drainage Pavement 

New 

Road 

Europe 41.22 15.85 42.93 

Africa 26.26 22.22 51.52 

Rehabilitation Europe 4.99 12.50 82.51 

Africa 1.09 7.69 91.22 

Up-Grading Europe 21.28 20.30 58.42 

Africa 11.68 17.21 71.11 

 

The results shown in Table 1.2 indicate that the earthworks component represents 

41.22% in the new road projects, 4.99% in the rehabilitation or refurbishment 

projects, and 21.28% in the road upgrading projects in Europe; in Africa, the 
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earthworks component represented 26.26% in new road projects, 1.09% in 

rehabilitation, and 11.68% in upgrading projects (Castro, 2005).  

The values presented in Table 1.2 confirm that the percentage of the earthworks 

component varies according to the topographical location and type of construction 

project. Earthwork activity is the most important activity because it controls overall 

progress; it contributes the highest cost, and affects the sequence of other activities. 

Exploration of earthworks operations in detail is needed to develop a computer-

based model. The following section outlines the activities undertaken. 

1.2.3 Overview of earthwork operations 

 

Earthwork activities are the most uncertain and changeable in road construction due 

to exposure to unpredictable factors during construction operations; for example, 

weather factors, geotechnical alterations, water table variations, site constraints and 

environmental restrictions. They involve a wide range of activities: excavation, 

hauling, spreading, and compacting of the soil mass to achieve the desired ground 

level characteristics in a construction project. Figure 1.1 presents a workflow map of 

construction activities that take place, from start to finish.  

Start 

(Mobilisation)

Surveying and 

Staking

Access road 

construction

Clearing and 

grubbing

Earthworks

(Cut/Fill)

Drainage work

(Storm water)  

Sub grade 

Fine grading

Sub base

(Bulk)

Sub base

(fine)

Sub drains

installation

Electrical 

conduits

Base & 

Shoulders

Paving 

Layers : Priming, SBST/,  

DBST or Asphalting 

Concrete as wearing course

Barrier walls

Road 

sign/

signal

Check Out/

Acceptance

Demobilization

(End)

Guard 

Rails

Road 

Marks

Figure 1.1 Map of workflow of tasks in a road construction project (Hassanein and Moselhi, 2004) 
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According to Kim and Russell (2003), the earthwork operations are subdivided into 

three major phases (see Figure 1.2). The figure outlines the sequence of earthwork 

processes arranged under three phases: site preparation, grade development (cut-fill 

operations), and finish works. 

Phase -1

 (Site 

Preparation)

Phase-3

(Finish Works)

Phase-2

(Grade 

Development)

Phases/Stages of Earthwork Process

· Clearing & Grubbing

· Top soil striping

· Removal of unsuitable 

materials at bottom of 

fill sections

· Push for cut and fill

· Haul from  cut or borrow to 

fill sections/landfill

· Laying and compacting 

surface at 90-95 % density and 

optimum moisture content
· Grading top surfaces

· Drainage ditches and 

connections

· Backfill and compaction

Figure 1.2 Process mapping of earthwork operations with detailed activities (Kim and Russell, 2003) 

The earthwork activity also affects the rest of project performance (Kim and Russell, 

2003). Therefore, it is necessary to enhance earthwork planning and scheduling 

processes by considering location aspects in road construction projects.  

1.3  The Research Rationale 

 

Earthworks have unique characteristics and take place at the early stages of 

construction, particularly in linear construction projects such as roads, railways, and 

pipelines. They constitute a major component in road construction projects, absorb 

high costs, and there is a need to deal with haul distances for balancing cutting and 

filling quantities in a cost-effective manner. These activities also direct the 

sequencing of the rest of the road activities. Decisions taken during the planning 

stage of earthwork operations have a high impact on the overall performance of the 

project (Kim and Russell, 2003; Mawdesley et al, 2004).  

Space or location congestion occurs when the space requirements of an activity 

interfere with another activity‟s space requirement. Space congestion causes several 
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problems, including delay in work progress, loss in productivity, and incremental 

increase of resource wastage at construction sites (Akinci et al, 2002 and Dawood et 

al, 2006).  

 

Moreover, Jongeling and Olofsson (2007) highlighted that location-based scheduling 

provides an alternative solution for planning of workflow, resources and crews in 

construction projects. Andersson and Christensen (2007) conducted three case 

studies and found that three important applications of location-based scheduling 

improved schedule overview, establishment of workflows and project control. They 

also found that the location-based scheduling has a practical application in the site 

management of building projects.  

 

According to Kenley and Seppanen (2010, p123), the main significance of location-

based planning is to arrange the productivity of work activities according to 

locations. It assists in organising both activity and work sequence for production 

efficiency. Location-based scheduling can be used to determine the impact of control 

actions taken to recover from a delay from the original schedule. The location-based 

scheduling tools are also important for time claim assessment with regard to costs in 

construction projects. 

 

With consideration of the previous factors, the development of an effective 

simulation model will help project planners and construction managers make 

decisions using a systemic approach rather than using „rule of thumb‟/previous 

experiences. 

 

1.4  The Problem Statement 

 

The effective applications of planning and scheduling techniques such as Critical 

Path Method (CPM), and Programme Evaluation and Review Technique (PERT) are 

limited because the activities associated with linear construction projects such as 

roads, railways and pipelines are fundamentally different from building projects. 

Most of the work activities in road construction projects are linear activities. A linear 

scheduling method has the potential to provide significant enhancement in terms of 
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visual representation of working locations, and to progress monitoring because the 

method allows the project schedulers and construction managers to plan road 

construction projects visually and determine the controlling activity path and 

locations (Hamerlink and Yamin, 2000).  

 

Arditi et al (2002) argued that earthwork projects require a separate planning task for 

each project individually due to the distinctive characteristics of earthworks. CPM 

networks are more suitable for large complex projects; however, Line-of-Balance 

(LOB) and Linear Scheduling Method (LSM) are more practical for the repetitive 

and linear construction projects (Mawdesley et al, 2004). 

 

Arditi et al (2002) identified that the CPM algorithm is designed for duration 

optimisation rather than dealing with resource constraints associated with repetitive 

construction projects. The CPM algorithm fails to ensure the smooth transfer of 

crews from unit to unit without conflicts in activities, space/location and resource 

idleness. This results in problems in the hiring and procurement of equipment, labour 

and materials during linear project activity.  

 

According to Mattila and Park (2003), the subjective division of repetitive activities 

from location to location, the inability to schedule the continuity of resources and 

display the  activity rates of progress, and failure to  provide any information on 

performed work on a project site are key limitations of CPM. The LSM is used to 

reduce the interruption of continuous or repetitive activities, to maintain resource 

continuity, and to determine the working locations during progress on any given day 

from the schedule.  

 

DynaRoad
TM

(2006) developed a computer model (software) for producing a mass- 

haul plan and location-based schedule for earthwork activities, particularly in linear 

construction projects. This model failed to generate a sufficiently detailed location-

based schedule capable of providing accurate information of weekly locations 

throughout construction operations. In earthwork operations, the quantities of cutting 

and filling vary from location to location in a road section and therefore the 

resources needed to manage the processes vary according to the quantities of 

earthwork required at each location. 
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 From the above observations, it was derived that innovative research efforts to date, 

attempting to address earthwork planning problems and scheduling issues, have 

failed to produce sufficiently precise scheduling of tasks from a location perspective. 

The research background and problems presented above show that there is a need for 

an effective location-based planning and scheduling system for earthwork 

operations. This research study, therefore, focuses on improving linear scheduling 

methods by developing a prototype model that can provide weekly or daily 

information relating to working locations throughout the earthwork operations. The 

next section includes the study‟s aim, objective, research methodology, scope, 

limitations and contribution to knowledge. 

 

1.5  Research Descriptions 

 

The following subsections describe the research undertaken in this thesis and include 

research hypothesis, research aim and objectives, research methodology, research 

scope and limitations, and research contributions.  

 

Research Hypothesis: “A location-based schedule generated by a prototype model 

provides accurate scheduling information of working locations on a weekly or daily 

basis. The location-based schedule assists construction managers in allocating the 

critical resources and communicating the scheduling information from the location 

aspects.” 

 

1.5.1 Research aim and objectives 

 

The aim of this research study is to enhance earthworks scheduling and to visualise 

the scheduling information from location aspects by developing a methodology and a 

prototype model. The model helps to analyse the effects of locations in resource 

planning from location viewpoints of earthworks components in road construction 

projects.  

 

To achieve this aim, the following objectives were set:  
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1. To review the state-of-the-art techniques and tools utilised in earthwork 

planning, scheduling and visualisation of construction processes, and to 

identify knowledge gaps in the application of such techniques and tools.  

 

2. To review the existing practices and limitations, and to encapsulate 

construction site knowledge of earthwork operations, in linear 

construction projects. 

 

3. To design a framework of a prototype by integrating productivity data, 

road design data and construction site knowledge of earthwork 

operations in road projects. 

 

4. To develop a prototype model to semi-automate the generation of 

location-based scheduling (time-location plan), space congestion plans, 

progress profiles and location-based costing for the earthwork 

component. 

 

5. To develop an algorithm using linear programming techniques and 

integrating it with the prototype model to optimise planning parameters 

such as cut-fill quantities and locations. 

 

 

6. To perform experiments and sensitivity analysis using case studies 

derived from road construction projects for validating the 

functionalities of the prototype model. 

 

1.5.2 Research methodology 

 

Kothari (2008, p5) suggested that there are two basic research approaches: 

quantitative and qualitative. The quantitative approach involves the generation of 

data in quantitative form by quantitative analysis in a proper and rigid way, whereas 

the qualitative approach deals with subjective judgment, i.e. attitudes, opinions and 

behaviour. The simulation approach, which is part of the quantitative approach, is 

useful in building models for understanding the future conditions. Fitzgerald et al 

(2002, p50) stated that prototyping is a technique and a philosophy for system 
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development. The prototyping approach is utilised widely and is popular in the 

development of computer-based modelling because of rapid delivery of the systems 

and the precise determination of system requirements (Dennis et al, 2008). 

Therefore, the prototyping approach was selected as the research methodology to 

accomplish the aim of this research study. Other techniques, including a literature 

review, a survey of construction industries using semi-structured interviews, 

development of a prototype model, and the demonstration and validation of the 

model functionalities with case studies, were utilised to achieve the research 

objectives. The research methods that are used in this research study are described as 

follows: 

 

· A comprehensive literature review was carried out to identify the current trends 

and the state-of-the-art techniques utilised in the earthwork planning, 

scheduling, optimisation and visualisation of earthwork operations. The review 

was conducted by analysing the existing techniques in earthwork operations, 

thereby meeting the criteria of the first objective. 

 

· A construction industries survey was conducted by designing a questionnaire 

circulated to 30 construction companies involved in linear construction projects, 

using random sampling. The survey was carried out by interviewing the 

companies and obtaining the responses via a questionnaire to identify issues in 

existing practices, critical factors affecting earthworks scheduling, and the 

potential application stage of the model proposed in earthwork operations. This 

satisfies the second objective.  

 

· To further address the second objective, a review of construction processes was 

also carried out by interviewing a construction manager of a construction 

company to understand, in depth, the detailed processes involved in road 

construction projects and to identify the stages where the developed model could 

be applied in construction operations.  

 

· A framework of a prototype was outlined by incorporating the findings from the 

literature review, industry review and construction industry survey. The 

framework was developed by integrating road design data, sectional quantity of 
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cuts and fills, variable productivity data, arithmetic algorithms for modelling 

earthwork operations, construction site knowledge, working lengths and site 

access points. The specification of the model was arranged into inputs, process 

and outputs. This addresses the third objective of the study. 

 

· To meet the fourth objective, a prototype model was developed using a 

Microsoft Excel platform with a user interface developed through Visual Basic 

for Applications (VBA) programming language. The VBA was used in 

integration of the data generation module, the visualisation module, the 

“RoadSim” database, and Excel solver features. Various VBA macros were 

developed to provide the different functionalities of the model. 

 

· The fifth objective was addressed by developing a cut-fill optimisation module, 

which was developed by integrating the mass haul diagram, unit cost data and 

Excel solver. The Excel solver has been developed using the Simplex algorithm. 

The mass haul diagram and construction knowledge were used to identify the 

possible site access points and to generate a cut-fill matrix table of earthwork. 

 

·   To meet the sixth objective, experiments were conducted with the developed 

prototype model using case studies and design data collected from recently 

completed road projects. The functionality of the model was validated by 

demonstrating it to road construction professionals. Sensitivity analysis was 

carried out to analyse the impacts of critical factors such as equipment type, soil 

characteristics and access points for resource planning and visualisation of 

weekly progress profiles.  

 

1.5.3 Research contributions  

The contributions to knowledge from this research study are as follows: 

 

1. A prototype model constituted by a new methodology generates location-

based schedules, space congestion plans, weekly progress profiles and the 

cost profiles of earthwork from location aspects throughout construction 

processes. 
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2. The model helps to analyse the impact of different factors associated with 

productivity data and location attributes by means of “what-if scenarios” in 

earthworks scheduling, and it helps to visualise the scheduling information 

of resources from the location viewpoint. 

 

3. Location-based schedules generated by the prototype model assist 

construction managers in resource planning from a location aspect. This 

includes mobilising suitable sets of equipment and materials at correct 

locations and avoiding space congestion at an early stage of earthworks.  

 

4. Development of a platform where the prototype model can be further 

tailored to extend to other road activities like pavements and road furniture, 

and to other linear construction projects like railways, canals, and pipelines. 

 

5. Research contributions were presented, reviewed and validated by the 

publication of research papers in journals and in conference proceedings.  

 

1.5.4 Research scope and limitations 

 

The scope of this research study is limited to the earthworks component in new road 

construction projects. In the study, a typical cross-section, having regular side-slopes 

and a transverse-slope, was assumed for analysing and generating location-based 

scheduling and earthwork progress profiles. The modelling of rock excavation from 

the rest of earthwork operations was excluded in the development of the prototype. 

Other structures such as intersections, bridges and tunnels, which are considered as 

separate projects for the planning, design and construction purposes in road projects, 

are not included in the development of the prototype. The prototype is limited, with a 

sectional length of 1.5 to 7km for generating the location-based earthwork schedules, 

and provides a tool for the visualisation of scheduling information from the location 

aspects in a linear construction project.  

 

The weather, which has a high influence in determining the rates of earthwork 

productivity, is excluded in the study because of the complexity in productivity 

simulation and the uncertainty of weather patterns according to the topographical 
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locations of a construction site. To mitigate the risk associated with adverse weather 

conditions, the effects of weather in the construction schedule are, however, 

considered by planners as a contingency plan by adding a few days. Considering the 

topographical conditions and the weather patterns of a construction site, the likely 

delay due to adverse weather is estimated, and the estimated duration is incorporated 

in the earthwork scheduling. The details of the assumptions made for the 

development of a prototype model are outlined in Chapter 4 of this thesis. 

 

1.6  Structure of Thesis 

 

The structure of this thesis is presented in Figure 1.3 and contains eight chapters 

followed by references and appendices. A brief outline of each chapter follows. 

 

Chapter One presents the introduction and background of the research study; 

problem statement; aim and objectives; research methodology; significance and 

justification; scope and limitations; and a map of the thesis structure. It contains a 

diagram of the thesis structure and the relationships between the different chapters 

(see Figure 1.3).  

 

Chapter Two presents the rigorous and critical review of the literature, including 

previous research studies in the field of construction planning, scheduling, 

simulation and visualisation technology applied in road construction projects. The 

review focused on recent academic and industry research studies dealing with the 

theory of 4D modelling and their applications in the construction industry, 

particularly the earthwork component of road projects. 

 

Chapter Three provides a detailed description of the construction industry survey 

undertaken to identify existing practices in construction planning, scheduling and 

visualisation processes for earthwork operations in road construction projects. This 

chapter covers the questionnaire design; methodology for the data collection; the 

data analysis; and the presentation of the survey findings. The survey findings were 

utilised to develop the specification of a prototype model for earthwork planning and 

visualisation of road construction processes.  
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Chapter-1: Introduction

· Research background and rationale 

· Research aim and objectives, 

· Research methodology

· Research significances and contributions  

· Thesis structure

Chapter-2: Literature Review

· Planning and scheduling techniques

· Location based planning in construction

· Simulation and optimisation systems

· Identification of gap from existing research  

Chapter-3: Construction Industry Survey

· Questionnaire design and sampling

· Data collection and interviews  

· Quantitative analysis of survey data 

· Survey results and conclusions

 Chapter- 4: Model Specification Development

· Framework design and specifications 

· Prototyping: Inputs, process and outputs 

· Data requirements/ identification methods

· Model functionalities design and  applications

Chapter-7: Experiments, Analysis and Validation 

· Experiments with  design information of  road projects 

· Demonstration of model functionalities by road project

· Sensitivity analysis with different variables of model 

· Discussion of findings from experiments

 Chapter-8: Conclusions  and Recommendations

· Conclusions from the research study

· Recommendations for future research  

PROBLEM

ANALYSIS

SOLUTION AND

MODEL 

DEVELOPMENT

EXPERIMENTS

AND 

VALIDATION

CONCLUSIONS

 Chapter-6: Visualisation of Scheduling 

Infomation

· Development of visualisation model

· Integration of variable productivity data

· Visualisation of earthwork profiles

· Visualisation of location-based plan 

Chapter-5: Location-Based Scheduling

· Development  for data generation module for 

time location schedule

· Economical haulage distance

· Generation of time-location schedule

· Generation of space congestion plans

Figure 1.3 Thesis structure and the relationships between chapters of the thesis 

 

Chapter Four outlines the development of the model specification by incorporating 

the findings from the literature review and the construction industry survey. The 
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framework of a prototype model was designed into three components: input, process 

and output. The conceptual diagrams of the data flow and the programming 

algorithms for the development of different functionalities of the prototype model 

are explained in this chapter. These functions include the automatic generation of 

weekly progress profiles, location-based cost profiles, time-location plans, space 

congestion plans, and optimisation of earthwork allocation quantities in the cut and 

fill sections.  

 

Chapter Five presents a detailed explanation of the development of a prototype 

model that automates the generation of location-based schedules and space 

congestion plans. The detailed data flow diagram and arithmetic algorithms for the 

development of the model functionalities are presented. The development of a mass 

haul diagram and the identification of economical haulage-distance are discussed and 

the model functionality is demonstrated using road design data. The chapter also 

explains the logic and data flow diagram for soil layer identification algorithms at 

cutting sections and demonstrates the cut-fill optimisation module and soil layer 

identifications. A demonstration of model functionalities, location-based schedules 

and space congestion plans is also presented. The impacts on location-based 

schedules due to different factors such as site access points, equipment and soil 

characteristics are analysed and demonstrated. 

 

Chapter Six discusses the visualisation aspects of the model outputs. This includes 

the logic and development process of the visualisation module to visualise the 

earthwork progress and cost profiles. The data flow diagram and programming 

languages used for the development of the visualisation engine are also explained. 

Additionally, this section includes the demonstration processes of the model 

functionalities: visualisation of weekly cost profiles, production of S-curve, time-

location plan/location-based schedules and a space-congestion plan.  

 

Chapter Seven explains the processes of the prototype model evaluation and 

validation including experimentation and sensitivity analysis of the model 

functionality with road design information. The data used was collected from road 

projects recently completed in Portugal. The chapter presents the results of the 
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experiments and the sensitivity analysis. Finally, the model functionalities were 

evaluated by the construction professionals and the findings are presented. 

 

Chapter Eight summarises the conclusions and recommendations drawn from the 

research study, the research limitations, and offers possible future recommendations. 

The published research papers from the study, references and appendices are 

included at the end of the thesis.  

 

1.7  Summary 

 

This chapter discussed the research background and rationale, and provided a 

statement of problems to be addressed by the research study. Based on these factors, 

the research aim and objectives were set. The methodology utilised to achieve the 

research objectives and contributions of this study was discussed and contributions 

of the thesis were highlighted. The scope and limitations of the study were also 

presented.  

 

The prototype model developed during the course of this study helps to analyse the 

impacts of critical factors associated with productivity values on earthwork 

scheduling and resource planning from a location viewpoint throughout construction 

operations. A number of critical factors including types of equipment, soil 

characteristics and site access points were identified; these influence the productivity 

values of earthworks, and the most important have been incorporated within the 

model in order to analyse their impacts. 

 

In this research study, it is hypothesised that the location-based schedules generated 

by the developed prototype model assist in allocating the required resources to the 

correct locations on a weekly basis and in communicating the scheduling 

information of earthworks effectively to the site team members from location aspects 

in road construction projects. The thesis structure, together with a brief introduction 

of each chapter of the thesis, was presented. The remainder of the thesis follows the 

structure developed in Chapter One. 
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Chapter 2 

Literature Review 

 

2.1 Introduction 

 

In this chapter, the previous research studies related to planning and scheduling 

techniques are examined. An identification of the state-of-the-art tools used in the 

simulation and visualisation of earthwork construction processes can then help to 

create the theoretical framework for the study. The literature review focuses largely 

on the recent academic and industrial publications, and on research projects dealing 

with the planning and scheduling techniques in linear construction projects such as 

roads, pipelines and railways.  

 

This chapter reviews the theory of a location-based planning and scheduling system 

to understand the significance of location aspects, particularly in earthwork planning 

and scheduling. It also explores the gaps in knowledge associated with linear 

scheduling techniques for the earthwork components in road construction projects. 

The issues related to the use of computer modelling for earthworks‟ scheduling and 

the visualisation of the scheduling information are also outlined, along with the 

correspondent outcomes of the past studies undertaken by previous researchers. 

 

The functionalities and limitations of existing commercial and research software that 

are appropriate in the planning, simulation, optimisation and visualisation of 

earthwork operations are highlighted. Gaps and limitations in the existing planning 

techniques and tools utilised in the earthwork operations are discussed and the 

arguments for the justification of this research study are presented. This chapter 

starts with an overview and a brief explanation of the characteristics and issues 

associated with earthwork planning in linear construction projects. 
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2.2 Overview of Earthwork Activity 

 

In road construction projects, earthwork activities usually involve significant haulage 

costs associated with the movement of soil mass. These activities also influence and 

restrict the sequencing of the rest of the work activities throughout the construction 

stage (Askew et al, 2002). Earthwork operations are affected by several factors such 

as weather, variations in the water table level, geotechnical alterations, hauling 

distances and site constraints. In practice, planning experts use the historical data of 

the weather patterns around a construction site, and consider the topographical 

locations of the proposed construction site, to estimate the possible duration of 

interruption that may affect the construction schedule. The estimated duration is then 

incorporated into the construction schedule of earthworks to reduce the impact of 

adverse weather in project delivery (Castro, 2005).   

 

The site conditions and objectives of construction works influence the selection of 

planning and scheduling techniques, and the sequencing of the work activities. 

Earthwork projects require individual planning and scheduling tasks due to their 

unique characteristics (Arditi et al, 2002). In this context, the selection of a suitable 

planning technique plays an important role in the successful execution of the 

processes involved in the earthwork operations. 

 

Mattila and Park (2003) suggested that the common planning and scheduling 

techniques are Bar Charts, Critical Path Methods (CPM), and Programme Evaluation 

and Review Techniques (PERT). These techniques are widely utilised in all types of 

construction projects, but they are less effective for construction projects that are 

linear or repetitive. Mawdesley et al (2004) stated that CPM networks are more 

suitable for large complex projects, whereas the Line-of-Balance (LOB) and the 

Linear Scheduling Method (LSM)/Time-location charts are more practical for the 

repetitive and the linear construction projects. The time-chainage diagram is also 

known as LSM, and it is widely used in those linear construction projects that have a 

repetitive nature of work activities (Kenley, 2004). The next section explains the 

existing planning and scheduling techniques and the basic characteristics of these 

techniques in relation to construction projects. These techniques include CPM, 

PERT, LOB, LSM, and Last Planner Method (LPM).  
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2.3 Review of Planning and Scheduling Techniques  

 

The selection of the correct planning and scheduling technique for a construction 

project is a crucial task for project management, particularly during the planning and 

execution phases. An efficient construction plan provides the foundation for the 

initial project cost and the success of the developed schedule of work activities. It 

requires a deep understanding and definition of the activities involved, particularly in 

an evaluation of the necessary resources and execution time of each task; the 

selection of expertise; and the identification of logical relationships amongst the 

different working tasks (Hendrickson and Tung, 2000). The next section explains the 

definitions, principles and characteristics of planning and scheduling techniques. 

2.3.1 Definitions of planning and scheduling 

 

Planning is defined as “a process of making plans for something” and scheduling is 

defined as “a process of arranging time for something” (Oxford Dictionary).  

According to Clough and Sears (1995, p53), planning construction operations 

involves the determination of what must be done, how it is to be performed and the 

sequential order in which it will be carried out, whereas scheduling determines the 

date for the start and completion of project works. In other words, planning refers to 

how, what and who, whereas scheduling refers to when and why.  

 

Harris and McCaffer (2007) divided construction planning into two levels: strategic 

planning and operational planning. Strategic planning deals with the selection of 

project objectives, including scope, procurement routes, and timescales and 

financing options, whereas operational planning involves detailed project resource 

requirements and method statements of how the works will be executed. Tender 

planning, feasibility planning and construction planning are examples of operational 

planning. Both strategic and operational level planning task require various tools and 

techniques to optimise decision making for a successful project delivery. According 

to Hendrickson and Tung (2000) the planning and scheduling tools, if required, save 

time at the initial stage of the planning and re-planning phase. In the planning stage, 

managerial decisions are needed regarding the relationships between project 

participants, resource utilisation and the type of organisations that must be 
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incorporated in the construction project. Therefore, it is necessary to find the most 

suitable computer-based tools that can assist construction managers and project 

planners in the decision-making processes; particularly in earthworks planning and 

scheduling, where existing planning tools fail to provide detailed scheduling 

information of earthwork activity from a location aspect, especially at the execution 

stage.  

 

Several studies (Jaafari, 1984; Johnston, 1981; Al Sarraj, 1990; Lutz and Halpin, 

1992; Sriprasert, 2004) have been carried out in the area of planning and scheduling 

techniques and found different types of planning techniques. According to Harris and 

McCaffer (2007), however, the following are the major planning and scheduling 

techniques:  

· Critical path method / Gantt chart  

· Programme evaluation and review techniques  

· Line-of-balance  

· Linear scheduling method / Time-location chart  

· Last planner method  

These techniques are still being used in construction projects for the purpose of 

planning and scheduling processes. However, CPM, PERT, LOB, LSM and LPM are 

the most common planning and scheduling techniques used in construction projects 

and, therefore, they deserve a more detailed explanation which is given in the 

following sections.  

2.3.2 Critical path method / programme evaluation and review techniques 

 

In 1957, CPM was discovered as a network planning tool for the management of a 

project. It depends on a deterministic technique, which uses a fixed-time estimate for 

each activity. The CPM fails to incorporate the time variations of tasks and resource 

dependencies. It also does not focus on the non-critical tasks which have a 

significant impact on the completion time of a project. Despite this, the CPM is easy 

to understand and it is extensively used in planning processes (Cooke and Williams, 

2009).  
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PERT is a network planning model which allows for randomness in activity 

completion time. In the 1950s, it was invented for the U.S. Navy‟s Polaris project, 

where thousands of contractors were employed. One of the key benefits of the PERT 

is the ability to decrease both time and cost impact for the successful delivery of any 

construction projects (Cooke and Williams, 2009). 

 

Since the late 1950s, the CPM and PERT have been adopted in the construction 

industry. During the preparation of project proposals, project managers are fully 

familiar with CPM and PERT applications such as managing project personnel and 

resource planning; tracking delayed tasks; incorporating change orders; and co-

ordinating with subcontractors (Jaafari, 1984). Roads, railways, tunnelling, high-rise 

buildings, housing projects, bridges, transmission lines and other types of linear 

construction projects have been characterised as repetitive projects (Sriprasert, 

2004). The CPM and PERT are extensively utilised in construction projects for the 

following reasons:  

1. CPM and PERT are simple and easy to use in most construction planning 

in both linear and repetitive projects, such as buildings, roads, tunnels, 

pipelines and railways.  

2. They identify the critical path and activities where more attention is 

required. 

3. They assist in determining the demand for resources such as workers and 

types of equipment in a construction project. 

4. They also assist in making efficient decisions in order to maximise site 

productivity and operational profitability. 

Arditi et al (2002) suggested that the CPM algorithm is designed for duration 

optimisation rather than dealing with resource constraints for repetitive projects. The 

CPM algorithm fails to ensure the smooth operation of crews from unit to unit 

without conflicting activities, working space and idle time for resources. This causes 

problem in producing the hiring and procurement schedule of equipment, including 

labour and materials, throughout the construction operations of linear projects. 
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Additionally, Mattila and Park (2003) pointed out that CPM was found to be 

unsatisfactory and ineffective for scheduling linear construction projects, although it 

has been used on numerous projects. The failure of the CPM technique to represent 

accurately the repetitive nature of linear construction projects has also been 

identified by several other studies (Stradel and Cacha, 1982; Chrzanowski and 

Johnston, 1986; Reda, 1990; Suhail and Neale, 1994; Harris and Ioannou, 1998; and 

Harmelink and Rowings, 1998 cited in Mattila and Park, 2003).  

 

The subjective division of repetitive activities from location to location, the inability 

to schedule the continuity of resources and display the activity rates of progress,  and 

the failure to provide any information on where the work is being performed on a 

project site, are the key limitations of the CPM (Mattila and Park, 2003). Several 

LSMs were proposed by different researchers to overcome the CPM scheduling 

limitations. These methods include the Line-of-Balance (Lumsden, 1968; Khisty, 

1970; Carr and Meyer, 1974; Al Sarraj, 1990; Halpin and Riggs 1992), the Linear 

Scheduling Method (Johnston, 1981; Vorster et al, 1992) and the Vertical Production 

Method (O‟Brien 1975; Barrie and Paulson, 1978 cited in Mattila and Park, 2003). 

 

The linear schedule is used to reduce the interruption of repetitive activities, to 

maintain continuity in resource use, and to determine the location of tasks in 

progress on any given day (Mattila and Park, 2003). The LSM produces a graphical 

schedule that helps practitioners to understand more clearly the construction 

processes from the location aspects rather than the Network schedule. These 

schedules plot work activities on an X-Y graph, where the location attribute of the 

activities is on one axis and the duration is on the other axis. Taking into account the 

above points, the author considers that the LSM is more useful in providing detailed 

scheduling information of earthwork operations from the location aspects. Therefore, 

the LOB and LSM scheduling methods deserve a more detailed discussion, and are 

described below. 

2.3.3   Line-of-balance  

The previous research studies (Johnston, 1981; Lutz and Halpin, 1992) found that 

the theory of the LOB method was invented by a company called Goodyear at the 

start of the 1940s. However, it was only effectively utilised in the early 1950s by the 
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U.S. Navy, applied to both repetitive and non-repetitive construction projects to 

control construction plans.  

Arditi et al (2001) suggested that the LOB has been known under different names; 

for example, the Construction Planning Technique (CPT) found by Peer and Selinger 

(1973); the Vertical Production Method (VPM) stated by O'Brien (1975); the LSM 

identified by Johnston (1981); the Time Space Scheduling Method (TSSM) found by 

(Stradal and Cacha, 1982); and the Repetitive Project Model (RPM) stated by Reda 

(1990). 

The LOB is a project controlling tool used in project management to collect, measure 

and present details of a project‟s status concerning time, cost and achievement of 

construction activities (Johnston, 1981). These are measured against a detailed plan, 

and the LOB displays the information on progression, status, location and timing of 

project activities and provides a measuring tool with the following objectives:  

· To compare actual progress with a pre-defined objective plan  

· To examine the deviations from developed plans and determine their impact 

with respect to the rest of the activities in a project 

· To collect timely information regarding problem areas and to indicate areas 

where appropriate corrective action is required  

· To forecast future performance of the project 

 

Lumsden (1965, cited in Cooke and William, 2009) pioneered the application of the 

LOB in construction and highlighted that the LOB was recognised as the best 

planning method for repetitive works, such as housing and flats. The LOB provides a 

visual display of the rate of working for different activities on a programme. 

Research by Arditi et al (2001) showed that the LOB technique assumes that the 

production rate of an activity is consistent throughout the construction period. The 

rate of production of an activity is linear if time is drawn on a horizontal axis and 

units or stages of an activity on the vertical axis or vice versa. The rate of production 

is represented by the slope of the production line for an activity and it is indicated in 

terms of unit per time. The LOB method controls the estimation of working hours for 

an activity and it assists in optimisation of crew size. The anticipated rate of output 
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for each activity is determined after computing the number of crews, and the LOB 

chart is generated depending upon the output productivity (the likely numbers of 

production units are plotted against time). The slope of the parallel lines is equal to 

the actual rate of output and denoted by the starting and finishing times respectively, 

for each activity, for all of the production units from the first to the last throughout 

the production operation (Arditi et al, 2002). A typical example of an LOB is 

presented in Figure 2.1 below. 

Figure 2.1 Typical view of line-of-balance (Arditi et al, 2002) 

 

Arditi and Albulak (1986) applied LOB scheduling techniques in the pavement 

construction industry and dubbed it as an “LSM” for repetitive projects. They found 

that the LOB is extremely sensitive to errors in man-hours, crew size and activity 

duration estimates. The LOB, however, cannot be used as an LSM in earthwork 

activities because the earthwork quantity varies from location to location along a 

road section due to the variation in topography. The next section discusses the linear 

scheduling method in more detail. 

2.3.4 Linear scheduling method/Time-location chart 

  

 The time-chainage diagram or time-location chart is a combination of the bar chart 

and the LOB scheduling method, and time-chainage principles have been developed 
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on these programming techniques (Cormican, 1985, cited in Cooke and William, 

2009). After analysing the past research efforts in the linear scheduling method, 

Mattila and Abraham (1998) pointed out that planning linear construction projects 

from the location aspects is very important in order to mobilise the work crew and 

resources from location to location, without space conflict at a construction site. 

Several research studies were carried out in the area of linear scheduling techniques 

(Johnston, 1981; Garold et al, 2005; Harmelink and Rowings, 1998; Harris and 

Ioannou, 1998; and Mattila and Park, 2003). They concluded that time-location 

planning is a valuable scheduling technique for planning and monitoring the progress 

of linear construction projects such as roads, pipelines and railways.  

 

According to Harris and McCaffer (2007), the time-space diagram / location-time 

chart was normally used for planning the construction works before the advent of the 

computer-based planning packages. This diagram is plotted in the form of two-

dimensional graphs in which time is represented on one axis and space on the other 

axis. The diagram allows the identification of potential conflicts in the utilisation of 

resources and assists in communicating scheduling information of work activities in 

a project. It also assists in identifying the location of the progressing activities and 

their rates of production. For linear construction activities, the diagonal lines indicate 

the start and the end date, and the working locations, while the slope of the line 

indicates the rate of progress. In a road project, the existing time-location chart, 

however, is not capable of providing accurate information relating to the locations 

and the timetable required for the earthwork operations.  

 

According to Cooke and William (2009), time-chainage diagrams are a graphical 

technique and have been widely applied to major road projects and motorways in the 

UK for many years. The technique was also used in the planning of tunnelling and 

equipment installation in the Channel Tunnel project (ICE, 1992). The time-chainage 

diagrams have distinct attributes that provide several types of information such as the 

order of activities or operations, working locations, activities progress in relation to 

direction and distance, and activities duration with key dates (start/end) of activities. 

In the existing time-location chart, earthworks and structure, including bridges and 

culverts, were displayed as a block of works at different locations. In such cases, the 
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chart lacks to display the productivity and locations information of work activities, 

particularly in the cut-fill operations of earthworks. 

 

The LSM is also known as a time-chainage graph, as a time-distance chart, or as 

location-based scheduling (Kenley, 2004; Kenley and Seppanen, 2010). A time-

location chart or an LSM is a very useful scheduling method for monitoring the 

progress in linear construction projects from location to location. The line 

corresponding to each activity in a time-location chart has a slope representing the 

respective productivity. A typical example of a linear schedule for a road project is 

shown in Figure 2.2 below. 

  

 Figure 2.2 Example of linear schedule used in road projects (Garold et al, 2005) 

 

Garold et al (2005) recommended that different scheduling methods are used 

according to the nature of projects; these are summarised and presented in Table 2.1. 

 

 Table 2.1 Type of scheduling method for different types of projects 

S. 

N. 

Type of Project Scheduling 

Method 

Main Characteristics 

1 Linear and Repetitive 

Projects: Roads 

/Highways, Pipelines, 

Railways, Tunnels 

LSM · Few activities 

· Executed along a linear path 

· Complex sequence logic 

· Work continuity crucial for effective 

performance 
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2 Multiunit Repetitive 

Projects (housing 

complexes or residential 

buildings) 

LOB · A group of similar units as final product 

· Same activities in all projects 

· Balance between different activities achieved 

to reach targeted production 

3 High Rise Buildings LOB · Repetitive activities 

· Hard logic for some activities but soft for 

other activities 

· Every floor is considered a production unit 

· Suitable for a large number of activities  

4.  Refinery, Oil and Gas 

and other complex 

projects 

PERT/ 

CPM 
· Extremely large number of activities 

· Complex design 

· Activities discrete in nature 

· Crucial to keep project in critical path 

5 Simple Projects (of any 

kind) 

Bar/Gantt 

Chart 
· Indicates only time dimension (when to start 

and end activities) 

· Relatively suitable for few activities 

 

The previous research studies presented earthwork activity as a linear activity and 

developed a time-distance chart by representing it through a single line for the period 

of the earthwork sections. In real practice, however, earthwork activities do not 

progress in a uniform rate along a road section because the earthwork quantities vary 

from station to station (chainage to chainage) in construction sites according to the 

topography of the terrain surface along a road project. Therefore, a detailed schedule 

is required to manage the daily or weekly activities of earthworks from the location 

aspects. The daily or weekly schedule of earthwork activities is applied at site-level 

planning. The Last Planner method is commonly used for short-term planning and 

site-level planning in construction projects.  

2.3.5  Last Planner method 

 

The LPM focuses on short-term planning (weekly) at crew level using the concept of 

lean construction, which includes increasing productivity, decreasing wastage, and 

variability (Ballard, 2000; Seppanen et al, 2010). This method looks for the 

improvement of plan reliability by protecting task execution from constraints, and by 

the generation of a workable backlog (what can be done). At the start of the week, 

the crew accepts commitment planning by selecting the workable backlog tasks 

(what will be done); and at the end of week, a percentage of the completed plan and 
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the reasons for the variance are monitored (what was done). In previous case studies, 

it was found, that the LPM resulted in waste reduction and an improvement in site 

productivity (Ballard and Howell, 1998; Ballard, 2000). 

 

The concept of the LPM has five main integrated elements. These include a master 

plan, phase plan, look-ahead plan, a weekly-work plan, and the completed 

percentage plan (Ballard, 2000; Ballard and Howell, 2003, cited in Koskela et al, 

2010). A weekly-work plan is a production task for the next day or week. This helps 

to plan the work that will be done in the next week, bearing in mind the work that is 

being done now, and in the knowledge of the work that is ready to be done. The 

weekly plans include safety issues, quality issues, resources planning techniques, 

construction methods, and any problems that occur in the field (Koskela et al, 2010).  

2.3.6 Advantages and limitations of scheduling methods  

 

The main advantages and limitations of existing CPM and LOB scheduling methods 

to plan the work are listed in Table 2.2 (Jongeling and Olofsson, 2007). Despite the 

advantages of the LSM, there are some limitations, particularly concerning the non-

repetitive activities in a linear project. These activities, such as a box culvert or a 

bridge in a road project, need to be scheduled using network techniques and then 

incorporated into the linear schedule in different ways (Mattila and Park, 2003). 

 

Table 2.2 Advantages and limitations of the existing scheduling methods  

Methods Advantages Limitations 

1. CPM and 

2D 

drawings 

· Common and accepted format 

· Relatively cheap and powerful 

software available 

· Planning work-flow is difficult and 

results in very detailed schedules 

· Spatial configuration of an activity 

difficult to plan and communicate 

2. LOB and 

2D 

drawings 

· Managing activities (i.e. lines) 

requires little effort 

· Explicit support for planning of 

resource-flow through locations 

· Powerful software available 

· Limited support to plan and 

communicate the spatial configuration 

of an activity 

· Relatively unknown method 

3. CPM and 

4D CAD 
· Provides spatial insight in the 

planning of work-flow 

· Inherent to limitations of CPM 

· Many 4DCAD models are limited to the 

use of 3D building components and do 

not include components related to work-

flow 

· Relatively unknown and developing 

method 
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Furthermore, Mattila and Abraham (1998) recommended that location information in 

the LSM is vital for the planning and scheduling of linear construction projects that 

reduce the construction cost and interruption caused by construction at the same 

locations. Polat et al (2009) introduced a new approach in scheduling highway 

projects by combining LOB and discrete event simulation techniques to incorporate 

resource constraints and to reduce the interruption of workflow between off-site and 

on-site operations. They stated that the LCM enables the easy and effective 

management of activities and the required resources from location viewpoints, and 

found that this approach assists in solving the resource allocation problem in linear 

construction projects.  

 

Previous studies (Johnston, 1981; Harris and Ioannou, 1998; Arditi et al, 2002; 

Mattila and Park, 2003; Kenley, 2004; Garold et al, 2005; Kenley and Seppanen, 

2010) highlighted that the LSM/time-location chart, which is also known as the 

location-based scheduling method, assists construction managers with different 

aspects. These aspects include providing information of working locations; planning 

the work sequences of crews; allocating resources in respect to locations; identifying 

space conflict; and controlling progress during multiple activities working at the 

same location.  

 

Since the quantities of earthwork vary from location to location along a road section, 

it is very important to know the weekly location-based information for producing an 

effective construction schedule and efficient resource planning of earthworks. In this 

context, it is concluded that location-based scheduling is a possible solution to 

overcome the issues highlighted above. Thus, a detailed review of location-based 

planning and scheduling is necessary to achieve the aim of this research project. The 

next section discusses the theory of location-based planning and scheduling in 

construction projects. 

2.4 Location-based Planning and Scheduling  

 

This section starts with the development history and the theory of Location-based 

Planning and Scheduling (LBPS). In this thesis, the term “planning” is used to 

include planning, scheduling and other terms related to the building of time-related 
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models of construction works in order to develop a logical plan of work. This section 

explains the activity based scheduling methods and their shortcomings, as identified 

by previous researchers. The next section describes the history of LBPS. 

2.4.1 History of location-based planning and scheduling development 

 

Karol Adamiecki (1896, cited in Kenley and Seppanen, 2010, p50) developed 

planning techniques that are believed to be the foundation of a Location-based 

Management System (LBMS). He developed graphical techniques, and ontology to 

describe the management of production and complex interactions between the 

production engineering and production efficiency. In 1896, he created a novel way of 

displaying interdependence of processes that aimed to improve the visibility of 

production schedules. He also developed a diagram called a “harmonogram” or 

“harmonogarf”. Adamiecki (1896) provided earlier thinking to the development of 

LBMS, particularly the concepts of alignment of production speed and importance of 

harmonograms to communicate to a modern LBMS. The importance of creating 

good teamwork and team harmony is only being reinvented through the practical 

application of lean concept and LBMS. The earliest evidence suggests that the 

method emerged 100 years ago (Kenley and Seppanen, 2010, p50-54).  

 

The development of activity-based scheduling methods has considerably improved 

the construction industry and these methods continue to be a method of choice for 

complex projects with little or no repetitive activities. However, there is a hesitation 

about their suitability for real construction projects. Some researchers (Selinger, 

1980; Reda, 1990; Russell and Wong, 1993; Arditi et al, 2002, cited in Kenley and 

Seppanen, 2010, p49) pointed out that activity-based systems were inefficient, failed 

to identify the importance of workflow and continuity, and were unreliable in their 

application. These researchers noted that CPM networks methods lacked the ability 

to solve the planning problem in the case of a project having repetitive activities 

(Kenley and Seppanen, 2010, p49).  

 

The term location-based scheduling was first proposed by Kenley (2004) to 

distinguish the emphasis on locations and activities in planning. Currently, location-

based methods for planning are available with the support of commercial software 
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such as Virtual Construction (VICO) and DynaRoad software. Location-based 

planning is the natural planning system for the construction of linear projects. It has 

a long history as the earliest planning system, used on a large-scale project, and is 

suitable for linear construction activities. The next section now presents the theory of 

the location-based planning and scheduling. 

2.4.2 Theory of location-based planning and scheduling 

 

Location-based planning and scheduling is the core of the theory of LBMS. These 

methods use the knowledge of location as a natural element of the planning and 

scheduling system and focus on the connection between the location of the work and 

unit of work to be performed. The LBMS believes that there is value in breaking a 

project into smaller locations. These locations are used to plan, analyse and control 

the daily activities as they flow through these locations. The location attribute 

provides a reservoir (storage space) for project data at a scale that helps to monitor 

and analyse project performances (Kenley and Seppanen, 2010, p123).  

 

The main significance of LBPS is to plan the productivity according to locations. 

LBPS explicitly manages work-continuity for resources and assists in optimising 

production in projects. It is the first planning system to be able to organise both 

activity sequences and sequence of work for production efficiency. It has a record of 

accomplishment and practical suitability associated with the repetitive nature of 

construction projects, including roads, railways and pipeline projects (Kenley and 

Seppanen, 2010, p123). In LBPS, locations in a project are defined by a location-

breakdown structure similar to Work Breakdown Structure (WBS). Locations are 

hierarchical in order to include the logic of higher-level to lower-level locations. 

Location breakdown structure differentiates between activities and tasks, where a 

sequence of activities in different locations represents a task. A task is defined as a 

set of activities in a sequence of locations and a single crew or multiple crews can 

perform it. The planning system therefore also considers internal logic to plan the 

sequences of working location and crew, and to plan productivity to achieve 

continuous production by determining durations that is based on the available 

quantities (Kenley and Seppanen, 2010, p124).  
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LBPS is based on the extension of activity-based logic combined with location-based 

logic, which provides a new tool for planning and analysis of construction activities. 

Location-based logic can be used to calculate the impact of control actions taken to 

recover delay from the original schedule. The LBPS assists in the assessment of 

time-claim with regard to cost. Location-based flow logic assists the claim agent to 

show the results of any deviation graphically, while using critical path logic as a 

theoretical base (Kenley and Seppanen, 2010, p124). They pointed out that the most 

building projects should be planned and controlled using location-based methods, 

particularly in scheduling the required resources and work activities effectively.  

 

Andersson and Christensen (2007) conducted three case studies of Danish residential 

projects aiming to identify the practical implication of location-based scheduling. 

They focused on the production phase, using the location-based scheduling method 

with three different types of building construction projects, and comparing these to 

CPM-based schedules. The findings were discussed and evaluated by construction 

managers, together with other staff involved. Andersson and Christensen (2007) 

found that improved schedules, establishment of workflows and enhanced project 

controls are the three major constructive implications of location-based scheduling.  

 

Despite some difficulties during the implementation, the improvement in overview 

of a schedule helps to visualise the repetitive activities at multiple locations and to 

communicate amongst the involved parties, including sub-contractors. The 

establishment of workflows provides information on the resource flow through 

locations, and avoids overlapping or unused locations. The enhanced project control 

system provides information on locations for each resource crew, which assists them 

in controlling the work progress at each location. Taking into account the above 

observations, the author believes that for linear projects, location-based scheduling is 

a suitable technique for the improvement of earthworks scheduling, resource 

planning and the communication of scheduling information. 

 

The past studies associated with location-based planning, which mainly focused on 

building construction projects, stimulate further investigation into linear construction 

projects. Therefore, this study focuses on developing the location-based scheduling 

of earthworks in linear construction projects. 
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2.4.3 Location-based planning in linear construction projects 

 

A linear project is a typical project in civil engineering that involves a continuous 

sequence of work activities along a long route, such as roads, pipelines, tunnelling 

and railways. It depends on the principle of LOB techniques for both purposes of 

analysing and representing the scheduling information; hence, LBMS is considered 

more suitable for the projects having a linear nature. The LBS for linear projects is 

different from other types of construction projects. In contrast to other projects, 

locations in a linear project can be transferred to distances along a line; thus, it is 

called „linear‟.  

 

A suitable method for the visualisation of scheduling information in linear projects is 

a Time Distance Diagram (TDD). In this diagram, location is placed on the 

horizontal axis and time on the vertical axis. Hence, the TDD enables easy 

comparison between scheduling and other charts, such as a Mass Haul Diagram 

(MHD) and the longitudinal section of a linear project. In the linear project, multi-

skilled resources are used at different activities; for example, the same excavators 

can be used at different locations in a road construction project (Kenley and 

Seppanen, 2010, p467).  

 

Productivity is a key factor associated with equipment size and capacity; therefore, it 

is used to calculate the durations of project tasks. Resources with high hourly rates 

and relocation times represent a much higher cost than in building projects; 

therefore, optimisation of production time and cost is more critical to linear projects. 

This is a consequence of the very high delivery costs for plant and construction 

equipment. 

 

Moreover, the productivity of earthwork activities is variable according to the 

topography of a road section and the type of equipment sets planned for operations. 

It is highly influenced by several factors including topography, space constraints, 

soil characteristics, topographical conditions and site-working conditions; therefore, 

this research focuses on optimisation of resource use in such circumstances. The next 

section describes the earthwork planning issues, optimisation and associated factors. 
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2.5 Overview of Earthwork Planning Issues 

 

This section outlines the planning issues of earthwork in a linear construction 

project. Earthwork in road construction has distinct characteristics including one-off 

projects, variable site conditions, uncertainty of soil characteristics and weather. 

Therefore, it is necessary to understand the factors that have an adverse effect on 

earthwork planning. 

2.5.1 Factors affecting earthwork planning 

 

Factors affecting earthwork operations are classified into four groups with 

consideration of the influence of each factor shown in Figure 2.3 (Kim and Russell, 

2003). Examples of factors that influence earthwork operations include earthwork 

characteristics, work-type and volume, space constraint, job-site conditions, 

equipment characteristics, site management, and construction methods.  

 

Figure 2.3 Map of four groups of factors affecting earthworks operations 

· Work characteristics: work type, volume, and technical specifications 

· Job-site conditions: space constraint, topography, weather, soil types, site 

conditions, access road conditions on-site and off-site, location of borrow pits 

and local resources 

· Equipment characteristics: capacity, efficiency, failure rate (break down) 
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· Management: planning the sequences of work, resource allocation including 

crew and materials, selection of the correct number of equipment sets at 

required locations relative to time and construction methods 

The performance of earthwork operations can be measured by several criteria such as 

time (duration), cost and safety. The evaluation of effective operations is based on 

multi-criteria but the focus in this study is on generating the weekly information of 

locations and the duration of earthwork activities. The production duration of 

earthwork operations is highly dependent on productivity which, in turn, is 

dependent on several factors as described above. 

 

Taking into account the above factors, it is concluded that the planning and 

scheduling of road tasks represents an additional challenge compared to building 

construction projects. Hence, this study concentrates on earthwork optimisation and 

discusses the application of optimisation techniques in earthwork planning in the 

next section. 

2.5.2 Existing methods in earthwork optimisation  

 

Normally, earthwork takes place in all civil engineering projects in some form. The 

earthworks may be small or large in volume depending on the nature and size of the 

construction project. According to Warren (1996, p85), earthwork operations are 

classified into four major categories, as follows:  

 

· Top excavation: stripping top soil and clearance of vegetation 

· Confined excavation: excavation for trenches or pits   

· Open excavation: cutting  

· Embankment construction: filling 

 

For efficient operations in earthwork, it is essential to match the correct plant to the 

location factors along the linear route. Therefore, it is necessary to consider a wide- 

range of factors that control the planning and execution of earthworks, the main 

factors being: 

· Types of materials and availability 
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· Geographical factors: topography, access, size of site and weather conditions 

· Plant (construction equipment) availability 

· Volume of soil to be moved between cut-and-fill section 

· Time and site-access constraints  

· Local constraints: noise, working time, pollution and other disturbances 

 

In larger earthworks, the effects of volume, distance and timing are identified using 

Mass Haul Diagrams (MHDs). They provide a graphical representation of the 

volume of cutting and filling sections in relation to their position on the site, and are 

widely used for linear construction like road and railways (Warren, 1996, p85). 

Several optimisation techniques in earthwork planning were developed and used in 

cut-fill assignments (as discussed above); however, the MHD and the linear 

optimisation techniques are the most commonly used in the cut-fill assignments of 

earthworks problems.The next section discusses these techniques.  

2.5.2.1 Mass haul diagram 

 

The MHD plays a vital role in reducing the haulage cost by minimising haul 

distances and the amount of temporary stockpiling during a linear construction 

project. Kenley and Seppanen (2010, p468) pointed out that integrating the 

construction schedule with a mass haul plan is an important factor for the successful 

completion of earthwork construction projects on time and within budgeted cost. 

However, the scheduling of mass haulage faces several difficulties that include the 

distribution of excavated quantities in reverse sequence for embankments. For 

example, topsoil on the proposed terrain must be removed first although this is 

required for covering the slope of embankments, which is last in the construction 

sequence.  

 

Moreover, an additional challenge occurs when both cutting and filling operations 

include similar sequences of works. Therefore, working locations become a vital 

issue because a delay in one location of a road section can severely affect multiple 

locations including other activities. This has a direct impact on the procurement 

schedule of mass haul activities in a linear project. Linear projects, especially roads 

or railways, are defined by locations, not by trade, because multiple tasks use the 
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same resources throughout construction operations. A complex interaction of 

sequential cuts and sequential fills is broken by physical obstructions such as land 

and road profiles, intersections, and the requirements for traffic management.  

 

Sub-contractors are separated by splitting the road section and limiting their mass 

haul activities within their own construction zone (a section having balanced mass 

volume of cut and fill sections). This helps in identifying the schedule deviation 

occurring in a mass haul project. Therefore, mass haul planning and the optimisation 

of resources become vital and challenging tasks, particularly in allocating the 

boundary of working sectors for sub-contractors (Kenley and Seppanen, 2010, 

p469). 

2.5.2.2 Linear programming  

 

Linear Programming (LP) problems are concerned with the efficient utilisation, or 

allocation, of limited resources to meet the desired objectives (Gass, 1984). LP has 

been applied in a wide range of fields, including economics, operational research and 

optimisation problems (Spielman and Teng, 2004). It solves a linear objective 

function subject to linear equality and linear inequality constraints. LP is a 

mathematical method, which uses a linear relationship to identify a way to find the 

best results (maximising profits or minimising cost) subject to satisfying the existing 

constraints. The Simplex method, which remains widely used today since George B. 

Dantzig introduced it in 1947, was the first practical approach for solving linear 

programmes (Hossein, 1996). A brief development history of the linear optimisation 

method is outlined below.  

· Italian mathematician Joseph Louise Lagrange solved a tractable optimisation 

problem with simple equality constraints in 1762.  

· Gauss solved a linear system of equations (Gaussian Elimination) in 1820.  

· A method for finding “least square” errors as a measure of goodness-of-fit 

was improved by Wilhelm Jordan in 1866. Currently it is popular under the 

name of the Gauss-Jordan method.  

· The Digital computer emerged in 1945.  

· The Simplex method was introduced by George B. Dantzig in 1947.  
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· The Interior-point method was introduced in 1984 by Narendra Karmarkar 

aiming at solving linear programs and with the addition of his innovative 

analysis (Hossein, 1996).  

According to Spielman and Teng (2004), LP has been established as a powerful tool 

for solving linear problems by using the Simplex method, which was introduced by 

Dantzig in 1947. Since then, different researchers have invented several algorithms 

for LP. For example, Khachiyan applied the ellipsoid algorithm in 1979 to LP but, in 

practice, it has not been competitive with the Simplex method. In contrast, Narendra 

Karmarker introduced the interior-point method in 1984, which in practice is 

occasionally superior to the Simplex method.  

Despite the development of several alternative methods, Spielman and Teng (2004) 

stated that the Simplex method remains the most popular method for solving linear 

programmes because of its excellent performance. Moreover, an Excel solver uses 

the Simplex method to develop the computer programming for solving linear 

optimisation programmes. Therefore, the Simplex method has been selected in this 

study for solving the linear problem associated with cut-fill assignments in 

earthwork operations. The next section discusses the past studies associated with 

LP‟s use for earthwork allocation and construction planning. 

2.5.3 Previous research studies in earthwork planning 

 

Several research studies have been carried out in earthwork planning which consider 

the linear programming techniques, particularly in linear construction projects such 

as roads and railways. Stark and Nicholls (1972) suggested the first linear 

programming in earthwork allocations and it has been developed further by 

Nandgaonkar (1981) and Mayer and Stark (1981). Nandgaonkar (1981) applied the 

transportation technique of operation research for the allocation of earthwork 

between cut and fill sections including borrow pits. He found that the transportation 

cost of earthworks allocations could be reduced.  

  

Mayer and Stark (1981) used linear optimisation as a technique to produce earthwork 

activities aiming to minimise the haul distance that ultimately reduces the movement 

of earthwork quantities between non-adjacent cut and fill sections. Essa (1987) used 
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a system known as EARTHN. The system was built on an LP approach that aimed to 

reduce the earthmoving cost by minimising the haul distance while considering the 

non-constant unit cost of borrow pits and landfill sites. In 1988, he further enhanced 

the model with the consideration of a quadratic model of the cost coefficient of unit-

cost earthmoving. The above studies exclude factors that affect the unit cost due to 

soil characteristics at different locations or the longitudinal slope of a roadway.  

 

Jayewardene and Harris (1990) enhanced the existing LP further by developing the 

integer-programming model for earthwork optimisation, aiming to reduce the cost of 

earthwork allocation by incorporating the project duration and different soil strata at 

cutting sections. Furthermore, Jayewardene and Price (1994) developed a 

comprehensive model by combining computer simulation and linear programming to 

optimise the earthwork moving system. The model includes three parts: simulation, 

LP and network scheduling. The simulation model provides the realistic unit cost 

and productivity by balancing plant teams; the LP model provides the optimum 

allocation of material distribution by considering constraints such as plant 

availability, project duration and sequences of operations; and, finally, network 

scheduling provides a construction plan. They do not incorporate the location aspects 

for developing a construction plan of earthworks.  

 

Ahmad (1996) designed a model to identify the optimal roadway slope to reduce the 

cost of earthwork activity using the linear programming. This model incorporated the 

roadway longitudinal slope in a linear programme. He concluded that the model is 

able to provide a significant level of optimality. Mawdesley et al (2002) developed a 

model for the automatic generation of cut and fill activities for earthworks 

considering the MHD. The model was developed incorporating a knowledge-based 

system and different types of material aiming to minimise the effective haul distance 

in earthwork construction projects and to reduce the earthwork allocation costs in a 

cut-fill assignment in road projects. The model might be more useful for effective 

resource planning and controlling the progress of earthwork activities from the 

location aspects, if the location aspects were included in the model. 

 

From a planning aspect, Hassanein and Moselhi (2004) developed an object-oriented 

model that aimed to integrate the planning and scheduling stage of highways 
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construction projects. The model was capable of automatically generating the work 

breakdown structure, but it could not generate a location-breakdown structure, which 

is a key element in location-based planning. It gave priority to the network logic of 

the particular job, and used a list of stored construction operations faced in a road 

construction project, but failed to address location aspects for highway scheduling. 

 

Using linear programming, Son et al (2005) developed a mathematical optimisation 

model for the determination of minimum haul distances and the direction of the 

movement of cut-fill quantities on an excavation project. The main inputs in their 

model are the quantities of cutting and filling activities. The location of these 

activities and haulage distance represent the outputs of the model, which enables 

construction professionals to identify the optimal solution in an earthmoving 

problem. Son et al (2005) did not address how to integrate the different productivity 

rates of earthworks in the model.  

 

Kim et al (2007) developed a three-dimensional optimisation methodology for 

highway alignment that automatically determines whether bridges or tunnels are 

economically viable to replace high embankments or deep excavation, during the 

planning of road alignment across a landscape; however, Kim et al‟s (2007) 

methodology did not include linear programming for earthwork allocation between 

embankments or excavations. 

 

Tam et al (2007) introduced a method to automate the planning of an earthmoving 

task. The method integrated several factors including path-finding, a plant selection 

system, compatibility, and genetic algorithms in order to optimise the best possible 

solution taking account of cost, productivity, safety and environmental impacts. 

Although the introduced method is useful, it fails to integrate the different 

productivity rates or consider the location aspects, which is critical for efficient 

resource planning and location-based scheduling in earthworks operations. 

 

Shahram et al (2007) proposed a fuzzy-logic linear programming model for the 

allocation of earthwork quantities and for dealing with uncertainty parameters based 

on the consideration of the assumed unit cost coefficients. The borrow pits and 

disposal sites capacity were assumed as a fuzzy-number while minimising the total 
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moving cost of mass earth, this being the objective function. However, the authors 

did not address the importance of location viewpoints together with shrinkage and 

swell characteristics of soil in the earthwork allocation problems.  

 

Moreover, some software companies have also developed earthwork allocation tools. 

For example, DynaRoad
TM

 (2006) developed commercial software for producing a 

mass haul plan, a construction schedule, and a controlling model for the earthwork 

activities using linear programming techniques.  

 

Similarly, ASTA
TM 

(2009) also developed Time-Location Planning Software 

(TILOS) for managing linear construction projects, aiming to produce construction 

schedules and to improve the visualisation of repetitive tasks in a linear construction 

project. The TILOS provides the flow of scheduling data in terms of time and place. 

This is a crucial factor for resource-planning and time-space allocation of earthwork 

activities.  

 

The linear schedules produced by the TILOS and DynaRoad are, however, unable to 

provide daily or weekly information on working locations, particularly in 

earthworks. The developed schedules also fail to incorporate different productivity 

rates. As a result, the decision-making process associated with production schedules 

becomes difficult due to the limited information on weekly locations at the 

construction site.  

 

Taking into account the above points, further development involving a new approach 

to location-based planning is justified from the viewpoints of effective resource 

planning at required locations, progress monitoring, and improvement in the 

overview of earthwork scheduling, particularly in a linear construction project. The 

next section describes the modelling concept in the construction industry. 
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2.6 Modelling background in the Construction Process 

 

Modelling is the most important part or component of the construction planning 

process. It is a prerequisite of a construction system, in order to analyse the response 

or outputs of the system in certain working conditions. These outputs are usually 

expressed in terms of quantity, cost and time. Generally, these are used to select the 

resources, schedule the works and determine the construction budget. Therefore, the 

accuracy of the modelling process in the construction operation is a key factor in the 

quality of the overall planning process (Castro and Dawood, 2005). 

 

In the construction planning process, a mathematical, logical or physical 

representation of construction operations and activities should be developed with the 

necessary accuracy to adequately represent the system, and to answer the 

behavioural questions associated with the construction system. Two approaches such 

as analytical and simulation modelling which are commonly used in construction 

modelling process are analysed and presented in the following section. 

2.6.1 Analytical modelling 

 

The analytical modelling method is difficult to apply in road construction due to the 

number of variables involved in the process. Road construction is a system involving 

complex interactions between activities and resources; therefore, the establishment 

of mathematical models is only possible with the introduction of a number of 

simplifications and assumptions in construction methods and planning techniques 

(Castro, 2005).  

 

If all parameters of the model were introduced, the resulting mathematical model 

would become extraordinary complex and difficult to apply in practical terms. The 

disadvantage of mathematical modelling is its inability to deal with space 

requirements and its respective management. Time-consumption is another problem 

related to analytical modelling methods for road construction activities. Despite the 

limitations and difficulties associated with it, an analytical approach is the most 

commonly used modelling method for planning purposes in road construction 

activities (Castro, 2005). 
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2.6.2 Simulation modelling  

 

Halpin (1998) defined simulation as a modelling technique showing the graphical 

representation of events occurring in construction processes that also involve 

deterministic or stochastic variables. Simulations allow the analysis of the 

construction processes in detail, relating to the behaviour of the whole system in 

different circumstances or in relation to the performance of a certain construction 

resource. Shi and AbouRizk (1998) developed the Resource-based Modelling 

(RBM) methodology with the aim of automating the modelling process of 

construction simulation, whilst capturing the properties of construction operations. 

 

Two main categories of a simulation system can be encountered in construction:  

systems using virtual reality with visualisation in 2D, 3D and 4D, as well as systems 

making predictions in terms of productivity but without visualisation. Virtual Reality 

(VR) is a modelling technique enabling interactive real-time viewing of three- and 

four-dimensional data. This technique is included in architectural tools and proved 

its excellence in designing complex construction objects especially related to 

physical feasibility. This is probably the reason for the use of this technique, 

primarily as a design tool (Kurmann et al, 1997), but VR has limited applications as 

a planning tool (Bouchaghem and Liyanage, 1996). Due to the complexity of 

construction operations, it is analytically difficult to validate models to ensure that 

they represent “real-world” systems. This limitation can be overcome by the use of a 

computer to evaluate the model numerically and collect information referring to the 

behaviour of the model in different circumstances (Law and Kelton, 2000).  

 

The other group of simulation systems include tools conceived for the automation of  

the planning process, and are used for decision making processes based on the 

expected outcomes (productivity) of the considered construction systems (Castro and 

Dawood, 2005). Simulation has proved to be very helpful in designing complex 

construction operations when combined with visualisation and for assisting in 

making improved decisions when planning construction operations (Kamat and 

Martinez, 2001).  



44 

 

2.7 Simulation in the Road Construction Process 

 

Simulation is defined as the act of replicating various actual objects, states of affairs 

or processes. The work of simulating something generally involves the 

representation of behaviours of a particular physical event. Simulation can also be 

defined as the representation of a certain system in a computer to allow the analysis 

of the behaviour of the system in different scenarios; for example, the Monte Carlo-

based models Micro Cyclone, Stroboscope, and Coops. Simulation is a common 

tool, used to simulate construction activities and to represent the key characteristics 

or behaviours of construction processes that affect the planning and scheduling 

process of a road construction project (Castro, 2005).  

 

Dawood and Castro (2009) introduced a knowledge-driven site simulation system 

called “RoadSim”. It is a simulation-based planning tool conceived for road 

construction projects using a knowledge-based approach. The key concept of the 

“RoadSim” depends on the atomic models theory, which was identified by Ziegler 

(1987) and implemented by AbouRizk and Mather (2002). In “RoadSim”, every 

operation is associated with an atomic model and the whole construction activity is 

modelled by coupling the atomic models that participate in the respective 

construction operations (Castro, 2005).  

 

Each construction operation is broken down successively into elements of lesser 

complexity until a final and indivisible element is found similar to an atomic model. 

Therefore, every construction operation can be seen as a molecule resulting from the 

coupling of a given number of atoms. The forces influencing the coupling and the 

type of “molecule” are exactly the same elements that control productivity in real 

life; for example, volume of work, resource constraints, haulage distance, types  and 

conditions of site access roads, access point, soil characteristics, working conditions, 

weather conditions, and other relevant factors (Castro, 2005).  

 

The “RoadSim” simulation system has integrated productivity equations, considering 

the factors affecting the productivity data of an activity in a road construction 

project. It determines the duration of activities for scheduling purposes by 
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identifying the productivity of activities and functionality needed to produce a 

schedule bar chart (duration produced by the productivity model). 

 

Moreover, Marzouk and Moselhi (2003) developed a simulation model for 

earthmoving operations. They focused on process simulation using distinct event 

simulation. In a consistent way, an object-oriented model accounted for the 

uncertainty at the construction stage of the earthmoving activities.  

 

Mohamed and AbouRizk (2005) proposed a framework which provided the structure 

for integrating intelligence into simulation objects, to allow a further reduction in the 

required knowledge in experimenting with a simulation model and to assist in 

decision-making processes. However, the proposed framework neglected the visual 

simulation of earthwork construction processes from spatial aspects in respect to 

time dimension. To overcome the issue, 4D modelling was suggested for visual 

simulation of the earthwork processes. Therefore, a detailed discussion of 4D 

modelling as a part of visual simulation is given in the following section.  

2.8 4D modelling of Construction Process 

2.8.1 Definition of 4D modelling 

 

A 4D model is defined as a 3D model plus time (3D+time) (Koo and Fisher, 2000; 

Dawood et al, 2002). The viewing and rehearsal aspect of 4D models in projects 

assists project stakeholders to understand the process of a planned construction 

facility on a computer screen, in a virtual environment. It also assists in reviewing 

the planned and actual status of a project in the context of a 3DCAD model for a 

particular day, week or month throughout the project period. The benefits of 4D 

CAD models have been confirmed through numerous case studies and published 

research papers (such as (Fisher and Kunz, 2004; Ragip, 2005; Dawood et al, 2005). 

Previous research studies on 4D modelling are discussed in the following section. 

2.8.2 4D modelling in building projects 

 

A 4D model enables different team members to understand and visualise the project 

scope, including the corresponding construction schedules, in a proactive and timely 
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style. Past studies assist in the exploration and enhancement of project execution 

methodology and constructability together with improving site productivity. They 

also assist in identifying time-space conflicts, and in planning how to resolve them, 

before they occur in reality on a construction site.  

 

4DCAD models have been proven to be helpful in those construction and renovation 

projects that involve a large number of stakeholders and where there is limited space 

at construction sites, particularly in urban areas (Chau et al, 2004; Dawood et al, 

2002; Fisher and Kunz, 2004). The 4D visualisation tools provide a critical 

workspace analysis to identify space congestion at the site workface through the 

visualisation tools incorporated within them. They also enable the identification of 

the workspace as a factor and can potentially increase the productivity at the 

workface by 30% (Dawood and Mallasi, 2006).  

 

Retik et al (1990) identified the potential use of computer graphics in construction 

scheduling by representing the construction activities in the form of graphical 

images, at a particular time during the construction period. Zhang (1996) reported on 

a 3D graphical construction model. Williams (1996) designed demand-driven 4D 

models for the generation of a graphical construction plan based on simulation, 

visualisation and communication.  

 

Collier and Fischer (1996) demonstrated visually-based 4D modelling and 

scheduling in a case study of the San Mateo County Hospital. McKinney et al (1996) 

proposed a Four-Dimensional Computer-Aided Design (4DCAD) tool with visual 

and communicative functions to facilitate the design process. Adjei-Kumi and Retik 

(1997) applied the concept of virtual reality to visualise the construction plan using a 

library-based 4D model.  

 

McKinney et al (1998) demonstrated the capability of 4DCAD models to identify 

construction problems prior to their actual occurrence. Zhang et al (2000) developed 

a 3D visualisation model with schedule data at construction component level.  Kamat 

and Martinez (2001) presented a 3D visualisation model depicting the entire process 

of a typical construction activity. Kamat and Martinez (2003) described a 

visualisation system, which is
 
a CAD-independent simulation system for general 
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purpose use. This system has the functionality to visualise 3D models of construction 

operations and the resulting products more accurately, in relation to spatial and 

sequential aspects. 

 

Taking into account the above research studies, previously developed 4D models 

were utilised at the design and construction stages mainly in building projects, but 

their application in construction planning and scheduling processes is still limited to 

infrastructure projects; for example, roads, railways, and oil and gas pipeline 

projects. The following section describes the previous research studies related to 4D 

modelling in road construction projects. 

2.8.3 4D modelling in road construction projects 

 

The literature review revealed that there are few published research studies on the 

topic of 4D models for road construction projects. Liapi (2003) discussed how 

4DCAD visualisation models can be used in the construction phase of a highway 

project, and suggested a framework by developing and applying 4D modelling in 

such a project. He focused on the benefits of 4DCAD for traffic planning. He also 

highlighted that transportation projects often involve complex geometric 

configurations, which provide the communication of project information between 

interested parties. Liapi (2003) recommended that 4D visualisation models can 

provide a better understanding of the communication aspects and spatial constraints 

in a project compared with traditional 2D data.  

 

Kang et al (2006) indicated that currently available 4D tools have outstanding 

functionality in simulating building projects, but that these tools are not easy to 

implement in civil engineering projects; for example, roads and railways projects, in 

which the progress of earthwork activities takes place in horizontal zones because 

the earthwork aspects depend on the natural ground conditions. He also suggested a 

new method to improve the limitations of the 4D system for a civil engineering 

project. The suggested approach included the use of a morphing technique to 

simulate 4D objects in earthwork operations. The operation included cutting and 

filling activities where they are progressed on natural ground conditions. Kang et al 

(2007) suggested an advanced methodology to organise 4D objects for construction 
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schedule management and progress control, including WBS to visualise 4D objects 

that consist of horizontal work areas in road construction projects.  

 

Additionally, Makanae and Dawood (2008) developed a Tangible Terrain 

Representation System (TTRS). A tangible interface is one that recognises the terrain 

in 3D and provides a more efficient approach for highway route planning and design. 

The developed system was evaluated by comparing its usability to an alternative 

system using a group of evaluators at Miyagi University, Japan, and it was 

concluded that the system was an effective tool for terrain representation and 

highways planning. The system did not, however, considers the balancing of the 

earthwork quantities between cut and fill sections or between borrows/landfill sites 

for the road alignment planning processes.  

 

Similarly, Kang et al (2008) also developed a 4DCAD system for earthwork 

simulation in selecting a road alignment to support road design, alternative to the 

route simulation, and structural simulation. The developed 4DCAD system failed to 

integrate different productivity rates for simulating earthwork operations and 

selecting a road alignment. Furthermore, Platt (2007) highlighted that the earthwork 

operations which did not work within a finite object were difficult to simulate with 

4DCAD technologies. He recommended that a new approach was necessary to 

overcome this problem to assist the modelling of earthwork operations. Although the 

previous studies in 4D modelling of earthwork operations used and suggested 

different approaches, the key issue faced at the construction site is “variation in 

productivity value”, and this was not addressed. Site productivity of earthwork varies 

from one day to another because of the unique characteristics of the road 

construction industry, including deviations in topography, soil characteristics along 

the road, daily weather conditions, working conditions at the construction site, 

resource constraints, and other unpredictable factors.  

 

Therefore, the research study is intended to overcome the above problems by 

developing an innovative approach for earthwork modelling that can produce the 

visual representation of terrain progress profiles (3D+time) by incorporating, 

partially or fully, all of the factors that affect the productivity of earthwork activities 

during the development of the tool.  
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2.9 Visualisation of Planning and Scheduling Information 

 

The use of visualisation as an emerging technology in the construction industry 

means it is necessary to understand the potential benefits and concepts associated 

with its development in the construction field. The visual approach of understanding 

construction methods help construction managers to improve the effectiveness of 

project planning, and to enhance the communication of scheduling information 

amongst projects (Koo and Fischer, 2000; Dawood el al, 2002; Sriprasert, 2004).  

 

Since the mid 1990s, space congestion was considered by construction researchers 

who have engaged in the innovation of visualisation technologies aimed at 

enhancing the capability of scheduling information, communications and resources 

planning. Visual representations are an important approach for the effective 

evaluation and communication of construction plans and schedules to construction 

teams. The visual representation of construction plans was divided into four 

categories: 2D, 3D, 4D and VR (Sriprasert, 2004; Chau et al, 2004; Fisher and Kunz, 

2004; and Dawood el al, 2005).   

 

1. Two dimensional representations include: 

a. Worksheet – it is easy to prepare and is generally used for work-

face instruction or method statement; 

b. Bar chart or Gantt chart – it  is used at operation-level planning or 

as a representation of CPM network; 

c. 2D (two dimensional) drawings – these are normally used for site 

layout and space planning;  

2. 3D (Three-dimensional) CAD – it is generally used for product conflict 

detection or clarification of detailed connections;  

3. 4DCAD (3D+time) – it presents temporal and spatial aspects of visual 

construction plans in respect to time, and therefore it is useful for planning, 

evaluation and the communication of scheduling information.  

4. VR – it is a technology that allows users to navigate and interact with 

virtual objects in 3D space with a computer-simulated environment. 

Therefore, it has a huge potential for application in construction planning 
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and in the graphical simulation of construction operations and traffic 

planning.  

 

Two major approaches (4DCAD and VR) have been applied to aid the evaluation of 

physical constraints such as technology, space and safety with spatial aspects. For 

example, technological dependency constraint (McKinney and Fischer, 1998; Koo 

and Fischer, 2000), space constraint (Akinci et al, 2002; Dawood et al, 2002) and 

safety constraint (Hadikusumo and Rowlinson, 2002) are studies conducted using 

both 4DCAD and VR approaches.  

 

Taking into account the above observations, the author thought that the above two 

approaches were mainly used to identify information on space and activities‟ 

conflicts and resource constraints. Therefore, visualisation technology would be 

useful for analysing space congestion and to communicate scheduling information 

from the location aspects in earthwork components amongst stakeholders in a road 

construction project. The next section discusses the past research associated with 

space congestion analysis.  

2.10  Previous studies in Space Congestion Analysis  

 

 

In earthwork, workspace is defined as the available space at construction sites for 

work activity.  Several research studies (Kunz, 1994; Oglesby et al, 1989; Sander et 

al, 1989) revealed that space congestion is a major cause of productivity loss. Sander 

et al (1989) found a 65% loss in work efficiency because of space congestion at the 

workplace and a 58% loss in efficiency due to restricted site access in a construction 

project.  

 

Moreover, VR technologies have been partially adopted in order to identify space 

conflicts in building construction works (Akinci et al, 2002; Dawood and Mallasi, 

2006). Further innovation is added to this research study by introducing a numerical 

approach for identifying space congestion on a construction site at an early stage of 

earthwork operations. This approach depends on the principle of comparing the 

available and required space (area) for a selected set of construction equipment to 

perform a cutting or a filling operation in a road construction project.  
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Construction managers are under pressure to deliver construction projects on time 

and within budget. To overcome these issues, planners and contractors are planning 

and scheduling additional work activities simultaneously by reinforcing additional 

equipment required by the activities. As a result, space congestion can occur due to 

the limited space at a construction site or because of management pressure to 

perform concurrent activities in the same areas. Moreover, additional demand for 

work space by different sets of equipment can also lead to space congestion or 

activities conflicts on a construction project.  

 

Similarly, time-space congestion also occurs when the space requirements of one 

activity interfere with another activity‟s space requirement. Therefore, this decisive 

factor affects the productivity of any construction activities and the overall delivery 

schedule of the project. Space congestion causes several problems such as delays in 

work progress, reduction in productivity, and incremental increases in safety hazards 

(Dawood and Mallasi, 2006).   

 

Earthwork operations, in particular, can cause issues due to the movement of 

construction equipment in a limited space at the beginning of the construction stage. 

Since the working activity progression takes place in the horizontal direction on 

existing terrain surfaces, the correct planning of working space is vital.  

 

Planning and scheduling of the equipment sets and relocation of material can be 

managed effectively and efficiently within the available working space at a 

construction site, if a suitable equipment set is planned according to the space 

availability. Therefore, the study intends to develop new methodology that can assist 

in identifying the space-congested activities at the early stage of earthwork 

construction sites and can help to manage them by selecting a suitable set of 

construction equipment within those sets available.  
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2.11  Review of Existing Software and Tools in Construction 

 

This section describes the key features, functionalities and limitations of existing 

commercial and research software currently used in the construction industry. The 

software review assists in analysing the development of a tool for the generation of 

location-based earthwork scheduling in linear construction projects. 

 

The software review highlights the main functionalities of the software which 

includes: Autodesk Civil 3D; CAICE Visual Constructor; VICO Constructor; 

Construction SIM; Naviswork Solution; Inroad; DynaRoad; TILOS; V-CPM; 5D-

CCIR and UC/Win Road, used for real time 3D VR modelling of urban planning, 

traffic and disaster simulation.  

 

The VIRMEEC tool, which is used for the automatic generation of location-based 

schedules and weekly progress profiles of earthworks, weekly quantities and costs at 

each chainage/stations along a road section, considering different productivity rate 

throughout the construction process, is developed and outlined in this study. A 

comparative study of the functionalities, limitations and features of the commercially 

available and researched software is presented in Table 2.3. 

2.12   Summary 

 

This chapter provided an overview of the existing construction planning and 

scheduling techniques used in construction projects.  The main focus was on the 

existing planning and scheduling techniques and tools useful for analysing earthwork 

components in road construction projects. The theory of the location-based planning 

was analysed and discussed. The limitations of these techniques and tools in solving 

time-location scheduling and space congestion identification in earthworks 

construction projects were explained. The discussion and review of the literature 

suggests that there is a requirement for better visualisation methodology to 

communicate construction scheduling information for the allocation of a suitable set 

of equipment at correct locations along linear road construction projects.  

 

The following are the key conclusions from the literature review: 



53 

 

 

· The review of the literature found that a gap existed in earthwork modelling 

approaches because the systems developed to date fail to integrate different 

productivity rates into the processes associated with earthwork scheduling in 

road construction. 

· The study of the literature also revealed that existing LSMs of linear projects 

do not provide exact information on the working locations of earthwork 

activities in a particular period on a daily or weekly basis.  

· The visualisation of scheduling information of earthworks with location 

aspects on a weekly basis is missing. 

· The key issues faced at road construction sites are the variations in the 

productivity rates of earthworks from day-to-day and location-to-location 

along a road section. 

· Earthwork activities significantly affect other road activities and the overall 

performance of construction site operations due to the unique characteristics 

of earthwork in linear construction projects.  

· The literature review also showed that location-based planning is a valuable 

technique for planning and monitoring the progress of linear construction 

projects. It also helps in time-extension claims in case of variation in 

earthwork quantities at a particular location at the construction stage. 

· The past research studies related to location-based planning show that the 

improved schedule overview, establishment of workflows and enhanced 

project control from location aspects are the major three constructive 

implications of location-based scheduling. 

 

Taking into account the above points, the research explored a new methodology for 

the development of a computerised model for earthwork scheduling and the 

visualisation of the scheduling information from the location aspects. The next 

chapter presents a construction industry survey that was aimed at identifying the 

existing practices and problems in construction planning, scheduling, simulation, and 

the visualisation processes of earthwork operations, particularly in infrastructure 

construction projects. 
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Table 2.3 Features and functionalities matrix of commercial and research software utilised in construction applications 

     Software 

Features 

Visual 
Construction 

VICO 
Constructor 

Autodesk 
Civil 3D 

Nova point 
Constructor 

Terramodel 
12d 
Model 

Autodesk 
Nevis work 

Bentley 

schedule 

Simulator 

Construct-Sim 

GeoNet 

V-CPM 

Inroad DynaRoad  5DCCIR RoadSim 
VIRMEEC 

Tools 

A
p

p
li

ca
ti

o
n
 Area of 

Implementation 

Construction 

oriented 

Construction 

oriented 

Design 

oriented 

Construction 

oriented 

Construction  

oriented 

Design 

oriented 

Construction  

oriented 

Construction  

oriented 

Construction  

oriented 

Construction  

oriented 

Design 

oriented 

Construction  

oriented 

Construction  

oriented 

Construction  

oriented 

Construction  

oriented 

Area of 

compliance in 

Road  Project 

Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes 

D
at

a 
E

x
ch

an
g
e 

 

Support of 

LandXML: 

Input/output 

Yes No Yes Yes No Yes Yes Yes Yes No Yes No No No Partially 

DWG/DXF 

Input/output 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No No 

API flexibility Yes Yes Yes Yes Yes Yes Don‟t Know 
Don‟t 

Know 

Don‟t 

Know 

Don‟t 

Know 
Yes No 

Don‟t 

Know 
Yes Yes  

T
IN

 M
o

d
el

li
n

g
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Chapter – 3 

Construction Industry Survey 

 

3.1  Introduction 

The need for the development of a new methodology and a prototype model for 

earthworks scheduling and visualisation considering location aspects, particularly in 

road construction, was discussed in the previous chapter. Chapter Two presented the 

earthwork characteristics and established that there was a knowledge gap associated 

with modelling issues in earthworks scheduling. This chapter presents a construction 

industry survey that aimed to identify the existing practices, limitations and tools 

utilised in earthwork scheduling. The problems associated with planning, scheduling, 

simulation, and visualisation processes of earthwork operations in linear construction 

projects are also discussed in this chapter.  

 

This chapter also describes the questionnaire design, data collection and analysis, 

and summarises the findings of the survey. A review of the construction processes 

was also carried out to identify the stages where a prototype model could be relevant 

in construction projects. A map of construction processes was developed, showing 

the possible stages where a developed prototype model would be valuable in 

construction projects. The knowledge gained from the survey is used to justify and 

inform the research study.  

 

Finally, this chapter outlines the critical issues and factors that need to be 

incorporated in the development of the model for earthwork scheduling and 

visualisation. The next section reviews the pre-construction and post- construction 

processes of an example construction company. 

 

3.2  Review of Construction Processes of a Company 

 

An important step in this research is the understanding of the details of pre- and post-

construction stages in a road project. For this reason, the construction processes of a 

construction company, which was mainly involved in road construction projects, 
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were analysed. Firstly, site information and production methods were established for 

the survey of construction processes by interviewing the Production Director of a 

Portugal-based international construction company, Mota-Engil. The findings from 

the review of the construction processes were documented in a process-mapping 

diagram as shown in Figure 3.1 with four classification levels: project 

bidding/tendering; preparation of tender document; detailed planning stage for 

execution; and control process for progress monitoring. These processes are 

explained in the following sections. 

 

3.2.1 Project bidding/tendering process 

 

Project bidding or tendering is the first stage of the construction process. In this 

process, bid information of a construction project is obtained first from public or 

private organisations by the commercial department of a company. The management 

board of the bid purchasing company makes the decision normally to continue or 

reject the bid for projects based on a feasibility study and the information provided in 

the tender documents. Once a decision is made to start the bidding process, the 

preparation of bid proposals (bidding/tender documents including both technical and 

financial bids) are prepared, taking into consideration the company‟s preliminary 

cost estimate, limited site information, and the initially proposed construction 

methods within the limited resources. The details of the proposal preparation are 

explained in the next section. 

 

3.2.2 Preparation of proposal (tender/bidding documents) 

 

The bidding or tender documents normally consist of contract documents including 

detailed design drawings, specifications and the Bill of Quantity (BoQ). Depending 

on the nature and complexity of the projects, site visits and surveys are then carried 

out to collect the most reliable information regarding the locally available resources, 

site location, topography, site access points, and local rules and regulations. Such 

knowledge has a direct impact on the site productivity calculation, developing 

project scheduling, resource planning, costing the project tasks and selecting the 

construction methods. 
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Figure 3.1 Map of construction business processes and sequences in a company 
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The preliminary cost estimates are based on the tender BoQ, design drawings and the 

specifications of works and materials provided in the contract document. Preliminary 

scheduling of work activities is prepared and resources are planned considering the 

limited site information. The preliminary construction methods are outlined to justify 

the bidding cost of the project and to demonstrate the construction processes. Then, 

the developed proposals are submitted by the bidding company to clients after 

completing all essential documents. Depending upon the nature of the projects, 

construction methods are prepared in text or graphic representation, sometimes with 

visualisation tools by the bidding company to show the company‟s expertise and 

technical capability of delivering the project. The visualisation tool also assists the 

company to persuade clients by showing the virtual construction methods and 

sequences of construction operations that provide additional support to the bidding 

company to win the bid proposal of a project. 

 

After receiving the confirmation of the proposal, the commercial department of the 

bidding company forwards all essential documents to the construction/production 

department for the preparation of detailed plans and estimates of the project cost. 

The next stage is the planning and scheduling processes of a construction project. 

Detailed cost estimates and schedules are prepared based on available resources and 

the previous experience of the bidding company. 

 

3.2.3 Detailed planning and scheduling processes 

 

After winning the project bid, the bidding company starts the preparation of accurate 

and detailed project estimates for different categories such as type of works and type 

of resources on a monthly basis. Similarly, a detailed construction schedule is 

prepared considering work activities and project duration using available resources. 

Resource planning is a crucial process that affects the overall project performance. 

At this stage, focus is concentrated on resource scheduling using available tools to 

deliver the project on time and within the budgeted cost. Additionally, more accurate 

and efficient construction methods are prepared to execute the construction tasks.  

Depending on the company‟s experience and other constraints, a few months may be 

required to prepare the detailed execution plan and schedule before starting the 

construction project.  An internal commitment is made and milestones are fixed by 
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considering necessary support and resources. The construction responsibility is 

transferred to a project manager for execution of the project according to the agreed 

detailed schedule and assigned site budgeted cost. The next section describes the 

control process of the construction progress 

 

3.2.4 Control processes in construction operations 

 

At this stage, a monthly progress report is prepared and submitted to the control 

department of the company for a comparison between planned progress and actual 

progress in terms of time and cost. The monthly report basically consists of a 

monthly cash flow plan; a breakdown of the actual cost in terms of utilised resources 

and works activities; and the actual time consumed by each activity.  

 

The progress report is compared and discussed by the company management team in 

order to implement the possible corrective actions so that the construction progress 

can be maintained on schedule and budget. Sometimes, additional resources are 

allocated to complete the project within an agreed time frame and to avoid additional 

penalty charges (liquidated damages). The control process is normally continued 

every month until completion and handover to the clients as per the designed 

drawings and work specifications.  

 

The next section discusses the details of the construction industry survey, data 

collection, analysis and results. The discussion and recommendation from the survey 

findings are also presented in the following section for the development of a 

framework and specifications of a computerised model of earthworks. 

 

3.3 Construction Industry Survey 

3.3.1 Introduction 

 

The main objectives of the construction industry survey were to identify the existing 

practices, techniques and software being used; to understand the problems faced in 

construction planning and scheduling tasks; and to note any existing use of visual 

modelling and simulation practice that are used in the construction planning tasks. 
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UK-based road, railway and civil engineering construction companies were included 

in the construction industry survey. 

 

3.3.2 Questionnaire design and data collection 

 

A semi-structured interview questionnaire was designed by interviewing 

construction managers and was aimed at identifying the current practices and 

techniques, limitations, construction methods, critical factors affecting site 

productivity, and possible applications of 4D visualisation technologies in earthwork 

operations. Random sampling methods were used to select the construction 

companies, mainly involved in civil engineering and infrastructure projects, for the 

purpose of collecting the responses of a questionnaire. The survey was conducted 

through the post, by email and in person. A sample of the responses is shown in 

Appendix-B. A total of 30 responses out of 50 (60%) questionnaires were received 

from construction companies in the UK. The data analysis and results of the industry 

survey are presented in the following section. 

 

3.3.3 Data analysis and results presentation 

 

The responses from questionnaires were included in the data analysis. After 

analysing the survey data using frequency analysis techniques, the survey results are 

presented in tables and graphs (see Figures 3.2 to 3.12 and Tables 3.1 to 3.7). The 

companies that participated in the survey were involved with projects valued 

between£5 million and £50 million, mostly road/highway projects. Considering their 

past experience, it was assumed that such companies would have a good track record 

and be reputable construction organisations. Such companies‟ responses were 

expected to provide crucial information regarding the existing practices and 

techniques in construction projects. The questionnaire was categorised into four sub-

sections as below: 

 

1. Background information of participating company 

2. Existing practices at tender/bidding stage 

3. Existing practices at detailed planning and execution stage 

4. Practical applications of visualisation tools in the construction industry 
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Each section was designed with the aim of understanding any relationships that may 

exist in the earthwork planning, scheduling and visualisation of road construction 

processes. The responses from questions 3, 6-7 and 17-19 of the questionnaire were 

excluded from the analysis due to the omission of satisfactory answers; these 

responses were, in any event, less relevant to earthwork scheduling and visualisation 

modelling aspects. The findings from the survey analysis are presented and discussed 

in the following sections. 

 

3.4  Background Information of Participating Companies 

 

The survey results related to the company backgrounds are displayed in Figure 3.2. 

The types of construction projects and project values involved are shown below. 

Types of construction projects involved: 

· Roads/highways   54%  

· Railways    9%  

· Pipelines     13% 

· Tunnels    2% 

· Other      22% 

Project value involved:  

· Equal or less than £10 million 37% 

· Between £10-25 million  27%  

· Between £26-50 million   13% 

· More than £50 million  23% 

 

  

Figure 3.2 Participating company market segments 
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Participants were asked for information in relation to existing practices and software 

being used in construction planning, and existing problems and critical factors that 

they faced in their planning and scheduling process of earthwork operations at 

construction sites. The survey data collected from participants were analysed and 

presented in the survey results. The following section discusses the survey results 

related to the existing practices and issues at the tender/bidding stage. 

 

3.5  Existing Practices and Issues at Tender/Bidding Stage 

 

3.5.1 Basis of  priority considered for a schedule development 

 

Question 4 asked about the basis for the development of a construction schedule, and 

the respondents expressed their view that schedules were developed based on the 

priority factors of the project requirements such as project duration; project cost; 

complexity of projects; type of contract, like cost plus time (A+B) contract; and 

others. Figure 3.3 shows their responses. 

 

The findings from the survey suggest that project duration is still the major priority 

factor being considered during the development of construction schedules. 

 

 

Figure 3.3 Prioritisation of the construction schedule development 

  

Project Cost

19%

Project 

Duration

32%
Complexity 

of project

12%

A+B 

contracts

25%

Others

12%



63 

 

3.5.2 Responsibilities for project planning and scheduling 

 

Question 5 asked about the responsibility for developing a construction plan and 

schedule. Most respondents answered that their construction companies assigned one 

planner for the planning job, whilst others advised that normally a team of planners 

(two or more) and construction managers were engaged to develop a construction 

schedule according to the project value and size. Few companies appointed a 

specialist consultant or consulting company, though this depended on the complexity 

of projects. The survey identified the responsible organisations for planning and 

scheduling, which are shown in Figure 3.4 below. 

 

The survey findings about organisation charts revealed that, generally, one planner is 

involved in the planning and scheduling process in construction projects. Planning 

and scheduling can, however, be improved more effectively by involving 

experienced team members, project planners and construction managers, or by 

appointing a specialist consultant, considering the value and complexity of the 

construction projects. 

 

Figure 3.4 Responsibility shared in the planning and scheduling of tasks. 

 

3.5.3 Identification of delay factors in earthwork operations 
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planning (incorrect resource plan, activities sequences and assigned duration); 

relocation to utilities; and change orders by clients, contributing to the delay of 

earthwork construction projects. Incorrect design and equipment breakdown 

contributed minor delays to projects. The results obtained are shown in Figure 3.5. 

 

  

Figure 3.5 Delay factors affecting earthwork operations 
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The survey results showed that the majority of companies still highlight previous 

experience as the key influencing factor in the development of construction plans 

and schedules; however, a few companies use intuitive methods and „rules of thumb‟ 

for project planning and scheduling. Amongst the participating construction 

companies, the responses in the survey identified the planning and scheduling source 

for earthworks, particularly considering the type-A category of responses as follows: 

 

· 73% of construction companies are still using past experience 

· 20% intuitive methods 

· 7%  rule of thumb 

 

The survey results of different planning and scheduling approaches for type A, B, C, 

D and NE cases gave a different value of mean and SD, presented in Figure 3.6 and 

Table 3.1.  

 

Table 3.1 Frequency of participants in existing practices of planning and scheduling  

Planning/scheduling Approach A B C D NE Mean SD 

Past Experience 22 3 0 0 0 5 9.6 

Intuitive Methods 6 11 4 0 3 4.8 4.1 

Rule of thumb 2 8 5 3 2 4 2.5 

 

The survey results also discovered that “rule of thumb” was always used by 10% of 

contractors, 40% sometimes, 25% when necessary and 15% under impaired control, 

and that 10% of contractors had no knowledge, with the mean value of 4 and 

standard deviation of 2.5. However, intuitive methods were always used by 25% of 

contractors, sometimes by 46% of contractors, and by 13% of contractors when 

necessary, while 10% had no experience. The mean value is 4.8 and the standard 

deviation 4.1.  

 

Similarly, the survey results also revealed that 88% of contractors always used past 

experience and 12% used it sometimes, with a mean value of 5 and a standard 

deviation of 9.6. Past experience is the most critical factor used to determine the 

duration of tasks and their sequential relationship amongst other tasks in producing a 

construction schedule, but none of those surveyed used a „what-if‟ scenario analysis 

or visual simulation models for earthwork planning and scheduling processes. 
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Figure 3.6 Existing practices used in construction planning and scheduling 

 

3.6.2 Software currently used for construction planning and scheduling 

  

The findings from the survey suggested that different construction companies use 

different types of planning and scheduling software based on available expertise and 

the contract requirements. The survey results of different types of planning and 

scheduling software for the case of A, B, C, D and NE are shown in Figure 3.7 and 

Table 3.2 below 

 

Table 3.2 Frequency of planning software used by construction companies 

Planning and Scheduling Software A B C D NE Mean SD 

Power Project 6 1 1 0 8 3.2 3.6 

MS Project 7 8 2 0 4 4.2 3.3 

Primavera 6 7 4 0 4 4.2 2.7 

Sure-Track 7 6 0 0 6 3.8 3.5 

TILOS 1 0 2 0 12 3.0 5.1 

Others 0 2 2 0 0 0.8 1.1 



67 

 

 

Figure 3.7 Types of software used in construction companies 

 

The survey results revealed that „Power Project‟ was always used by 38% of 

contractors, sometimes by 6%, and by 6% when necessary, having a mean value of 

3.2 and SD of 3.6. In contrast, 33% of contractors always used MS Project, 

sometimes 38%, 10% when necessary, and 19% had no experience, with a mean 

value of 4.2 and SD of 3.2. The survey results for Sure Trak, Primavera, TILOS and 

„Others‟ are shown in Figure 3.7. It is clear from these results that visual simulation 

or modelling tools are not used for earthwork planning and scheduling processes. 

 

3.6.3 Existing practice of producing project schedules 

 

Responses to Question 12, regarding the types of detailed scheduling used at the 

construction stage, indicated that different companies have different sequences and 

scheduling frequencies according to the contract requirements and the complexity of 

construction projects. For type-A responses, the results are given below: 
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· 49% of companies develop the schedule on a monthly basis 

· 32% on a weekly basis 

· 16% on a bi-weekly basis 

· 3% on another time scale 

 

The responses also revealed the differences for the A, B, C, D and NE categories, 

which are presented in Figure 3.8 and Table 3.3 below. 

 

Table 3.3 Frequency of responses by participant for scheduling types  

Types of Scheduling A B C D NE Mean SD 

Weekly 12 8 2 0 1 4.6 5.2 

Bi-weekly 6 8 1 0 1 3.2 3.6 

Monthly 18 3 0 0 0 4.2 7.8 

Others 1 1 0 0 0 0.4 0.5 

 

 

Figure 3.8 Schedule development levels used in construction projects 

 

The survey results revealed that the weekly schedule was always used by 52% of 

companies, 35% sometimes, and9% when necessary, while 4% had no experience, 

with a mean value of 4.6 and SD of 5.2; whereas 38% of companies always 

produced bi-weekly schedules for planning and monitoring construction projects, 
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50% sometimes, and 6% when necessary, while6% had no experience, giving the 

mean value of responses as 3.2 and SD as 3.6.  

 

The conclusion to the findings from the survey was that the majority of construction 

companies (86%) of category-A still use monthly construction plans and schedules, 

whilst (52%) of category-A also used both weekly and monthly plans for progress 

monitoring purposes when they believed these were necessary. However, daily 

schedules were also used to monitor the day-to-day progress of activities within the 

weekly assigned activities. 

 

3.6.4 Existing practices used in earthwork planning techniques  

 

For the existing practices of earthwork planning, the findings from the survey 

exposed the following tendencies when considering only the case of „always‟ (type-

A) responses: 

· 57% construction companies are using Mass Haul Diagram  

· 33% use Past Experience 

· 7% use commercial software  

· 3% use „What-If‟ Scenario  

 

The survey results of responses for type A, B, C, D and NE cases are shown in Table 

3.4 and in Figure 3.9 below.  

 

Table 3.4 Responses from companies used in earthwork planning techniques 

Earthwork Planning Techniques A B C D NE Mean SD 

Mass Haul Diagram 17 7 0 0 3 5.4 7.1 

What-If Scenario 1 8 1 1 7 3.6 3.6 

Past Experience 10 6 5 0 3 4.8 3.7 

Commercial Software  2 1 0 0 12 3 5.1 

 

The survey results discovered that 63% of construction companies always used 

and26% sometimes used a Mass Haul Diagram, and that 11% have no experience, 

with a mean value of 5.4 and SD of 7.1; the other results can be seen in Table 3.4 

and Figure 3.9. The survey results showed that there is no existing practice in the use 

of software for visual simulation or modelling of earthwork planning using a „What-
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If‟ Scenario for different site conditions and soil types. The analysis of the survey 

findings identified that the majority of companies still use the previous experience of 

their professionals and intuitive methods for scheduling and planning processes. 

 

 

Figure 3.9 Types of earthwork planning methods used in construction projects 

 

3.6.5 Critical factors affecting earthwork planning and operations 

The respondents were asked to rank the critical factors considered in earthwork 

planning operations. The ranking results are presented in Figure 3.10 and Table 3.5. 

According to the survey results, the critical factors were ranked in the following 

order: 

 

· Soil characteristics 

· Method of construction 

· Access road conditions 

· Number of access points 

· Location of borrow pits 

· The availability of equipment was 
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Table 3.5 Ranking responses of critical factors in earthwork planning  

Types of critical factors 1 2 3 4 5 Mean SD 

Number of site access points 5 5 8 5 7 6.00 1.41 

Soil characteristics 1 2 4 5 18 6.00 6.89 

Method of construction 1 4 6 9 10 6.00 3.67 

Availability of equipment 4 8 7 6 5 6.00 1.58 

Location of borrow pit 0 4 10 10 6 6.00 4.24 

Access road condition 3 6 7 6 8 6.00 1.87 

 

 

Figure 3.10 Critical factors affecting earthwork planning and operations 

 

The survey results showed that access road condition was ranked by 27% of 

contractors as the most important factor, 20% as more important, 23% as important, 

20% as less important and 10% as least important, with a mean value of 6.0 and a 

standard deviation of 1.41. The ranking results of the rest of the critical factors are 

presented in Table 3.5 and Figure 3.9. The respondents were experienced planning 

and construction professionals and the author believes that the information and 
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opinion provided by them was reliable and valid in relation to the construction 

planning and scheduling of earthwork operations. The analysis of the survey 

revealed that „soil characteristics‟ is the most critical factor that affects earthwork 

planning. 

 

3.7  Future Applications of Visualisation Tools  

 

3.7.1 Anticipated application of visualisation tools at different stages 

 

The respondents agreed that visualisation tools are applicable and beneficial at 

different stages of construction projects. When considering only a type-A category, 

the application stages of visualisation tools cited by interviewees were found as 

follows: 

 

· 46% at detailed planning stage 

· 27% at tender/bidding stage 

· 24% at execution stage 

· 3% at other stages  

 

The survey results of responses for type A, B, C, D and NE cases are presented in 

Figure 3.11 and Table 3.6 below.  

 

Table 3.6 Responses for application stages of visualisation tools   

Application stages of visualisation tools A B C D NE Mean SD 

Tender/bidding stage 9 10 4 0 4 5.4 4.1 

Detail planning stage 15 6 0 0 5 5.2 6.1 

Execution stage 8 8 2 0 6 4.8 3.6 

other stage 1 0 0 0 3 0.8 1.3 
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Figure 3.11 Application stages of visualisation tools in construction projects 

 

The survey results revealed that a visualisation tool is most valuable at the detailed 

planning stage; however, the tool is also useful at the tender and site operation stage. 

The survey result showed that 33% of contractors always used visualisation tools at 

the tender/bidding stage, 37% sometimes, and 15% when necessary, but that 15% 

have no experience, with a mean value of 5.4 and SD of 4.1. The respondents agreed 

that the tender stage is more valuable in comparison to the detail planning stage. The 

analysis of the survey concludes that visualisation tools are beneficial in developing 

effective construction scheduling and efficient resource planning by the visual 

simulation of the construction process using a „what-if‟ scenario for different site 

conditions 

 

3.7.2 Importance of visualisation tools in earthwork operations 

 

The respondents were asked to rank the application areas/influencing factors such as 

improvement in communication of scheduling information; pre-information of 

activity sequences; and crew/equipment conflicts that assist in updating in a schedule 

production and identification of idle time. The aim of ranking these factors is to 
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determine the site application areas for the existing visualisation tools in earthwork 

operations.  

 

The results of the industry survey responses are shown in Table 3.7 below, on a scale 

of more important, important, less important and least important cases, aimed at 

identifying the application areas of visualisation tools. The results of the survey are 

presented in Figure 3.12 below.  

 

Table 3.7 Responses in the scale of importance of visualisation tool 

Application areas of the tools 1 2 3 4 5 Mean SD 

Communications  improvement 3 7 2 7 8 5.4 2.7 

Sequences of activities 0 1 5 8 13 5.4 5.32 

Crew/equipment conflict   5 6 7 5 4 5.4 1.14 

Assist in scheduling  4 8 7 5 3 5.4 2.07 

 Identifying idle time  4 3 10 7 3 5.4 3.05 

 

 

Figure 3.12 Site applications of visualisation tools in earthwork operations 

 

The survey results showed that visualisation tools enable the improvement of the 

communication of scheduling information, and was ranked by 30% of contractors as 

the most important factor, 26% as more important, 7% as important, 26% as less 



75 

 

important, and 11% as least important, with a mean value of 5.4 and standard 

deviation of 2.7.  

 

The respondents ranked from the most important to least important factors which 

have high impact on visualisation systems in earthwork planning. For the most 

important case, the responses provided by the participants showed that visualisation 

tools assist in the influencing factors, according to a descending order of impact in 

earthwork planning as shown below:  

 

· 48% - providing advanced information of activity sequences  

· 30% - improving the communication of scheduling information  

· 15% - assisting in updating the construction schedule 

· 11% - identifying the idle time of the equipment 

· 11% - crew/equipment conflict identification  

 

Considering the survey results above, it was concluded that visualisation tools for 

earthwork operations are beneficial for resource planning and in producing effective 

construction schedules. They enable proactive actions to be taken before embarking 

on the execution stage by virtually rehearsing the construction process of earthwork, 

which is the “major operation” in road construction projects and plays a great role in 

project delivery on time and within cost. This is because of high uncertainty factors 

affecting earthwork activity, i.e. different site conditions in the open air, weather 

uncertainty and resource constraints.  

 

3.8  Discussion and Findings from Construction Industry Survey 

 

After analysing the survey data, the results of the survey were presented in tables, 

graphs, pie charts and histograms. Simulation of the different variables that affect 

earthwork schedules before starting the project execution can play a valuable role in 

improving project execution and control. Earthwork activity plays a substantial role 

in the final cost and delivery parameters because of the unique characteristics and the 

uncertainty involved. Any improvements in this area will therefore contribute 
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significantly to the success of a project. The findings which are drawn from the 

survey data analysis are listed below:  

 

1. Lack of scheduling information regarding the activities sequences, changes in 

soil characteristics and variation of equipment productivity are the key 

factors to be considered for the development of an effective and efficient 

construction plan of earthwork operations. 

2. From the findings of the survey, most of the construction companies argued 

that the major causes for project delay are change orders, relocation of 

utilities and poor construction planning.  

3. The majority of respondents planned their schedules weekly and monitored 

the work progress at a construction site on a weekly basis to control time and 

cost more effectively throughout the earthwork construction operations. 

4. Most of the companies are still using existing techniques such as mass haul 

diagrams to plan the earthwork operation in road projects. This provides less 

information in relation to accurate earthwork quantity distribution between 

cut and fill sections, particularly in the cross direction. There are also 

shortcomings associated with the traditional mass haul diagram for planning 

and scheduling of earthwork operations.  

5. In the company survey, it is found that visualisation technology for the 

simulation of earthwork activities –including spatial aspects and analysis of 

activity sequence – does not exist and has not been applied. 

6. Factors such as soil characteristics and methods of construction are the most 

critical factors that affect earthwork planning. Similarly, factors such as 

access road conditions, the number of access points, and the location of 

borrow pits also affect the planning processes. The type of equipment sets 

and equipment breakdown time need to be carefully considered to enable 

high levels of process efficiency.  

7. Forty-eight percent of the companies agreed that a visualisation tool would 

be beneficial to provide information on schedule activity sequences before 

implementation in the earthwork construction process, while thirty percent 

agreed that the tool would assist in improving the communication of 

scheduling information at a construction site. 
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3.9  Summary  

 

This chapter explained the design of the questionnaire, data collection and analysis, 

and has presented the findings drawn from a construction industry survey. The 

survey was targeted at construction companies, particularly involved in roads, 

railways and civil engineering linear construction projects with earthwork 

operations. The survey was conducted using semi-structured interviews and 

questionnaires and was well received by the industry with a 60% response rate. 

 

The following are the key findings concluded from the industry survey: 

· Mass haul diagrams and past experiences were commonly used in earthwork 

planning despite the development of commercial software and tools. The 

reason given was that existing tools were too complex in application and 

costly.  

· The majority of the companies used weekly schedules for the execution and 

monitoring of the work progress of earthworks; however, some companies 

still used monthly schedules for execution and monitoring purposes.  

· Availability of different sets of construction equipment, selection of 

construction methods, soil characteristics and site access points were found to 

be the key factors affecting earthwork planning and construction operations.  

· Visualisation of earthwork progress profiles provides information on 

construction sequences and space/location allocation. This helps to analyse 

space/location and crew congestion, and assists in communicating the 

scheduling information more effectively amongst project stakeholders.  

· A map of construction processes presented in this chapter showed that the 

visualisation of construction sequences would be valuable in the bidding and 

detailed planning stages of earthworks‟ components in road construction 

projects. 

 

The findings listed above were incorporated into the development of the 

specification for the prototype model. The details of model specification 

development are presented in Chapter 4.  
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Chapter 4 

Development of Model Specifications 

 

4.1 Introduction 

 

The objective of this chapter is to introduce and present the basic specifications of 

the prototype model and its components. The specification considers the features 

required for the computer modelling of earthwork scheduling and the visualisation of 

construction processes in linear construction projects. Specification of the prototype 

model was developed with three components: inputs, processes and outputs.  

 

The chapter explains the research methodology used in this study and outlines a 

theoretical framework of computer modelling of earthwork operations. The 

prototype model was designed with two key objectives: 1) automatic generation of 

location-based scheduling (a time-location plan); and 2) visualisation of progress 

profiles including scheduling information of earthwork operations. The model was 

developed for resource scheduling and visualising of the scheduling information on a 

weekly or daily basis throughout the construction phase of earthworks. The model 

includes a visualisation capability to imagine the construction processes from a 

location aspect. This facility was designed to assist construction managers to 

improve the way of communicating the scheduling information amongst construction 

teams throughout the earthwork operations in road construction projects. 

  

The specification of the prototype model was developed by incorporating the 

findings which have been summarised from a literature review and construction 

industry survey (see Chapters 2 and 3). This chapter explains and derives the 

mathematical equations and the design of the arithmetical algorithms for different 

functions of the model. These include the automatic generation of weekly progress 

profiles, location-based schedules, space congestion plans and location-based costing 

information in addition to a cut-fill optimisation module of earthwork allocation in a 

road construction project.  
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The „cut-fill optimisation module‟ deals with the optimisation of the earthwork 

allocation quantities and the direction of movement along cutting to filling sections, 

borrow pits to filling sections or cutting to landfill sites using a linear programming 

technique. The unit cost of the earthwork allocation was used as a decision 

coefficient for minimising the haulage cost associated with earthwork operations. 

The next section gives an overview of the prototyping.  

 

4.2 Overview of prototyping 

 

The prototyping approach is popular in the development of computer-based 

modelling because of the rapid delivery of the systems and the precise determination 

of system requirements (Dennis et al, 2008). Fitzgerald et al (2002, p50) stated that 

prototyping is a technique and a philosophy for system development. Bowen et al 

(1994, p116) stressed the importance of building a prototype. They outlined the 

benefit of a prototype assisting project teams in solving problems faster at strategic 

junctures, thereby allowing developers to generate possible solutions, demonstrate 

expected functionality, and build required alterations before producing the final 

model. Therefore, a prototyping approach was selected in this research for building a 

model for earthworks scheduling and visualisation of scheduling information in road 

construction projects. A conceptual map of the data processing prototype model is 

shown in Figure 4.1.  

 

Figure 4.1 Conceptual map of data processing prototype model 

 

In the model, the design data or construction site information is processed to obtain 

the model outputs in terms of tabular data and graphs using algorithms and computer 

programmes. The outputs are decision supporting tools that aid construction 

managers and projects planners in producing effective construction schedules and 
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accurate resource planning at required locations and when necessary. Hence, 

construction equipment idle time and resource wastage can be reduced using the 

location-based schedules developed by the model. 

 

The data processing prototype model was developed using a new approach. This is 

focusing on the automatic generation of data by integrating different productivity 

values associated with earthworks. The productivity is known as a production rate of 

work activity. The values of productivity vary according to the site conditions and 

other factors including soil types, weather, working conditions and equipment 

characteristics. In this study, earthwork productivity was calculated using the 

“RoadSim” simulator, which was developed by Dawood and Castro (2009) and 

aimed to determine the productivity and unit cost of road activities. The simulator 

incorporates characteristics of the construction equipment, site access conditions, 

soil characteristics and working efficiency at an earthwork construction site. The 

productivity and unit cost calculation sub-module of the “RoadSim” simulator was 

tailored, and it was also integrated into the prototype model to analyse and visualise 

the impact of these factors in the earthwork modelling. 

 

In the prototype model, a trapezoidal rule was utilised for the calculation of sectional 

quantities of earthwork and the automatic generation of weekly or daily progress 

profiles of earthwork throughout the construction phase of a road section. 

Furthermore, the mass haul diagram was used for the identification of economical 

haulage distance and generation of cut and fill activities along a road section. The 

theory of location-based planning was used to generate location-based schedules of 

earthwork activities. The improvement of the planning process and productivity of 

each activity in a road project from location aspects was the most important purpose 

of Location-based Planning (LBP). Kenley and Seppanen (2010) highlighted that 

location-based planning is applied to both a planning and scheduling technique 

simultaneously. It has the capability to organise both activities and work sequences 

to improve the site productivity in construction projects.  

 

The LBP depends on the extension of activity-based logic combined with location-

based logic, which provides a new tool for the planning and analysis of work 

activities in a linear construction project. It has a superior record of accomplishment 
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about practical appropriateness in the repetitive nature of construction projects, 

including roads, railways, canals and pipelines projects (Kenley and Seppanen, 2010, 

p123). The next section explains the framework design and specification of the 

prototype model with detailed specifications.  

 

4.3 Framework of a Prototype Model 

 

A framework of a prototype model was designed for earthwork scheduling using the 

findings obtained from the literature review and the construction industry survey. 

This was utilised as the basis for the analysis and visualisation of scheduling 

information of earthwork operations in road construction projects. The framework of 

the prototype is presented in Figure 4.2 below. 

 

 

Figure 4.2 Framework of a prototype model for earthwork scheduling 
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· Site access points and working lengths  

· Construction site knowledge and algorithms 

 

The outputs were obtained by processing the input data. The model was integrated 

with the construction site knowledge embedded within algorithms and the utilisation 

of visualisation technology. The key outputs are: 

 

· Weekly progress profiles 

· Location-based schedules/time-location plans  

· Space congestion plans 

· Cost profiles/S-curves  

 

The two key processes of the prototype model were “Data Generation Module” 

(DGM) and “Visualisation Module” (VM). The DGM was designed to generate 

coordinate data and it was sub-divided into four sub-modules, with different 

functionalities: automatic generation of earthwork progress profiles; location-based 

cost profiles; time-location plans; and space congestion plans for earthwork 

operations. The VM that processes the coordinate data produced by the DGM for 

each function transforms the coordinate data into outputs in tabular and graphical 

form.  

 

The graphical form of the model outputs communicates the scheduling information 

including activity sequences and resource allocation plans more precisely with 

location aspects on a weekly or daily basis. The model assists analysis of the impacts 

of different factors associated with productivity on the resource scheduling using a 

“what-if scenario” analysis throughout the construction operations in linear repetitive 

projects. The next section explains the development of the model specifications and 

functionalities.  

 

4.4 Development of  Prototype Model  Specification 

 

The detailed data flow diagram of the whole prototype model is presented in Figure 

4.3. The diagram outlines the model functionalities. Graphical images of inputs and 
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outputs are also included in the diagram to aid understanding of the expected model 

deliverables. 

 

The prototype model key functionalities include:   

 

· Generation of earthwork progress profiles and cost profiles  

· Automatic generation of location-based schedules and space congestion plans 

· Optimisation of earthwork allocation quantities of a cut-fill assignment  

 

The technique used to develop the prototype model was focused on integration 

processes of “variable” factors associated with productivity data of earthwork 

activities. The findings from the construction industry survey presented in Chapter 3 

revealed that types of construction equipment sets, soil characteristics and site access 

points were the key factors affecting project duration and cost of earthwork 

components in road construction projects. 

 

The model was designed by incorporating user-defined site access points (locations) 

or working lengths of cutting and filling sections in a road section. Site access points 

and working lengths between two access points were integrated as a key input of the 

model. The working lengths are equivalent to the economical haulage distances 

between cutting and filling sections identified by the module, considering site 

constraints along a road section and the mass haul diagram. The next section 

explains the details of the model inputs. 
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4.5 Inputs of the Prototype Model 

 

The geometrical design data of a road section including longitudinal sections and 

cross sections were collected. Other contract documents providing site information 

were used to determine the sectional quantities of earthworks at the required 

chainage interval. The L-section provides information of existing ground level and 

road design level at each chainage point/station and soil characteristics along the 

cutting section of the road, whereas the X-section provides the road width, side 

slopes and dimensions of geometrical parameters at every chainage, including 

ground level and road design level. The inputs of the model are: 

 

· Sectional quantities of cutting and filling activities 

· Geometrical design data including L-sections and X-sections 

· Productivity and unit cost data of earthworks 

· Locations of access points and haulage distance/working length  

 

The sectional quantities of a road section at the cutting and filling sections were 

calculated using the trapezoidal rule with the information provided in longitudinal 

and cross-section profiles of the road section. The site survey provided the following 

information: the site access points; the location of borrow pits; and the landfill sites. 

The productivity data of earthwork activity was integrated into the model in order to 

analyse the effects of influencing factors associated with the productivity data and to 

identify the duration of earthwork activity throughout the construction process.  

 

The findings from the construction industry survey showed that earthwork is 

normally planned and progress is measured on a weekly basis. Therefore, a weekly 

unit was automatically used as an input of the model to generate progress profiles 

and location-based schedules of earthworks.  

 

According to road practitioners, the limit of an economical hauling distance is 50m 

for bulldozers; 100-500m for motor scrapers; 500-1500m for dumpers; and greater 

than 1000m for dump trucks or tippers (Mota-Engil). Using this knowledge, a new 

algorithm was developed to identify the possible site access points /working lengths 
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between the cutting and filling sections, considering site conditions and resource 

constraints. The development of the algorithm for identifying access points is 

explained in Chapter 5. This is a key feature of the model and it takes into account 

physical obstructions or resource constraints at a particular point or section of the 

working lengths, a variable according to topographical constraints for earthwork 

construction projects.  

 

The soil characteristics of the road section, type and number of equipment sets, 

haulage distance, site access road and working conditions at the site were integrated 

into the prototype model by tailoring the productivity determination module of 

“RoadSim”.  This enabled the impact of these factors, on the earthwork progress 

profiles and location-based schedules, to be analysed and visualised, dynamically.  

 

Moreover, construction knowledge was encapsulated from the literature review of 

construction processes, from construction professionals from “Mota-Engil”, and 

from the construction industry survey in the UK. This assisted in establishing the 

sequences of the earthwork activities and in selecting possible construction methods 

of earthwork operations. The next section explains the processing components of the 

prototype model in detail. 

 

4.6 Processes of the Prototype Model 

 

This section contains the detailed design and development of two major components 

of the prototype model: DGM and VM as shown in Figure 4.2 above. The DGM 

processes the input data and generates numerical data for all four component 

modules: 

 

· Time-location module  

· Space congestion module  

· Progress profiles module  

· Cost profiles module  

 



87 

 

These modules were designed using arithmetical algorithms and VBA programming 

language with functionalities as follows: 

 

· Location-based schedules/time-location plans 

· Location-based space congestion plans 

· Earthwork progress profiles 

· Location-based cost profiles 

 

The generated data incorporates the productivity data for earthworks operations, 

which generates the earthwork progress profiles and location-based schedules on a 

weekly basis (or daily, if required). Therefore, the impact of different factors 

associated with the earthwork productivity was analysed and visualised.  

 

Similarly, the VM processes the data generated by DGM, and transforms it into 

graphical images as the model outputs, including progress profiles and location-

based schedules of earthworks. The weekly progress profiles represent the terrain 

surfaces at each week throughout the earthwork operations. The progress profiles of 

earthwork are represented on a regular triangulation grid. The detailed development 

of VM, including algorithms and processes, is explained in Chapter 6.  

 

A conceptual model for the development of the DGM for automatic generation of the 

required data of all modules is discussed in the next section.  

 

4.6.1 Concept diagram for data generation module 

 

The aim of the DGM is to generate the required data for different functions of the 

prototype model. A conceptual map of different construction layers of a typical road 

section, which has both cutting and filling sections, is presented in Figure 4.4 below. 

The concept originated from the reviews of earthwork operations as mentioned 

previously, and from what the author has experienced in road construction projects. 

The DGM was developed using layer logic and volumetric analysis at each 

construction layer of earthwork operations as shown in Figure 4.4. The integration of 

productivity data associated with cutting and filling activities is a key feature of the 
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Vr 

prototype model. The explanation of integrating processes of different productivity 

rates (p) and assumptions made for the development of a mathematical equation is 

given in the following section.  

 

 

 

      

 

 

Figure 4.4 Typical mass profile with construction layers of cut-fill sections in earthworks 

 

Figure 4.4 represents a typical mass profile of a road section which includes different 

construction layers at each station. In this figure, a line AB represents a road section 

having cutting and filling sections, with a total of 11 stations at equal intervals of 20 

or 25m considered as normal. The stations from 1 to 6 represent a cutting section, 

whilst the stations from 6 to 11 represent a filling section. The sectional volume of 

earthwork was calculated using the „Average end-area‟ method. In Figure 4.4, above, 

V2 represents the volume of earthwork between stations 1 and 2, whereas V4 

represents the volume of earthwork between stations 3 and 2. Similarly, V3 

represents the volume of earthworks between stations 2 and 3, which shows the 

maximum volume (Vmax) in the cut section. 

 

4.6.2 Derivation of mathematical equation  

 

This section discusses the derivation of a basic mathematical equation, which 

underpins the prototype model for automatic generation of location-based 

scheduling and the visualisation of earthwork progress profiles. The assumptions 

made during the development of the model are presented below.  

 

· Earthwork operations are normally scheduled in suitable weather periods to 

avoid extreme wet or adverse weather because it has a high impact on 

earthwork productivity and overall progress. Furthermore, Castro (2005) also 
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pointed out that weather factors cannot be simulated in a model for measuring 

the impact on productivity due to their complexity and uncertain nature; 

however, the impact of the weather can be considered by incorporating a few 

days in the construction scheduling, according to locations and weather 

patterns of an earthwork construction site. Therefore, weather was not 

incorporated into the prototype model. 

  

· Earthworks are performed as a layer-by-layer approach at both cutting and 

filling sections, which is normal practice in earthwork operations, particularly 

in a linear construction project. Rock excavation is excluded in the prototype 

model since it is performed by blasting and is planned separately. 

 

· Each station represents the average volume of earthwork between station 

intervals of 25m or 20m since the cross-sectional information of the road 

design is normally available at that interval. However, the model can be 

adjusted for a shorter station interval. 

 

· It is assumed that the selected road section is between two major obstructions 

such as rivers, railway/road crossings or bridges. The road project can be 

divided into smaller sections (1 to 1.5 km) for producing a weekly location-

based schedule of earthworks. However, the model is flexible enough to 

incorporate a longer road section according to site conditions. 

 

· Additional cutting quantities will be spoiled if unsuitable for backfilling; 

alternatively, if suitable, these will be deposited at a temporary place for other 

purposes. The shortage quantities are borrowed from nearby borrow pits or 

temporary deposited places. The optimisation module (Chapter 5) provides 

information on the cutting and filling quantities of the earthwork allocation and 

the movement direction between the cut and fill sections. 

 

Considering the assumptions made above, and referring to Figure 4.4, a basic 

mathematical equation for the generation of location-based earthwork scheduling 

and weekly progress profiles is derived as follows.  
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It is considered that earthwork productivity (P) is equal to the volume of earthwork 

performed at a particular period of time. The unit of time has been considered as a 

week. Considering a road section AB as shown in Figure 4.4, the total volume of 

earthworks (a cutting or a filling section) in a road section can be represented by 

equation 1 below: 

 

                                                      (1) 

 

Whereas,  

V = total volume of a cutting or a filling section of a selected road section.  

Total volume of the cutting section is equal to (V1+ V2+...............+V6).  

Total volume of the filling section is equal to (V7+V8+...............+V11).  

The numbers of stations in cut or fill section can be represented by 1, 2, 3,.….., n  

Hence, Equation 1 can be expressed by equation 2 as follow:    

 

      
   
                         (2) 

 

In case of station number 2 of the selected road section AB (see Figure 4.4); the 

station includes multi-layers and represents the sectional volume of earthwork 

between stations 1 and 2. The sum of volume of all layers represented at the station 

can be expressed by equation 3 below. 

 

                                                    (3) 

                     

Equation 3 can be expressed as          
   
                        (4) 

 

Whereas, t = number of layers during earthwork operations, j = 1, 2, 3,………., t 

Combining the equations 2 and 4, the total volume of earthwork at all layers along a 

selected cut/fill section is represented by equation 5 as follows:  

 

          
    
   

   
                                                                                                   (5) 
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After performing earthwork operations, the remaining volume (Vr) of earthwork at a 

layer and at each station is represented by equation 6 below: 

 

                             (6) 

 

The Vr shown in equation 6 represents the remaining volume of earthwork at a 

construction layer and at each station along a cutting or a filling section. Substituting 

the value of V from equation 2, equation 7 can be found as below:    

 

                 
   
                                (7) 

 

Whereas;  

n = number of stations selected by algorithm at a layer section  

Vi = sectional volume of earthwork at each station, i = 1, 2, 3, ............., n 

Vr = the remaining volume after progress at a layer and each station 

r = number of construction layer at a station of a cut/fill section, r = 1, 2, 3, ........., t 

p = (pc /pf) productivity of earthwork activity according to a cut/fill section.  

 

The formula shown in equation 7 was used to identify the starting and the ending 

location information at a construction layer of earthwork. This is used to 

automatically generate a location-based schedule and visualise the weekly progress 

profiles of cut/fill sections in earthwork.  

 

For the verification of equation 7, an illustration is presented by selecting a road 

section. The illustration results are presented in tables and figures which provide the 

information on weekly quantities of cut and fill sections compared with the total 

sectional quantities of earthworks separately (see Appendix-G). The next section 

discusses the processes of earthwork progress profile generation. 

 

4.7 Earthwork Progress Profiles 

 

The development of earthwork progress profiles is a major function of the prototype 

model. The DGM is a central part of the prototype model which processes the inputs 
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and produces the progress profiles of earthworks of a road section. The data flow 

diagram for generation of earthwork progress profiles and corresponding terrain 

surface is shown in Figure 4.5a below. 
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Figure 4.5a Data flow diagram for generation of earthwork progress profiles  

 

 

4.7.1 Generation of coordinate data of progress profiles 

 

The input of the visualisation module is the weekly coordinate data of progress 

height produced by the DGM. The derivation of the mathematical equations and 

algorithms are discussed in the following sections. 

  

 



93 

 

4.7.2 Derivation of mathematical equations for progress height 

 

This section explains the development of mathematical equations. The equations 

were used in the algorithm for the calculation of progress height of earthworks at 

each station. Mathematical equations were derived assuming the trapezoid shape of 

road cross-section for two cases: flat terrain and terrain with transverse slope. These 

cases are widely utilised in earthwork operations. These two cases (a) and (b) were 

considered in order to derive mathematical equations 8 and 9, aiming to calculate the 

progress height of cutting and filling sections (see Appendix-C).  

 

Case (a) represents a typical road cross-section which was used regularly in road 

projects, particularly in a flat terrain. It was selected to derive a mathematical 

equation for the calculation of earthwork progress height as shown in equation 8 

below.     

   
                

      
   

  
                  (8) 

 

Case (b) represents a typical cross-section which was used in road projects, 

particularly in a terrain having transverse slopes. It was selected to derive a 

mathematical equation for the calculation of earthwork progress height as shown in 

equation 9 below. 

 

       
 

 
      

 

  
    

   

 
        

  

                  (9) 

 

The detailed derivations of mathematical equations for both cases (a) and (b) are 

presented in Appendix-C. 

 

4.7.3 Algorithm for data generation of progress profiles 

 

The algorithm was designed to generate the progress height as the Z- coordinate data 

of terrain surface during earthwork construction. The trapezoidal rules were utilised 

for the calculation of the progress height at each chainage (station) in a road section. 
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Another algorithm was developed using volumetric analysis for the identification of 

stations having earthwork quantities equivalent to the weekly (or daily) productivity 

value at each construction layer at earthworks. The coordinate data was integrated 

with a 4
th

 dimension (time), which was derived from productivity data (production 

rate of earthwork activity) in road construction projects.  

 

According to the existing practice, the excavations are progressed on a layer by layer 

basis in a horizontal direction for both cutting and filling activities in the earthwork 

operations in road construction. This practice was assumed as a basic principle in 

order to design an algorithm and calculation of the progress height of earthworks. 

The progress of the earthworks is commonly monitored on a weekly basis; therefore, 

a weekly schedule is considered for the calculation of the progress height of 

earthworks in this study.  

 

The algorithm was designed to identify the starting location during earthwork 

operation, which is a station (chainage point) representing the highest point of mass 

volume at a cutting section and the lowest point of mass volume at a filing section. 

In this algorithm, the remaining quantities of earthwork are identified after reducing 

excavated quantity (equivalent to weekly performed quantity) at each location. The 

height of the remaining section is calculated using equation 8 or 9 depending upon 

the types of road cross-section used in road construction. This process is repeated to 

achieve the final design level as shown in a longitudinal profile of a road section. 

The production rates determine the duration of earthworks in a road section.  

 

The details of the algorithm, including inputs, processes and output of the earthwork 

progress profiles module, are shown in Figure 4.5b. 
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Figure 4.5b Coordinate data generation algorithm for earthwork profiles 
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Similarly, the remaining sections of cutting and filling are repeated to achieve the 

final design level of the selected road section for construction. The above processes 

are repeated to complete the earthwork operations in a road section. A road project is 

broken down into smaller sections or a practical length to satisfy the prototype model 

because earthworks are performed in smaller sections in road projects according to 

site conditions and resource constraints. In this way, the module generates the 

coordinate of the progress height of earthworks on a weekly basis.  The module 

creates a 2D graph of progress profiles of earthworks and shows the number of 

weeks required to complete the cutting and filling operations separately.  

 

The VM transforms the coordinate data into visual images of terrain surfaces of 

earthwork progress profiles. The DGM, which also produces the coordinate data for 

the location-based schedules and space congestion plans, is discussed in Chapter 5. 

The detailed development processes of the VM of earthwork progress profiles and 

generation of terrain surfaces throughout the construction operations are discussed in 

Chapter 6. The next section outlines the concept and algorithm for the automatic 

generation of a location-base schedule (time-location plan) for the earthwork 

components in road projects. This is the key output of the prototype model. 

 

4.8 Location-based Scheduling/Time-location Plan 

 

The section presents the concepts for the development of a location-based schedule/ 

time-location plan for earthwork components in road construction projects, 

representing a key objective of this research study. A prototype model was 

developed to automate the generation of a location-based schedule and space 

congestion plan by integrating the factors associated with the productivity data of 

earthworks.   

 

4.8.1 Overview of obstructions in time-location plan 

 

The time-location module has been advanced by integrating different obstructions 

along a road section; for example, bridges, rivers, intersections, railways crossings 

and tunnels. These obstructions divide the whole road section into two or more 
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sections for the purpose of earthwork planning and scheduling. Hence, each road 

section was considered separately in this study with a separate set of crews, 

including construction equipment, which is selected by considering the site 

conditions and expected obstructions for the earthwork operations. This was 

considered by Hassanein and Moselhi (2004) for the development of a planning and 

scheduling tool for highway construction projects. 

 

According to Hassanein and Moselhi (2004), road obstructions are defined into two 

types: 1) surmountable, where access is possible across the obstruction at an 

overhead of cost and time, such as an intersection or a railway crossing; and 2) 

insurmountable, where no access is possible, such as rivers. Therefore, work zones 

(areas) were defined based on insurmountable obstructions, while working 

segments/sections were divided according to surmountable obstructions as shown in 

Figure 4.6 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.6 Typical divisions of road activities and sections for a highway scheduling (Hassanein and 

Moselhi, 2004) 
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Referring to Figure 4.6, a road section is divided into different sections and working 

zones considering the available obstructions and resource constraints for earthwork 

operations. An additional input of obstruction points across segment lengths was 

created within the data generation algorithms in the time-location module. This input 

breaks the different working sections according to the number of obstructions and 

generates the time and location coordinates for a time-location plan. The 

demonstration of the time-location plan with the integration of obstructions is 

presented in Chapter 6.  

 

The DGM is a vital part of the prototype model since it was designed to generate the 

coordinate data automatically for producing a location-based schedule and a space 

congestion plan for earthworks. To achieve this, a new methodology was developed 

which is focused on the automatic generation of coordinate data of time and location. 

The coordinate data was used to generate a location-based schedule for earthworks 

considering location aspects of the schedule.  

 

4.8.2 Data flow diagram of location-based scheduling  

 

This section outlines the details of the data flow diagram for the automatic 

generation of location based schedules / time-location plans as shown in Figure 4.7 

below. The longitudinal profile and cross-sectional profiles of a road section is the 

main input in this module. The mass haul diagram was developed using longitudinal 

profiles information. The characteristics of a mass haul curve and the knowledge of 

construction equipment utilisation were used to identify the working sections 

(construction zones) together with working access points. The user‟s defined 

locations, obstruction points, and the sequences of cut and fill activities were 

incorporated in the algorithm. This was considered as an additional input in this 

module.  

 

The productivity values determined by “RoadSim” were used to determine the 

project duration. The algorithm was designed by integrating the inputs and 

mathematical equation 7 discussed in the above section. The algorithm was used to 

generate automatically the coordinate data of weekly locations associated with 

earthwork activities. Then the coordinate data was used to produce a location-based 
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schedule with the information of the starting and ending locations of earthwork 

activities on a weekly (or daily basis).  

 

 

 

Figure 4.7 Data flow diagram for generation of location-based scheduling  
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dimensional graph. In the graph, the time dimension is represented by the Y axis 
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aspects throughout earthwork operations. The plan provides a decision support tool 

that assists project planners and construction managers to identify the weekly (or 

daily) working locations and to allocate resources including equipment mobilisation 

correctly at each location. It also assists in improving the communications of 

scheduling information and analysing the impact on production time of earthwork 

activities from a location aspect along a road section. The detailed development of 

algorithms and a demonstration of the location-based schedules are presented in 

Chapter 5. The next section explains the concepts used for the development of a 

location-based space congestion plan. 

 

4.9 Location-based Space Congestion Plan 

 

Space congestion in earthworks operations occurs due to the lack of sufficient 

workspace at a construction site. The aim of the space congestion module is to 

identify suitable sets of construction equipment for the required earthworks to avoid 

space congestion at the construction site and to improve the productivity of site 

operations and personnel. 

 

4.9.1  Overview of space congestion in earthwork 

 

In earthworks, the workspace is limited at the early stage of construction and there is 

a change of workspace congestion if suitable sets of construction equipment are not 

mobilised for earthworks operations. Therefore, it is necessary to identify the 

available workspace at the construction site and to mobilise the sets of equipment 

accordingly, so that earthwork operations can be performed safely and without loss 

of productivity throughout the construction operations.  

 

Several research studies (Kunz, 1994; Oglesby et al, 1989 and Sander et al, 1989) 

revealed that space congestion is a major cause of loss in productivity. Sander et al 

(1989) found that a 65% loss in work efficiency was caused due to space congestion 

at the workplace and 58% loss in efficiency could be attributed to the restricted site 

access. Their observations justify the development of the Space Congestion Module 

(SCM) for identifying the congested locations. 



101 

 

4.9.2 Conceptual diagram of earthwork operations 

 

The SCM automates the identification of space-congested locations in earthwork 

operations by incorporating the key contributing factors, including equipment sets, 

site access conditions and soil characteristics. A conceptual diagram of earthwork 

operations is presented in Figure 4.8 below. 

 

Figure 4.8 represents a typical road section with a set of construction equipment for 

both cutting and filling operations. The figure shows the multi-construction layers 

having different working lengths at both cutting and filling sections throughout 

earthwork operations. In practice, the length of each layer is proportional to the 

productivity of construction equipment sets, terrain conditions, and site constraints, 

including the availability of working space at the construction site. Working space 

reduces as earthwork progression continues but the working length at each 

construction layer of cutting and filling activities increases as shown in Figure 4.8.   
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Figure 4.8 Conceptual diagram of a space congestion plan for earthworks 
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For example, the length of each layer at a cutting section is represented by Lc1, Lc2, 

Lc3, Lc4,,………., Lcn, whereas the length of each layer at a filling section is 

represented by Lf1, Lf2, Lf3, Lf4, ………., Lfn.  

 

Since these lengths are proportional to the productivity data associated with 

earthwork activities, an algorithm was introduced to identify the length of each 

construction layer for both cutting and filling sections incorporating “variable” 

productivity data that depends directly on the set of construction selected, the type of 

soil characteristics, and the site working conditions in earthwork operations.  

 

The time-space module is divided into two sub-modules:  

1) Required area calculation sub-module  

2) Available space determination sub-module 

 

The required area calculation sub-module was developed to calculate the required 

working space for a selected set of construction equipment to perform cutting or 

filling operations during earthwork operations. The available space determination 

sub-module focuses on the calculation of available working space. This depends on 

terrain conditions and the location of the starting space for cutting or filling 

operations.  

 

The detailed development of the space congestion module is outlined in Chapter 6. 

This includes the algorithms and development processes of the space congestion plan 

for earthwork operations, including a demonstration of the functionality. The next 

section explains the concept and methodology for the development of the earthworks 

optimisation components of the prototype model. 

 

4.10 Earthwork Optimisation Module  

 

This section explains the development of the earthwork optimisation module for the 

allocation of optimum haulage quantities and the directions of movement between 

the cut and fill sections in a road section. The optimisation module was designed by 

integrating mass haul parameters and the unit cost of the earthwork allocation 
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identified by “RoadSim” and Excel solver. The Excel solver is a function within MS 

Excel developed using a Simplex algorithm for solving linear optimisation problems. 

A data flow diagram of a cut-fill optimisation module of earthwork is shown in 

Figure 4.9 below.  
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Figure 4.9 Data flow diagram of earthwork optimisation module  

 

The optimisation module was integrated with the prototype for earthwork planning. 

The inputs of the optimisation module include sectional quantities with the working 

length of the cut and fill operations and the unit cost table of earthworks. The 

“RoadSim” identified the unit cost within the model and further processed the cost 

data using Excel solver to obtain the optimised quantities of earthworks and direction 

of movement. In the optimisation module, a list of cut and fill sections with available 

quantities was identified and listed in a table (for details see Appendix-D).  
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The next section explains the concept and algorithms for the development of 

location-based cost profiles and the cost S-curve for earthwork operations in a road 

construction project.  

 

4.11 Location-based Costing of Earthworks 

4.11.1 Overview of cost profiles 

 

This section indicates the functionality of the prototype model that deals with 

methods and algorithms for automatic generation of location-based costing and the 

production S-curve. The availability of cost profiles assists project planners and 

construction managers by giving an indication of the production cost of the 

earthworks at each location. The unit cost of the earthworks production is used to 

generate weekly cost profiles at each station. The components of the production cost 

associated with soil characteristics, available equipment sets and site conditions are 

incorporated within the model.  

 

Furthermore, the module was integrated with the prototype model to analyse and 

visualise the impact on earthwork progress profiles, project duration, and the 

comparison status between planned and actual production cost of earthwork 

operations. The details of the algorithms for the development of weekly cost profiles 

and the cost S-curve of earthwork operations are discussed in the next section. 

 

4.11.2 Algorithms for generation of cost profiles  

 

In this section, the research focuses on exploring and developing an additional 

module (cost-profile module) which is integrated with the prototype model. The 

module aims to generate and analyse weekly production costs at each chainage point 

along a road section throughout earthwork operations. The module is also valuable 

for the monitoring of production costs for earthwork operations by comparing with 

the actual and the planned production cost of earthworks using the cost S-curve at 

any intermediate stage throughout the construction process.  
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The data flow diagram is similar to the earthworks progress profiles generation 

except for the addition of the unit cost of earthworks. In the cost-profiles module, the 

unit cost calculation sub-module of “RoadSim” was tailored and integrated with the 

cost profile module to generate weekly cost information of earthworks at each 

location on a weekly (or daily) basis in road construction projects.  The data flow 

diagram of the cost profile module is shown in Figure 4.10 below. 
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Figure 4.10 Data flow diagram for generation of location-based costing 

 

The cost-profile module provides weekly cost information to project planners and 

construction managers in analysing the production cost of earthwork operations 

according to soil characteristics at each layer in cutting sections along a road project. 

As a result, action can be taken to plan and schedule the resources efficiently, 

including the allocation of construction equipment, thereby reducing cost. The 
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detailed processes and algorithm of the cost-profiles module and cost S-curve of 

earthworks in a road section are presented in Chapter 7.  

 

4.12 Summary 

 

A theoretical framework of the prototype was developed and presented in this 

chapter. The chapter also explained the model specifications with respect to 

computer modelling for earthwork progress profiles and location-based scheduling. 

The specifications of the model were arranged under input, process and output. The 

sources and collecting methods of model inputs were also explained to gain an 

understanding of the required input information by users so that location-based 

earthwork scheduling can be generated.  

 

The influencing factors associated with earthwork productivity data were integrated 

with the prototype model by tailoring the “RoadSim” simulator. The aim of 

integrating the simulator was to analyse the impacts of different factors influencing 

the productivity data. The process of the model was divided into two parts: the data 

generation module and the visualisation module. The key outputs of the model were 

earthwork progress profiles; location-based cost profiles; location-based schedules / 

time-location plans; and space congestion plans.  

 

This chapter outlined a conceptual framework for a cut-fill optimisation module. 

This is also a key functionality of the model in the earthwork planning processes that 

helps to optimise the haulage quantity and to minimise haulage cost. The model was 

designed by integrating Excel solver within the model. Further detailed development 

of the modules is presented in Chapter 6. The chapter also discussed the concepts 

and algorithms for the development of a prototype model for earthwork planning 

intended to produce weekly progress profiles and location-based schedules. 

 

The next chapter discusses the development of the prototype model for automatically 

generating location-based schedules and space congestion plans of earthworks in 

road construction projects. 
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Chapter - 5 
 

  Location-based Scheduling 

 
 

5.1   Introduction 

 
The previous chapter discussed the conceptual design and the detailed specifications 

for a prototype model of earthwork scheduling. This chapter presents the 

development processes for the prototype model. This includes the automatic 

generation of the Location-based Scheduling (LBS), the Space Congestion Plan 

(SCP) and a cut-fill optimisation module for the earthwork component of road 

construction projects. The model helps construction managers in resource planning 

at the correct locations and assists in visualising the scheduling information of 

earthworks from a location viewpoint. The LBS of earthworks provides precise 

information on where and when the required resources need to be allocated on a 

weekly (or daily) basis throughout the earthwork operations.  

 

For the development of a location-based schedule (time-location plan), it is 

necessary to identify the economical source and the destination for a cut-fill 

assignment of earthwork in road construction projects. Therefore, a cut-fill 

optimisation module was developed, aiming to identify the optimum allocation of 

earthwork quantities and movement direction (see Appendix-D). The module 

provides information on optimised quantities and the directions of earthwork 

movement between cut and fill sections, fill from borrows, or cut to landfill sites. 

Moreover, this chapter also presents a detailed process and the algorithm for the 

generation of the location data for the LBS. 

 

The LBS explains the integration processes of variable productivity data and its 

associated factors, including equipment types, soil characteristics and site access 

points affecting the productivity values. The integration of different productivity 

values helps in analysing the impact of critical factors on LBS and resource 

planning. Furthermore, this chapter also outlines other functions of the prototype 

model which deals with the development of an SCP to avoid space congestion issues 

at an early stage of earthwork operations, thereby reducing productivity losses and 
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improving equipment allocation at correct locations and when necessary.  The design 

of an algorithm for the identification of space-congested locations is developed, and 

a demonstration of the SCP with a typical road section is presented. 

 

5.2  Development of Location-based Scheduling  

 
This section explains the development processes and an algorithm for the automatic 

generation of the required data for producing LBS. The LBS is also known as a 

time-distance planning or a time-chainage chart, a time-location plan, or a linear 

scheduling method (Kenley and Seppanen, 2009).  

 

As discussed in Chapter 4, where the detailed development of the model 

specification was given, sectional quantities of earthwork in road sections, working 

lengths with access points, planned productivity data and mathematical algorithms 

were integrated by developing different VBA macros to automatically generate the 

coordinate data (location and time) for the cutting and filling activities of the 

earthwork component.  

 

In a time-location plan, a line represents a work activity whereas the slope of the 

line represents the production rate of the activity. The line is defined by the 

coordinates of location and time, similar to the X and Y axis in 2D graphs. The 

locations of the working activities are plotted on the X-axis and time on the Y-axis 

or sometimes vice versa. The time dimension was derived from the earthwork 

productivity data. Therefore, the time-location plan is directly dependent on the 

units of the productivity data. The unit of productivity data was assumed as one 

week for the generation of a weekly time-location plan.  

 

The time-location module was also integrated with the productivity data to analyse 

the impact of the factors associated with the productivity data. The survey results 

found that the type of equipment sets, the soil characteristics and the site access 

points were the major factors that influenced the productivity data (see Chapter 3). In 

this study, these factors were used in the sensitivity analysis process to examine the 

effects on a time-location plan and the allocation of resources from a location 

viewpoint. The next section explains the detailed inputs and algorithms in the data 

generation processes. 
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5.3  Input Data for Location-based Scheduling 

 

As discussed in Chapter 4, the data generation module processes the inputs and 

produces the required data of location and time for the automatic generation of a 

location-based earthwork schedule. The following are the key inputs of the data 

generation module: 

· Calculation of sectional quantities of earthworks  

· Calculation of productivity data of earthwork activities 

· Identification of working lengths and site access points  

· Mathematical algorithms and construction knowledge 

 

5.3.1 Calculation of earthwork sectional quantities  

 

This section explains the detailed process of the sectional quantities calculation 

methodology for the earthwork in a road section. Longitudinal and cross-sectional 

profiles of a road section are required for the calculation of the sectional quantities. 

A typical longitudinal profile of a road section is shown in Figure 6.1.  

 

 

 

 

 

 

 

Figure 5.1 A typical longitudinal and a cross-sectional profile of a road section 
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The longitudinal profile provides the information on the sectional depth or the 

height of each station at the cutting or filling sections, and the distance between two 

chainage points or a station interval. The cross-sectional profile provides the 

information on a road‟s width, the side slopes, the transverse slope and the depth or 

the height of the section from the existing ground level. A trapezoidal formula was 

used to calculate the sectional area, and an average end area technique was used to 

calculate the sectional quantities of a road section.  

 

In the prototype model, a VBA macro was developed to capture the text data of the 

design level, the ground level and the number of chainage points (stations) from a 

CAD file, where the longitudinal profiles of a road section are normally drawn. This 

data is exported to an Excel file and is used to determine the sectional quantities of 

the earthwork. The sectional quantities at each station and the station intervals of a 

road section are then exported to the data generation module, which is a key input in 

the prototype model. Since the sectional length and the quantities of the cut-fill 

activities are different, according to the topography of a road section, it is necessary 

to determine the economical haul distance in a cut-fill assignment of a road section. 

The next section presents the calculation processes of the productivity data that 

determine the time dimension of the earthwork scheduling. 

 

5.3.2 Calculation of the productivity data of earthwork activities 

 

This section presents the detailed process of determining the productivity data of 

earthworks. The productivity data was determined by using the “RoadSim” 

simulator developed by Dawood and Castro (2009). The time dimension for the 

location-based schedule was derived from the productivity data, which is 

represented as m
3
/day or m

3
/week. It was integrated into the model to generate the 

daily or weekly coordinate data for producing LBS.  

 

Earthworks are usually performed with the utilisation of heavy construction 

equipment units. According to Castro (2005), the earthworks in a road construction 

are an aggregation of the following activities:   
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 Cut+ Hauling/Dump + Levelling + Watering + Compaction 

 

These activities are performed by the different sets of construction equipment and 

different execution methods as shown in Table 5.1. 

 

Table 5.1 Earthwork activities, options and sets of equipment (Castro, 2005)  

Activity Execution methods 

(Options) 

Combination of Equipment sets for different 

earthwork operations 

 

Cut to spoil  or 

deposit to 

temporary sites 

C-1 

C-2 

C-3 

· Excavator + tipper  truck 

· Bulldozer + motor scraper 

· Bulldozer + pay loader + tipper truck 

 

 

Fill from borrow 

pit or fill from cut 

F-1 

 

F-2 

 

F-3 

 

· Excavator + tipper truck + motor grader + 

water tanker + roller 

· Bulldozer + motor scraper+ motor grader + 

water tanker + roller 

· Bulldozer + pay loader + tipper truck + motor 

grader + water tanker + roller 

 

The productivity calculation module in the “RoadSim” was developed by combining 

three options for the cutting and filling operations of the earthwork as mentioned in 

the above Table 5.1. The productivity values for different sets of equipment were 

determined by considering the equipment capacity, the number of cycles performed 

for each set of equipment, the soil characteristics, the compaction degree, the 

haulage distance, the nature of the works, and the site working conditions.  

 

The productivity values of each set of equipment were determined and stored in a 

database according to the characteristics of the construction equipment. The site 

productivity values for the earthwork were calculated by integrating the site working 

efficiency coefficient (empirical) within the model. The coefficient of the site 

working efficiency was determined from the extensive site experience in 

construction projects over many years and was incorporated into the determination 

of the earthwork productivity.  

 

Four levels of working efficiency coefficient – good (0.83), medium (0.75), rather 

poor (0.67) and poor (0.58) – were incorporated, to determine the productivity 
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values for different types of operations associated with earthworks (Mota-Engil). 

The productivity values of the cutting and filling operations were determined by 

simulating different factors according to the earthwork site conditions and the soil 

characteristics along the cutting sections, using the “RoadSim” simulator. The 

simulated productivity values were incorporated in the prototype model to calculate 

the tasks‟ duration and to produce a location-based earthwork schedule.  

 

5.3.3 Identification of the working lengths and the site access points  

 

The identification of the working length and the access points are the main inputs of 

the prototype model that generates location-based schedules and progress profiles of 

earthworks. The detailed development processes, including an algorithm for the 

identification of the working length and the access points, were discussed in this 

section. 

  

Warren (1996) stated that a mass haul diagram (MHD) provides important 

information to manage the earthmoving task, including the number of cut-fill balance 

sections and the length of the cut-fill section. The location and size of each 

earthmoving operation can also be identified with the aid of an MHD (Curgenven, 

2005). The construction industry survey results, discussed in Chapter 3, showed that 

the majority of construction companies still use MHDs for the identification of the 

economical haulage distance (EHD) and possible access points for the selection of 

suitable equipment, particularly for earthwork operations, so that the earthwork 

quantities between the cut-fill sections can be optimised within minimum cost. The 

next section presents the detailed development processes and the algorithm for 

identification of the haulage distance and the access points. 

 

5.3.3.1 Algorithm for the identification of working length/access points  

 

This section explains the concepts and the development process of the algorithm. 

The construction industry survey found that practitioners used their expertise and 

experience for identifying the EHD. In this study, an algorithm was designed using 

the characteristics of a mass haul diagram to identify the optimum haulage points 

and the distance between cut and fill sections in a road section. 
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In earthwork operations, different types of equipment have different economical 

haulage distances for earthwork movement, considering the nature of the work and 

site conditions. For example, the EHD for a bulldozer is 100m; for a motor scraper it 

is 100m to 500m; and dumpers are used for 500m to 1500 m, with more than 1000 m 

associated with tipper trucks when used for hauling in the earthwork process (Mota-

Engil). However, Harris (1981, p51-57) pointed out that motor-scrapers are 

economical up to a 300m haul distance and bulldozers are suitable up to 100m for 

moving earth; taking into account the above points, an EHD of 300 m was selected, 

and it was incorporated into the algorithm as a variable to identify the working 

lengths and the access points of a construction zone between cut and fill sections. 

 

Additionally, the algorithm was developed with the aim of incorporating the user‟s 

defined haulage distance, if the haulage distance and the points identified by MHD 

were not suitable because of site conditions and other resource constraints.  

 

According to the design information provided in the longitudinal and cross-sectional 

profiles of a road section, sectional quantities of earthwork at each station were 

determined. In practice, this was obtained from contract documents or sometimes 

calculated using the road design information provided in the contract drawings. An 

MHD was generated by determining the algebraic sum of the cross-sectional 

earthwork quantities of each station in a road section. The next section discusses an 

algorithm for calculation of the economical haulage points and distances using MHD 

characteristics. 

 

A data flow diagram for the development of an algorithm is shown in Figure 5.2. 
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Figure 5.2 Data flow diagram for identification of economical haulage points and distances 

 

 

Referring to Figure 5.2, a searching algorithm was designed to identify the Turning 

Point (TP) on a mass haul curve where the accumulated volume of the earthwork 

changes in direction from max to min or vice versa. Two types of turning points 

occur in a mass haul curve: the first one called a crest “TP”, where the cumulative 
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values of earthwork changes from cut to fill section; and a second one called sag 

“TP”, where the earthwork changes from fill to cut section.  

 

After identifying the crest TP and the sag TP, a Start Balance Point (SBP) and an 

End Balance Point (EBP) were selected at the left side of the TP and at the right side 

of the TP respectively. These points were identified using a search algorithm at a 

defined haulage distance (input variables in the algorithm) according to the type of 

hauling equipment selected for the earthwork operations. For example, the haulage 

distance used in the algorithm is 300m. This is an economical haulage distance when 

using a motor scraper for hauling the earthwork from cut to fill sections (Harris, 

1981, p57).  

 

The EHD is determined according to the construction equipment types which are 

selected for the earthwork hauling operation and the specific equipment suitability 

for a given site. The developed algorithm identifies the start and the end points for 

EHD from the TP between cut and fill sections. Similarly, the second set of points 

were identified for a road section with a longer haulage distance, considering the 

double distance involved compared with the initial haul distance.  

 

5.3.3.2 Demonstration of access points identification  

 

A road section was selected to demonstrate the algorithm capability of identifying 

access points and working length. A snapshot of the interface is shown in Figure 5.3 

below. The figure shows the information of identified working length and access 

points (station number), including sectional quantities of cut-fill sections of the 

selected road section. The road section was divided into multiple sections of both 

cutting and filling for the minimisation of the earthwork operation cost in a cut-fill 

assignment of a road section. The project planners or construction managers have 

two options from which to select these points, either based on the points identified 

by the algorithm, or on the planner‟s personal judgement according to their 

experience and site constraints.  
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Figure 5.3 Snapshot of access point module for working length and access points  

 

The information provided by the algorithm of the access point module is also a key 

input for the earthwork optimisation module (see Appendix-D). The list of cut-fill 

sections with working length/access points are utilised for the generation of a 

location-based schedule and a time-space congestion plan.  

 

5.3.4 Mathematical algorithms and construction method 

 

The mathematical algorithms and construction method are other inputs of the time-

location module. An algorithm was designed by integrating within the model 

appropriate mathematical equations to generate the coordinate data linked to 

location and the time, to achieve a location-based schedule of the earthwork 

component (Section 4.6.2 of Chapter 4). The detailed processes of generating 

coordinate data for a time-location plan are discussed in Section 5.5 below. The next 

section discusses the development of an algorithm of soil layer identification.  

 

5.4  Development of Soil Layer Identification  

 

This section outlines the development of a new algorithm that assists in identifying 

different soil layers at cutting (excavation) sections, and in updating the productivity 

of earthwork activities, according to the soil characteristics of each layer in a 

longitudinal direction. 

Site Access Point Module 

Working length and access 

points/station numbers 
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In such circumstances, the productivity of the earthwork excavation varies according 

to the soil characteristics. Therefore, there is a direct impact on progress profiles and 

the duration of the earthwork operations. The impact on the progress profiles and 

productivity due to the soil types can be analysed by simulation using “what-if” 

scenarios, during the planning and execution stages of a road construction project.  

 

The possible preventive measures can be taken in advance, to avoid further delays at 

the construction site by improved resource planning at the affected locations. 

Therefore, the module has several benefits, such as identifying the soil characteristic 

at different construction layers; analysing the impact of soil characteristics on the 

visual aspect of the progress profiles; and updating the earthwork productivity of the 

cutting operation, according to the soil characteristic at each layer of the cutting 

section.  

 

5.4.1 Algorithm for the development of soil layer  

 

In this algorithm, the total height of the different types of soil layers is determined by 

using a borehole survey along a road section and the data is then stored in the input 

of the module. The detail of the algorithm for the calculation of the progress height 

of earthwork was discussed in Chapter 4. The algorithm first calculates the height of 

earthwork progress on a weekly basis at a selected section, and then compares it with 

the actual height of the soil layers. The actual height is identified by the borehole 

survey. A data flow diagram with an algorithm of the soil layer module is shown in 

Figure 5.4. 

 

The algorithm was designed to discover the types of soil layers by comparing the 

height calculated by the module with the existing height of the different layers of soil 

profiles at a cutting section. If the calculated height (hc) is greater than, or equal to, 

the height of an existing soil layer (hs), then productivity is determined by 

considering the same layer of soil. Otherwise, productivity is determined according 

to the next layer of soil at a selected cutting section. The process was repeated to 

achieve the final design level of a road at all cutting sections. 
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4D Visualisation Model
(4DVM)

Productivity 
(Calculated by RoadSim)

Site access points 
( Identified by model or 

selected by Planners)

Calculate the remaining 
height of earthwork 

quantity at selected section 
(hc)

Compare the calculated (hc) 
and existing soil layers (hs)

Check 
hc >= hs

List the height of different 
soil layers (hs)

Site survey of boreholes

Select the type of soil and 
send to RoadSim to 

calculate productivity 

Yes

Calculate sectional height based on 
provided productivity and save the 

data at each section and at each 
week

Export the saved data to 
Visualisation module 

No

Sectional quantity of Earthwork and 
construction knowledge

Generate terrain surfaces of 
progress profiles and display  

graphical images of the profiles 

End

 
Figure 5.4 Data flow diagram of an algorithm for identification of soil layers 

 

The function allows construction managers to optimise the different alternative 

access points considering the soil characteristics at all cutting sections in a road 

section. The site access points, normally identified and selected by planners, depends 

upon the “rules of thumb” and personnel judgement according to construction site 

conditions and construction rules. The height of the earthwork progress at each 
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station between two access points is determined considering the variable productivity 

data provided by “RoadSim” along the selected road section and saving the height as 

coordinate data. The coordinate data is then exported to the visualisation module, 

where data are processed to generate the terrain surfaces of the progress profiles, as 

well as assisting in visualising the impact on the locations and the progress profiles 

due to the variation in the soil characteristics at different layers of a cutting section.  

 

The algorithm enables an analysis of the impact on the values of the site productivity 

of the cutting operations, according to the variation in soil characteristics and the 

position of the site access points. The next section discusses the features of the 

model that search for and identify the changes in the soil layers affecting the 

productivity model, so that the new productivity rates can be calculated, according to 

the identified layers of the soil characteristics at the cutting sections. 

 

5.4.2 Demonstration of the soil layer identification  

 

 

 

 

Figure 5.5 Snapshot of input sheet for selection of soil layer information  

 

Figure 5.5 is a snapshot of the input information of the prototype model, where 

major inputs, such as sectional quantity, productivity value, working length, access 

points and characteristics of the soil at a cutting section are entered. In the input 

sheet, there are two options: “Yes to indicate the consideration of the intermediates 

layers having different types of soil characteristics”; and “No to indicate that the 

Information from subsoil survey at 

site 

Selection option of soil 

Types 
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intermediate layers have the same soil characteristics”. The sub-soil survey provides 

information on the soil characteristics at each layer of the cutting sections. The 

height and type of the soil at each layer is identified by the bore-hole survey at the 

required interval, and is entered in the input sheet as shown in Figure 5.5.  

 

The algorithm of the model was designed in such a way that the calculated heights of 

all stations of a cutting section are compared with the existing height of the 

intermediate layers. The process is repetitive. Once the intermediate layer is 

identified, the module displays a message box showing the type of soil and the layer 

height (see Figure 5.6).  

  

 

Figure 5.6 Snapshot of message showing changing of soil layers  

 

After clicking “OK” in the message box, the productivity sub-module (Figure 5.6) 

appears when the soil types are changed; according to the identified soil type, the 

process is continued to achieve the final design level of the road. In this way, the 

productivity value at different layers of a cutting section is determined for the 

earthwork scheduling and visualisation of the scheduling information. The next 

section presents the algorithm of the data generation for a time-location plan or 

LBS.  
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5.5  Algorithm for Generation of Location-based Scheduling  

 

A data flow diagram is shown in Figure 5.7 to enable the understanding of the 

coordinate data generation process. The data generation algorithms and the data flow 

diagram are explained as follows: the unit of time was considered as a day or week 

(see above) for developing a location-based schedule. The algorithm, developed in 

this module, deals with the identification of a station, where the earthwork cutting or 

filling operation starts. According to the author‟s personal knowledge in 

construction, the highest station in a cutting and the lowest station in a filling section 

are identified at first.  

 

After identifying the maximum or the minimum station, representing the highest 

quantities of cutting or the lowest quantities of filling, the algorithm starts to search 

the nearby stations forward (upper limit station) and backward (lower limit station) 

from the first station to satisfy the earthwork quantity equivalent to the planned 

production quantity, using equation 7 (explained in Chapter 4). The quantity is 

equivalent to the sum of the volume of all the selected stations along a road section. 

The number of working stations is selected in such a way so that the remaining 

volume of the selected stations at a unit time remains the same.  

 

Equation 7 was used for the identification of station numbers at each layer during 

earthwork operations by incorporating the productivity data. This process is repeated 

at each layer for both cutting and filling sections to achieve the remaining volume at 

each station within a selected road section equivalent to zero (at the design level of 

the road) longitudinally.  
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Start

Select number of  stations  within a 

defined length = X

Select  week no

Read values of sectional volume V) of each 

station along a length (X) of a road section 

and  search for n, Vmax., 

Vu(upper), Vl(lower) next  to Vmax

Calculate Vr (remaining volume) =

 (Vmax-P)/n (no of stations)

Check

Vr > Vu or Vl 
Yes

No

Select Vr and replace the 

value   for next week/day at 

same section

Select next upper/lower section having Vu/

Vl next to Vmax and calculate Vr again with 

selected stations around  maximum volume

Vr = (Vmax +Vu/Vl-P)/n (no of selected 

stations at cut/fill section)

Check

Vr < Vu or Vl
Yes

No

Select Vr and replace the same 

value   at  selected sections 

1) Do calculation of revised Vr and 

check until Vr> Vu or Vl

2) If Vr<=P, replace Vr as zero for 

next week and stop calculation

Repeat the above steps  for the next 

selected cut/fill section 

End

Duration  of cut /fill 

activities 

Productivity (P)

= Quantity/week or day

Input  length (X)  as 

working sections 

(Identified mass haul 

diagram module or 

defined by planners) 

Sectional volume of cut/

fill at each station (m3)

Select the Station number and 

calculate distance of the station of 

selected Vu and Vl  at  selected 

sections 

Store the calculated distance of 

station corresponding to Vu as 

Start location and VL as End 

location of earthwork activity in a 

table with time

Plot Time-location plan from the 

stored data of the weekly start and 

end locations using VBA

Figure 5.7 Algorithm for automatic generation of location-based scheduling 
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At each layer, the starting and ending stations are identified and their working 

lengths between two stations are determined, using the algorithm. This was 

developed by designing and integrating VBA macros within MS Excel. The working 

length at each layer between working stations increases from the first to the last layer 

at both cutting and filling sections. Similarly, the cutting and filling sections are 

selected according to the priority in a schedule to complete the earthwork operations 

of a road section. If the cutting or filling sections are too long, such sections are 

divided into manageable sections/smaller lengths, and the above processes are 

repeated to achieve the design level of the road. 

 

Referring to Figure 5.7 above, this module has two key input variables:  

· Productivity (P) of earthwork activities produced by “RoadSim”  

· Working length (X) determined using the mass haul diagram  

 

The two variables (P and X as shown above) were integrated within the model to 

search for the start and the end location of a working section at each construction 

layer, the location coordinates being dependent on the unit of productivity data, i.e. 

daily or weekly. In the model, the unit of productivity was set at a week, with 

standard working hours (40 hrs per week and 8 hrs per day) used for the generation 

of a weekly schedule.  

 

The model also provides flexibility to enable users to select a unit in days if required. 

The generated coordinate data of locations and time were stored in a tabular format 

as shown in Table 5.2 below as initial outputs of the prototype model, and were 

exported to the visualisation module by developing VBA macros embedded within 

MS Excel to produce the graphical view of the LBS.  

 

5.6  Demonstration of  Location-based  Scheduling  

 

The prototype model produces the LBS automatically for earthwork operations. A 

typical list of coordinates of starting and ending locations, as well as the start and the 

end dates, for the earthwork activity is shown in Table 5.2. 
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The coordinate data of the working locations produced by a time-location module are 

used to produce the LBS. The data table was used for producing a time-location plan 

using arithmetic algorithms and VBA programming. This graphical output of the 

model provides a convenient and effective way of communicating the scheduling 

information.  

 

 
Table 5.2: Automatic generated coordinates data of locations and time  

S.N. X1 (Start Station) 

m 

X2 (End Station) Y1 (Start Date) 

day 

Y2 (End Date)  

day 

Cut/Fill 

w0 75 225 0 1 F 

w1 0 250 1 2 F 

w2 0 250 2 3 F 

w0 300 500 0 1 C 

w1 275 500 1 2 C 

w2 275 500 2 3 C 

w3  250 500 3 4 C 

w0 500 600 4 5 C 

w1 500 625 5 6 C 

w0 625 775 0 1 F 

w1 625 775 1 2 F 

w0 875 975 2 3 F 

w1 850 1000 3 4 F 

w2 775 1000 4 5 F 

w3  775 1000 5 6 F 

w4 775 1025 6 7 F 

w5 775 1025 7 8 F 

w6 775 1025 8 9 F 

 

The LBS was integrated with the different productivity rates to produce the 

earthwork schedules under the different rate of production due to the site and the 

resources constraints. The LBS incorporates the site access point, the type of 

equipment and the soil characteristics throughout the construction operations. A 

snapshot of the weekly progress profiles of earthwork operations for a selected road 

section is shown in Figure 5.8. The different layers of the progress profiles are 

represented by a different colour. 
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Figure 5.8 Progress profiles of earthwork operations generated by the model 

 

The number of weeks required for a cutting or filling section is shown, for example, 

as w1 (filling at week 1 in blue colour) andw1 (cutting at week 1 in green colour) in 

Figures 5.9 and 5.10. Figure 5.9 presents a time-location plan / LBS of earthwork in 

a road section using two sets of filling and one set of cutting equipment,  whereas 

Figure 5.10 shows a time-location plan using one set of filling and one set of cutting 

equipment. The 2D coordinates of the start and end points of the activity are 

indicated in terms of location and time (m, wk).  

 

 

Figure 5.9 Snapshot of a time-location plan of earthwork using one set of construction equipment. 

Filling activity 

Cutting activity 

Cut Section 

Fill Sections 
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Figure 5.10 Snapshot of a time-location plan of earthwork using two sets of construction equipment 

 

Any variation in the productivity rate due to the soil characteristics, the selection of 

the equipment types, or the site constraints along the road section was set to have a 

direct impact on the time-location plan / LBS, to assist the construction planners and 

managers in controlling activities‟ progress and in monitoring the production cost at 

the planning and the construction stages.  

 

Figures 5.9 and 5.10 are two examples of the model functionality for automatically 

producing location-based schedules with detailed information on the equipment sets, 

assigned for both the cutting and filling activities. It was developed by 

simultaneously incorporating two sets of equipment working in the cutting and 

filling sections. The above figures show the location of the cutting activity in the 

green colour line and the filling activities in the blue colour line in a weekly 

schedule, as stated previously; the time-location plan was also integrated with the 

different productivity rates. This represents the key model output achievement 

because it improves the accuracy of earthwork planning tasks to avoid, for example, 

activity conflicts. The time-location plan also includes the site access points, the 

different equipment sets and the soil characteristics to provide accurate information 

in the construction schedule. This, in turn, allocates and optimises the available 

resources along the cutting and the filling sections at the correct locations throughout 

the earthwork operations.  

 

Filling activity 

Cutting activity 
0 + 625 m chainage as obstruction point 
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The next section discusses the development of a time-space module to deal with the 

identification of congested locations at the early stage of earthwork operation.  

 

5.7  Development of a Space Congestion Plan 

 
This section presents the development processes of another function (component) of 

the prototype. A “time-space module” has been developed and integrated within the 

prototype. The module is developed to identify the congested locations at an early 

stage of earthwork planning by comparing the available space with the required 

space for a given set of equipment at a construction site. The module provides the 

early indication of the congested locations to enable the mobilisation of a suitable set 

of equipment, so that activities conflict, loss of productivity, and equipment idle at 

the construction site could be avoided. 

 

The module also assists in analysing the impact on space congestion by a simulation 

process, involving different types of soil characteristics, site access points and site 

constraints. The next section outlines the detailed development processes and 

algorithm for the generation of the SCP. 

 

5.8  Algorithm for Generation of Space Congestion Plan 

 

An algorithm was designed to search chainage point (stations) whose sum of 

earthwork quantities is equivalent to the productivity for a unit of time (week or 

day). The algorithm first identifies the station that has the highest sectional volume; 

it then searches for the next nearby station forward and backward to satisfy the 

condition that the sum of the volume of all the selected stations is equal to the 

productivity, in such a way that the remaining volume of the selected stations at a 

particular layer remains the same. This process is repeated at each layer format to 

achieve the remaining volume at each station, equal to zero (the design level of road) 

at selected working sections. Referring to the conceptual Figure 4.9 of Chapter 4, the 

start and the end stations, including the corresponding working length, are identified 

at each layer. The lengths between two stations are determined. For example, the 
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sectional lengths for a cutting and a filling section at each layer of a road section are 

denoted by Lc1, Lc2, Lc3, ............, Lcn and Lf1, Lf2, Lf3,............, Lfn respectively.  

 

These lengths at each layer between stations increase from the first to the final layers 

in the earthwork operations. Since working space is proportional to the working 

length at each layer, the working space/area is also proportional in the same ratio. 

The working space was determined in this module by multiplying the length of each 

layer by the width of road. The design width of a road section has been considered in 

the algorithm because it is a significant factor in the calculation of available working 

space at each layer in earthwork operations. The details of the data flow diagram for 

the time-space module are presented in Figure 5.11. The module is divided into two 

sub-modules: available and required area calculation. The details of both sub-

modules are discussed in the next sections.  

 

5.9   Development  of Time-Space Module  

 
The time-space module represents an additional functionality of the prototype aimed 

at identifying the congested locations of working space. This module helps to plan, 

and to ensure that a suitable set of equipment is chosen according to the available 

space at the congested locations. This enables project planners to improve site 

productivity and to reduce earthwork cost throughout the construction operations. 

The time-space module is divided further into two sub-modules: required area 

calculation and available space determination. Typical snapshots showing different 

earthwork operations with different sets of construction equipment are shown in 

Appendix-E. 

 

5.9.1 Required area calculation sub-module 

 

This sub-module was developed to calculate the required working space for a 

selected set of construction equipment to perform cutting or filling operations. There 

are three combinations of construction equipment for cutting operations (C-1, C-2, 

and C-3) and three sets for filling operations (F-1, F-2, F-3) as shown in Table 5.3.  
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Figure 5.11 Data flow diagram and algorithm for a time-space module 
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The type and numbers of construction equipment used for a cutting or filling 

operation is selected from the “RoadSim” simulator. The space required for 

equipment manoeuvring, worker‟s space, material loading/unloading, space for 

transportation, and space for traffic signs and signals were considered as space 

factors. In the space calculation sub-module, a safety space factor was incorporated 

to take into account the above spaces.  

 

Table 5.3 shows a list of the typical construction equipment available at an 

equipment compound with their required working space/area during construction 

operations. The list of required space and space factors for different sets of 

construction equipment was provided by Mota-Engil, which were calculated based 

on the empirical method and experience of the construction managers. The values 

presented in Table 5.3 were used to inform the time-space module developed in this 

thesis 

 

Table 5.3 List of required area for different options (sets of equipment) 

 

SN Class 

Type 

of 

Equip. 

Required 

Space of 

Equip  (m
2
) 

C-1 C-2 C-3 F-1 F-2 F-3 Options 

Total 

Required 

Area (m
2
) 

1 01 Ttta 200             C-1 960 

2 01 Tttb 220     2     1 C-2 1960 

3 01 Tttc 240   2     1   C-3 1920 

4 01 Tttd 260             F-1 2040 

5 02 Mga 300       1 3 2 F-2 5520 

6 02 Mgb 320             F-3 4400 

7 03 Exa 160 2     1         

8 03 Exb 170                 

9 03 Exc 180                 

10 03 Exd 190                 

11 04 Wpla 220     1     2     

12 04 Wplb 240                 

13 05 Bka 300                 

14 06 Msa 250   2     2       

15 06 Msb 240                 

16 07 Oht 150     2     2     

17 08 Svc 160       1 2 2     

18 08 Sfc 170                 

19 08 Ptc 180                 

20 10 Wb 160       2 5 2     

21 10 Tpa 40 4     2         

22 10 Tpb 180                 

 
 

The sub-module has the capability to incorporate the types and number of equipment 

selected by the user, considering the availability of plant at the equipment 
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compound. The sub-module calculates the required working space by using the 

algebraic sum of the space required for each set of construction equipment multiplied 

by a safety factor, as shown in Table 5.3. The details of the abbreviations used for all 

equipment types, including power and bucket size, are presented in Table 5.4 below. 

 

Table 5.4 Abbreviation of different types of construction equipment (Castro, 2005) 

 

Code Type of Equipment Bucket size or weight Dozer width Power 

Ttta Track-type tractor - type 1  4.16 m 165 HP 

Tttb Track-type tractor - type 2  4.40 m 215 HP 

Tttc Track-type tractor – type 3  4.96 m 305 HP 

Tttd Track-type tractor – type 4  4.66 m 440 HP 

Mga Motor grader – type 1  3.66 m 185 HP 

Mgb Motor grader – type 2  4.27 m 215 HP 

Exa Excavator - type1 1.3 m3  150 HP 

Exb Excavator - type 2 1.6 m3  220 HP 

Exc Excavator  - type 3 2.0 m3  250 HP 

Exc Excavator - type 4 2.6 m3  310 HP 

Bka Backhoe loader 0.900 m 3  70 HP 

Msa Wheel tractor scraper- type 1 16 L m3  330 HP 

Msb Wheel tractor scraper -type 2 20 Lm3  450 HP 

Oht Articulated dump truck 13 L m3  260 HP 

Sfc Sheep-foot compactor 20 ton  215 HP 

Svc Vibrating soil compactor 15 000Kg  155 HP 

Ptc Pneumatic tire compactor 35 000Kg  165 HP 

Wb Water tanker 12 m3  180 HP 

Tpa Tipper truck type 1 10 m3  200 HP 

Tpb Tipper truck type 2 15 m3  250 HP 

 

5.9.2 Available area calculation sub-module 

 

The second sub-module focuses on the calculation of the available working space at 

the earthwork construction site, according to the terrain conditions in respect to time, 

during the progress of cutting or filling operations. In this sub-module, an algorithm 

was introduced to calculate the working space by identifying the available length at 

each layer in both cutting and filling operations as shown in Table 5.5. The width of 

working section at each layer is considered, as the design width, which is the critical 

factor for identifying the space congestion at a construction site.  
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Table 5.5 List of weekly available length and areas for cut-fill activities 

 

S.N 
X1 (Start 

Station) 

X2 (End 

Station) 

Y1 

(Start 

Date) 

Y2 

(End 

Date) 

Cut/ 

Fill 

Working 

Length 

Available 

Area 

Equipment 

Set/Option 

Required 

Area 

Time 

Space 

Congestion 

w0 0 100 0 1 F 100  F-1 2252 No 

w1 0 125 1 2 F 125 3750 F-1 2252 No 

w2 0 175 2 3 F 175 5250 F-1 2252 No 

w3 0 200 3 4 F 200 6000 F-1 2252 No 

w4 0 200 4 5 F 200 6000 F-1 2252 No 

w5 0 200 5 6 F 200 6000 F-1 2252 No 

w0 200 325 0 1 C 125 3750 C-1 682 No 

w1 200 325 1 2 C 125 3750 C-1 682 No 

w0 350 500 6 7 F 150 4500 F-1 2252 No 

w1 325 525 7 8 F 200 6000 F-1 2252 No 

w2 325 525 8 9 F 200 6000 F-1 2252 No 

w0 525 625 2 3 C 100 3000 C-1 682 No 

w0 650 775 9 10 F 125 3750 F-1 2252 No 

w1 625 775 10 11 F 150 4500 F-1 2252 No 

w0 775 875 3 4 C 100 3000 C-1 682 No 

w0 925 1025 11 12 F 100 3000 F-1 2252 No 

w1 875 1075 12 13 F 200 6000 F-1 2252 No 

w2 875 1075 13 14 F 200 6000 F-1 2252 No 

w0 1100 1175 14 15 F 75 2250 F-1 2252 Yes 

w1 1100 1200 15 16 F 100 3000 F-1 2252 No 

w2 1075 1200 16 17 F 125 3750 F-1 2252 No 

w3 1075 1200 17 18 F 125 3750 

 
F-1 2252 No 

w0 1225 1350 4 5 C 125 3750 C-1 682 No 

w1 1200 1375 5 6 C 175 5250 C-1 682 No 

w2 1200 1425 6 7 C 225 6750 C-1 682 No 

 

 

The available working space was determined by multiplying the available length at 

each layer by the road width as shown in the available working area column of Table 

5.5. The available working area is directly proportional to the productivity of the 

filling or cutting activities and it is calculated at each day or week, according to the 

chosen time unit of productivity. The next section shows an SCP generated by the 

prototype module and demonstrates the space congestion module functionality, using 

a typical road section for the earthwork component.  
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5.9.3 Demonstration of space congestion plan 

 

The sub-module compares the required working area with the available working 

area. If the available working area is less than the required working area, the cutting 

or filling activity is considered as a space congested activity; at a construction site 

otherwise, the space congestion condition does not exist. The congested activity is 

represented by a „Yes‟ and uncongested by a „No‟ in Table 5.5 above. After 

identifying congested activity and listing it in a table, the sub-module generates a 

time-location congestion plan of a typical road section as shown in Figures 5.12 and 

5.13 below. The activity line, showing in red colour, represents a congested space in 

a time-location congestion plan (see Figure 5.13). 

 

 
Figure 5.12 Earthwork progress profiles of a selected road section 

 

 
Figure 5.13 Typical view of time-location congestion plan generated by model 

  

 

 

 

Congested Location/Space 
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5.10 Demonstration of LBS and SCP with a 7 km road section 

 

A 7km road section was selected from a road construction project recently completed 

in Portugal to demonstrate the model‟s functionality. Road design and planning data, 

in addition to the longitudinal profiles, the productivity information, the soil 

characteristics, the working sections and the site access points, were collected from 

the company “Mota-Engil” in Portugal. The data generation module of the prototype 

model (Chapter 4), processes the input data to generate the earthwork progress 

profiles and the LBS/time-location plan (see Figures 5.14 and 5.15).  

 

Figure 5.14 shows the weekly earthwork progress profiles of the road section 

produced by the prototype model, showing the cutting and filling sections and their 

respective locations on a weekly schedule of the earthwork activity. The dotted lines 

represent the existing time-location plan currently being used in the earthwork 

construction. 

 

Figure 5.15 presents a time-location plan of a 7km road section showing the actual 

locations of the earthwork activities on a weekly basis. The figure provides the 

required accuracy of information relative to the location and the time for the 

earthwork activities at any particular time. The blue and the green lines represent 

filling and cutting sections respectively. Additionally, the time-location plan 

provides the information relating to the different sets of equipment and crews, which 

can be simultaneously scheduled for progress at a different station point such as 0.0 

km, 1.0 km, 3.0 km, 5.0 km and 6.0 km.  

 

The module is capable of incorporating different obstructions according to the 

availability of the resources and the site constraints, by dividing the whole road 

section into controllable sections. The plan provides scheduling information 

concerning the mobilisation and demobilisation schedule of different sets of heavy 

construction equipment for the cutting and filling operations. As a result, 

construction managers can produce an equipment procurement schedule for the 

earthwork operations in road construction projects by using a systematic approach 

for making decisions and for detailed resource planning.  
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Figure 5.14 Snapshot of the model-generated progress profiles of a 7 km road section  

 

 
Figure 5.15 Snapshot of model-generated LBS/time-location plan of a 7 km road section  
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5.11  Summary 

 

This chapter presented the prototype development for generation of a location-based 

schedule/time-location plan of earthworks components in road construction projects. 

The model utilised an algorithm to automatically produce an LBS. The algorithm 

generates LBS by plotting the location and time dimensions in a 2D graph, which is 

also known as an LBS/time-location plan. The scheduling information of weekly 

locations of earthwork operations was visually represented in a time-location plan. 

The different productivity rates were integrated to analyse the impact of different 

factors, including types of equipment, soil characteristics and site access points / 

working lengths for the earthwork scheduling. This chapter provides the 

development of a soil layer module designed to identify intermediate soil layers at a 

cutting section. The module helps construction managers in analysing the effect of 

soil characteristics on earthwork schedules and helps to visualise the impact on 

progress profiles during the earthwork operations by considering “what-if” scenarios 

of different productivity rates. 

 

The developed LBS assists construction managers and project planners to control 

budgets, schedule activities and allocate the required resources at the correct 

locations at the construction stage in road projects. The LBS provides advanced 

information on working locations and time, to reduce the mobilisation and 

demobilisation costs of equipment. The LBS also assists in the scheduling and 

monitoring of day-to-day activities associated with earthworks. This is considered as 

a key contribution to the road construction scheduling methodology. Furthermore, 

this section presented a location-based space congestion plan to identify and manage 

the congested space for earthwork activities at a construction site in road projects. 

New methodology was introduced for a location-based space planning for the 

earthwork operations. This was demonstrated using a prototype model with a typical 

road section, having cutting and filling sections. 

 

The next chapter discusses the development of a visualisation module of the 

prototype to visualise the earthwork progress profiles and communicate the 

scheduling information, by generating a time-location plan. 
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Chapter-6 
 

Visualisation of Scheduling  
 

6.1 Introduction 

 

The previous chapter discussed the development of location-based scheduling of the 

earthwork component in a road construction project. This chapter presents the 

development of a Visualisation Module (VM), which is a component of the 

prototype model. The VM provides the visual information of earthwork scheduling 

and weekly progress profiles, and communicates the construction process sequences 

with consideration given to location aspects.  

 

The development processes relating to the visual outputs of the model are explained. 

These include weekly progress profiles/terrain surfaces, time-location plans, space 

congestion plans, cost profiles and the cost S-curves, using a single interface. This 

allows the construction team members to visualise and analyse the location-based 

scheduling information, and to optimise the allocation of resources considering space 

constraint in road construction projects.  

 

6.2 Development of Visualisation Component 

 

The VM processes the weekly coordinate data produced by the Data Generation 

Module (DGM) and transforms it into a visual format based on the earthwork 

scheduling information. The visualisation of earthwork scheduling information 

includes: 

 

· Weekly progress profiles/terrain surfaces  

· Time-location plan/location-based scheduling  

· Space congestion plan 

· Cost profiles and cost S-curve of earthworks  

 

The VM of earthworks was developed using the following languages: C#, VBA and 

MS Excel. The required input data was stored in MS Excel worksheets. Several 
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VBA macros were developed using the data flow diagram and algorithms (see 

Chapters 4 and 5). The developed VBA macros process the input data and generate 

the coordinate data for each function developed in the prototype model.  

 

The VM imports data from each function of the model using Structured Query 

Language (SQL) inquiry, and transforms the imported data into a visual 

representation of tabular and graphical information. A snapshot of the visualisation 

module for generating earthwork scheduling is shown in Figure 6.1. 

 

 

 Figure 6.1 Snapshot of the visualisation module of earthworks scheduling  

 

The above figure represents the visual outputs of the model that includes the 

earthwork progress profiles, terrain surfaces of earthworks, the time-location plan, 

the space-congestion plan, the cost profiles and the cost S-curve. The VM has the 

capability to display the weekly progress profiles of earthwork manually or 

automatically.  

 

The VM produces both a time-location plan and a space congestion plan 

concurrently in a time-location chart (see Figure 6.2). The time-location plan also 

Terrain surfaces of progress profile 

Weekly progress profiles Cost S-curve  

Weekly cost histogram 
Time-location plan  

Table of time-location data   Table of cost data   
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includes information related to the congested locations and pavement activities. The 

time-location plan generated by the VM shows three lines: the sub–base, the base 

course and the top surfacing tasks (see Figure 6.2). The VM also provides tabular 

information on the weekly starting and ending locations throughout the construction 

operations. 

 

  

Figure 6.2 Typical view of time-location plan including congested location 

 

The next section discusses the development processes involved in the terrain 

surfaces of the progress profiles and the cost profiles of the earthworks.  

 

6.2.1 Visualisation of earthwork progress profiles 

   

This section explains the coordinate data integration into the VM for the production 

of terrain surfaces of earthwork. The detailed coordinate data generation processes 

associated with the progress profiles were discussed in Chapter 4. The terrain 

surfaces of the progress profiles are represented on a regular triangulation grid, 

where the vertex of the regular grid is represented by the progress height of 

earthwork at each point on a regular grid.  

 

The visual representation of the earthwork progress profiles was developed by 

integrating the terrain surface of a road section (2D+height) with respect to time. The 

time dimension in the generation of the terrain surfaces was derived from the unit of 

productivity data. The development of an interface for the earthwork progress 

profiles module is described in the following section.  

 

Congested Locations 

Sub-base, base and surfacing tasks   
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6.2.2 Interface of earthwork progress profiles module 

 

A snapshot of the interface of the earthwork scheduling and visualisation of the 

prototype model is shown in Figure 6.3. The interface includes the different modules 

and sub-modules in the prototype. These modules and sub-modules were designed 

with different VBA macros to account for the range of functionality within the 

model. The earthwork progress profiles module is also shown in Figure 6.3.  

 

 

Figure 6.3 Snapshot of the interface of terrain surfaces generation module of earthworks 

 

The progress profiles module includes three sub-modules: the 

“TerrainDataGeneration”, which produces the weekly progress height data; the 

“ExportTerrainData”, which exports the progress height data in a text file; and the 

“ProgressProfiles”, which generates graphical views of the weekly terrain surfaces of 

the earthwork progress profiles. The details of the algorithm and the development 

process of the “TerrainDataGeneration” were outlined in Chapter 4. The next section 

now discusses the “ProgressProfiles” sub-module that produces the terrain surfaces.  

 

6.2.3 Generation of terrain surfaces of earthworks progresses 

  

The “ProgressProfile” sub-module of the VM that produces the terrain surfaces of 

earthwork profiles was developed using Visual C
++

 and DirectX. In this module, a 

regular triangulation grid is produced first by the VM to represent 3D terrain 

   Earthworks progress profiles module 
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surfaces of the earthworks profiles at each layer of the construction processes. The 

X-coordinate is considered along the longitudinal direction and the Y-coordinate 

along the road cross-direction that represents the width in a road section. The starting 

point of the regular grid of a terrain surface is considered as the origin (0, 0).  

 

The Z-coordinate represents the vertex of the triangulation grid, which is considered 

as the height of the road progress surface. The scales for the X, Y and the Z-axes are 

different. For the X-axis, the length of the road is represented in a 1:25 scale; the 

width of the road represented in a Y-axis has a 1: 10 scale; and the Z-axis has a 1:1 

scale for the height of the terrain surfaces, which represents a section of a road. The 

coordinate data (Z-axis) is saved as a text file. The file is exported for the automatic 

generation of the terrain surfaces on a weekly basis throughout the earthwork 

construction operations. The next section demonstrates the terrain surface generation 

processes on a weekly basis.  

 

6.2.4 Demonstration of terrain surface generation 

 

A road section with two filling sections and one cutting section was selected to 

demonstrate the VM functionality in generating the terrain surfaces. After processing 

the required input data, such as productivity values, sectional quantities of 

earthwork, working sections and site access points, the DGM generates the 

coordinate data for the progress height of the earthwork and exports it to the VM by 

the “ExportTerrainData” sub-module. The VM then transforms the coordinate data 

into the terrain surfaces of the earthwork progress profiles. Snapshots of the 

automatically generated earthwork progress profiles and corresponding terrain 

surfaces produced by the VM are shown below in Figures 6.4 and 6.5 respectively.  
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Figure 6.4 Snapshot of earthwork progress profiles and terrain surface at week 1 

 

 

Figure 6.5 Snapshot of earthwork progress profiles and terrain surface at the end of week 3. 
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Changes in the progress height confirm the realisation of surface changes in respect 

of time. These changes in the progress of terrain surfaces are shown on a weekly 

basis. The visualisation model indicates the level of cutting to filling operations by 

the colour index moving from red to blue respectively (see dialogue boxes in Figures 

6.4 and 6.5). Red represents the highest level of the cutting sections and blue 

represents the depth of filling sections on a weekly basis. 

 

The visual representation of the earthwork progress profiles assists in analysing and 

visualising the impact on the progress profiles of the earthwork from a location 

viewpoint. This can be performed by rehearsing, using “what-if” scenarios, different 

factors associated with the productivity data. These factors include the soil 

characteristics, the types and number of equipment sets, and the site access points. 

The next section discusses the detailed development methodology associated with 

cost profiles and the cost S-curve of earthwork operations in a road project. 

 

6.3 Generation of Location–based Cost Profiles  

 

6.3.1 Introduction 

This section explains the objectives of the development processes of the location-

based profiles and the cost S-curve of the earthworks component. The research 

further extends the prototype model by the addition of a cost profile module. The 

module identifies the cost involved in earthwork on a weekly basis and analyses the 

cost information from location viewpoints along the road section. 

 

6.3.2 Algorithms for data generation of cost profiles 

 

The algorithm of the cost profiles module is similar to that of the progress profiles 

module for the generation of weekly earthwork quantities; however, the key input of 

this module is the unit cost of the cutting and filling activities. This cost was 

integrated with the variable factors, including the equipment productivity, the 

haulage distance, site access conditions, working efficiency and soil characteristics at 

cutting sections. An algorithm was designed for the calculation of the weekly cost 
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profiles of earthworks. The data flow diagram with the algorithm is shown in Figure 

6.6 below. 

Start

Select a  section with defined 
length= X

Select week No

Read value of selected sections along 
length (X) and Identify  Vmax., Vu (upper) 

VL (lower) next  to Vmax

Calculate Vr.(remaining volume) = (Vmax-
P)/ No of sections selected

Check
Vr > Vu or VL 

Yes
Select Vr and replace the 
value   for next week at 

same section

Select next upper/lower section having Vu/
VL next to Vmax and calculate Vr again Vr = 

(Vmax+Vu/VL-P)/No of selected sections

Check
Vr =< Vu or VL Yes

Select Vr and replace the same 
value   at all selected sections  

for next week 

1) Do calculation of revised Vr and 
check until Vr> Vu or VL

2) If Vr<=p, replace Vr  for next 
week and repeat calculation

Repeat the above steps for next 
selected section 

for cutting/filling activity

End

Duration  of activity in week
Productivity (P) and unit cost 

(c) of earthwork activities 
( RoadSim)

Input  Length (X)  of 
working sections 

Total Earthwork 
Quantity (m3)

Calculate weekly cost =C*  
weekly progress quantity at 

each station number

Repeat earthwork cost  
calculation at each week until 

finish earthwork

No

No

Figure 6.6 Data flow diagram and algorithm for generation of cost profiles 
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Using the information shown in Figure 6.6, the cost data algorithm was developed 

using VBA macros. A snapshot of the cost data generation interface is shown in 

Figure 6.7. The figure highlights the different sub-modules for the cost profiles 

module. In this module, “CostDataGeneration” produces the weekly cost information 

at each station, “ExportCostData” exports the cost data in a text file and 

“CostProfile” generates the cost profiles information on a weekly basis for 

earthwork.  

 

 
Figure 6.7 Snapshot of the interface of cost-profile generation module 

 

 

The cost profile module produces the weekly cost information of earthwork at each 

station/chainage of the road section. A graphical view of the weekly cost 

profiles/histogram is shown in Figure 6.8 below. 

 

Figure 6.8 Snapshot of the model generated weekly cost profiles 

   Cost Profile Module of Earthworks 
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6.4  Cost S-curve 

 

6.4.1 Overview  

An S-curve is a popular project management tool, which gives a graphical display of 

the cumulative cost, the resource hours or other quantities plotted against time. The 

most important aspect of the S-curve is the comparison between the anticipated 

baseline costs of a project with the actual costs. In this study, the S-curve was 

utilised to compare the planned production cost and the actual cost of earthwork 

operations of a road section on a weekly basis. The next section outlines the 

generation of the cost S-curve of earthwork operations in a road construction project. 

 

6.4.2 Generation of cost S-curve for earthworks 

 

The cost module was developed to produce weekly cost information and a 

cumulative cost versus time curve. First, weekly cost information at each location of 

a road section was generated using a VBA macro that was designed and integrated 

within the prototype model. Then, the cumulative earthwork production cost of a 

road section was used to produce the cost S-curve using an MS Excel program. A 

typical diagram of the cost S-curve was developed using a case study (see Figure 

6.9). The figure gives a comparison of the production cost with actual cost of the 

road section in respect to time. This curve monitors the earthwork costs on a weekly 

basis in comparison with progress, so that preventative measures can be taken to 

reduce the earthwork construction cost.  

 

 

Figure 6.9 Snapshot of the typical cost S-curve produced by the model 
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6.5 Summary 

 

The chapter outlined the development of the visualisation module component of the 

prototype model. A window interface was developed to visualise the earthwork 

scheduling information on a single platform. This included earthwork progress 

profiles / terrain surfaces, location-based plans, space congestion plans, location-

based cost profiles, and cost S-curves. The interface enabled the visual 

representation of a mass haul diagram and tabular information on progress profiles, 

weekly cost information, and coordinate data of time and location in a time-location 

plan.  

 

Typical snapshots of weekly progress profiles and corresponding terrain surfaces of 

earthwork were presented in this chapter to show the model functionality and its cost 

profile generation capability. The visualisation component of the prototype model 

enables construction managers to analyse and simulate earthwork scheduling 

information from a location viewpoint in road construction projects. The VM assists 

in improving the communication of the earthwork scheduling information at 

different stages of earthwork progress and provides a tool for effective 

communication amongst construction team members, throughout the construction 

operations.  

 

The next chapter outlines the experiments with the case studies, the sensitivity 

analysis, and offers an evaluation of the model functions by road constructional 

professionals. 
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Chapter - 7 

Experiments, Analysis and Validation 

 

7.1  Introduction 

 

The previous chapters discussed the specification, design and development of a 

prototype model of location-based scheduling (which is known as a time-location 

plan in this thesis) and the visualisation of the earthwork scheduling information in 

road construction projects. This chapter presents the details of experiments using 

design information on road projects, sensitivity analysis results, and validation of the 

functions of the prototype model through road construction professionals. The 

chapter also discusses the background of the selected road projects, data collection 

and analysis, and demonstrates the model functionality with different road sections 

of road projects.  

 

The chapter presents the comparative results of earthwork duration, location 

information from a company produced time-location plan, and the time-location plan 

generated by the prototype. Experiments were carried out to validate the model 

functionality, including automatic generation of a time-location plan under different 

site conditions and construction sequences. The optimisation of earthwork quantities 

was demonstrated in a cut-fill assignment of earthwork with design information of 

different road sections.  

 

A total of 15 different road sections from two road projects in Portugal were 

experimented to demonstrate the functionality of the prototype model. The graphical 

outputs of each model function obtained from case studies experiments are presented 

in this chapter. The results of sensitivity analysis carried out using critical factors 

associated with location-based scheduling, including equipment type, site access 

points and soil characteristics, are presented. The remainder of the chapter describes 

experiments using the prototype model. The conclusions from the evaluation of the 

prototype model, using indirect comparison of validation method are discussed, and 

the findings from the experiments summarised.  
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7.2 Background of Design Information from Road Projects 

 

This section provides the background to the road projects, which were selected for 

functionality experiments using the prototype model. The design information was 

collected from road projects carried out by Mota-Engil, an international construction 

company based in Portugal. The company provided access to the required data. The 

location map of the selected road projects is shown in Figure 7.1. 

 

Figure 7.1 Location map of the selected road projects for experiments (Mota-Engil) 

 

7.2.1 Introduction of the design information of road for experiments  

 

The design information was selected from three different road projects; lots 3, 5 and 

6 in Portugal. These lots were used to demonstrate the functionality of the prototype 

model including the automatic generation of progress profiles / terrain surfaces; 

location-based schedules (time-location plans) and space congestion plans; location-

based cost profiles; and the cost S-curves of the earthwork components. The 

different lots of the road projects which were selected for the experiments are shown 

below: 

 

A. 10 km road section (from chainage 90+000 to 100+000 km) was selected 

from lot no 5 road project 

B. 7 km road section (from chainage 0+000 to 7+000 km) from lot no 6 road 

project 

Selected Road 
sections for case 
studies 
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C. 1.5 km road section (from chainage 90+000 to 91+500 km) from lot no 3 

road project 

 

A total 15 different road sections (having 1.0 to 1.5 km lengths) from the different 

lots of the road projects were selected to demonstrate the functionality of the 

prototype model and to display the model behaviours. The graphical outputs on the 

model demonstration exercise of a 10 km road section and 7 km road section are 

shown in Appendix-H and Appendix-I respectively. The following section discusses 

data collection and the analysis processes involved in the experiments.  

 

7.2.2 Data collection and analysis 

 

In the course of the demonstration of the model functionality, road design data were 

provided by the company from the selected projects, namely the L-section, X-

section, terrain profiles, and site conditions of different road sections. The design 

data of different road sections was used to calculate the sectional quantities of the cut 

and fill activities of earthwork at the required intervals (25m normally). A site access 

/ working length module was developed to identify the economical working sections 

amongst the cut-fill section of a road section (see Chapter 5) to identify the site 

access points / working length along the selected road section in relation to the mass 

haul diagram characteristics. The access points / working lengths generated by the 

model could be modified by construction/planning managers if site conditions and 

other constraints were deemed to be unsuitable for earthwork operations. A cut-fill 

optimisation module (see Appendix-D) was used to identify the optimum allocation 

quantities and the direction of earthworks movement between cut-fill sections of a 

road section. 

 

After collecting the required inputs data of the model, the Data Generation Module 

(DGM) was used to generate the coordinate data for progress profiles and location-

based scheduling of earthwork. The time-location algorithm processes the coordinate 

data generated by the DGM and then produces location-based schedules (time-

location plans) of earthworks. Similarly, the space location algorithm generates the 

space congestion plans, and the cost algorithm produces location-based cost profiles 
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and the cost S-curves. The next section explains the experiments with design data of 

road projects.  

 

7.3  Experiments with design information from road projects  

7.3.1 Experiments with progress profiles generation functionality  

 

In what refers to the road section from chainage 90+000 to 91+500 of lot no 3 – 

selected for experimentation – an exercise aimed at the production of automatic 

progress profiles generation functionality of the prototype model, was carried out 

using productivity data. The purpose of this function was the analysis and 

visualisation of the effects on the progress profiles and the earthworks scheduling 

from a location viewpoint.  

 

The DGM was developed to produce the weekly coordinate data based on the 

productivity provided by the company, which was related to the equipment used 

during the construction processes, and to summarise the required data for processing 

in the visualisation module. The visualisation module processes the input data and 

transforms it into visual profiles of the earthwork operations throughout the 

construction processes. A snapshot of the interface (form) is shown in Figure 7.2.  

 

 

Figure 7.2 Snapshot of earthwork scheduling and visualisation model  

 

Earthwork Progress Profile Module 
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The interface represents the model input, process and outputs of the prototype. 

Firstly, sectional quantities of a selected road section were calculated using the road 

design information from the longitudinal and cross-sectional profiles of the road 

section. Secondly, the site access points and the working lengths were identified and 

listed in the input sheet for the use in the DGM. Thirdly, the productivity values of 

the earthwork activities were calculated by inserting the information related to 

equipment types, soil characteristics and site working conditions through a 

productivity sub-module, as shown in Figure 7.3.  

 

 

Figure 7.3 Snapshot of productivity calculation sub-module (Castro, 2005)  

 

After calculating the required input information, the DGM module was used to 

generate the coordinate data of the earthwork progress profiles of the selected road 

section. Then, the “DataExport” sub-module (see Figure 7.2) was used to filter and 

export the coordinate data into the visualisation module. The “ProgressProfile” sub-

module (see Figure 7.2) was used to process the exported data to generate the weekly 

progress profiles and terrain surfaces of earthworks. The earthwork progress profiles 

generated by the model are shown in Figures 7.4 and 7.5.  

 

Figure 7.4 represents a total of ten profiles of the earthwork progress generated by 

the model at different weeks throughout construction. The w0 represents the 

earthwork profiles at start of the work/original ground profiles, whereas from w1 to 
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w9 represent the progress profiles of earthwork at the end of week 1 to week 9 

respectively. The arrows in Figure 7.4 show the movement direction of the 

earthwork from cut to fill sections or cut to spoil at landfills.  

  

  

  

  

  
 Figure 7.4 Weekly earthwork progress profiles of a selected road section. 
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7.3.2 Generation of terrain surfaces of earthwork progress profiles  

 

Figures 7.5(a) and 7.5(b) show snapshots of the 3D terrain surface of the earthwork 

progress profiles generated by the visualisation module at the end of week 4 and 10 

respectively. This represents the terrain surfaces of the progress profiles in a road 

project at different stages throughout the earthwork construction operations. The 

height of cutting and the depth of filling section are represented by colour index from 

red to blue respectively as shown in both Figures 7.5(a) and (b).  

 

 

Figure 7.5(a) Snapshot of terrain surface generated by model at week 4 

 

Figure 7.5(b) Snap shot of terrain surface generated by the model at week 10 

 

In the above figures, the red colour represents the highest ground level and the blue 

colour represents the lowest points on the road surface. The yellow colour represents 

road profiles at week 4 and the green colour represents the design road level of road 

terrain surfaces at the end of week 10.  
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7.3.3 Experiments with different productivity rates 

 

This section presents an experiment to show earthwork progress profile generation 

capability at different productivity values. For the experiment, three sets of 

productivity values (minimum, average and maximum) were calculated under 

different site conditions using a productivity simulator (see Figure 7.3). Three sets of 

productivity values were identified, assuming three scenarios: good, average and 

poor site working conditions. The experiment was carried out to visualise the effect 

on the progress profiles of the road section at the end of week 5. Figures 8.6 (a), (b) 

and (c) show the prototype‟s capability of generating progress profiles of earthworks, 

taking into account different productivity rates and assisting to identify the effects on 

the progress height of earthworks at a particular week. 

 

 

Figure 7.6 (a) Progress profiles of a road section at minimum productivity 

 

 

Figure 7.6 (b) Progress profiles of a road section at the average productivity 

Productivity of cutting (pc) = 188.87 m3/hr 

Productivity of filling (pf) = 158.54 m3/hr 

 

Productivity of cutting (pc) = 101.99 m3/hr 

Productivity of filling (pf) = 84.91 m3/hr 

 

Showing cut to fill location  
Cutting Section 

Filling Section 

Filling Section 

Showing cut to fill location  Cutting Section 

Filling Section 
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Figure 7.6 (c) Progress profiles of a road section at the maximum productivity 

 

These profiles represent differences of earthwork progress height at the three sets of 

productivity values (minimum, average and maximum). These figures confirmed the 

model‟s capability to integrate different productivity rates. The variation in 

earthwork progress height at the end of week 5, due to different productivity values, 

confirmed that the prototype model was capable of generating earthwork progress 

profiles for the different site conditions and with regard to the constraints that affects 

productivity with earthwork construction.  

 

Similarly, the terrain surfaces of the road sections throughout the construction 

operations could be generated on weekly basis. The next section discusses the 

experiments carried out to establish model functionality in the automatic generation 

of location-based schedules (time-location plans) and the optimisation of earthwork 

quantities in a cut-fill assignment. 

 

7.4  Experiments with Earthwork Optimisation Module 

7.4.1 Experiment with a 1.4 km section from lot no 6 road project 

 

A 1.4 km road section from lot no 6 road project was selected for experimental 

purposes to analyse and test the key model functions. These functions include 

automatic generation of location-based scheduling / time-location plan, a space 

congestion plan, and the optimisation of earthwork allocation quantities in addition 

to the direction of earthwork movement in a cut-fill assignment. The selected road 

section included five filling sections known as Fill-1(F1), Fill-2(F2), Fill-3(F3), Fill-

Productivity of cutting (pc) = 389.06 m3/hr 

Productivity of filling (pf)   = 379.12 m3/hr 

 

Showing cut to fill location  
Cutting Section 

Filling Section 

Filling Section 
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4(F4) and Fill-5(F5), whereas  four cutting sections were known as Cut-1(C1), Cut-

2(C-2), Cut-3(C3) and Cut-4(C4), with different quantities. A longitudinal profile of 

the road section is shown in Figure 7.7 below.  

 

 
Figure 7.7 Longitudinal profile of a selected road section with weekly profiles 

 

 

As stated in Chapter 5, there is a requirement to plan the possible sources and destinations 

of earthwork quantities (m
3
) in a cut-fill assignment. This includes how much is needed to 

be borrowed from the cut or borrow pits and to deposit the volume removed to a landfill 

site. The optimisation module was developed to identify the optimum allocation quantities 

and movement direction of earthworks in a cut-fill assignment (see Appendix-D).  

 

Table 7.1 Unit cost table for earthworks allocation of a 1.4 km road section  

Unit Cost of Earthworks (€per m
3
)         

  Destinations       

  Fill-1 Fill-2     Fill-3        Fill-4      Fill-5  Land- Fill 

Cut-1 0.82  0.81  2.19  3.19  4.00  4.00  

Cut-2 2.38  0.75  0.88  1.63  2.44  4.05  

Cut-3  3.63  2.00  0.63  0.38  1.19  4.10  

Cut-4 6.06  4.44  3.06  2.06  1.25  4.15  

Borw-1 7.10  7.40  7.50  7.60  7.90    

Borw-2 9.10  9.50  9.60  9.80  9.90    

 

 

As explained previously, the unit cost coefficient is a function of equipment type, 

haulage distance, soil characteristics and working site conditions within the 

productivity and cost simulator of “RoadSim”. A list of cut and fill sections, 

including the respective sectional earthwork quantities, was calculated and presented 

in a table (see Appendix-D).  

 

Cut-1 Cut-2 Cut-3 Cut-4 

Fill-1 Fill-3 Fill-4 Fill-5 Fill-2 
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After running the earthwork optimisation function with the information of a road 

section shown in Figure 7.7  and Table 7.1 above, a matrix table was produced with 

the information on the optimised quantities, the direction of movement, and the total 

cost of earthworks for a cut-fill assignment (see Table 7.2).  

 

Table 7.2   Matrix table with optimised earthwork quantities of a 1.4 km section  

Number of cut and fill sections           

   Fill-1   Fill-2   Fill-3   Fill-4   Fill-5  Land Fill  Total Qty Available Qty 

Cut-1 - 8,414 - - - - 8,414 8,414 

Cut-2 - 5,320 - - - - 5,320 5,320 

Cut-3 - - - 3,590 - - 3,590 3,590 

Cut-4 - - - - 16,542 - 16,542 16,542 

Borw-1 35,278 2,744 10,968 11,130 4,048 - 64,168 64,168 

Borw-2 - - - - - - 0 0 

Total Qty 35,278 16,478 10,968 14,720 20,590 0   

Req. Qty 35,278 16,478 10,968 14,720 20,590 0   

Total cost  

Earthworks 

      

502,454.79             

 

 

Using the information presented in Table 7.2, a graphical view of the earthwork 

optimised quantities (m
3
), including the movement direction of cut-fill sections, is 

presented in Figure 7.8 below. 

 

 
Figure 7.8 Graphical view of earthwork allocated quantities of a 1.4 km section 

 

 

The next section presents another experiment to test the optimisation function of the 

prototype model with a different road section which was selected from the lot 5 road 

projects in Portugal. 
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7.4.2 Experiment with 1 km section from lot no 5 road project 

 

A road section from lot 5 (from chainage 98+000 to 99+000) was selected for a 

second experiment designed to analyse the model optimisation function. The 

selected road section includes three filling and two cutting sections with different 

sectional quantities. A longitudinal profile of the road section is shown in Figure 7.9.  

 

  
Figure 7.9 Longitudinal profile of 1.0 km road section with weekly profiles 

 

 

To indicate the optimisation functionality of the model, a unit cost table was developed 

using road profiles and the “RoadSim” simulator, and the identified unit cost is shown in 

Table 7.3. 

 
Table 7.3 Unit cost table of earthworks allocation of 1.0 km road  

Unit Cost of Earthworks (€per m
3
)     

  Destinations   

  Fill-1 Fill-2      Fill-3 Land- Fill 

Cut-1 1.25  1.63  2.63  4.00  

Cut-2 2.19  0.69  1.69  4.05  

Borw-1 7.10  7.40  7.50    

Borw-2 9.10  9.50  9.60    

 

Using the unit cost data presented in Table 7.3, the cut-fill optimisation module 

produced a matrix table that provides the information on the optimised quantities, 

and the direction of movement with the total costs of the earthwork operations for a 

cut-fill assignment (see Table 7.4).  

 

 

 

 

 

 

Cut-1 Cut-2 

Fill-1 Fill-3 Fill-2 
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Table 7.4   Matrix table with optimised earthwork quantities of a 1.0 km section 

 

Number of cut and fill sections       

   Fill-1   Fill-2   Fill-3  Land Fill  Total Qty Available Qty 

Cut-1 13,523.26 408.72 - - 13,932 13,932 

Cut-2 - 5,848.47 - - 5,848 5,848 

Borw-1 - 500.17 29,997.10 - 30,497 30,497 

Borw-2 - - - - 0  

Total Qty 13,523 6,757 29,997 0    

Req. Qty 13,523 6,757 29,997     

Earthworks cost 21,589.07     

 

Using the information presented in Table 7.4, a graphical view of the earthwork 

optimised quantities (m
3
) and the movement direction between cut-fill sections of the 

selected road section is presented in Figure 7.10 below.  

 

 

Figure 7.10 Graphical view of earthwork allocated quantities of 1km road section 

        

The next section presents the sensitivity report generated by the optimisation module 

for a cut-fill assignment in the road section selected for the experiment. The 

experiment result shows that the total minimum earthwork cost is euro 21,589.07 

considering the unit cost of earthworks presented in Table 7.3 above. The sensitivity 

report provides the sensitivity effects of unit cost for each cut-fill section as follows. 

 

7.4.3 Sensitivity reports of earthwork optimisation module  

 

A sensitivity report of unit cost reduction of the optimised quantities of earthworks 

in cut-fill assignment is shown in Table 7.5. The sensitivity report presented in Table 

7.5 reveals how much the unit cost of haulage can be reduced without affecting the 

optimised quantities of earthwork in a cut-fill assignment. For example, the unit cost 

   29997  500 

 5848  409  13523 

   29997 

 5848  409  13523 
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 500    29997 
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of earthworks between cut-1 to fill-3 and cut-2 to fill-1 can be reduced by a unit cost 

of euro 1.0 and 1.87 respectively (see Table 7.5) without affecting the total cost of 

the earthworks. The results also help the construction manager to plan the earthwork 

quantities and its associated resources whilst also considering the associated costs.  

 

Table 7.5 Sensitivity report produced by earthwork optimisation module 

  Earthwork Reduced Objective Allowable Allowable 

Name Quantity Cost Coefficient Increase Decrease 

Cut-1 Fill-1 13,523.26            -    1.25 0.375 1E+30 

Cut-1 Fill-2      408.72            -    1.625 1 0.375 

Cut-1 Fill-3             -           1.00  2.625 1E+30 1 

Cut-1 Land Fill             -              -    0 0.937499976 1E+30 

Cut-2 Fill-1             -           1.87  2.1875 1E+30 1.875 

Cut-2 Fill-2   5,848.47            -    0.6875 0.9375 1E+30 

Cut-2 Fill-3             -           1.00  1.6875 1E+30 1 

Cut-2 Land Fill             -           0.94  0 1E+30 0.937499976 

Borw-1 Fill-1             -           0.37  0 1E+30 0.375 

Borw-1 Fill-2      500.17            -    0 0 1 

Borw-1 Fill-3 29,997.10            -    0 1 0 

Borw-1 Land Fill             -           1.62  0 1E+30 1.624999959 

Borw-2 Fill-1             -           0.37  0 1E+30 0.37499999 

Borw-2 Fill-2             -              -    0 1E+30 0 

Borw-2 Fill-3             -              -    0 0 1E+30 

Borw-2 Land Fill             -           1.62  0 1E+30 1.624999959 

Constraints 

  Earthwork Shadow Constraint Allowable Allowable 

Name Quantity Price R.H. Side Increase Decrease 

Total Fill-1 13,523 1 13523.26074 0 13523.26074 

Total Fill-2 6,757 2 6757.365234 0 408.7207031 

Total Fill-3 29,997 2 29997.09766 0 408.7207031 

Total Land Fill 0 0 0 0 0 

Cut-1 Total 13,932 0 13931.98145 1E+30 0 

Cut-2 Total 5,848 -1 5848.472168 408.7207031 0 

Borw-1 Total 30,497 -2 30497.27002 408.7207031 0 

Borw-2 Total 0 -2 0 408.7207135 0 

 

After identification of the earthwork allocation plan and the direction of earthwork 

movement in a cut-fill assignment, a time-location plan was generated. The next 

section discusses the experiment designed to test the time-location plan generation 

capability of the model, considering different options and site conditions. 

 

 

 



162 

 

7.5  Experiments with LBS/time-location plan for different options 

 

A road project with 4-cut and 5-fill sections (Figure 7.7) was selected to test the 

model functionality for automatic generation of a location-based schedule (time- 

location plan) considering different aspects of site conditions. The outputs produced 

by the model are given below. A total of 18 weeks was required to complete 

earthwork operations for the selected road section when one equipment set for both 

cut and fill sections was mobilised at a weekly productivity rate of 6671 m
3
/wk and 

an effective working time of 30hrs per week. A total of 7 different options were 

included in the experiment, considering different site conditions and construction 

sequences, and aiming to test the model‟s functionality of generating location-based 

schedules. The different options considered in the experiments are discussed below: 

 

7.5.1 Option 1: Construction sequences (C1-C4 and F1-F5) 

 

In this option, the construction sequences of cut and fill sections were selected from 

C1 to C4 and F1 to F5. The earthwork operations included fill from cut sections with 

one set of both cutting and filling construction equipment. The construction 

operations for both cut and fill sections were performed from the start to end stations 

in the forward direction (Figure 7.11).  

 

The optimised earthwork quantities (m
3
) and movement direction between cut and 

fill sections are shown in Figure 7.11, with a road profile and  arrow diagram 

showing the construction sequences of cut-fill operations in a time-location plan. The 

optimum allocation of earthwork was developed using a cut-fill algorithm (Chapter 

5). Similarly, other options (from 2 to 7) consider the allocation of earthworks 

quantities similarly, but the sequences of constructions are different between cut-fill 

sections, including a borrow pit for the selected road section. 
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Figure 7.11 Time-location plan generated by the prototype model with option 1 

 

 

7.5.2 Option 2: Construction sequences (C4-C2 and F5-F1) 

 

In this option, the construction sequences of the cut and fill sections were selected 

from C4 to C1 and from F5 to F1, considering one-set of construction equipment.  

 

 
Figure 7.12 Time-location plan generated by the prototype model with option 2 
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The construction operations for both cut and fill sections were performed assuming 

the sequences from the end to start stations in a backward direction. The time-

location plan generated by the model considering option 2 is shown in Figure 7.12. 

 

7.5.3 Option 3: Construction sequences (C4-C1 and F1-F5) 

 

In this option, the construction sequences of the cut and fill sections were selected 

from C4 to C1 and from F1 to F5 with one set of construction equipment. The 

cutting operation was performed in a backward direction from the end to start 

stations of the selected road section, and the filing operations performed from the 

start to end stations in the forward direction. The time-location plan generated by the 

model under option 3 is shown in Figure 7.13.  

 

 

Figure 7.13 Time-location plan generated by the prototype model with option 3 

 

 

7.5.4 Option 4: Construction sequences (C1-C4 and F5-F1) 

 

In this option, the construction sequences for both cut and fill sections were selected 

from C4 to C1 and from F1 to F5 with one set of construction equipment. The 
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cutting operations were assumed to take place from the start to end stations in the 

forward direction, and the filling operations from the end to start stations in the 

backward direction. The time-location plan generated by the model under option 4 is 

shown in Figure 7.14. 

 

 

Figure 7.14 Time-location plan generated by the prototype model with option 4 

 

 

7.5.5 Option 5:  Considering obstruction at point A (0+625) 

 
In this option, the construction sequences for both cut and fill sections were selected 

from C1 to C4 and from F1 to F5 with two sets of construction equipment. One set 

of equipment was mobilised at the start of the road section and the second set was 

mobilised at chainage (0+625m) due to an obstruction at point A (Figure 7.15). The 

time-location plan generated by the model under option 5 is shown in Figure 7.15. 
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Figure 7.15 Time-location plan generated by the prototype model with option 5 

 

 

 

7.5.6 Option 6: Time-location with daily productivity (1779 m
3
/day) 

 

In this option, the construction sequences for both cut and fill sections were selected 

from C1 to C4 and from F1 to F5 with two sets of equipment similar to option 5, but 

the time-location plan was generated on a daily basis. The time-location plan 

produced by the model considering option 6 is shown in Figure 7.16. The time- 

location plan showed a total duration of 30 days when operation was performed at a 

rate of 1779 m
3
/day, while 8 hours were assumed as working hours per day, and two 

sets of construction equipment were utilised (see Figure 7.16).  
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Figure 7.16 Time-location plan generated by the prototype model with option 6 

 

 

7.5.7 Option 7: Time-location plan with space congestion  

 

In this option, the construction sequences of cut and fill sections were selected from 

C1 to C4 and from F1 to F5, with one set of equipment. The congestion location 

shows only at first week and the fill-5 section in red colour in the time-location 

congestion plan. The plan was generated by the model under option 7 (Figure 7.17).  

  

 

 
 

Figure 7.17 Time-location congestion plan generated by the model with option 7 
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7.6  Sensitivity analysis with different planning variables 

 

A sensitivity analysis was carried out to identify and analyse the effects on the 

earthwork construction duration in a road project using „what-if‟ scenarios. The 

analysis was completed using the critical factors associated with productivity data 

and overall construction duration of earthwork operations, including site access 

points, type of equipment and soil characteristics. The sensitivity analysis was 

conducted assuming that the critical factors varied, but other critical factors affecting 

earthwork productivity were assumed as a constant. The sensitivity analysis was 

performed by considering a road section with two fill sections and one cut section for 

earthwork operations (Figure 7.18). 

 

 

Figure 7.18 Typical road section selected for sensitivity analysis   

 

7.6.1 Case for site access points (working length)  

 

The sensitivity results are presented in Figure 7.19. The results showed a total 

duration of 7 days for the fill-1 and fill-2 sections and 3 days for the cut-1 section for 

three and five numbers of access points, whereas other variables and resources were 

assumed as being constant. However, the total duration was 9 days for fill-1 and fill-

2 sections and 4 days for the cut-1 section of earthwork operations when considering 

six- access points, i.e. longer than for a smaller number of access points, suggesting 

model validity. The conclusions are that adopting a smaller number of access points 

is more economical, and that there is a reduction in resources wastage for the same 

quantity of earthwork activity for the same road sections.  

Cut-1 

Fill-1 
Fill-2 
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Figure 7.19 Sensitivity analysis results of production time (days) for different site access points 

 

7.6.2 Case of different types of equipment  

 

The sensitivity analysis with different types of equipment on the time-location plan 

is presented in Figure 7.20. The results show that total duration was 35 days for fill-1 

and fill-2 sections and 18 days for the cut-1 section of earthwork using a type -1 

excavator (Exa). On the other hand, the total duration were 35 days for fill-1 and fill-

2 sections and 14 days for the cut-1 section of earthwork using type-2 excavators 

(Exb) when assuming other variables and resources unchanged. The total duration, 

however, was 34 days for fill-1 and fill-2 sections, and 12 days for the cut-1 section 

when using type-3 excavators (Exc), while the total duration was 26 days for fill-1 

and fill-2 sections and 9 days for the cut-1 section of earthwork operations using 

type-4 excavators (Exd).  
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Figure 7.20 Sensitivity analysis results of production time (days) for different types of equipment 

 

The above results revealed that higher productivity equipment is more economical 

because it utilises less time and minimises resources to complete the same quantity 

of earthwork in comparison to lower productivity equipment, assuming other 

conditions and factors remain the same, again suggesting model validity. Since the 

construction duration of earthwork is different for the different types of equipment, it 

is logical to plan higher productivity equipment if site conditions allow, to complete 

earthwork operations and to reduce heavy construction equipment idle time. 

 

7.6.3 Case of different soil characteristics  

 

The results presented in Figure 7.21, show that the total duration was 40 days for fill-

1and fill-2 earthwork operations, since the soil characteristics for the filling sections 

were assumed the same throughout the road section. However, the total duration for 

the cutting section at different layers was different in relation to soil types. The 

sensitivity results show that the duration of cut-1 sections are 20, 19, 21 and 23 days 

for different types of soil for sand, sand-clay, clay dry and clay wet respectively. 

Again, this suggests that the model results are valid.  

 

Therefore, the above results confirm that sand-clay soil at a cutting section requires 

minimum time in comparison with sand, clay-dry and clay-wet. Clay-wet soil needs 

significantly more time to complete an equal quantity of earthwork under similar site 

constraints in comparison to other soil characteristics.  
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Figure 7.21 Sensitivity analysis results of production time (days) for different soil characteristics 

 

It is concluded from the sensitivity analysis that the model can assist project planners 

and construction managers in a simulation analysis using „what-if‟ scenarios, and in 

producing a location-based schedule and resource planning taking into account: 

 

· different site conditions  

· type of equipment  

· soil characteristics and site access points 

 

The results of the sensitivity analysis confirm that site access points, types of 

equipment and soil characteristics are the most critical variables, which have a direct 

impact on productivity and resource planning for earthwork operations. In the 

sensitivity analysis, the productivity of different types of equipment (for example; 

Exa, Exb, Exc, and Exd) were used to analyse the production time with „what if‟ 

scenarios under different soil conditions (for example, sand, sand-clay, clay dry and 

clay wet) with different working sections (site access points) along a road section. 

With the aid of the model, and subject to its limitations outlined earlier, project 

planners and construction managers can analyse and simulate the sensitivity of the 

variables affecting productivity to improve construction scheduling and the resource 

planning of earthwork operations. Intervention at the early planning stages 

(additional plan/schedule/resource optimisation) should assist in reducing the 

adverse impacts of the factors considered in the model and their associated costs. 
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7.7  Comparison between company produced and model generated 

time-location plan 

  

A case study of a 7 km road section was selected with the assistance of a company 

(Mota-Engil) for the validation of the time-location plan (location-based scheduling) 

produced by the prototype model. The working sections, sectional quantities of 

earthwork, and productivity data, which were used by the company to produce the 

plan, were also used to generate a time-location plan using the prototype model so 

that the discrepancy in results in terms of duration could be avoided. The duration of 

earthworks shown in a time-location plan provided by the company (Figure 7.22) 

was compared with the duration generated by the prototype model (Figure 7.23). The 

comparative results including detailed information on weekly working locations of 

the road section, quantities, productivity information, and duration of the cut and fill 

activities, are presented in Table 7.6. The detailed information in relation to the 

weekly locations of each road section in tabular form is presented in Figures 7.24 

and 7.25 below. 

 

 Table 7.6 Comparison of results between company-provided and model-generated time-location plan 

 

S. 

N. 

Road 

Section 

Length      

(m) 

E/W 

Quantity  

(m
3
) 

Cut/Fill 

Activity  

Product

ivity 

m
3
/wk 

Company-

produced Results 

 Model-generated 

Results 
Variations 

Time 

(wks) 
Location 

Time 

(wks) 
Location Percentage 

1 0+000 - 

0+925 

925 32,400 Cut 

2309 

14.03 0+000  

& 

0+925 

15 Table 1 

of Fig. 

7.24 

6.45% 

  

34,433 Fill 14.91 15 0.58% 

   

 

  

Duration 

 

15 

  2 0+925 - 

2+675 

1750 64,700 Cut 

3464 

18.68 0+925 

& 

2+675 

21 Table 2  

of Fig. 

7.24 

11.06% 

  
51,352 Fill 14.82 16 7.35% 

   
 

  

Duration 

 

21 

  3 2+675 - 

3+600 

925 23,357 Cut 

5196 

4.50 2+675 

& 

3+600 

5 Table 3  

of Fig. 

7.25 

10.10% 

  
36,204 Fill 6.97 8 12.90% 

   
 

  

Duration 

 

8 

  4 3+600 - 

7+000 

3400   204,294  Cut 

10392 

19.56 3+600 

& 

7+000 

22 Table 4  

of Fig. 

7.25 

10.64% 

    213,168  Fill 19.64 23 10.81% 

   
 

  

Duration 

 

23 

   

 

The comparison results (presented in Table 7.6) show that the model-simulated 

production duration of earthworks is higher by 8.7 % (average) than the company-
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estimated production duration of earthworks. The variations in the production 

duration are due to the methods of determining production time of earthworks. The 

production duration shown in the model-generated results (Table 7.6) was calculated 

by rounding the values of duration for each cut and fill section, whereas the 

production duration shown in the company-produced results (Table 7.6) was 

calculated by dividing whole quantities with productivity (production rate) of 

earthwork for each sub-section.  

 

Figure 7.22 represents a time-location plan for a 7 km road project, which was 

developed and utilised by the company. The plan was produced by dividing the road 

section into four sub-sections (0+000 to 0+925, 0+925 to 2+675, 2+675 to 3+600 

and 3+600 to 7+000). Each section was planned separately, with different sets of 

equipment with different production rates. Each section of the time-location plan 

shows the start and the finish date with the corresponding working locations as well 

as the quantities of earthworks. The information provided in the company-produced 

time-location plan was presented in Table 7.6 and it was compared with the weekly 

information provided by the model-generated time-location plan (Figure 7.23) 

below. 

 

Figure 7.22 Company-produced time-location plan of a 7 km road section  

(See enlarged image of Figure 7.22 on page 174 for more clear information)
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  (Enlarged image of figure 7.22 in A3 size for detailed and clear information of company-provided time-location plan of a 7 km road section) 
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   Figure 7.23 Model-generated time-location plan of a 7 km road section  
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Based on the results (presented in Table 7.6 and Figures 7.23, 7.24 and 7.25), it is 

concluded that the model has enough capability to provide scheduling information of 

weekly locations of earthwork operations for both cut and fill sections in the form of 

graphs and tables. The time-location plan produced by the company, however, only 

provides the start and the end location of a road section (Figure 7.23, with dotted lines).  

 

 
Figure 7.24 Weekly locations information from chainage (0+000 to 2+675). 
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Figure 7.25 Weekly locations information from chainage (2+675 to 7+000). 

 

The model is capable of providing detailed information (smaller sections) on weekly 

locations of both cutting and filling sections separately. This represents a significant 

improvement when compared to existing practices in earthwork operations. 

Additionally, several experiments were carried out at the earthwork construction site of 

a road project of lot 5 in Portugal by Mota-Engil. The results of the experiments showed 

that the actual productivity rate was 2.34% lower than the model-simulated productivity 

value of earthworks. The difference in productivity was due to the delay in earthwork 
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progress and the variations in soil characteristics at the cutting section. As a result, it 

was concluded that the model-produced location-based schedules which also provide the 

information on weekly locations are acceptable for earthwork operations in road 

construction projects (again demonstrating the model‟s validity within the limitations 

outlined earlier). Location-based scheduling should result in improved resource 

planning, including the mobilisation and demobilisation of the construction equipment 

for earthworks.  

 

7.8  Evaluation of the Prototype Model 

 

This section discusses the evaluation processes and explores the value of the prototype 

model associated with the practical applications. As part of the evaluation of the model, 

a proper validation method called “indirect comparison” was used in this study (Ho et 

al, 2009). This method is used when practitioners implement a new method on a real 

project, but there is no direct comparison for how the method performs against an 

existing method. As an alternative, the method is evaluated, based on the practitioner‟s 

past experience performing the tasks using traditional methods on similar types of 

projects (Collier and Fischer, 1996; Manning and Messer, 2008; Torrent and Caldas, 

2009, cited in Ho et al, 2009).  

 

Evaluation of the prototype model was carried out by demonstrating the functions of the 

prototype model to road construction professionals through site meetings. After 

demonstrating the model functions, participants were requested to answer the questions 

stated in the evaluation form (Appendix-F), taking into account their experiences in road 

projects. A total of five meetings at construction sites were conducted for the evaluation 

of the model functionality. Two examples of the responses are presented in Appendix-F. 

The following road construction professionals within UK-based construction companies 

participated in the evaluation process of the model: 

 

1. Niall Fraser: Director, C.A. Blackwell (Contracts) Ltd. 

2. Steve Clarke: Managing Director, C.A. Blackwell (Contracts) Ltd. 
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3. Jess Yates:  Contract manager, C.A. Blackwell (Contracts) Ltd. 

4. Alan Day: Planning manager, C.A. Blackwell (Contracts) Ltd. 

5. Hayden Green: Project manager, Balfour Beatty Regional Civil Engineering Ltd.  

6. Paul McLaughlin: Contract and planning manager, Balfour Beatty Regional 

Civil Engineering Ltd.  

7. Chris Beadle: Construction manager, A-one Integrated Highway Services, UK. 

8. David Wheatley: Programme manager, A-one Integrated Highway Services, UK. 

 

This section also summarises the findings and views obtained from the demonstration 

and presents the outcomes of the discussion amongst the road professionals who 

participated in the evaluation processes. In order to validate the functionality of the 

prototype model, road professionals‟ points of view in respect of the practical 

applications of the model were sought, and encapsulated through the evaluation form. 

The views and opinions expressed by the participants are summarised in the following 

sub-categories. 

 

7.8.1 As a decision support system 

· The majority of the participants agreed that the prototype model is a very useful 

tool in supporting initial strategic decisions at the planning stage, due to its 

capability to present the implications of different equipment at required locations 

and when necessary.  

· Improved management of resource scheduling from location aspects would be a 

major benefit. 

· Participants also argued that the model will be a useful tool to optimise the 

earthwork allocation on complex linear projects with multiple cuttings and 

embankments. 

 

7.8.2 Improvement in construction planning and scheduling  

· The majority of participants had the impression that the model may be able to 

add value to contractor planning, and to optimise the use of plant for earthwork 

contractors who have a large fleet of construction plant. 
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· Some of the participants also agreed that the model provides accuracy in 

establishing the cut/fill balance points in a linear project, and in planning to 

accommodate the surplus or deficit materials. 

· Nonetheless, a few participants pointed out that further improvement in the 

model is necessary prior to the model‟s application at a construction site.  

 

7.8.3 As a communication tool for scheduling information 

· Most of the participants agreed that the model is very good as a communication 

tool for all the construction team members, and makes it easy to communicate 

earthwork scheduling information amongst all stakeholders; however, the input 

data may be too complicated to set up initially. 

· The visualisation process for earthwork operations would also be useful in 

showing “the layman” what the construction would look like at various stages. 

However, a few participants highlighted that an experienced team would already 

have the scheduling information provided by the model.  

 

7.8.4 Benefits of the system to planners / construction managers 

· The majority of participants agreed that running various strategies with the 

model using „what-if‟ scenarios would allow optimisation of resources in 

earthwork operations. 

· The information associated with the location of equipment mobilisation is useful. 

However, its use is more limited in the UK, because British contractors may not 

have a sufficiently large plant fleet to call upon in order to change equipment as 

work progresses on a weekly schedule.  

· The potential benefits of this system are more suitable to other parts of the 

world, or for European markets, where linear projects with earthwork 

components are relatively large in number in comparison to the UK. 

 

7.8.5 Identification of space/location conflict at construction site 

· Most of the participants felt that the model is a useful tool for identifying space 

congestion (which has a significant impact on site productivity), as well as from 
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a health and safety point of view, but that it needs additional development to 

make it more effective at a construction site. 

· A few participants pointed out that managing space congestion is not the first 

priority for experienced managers, but that the model is relatively useful for non-

specialists who need to address space/location conflicts at a construction site. 

 

7.8.6 Potential benefits in terms of cost and time  

· Some of the participants agreed that the model would be of the most benefit to 

non-specialists, because specialists and experienced planners should already be 

able to mentally visualise the earthwork processes.  

· The visual outputs of the prototype model would help construction managers 

show their supervisors why decisions have been made and what the benefits of 

the model are. 

· Some participants articulated that the model is a useful tool for the right projects, 

such as major road projects or a Speed 2 rail project, where time and cost can be 

saved by allocating the resources effectively in earthwork operations at required 

locations and when necessary. 

 

7.8.7 Barrier to implementation in terms of people or technology 

· The majority of participants shared the view that training for staff and the 

model‟s dependency on new technology are the main barriers to implementing 

the model at a construction site.  

· The system needs an operator with advanced computer skills. However, most of 

the supervisors who control plant on a daily/weekly basis are not computer 

trained, and do not like using computers or adopting a new technology. 

· Nevertheless, some of the participants agreed that the visualisation capability of 

the model would help break down the traditional reluctance of people to accept a 

new technology. 

 

Taking into account the different road professionals‟ points of view, above, and despite 

some desired improvements to the prototype model, it is concluded that the model is still 
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a very useful decision-supporting tool, particularly in road construction projects. It 

assists construction managers in earthwork scheduling and in the visualisation of 

scheduling information from location aspects in relation to resources utilisation. 

 

7.9 Summary 

 

This chapter discussed testing, experimentation, analysis and evaluation of the prototype 

model. The chapter presented a range of different experiments and a case study from 

road projects to demonstrate the prototype model‟s functionality. The automatic 

production of earthwork progress profiles under different productivity values was 

outlined. The model generated location-based schedules (time-location plans), which 

were tested with different site constraints (seven different options were considered).  

 

The optimisation module was demonstrated using two road sections with the aid of a 

sensitivity analysis. The outcomes from the sensitivity analysis and experiments were 

presented by analysing the effects on earthwork duration due to different factors 

associated with scheduling, such as site access points, soil characteristics and different 

equipment types. The comparison results found that the model-generated time-location 

plan provides detailed scheduling information on weekly locations associated with 

assigned resources, whereas the company-produced time-location plan lacks weekly 

information on locations throughout the earthwork operations. 

 

Finally, experienced road construction professionals evaluated the model. From the 

professional viewpoints, it is concluded that the model is a very useful tool in supporting 

the initial strategic decisions at the planning stage and provides the scheduling 

information more effectively from the location aspects. Running various strategies with 

the model would allow optimisation of resources, including construction equipment 

useful in the earthwork operations. The next chapter discusses the conclusions from the 

research study and recommendations for future study. 
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Chapter -8 

 

Conclusions and Recommendations 
 

8.1 Introduction 

 

The research discussed in this thesis was applied to road construction projects. It was 

concerned with the development of a methodology and a prototype model for location-

based earthwork scheduling and the visualisation of scheduling information. The 

functionalities of the prototype model were demonstrated with road construction 

projects to justify its relevance and significance to the construction industry. This 

chapter summarises the conclusions, which are drawn from the research study, and 

describes the potential benefits of the prototype model. This chapter also outlines the 

limitations of the research and provides recommendations for further developments. 

8.2 Conclusions of the Research Study   

 

The conclusions drawn from the research study are summarised under different sections 

as follows: - the literature review, the construction industry survey, experiments with 

different functionalities of the prototype model (including cut-fill optimisation), and the 

evaluation of the model from road construction professionals. 

8.2.1 Literature review 

 

A comprehensive literature review was carried out to investigate the existing practices 

and limitations associated with earthwork scheduling techniques, and with the 

visualisation of earthwork processes, including scheduling information in road 

construction projects. This addresses the first objective of this study; conclusions from 

the literature review are summarised below: 

 

· The review has concluded that existing linear scheduling methods are unable to 

provide detailed information on the weekly locations required for construction 

scheduling and resource planning, particularly in earthworks in linear projects. 
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· The key issues facing road construction sites are the variation in site productivity 

rates of earthworks from day to day and location to location along a road section, 

because of factors such as the topography of existing terrain, soil characteristics, 

weather, site working conditions, resource constraints, and other unpredictable 

factors. These factors have a direct impact on earthwork scheduling and resource 

planning. 

 

· Earthwork activities significantly affect other road activities and the overall 

performance of construction site operations due to the distinctive characteristics 

of earthwork in linear construction projects.  

 

· Existing 4D modelling of earthwork activities lacks integration of the different 

productivity rates which may vary due to the unique characteristics of earthwork 

along a road section. As a result, the 4D models could not provide the progress 

profiles of earthwork at different rates of productivity. 

 

· The visualisation of scheduling information from the location aspects on a 

weekly basis is missing in the existing linear schedules of earthworks; therefore, 

construction managers are faced with difficulties when identifying information 

on the space or activities‟ conflicts, and on resource constraints in earthwork 

operations.  

 

· The literature review showed that the linear scheduling method is a valuable 

technique for planning and monitoring the progress of linear projects such as 

roads, pipelines and railways. It also helps in time-extension claims in case of 

variations in earthwork quantities at a particular location at the construction 

stage. 

 

· There are significant limitations around the traditional planning and scheduling 

techniques in terms of providing detailed and weekly information, on working 

locations, in earthwork operations, particularly in linear projects.  
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· The past research studies related to location-based planning show that the 

improved schedule overview, establishment of workflow and enhanced project 

control from location aspects are the three major constructive implications of 

location-based scheduling. 

 

8.2.2 Construction Industry Survey 

 

The second objective of this study was fulfilled by undertaking a construction industry 

survey. It was conducted to identify the existing practices, limitations and critical factors 

affecting the earthwork scheduling and visualisation of construction processes in linear 

projects.  

 

The survey was conducted with thirty construction companies that are mainly involved 

in linear construction projects such as roads, railways, pipelines and other civil 

engineering projects. The sample (construction companies) was randomly selected 

considering their expertise in past projects. The survey was conducted using semi-

structured questionnaires and interview techniques. The questionnaires were distributed 

through email, post and in person. Fifty construction companies were invited to 

participate in the survey and thirty responses (60%) were received.  

 

The following are the conclusions drawn from the industry survey: 

 

· It was found that mass haul diagrams and past experiences were commonly used 

in earthwork planning, despite the availability of commercial tools. This is 

mainly due to the complexity and cost associated with these tools.  

 

· The majority of the companies use weekly schedules for the execution and 

monitoring of earthwork activities; certain companies, however, were still using 

monthly schedules for execution and monitoring purposes.  
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· Most of the construction companies accepted that change orders, relocation of 

utilities and poor construction planning techniques are the major causes of 

project delays.  

 

· Productivity of construction machinery, selection of construction methods, soil 

characteristics and site access points are the key critical factors that affect the 

earthwork planning and construction operations.  

 

· Visualisation of earthwork progress profiles provides information on the 

construction sequences and space/location allocation. This also helps to 

effectively analyse space congestion, and assists in communicating the 

scheduling information amongst project stakeholders.  

 

The survey findings revealed that visualisation techniques are vital for making better 

decisions in resource planning for earthwork operations through the visual simulation of 

construction processes from location aspects.  

8.2.3 The prototype model of earthwork scheduling and visualisation 

 

A methodology was developed by outlining a framework of a prototype for earthwork 

scheduling and the visualisation of progress profiles. The findings from the survey and 

the literature were used in the development of the specification design of the prototype 

model. Specifications of the model were arranged into three components: inputs, process 

and outputs. The generation of location-based schedules of earthwork is a key 

functionality of the model. Other functionalities include earthwork progress profiles, 

location-based costing, and a space congestion plan for earthworks. The development 

methodology of algorithms, model specifications and the design of data flow diagrams 

of the model‟s functionality were explained and presented in Chapter 4. This meets the 

third objective of this study.  

 

According to the designed specifications, a computer-based prototype model was 

developed using MS Excel solver and creating VBA macros to achieve the economical 
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allocation of earthwork in a cut-fill assignment. The visualisation module was developed 

with the C# programming language to process the data and produce graphical outputs of 

the model. The detailed development processes of the model functionalities were 

discussed and presented in Chapter 5. This process satisfies the fourth objective of the 

study.  

 

The following conclusions are drawn from the prototype model of earthwork scheduling 

and the visualisation of scheduling information.  

8.2.3.1 Location-based scheduling (Time-location plan) 

 

· The model generates location-based schedules of earthworks and provides 

detailed daily or weekly locations information. 

 

· The model generates daily or weekly information on working locations and 

earthwork quantities in location-based schedules according to the provided 

productivity rates of earthwork activities. 

 

· The model is useful in visually analysing the earthwork scheduling 

information of resource allocation from the location viewpoints. 

 

· The sensitivity analysis of critical factors such as types of equipment, soil 

characteristics and site access points showed that these factors affect 

earthwork scheduling in resource planning from the location aspects. 

8.2.3.2 Space congestion plan 

 

· The space congestion plan identifies the congested locations, particularly at 

the early stage of earthwork operations, and provides an early indication of 

congested locations. Therefore, a suitable set of construction equipment could 

be mobilised at correct locations, and when necessary, to avoid the space 

congestion and inactive hours of heavy construction equipment. 
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· The model helps to analyse the impacts on space congestion by simulating 

different types of equipment and site access points by means of “what-if” 

scenarios.  

8.2.3.3 Location-based costing and cost S-curve 

 

· The model generates location-based cost profiles and S-curves. The cost 

profiles help to identify weekly cost requirements of earthworks throughout 

construction operations. 

 

· The cost S-curve helps to compare the planned and actual production cost of 

earthworks in road construction projects. 

8.2.4 Visualisation of earthwork progress profiles 

 

The second key functionality of the prototype model is the visualisation aspect of 

scheduling information from location viewpoints. This includes the visual representation 

of the weekly progress profiles, location-based scheduling, cost profiles and space 

congestion plans of earthworks in road construction projects. 

 

· The model automates the generation of the virtual surfaces of progress profiles 

and provides the visual information of construction sequences from the location 

viewpoints. 

 

· The model is useful in visualising the impact on earthwork scheduling and 

resource planning by rehearsing “what-if scenarios” with different factors 

associated with productivity, including soil characteristics, types of equipment, 

and working locations.  

 

· The model is a valuable tool in communicating the scheduling information of 

construction sequences, the resource allocation plans, and the proposed methods 
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for earthwork operations. It is also valuable in providing information to create a 

consensus amongst project stakeholders. 

8.2.5 Cut-fill optimisation of earthworks 

 

A cut-fill optimisation algorithm was adapted and used to calculate the optimum cut to 

fill, fill from borrow pits and cut to landfill, and quantities and direction of earthwork. 

The optimisation algorithm was designed by integrating a mass haul diagram, the unit 

cost of haulage and the Excel solver. In this context, a matrix table of cut-fill sections 

was first generated and then the optimisation algorithm was incorporated into the table, 

using a VBA macro, including the respective sectional quantities of earthwork in a road 

section. The table also incorporated borrow pits and landfill sites for borrowing the 

shortfall quantities and depositing the surplus quantities. The following conclusions are 

drawn from the cut-fill optimisation module: 

 

· The cut-fill optimisation helps project planners and construction managers to 

identify the optimal quantities and directions of movement in a cut-fill 

assignment of the earthwork component in a road construction project.  

 

· The cut-fill optimisation modules also integrated borrow pits and landfill sites to 

optimise the minimum earthwork haulage cost. 

 

8.2.6 Conclusions from the experiments with road projects 

 

The model functionalities were demonstrated with the design information of road 

projects, and experiments were run to evaluate the functionalities of the prototype 

model. A company-produced location-based plan was compared with a model-produced 

location-based plan of earthwork projects in Portugal. The details of the experiments 

and a demonstration of results were presented in Chapter 8. The construction industry 

reviews were conducted to evaluate the practical benefits of the model. A sensitivity 

analysis was carried out to test the effect of the earthwork schedule. This meets the sixth 

and final objective of the study. 
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The following conclusions are drawn from the experiments with the road projects: 

· Experiments were carried out at an earthwork construction site in Portugal. The 

results of the experiment found that the actual productivity was 2.34% lower 

than the model-simulated productivity value of earthworks. Hence, it is 

concluded that the model-generated location-based schedules are acceptable for 

use as a location-based scheduling tool in earthwork operations in road projects.   

 

· It can be concluded that the results of the experiment show that the developed 

location-based schedule is capable of generating daily or weekly locations of 

earthworks, whereas the existing time-location plans only provide the start and 

the end locations of a road section in earthwork operations. 

 

· The space congestion plan is valuable for decision-making in mobilising a 

suitable set of construction equipment and avoiding the equipment being idle. 

 

· The location-based costing and cost S-curve helps construction managers or cost 

planners to produce more accurately cash-flow diagrams on a weekly basis. 

 

· The cut-fill optimisation helps the project planners to optimise the earthwork 

quantities and identify the direction of movement between cut-fill sections, fill 

from borrows or cut to landfill sections, including associated costs.    

 

The following conclusions are drawn from the results of sensitivity analysis: 

· The results of sensitivity analysis in the case of site access points showed that a 

lower number of access points is more economical, and reduces the wastage of 

resources, to complete the same quantity of earthworks in comparison to a higher 

number of site access points for the same sections in road construction projects. 

 

· The results of sensitivity analysis in the case of different types of equipment 

revealed that higher productivity equipment is more economical by utilising less 

time and minimum resources to complete the same quantity of earthwork in 

comparison to lower productivity equipment. It is logical to plan for the higher 
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productivity equipment if the site conditions allow the mobilising of such 

equipment. Thus, the idle time of resources use could be reduced by selecting a 

suitable set of equipment and its associated crew. 

 

· The results of sensitivity analysis in the case of different soil characteristics 

confirmed that sand-clay soil at a cutting section requires the minimum time in 

comparison with sand, clay-dry and clay-wet, whereas clay-wet soil needs more 

time to complete the equal quantity of earthwork under similar site constraints in 

comparison to other soil characteristics. 

8.2.7 Conclusions from the model evaluation with road practitioners 

 

The following are the conclusions drawn from the road construction professionals 

during the demonstration and the evaluation processes of the developed prototype 

model:  

· The visual representation of location-based schedules and the visualisation of the 

scheduling information assist initial strategic decision-making in earthwork 

scheduling and equipment planning from the location aspects. 

 

· The model helps in communicating the scheduling information proposed by a 

construction company amongst project stakeholders at the tender stages, and it 

assists to show “the layman” about the construction sequences and the effects of 

what the construction process will look at various stages in earthwork operations. 

 

· The model is a useful tool in providing accuracy in establishing cut/fill balance 

points and in optimising the use of plant for earthworks in complex linear 

projects.  

 

· The model could be valuable in analysing the sensitivity of the factors associated 

with earthwork scheduling and the visualisation of resource plans from the 

location aspects using „what-if‟ scenarios, but these aspects of the model need 

further improvement.   
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· The model is valuable tool for a contractor that has a large fleet of construction 

plant and wishes to optimise the number and types of plant. The model is more 

suitable for earthwork operations in other parts of the world and the European 

market, where, earthworks mostly take place in a linear construction project.  

 

· The model is useful for the right projects, such as a large road project or Speed 2 

rail project, where time and cost can be saved by allocating the critical resources 

effectively at the required locations, and when necessary, along a linear project. 

 

· Training the staff and dependency on new technology are key barriers to 

implementing the proposed model in the earthwork construction site; however, 

the visualisation capability of the model would assist acceptance of the new 

technology, and help to break down the traditional reluctance of construction 

staff to accept new technologies. 

 

· The improved management of resource scheduling from the location aspect is 

one of the key benefits of the model. However, the model needs further 

improvement in order to be more useful at a construction site. 

8.3    Research Contributions  

 

The research contributions to knowledge and practice (theoretical and practical 

contributions) from this research study are summarised as follows: 

 

a) Theoretical contributions: 

· The development of a theoretical framework and specification for a prototype 

of earthwork scheduling by integrating road design data, sectional quantities, 

different productivity rates, algorithms, site access points, and location-based 

theory is considered as a key contribution. 

 

· The development of a prototype model constituted by a new methodology for 

the generation of location-based earthwork scheduling and visualisation of the 
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scheduling information from location aspects is the main contribution to 

knowledge.  

 

· The development of a unique algorithm by deriving a time dimension from the 

productivity data for the automatic generation of location-based schedules and 

the progress profiles of earthwork is also considered a key contribution. 

 

· The integration of variable productivity values with the model, and its 

capability to analyse the sensitivity of critical factors on earthwork scheduling 

and the visualisation of progress profiles, are further contributions to 

knowledge of the developments in earthworks modelling. 

 

b) The practical contributions are as follows: 

· The model is valuable in identifying the congested space at an early stage of 

earthwork construction and in optimising the suitable sets of construction 

plant according to the available space. 

 

· The model is beneficial in optimising earthwork quantities, and helps to 

identify the direction of earthwork movement between cut and fill sections, 

including borrow pits and landfill sites in road construction projects. 

 

· The model is capable of providing location-based costing information and a 

cost S-curve for monitoring cost performance, thereby developing a precise 

cash-flow plan for the earthworks.   

 

· The model is valuable in showing “the layman at site” the effect of what the 

construction would look like at various stages of the earthwork construction. 

Therefore, it is a good communication tool for visualising the construction 

processes of earthworks and for communicating the scheduling information 

among project stakeholders. 

 

· The location-based scheduling is also a valuable tool in claiming for time 

extensions, particularly in the case of variation in earthwork quantities, and in 
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predicting the conflict of work activities or space congestion at an early stage 

of the earthwork operation in linear construction projects. 

 

· The model‟s capability to improve the overview of location-based scheduling, 

to assist in resources planning and monitoring site progress more effectively 

from the location aspects, and to provide weekly information of locations in 

the earthwork operations, are the key practical contributions of the prototype 

model in the study.  

8.4 Scope and Limitations  

 

The scope of this research study is limited to new road projects, particularly for the 

earthwork operations in linear construction projects. The following limitations are 

noted: 

· The research study excluded rock excavation and only considered regular 

excavation, given that rock excavation is performed differently, and is 

considered a separate specialist activity, within earthwork operations.  

 

· The study included only typical cross-sections with a trapezoidal shape and 

regular side slopes, which are often used in road construction, particularly in 

terrain with flat and regular transverse slopes, but excluded steep terrain. The 

impact of weather is excluded in the location-based scheduling, but it can be 

considered by adding a few days when producing a construction schedule. 

 

· The sectional volume of earthwork was calculated using the “average end-area” 

method, and it is represented at the end-station between two stations along a road 

section. An enhancement of the research could, however, be made by adopting a 

new technique that could provide more accurate estimation of sectional volume.  

 

· The prototype model assumed that the minimum working length must be equal 

to the length of two times the station interval (this means the minimum length is 
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equal to 50m if interval is equal to 25m) for generating a time-location plan / 

location-based schedule of earthworks in road projects.  

 

· The prototype model, however, is flexible enough to generate a location-based 

earthwork scheduling from a 1.0km- up to a 7 km-length of road section between 

two cross-obstructions, such as rivers, bridges, tunnels and intersections. 

 

The study assumed that a road project divides into multiple sections, considering the 

cross-obstructions such as intersections, bridges and rail crossings, and that each section 

in the road project is considered as a separate working section for generating location-

based scheduling of earthworks. The prototype model, however, requires further 

development to extend its capability and application to other linear projects such as 

pipe-laying projects, irrigation and navigation channels, and railway projects. The next 

section highlights the possible recommendations for future research studies.  

8.5 Recommendations for Future Research 

 

The research could be further extended to include other road tasks for generating 

location-based scheduling and visualisation of a construction process. The model could 

be used in different linear projects, such as oil and gas pipeline projects, irrigation canals 

and navigation channels, for generating a time-location plan and helps to visualise the 

scheduling information from the location aspects. It is recommended that the developed 

prototype model can be further advanced in the following areas: 

 

· The model can be improved by integrating other road activities such as sub-base 

and base work, pavements, side drains, road marking, road furniture and lighting, 

culverts and bridge construction. This will help to advance the functionality of 

the model, particularly in identifying the conflicting work activities and in 

controlling site progress more effectively from the location aspects. 

 

· There is room for integration of different road cross-sections, particularly 

available in hilly roads, like box cut, partial cut and fill. Since hilly roads have 
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distinctive cross-sections, there is a need to investigate a new technique to 

analyse the progress profiles and to visualise the scheduling information of 

construction processes in the steep-terrain conditions. 

 

· The optimisation module can be advanced by considering the environmental 

factors, including CO2 emission, in addition to the haulage unit cost for a cut-fill 

assignment. Since the environmental issues are becoming highly sensitive, the 

optimisation algorithm could provide better allocation of earthworks, 

considering different factors associated with the environment in road 

construction projects. 

 

· There may be a possibility of integrating the model with UC-win/Road software 

to produce a real-time visual simulation for analysing the progress and space 

congestion of road activities from location aspects. This will provide a real-time 

visual model for the stakeholders and general public. 

 

8.6   Summary 

 

Finally, it was concluded that the prototype model is capable of automatically 

generating location-based schedules and visually analysing the scheduling information 

of earthworks from the location viewpoints.  Road construction professionals agreed that 

the developed model is valuable in resource planning at the required locations, and when 

necessary, throughout the earthwork operations, particularly in linear projects. The 

model is also useful in communicating the earthwork scheduling information amongst 

project stakeholders, allowing for the sensitivity analysis of critical factors associated 

with the productivity rates. Consequently, the model works as a logical decision-making 

tool in producing location-based schedules and resource planning for earthworks in a 

lean and effective manner, which, in turn, improves the site productivity, scheduling 

overview, workflow establishment, and control of site progress, and reduces the 

production time and costs of earthwork operations in road construction projects. 
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Appendix- B 
 

A Sample of Questionnaire 

 
 

The purpose of this questionnaire is to identify the techniques and methodologies 

currently being used for planning and executing infrastructure projects. The content of 

the questionnaire will include construction planning and scheduling techniques, 

available software, existing construction methods for earthmoving operations, critical 

factors that affect productivity and other influencing factors. The availability of this 

information will help the researcher to uncover the issues involved to aid the 

development of a new software model intended to help project managers/planners to 

produce effective plans to improve the productivity and profitability of such 

construction projects. 

 

This survey is being conducted as part of a research project at the University of Teesside 

and it is intended to identify current practices and problems for earthwork planning in 

the construction industries and ways to improve them through the utilisation of 

advanced visual planning techniques. Thank you in anticipation of your contribution 

towards this research project and you can be assured that your response will be treated 

in the strictest of confidence. 

 

A. General Questions: 

1. What is your principle type of infrastructure construction work? 

 Road/Highway     

 Railways         

 Tunnelling      

 Pipeline      

 Others please specify…………… 

2. What is the value of projects you are involved in? 

 Under £ 10 million      

 £10-25 million      
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 £ 26- 50 million     

 Over £ 50 million     

B. Tender/Bidding Stage: 

 

3. What is your company policy for developing the construction schedule? 

a. Develop schedule only when required by contract  

b. Develop schedule for all projects of the company   

c. Develop schedule only for some of the project  

d. Others: 

4. What is the basis for the development of a construction schedule? 

a. Project cost       

b. Project Duration      

c. Complexity of job      

d. A+B contracts       

e. Other, please specify……………….. 

5. How do you develop construction schedules for your company? 

a. One planner does the entire schedule.     

b. Two or more planners are responsible for developing schedule.  

c. Does your company use a consultant to develop the schedule?  

d. Other, please specify…………………… 

 

6. How many of your projects finish late? --------------% of total 

 

7. Of those late projects, how many are late due to a schedule problem? ----% (of 

late projects) 

 

8. What are the typical problems that cause delays in your construction projects? 

 

a. Poor construction planning     

b. Relation of utilities      



 

216 

 

c. Contractors equipment     

d. Other, please specify…………….. 

 

 

C. Detail Construction Planning and Scheduling Stage: 

 

Please tick mark the following question according to their options: 

A  = Always 

B  = Sometimes 

C  = As and when Necessary 

D  = Control Impaired as a 

Result 

NE  = No Experience 

 

9. What planning and scheduling methods are used in linear construction projects? 

 

10. What are the existing practices and techniques used during the development of 

detailed construction schedules in your company? 

 

 

 

11. What is the planning and scheduling software currently used in your company? 

 

 

  A B C D NE 

a. Bar Chart      

b. Critical path method (CPM)       

c. Time-Location Chart        

d. Hand Drawn on paper        

e. Other, please specify   

  A B C D NE 

a. Past experience       

b. Intuitive method      

c. Decision on site: thumb rule/random      

d. Other, please specify   

  A B C D NE 

a. Power Project      

b. MS Project      

c. Primavera (P3)      

d. Sure Track      

e. Linear schedule method (TILOS)      

f. Other, please specify   
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12. How often do you update construction schedules? 

 

 

 

13. What are the techniques used in earthwork planning? 

 

14. At what stage, visualisation techniques such as (3D CAD + time) or virtual 

reality (VR) simulation for planning of construction process will be beneficial? 

 

15. Please rank the following question in order of priority (1-5,  1 less important and 

5 most important) 

 

a. How much are the following factors critical for earthwork planning in 

projects?  

 Number  of site access points     

 Soil characteristics      

 Method of construction     

 Type of equipment availability    

 Location of borrow pit/dump site    

 Conditions of access roads       

 Haulage distance      

  A B C D NE 

a. Weekly      

b. Bi-Weekly      

c. Monthly      

e. Other, please specify :  

  A B C D NE 

a. Mass haul diagram      

b. What If – Scenarios:      

c. Decision on site by experience      

d. Commercial software like:  DynaRoad /Inroad      

e. Other, please specify   

  A B C D NE 

a. Tender/bidding stage      

b. Detail planning stage      

c. At site operation level      

d.           Other, please specify   
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D. Practical Importance of a Visual schedule in Construction:  

 

16. Please rank the following questions in order of priority (1-5, 5 most important, 1 

less important):  

In your opinion, how will the availability of visualisation techniques (such as 

automatic generation of road profile + time) rank in importance towards 

improving performance in relation to the following factors? 

 

 Improve communication among stakeholder at site level   

 Prior information of construction sequences     

 To identify crew/equipment interface      

 To assist for updating the schedules      

 To reduce the waiting time for resources     

 

17.  What do you recommend to improve the current process of scheduling projects?  

 

 

18. Linear scheduling is a location-based method of scheduling driven by production 

rate. Do you feel that a linear scheduling method would be useful to your 

company? 

Please rank. (1= not useful and 5 very useful)   1, 2, 3, 4, 5 

 

 

19.  Please provide additional comments regarding the application and importance of 

visual scheduling in linear construction projects. 

 

Thank you 

Return address: r.k.shah@tees.ac.uk 

Centre for Construction Innovation and Research (CCIR) / School of Science and 

Technology, University of Teesside, Tees Valley,  

Middlesbrough, UK, TS1 3BA 
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Appendix- C 

Derivation of a mathematical equation  

 

In road construction projects, typical cross-sections are similar to the ones depicted in 

figures C-1 and C-2 and have been considered for the derivation of a mathematical 

equation to calculate the weekly progress height of earthwork activity between 

intermediate stages during the construction processes. Other typical sections, which are 

rarely seen in real practice, have not been included in this research study. The 

assumptions made for the development of mathematical equation for two cases (a) and 

(b) are explained below. 

 

Case (a) typical road cross-section in flat terrain 

 

Figure c-1 shows a typical road cross-section, which is used regularly in road projects 

built on a flat terrain. This was selected to derive a mathematical equation for the 

calculation of earthwork progress height on a weekly or daily basis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1: Typical road cross-section for cutting and filling in flat terrain 
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During the derivation of a mathematical equation, the following assumptions were 

made:  

· Typical cross-section for equation derivation was assumed as being a trapezoidal 

shape having side slope S: 1. 

· Ai  = Cross-sectional area of trapezoidal at section i. =          
   

· i  = Number of section varies from (i = 1……..n) along the road.  

· S  = Side slope 

· B = Design width of road  

· h  = Height between existing ground level and design level at a road section. 

· Vi  = Volume of earthwork for cut/fill activities at section i   

· L = Length between two sections. 

 

    
  

 
 

 

    
       

  

 
               (1) 

 

After deriving equation 1 as a quadratic equation, the equation for calculation of the 

progress height of the typical cross-section (hi) was established as shown in equation 2. 

It is used to calculate earthwork progress height at each construction layer. 

 

   
                

      
   

  
             (2) 

 

Case (b) typical road cross-section with transverse slope 

 

Another typical road cross-section, most commonly found in uneven terrain surfaces 

with a transverse slope, is shown in Figure C-2, and was used to derive the mathematical 

equation for height calculation along the road section. 
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The equations 4 and 5, which are found after the derivation of a quadratic equation for 

sectional volume of the typical section shown in Figure C-2 for the calculation of 

sectional area (Ai) and height of the section (hi), are shown below: 

     
  

 
        (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-2 typical road cross-sections of cutting and filling in slope terrain.  

 

   
                

       
        (4) 

 

Equation 5 can be obtained by equating equation 3 and 4, as shown below: 

 

  

 
 

                

       
       (5) 
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After simplifying the above equation 5 as a quadratic equation for the calculation of 

height (hi) in term of geometrical parameters including b, N, S and Vi, Equation 6 can be 

obtained, which is presented below.  

 

       
 

 
      

 

  
    

   

 
        

  

        (6) 

 

Whereas: 

· hi = Height of cross-section at section i 

· i = Number of section varies from (i = 1, 2, 3, …….., n) along the road 

· N = Transverse slope of existing ground Horizontal: Vertical (N: 1) 

· S = Side slope of cross-section Horizontal: Vertical (S: 1) 

· b = Half width of road section. 

· Vi = Sectional volume of cut/fill  activity at cross-section i 

· Ai =  Sectional area of cut/fill activity at cross-section i 

· L = Length between two sections. 

 

An example for the calculation of the height defined as the z-coordinate is illustrated 

below for a road project that was completed recently in Portugal.  

 

Illustration of derived mathematical equation 

 

Data for illustration is selected from lot no 3 of a road project in Portugal.  

Assuming at a cross-section (i) is selected between chainage 0+025 ~ 0+050,  

Volume (Vi) = - 2834.70 m3 (  ) sign shows the cutting and filling volume 

Side slopes S: 1 = 1.5:1 

Width of road (B) = 26.1 m 

Chainage interval (L) = 25 m 
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Using equation 2 shown above: 

 

Height       
                

      
   

  
 

 

In the above equation, only a positive sign is considered for the feasible value in this 

case. 

 hi = 

 

5.1*2

25

70.2834*5.1*4
1.261.26

2


 

hi = -8.39 

 

Here, the negative value of height shows the height of the filling section and the positive 

value shows the cutting section. The following section describes the data generation 

process for the prototype model. 
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Appendix-D 

 

Earthwork Optimisation 

 
Introduction 

 

This appendix presents the earthwork optimisation module (a component) of the 

prototype model. The optimisation of the allocation of earthwork quantities and haulage 

costs between cut and fill sections, fill from borrow pits or from cut to landfill sites is 

explained. The appendix explains the development processes involved in the cut-fill 

optimisation algorithm of the earthwork component in a road or railway project. The 

detailed processes for the development of a cut-fill optimisation algorithm are presented 

in the following sections. 

 

Background to earthwork optimisation 

 

At the planning stage of an earthwork component, basic managerial questions arise, for 

example: “how much earth should be moved from where to where?”, and “how the 

resource should be utilised more efficiently?” (Akay, 2004; Son et al, 2005). 

Construction managers and project planners require a systematic approach and 

innovative tools to address these issues. The industry survey revealed that construction 

practitioners commonly rely on heuristic knowledge, based on past experience, and less 

on a systematic approach. This appendix presents a new approach for solving the 

earthwork allocation problem. The approach is developed by integrating existing 

techniques: a mass haul diagram, a unit cost identified “RoadSim” simulator, and an 

Excel solver. 

 

This section concentrates on the concepts and processes required for the development of 

the earthwork optimisation module. The objective of the module is to simplify the 

calculation of optimal haulage quantities, identify the movement direction, and state the 

minimisation of the total costs of the cut-fill assignments. Previous and existing research 

studies utilised many optimisation techniques in the earthwork planning for the cut-fill 

assignment; however, the determination of the suitability of any single optimisation 
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technique remains a complex task. Since earthwork allocation problems largely depend 

on haulage distance and the associated costs of transportation between cut and fill 

sections, this problem can be considered as a linear problem. Therefore, a linear 

programming (LP) optimisation technique was selected as a suitable methodology for 

solving the problems involved.  

 

Previous studies in earthwork optimisation  

 

A number of research studies have been conducted into solving the earthwork allocation 

problems of cut-fill assignments using LP optimisation technique. For example, Stark 

and Nicholls (1972) applied the LP technique to the allocation of earthwork between cut 

and fill sections in linear construction projects. Further studies were conducted into 

advancing the LP by several researchers including Mayer and Stark (1981), 

Nandgaonkar (1981), Essa (1987 and 1988), Alkass (1988), Jayawardane and Harris 

(1990), Akay (2004) and Son et al (2005), who considered different aspects for a cut-fill 

assignment of earthworks. The different aspects of earthwork optimisation methods 

which have been analysed by past researchers were discussed in Chapter 2.  

 

Moreover, Yang et al (2010) developed a mathematical model to optimise a cut-fill 

assignment and division of a large road project into smaller sections for the construction 

phase. They have used LP to optimise allocation quantities and presented the results in a 

matrix table. The above studies revealed that the LP can provide an optimal solution for 

the allocation of earthwork quantities associated with a cut-fill assignment and that it 

also assists in determining the corresponding amount of earth mass to be hauled. They 

also highlighted that the LP is a useful method for identifying the optimum allocation of 

earthwork quantities by minimising the earthwork haulage cost. Taking into account the 

above points, LP is considered an appropriate optimisation technique to provide the 

necessary solution for a cut-fill assignment in earthwork operations. The next section 

discusses the concept and development of an algorithm for earthwork optimisation for 

the solution of cut-fill assignments in road projects. 
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Development of earthwork optimisation  

 

This section describes the development of an algorithm for earthwork optimisation 

aimed at resolving the problem of earthwork allocation between cut and fill sections 

along a road section. The optimisation module was designed by integrating the mass 

haul diagram, “RoadSim” simulator, and Excel solver which is built within MS Excel 

using a Simplex algorithm. The data flow diagram of cut-fill algorithm has been used 

for understanding the earthwork optimisation process (see figure D-1).  

 

 

Figure D-1 Data flow diagram of cut-fill algorithm for earthwork optimisation 

 

The inputs of the optimisation module – sectional quantities with the working length of 

cut and fill operations, and the unit cost table of earthworks – were generated within the 

model, and processed to obtain the optimised quantities of earthworks. A list of cut and 

fill sections with corresponding quantities was identified first and represented in a table 

(see Figure D-1). 

 

Excel solver was utilised to optimise the quantities of earthwork allocation for a cut-fill 

assignment. The solver which is a built-in function of MS Excel based on a Simplex 

algorithm is widely used for solving linear optimisation problems. The unit cost of the 

earthwork movement is used as a decision coefficient and haulage quantities are 

Process

Unit cost table 
(Roadsim simulator)

Optimised 
earthwork quantities 

and direction in a 
cut-fill assignment

Excel Solver 
(LP model)

Sectional earthwork 

quantities and working 

lengths of cut/fill

Cost of earthwork allocation ($ per m3)         

  Destinations       

  Fill-1 Fill-2 Fill-3 Fill-4 Fill-5 Land- Fill 

Cut1 0.50  0.60  0.70  0.80  0.85  3.00  

Cut2 0.60  0.50  0.65  0.75  0.80  3.05  

Cut3 0.70  0.60  0.50  0.70  0.75  3.10  

Cut4 0.80  0.65  0.60  0.62  0.60  3.15  

Borw-1 5.20  5.15  5.10  5.05  5.30  3.30  

Borw-2 7.10  7.50  7.50  7.50  7.50  3.40  
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considered as decision variables in the LP model. The minimisation of the earthwork 

haulage cost is the objective function of the LP model. The unit cost of the earthwork 

allocation was calculated using the “RoadSim” simulator developed by Dawood and 

Castro (2009). The unit cost of the earthworks was determined by considering the types 

and horsepower of the construction equipment used for haulage operations, site working 

conditions, haulage distance and soil characteristics, along a road section. 

 

In the optimisation module, a new algorithm was designed to automatically generate a 

matrix table as shown in Table D-1. The table represents the number of cuts, fills, 

borrows and landfills available in a road section with the respective quantities of each 

cut-fill section. The numbers of cut and fill sections with the respective working length 

of each section was identified first. Then, a table of the unit cost of earthwork allocation 

was developed for cut-fill assignments (see Table D-2). 

 

The matrix table produced by the algorithm provides the information on optimum 

allocated quantities and direction of movement of earthworks in cut-fill assignments. 

The algorithm also determines the additional earthwork quantities needed to be 

borrowed from other sources or deposited at landfill sites (see Table D-1). The next 

section discusses the development of an algorithm for producing a matrix table for a cut-

fill assignment in road projects. 

 

Generation of a matrix table of cut-fill assignment  

 
The objective of the algorithm is to generate a cut-fill matrix table including the 

information on borrows and landfills (see Table D-1). To develop the algorithm, the 

following assumptions were made. 

 

A typical road section which shows cut and fill sections, two borrow pits and a landfill 

site was selected to formulate a cut-fill optimisation module (see Figure D-2).  
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Borrow pit - 1 

Landfill site - 1 

Borrow pit - 2 

Fill - 1 Fill - 2 

Cut - 1 Cut - 2 

 

 

 

 

 

 

 

 

 
 

 

Figure D-2 Typical road section including cut-fill, borrow and landfill sections. 

 

Referring to Figure D-2 above, it is assumed that the quantities of earth to be moved to 

fill sections (Fi) or deposited at a landfill section (K) from cut sections (Cj) are denoted 

by X (i, j) and XLF (j) respectively. It is also assumed that the earthwork quantities to be 

moved from borrow pits (Bp) to fill sections (Fi) are denoted by XB (p, i), whereas (Xij), 

XB (p, i) and XLF (j) represent the decision variables of a linear optimisation equation for 

earthwork allocation (see Table D-1). The matrix table in a cut-fill assignment identifies 

the direction of earthwork movement between cut and fill sections more clearly with 

possible optimised quantities.  

 

Moreover, it is assumed that the unit cost of haulage from a cut section (j) to a fill 

section (i) is given by C (i, j), and from a cut section (j) to a landfill section (k) is given 

by CLF (k, j). Similarly, the unit cost of haulage for a unit quantity of earthwork from a 

borrow pit (p) to fill sections (Fi) is given by CB (p, i). The unit cost between different 

possible cut and fill sections was determined using the “RoadSim” simulator and it was 

considered as a decision coefficient in the optimisation equation.  
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Table D-1 shows earthwork quantities allocation between cut-fill sections 

Matrix table of cut and fill sections including borrows and landfills 

Sources\Destinations  Fill-1 (F1)  Fill-2 (F2)  -   Fill-i (Fi) Land Fill (LF) Total (Qty) 

Cut1 (C1) X11 X12 - - XLF1 XC1 

Cut2 (C2) X21 X22 - - XLF2 XC2 

- - - - - - - 

- - - - - - - 

Cut-J (Cj) - - - - XLFk - 

Borw-1 (B1) XB11 XB21 - -  - 

Borw-2 (B2) XB21 XB22 - -  - 

Total Quantity XF1 XF2 XF3 - -  

 

 

Derivation of a linear optimisation equation  

 

A mathematical equation of an objective function was developed for a road section 

showing two cutting and two filling sections in addition to two borrow pits and a landfill 

site as shown in Figure D-2. Following are the key assumptions made for the derivation.  

 

Total volume of the cutting sections = XFi; where i = 1, 2, 3, ………, n 

Total volume of the filling sections = XCj; where j = 1, 2, 3, ………, n 

 

Similarly, for borrow pits and landfill having capacity of Bp and LFk: 

 

Total borrow pits volume  = Bp; whereas B = 1, 2, 3, ………, n 

Total landfill volume  = LFk; whereas LF = 1, 2, 3, ……, n 

 

The objective function that minimises the total cost of embankment, excavation and haul 

is formulated as below:  

 

Z = ∑i ∑j C (i, j) X (i, j) + ∑i ∑k CLF (k, i) XLF (k) + ∑p ∑j CB (p, j) Xb (p, j)  (1) 

 

The decision variables are X (i, j), XLF (i, k), and XB (p, j) which are subjected to 

following five constraints: 
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1) Total quantities moved from cut sections to fill sections and landfill sites should 

be equal to total quantity available at cut section i, is Ti 

∑j X (i, j) + ∑k  Xd (i, k) = Ti;  where i = 1, 2, 3, ……, Nc     (2) 

 

2) Total quantities moved from cut sections and borrow pits to fill sections should 

be equal to total quantity available at fill section j, is equal to Fj and Sij is 

denoted for swelling factors of excavated quantities of cut and borrow pits. 

∑j  Sij X (i, j) + ∑j  Spj Xb (p, j) = Fj;  where j = 1, 2, 3, ……, Nf   (3) 

 

3) Total quantities moved to landfill k from all cut sections should be equal to or 

less than the landfill capacity Dk 

∑k  SikXd (i, k) ≤ Dk; where k = 1, 2, 3, ……, Nd     (4) 

 

4) Total quantities moved from all borrow pits p to all fill sections should be equal 

to or less than the borrow pits capacity Bp, 

∑j Xb (p, j) ≤ Bp; p = 1, 2, 3, ……, Nb      (5) 

 

5) Total quantities used from borrow pit p, xp, should be equal to the sum of the 

quantities moved from these borrow pits to all fill sections, 

Xp = ∑j Xb (p, j)        (6) 

 

6)  Non-negativity restrictions  

X (i, j), Xd (i, k), Xb (p, j) and Xp >= 0      (7) 

 

The unit cost of earthwork is a function of equipment productivity, haulage distance, 

working conditions and soil characteristics, which are the key factors that affect 

earthworks productivity and the unit cost of haulage throughout a road construction. The 

unit cost was calculated using the productivity and unit cost simulator of the 

“RoadSim”. The hourly cost of all types of construction equipment was calculated 

considering a life cycle cost, and stored in the “RoadSim” database (Castro, 2005). The 

unit cost of the earthwork was calculated by multiplying the unit hour cost of equipment 
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with the total time required for earthworks of a selected section using the productivity 

model of the simulator. The typical unit cost table is shown in Table D-2. 

 

Table D-2 shows the unit cost of earthworks between cut-fill sections 

 

Unit Cost of Earthworks ( per  m3) 

   Fill-1 (F1)  Fill-2 (F2)  -   Fill-i (Fi) Land Fill (k) 

Cut1 (C1) C11  C21  - Ci1 CLF1  

Cut2 (C2) C12  C22  - -  CLF2  

- - -  - -  -  

Cut-J (Cj) C1j C2j - Cij CLFk 

Borw-1 (B1) CB11  CB12 - CB1i  

Borw-2 (B2) CB21  CB22  - CB2i  

 

 

The algorithm was developed using VBA programming. The VBA was used to integrate 

Excel solver with the automatically generated cut/fill matrix table and a unit cost table. 

The total cost of the earthwork produced by the module includes the haulage cost of the 

cut to fill section, the cost of borrow quantities to fill sections, and any extra quantities 

needed to deposit in a landfill site from cut sections. The algorithm produces a matrix 

table that shows the optimised quantities of cut-fill sections using the unit cost data 

shown in Tables D-1 and D-2. The algorithm was integrated within the Excel solver. 

The algorithm determines the minimum earthwork cost using equation 1 above. The 

equation uses the optimum quantities shown in Table D-1 and the unit cost data shown 

in Table D-2 to calculate the minimum cost of earthwork in a cut-fill assignment.  

 

The optimisation module outputs, i.e. optimum quantities and the movement direction, 

are represented in a matrix table of a road section. The table provides information on the 

movement of the earthwork quantities from one cut section to another fill section, 

borrow to fill, or cut to landfill. The impact on the earthwork cost was analysed by 

changing the direction of the haul of earthwork between the cut and fill sections in a cut-

fill assignment. The next section demonstrates the functionality of the optimisation 

module. 
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Demonstration for earthwork optimisation function 

 

A typical road section with a number of cut and fill sections was selected from a road 

project to demonstrate the optimisation functionality. The road section includes 4- cuts 

and 5-fill sections as shown in Figure D-3. 

 

 
Figure D-3 Typical road profile including 4- cut and 5 -fill sections 

 

A mass haul diagram corresponding to the selected road section was developed (see 

Figure D-4). An access point algorithm was also developed using the mass haul diagram 

characteristics to identify the numbers of cut and fill sections of a selected road section 

with corresponding economical working length and respective earthworks quantities of 

each cut-fill sections (see Chapter 5).  

 

 
 Figure D-4 Snapshot of a mass haul diagram generated by the model 

 

The access point algorithm identified the station number with access points, working 

length and the volumes of each cut and fill section as shown in Figure D-5. A snapshot 

Cut-1 Cut-2 Cut-3 Cut-4 

Fill-1 Fill-3 Fill-4 Fill-5 Fill-2 
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of the interface of the optimisation module is also shown in Figure D-5. The module 

demonstrates the optimisation function of the prototype model for cut-fill assignments. 

 

  

Figure D-5 Snapshot of interface with optimisation and access point module  

 

The unit cost coefficient is a function of the equipment type, haulage distance, soil 

characteristics and working conditions. An average haulage distance of cut-fill sections 

of a road section (Figure D-3) was selected for the calculation of the unit cost of the 

earthworks. Option 2 of the “RoadSim” productivity module (Motor-scraper –

cut/hauling) operation was selected for the movement of earthwork in the selected road 

section (see Figure D-6).  

Optimisation module 

Access points module 

List of access 

points/length and 

quantities of cut/fills  

Obstructions points 

Soil profiles 

from site 
investigation 
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Figure D-6 Snapshot of productivity and cost calculation sub-module (Castro, 2005) 

 

The average haulage distance between the cut and fill sections, or the fill from borrows 

or cut to landfill sites, was considered. Other variables were assumed constant for a road 

section. The unit cost of the earthwork for each cut-fill section was calculated using a 

unit cost sub-module of the “RoadSim” simulator. The calculated unit cost is listed and 

presented in Table 5.3.  

 

Table 5.3 Unit cost table for the earthworks allocation of a road section  

Unit Cost of Earthworks ( £ per m3)         

  Destinations       

  Fill-1 Fill-2        Fill-3        Fill-4     Fill-5 Land- Fill 

Cut1 0.82  0.81  2.19  3.19  4.00  4.00  

Cut2 2.38  0.75  0.88  1.63  2.44  4.05  

Cut3 3.63  2.00  0.63  0.38  1.19  4.10  

Cut4 6.06  4.44  3.06  2.06  1.25  4.15  

Borw-1 7.10  7.40  7.50  7.60  7.90    

Borw-2 9.10  9.50  9.60  9.80  9.90    

 

 

The algorithm produced a matrix table (see Table D-4) as the output of the optimisation 

module. This provides information on the optimised quantities and movement direction 

of earthwork between cut-fill sections, fill from borrow or cut to landfills, if required 

(see Table D-4 below). 
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Table D-4 Shows optimum earthwork quantities and direction of allocation  

Number of cut and fill sections including borrows and landfills 

   Fill-1   Fill-2   Fill-3   Fill-4   Fill-5  Land Fill  Total Qty Available Qty 

Cut1 - 8,414 - - - - 8,414 8,414 

Cut2 - 5,320 - - - - 5,320 5,320 

Cut3 - - - 3,590 - - 3,590 3,590 

Cut4 - - - - 16,542 - 16,542 16,542 

Borw-1 35,278 2,744 10,968 11,130 4,048 - 64,168 64,168 

Borw-2 - - - - - - 0 0 

Total Qty 35,278 16,478 10,968 14,720 20,590 0   

Required 

Qty 
35,278 16,478 10,968 14,720 20,590 0   

Total cost  

Earthworks 

      

502,454.79             

 

The output of the earthwork optimisation module is shown a tabular form (see Table D-

4). A graphical representation of the tabular information is developed and presented in 

Figure D-7 below. 

  

Figure D-7: Visual view of earthworks quantities and direction of allocation 

 

Figure D-7 provides the visual information of earthwork allocation quantities and the 

direction of allocation for a cut-fill assignment. The optimisation result provides two 

key pieces of earthwork planning information in a cut-fill assignment of a road section: 

 

· Optimised quantities of earthworks 

· Movement directions between cut-fill sections   

 

   3590 8441
4 

5320   16542 

   11130 
 10968 4048    35278 2744 

  Borrow 
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The visual representation of the earthwork allocation quantities and directions between 

cut-fill sections is a key output of the optimisation module. This is expected to assist 

construction managers in resource planning and in optimising the selection of a suitable 

set of equipment for earthwork operations. The output is also expected to aid the 

mobilisation of heavy construction equipment and exact quantities of materials at a 

required location, and, when necessary, throughout earthwork operations. The next 

section discusses the sensitivity reports produced by the earthwork optimisation module. 

 

Sensitivity reports generated by the earthwork optimisation  

 

The earthwork optimisation module also produces a sensitivity report. This report 

provides the information relating to a unit cost coefficient that can be reduced, without 

affecting the cost of the earthwork allocation in a cut-fill assignment. Cost reduction 

information on each option of cut-fill, borrow to fill, or cut to landfill section is provided 

by the sensitivity report. The report also provides the maximum allowable increase or 

decrease of unit cost between all possible cut-fill sections (see Table D-5). The 

optimisation module produces a constraint table showing the maximum limit of 

quantities for the cutting and filling sections (see Table D-6 below).  

 

Table D-5 Sensitivity report of unit cost reduction for a cut-fill assignment 

  Final Reduced Objective Allowable Allowable 

Name Value Cost Coefficient Increase Decrease 

Cut1 Fill-1             -           0.30  0.82 1E+30 0.3025 

Cut1 Fill-2    8,414.41            -    0.81 0.3025 1E+30 

Cut1 Fill-3             -           1.27  2.19 1E+30 1.275 

Cut1 Fill-4             -           2.17  3.19 1E+30 2.175 

Cut1 Fill-5             -           2.69  4.00 1E+30 2.688 

Cut1 Land Fill             -         10.59  4.00 1E+30 10.588 

Cut2 Fill-1             -           1.93  2.38 1E+30 1.925 

Cut2 Fill-2    5,320.15            -    0.75 0.025 1E+30 

Cut2 Fill-3             -           0.03  0.88 1E+30 0.025 

Cut2 Fill-4             -           0.67  1.62 1E+30 0.675 

Cut2 Fill-5             -           1.19  2.44 1E+30 1.188 

Cut2 Land Fill             -         10.70  4.05 1E+30 10.700 

Cut3 Fill-1             -           3.75  3.63 1E+30 3.750 

Cut3 Fill-2             -           1.83  2.00 1E+30 1.825 

Cut3 Fill-3             -           0.35  0.62 1E+30 0.3500 

Cut3 Fill-4    3,589.97            -    0.38 0.350 1E+30 



 

237 

 

Cut3 Fill-5             -           0.51  1.19 1E+30 0.512 

Cut3 Land Fill             -         11.33  4.10 1E+30 11.325 

Cut4 Fill-1             -           5.61  6.06 1E+30 5.613 

Cut4 Fill-2             -           3.69  4.44 1E+30 3.687 

Cut4 Fill-3             -           2.21  3.06 1E+30 2.213 

Cut4 Fill-4             -           1.11  2.06 1E+30 1.113 

Cut4 Fill-5  16,542.11            -    1.25 1.1125 1E+30 

Cut4 Land Fill             -         10.80  4.15 1E+30 10.8000 

Borw-1 Fill-1  35,278.18            -    7.10 0.302 1E+30 

Borw-1 Fill-2    2,743.74            -    7.40 1.825 0.02500 

Borw-1 Fill-3  10,967.81            -    7.50 0.025 1E+30 

Borw-1 Fill-4  11,130.17            -    7.60 0.675 0.3500 

Borw-1 Fill-5    4,047.77            -    7.90 0.512 1.1125 

Borw-1 Land 

Fill             -              -    0.00 10.588 0 

Borw-2 Fill-1             -           2.00  9.10 1E+30 2.000 

Borw-2 Fill-2             -           2.10  9.50 1E+30 2.100 

Borw-2 Fill-3             -           2.10  9.60 1E+30 2.100 

Borw-2 Fill-4             -           2.20  9.80 1E+30 2.200 

Borw-2 Fill-5             -           2.00  9.90 1E+30 2.000 

 

 

 
Table D-6 Shows the quantities of cut and fill sections with available constraints.  

  Final Shadow Constraint Allowable Allowable 

Name Value Price R.H. Side Increase Decrease 

Total Fill-1 35,278 7.10 35278.18 0 35278.18 

Total Fill-2 16,478 7.40 16478.30 0 2743.74 

Total Fill-3 10,968 7.50 10967.81 0 10967.81 

Total Fill-4 14,720 7.60 14720.14 0 11130.17 

Total Fill-5 20,590 7.90 20589.88 0 4047.77 

Total Land Fill 0 0.00 0.00 0 0 

Cut1 Total 8,414 -6.59 8414.41 2743.74 0 

Cut2 Total 5,320 -6.65 5320.15 2743.74 0 

Cut3 Total 3,590 -7.22 3589.97 11130.17 0 

Cut4 Total 16,542 -6.65 16542.11 4047.77 0 

Borw-1 Total 64,168 0.00 64167.68 1E+30 0 

Borw-2 Total 0 0 0 0 0 
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Appendix- E 

Snapshot of Earthwork Operations and Site visits 

 

Following are a few examples of typical earthwork operations with heavy construction 

equipment; see Figures E-1, E-2, E-3 and E-4 below. 

 

 
 

Figure E-1: Bulldozer excavating and spreading earthwork 

 

 
 

Figure E-2: Compacting roller 
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Figure E-3: Earthwork backfilling, loading and compacting operations 

  

 
 

Figure E-4: Earthwork excavation and loading operation 
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Figure E-5: Earthwork compaction on shoulder of bypass road in Middlesbrough 

 

 

 
 

Figure E-6: Site visit of earthwork construction for a bypass road in Middlesbrough 
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 Appendix- F 

Evaluation Questionnaire Form 

 
 (Response: 1) 

This evaluation questionnaire form has been designed to assist in the evaluation of 

prototype model functionality, including the time-location plan and space congestion 

plan. Open questions have been used to collect general opinions and views from 

construction professionals regarding the prototype functions. Please give your views 

wherever possible. 

Evaluator Details 

What is your name?  Hayden Green 

What is your work position? Project Manager, Balfour Beatty Civil Engineering Ltd. 

Briefly, what are your professional responsibilities?  Control and planning of construction 

projects (Roads: £3-15 million) 

A. Benefits of earthwork modelling, time-location plan and space congestion in 

earthwork planning and simulation 

1) What do you think of the overall prototype model and time-location plan as a strategic 

decision support planning system? 

 

The prototype model is very useful in presenting visually the implication of different 

equipment. Thus very useful in support of initial strategic decisions at planning. 

2) In which way could the system add value and enhance the construction planning 

process? 

The system may be able to add value in the contractor planning to enable planners to 

optimise the use of plant. In the UK, most contractors will have a limited number of 

excavators and dump trucks etc. They will not have a large fleet to call up and so must use 

what equipment they have. 

3) How do you find the system as a communication tool among the project team? 

Visually the system is very good as a communication to all. However, the planner/input 

data may be more complicated to set up initially. 
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4) How the actual information of location and time would benefit the planners and 

construction managers to manage the resources and site constraints? 

This information is useful, but is limited in the UK as contractors may not have a large 

fleet to call upon in order to change equipment as work progresses on weekly basis. 

5) Could you elaborate on the space congestion identification system assist to the planning 

and mobilisation of construction equipment along the construction site? How realistic is it? 

In the UK, most contractors will rely on the foreman to control the size and number of 

equipment at any given point in time. The size of earthwork construction projects in the 

UK tends to be small and readily controllable by 1 or 2 foremen; therefore, the planning 

and mobilisation output is of limited use to the UK earthwork market. 

6) Could you elaborate on any cost saving or any potential benefits from the system? 

 

The cost saving/benefits demonstration are applicable to contractors with a large fleet of 

equipment. There are only one or two such earthworks contactors in the UK, i.e. Blackwell 

and Colton. The potential benefits of this system are more suitable or applicable to other 

part of the world or European markets. 

7) Are there any barriers from using prototype model (people, technology)? 

 

The system would need operators who are familiar with computers and who use computers 

regularly. In the UK most foremen who control fleet/plant are not computer trained and 

don’t like using computers. Other members of staff would have to input data, make 

changes and then pass the results to the foreman. The visual output is very good and would 

help to show the foreman why decisions have been made, which would be very useful. 

 

 

Thank you for your time 

 

Return Address: Email: r.k.shah@tees.ac.uk  

Centre for Construction Innovation and Research (CCIR) / School of Science and 

Engineering, Teesside University, Tees Valley, Middlesbrough, UK, TS1 3BA 

 

 

 

mailto:r.k.shah@tees.ac.uk
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Evaluation Questionnaire Form 
(Response - 2) 

 

This evaluation questionnaire form has been designed to assist in the evaluation of 

prototype model functionality including the time-location plan and space congestion 

plan. Open questions have been used to collect general opinions and views from 

construction professionals regarding the prototype functions. Please give your views 

wherever possible. 

Evaluator Details 

What is your name?  Jess Yates 

What is your work position? Contracts Manager, C A Blackwell (Contracts) 

Limited 

Briefly, what are your professional responsibilities?  Tender Planning and Costing 

A. Benefits of Earthwork modelling, time-location plan and space congestion in 

earthwork planning and simulation: 

1) What do you think of the overall prototype and time-location plan as a strategic 

decision support planning system? 

I think that the overall prototype and time-location plan will be extremely useful as a 

strategic support planning system on complex linear projects with multiple cuttings 

and embankments (e.g. road projects and rail projects), to optimise the earthworks 

movements. 

2) In which way could the system add value and enhance the construction planning 

process? 

In particular, it should provide greater accuracy in establishing the cut/fill balance 

points on these linear projects and where the surpluses or deficits of material will 

occur such that measures can then be planned to either accommodate the surplus or 

make good the deficit. 

3) Do you find the system to be useful as a communication tool amongst the project 

team? 

I think that as a communication tool amongst the project teams provides a useful and 

graphic way of explaining the planned earthworks movements. 
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4) How will the actual information of location and time benefit planners and 

construction managers in managing resources and site constraints? 

It should allow the resources to be managed more efficiently so as to try and 

eliminate either high peaks or low troughs in resource demand so as to provide a 

more even and well-balanced plant requirement. 

5) Could you comment on the space congestion identification system in relation to 

how it assists in the planning and mobilisation of construction equipment along the 

construction site? How realistic is it? 

Space congestion identification has significant implications from a health and safety 

point of view and this system will allow greater focus to be placed on how best to 

manage these congested areas in order to mitigate the risks that are associated with 

space congestion in such areas. 

6) Could you elaborate on any cost saving or any potential benefits from the system? 

The efficient movement of material will also be the most cost-effective movement of 

that material. The most important aim on linear projects is to eliminate the “cross-

hauling” of material, i.e. the inefficient movement of material beyond the cut/fill 

balance point such that at a later date material has to be “cross-hauled” an even 

greater distance in the opposite direction.  

7) Are there any barriers that may prevent the use of the prototype model system 

(people, technology)? 

I think it’s a question of finding the right project for this prototype model which as 

mentioned earlier will be of particular use on any linear projects. If the High Speed 2 

Rail projects get the go ahead or major road projects then I can see this system 

having great benefit in the management of their materials. 

 

Thank you for your time. 

 

Return Address: Email: r.k.shah@tees.ac.uk  

Centre for Construction Innovation and Research (CCIR) / School of Science and 

Engineering, Teesside University, Tees Valley, Middlesbrough, UK, TS1 3BA 

 

 

mailto:r.k.shah@tees.ac.uk
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Appendix-G  
 

Verification of the developed mathematical equation 
 

This section presents the verification process of a mathematical equation. The equation 

which has been derived in this study for the generation of weekly progress quantities 

and location-based schedules is shown below: 

 

          
   
              (7) 

 

Whereas,  

n = number of stations selected by an algorithm for a layer along a cut/fill section,  

Vr = the remaining volume after progress at a layer and each station, 

Vi = sectional volume of earthwork at each station, i = 1, 2, 3, .............., n 

r = number of construction layers at each station of a cut/fill section, r = 1, 2, 3, ..........., t 

p = (pc/pf) represents productivity of earthwork activity according to cut/fill section.  

 

For the verification of equation number 7, a 1.0 km section from a road construction 

project in Portugal was selected. A longitudinal profile of the selected road section 

shows the depth of both cutting and filling sections at each station at an interval of 25 m 

(Figure G-1). The cross-section of the road was considered as a trapezoidal shape with 

side slopes (1.5: 1) and road width (30m) for the demonstration of the section volume 

calculation. Then the sectional volume at each station of earthwork was calculated using 

the “average end-area” method (see Table G-1).  

 

According to Warren (1996), a mass profile of earthwork of a road section was 

developed by calculating the sectional volume at each station along the road section (see 

Figure G-2). Figure G-2 includes a cut and two fill sections with a total of 41 stations 

(chainage points) at an equal interval of 25 m. The stations from 1 to 11 and from 26 to 

42 represent fill sections, whereas the stations from 12 to 25 represent a cut section of 

the road section. The sectional volume of earthwork between stations 1 and 2 is 

represented at station 2. Similarly, the sectional volume of cut and fill sections are 

represented at each station along the road section (see Figure G-2). The mass profile was 
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used for the derivation of a basic mathematical equation. This derivation process is 

discussed in the next section. 

 

 

Figure G-1 Longitudinal profiles of a road section selected from a road project  

 

Figure G-2 Mass profile of earthwork of a road section shown in Figure G-1 
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Table G-1 Sectional volume calculation at each station of a road shown in Figure G-1 

S

N 
Activity 

Int

erv

al 

(L) 

Existing 

G. L. 

Design 

Level 

Side 

Slope 

(s) 

Depth of 

Fill/Cut 

(-/+) 

Width 

of 

Road 

(B) 

Section

al Area 

Average

. 

Sectiona

l Area 

Sectional 

Volume 

1 98+000.00 25 461.94 463.50 1.50 -1.56 30.00 -50.45 0.00 - 

2 98+025.00 25 462.07 463.40 1.50 -1.33 30.00 -42.55 -46.50 -    62.55 

3 98+050.00 25 462.57 463.43 1.50 -0.86 30.00 -26.91 -34.73 -   868.28 

4 98+075.00 25 462.83 463.58 1.50 -0.75 30.00 -23.34 -25.13 -   628.16 

5 98+100.00 25 462.35 463.86 1.50 -1.51 30.00 -48.72 -36.03 -   900.80 

6 98+125.00 25 462.11 464.26 1.50 -2.15 30.00 -71.43 -60.08 -1,501.92 

7 98+150.00 25 462.40 464.79 1.50 -2.39 30.00 -80.27 -75.85 -1,896.27 

8 98+175.00 25 462.99 465.44 1.50 -2.45 30.00 -82.50 -81.39 -2,034.65 

9 98+200.00 25 463.78 466.22 1.50 -2.44 30.00 -82.13 -82.32 - ,057.93 

10 98+225.00 25 465.39 467.04 1.50 -1.65 30.00 -53.58 -67.86 -1,696.43 

11 98+250.00 25 467.59 467.87 1.50 -0.28 30.00 -8.52 -31.05 -   776.27 

12 98+275.00 25 469.41 468.69 1.50 0.72 30.00 22.38 6.93 173.25 

13 98+300.00 25 470.85 469.52 1.50 1.33 30.00 42.55 32.47 811.64 

14 98+325.00 25 472.19 470.35 1.50 1.84 30.00 60.28 51.42 1,285.40 

15 98+350.00 25 473.38 471.17 1.50 2.21 30.00 73.63 66.95 1,673.81 

16 98+375.00 25 474.35 472.00 1.50 2.35 30.00 78.78 76.20 1,905.12 

17 98+400.00 25 475.01 472.83 1.50 2.18 30.00 72.53 75.66 1,891.40 

18 98+425.00 25 475.62 473.65 1.50 1.97 30.00 64.92 68.72 1,718.12 

19 98+450.00 25 476.27 474.47 1.50 1.80 30.00 58.86 61.89 1,547.27 

20 98+475.00 25 476.92 475.21 1.50 1.71 30.00 55.69 57.27 1,431.83 

21 98+500.00 25 477.78 475.84 1.50 1.94 30.00 63.85 59.77 1,494.14 

22 98+525.00 25 478.59 476.36 1.50 2.23 30.00 74.36 69.10 1,727.56 

23 98+550.00 25 478.88 476.79 1.50 2.09 30.00 69.25 71.81 1,795.14 

24 98+575.00 25 478.60 477.11 1.50 1.49 30.00 48.03 58.64 1,466.03 

25 98+600.00 25 477.90 477.32 1.50 0.58 30.00 17.90 32.97 824.18 

26 98+625.00 25 476.94 477.43 1.50 -0.49 30.00 -15.06 1.42 35.56 

27 98+650.00 25 476.25 477.44 1.50 -1.19 30.00 -37.82 -26.44 -   661.05 

28 98+675.00 25 475.94 477.34 1.50 -1.40 30.00 -44.94 -41.38 -1,034.55 

29 98+700.00 25 475.85 477.14 1.50 -1.29 30.00 -41.20 -43.07 -1,076.70 

30 98+725.00 25 475.62 476.87 1.50 -1.25 30.00 -39.84 -40.52 -1,013.00 

31 98+750.00 25 474.79 476.61 1.50 -1.82 30.00 -59.57 -49.71 -1,242.65 

32 98+775.00 25 474.06 476.41 1.50 -2.35 30.00 -78.78 -69.18 -1,729.40 

33 98+800.00 25 473.88 476.32 1.50 -2.44 30.00 -82.13 -80.46 -2,011.43 

34 98+825.00 25 474.02 476.33 1.50 -2.31 30.00 -77.30 -79.72 -1,992.93 

35 98+850.00 25 473.97 476.44 1.50 -2.47 30.00 -83.25 -80.28 -2,006.94 

36 98+875.00 25 473.14 476.66 1.50 -3.52 30.00 -124.19 -103.72 -2,592.96 



 

248 

 

37 98+900.00 25 471.91 476.99 1.50 -5.08 30.00 -191.11 -157.65 -3,941.19 

38 98+925.00 25 471.38 477.41 1.50 -6.03 30.00 -235.44 -213.28 -5,331.89 

39 98+950.00 25 473.35 477.95 1.50 -4.60 30.00 -169.74 -202.59 -5,064.77 

40 98+975.00 25 475.09 478.58 1.50 -3.49 30.00 -122.97 -146.36 -3,658.88 

41 99+000.00 25 477.09 479.32 1.50 -2.23 30.00 -74.36 -98.66 -2,466.62 

42 0+000 25 0.00 0.00 1.50 0.00 30.00 0.00 -37.18 -   929.49 

 

Illustration for equation 7 is shown below: 

 

          
   
              (7) 

 

The equation 7 was underpinned within the algorithm developed for the prototype 

model, which assists to generate automatically the weekly progress quantities and 

working locations information of earthwork operations along a road section. The weekly 

progress quantities of earthworks generated by the model along a road section are shown 

in Table 2, whereas the weekly information of locations generated by the model is 

presented in Table 3 below.  

 

Considering figure G-2, the weekly progress quantities of earthworks are calculated for 

week 1 along the selected cut and fill section of a road. A cut section from stations 12-

21 (250m) and a fill section from stations 1 to 11 (250m) were designated for the 

illustration for the calculation of weekly progress quantities (Figure G-3). The selected 

number of stations where progress occurred at each week is determined by the algorithm 

(see Figures 4.5a and 4.5b in Chapter 4). The weekly productivity of cutting and filling 

operations were determined using the “RoadSim” simulator, where a number of factors  

such as different sets of equipment, soil characteristics and site working conditions were 

considered for both cutting and filling operations in a road construction project (Figure 

8.3 in Chapter 8).  
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Figure G-3 Weekly progress profiles at the end of week 1 of the road section 

 

For the fill section from stations 1-11 (see Figure G-3) 

 

a) Earthwork progress of fill section from stations 5 to 10 at week 1 (Table G-2),  

The total number of the selected stations from 5 to 10 (n) = 6.  

Weekly productivity of the filling operation was determined using “RoadSim” and 

assuming a suitable set of equipment and site conditions. Hence, the filling 

productivity (P) = 4847.00 m
3
/wk. 

Vi represents the sectional volume from stations 5 to 10.  

Total volume (V5-10) = V5+V6+V7+V8+V9+V10 

Total volume of earthwork from stations 5 to 10 (V5-10) = 10088.00 m
3 

The remaining volume at the end of week 1 (Vr) = [{10088.00 – 4847.00}/6]  

= 873.50 m
3 

 

b) Progress at week 2 of the fill section from station 2-11 (see Table G-2),  

The total number of selected stations from 2 to 11 in the cut section (n) = 10  

The total sectional volume of earthwork from stations 2 to 11 (V2-11) = 8676.26 m
3
 

Weekly productivity of filling determined by “RoadSim” (P) = 4847.00 m
3
/wk 

Hence, the remaining volume at each station after progressing at week 2, 

Vr = [8676.26 – 4847.00] /10 = 382.93 m
3 

 

 

Cut section 

Fill sections 
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c) Progress at  week  3  of the fill section from station 2-11 (see Table G-2),  

Since the total remaining volume at all stations of the fill section is less than the 

weekly productivity, the earthwork progress will be completed at week 3. Hence, 

the total weekly progress quantity at week 3 from stations 2 to 11 (V2-11) = 

3829.30 m
3
 which is less than the weekly productivity (4847.00 m

3
/wk). 

 

For the cut section from 12-21 (see Figure G-3) 

a) Earthwork progress of cut section from stations 14-21 at week 1 (Table G-2), 

A total number of the selected stations from 14 to 21 (n) = 8.  

Weekly productivity of cutting determined by RoadSim (P) = 4847.00 m
3
/wk 

Total volume (V14-21) = V14+ V15+V16+V17+V18+V19+V20+V21 

 Using the values of each station, total volume (V14-21) = 12947.09 m
3 

The remaining volume (Vr) = [{12947.09 – 4847.00}/8] = 1012.51 m
3 

 

b) Earthwork progress at week 2 from station 13-21 (Table G-2), 

Total number of selected stations from 13 to 21 in the cut section (n) = 9 

Remaining volume of earthwork from stations 13 to 21V (13-21) = 8911.73 m
3
 

Weekly productivity of cutting determined by “RoadSim” (P) = 4847.00 m
3
/wk 

Hence, the remaining volume at each station after progressing at week 2, 

Vr = [8911.73 – 4847.00] /9 = 451.64 m
3
 

 

c) Earthwork Progress at week 3 from stations 12-21 (Table G-2), 

Since the total remaining volume at all stations of the fill section is less than 

weekly productivity, the earthwork progress will be completed at week 3. Hence, 

the total weekly progress quantity at week 3 (V12-11) = 4237.98 m
3
 which is less 

than weekly productivity (4847.00 m
3
/wk). 

 

Similarly, the weekly progress quantities at all remaining stations along the road section 

are calculated. The weekly progressed quantities of cut-fill section are presented in 

Table G-2 below. The weekly progress profiles of the road section produced by the 

prototype model using one set of construction equipment for earthwork operations are 
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shown in Figure G-4 below, to show how the earthwork profiles change in respect to 

time. 

 

 
 

  

  

  

  

Weekly progress profiles  

   Week - 1  

Initial profile of earthwork 

ofstartining  

   Week - 2  

   Week - 4    Week - 3  

   Week - 5 

 
    Week - 1  

   Week - 6  

   Week - 8 

 
    Week - 1  

   Week - 7 

 
    Week - 1  
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Figure G-4 Weekly progress profiles generated by the prototype model of a road section  

 

Moreover, the allocation of cut-fill quantities and the movement direction was first 

determined by the optimisation module (Chapter 5) before generating a time-location 

plan. A demonstration of the optimisation module was performed with a road section 

(Chapter 8). The results of optimised cut-fill quantities and the allocation directions are 

presented in Figure G-5 below.  

 

 
 
Figure G-5 Graphical views of optimised cut-fill quantities and the movement direction  
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Table G-2 Weekly progress quantities of earthwork generated by a prototype model developed during the course of study 

Cut/Fill 

section 

S.

N 

Chainage 

Points 

Chainage 

Interval 

Sectional 

Volume 

Week-1 Week-2 Week-3 Week-4 Week-5 Week-6 Week-7 Total 

Weekly  

Qty (m3) 
Progress 

Qty.  

Progress 

Qty.  

Progress 

Qty.  

Progress 

Qty.  

Progress 

Qty.  

Progress 

Qty.  

Progress 

Qty.  

F
il

l 
se

ct
io

n
 -

 1
 

1 98+000.00 0 0 0             
 

2 98+025.00 25 -1162.55 0.00 -779.62 -382.93         
 

3 98+050.00 25 -868.28 0.00 -485.36 -382.93         
 

4 98+075.00 25 -628.16 0.00 -245.24 -382.93         
 

5 98+100.00 25 -900.80 -27.30 -490.57 -382.93         
 

6 98+125.00 25 -1501.92 -628.42 -490.57 -382.93         
 

7 98+150.00 25 -1896.27 -1022.77 -490.57 -382.93         
 

8 98+175.00 25 -2034.65 -1161.15 -490.57 -382.93         
 

9 98+200.00 25 -2057.93 -1184.43 -490.57 -382.93         
 

10 98+225.00 25 -1696.43 -822.93 -490.57 -382.93         
 

11 98+250.00 25 -776.27 0.00 -393.34 -382.93         
 

  
Sub total 250 -13523.26 -4847.00 -4847.00 -3829.26         -13523.26 

C
u

t 
S

ec
ti

o
n

 -
 1

 

12 98+275.00 25 173.25 0.00 0.00 173.25         
 

13 98+300.00 25 811.64 0.00 360.00 451.64         
 

14 98+325.00 25 1285.40 272.88 560.88 451.64         
 

15 98+350.00 25 1673.81 661.29 560.88 451.64         
 

16 98+375.00 25 1905.12 892.61 560.88 451.64         
 

17 98+400.00 25 1891.40 878.89 560.88 451.64         
 

18 98+425.00 25 1718.12 705.61 560.88 451.64         
 

19 98+450.00 25 1547.27 534.75 560.88 451.64         
 

20 98+475.00 25 1431.83 419.31 560.88 451.64         
 

21 98+500.00 25 1494.14 481.63 560.88 451.64         
 

  
Sub total 250 13931.98 4847.00 4847.00 4237.98         13931.98 

22 98+525.00 25 1727.56 1486.08 241.48           
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C
u

t 
S

ec
ti

o
n

 -
 

2
 

23 98+550.00 25 1795.14 1553.66 241.48           
 

24 98+575.00 25 1466.03 1224.55 241.48           
 

25 98+600.00 25 824.18 582.71 241.48           
 

26 98+625.00 25 35.56 0.00 35.56           
 

  
Sub total 125 5848.47 4847.00 1001.47           5848.47 

F
il

l 
S

ec
ti

o
n

 -
 2

 27 98+650.00 25 -661.05 -342.66 -318.39           
 

28 98+675.00 25 -1034.55 -716.16 -318.39           
 

29 98+700.00 25 -1076.70 -758.31 -318.39           
 

30 98+725.00 25 -1013.00 -694.60 -318.39           
 

31 98+750.00 25 -1242.65 -924.26 -318.39           
 

32 98+775.00 25 -1729.40 -1411.01 -318.39           
 

  
Sub total 150 -6757.36 -4847.00 -1910.36           -6757.36 

F
il

l 
S

ec
ti

o
n

 -
 3

 

33 98+800.00 25 -2011.43 0.00 0.00 -397.36 -538.56 -499.30 -484.70 -91.51 
 

34 98+825.00 25 -1992.93 0.00 0.00 -378.86 -538.56 -499.30 -484.70 -91.51 
 

35 98+850.00 25 -2006.94 0.00 0.00 -392.88 -538.56 -499.30 -484.70 -91.51 
 

36 98+875.00 25 -2592.96 0.00 -365.91 -612.98 -538.56 -499.30 -484.70 -91.51 
 

37 98+900.00 25 -3941.19 -653.76 -1060.38 -612.98 -538.56 -499.30 -484.70 -91.51 
 

38 98+925.00 25 -5331.89 -2044.46 -1060.38 -612.98 -538.56 -499.30 -484.70 -91.51 
 

39 98+950.00 25 -5064.77 -1777.34 -1060.38 -612.98 -538.56 -499.30 -484.70 -91.51 
 

40 98+975.00 25 -3658.88 -371.45 -1060.38 -612.98 -538.56 -499.30 -484.70 -91.51 
 

41 99+000.00 25 -2466.62 0.00 -239.57 -612.98 -538.56 -499.30 -484.70 -91.51 
 

42 99+025.00 25 -929.49 0.00 0.00 0.00 0.00 -353.28 -484.70 -91.51 
 

  
Sub total 250 -29997.10 -4847.00 -4847.00 -4847.00 -4847.00 -4847.00 -4847.00 -915.10 -29997.10 

 

Using the information shown in Table G-2, a location-based schedule (time-location plan) was generated by the model (see Figure G-6). 

Similarly, tabular information on locations and progress quantities of earthwork generated by the model on a weekly basis is presented in Table 

G-3 below. The detailed development processes for automatic generation of a location-based schedule were discussed in Chapters 4 and 6. 
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Figure G-6  A time-location plan (location-based schedule) and  weekly progress profiles of a road section generated by the model  
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Table G-3 Tabular information on weekly performed quantities and working locations of cut and fill sections shown in Figure G-6 

  

S.N. 

Time  

(WK) 

Section-1 Section-2 Section-3 

Fill-Qty Locations Cut-Qty Locations Cut-Qty Locations Fill-Qty Locations Fill-Qty Borrow-Qty Locations 

1 WK-1 4847.00 5,10 (150) 4847.00 14,21 (200) 
       

2 WK-2 4847.00 2,11 (250) 4847.00 13,21 (225) 
       

3 WK-3 3829.26 2,11 (250) 4237.98 12,21 (250) 
       

4 WK-4 
    

4847.00 22,25(100) 4847.00 27, 32 (150) 
   

5 WK-5 
    

1001.47 22,26(125) 1910.36 27, 32 (150) 
   

6 WK-6 
        

4847.00 4847.00 37,40(100) 

7 WK-7 
        

4847.00 4847.00 36,41(150) 

8 WK-8 
        

4847.00 4847.00 33,41(225) 

9 WK-9 
        

4847.60 4847.60 33,41(225) 

10 WK-10 
        

4847.00 4847.00 33,42(250) 

11 WK-11 
        

4847.00 4847.00 33,42(250) 

12 WK-12 
        

914.50 914.50 33,42(250) 

  
Total 

qty 
13523.26   13931.98   5848.47   6757.36   29997.10 29997.10   
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Appendix-H 
 

Experiments with a road profile data of 10 km section  

(90+000 to 100+00 km road sections) 

 

This appendix presents the experiment results of a 10 km road section. The road 

section was selected from the lot 5 road projects in Portugal. The road profiles were 

available in 10 sub-sections; therefore, each road section of the lot 5 road project was 

selected for the experiments. The experiments were carried out with the model 

functionality and the experiment results in terms of graphical outputs of each road 

section are presented below. The graphical outputs display the prototype model 

behaviours and confirm model functionality through experiments with different 

types of longitudinal road profiles, assuming user-defined productivity, available sets 

of equipment, resources and site constraints. The following are the graphical outputs 

(experimental results) obtained from the selected road section. 

 

1) Longitudinal profiles 

2) Mass haul diagram 

3) Weekly progress profiles 

4) Time location plan / location-based schedules 

5) Time-location/space-congestion plan 

6) Weekly cost profiles 

7) Cost S-curve. 

 

1) 90+000 to 91+000 km road section 
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2) 91+000  to 92+000 km road section 
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3) 92+000 to 93+000 km road section 
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4) 93+000 to 94+000 km road section 
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5) 94+000 to 95+000 km road section 
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6) 95+000 to 96+000 km road section 
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7) 96+000 to 97+000 km road section 
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8) 97+000 to 98+000 km road section 
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9) 98+000 to 99+000 km road section 
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10)  99+000 to 100+000 km road section 
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Appendix - I 
 

Experiments with a road section of 7 km road projects 

(From 0+000 to 7+000 km road section) 

 

 

This appendix presents the experiment results of a 7 km road section. The road 

section was selected from the lot 6 road projects in Portugal. The road section was 

divided into 5 sections (each section with 1.4 km) for the experiments. The 

experiments were carried out with the model functions, and the results (graphical 

outputs) of the experiment for each road section are presented below. The graphical 

outputs display the prototype model behaviours and confirm model functionality 

under different types of road profiles in road projects, assuming user-defined 

productivity, and considering available sets of equipment, resource and site 

constraints. The following are the graphical outputs (experimental results) obtained 

from the selected road section. 

 

8) Longitudinal profiles 

9) Mass haul diagram 

10) Weekly progress profiles 

11) Time location plan / location-based schedules 

12) Time-location / space congestion plan 

13) Weekly cost profiles 

14) Cost S-curve. 

 

1) Road section from chainage 0+000 to 1+400 (1.4 km) 
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2) Station: Road Section from chainage 1+400 to 2+800 km 
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3) Road Section 2+800 to 4+200 km 
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4) Road Section 4+200 to 5+600 km 
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5) Road Section 5+600 to 7+000 km 
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