
Expressive Reversible

Language: Aspects of

Semantics and Implementation

Angel Robert Lynas

February 2011 PhD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322348447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this thesis we investigate some of the issues involved in creating a reversible
variant of the formal software development language B. We consider the effects
of regarding computation as a potentially reversible process, yielding a number
of new programming structures which we integrate into an implementation-level
language RB0, a more expressive variant of B0, the current implementation-level
language for B.

Since reversibility simplifies garbage collection, in RB0 we make use of more
abstract, set-based data types, normally available in B only at the specification
level. Similarly, we propose extending the domain of abstract functions currently
specifiable in B to allow them to become concrete functions, thereby furnishing B
with a functional sub-language. We also investigate expanding the use of Lambda
calculus from the abstract stage of B to the implementation. Unlike B0, RB0
will not disallow non-determinism, and can also specify what we call Prospective
Value computations (which are described). The executable language implements
all of these features.

After introducing some preliminary concepts, we review the work leading to
the rise of Reversible Computing as a possible answer to the growing problem
of energy dissipation in modern processors. We describe the language RB0, and
demonstrate the use of its features, introducing the companion language RB1 and
its role in the process. We then introduce our execution platform, the Reversible
Virtual Machine (RVM), and translate some of the examples developed earlier
into RVM code.

For the concrete functions, we provide a proposed syntax and translation
schema to enable consistent translation to RVM, and introduce a postfix Lambda
notation to link the RB0 specification to the RVM’s own postfix notation. We
provide comprehensive translation schemas for those parts of RB0 which would
be found in B operations; these will form the basis of an automated translation
engine. In addition, we look at a denotational semantics for Bunch theory, which
has proved useful in formalising the underlying concepts.

Acknowledgments

I would like to express gratitude to my supervisor, Bill Stoddart, for inspiring the
project in the first place and convincing me that I could do it. Thereafter for his
seemingly endless patience and optimistic encouragement during times of halting
progress, and not least for organising financial support where possible during the
latter stages of the research.

Also thanks are due to Steve Dunne for being a supportive second supervisor,
and to both for their Formal Aspects of Computing module, without which I
would have struggled with many concepts.

Thanks to the European Social Fund for initial financial help, and the Uni-
versity of Teesside itself for various forms of financial assistance: the School of
Computing for Teaching Assistant work during the first few years; and thanks
to the Dean of Research for the School, Marc Cavazza, for providing a couple of
bursaries where I was not able to fund myself, in particular during the thesis-
writing stage (including an extension for illness). More generally, I am grateful
that the University gave me the chance to undertake Higher Education twenty-odd
years after I should have done.

Finally, a word of thanks to the Open University, for making available a way
of substantially improving my general mathematical knowledge; indeed I hope to
achieve a second degree (in Mathematics) in 2011, owing to their provision of
effective distance learning.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Thesis . 3
1.3 Objectives . 3
1.4 Chapter Overview . 4
1.5 Contributions . 5

2 Preliminaries 7
2.1 The B Method . 7

2.1.1 Rationale and Method . 7
2.1.2 Provability . 7
2.1.3 Refinement . 8
2.1.4 Abstract and Concrete Constants 9
2.1.5 Generalised Substitution Language and Program Constructs 9
2.1.6 Structuring and Limitations 11
2.1.7 Proof Model: Predicate Transformers 11
2.1.8 Proof Obligations and Code Generation 12

2.2 Introduction to Bunch Theory . 14
2.2.1 Bunch Theory Notation 14

2.3 The Forth Language and Virtual Machine 15
2.4 Summary . 17

3 Reversible Computing 18
3.1 Physical Reversibility . 18
3.2 Logical Reversibility . 22
3.3 Summary . 25

4 Reversible B 26
4.1 B0, RB0, and RB1 . 26
4.2 Stand-alone guarded commands and choice 27
4.3 Backtracking interpretation . 28

4.3.1 Example: Send More Money 28
4.4 Prospective Values Formalism . 29

4.4.1 Referential Transparency 32
4.5 Case Study: Sudoku solver . 33

4.5.1 Data Model . 33

i

CONTENTS

4.5.2 Constraint Zone . 35
4.5.3 Method . 37
4.5.4 Algorithm expansion . 38
4.5.5 Most Constrained Squares 39
4.5.6 Machine moves . 40

4.6 Summary . 42

5 An Implementation Platform for our Ideas (The RVM) 44
5.1 Differences in Interface and Programming Constructs 44

5.1.1 Prospective Values Implementation 47
5.1.2 Sets and sequences in the RVM 48

5.2 Internal Features . 51
5.3 Stack Use when translating to RVM from B (compared to C) . . . 51

5.3.1 Calling Imported Operations 53
5.4 Case Study: Sudoku solver revisited 54

5.4.1 Moves . 57
5.4.2 The Update procedure . 60

5.5 Reversible Random Number Generator 61
5.6 Summary . 61

6 A More Powerful Implementation Language 63
6.1 An extended functional language of concrete constants 63

6.1.1 Translation Schema for Functions 72
6.2 Lambda expressions . 74

6.2.1 Lambda Calculus in B . 76
6.2.2 A Postfix Notation for Lambda Calculus 77
6.2.3 RVM-Forth Implementation 78

6.3 Summary . 81

7 Translation Schemas for Operations 82
7.1 Infix Binary Symbols . 83

7.1.1 Binary Symbols which match existing ASCII versions . . . 83
7.1.2 Other Binary Symbols . 83

7.2 Translation of Equality . 84
7.3 Prefix and Postfix Symbols . 84
7.4 Declaration of Variables . 85
7.5 Assignment . 86

7.5.1 Assignment of Bunch Expressions 86
7.5.2 Assignment to Array elements 88

7.6 Control Structures . 89
7.6.1 Selection . 89
7.6.2 Stand-alone Guards and Choice 92
7.6.3 Loops . 93

7.7 Sets, Ordered Pairs and Sequences 93
7.7.1 Enumerated Sets . 93
7.7.2 Choice from a Set . 94

ii

CONTENTS

7.7.3 Set Comprehension . 94
7.7.4 Ordered Pairs . 95
7.7.5 Sequences . 96
7.7.6 Relational Image and Function Application 96

7.8 Prospective Value Computations 96
7.9 Operation Definition and Invocation 98

7.9.1 Definition . 98
7.9.2 Invocation . 98

7.10 Local Variables . 99
7.11 Summary . 99

8 Theoretical Underpinnings for Bunch Theory 100
8.1 Denotational Relation to Set Theory 100
8.2 Summary . 106

9 Conclusions and Further Work 107
9.1 Objectives . 109
9.2 Further Work . 111

A Abstracts of Papers 116

B Summary of RB0 and RVM 119
B.1 RB0 Notation . 119
B.2 RVM-Forth . 120

C Sudoku Listing 125

D Translating to C 130

E Send More Money 138

F Reversible Pseudo-Random Number Generator 140

G Euroforth 2008 142

iii

List of Figures

3.1 Molecule in a cylinder. 19
3.2 Bistable well model. 20

4.1 RB0 for Send More Money. 30
4.2 The constraint zone for square S. 35

6.1 Closure. 76

iv

List of Tables

2.1 Generalised Substitution Language 10
2.2 Predicate Transformer Rules . 12
2.3 Bunch Relationships . 14
2.4 Stack Signature Elements . 17

3.1 Reversible Substitutions in the style of Zuliani. 23

7.1 Binary Symbols to ASCII . 84

8.1 Basic bunch Notations . 101
8.2 Basic bunch denotations . 101
8.3 Further bunch denotations . 103
8.4 Bunch predicate denotations . 104

v

Chapter 1

Introduction

In this thesis we investigate a reversible programming language and a reversible
formal language; we attempt to discern how expressive such languages can be.
We also examine their suitability for use in an integrated formal program de-
velopment environment; using B as our starting point, we consider changes to
its implementation-level language such that the expressiveness of this is a good
match for the executable target language, and the task of translation is eased.

1.1 Overview
Formal Programming Languages such as B must trace a path from specification
to implementation, which imposes a number of limitations. Initially a mathem-
atically tractable form of expression is used, which will describe the effects of a
program without detailing the procedures; this stage is also amenable to proof
— necessarily automated for a program of any size — that the specification does
what it purports to.

At this point, however, the language used will not bear any relation to any
mainstream executable language, nor will it be directly executable. The pro-
cess of converting an initial specification to a form which can be translated to a
suitable target language is “refinement”; a multi-stage process which will usually
change the forms of data structures, and recast functions and operations to forms
increasingly approaching those available in the target executable language.

At this final implementation level, then, the formal language will be simplified
and relatively inexpressive compared to procedural languages such as C++, Java,
or Ada, or more functionally-oriented languages, for instance Lisp, Scheme, or
Haskell.

A number of useful features will disappear, as they have no analogue in the tar-
get language, and are not implementable. The implementation language is mainly
geared to smooth translations. Conversely, there are likely to be capabilities in
the target language which are simply not expressible at this implementation level,
or perhaps even in the specification if a mathematical definition is not available.

So a part of our endeavour here is to allow certain features of the specification
language to persist to the implementation, and to enrich the formal language

1

1.1. Overview

by introducing certain other features which also have executable analogues. This
second set of features relate to reversibility and its applications, e.g. backtracking,
which informs another part of our endeavour.

As formal definitions and semantics have been (and are being) developed with
regard to reversibility, it is now in a position to be incorporated in the formal
language in the form of various programming structures. These have been im-
plemented in the Reversible Virtual Machine (RVM), a collaboratively developed
project at Teesside. It forms an interactive programming environment in its own
right, but its suitability as a target language stems not only from its implementa-
tion of virtual reversibility, but its support for abstract mathematical structures
based on set theory, and support for some aspects of functional programming,
including anonymous functions. The implementation-level formal language can
thus retain a number of desirable and expressive features which can now translate
directly to an executable form.

A motivation for the interest in reversibility itself comes from the body of work
on reversible computing begun by Rolf Landauer at IBM Research in the early
1960s [15]; this was inspired by problems in classical thermodynamics, for instance
Maxwell’s demon, and some informal results of John von Neumann. Landauer
showed that the minimum power requirements of computations are related to the
erasure of information — that is, to non-reversible steps. Subsequent work by
Charles Bennett [3, 4, 5] (also at IBM Research) showed how computations of
arbitrary complexity could be organised in a reversible manner. More recently,
Zuliani [34] has formulated reversibility within a probabilistic guarded command
language, relating it to the formal development process. This body of work shows
that treating computations as essentially reversible processes runs with the grain of
the underlying physical processes, and that reversible computing can be described
in a formal way.

Another motivation is that we employ some applications of reversibility with
regard to programming. An example is backtracking, which is available by vari-
ous strategies in most languages, but will generally require some special setting
up. The programmer must take explicit measures to restore previous values, to
enable exploration of another branch of the state space. Our formulation exploits
the interaction of infeasibility and non-deterministic choice to provide automatic
backtracking with guarded choice constructs. These are simpler to program and
amenable to formal analysis. Another example is a method to run computations
provisionally, and gather a set of results, while not having any lasting side-effects
on the state (other than the variable storing this set of results).

A third motivation is that reversibility can be used to simplify problems of
garbage collection [2], making it practical to implement forms of data structure
that are optimised for mathematical description, namely those based on (finite)
sets; these include relations, functions, and sequences. The computational use
of these requires temporary structures, which must remain in memory to enable
returning to a previous state; reversing frees the memory used.

2

1.2. Thesis

1.2 Thesis
Our thesis is that a formal programming language can remain highly expressive
throughout its development process, from a mathematically-oriented specification
which is suitable for automated proving techniques, to a procedural (though still
mathematically tractable) implementation-level language which can be translated
to our target executable language. Moreover, this language can incorporate fea-
tures such as automatic backtracking, abstract data structures based on set theory,
provisional computations yielding a set of possible results without changing the
state otherwise, and an expressive functional sub-language — capable of recursion,
for instance — which can capture the results of computation without side-effects;
both of the latter simplify the discharging of proof obligations. Although these
features suggest a language abstracted away from the physical realities of compu-
tations, we argue that there are in fact links with the efficiency of computation
conceived in the most fundamental way, that is by thermodynamic analysis.

1.3 Objectives
1. Survey Background of Reversible Computing, with respect to its motiva-

tion for our study; and consider its implications for programming and spe-
cification, together with the most appropriate way we can address these
implications. Chapter 3 is devoted to satisfying this objective.

2. Show how reversible constructs can be expressed in formal terms and in
corresponding programming language terms. Both the simple guard and
choice model and its extension to Prospective Value computations will be
included. This will also demonstrate the use of Bunch theory in semantic
description. This objective is addressed in chapters 4 and 5.

3. Provide demonstrations and case studies of the use of these constructs, with
analysis of their development from specification to implementable language.
Chapters 4 and 5 address this objective.

4. Document changes and extensions to ANSI Forth to transform it to RVM
Forth. This is the subject of the first part of chapter 5.

5. Propose an extension of the role of constants defining functions, so that as
well as being available at the specification (abstract) level, such functions,
coded in a suitable way, may also be present in implementations. The first
part of chapter 6 addresses this objective.

6. Discuss expanding the domain of Lambda abstraction to the implementation
stage, and describe a means of implementing lambda expressions as part of
our execution platform. This objective is the subject of the latter half of
chapter 6.

7. Provide Translation schemas for B operations, from RB0 to RVM. This is
addressed in chapter 7.

3

1.4. Chapter Overview

8. Begin process of formalising Bunch theory by means of a denotational se-
mantics linking it to Set theory, in partial answer to critics who claim that
Bunch theory has no formal model, and object to its use. The contents of
chapter 8 are concerned with this objective.

1.4 Chapter Overview
2. Preliminaries. We introduce certain preliminary areas, outlining the relev-

ant features along with some limitations of the existing system, and a small
demonstration program. We also describe the Generalised Substitution Lan-
guage GSL, which forms the core of the extended language; Bunch Theory,
which simplifies the presentation of our semantics; and we include a general
description of Forth, upon which the execution platform for this extended
language is built.

3. Reversible Computing. We review the background and the previous work
done concerning the physical processes underlying computation, and the de-
sirability of reversibility as a way of reducing energy dissipation. This will
become increasingly important over the next few decades as the drive to-
wards greater speed and miniaturisation continues. The connection between
erasure of information and irreversibility is established, and we demonstrate
a step-by-step reversible assignment statement; as memory updates form the
core of any computation, this has far-reaching consequences.

4. Reversible B. We introduce and examine the changes required for the ex-
isting B implementation-level language (B0), and describe the new variant
RB0 (Reversible B0), which is based on the GSL syntax underlying B0, with
a number of restrictions lifted. We briefly discuss the programmer-oriented
variant of RB0, RB1, which is under development. We introduce Prospect-
ive Value expressions, and the S ⋄ E construct, and describe the capabilities
of this form. We also include two case studies, the larger of which is revisited
in the next chapter, to demonstrate and explore the expressive capabilities
of RB0.

5. An Implementation Platform for our Ideas. We describe the RVM, the
novel version of Forth which is our experimental platform, showing the
changes required to support virtual reversibility and abstract data types.
This is mostly from a programming interface point of view, although the
internal additions are briefly discussed. An example from chapter 2 is ex-
panded to compare translation to RVM with translation to C, and a longer
case study from chapter 4 is translated informally.

6. A More Powerful Implementation Language. We describe a functional
sub-language of concrete constants, which are not currently allowed to per-
sist to B0, explaining why they are useful from a formal proof point of view
as well as a programming point of view, for instance their support for re-
cursion, which is also implemented in the RVM. We provide some examples

4

1.5. Contributions

and a proposal for standardising their form in RB0 such that it could be
subjected to machine translation. We also examine Lambda Calculus, on
which much functional programming is based, and outline its current status
in B, along with a way it could play a larger role, given that support for it
has now been incorporated into the RVM. We introduce a postfix notation
for lambda expressions to facilitate the translation process.

7. Translation Schemas for B Operations. We provide preliminary forms
of the translation schemas for the eventual translation of RB1 into RVM; its
current status takes the RB0 form as its basis, but includes corresponding
equivalent versions in B’s Abstract Machine Notation where appropriate.
We also mention some areas in which the information contained in RB0
would not enable the most efficient translation into RVM, so this could
perhaps be supplied in RB1. The latter will be a little more programmer-
friendly, but also more RVM-friendly, providing hints for efficient compila-
tion which can be ignored as far as formal analysis is concerned.

8. Theoretical Underpinnings for Bunch Theory. Bunch theory is based
on Set theory, which is foundational in mathematics, but arises from re-
garding collection and packaging as independent concepts. The packaging
concept is removed, and Bunch theory deals with the properties of the re-
maining collection. We explore a way of relating bunches to Set theory using
denotational semantics; the established Set theory results can then be used
to verify the axioms of Bunch theory.

9. Conclusions and Further Work. In this chapter we draw some conclu-
sions and outline some possible directions for future work arising in the
relevant areas.

1.5 Contributions
Overall, the thesis argues that it is possible to construct an expressive reversible
language with a simple formal semantics.

We follow the approach to reversibility formulated by P Zuliani [34], using
a history stack to preserve information that would otherwise be lost during ex-
ecution. However, we improve on Zuliani’s formulation of reversible assignment
statements by providing analysis of reversible assignments in which the reverse
operations are themselves reversible, this necessary detail having been omitted
from Zuliani’s formulation.

We make use of “Prospective Value” expressions S ⋄ E representing execution
of S, evaluation of E, and reversal of S, undoing any side effects. These have
previously been formulated and discussed in [31], and we extend this discussion
by giving the referential transparency rules for such terms, which differ from those
that can be used with conventional expressions.

We propose an expressive expression language, forming, in effect, a functional
sub-language. This language includes lambda expressions and supports functions

5

1.5. Contributions

as first class objects. It also allows the encapsulation of state within functional
programs through the use of prospective value expressions.

To implement the functional sub-language on the RVM we provide a postfix
formulation of lambda notation, and we implement lambda notation and closures
on the RVM. We provide local variables that can serve either as the conventional
stack frame variables of a sequential programming language, or as the binding
variables of a function expression, whose bound values are able to persist beyond
the variables’ syntactic scope.

We illustrate the programming techniques made available by our approach
through a number of programming case studies which are considered both through
the high-level language under development and directly using the postfix Forth
language of the RVM.

We sketch the translation of high level language structures to the RVM by
means of “translation schemas”, borrowing notation from denotational semantics.

We make use of bunch theory throughout the thesis, and bearing in mind
its innovative mathematical nature we take some mathematical steps towards
justifying the soundness of its use by providing a denotational model for the part
of the theory used.

6

Chapter 2

Preliminaries

2.1 The B Method
2.1.1 Rationale and Method
Formal Methods encompasses a number of ways to make programs reliable, that
is to perform exactly according to specifications, providing the inputs are within
specified constraints. For this level of confidence, the program specification must
be amenable to being mathematically proved, to show that the outputs and effects
are indeed those required. This is particularly vital in critical systems, usually
embedded, where safety is paramount.

To this end, a mathematical model is constructed embodying the situations
which the program will deal with. The techniques of discrete mathematics are
generally used, and the core concept is state. The state of a program is defined as
the value which each of its variables currently has. Certain relationships between
these variables must be maintained whatever changes are made to the state, and
the values will be constrained according to the type; the set of these conditions is
the Invariant of the system.

Any operation, then, which changes this state must only change the variables it
is allowed to change; moreover the Invariant must be preserved. In constructing
the model, the toolkit of discrete mathematics will be used to encapsulate the
real-world objects and their relationships. The mathematical objects are scalar
values, symbols, sets, sequences, functions and relations — each of which may be
constant or variable. Naturally, certain simplifying assumptions will be made in
the construction of this model (but only justifiable ones).

2.1.2 Provability
An important concept in the constraint of the system to only certain configurations
is that of type. Some types are built-in, for instance N, that of Natural Numbers1.
Often a type is defined by the specifier as one of a set of symbols, e.g. RESPONSE =
{yes, no, maybe}. Now an input or output, or any variable, can be specified as

1N includes zero here; for N − {0} we use N1

7

2.1. The B Method

being of type RESPONSE, and at all times it must take one of these values in the
set. Type-checking to ensure this is one element of the program proof. Naturally
types can be more complex: power sets, functions, relations, sequences, or subsets
of a type such as N.

Operations on the system may be simple in themselves, or more involved. In
the latter case, these will generally be split up into smaller operations where pos-
sible, as these will be more amenable to proof (in particular automated proof).
One limitation of B in this regard is the amount of constraints it has in place on the
interaction of smaller operations, which can lead to unnecessary over-complication
in the model. The reason for this is partly historical, as the provision of auto-
mated proof support was urgently sought for the launch of B, and the constraints
minimised interaction of operations to a degree where this became possible. The
existing system of constraints is one motivation, however, for expanding the cap-
abilities of B, as the structure of a model is one of the ways in which it is expressed;
we examine this in more detail later.

The B method is largely geared toward automatic proof, implemented within
an integrated development environment which allows a complete development
from initial specification through to implementation language, then finally a trans-
lation to executable code. The proving systems are equipped with a number of
axioms regarding the mathematical structures and operations used in the spe-
cification, and a larger number of theorems. They also have rules of inference
via which the assertions implicit in the specification can be checked against the
theorem library.

Occasionally, extra levels of this capability will have to be called into play,
using more sophisticated techniques, and sometimes user-supplied theorems are
necessary when the system cannot make the logical connecting steps on its own.

The obligations incurred by the specification with regard to proof, aside from
any operation being feasible and applicable in relation to the types used, mainly
concern the preservation of the conditions in the Invariant. Even a simple program
specification can generate many proof obligations, at varying levels of triviality.
The obligations stem from the weakest precondition model introduced by Dijkstra
[6] and refined by Abrial [1], and are algorithmically generated from the math-
ematical form of the specifications; we examine the proof model briefly in section
2.1.7.

2.1.3 Refinement
A specification is not a runnable program in itself, however. It must be refined,
usually in various stages, with both the data structures and the operations on them
becoming less abstract and non-deterministic, and closer to the more algorithmic
implementation language. At each stage, the refinement must be linked with each
previous stage, such that the proofs will still hold.

The final stage, still automated, will be translation to some form of code which
can be compiled to an executable program. The translations from the algorithmic
language of the final refinement (this is the implementation level) to code are

8

2.1. The B Method

governed by translation schemas, which should have been separately verified to
provide an equivalent code to that of the specification.

The format of the implementation-level language is limited by the formats of
the available target languages for code. This is one motivation for our proposal of
another target language, RVM-Forth (chapter 5), which will allow a concomitant
greater expressiveness in the implementation language, thus it need not be so far
removed from the abstract specification language.

2.1.4 Abstract and Concrete Constants
B allows constants to be defined both abstractly and concretely, concepts related
to the refinement process. Constants can be scalars or sets, whose instantiation
can be deferred until the implementation phase (the concrete stage), or total
functions.

The latter would not normally remain as functions until the implementation
stage, unless implemented as arrays, for instance. We propose carrying some of
the possibilities of specifying abstract constants, perhaps as recursive functions,
into the concrete stage. Since the target language has facilities for both of these,
translations could be achieved.

As the functions are “black box” operations, they have no direct effect on the
state of the machine or its invariant, and thus incur no proof obligations in this
respect. However, there are certainly existence obligations to consider, that is,
does a function with the stated properties and expected outputs actually exist?

However a description of such a constant could go through a number of stages;
from an abstract list of properties initially to a more concretely specified (perhaps
recursive) function which could then be translated to RVM code. Here is where
a richer language for concrete constants could be developed, to bridge the gap
between the currently available listing of a function by its abstract properties in
the PROPERTIES clause, and something that could be related directly (via a
translation schema) to RVM code.

2.1.5 Generalised Substitution Language
and Program Constructs

A small number of symbols and notational conventions from GSL, the Generalised
Substitution Language [1], are used in this document to describe program con-
structs and as placeholders for B notation. We provide a brief introduction to the
most important elements here; in the following, S and T are program statements or
fragments (or complete programs), G and P are predicates, x is a variable of some
type and A is a set of the same type as x. The main constructs are summarised
in table 2.1.

The precondition will not concern us a great deal, as its being false does not
prevent S from being executed. It simply means that the outcome of S guaranteed
under P is no longer guaranteed. We will assume that any preconditions hold in
our examples.

9

2.1. The B Method

Name GSL Example Remarks
Empty Operation skip
Assignment := x := 1 RHS same type as x
Guard =⇒ G =⇒ S S only executed if G is true.
Choice [] S [] T Non-deterministic
Assignment from set :∈ x :∈ A Any member of A
Unbounded choice @z.S Any variable z used in S
Sequential composition S ; T S followed by T
Precondition | P | S

Table 2.1: Generalised SubsƟtuƟon Language

The behaviour of a program in a guard situation is important, however. We
note that S is only executed if G is true; but in the case that G is not true, execution
would normally move on to the next instruction, unless an explicit ELSE clause
was supplied. So a simple IF-THEN construct,

IF G THEN S END

is expressible in more primitive concepts as
G =⇒ S [] ¬G =⇒ skip (2.1)

We note that this formulation could be troublesome if implemented literally, if
the guard G had any side effects. There could potentially be a double evaluation
of the guard. We adopt the convention, however, that the evaluation of guards
in B should not entail side effects. In fact, as we shall see in later chapters,
if necessary we could use and alter state in the evaluation of a guard inside a
prospective value construction, which would leave the required boolean value and
then reverse, undoing any changes in state.

The decomposition in (2.1) above shows that there is an implicit ELSE with a
skip instruction:

IF G THEN S ELSE skip END

Removing this implicit ELSE raises the question of what will happen if the con-
dition is false; we now have the guarded command G =⇒ S standing alone, in a
situation where progress becomes infeasible. One answer is to go into reverse, and
we describe this option in detail in section 4.2, including the part the choice con-
struct plays in where the reversing goes back to. This notation is also an example
of Abstract Machine Notation (AMN), which is a sort of “syntactic sugar” used
to make B machines more readable.

Non-determinism features in both choice and assignment from a set; one fea-
ture of B and its refinement structure is that non-determinism must not appear
in the final implementation specification, however since our target language uses
non-determinism directly, this limitation need no longer apply. Our reversible en-
vironment uses this in a number of ways, one particular formalism being described
in section 4.4.

10

2.1. The B Method

2.1.6 Structuring and Limitations
One aspect of structuring a B model is that an operation cannot be called within
the same machine, the idea being to facilitate the discharge of proof obligations
without having to work out the ramifications of nested operation calls. So, in a
B specification, the functionality of larger models is parcelled out among several
machines, linked in a hierarchy using various available kinds of visibility. These
allow certain levels of access to variables, constants, the invariant, or operations
of the specified machine (listed in an appropriately named clause).

Two basic modes are USES and SEES, which provide a machine with read-
only access to the state of the machines mentioned in the clause. There are subtle
differences between these modes, which are not central to our concerns.

Also there is the INCLUDES mode, wherein the state information is effectively
separated out among machines, along with invariant-preserving proof obligations.
Thus a machine’s operations will preserve its own invariant; if these are called by
an including machine, it is up to that machine to see that the operations preserve
its own invariant.

A consequence which seems unnecessary is that even query operations cannot
be called within the same machine; all these do is report on the state, without
changing it, and thus never incur proof obligations. There is no way of flagging
such operations as query-only at present; conceivably they could be collected in a
different clause, separate from other operations.

2.1.7 Proof Model: Predicate Transformers
In the model due to Dijkstra and Abrial, the substitution S is viewed as a predicate
transformer, written [S]. The transformation is on a predicate involving certain
variables of the current state, and is intended to establish a postcondition, which
is another predicate in which the variables may have been changed.

If Q is such a postcondition, we write [S]Q for the weakest precondition that
S will establish Q. There are rules for calculating the weakest preconditions for
all substitutions, and we present a simple example. In the following, the notation
F⟨E/x⟩ refers to the expression F with all free occurrences of x replaced by the
expression E.

The weakest precondition rule for an assignment u := E is

[u := E]Q =̂ Q⟨E/u⟩

So for assignment x := 7 and postcondition x < y, we have

[x := 7](x < y) = (x < y)⟨7/x⟩
= 7 < y = y > 7

If the precondition that y > 7 holds before the assignment is executed, the post-
condition x < y will hold afterwards; this is all that is required, and is thus the
weakest precondition.

11

2.1. The B Method

The rule for a guarded substitution is

[G =⇒ S]Q =̂ G⇒ [S]Q

In this case, where G is false, the right hand side says that anything can be implied,
certainly including [S]Q (known as behaving “miraculously”). But as the guard is
false, the substitution will not take place; without an explicit alternative guarded
by another condition, progress becomes infeasible. This, as noted earlier, is the
situation where reversibility is invoked.

The basic predicate transformer rules are shown in table 2.2.

Substitution [Sub]Q
skip Q
u := E Q⟨E/u⟩
G =⇒ S G⇒ [S]Q
S [] T [S]Q ∧ [T]Q
x :∈ A ∀ a.(a ∈ A⇒ Q⟨a/x⟩)
@z.S ∀ z · [S]Q
S ; T [S][T]Q
P | S P ∧ [S]Q

Table 2.2: Predicate Transformer Rules

The other aspect of substitutions which we make some use of is the before-after
predicate prd (name coined by Abrial), which reconciles the predicate transformer
interpretation with a relational view of substitutions. The latter relates the vari-
ables which can be affected by a substitution S (also known as the frame of S),
forming them into maplets of before-values and potential after-values; that is, we
have

rel(S) = {x, x′ | prd(S) · x 7→ x′}

The before-values are written as the plain variable, while the after-values are
primed. We define prd as

prd(S) =̂ ¬[S]x , x′

In this, x can stand for any variable in the frame of S; it is also possible to write,
for instance, s and s′ to refer to the entire frame.

The double negation in this definition is a semantic subtlety which captures
certain aspects of non-deterministic behaviour for relevant substitutions, whereas
“cancelling out” the negations would fail to do this.

2.1.8 Proof Obligations and Code Generation
We introduce a small and slightly pathological machine with a single operation to
examine the proof obligation mechanism of the B-Toolkit software (B-Core), and

12

2.1. The B Method

its code generation. The machine has no variables and initialisation, so no proof
obligations will refer to these. Initially there would be an abstract specification,
but in this case it is very similar to the implementation, so we list only the latter
as follows2:

IMPLEMENTATION simpleI
REFINES simple
OPERATIONS

b, c←− S(a) =̂
IF a > 4 THEN

b := a + 1;
c := a + 2

ELSE
b := a + 1

END

The only differences from the abstract specification are that the latter has a
precondition (that a ∈ N) and that sequential operations are not allowed in spe-
cifications, so the two assignments are made in parallel.

The first line of the operation says that b and c are “output parameters”
(return values) of the operation S with input a. The problem with the above is
the question of what happens when a ≤ 4, when the parameter c has no value
assigned to it. As there is no initialisation of these parameters, its final value is
undetermined in this case. If no assignment were made at all to c, even its type
could not be determined. Here the previous clause of the IF statement provides
the type information.

So generating proof obligations for this machine leaves one undischarged, with
proof goal

a ≤ 4⇒ c0 = c

which expresses the uncertainty concerning the contents of c if it is not assigned
to.

Code can still be generated from this, the B-Tool generating C code by de-
fault. Again simplifying the variable names for readability, it produces this for
the operation S:

void S (int *b, int *c, int a) {
if (a > 4) {
*b = a+1;
*c = b+1;

}
else {

2The B-Toolkit does not allow single-letter variables; but in the interests of readability we
have simplified the listings in order to allow them (and eschewed some BEGIN-END keywords).

13

2.2. Introduction to Bunch Theory

*b = a+1;
}

}

Since C functions only return one value, we cannot return more than one
without some enclosing structure. So the generation uses call-by-reference to
assign the outputs. Later we examine the code produced when a calling machine
is specified that uses this kind of operation and others inside an operation of its
own; the call must be made with the addresses of the variables corresponding to
b and c.

As C does not initialise declared variables, in the event of an unassigned c
being used in a subsequent operation, the result will be entirely unpredictable, as
any random value could be in that location.

The RVM, as we shall see in chapter 5, can use the stack to pass several return
parameters, so it need not follow this model (although it can).

2.2 Introduction to Bunch Theory
Bunches are an invention of Eric Hehner [13], which are intended to provide
a simpler data structure than sets for use in Computer Science. A bunch is
the “contents” of a set, without the packaging; therefore nested bunches are not
possible.

Since its invention the theory has been developed [19, 33, 14] and bunches have
proved very useful in research work.

To put our bunch work on a firmer footing formally, we describe a denotational
semantics for the theory in chapter 8, which explicitly links Bunch Theory with
established results in Set Theory.

2.2.1 Bunch Theory Notation
As bunches have no set-style packaging, we make no distinction between an ele-
ment and a singleton bunch. A bunch does not contain its elements, it consists
of its elements.

The empty bunch is null. Table 2.3 defines some basic notation and relation-
ships, where A and B are bunches.

Bunch Expression Definition
A,B Union of A and B. Commutative.
A,null = A null is identity for union
A \ B Elements of A not in B
A ′B Intersection of A and B
A ′null = null Absorption by null under intersection.
A : B A is a sub-bunch of B

Table 2.3: Bunch RelaƟonships

14

2.3. The Forth Language and Virtual Machine

As brackets may be needed to clarify precedence of operations in bunch ex-
pressions, and the comma is an operator representing bunch union, we use the
maplet symbol 7→ to create ordered pairs.

Where g is a predicate and E a bunch expression, we define the guarded bunch
g −→ E by the property

(g⇒ (g −→ E = E)) ∧ (¬g⇒ (g −→ E = null))

Bunch comprehension is introduced by the symbol §, and has the general form

§x · g −→ E

which defines the bunch of values taken by E as x ranges over values which satisfy
g.

Function application we define at the level of elementary maplet application
as follows, where a, b and c are elements:

apply(a 7→ b, c) =̂ (c = a) −→ b

Thus an application where a , c will result in null. A function (or relation) is a
set of maplets; the bunch operator for extracting the contents of a set is ∼. So
application to a set f generalises to

f (a) =̂ apply(∼f , a)

which will return an elementary bunch if f is a function, and a bunch if f is a
relation, or of course null if a is not applicable. Both cases (function and relation)
are covered by the same definition; and in terms of bunch comprehension we have

f (a) =̂ §b | a 7→ b ∈ f

2.3 The Forth Language and Virtual Machine
Forth, a computer language which dates back to the 1960s, is the base language
for the RVM. There are several varieties of Forth — by its nature it is highly
customisable — but all have certain features in common.

A Forth program consists of “words” (strings of characters) separated by
spaces; the words can perform simple operations or themselves be composed from
many other words to perform more complex operations. The language is “inter-
preted” line-by-line in interactive mode (though new definitions are compiled);
each word is executed as encountered as the input line is processed. There is
therefore very little in the way of syntax in Forth, with the exception of con-
structs related to program flow (if-then, or loops), which may well be written in
Forth in any case. The construction of such higher-level words furnishes the other
examples of syntax.

Much of the time, however, any word can follow any other word; the limitation
on this is the stack, the last-in first-out data structure on which Forth is built.

15

2.3. The Forth Language and Virtual Machine

This holds integers, which can also represent memory addresses. Almost all Forth
words have some effect on the stack, for instance removing the top two items,
performing a computation, and putting the result back.

This limits the interactions of words in two ways: the stack must not “under-
flow”, which occurs if a word expects an item there and finds none; also, although
there is in general no type-checking built in, the values on the stack must be of the
right type. In particular, as memory locations are treated as integers, an operation
which expects a memory location to access would probably cause a segmentation
fault if some random number were on the stack. The provision of type-checking
has been explored [22, 24], but it is not a part of the current standard.

The most convenient way of using a stack computationally is to use Postfix,
as the words then should have the items that they need already on the stack.
There are some exceptions to this, when an input should not be evaluated as
an instruction, but as a string of characters, for instance (the naming of a new
operation is such an occasion).

An example of an interpreted interaction is

3 4 < . (enter) -1 ok

The Forth code 3 4 < . is entered from a console. This pushes 3 and 4
onto the stack, the command < is a test which removes them and, since 3 < 4,
pushes a true flag. The command . removes and prints the top stack value as
an integer.

Since Forth commands can be any character string, we use a box to clarify the
display of otherwise ambiguous commands.

A new command is defined between the commands : and ; . The command
name comes first, followed by a stack comment, then the body of the definition:

: >= (n n -- f)
< NOT ; ok

The comment is a “stack signature”, and specifies that two integers must be found
on the stack, and that a flag will be pushed afterwards. The new command >=
is now accessible in the same way as any other:

3 4 >= . (enter) 0 ok
4 3 >= . (enter) -1 ok
5 5 >= . (enter) -1 ok

Since the effects of Forth words are generally on inputs found on the stack,
it is important that a stack signature is given, to show what is expected on the
stack and what will be left at the end. There are certain conventions we will use
for this, as regards which letter or symbol corresponds to which input type, which
are listed in table 2.4.

Sometimes extra information is added to show the effect in more detail, for
instance

16

2.4. Summary

Symbol Type
x Item of any type
n Integer
$ String
f Flag (boolean)
x^, n^ Address of an object or integer
s General set.

Table 2.4: Stack Signature Elements

(s1:x.P s2:x.P -- s3:x.P, where s3 = s1 union s2)

In this case the sets s1 and s2 are numbered and have a structure specified (which
need not be an elemental type) introduced with a colon. The output is a set of
the same type, and the additional information shows that it is the union of s1
with s2.

We examine the specification of sets in signatures in more detail when the
set capabilities of the RVM are discussed in section 5.1.2, as both the types and
signatures use postfix, and are not immediately intuitive.

2.4 Summary
In this chapter we have introduced the preliminary background for the Thesis.
We covered the more relevant areas of B, which provides an established formal
framework for the work, and GSL notation; Bunch Theory, and the basics of
Forth.

In the next chapter we examine a major motivation behind this work, which
underlies the idea that computation is a potentially reversible process, and the
consequences of this idea.

17

Chapter 3

Reversible Computing

3.1 Physical Reversibility
The notion underlying the origins of the Reversible Computing endeavour is that
information is physical. Reversible physical processes are not unusual, all the
more so if idealised objects and conditions are envisaged (frictionless, isothermal
environments, for instance). And information cannot exist in the absence of some
physical substrate; whether organic (the activity and configuration of neurons),
or inorganic, such as the many ways of storing information in computing.

We look first at this physical manipulation of information and how it relates
to Reversible Computing. An initial motivation was how to reduce the energy
lost as waste heat in computation; in the forties and fifties this was very high.
Around this time, an idea arrived at by John von Neumann was that each ele-
mentary operation, or “act”, of computing would dissipate kT ln 2 joules. Here
k is the Boltzmann constant (in SI units, about 1.38 × 10−23JK−1), while T is
the temperature of the environment in kelvins and ln is the natural logarithm.
The reasoning behind this was that every such elementary act would remove one
bit of uncertainty from the result, and so reduce the entropy of the system by a
corresponding amount; we arrive at the same result in a different context below.

As a motivating example for examining reversibility, we can imagine a sort
of billiard table, without pockets, but also without friction (thus in a vacuum).
The idealised balls on this table are perfectly elastic, and as they move and re-
bound from the cushions and each other, they form a “conservative system”,
conserving energy. They also conserve the history of their movements; if they
were stopped and the motion of each ball exactly reversed, they would unwind
their earlier movements, visiting all the configurations they had been in along
the way. However, if friction is re-introduced, the system is now damped and
no longer conservative, and the balls will eventually come to rest, having lost all
their kinetic energy to their environment. From this point there is no possibility
of reversal, as the information of their previous movements has been lost. This
example suggests a connection between damping (friction) and information loss,
leading to non-reversibility.

We can begin a closer look at these concepts with a model of information

18

3.1. Physical Reversibility

storage of a very simple kind. Consider the cylinder in figure 3.1, which contains
one molecule of gas; the behaviour of this averaged over time is that of an ideal gas.
A zero is registered when the molecule is in the left half of the cylinder, achieved
by pushing in the (frictionless) piston on the right. This would normally increase
the temperature of the gas (i.e. the speed of the molecule), but we assume an
isothermal compression: this takes place slowly enough for the increase in energy
to be absorbed by the environment.

Figure 3.1: Molecule in a cylinder.

The Ideal Gas Law relates the pressure P and the volume V of a gas at tem-
perature T by the formula PV = NkT, where N is the number of molecules. In the
cylinder we have a length L between the pistons, which have an internal surface
area of A. The volume occupied by the gas is therefore V = AL; for N = 1 the
foregoing gives

PAL = kT .

The force exerted by the gas on one piston is PA, which is thus kT/L. Given
an initial distance L0, the minimum work needed to compress the gas to half its
volume is given by the integration

W =
ˆ L0/2

L0

kT
L

dL

= kT ln
(
L0
2

)
− kT lnL0

= −kT ln 2

This is the same quantity quoted earlier; note it does not depend on the size of
the cylinder or the mass of the molecule. It is a general result when constraining
a particle along one of its degrees of freedom, to express the change in entropy.

In 1961, Rolf Landauer [15] returned to von Neumann’s statement, and under-
took a more thorough analysis of the question; he showed that only irreversible
operations have this inevitable dissipative cost. An irreversible operation is one
in which the output does not uniquely determine the input — when the opera-
tion is executed, the input information cannot be reconstructed. So for instance

19

3.1. Physical Reversibility

an addition in N with result 7 could have had any set of inputs from the set
{{0, 7}, {1, 6}, {2, 5}, {3, 4}}.

A way of making such operations reversible is to store the inputs, or at least
sufficient information to enable their reconstruction (in the case of addition, one
need only store one input). The one operation that cannot be made reversible is
that of erasure; by its very nature, information is discarded. So the only inevitable
thermodynamic cost in computation arises from erasure.

Landauer considered the possibility of making computations reversible by stor-
ing intermediate results in such a way that the whole could be made reversible;
this has an obvious drawback in that the available storage could easily be filled
if a computation was non-terminating. Even disallowing such computations, we
have at some point the obligation to re-initialise the storage, thus re-introducing
erasure of information and its concomitant costs. But the notion of embedding a
computation in a larger context which would store its history would prove fruitful.

A way of illustrating an irreversible act is using the visual metaphor of a
“bistable well”. This can represent numerous physical situations, e.g. electromag-
netic configurations. We can use its metaphorical nature literally, as though it
were a cross-section through some physical (but idealised) apparatus. In figure
3.2, the particle has stable positions in either well; its being in the left well rep-
resents zero and in the right 1. Gravity plays its usual role; there is no damping
in the form of friction, so this is a conservative (energy-conserving) model, and
time-reversible in the classical mechanical sense.

10

Figure 3.2: Bistable well model.

If the particle is in the 0 well, we can move it to 1 with no energy loss by
“pushing” it up the slope (i.e. imparting energy to get it over the barrier), but
recovering the energy from its fall on the other side; similarly from 1 to 0. But in
each case, we would need to know the position of the particle first, as the direction
of push and retardation differ for each one.

Supposing we do not know where the particle is, and are required to simply
set it to 1 regardless of its starting point? This is a more likely candidate for
an analogue of a computing operation, which would act in the same way on any
data that it was presented with. However, in our conservative model, there is no
single reset operation R that can do this and remain classically reversible, with a
deterministic inverse R−1. Attempting to reverse from 1 after applying R is now
non-deterministic, as the particle could have been in state 0 or state 1.

20

3.1. Physical Reversibility

If a certain amount of damping is now allowed in the system, our single oper-
ation R could work; with a force applied slowly from the left, if the particle is in
0, it will be pushed over the barrier, and come to rest in the 1 well. If the particle
was there all along, we would have the same result. But the damped system is
now irreversible, as we have erased the history of the particle.

Landauer’s view remained unchallenged until 1973, when Charles Bennett [3]
proposed a way of rendering the recording of intermediate information as also
reversible, via the example of a three-tape Turing Machine. The essence of this is
to copy the intermediate data to a second blank tape, a history tape containing
the “traces” of the forward computation. The latter might be viewed as a sequence
of reversible operations — of transition functions from one state to another. In
our terms, we might prefer to characterise them as reversible GSL substitutions.

The result of the computation is then copied to the third tape, and the pro-
gram is put into reverse. Now the second tape provides inputs for the reversed
program, using inverse transition functions which uncompute the history, rather
than erasing or re-initialising it. But since the tape was blank beforehand, it is
returned to this initial state by the reverse computation, while the original inputs
are reconstructed. The result remains accessible on the third tape.

In our virtualisation of a reversible machine, the history tape becomes a history
stack, an ideal data structure for its required operation. There is a one-off cost
associated with initialisation; thereafter programs can be run reversibly without
the wholesale and indiscriminate erasure of intermediate results.

We note that these early models operate in a world of discrete computing
“jobs”, with well-defined beginnings and endings, so a program with a particular
task would run and terminate at some point with a definite result. Our examples
elsewhere, indeed, are of this kind. The more recent paradigm is of continuously-
running programs (the operating system itself, for instance, and many applica-
tions); it seems less obvious how the process is to be broken up.

Our earlier image of a frictionless billiard table was the inspiration behind
ballistic computing, an idea of Fredkin and Toffoli [12], which proposed an imple-
mentation where the movement of the balls would be isomorphic to the desired
computation. Versions of logic gates using the elastic collisions of these balls
were designed, but cannot really be approached with a physical realisation. Even
in theory, extremely small perturbations in the trajectory of one ball — caused
by random thermal noise — would result in the rapid degeneration of the balls’
movement itself to noise.

However, the principle remained as a guide for the concept of Conservative
Logic [11], which proposed designs for more general logic gates with arbitrarily low
power dissipation. The ballistic paradigm has been used more literally in recent
research involving transistors using collisions between electrons, or ballistically
controlled spin interactions [23].

In later work [4, 5], Bennett also proposed other models, most notably the
Brownian model; this used reactions from biochemistry as an illustrative example,
but the principle applies to any reversible chemical reaction. Typically, such
reactions reach an equilibrium determined by the concentration of the major and

21

3.2. Logical Reversibility

minor reactants. Leaving aside any chemical details, we can represent the chemical
configurations as states σ1 and σ2, and write the reaction as

σ1 ⇌ σ2

to denote a reversible reaction. Equilibrium is not static at the molecular level; the
individual components continue reacting back and forth —moved probabilistically
by thermal fluctuations, and the equilibrium is statistical at the macroscopic level.

A chain of such reactions can be imagined, with a “result” corresponding to
the result of the computation represented by the states, thus

σ1 ⇌ σ2 ⇌ . . .⇌ σn−1 ⇌ σn

In the chain, the reaction or current state can move forward or back with roughly
equal probability, becoming a one-dimensional random walk. This will eventually
reach the desired result state without energy expenditure, but this is in the limit
of no reliable forward speed. It can be speeded up at the cost of some energy
dissipation by introducing a bias, depending on the physical model used. This
would give a greater probability of moving in the “right” direction at any given
stage, although movement in both directions would still occur.

Bennett has also described a Brownian Turing machine [5] constructed from
frictionless clockwork components, subject to small random movements which are
able to move it from one state to another; with a certain amount of bias, this will
also complete its computation without large energy loss.

More recently, pursuing commercially viable hardware, research is going on
into Adiabatic Logic and circuitry [10]; as today’s irreversible logic circuits ap-
proach their physical limits, these will provide a path to continue improving per-
formance. At present, there may be a few decades before this becomes a commer-
cial inevitability.

3.2 Logical Reversibility
A point that generally follows from consideration of physical reversibility is that a
different programming paradigm is required, having the property of logical revers-
ibility. This will filter down from some form of reversible specification language to
a logically reversible implementation language. But there are different approaches
to achieving the latter.

The more literal approach is to try and make every operation reversible. The
Janus language developed by Tetsuo Yokoyama and Robert Glück [30] is designed
from the ground up to be reversible, and to have this built into the syntax of every
construct. A procedure can be called, or “uncalled” to run it in reverse. The
designers show that local inversion is sufficient to provide deterministic inverse
programs — so to transform a program into its inverse, recursive descent is used
over the program structure to convert each procedure and its atomic components
to their inverse forms.

This is also the approach adopted in a somewhat different way by Zuliani,
in his paper on Logical Reversibility [34]. The mechanism is hidden from the

22

3.2. Logical Reversibility

programmer, and described in terms of pGCL (probabilistic Guarded Command
Language, with some similar constructs to those in basic GSL). In terms of the
basic GSL substitutions used in this thesis, we would require that every operation
S had an inverse S−1, such that

S ; S−1 = skip

However, most operations cannot be made automatically reversible as they are;
a version must be created which would save its input to a history stack, avoiding
erasure. Then a reversed operation has this available as input. For a simple
assignment statement v := e this might be achieved with

Reversible operation SR =̂ push v ; v := e

Inverse operation S−1R =̂ pop v

Here, “pop v” is shorthand for “pop the stack and assign the value to v”. The
above satisfies

SR ; S−1R = skip

but does not have the property of stepwise reversibility; for instance it contains
the original irreversible assignment as a step, also pop v which is likewise non-
reversible.

In table 3.1 we quote a few entries from Zuliani’s original listing, adjusted for
our GSL style. In this table, b is a boolean variable, which holds the truth value of
the guard for the next choice in the reverse direction; again “pop b” is shorthand
for “pop the stack and assign the value to b” . The notation SI is adopted as an
abbreviation for S−1R , the inverse of SR.

GSL Reversible Substitution SR Inverse Substitution SI

v := e push v ; v := e pop v

S ; T SR ; TR TI ; SI

g =⇒ S;
¬g =⇒ T

push b;
g=⇒ (SR ; push true);
¬g=⇒ (TR ; push false)

pop b;
b =⇒ SI;
¬b =⇒ TI; pop b

S [] T push b;
(SR ; push true)[]
(TR ; push false)

pop b;
b =⇒ SI;
¬b =⇒ TI; pop b

Table 3.1: Reversible SubsƟtuƟons in the style of Zuliani.

We note that the non-deterministic choice S[]T shows a different interpretation
from ours; in the table, the reversible version merely records the choice taken and

23

3.2. Logical Reversibility

the inverse then reverses through that. This kind of reversing recalls Bennett’s
model in which the whole program reverses, using its own history. There is no
notion of taking the other choice, as Zuliani’s model lacks any semantic mechanism
to trigger reversal, whereas we use stand-alone guards to allow infeasibility to do
this. The choice substitution will then try another choice, thus we have a finer-
grained reversibility to allow provisional choices.

Let us see if we can modify Zuliani’s approach here to construct a stepwise
reversible operation by using the form x := x + e, which has the inverse x := x − e.
The exchange of two values in two locations is also reversible (in fact it is its own
inverse); we write this as a parallel assignment

x := y || y := x

The role of the stack can be taken by an integer array h with index i (where
h and i are fresh variables with respect to the program), so h(i) is the top of the
stack. Initialising this stack and i is the initial cost referred to in the previous
section.

Our reversible transformation of x := e is stepped through in the table below;
the zero in h(i) at the start is its initialised value, and “?” indicates an unknown
stack value. The initial value of x is shown as x0.

Assignment h(i − 1) h(i) x
? 0 x0

h(i) := h(i) + e ? e x0
x := h(i) || h(i) := x ? x0 e
i := i + 1 x0 0 e

The reverse operation is formed from the inverses of each of the above steps.

Assignment h(i − 1) h(i) x
x0 0 e

i := i − 1 ? x0 e
x := h(i) || h(i) := x ? e x0
h(i) := h(i) − e ? 0 x0

We therefore see that stepwise reversible operations can be constructed, though
at the cost of some increased complexity. For this reason we have not strictly fol-
lowed this path in the RVM, opting for “semantic reversibility” as a more efficient
and achievable compromise. For this, it is sufficient that a program yield the same
results when reversing as would a stepwise logically reversible program. Irrevers-
ible “internal” steps are tolerated if the overall effect of the operation is the same,
and also we need not initialise unused stack locations, as they have no effect on
the program.

24

3.3. Summary

3.3 Summary
In this chapter we have addressed Objective 1; we surveyed the background of
Reversible Computing, showing how it provides a possible solution to the increas-
ing problem of heat generation in the ultra-small, ultra-fast processors of the near
future. We discussed how programming for reversible systems will require new
programming paradigms, demonstrating an assignment statement with stepwise
reversible instructions which could exploit reversible hardware and thus eliminate
most irreversible steps. We described our concept of semantic reversibility as be-
ing more appropriate for a higher-level approach to the issue of programming for
reversible hardware.

We turn our attention in the next chapter to the question of how we integrate
these ideas on reversibility into the formal specification language at its implement-
ation level.

25

Chapter 4

Reversible B

4.1 B0, RB0, and RB1
There are two basic versions of the language used in classical B, both based in GSL
but one having a syntactic sugar coating, the Abstract Machine Notation AMN.
For the abstract machines there is a version which allows non-determinism, sets
and set operations, and functions defined as abstract constants. These properties,
along with the fact that the specification language is not a procedural language
— there is no mechanism for sequential composition — prevent its being suitable
for translation to most executable computer languages.

When the specifications have been refined to implementations, this language
will have been replaced by B0, which can be translated to languages like C and
Ada. B0 is procedural in nature, and does not have non-deterministic elements
or set facilities. Any functional constants will be replaced by operations, using
appropriate structures; for instance, recursion would be replaced by loops.

The restriction that B0 only use constructs that can be translated to code
becomes far less restrictive when the code is RVM Forth. We examine the RVM
language in our next chapter, but here we point out that it implements sets and set
operations directly, while in addition supporting various forms of non-determinism
with regard to assignments and choice, and lambda calculus. So these methods
no longer have to be refined away before translation to code. The RVM also
supports certain constructs arising from reversibility, which will be described in
this chapter.

The proposed language RB0 (Reversible B0) is an implementation-level lan-
guage, all constructs of which can be translated to RVM. It may not necessarily
be the most efficient RVM, as RB0 is primarily geared towards program proofs,
and hence is mostly mathematical in structure. It is based on pure GSL, although
certain AMN constructs are retained herein for comprehensibility (such as vari-
able declarations with VAR). The AMN component visible in RB0 listings in the
current thesis may not be required in the future, as RB1 — described below — is
the natural home for such features. Some non-deterministic strategies disallowed
in B0 can be accommodated in RB0, though we cannot accommodate unbounded
non-determinism.

26

4.2. Stand-alone guarded commands and choice

There are also some additions, providing an enriched formal semantics; in
particular the guard =⇒, which can now occur in a stand-alone form (described
in the next section), thus allowing infeasible situations as part of the reversibility
semantics. Also we have the construction S ⋄ E, described in section 4.4. It is
hoped that increasing Unicode capability in editors and proof environments (and
of course fonts) will eventually allow the use of such symbols directly, rather than
as ASCII equivalents.

A further addition is to allow functions to be concrete constants, as described
in chapter 6, section 6.1. Some notation from bunch theory can be used here to
provide a translatable functional language for RB0.

In order that the translations to code be improved, the proposed language RB1
is under development. It will be an extension of RB0 which can be easily converted
back to RB0. But it will contain additional information, not required for proof,
to facilitate the translation to code, preferably more optimised and efficient code.
The extra information might include details such as whether or not variables are
to be declared reversible, and more accessible type information; as is seen in the
chapter on translation schemas, this is not always easy to get across. An example
of a proposed construct in RB1 is preferential choice (currently under investigation
and development). In GSL and RB0, a choice such as S [] T is symmetrical, with
both S and T having an equal chance of being chosen first. But situations will
arise where one would want S to be tried first, with T as a backup in case S proved
infeasible. The way the RVM makes choices in such a scenario is tailor-made for
implementing preferential choice; a provisional notation is

S▷ T

which favours S as the first choice. As far as proof obligations go, these are exactly
the same as those for symmetrical choice, however there is an extra semantic layer
wherein the choice is directed.

The full description of RB0 and RB1 is beyond the scope of this thesis. Until
RB1 is closer to completion, we must regard the fine details of RB0 as remaining
somewhat fluid, particularly the extent to which AMN is retained. Ideally, in
translating RB1 to RB0, the result should be closer to pure GSL, with only
required extensions.

4.2 Stand-alone guarded commands and choice
We discussed the role of the guard in providing conditional constructs in section
2.1.5, and what might happen if a false condition arose with no forward path
through an ELSE — whether implicit or explicit.

One possibility is to treat this as an infeasible situation; the program, being
unable to go forward, goes into reverse to try another path. There must therefore
be other paths available to try, and these are provided by choice constructs.

The basic use for these is non-deterministic — when specifying we have no way
of knowing which choice will be made — and the state of the program at the point
of choice is the state to which it will return on encountering an infeasible guard.

27

4.3. Backtracking interpretation

Various kinds of choice can be made, from simply assigning a variable from a set
of values, to a broader choice such as which search strategy to embark upon. If
these choices are returned to as the result of a reversal, as they were found to lead
to infeasible situations, the program can assign an unused value to the variable,
or attempt another search strategy, for instance.

At some point, if no feasible route is found, the available choices in any situ-
ation will run out, and now the program must continue in reverse mode until the
previous choice point is reached, assuming there was one. In each case, the state
before the original choice was made must be restored. Trying another path for-
ward from here now makes all future choices available again at their appropriate
points in the program.

Should all the choices run out of options, that would mean the whole program
is infeasible. What happens here is dependent on the implementation, so an error
message might be displayed, or an exception raised, or execution may simply cease
with a particular return code.

4.3 Backtracking interpretation
An operational interpretation of the above is that the program is backtracking
to try another choice; this might otherwise be accomplished with a recursive
algorithm, for instance.

A simple example (this might represent a fragment of a larger program) fea-
turing a choice between two assignments is

x := 1 [] x := 2;
x = 2 =⇒ skip (4.1)

In this case, if the assignment to 1 is made, the guard condition is false, so the
program has no forward path; it must go back to the choice to try the other
assignment. A similar example in a slightly larger context is

x := 10; x := x + 1 [] x := x + 2;
x = 12 =⇒ skip

In this case the original value of x must be restored (the method will depend on
the implementation), so we note that the value has not been erased. A history of
the values x has taken would in principle be maintained for the program’s “past”,
for stepwise reversibility. Since we use semantic reversibility, this is not needed in
such detail.

4.3.1 Example: Send More Money
We provide a longer example based on a word problem, which is to assign the
values 0-9 to letters, with each letter a different value, in such a way that the sum
below is arithmetically valid:

28

4.4. Prospective Values Formalism

SEND
+ MORE
= MONEY

The approach we choose here is to assign any two values to d and e, so these
are the first points of choice. Now y will be assigned (d + e) (mod 10), and the
first condition to check is that y is neither equal to d nor to e. If it is, then the
program must go back and make another choice for e. Had d been assigned 0,
then the condition would remain false through all the choices for e, and in the end
the program would have to return to its first choice and make another choice for
d. In the absence of a specific heuristic or shortcut (such as disallowing 0 for d),
the mechanism takes the strain by trying every available value until something
works.

Once the condition is satisfied, however, the program can then go on to assign
two more values to n and r, and the conditions from then on become more and
more dependent on previous choices. For instance the value of e chosen in the
second choice must be compatible with the e in “send” for its position in the sum.

The initial specification in B simply gives the overall properties of the solution;
a refinement might break this up into conditions for each letter, and the imple-
mentation provides a procedure for achieving the solution, using the stand-alone
guard to retreat from infeasible paths. However, the current B implementation
language cannot be used here, as it does not allow non-determinism (specifically,
assigning any number from a set), nor does it have notation for a stand-alone
guard; so we use RB0.

In the RB0 implementation in figure 4.1, we use the GSL symbol for guard
“=⇒”, and “:∈”for non-deterministic assignment from a set, which are the points
where a choice is made. The set DIGIT = {0, 1, . . . , 9}, and the variables c0, c1, c2
are the carry values from the additions.

4.4 Introducing a formalism to provide all
results of a search (S ⋄ E)

So we have a way of finding a viable path through a program, and avoiding
infeasible ones. However, there may well be more than one path — that is, more
than one solution to a given problem, more than one result for a search, and so on.
An extension of the ideas described above is to have the program explore all the
paths it can take, and storing each result in an output set. This entails reversing
after each successful completion, and restoring the state. If the program is part
of a larger program, we note that as this is also done after the final run, the inner
program can be run and its possible outputs collected without affecting the state
of the outer program.

Rather than using sets to reason about these issues, our theoretical develop-
ment uses bunches, as described in section 2.2, to simplify the exploration of more
complex applications. The approach is described in terms of prospective values,
as it produces all the values which would have eventually resulted if the program

29

4.4. Prospective Values Formalism

solution =̂

BEGIN
VAR c0, c1, c2 IN
d :∈ DIGIT; DIGIT := DIGIT − {d}
e :∈ DIGIT; DIGIT := DIGIT − {e}
y := (d + e)mod 10;
c0 := (d + e)/10;
y ∈ DIGIT=⇒

(DIGIT := DIGIT − {y};
n :∈ DIGIT; DIGIT := DIGIT − {n};
r :∈ DIGIT; DIGIT := DIGIT − {r};
(n + r + c0)mod 10 = e=⇒
(c1 := (n + r + c0)/10;
o :∈ DIGIT;
(e + o + c1)mod 10 = n=⇒

(c2 := (e + o + c1)/10;
DIGIT := DIGIT − {o};
s :∈ DIGIT;
(s +M + c2)mod 10 = 0=⇒
(M = (s +M + c2)/10 =⇒ skip))))

END
END

Figure 4.1: RB0 for Send More Money.

30

4.4. Prospective Values Formalism

had been run non-deterministically on all possible paths. A Prospective Value
Semantics (PV) has been developed in [33] to formally describe the approach,
using the notation

S ⋄ E

where S is a GSL substitution (program) and E is an expression. The construct
is then the bunch of results obtained from running S, then evaluating E for all
possible outputs. We refer to PV semantics, PV computations, and PV facilities
or constructs, and sometimes simply “the S ⋄ E construct”. The implementation
platform (RVM) has no internal representation of bunches; such bunches of results
are packaged in a set for further use by the program. For consistency and trans-
latability, the implementation-level specification in RB0 also packages bunches
as sets in this way (by the simple expedient of putting set brackets around the
diamond operation).

A simple example is this (the choice has a higher precedence than the dia-
mond):

x := 1 [] x := 2 ⋄ 5x

Note that this is only a descriptive mathematical syntax, rather than RB0 (hence
the lack of set brackets). Were this to be just run sequentially, with the 5x
following the choice, we would have one of two outputs, 5 or 10. The diamond
construct forces the program to run again, taking whichever choice it did not take
before. We thus have the two possible outputs 5, 10 at the end.

Suppose we have an array a (size s) of natural numbers, and wish to find
the position i in which a particular number e is stored (if it is); the latter is an
input parameter. The following program would assign any position to the global
variable i, test to see if the array contained e at that point, and if not keep trying
(reversing if the guard was false).

P(e) =̂
i :∈ 1..s;
a[i] = e =⇒ skip (4.2)

This would then leave one position at which e is found in the variable i, or if no
such position exists, would reverse. In order to find all the positions which are
occupied by the value e, we can use the diamond to collect all the results of the
search:

P(e) ⋄ i

This yields a bunch of all the applicable positions, or simply the null bunch if the
element e was not in the array. In implementation, it would return a set which
might be the empty set, and would be written in RB0 as {P(e) ⋄ i}.

As a final brief example, suppose we have a set of sets of some particular type
of element, and wish to flatten it to a single non-nested set. A B specification-level

31

4.4. Prospective Values Formalism

operation for this would describe the output in terms of a set comprehension:

o←− flatten(S) =̂
PRE S ∈ P(P(N))
THEN o := {x | x ∈ N ∧ ∃ e.(e ∈ S ∧ x ∈ e)}
END

Then an implementation-level refinement in RB0 using non-deterministic assign-
ment and the diamond (which also has lower precedence than the sequential op-
erator) would be

o←− flatten(S) =̂
VAR x, s IN
o := {e :∈ S; x :∈ e ⋄ x} (4.3)

END

We examine the conversion of this to RVM code in a later section, as it is an
example of a situation where RB1 could be used to specify a more efficient trans-
lation.

4.4.1 Referential Transparency
There are certain implications for the generation of proof obligations using PV
semantics — although these are part of a wider semantic agenda than that ad-
dressed by this thesis. We should draw attention, however, to the particular case
of Referential Transparency. This assumes a greater importance in the extended
language for concrete functions discussed in chapter 6.

Referential transparency refers to the property that, when two expressions are
equal, one can be replaced by another in an expression without affecting the result.
More formally, where E,F and G are expressions, and G⟨E/x⟩ means replace x with
E in G , we have the inference rule

HYP ⊢ E = F, HYP ⊢ G⟨E/x⟩
HYP ⊢ G⟨F/x⟩

But this is not always the case in S⋄E constructions. A simple counter-example
would be: given that x = y ∧ x = 0, compare

x := 1 ⋄ x = 1
x := 1 ⋄ y = 0

The output in the second case is not the same as in the first.
In certain situations there will be no problem; for instance if the equality de-

scribes a mathematical identity between two expressions using the same variable.
Thus syntactic substitutions based on, say,

2y = y + y or
x2 = xx

32

4.5. Case Study: Sudoku solver

will behave blamelessly. We can write these in the stronger form of equivalences,
2y ≡ y + y and x2 ≡ xx.

More generally, the substitution scope in a PV computation would need to be
limited to one side of the diamond — either the output bunch, requiring equi-
valence, or the expression generating it. We can write these as in the following
examples, where S is a GSL/RB0 substitution and H is another expression.

HYP ⊢ E ≡ F
HYP ⊢ S ⋄ G⟨E/x⟩ = S ⋄ G⟨F/x⟩

HYP ⊢ E = F
HYP ⊢ x := G⟨E/x⟩ ⋄ H = x := G⟨F/x⟩ ⋄ H

4.5 Case Study: Sudoku solver
As a more sustained demonstration of the techniques of modelling with sets and
sequences and specifying using our reversibility facilities for automatic backtrack-
ing, we investigate a solver for Sudoku, the number puzzle. Note: Some of the
material in this section and section 5.4 is based on an early treatment in a paper
given at the 21st Euroforth conference [16].

The basic form of this puzzle is a 9 × 9 grid of squares divided into nine 3 × 3
subsections, hereinafter called “sectors”. A puzzle consists of a partly filled-in grid
which must be filled in such that every row, column and sector contains all the
digits 1 to 9.

The structure of the puzzle and its solutions leads naturally to a set-based
model, wherein the constraints on a square’s value and the properties of a solution
can be readily expressed. For instance, each blank square has an associated set of
numbers which are available to it; as the grid fills up, this set will shrink — but
if a blank square should find itself with no available values left, this means that
the grid cannot be completed.

As the notation will involve a certain amount of RB0, particularly in the
implementations (and simplifications for readability), this is neither a syntactically
viable nor complete development in B. In particular the interface details are left
to the code stage, and the RVM code will be examined in section 5.4.

4.5.1 Data Model
The basic requirement to represent the grid is a mapping from each square which
has so far been assigned to its assigned value; and for the unassigned squares, a
mapping to a set of their available values. The values 1 to 9 are defined as the
set DIGIT. A square is defined by row-column co-ordinates; the set XY is 0 to 8,
and the definition SQUARE is a maximal set used as a type, consisting of ordered
pairs of the numbers 0 to 8 denoting (row,column).

So the grid is a partial function:

grid ∈ SQUARE 7→ DIGIT

33

4.5. Case Study: Sudoku solver

Complementary to this is a function from the blank squares to the set of their
possible values, this being of type:

possible ∈ SQUARE 7→ P(DIGIT)

The elements in these respective sets thus have the following forms (for row r,
column c, and value vi, 1 ≤ i ≤ n for n available values).

An element of grid has the form (r 7→ c) 7→ v
An element of possible has the form (r 7→ c) 7→ {v1, v2, . . . , vn}

Since B reserves the notation (r,c) for variable or parameter/ argument lists, we
use the maplet symbol 7→ to denote ordered pairs. This also avoids any confusion
with bunch notation, wherein the comma is a union symbol.

As the game progresses, the domain of grid grows while that of possible shrinks.
On successful completion, grid will become a total function. However, should the
set associated with a particular blank square in possible become empty, this means
that the grid cannot be filled, and completion of the game is now infeasible. This
is used as the guard for backtracking with the reversibility mechanism.

The elements so far discussed are incorporated in an initial machine called
grids, which is parameterised — it takes a starting grid called puzzle, and the
CONSTRAINTS clause ensures that this is of the correct type. There are no
operations in this machine.

MACHINE grids(puzzle)
SETS

DIGIT = {1, 2, 3, 4, 5, 6, 7, 8, 9}
XY = {0, 1, 2, 3, 4, 5, 6, 7, 8}

DEFINITIONS
SQUARE =̂ XY × XY

CONSTRAINTS
puzzle ∈ SQUARE 7→ DIGIT

VARIABLES grid, possible
INVARIANT

grid ∈ SQUARE 7→ DIGIT ∧
possible ∈ SQUARE 7→ P(DIGIT)

INITIALISATION
grid := puzzle || possible := ∅

END

We now need to consider the constraints on what values can be entered in
blank squares, and the generation and maintenance of the set possible.

34

4.5. Case Study: Sudoku solver

4.5.2 Constraint Zone
The set of possible values for a square are those values which are not currently
used in its row, column, or sector; we define these three together as the Constraint
Zone for the square, illustrated in figure 4.2.

SI

S

Figure 4.2: The constraint zone for square S.

To construct the zone for any square, we construct the row, column and sector
separately, and define the zone as the union of these. The constructions use
functions declared as constants, whose properties define their action. We examine
more closely the issues of constant functions later in section 6.1.

The row and column are simply generated from the appropriate member of the
ordered pair for a square; for instance in the specification (a complete listing for
the machine follows the descriptions below), a constant function genrow is defined
with these properties:

genrow ∈ XY → P(SQUARE) ∧
∀ r.(r ∈ XY ⇒ genrow(r) = {r} × XY)

The specification states the type of the function, and it generates from the row
number a set of all the squares in that row. The column generator is almost
identical, but the output set has the column number as the second element in
each pair.

The square labelled SI in figure 4.2 is a sector index (the top left-hand square
of each sector), which aids the construction of a sector set for any square. The
constant corner maps any row or col number to that of the sector index, and
from this row and column, the whole sector can be generated by the function
sector. The union of this with the row and column is a simple definition in the
specification, although an RVM word will be defined to cover this.

Having generated our Constraint Zone, the relational image of these squares
with the relation grid will yield the subset of DIGIT that the square cannot be
assigned, and the complement of this set is paired with the square as the output
of the constant function available.

35

4.5. Case Study: Sudoku solver

With much of the work being done by functions, only one operation is required
at this stage, that which builds the initial version of possible. The abstract spe-
cification does this with a set comprehension, but the implementation refinement
makes use of the diamond operator as described in section 4.4.

The machine, then, is called czones and listed below. The notation m..n, where
m < n, refers to the set of natural numbers {m,m + 1, . . . , n}.

MACHINE czones
INCLUDES grids
CONSTANTS

row, col, genrow, gencol, corner, sector, available
DEFINITIONS

czone(r, c) =̂ genrow(r) ∪ gencol(c) ∪ sector(r, c)
PROPERTIES
row ∈ SQUARE → XY ∧
∀(r, c).(r ∈ XY ∧ c ∈ XY ⇒ row(r 7→ c) = r ∧

col ∈ SQUARE → XY ∧
∀(r, c).(r ∈ XY ∧ c ∈ XY ⇒ col(r 7→ c) = c ∧

genrow ∈ XY → P(SQUARE) ∧
∀ r.(r ∈ XY ⇒ row(r) = {r} × XY) ∧

gencol ∈ XY → P(SQUARE) ∧
∀ c.(c ∈ XY ⇒ col(c) = XY × {c}) ∧

corner ∈ XY → XY ∧ ∀ n.(n ∈ XY ⇒ corner(n) = n − (nmod 3) ∧
sector ∈ SQUARE 7→ P(SQUARE) ∧ ∀(r, c).(r ∈ XY ∧ c ∈ XY ⇒

sector(r, c) = (corner(r)..corner(r) + 2) × (corner(c)..corner(c) + 2))
available ∈ SQUARE 7→ P(DIGIT) ∧ ∀(r, c).(r ∈ XY ∧ c ∈ XY ⇒

available(r, c) = DIGIT − grid[czone(r, c)])
OPERATIONS
init possible =̂

possible := {(r 7→ c) 7→ V |
r ∈ XY ∧ c ∈ XY ∧ V ∈ P(DIGIT) ∧

(r 7→ c) ∈ SQUARE − dom(grid) ∧ V = available(r, c)}
END

The abstract version of the operation init possible is merely a static descrip-
tion of the completed set, but the implementation version is as follows. As this
works directly with a square as a maplet, it requires the “splitter” functions row

36

4.5. Case Study: Sudoku solver

and col to isolate the row and column for input to available.

init possible =̂
VAR S, s,V IN
S := SQUARE − dom(grid);
possible := {s :∈ S; V := available(row(s), col(s)) ⋄ s 7→ V}

END

Having obtained the set of blank squares S, this operation takes a choice of a
square s from S, applies the function available to it, and constructs a pair from
the square and its available set of values.

The diamond operator then forces backtracking to choose another square,
which is then paired with its own set of values, and so on until there are no
more unchosen squares. This results in a bunch of maplets, and as the operations
take place inside set brackets, a set is the final result.

Naturally the same output could be achieved with a loop, however the formal
semantics of a loop require a number of proof obligations relating to loop invariants
and termination. The PV version has no effect on state except for the assignment
at the end, the semantics ensure termination for a finite set, and all that should
be required is that the set produced is of the same type as possible.

4.5.3 Method
The above gives us the main elements of the static model, but we need to specify
the operations which will assign values to squares, update the grid and the function
possible, and deal with the situation where completion becomes infeasible.

We use one optimisation in the method, namely, we choose the next square
from those most constrained (i.e. those with fewest available values left to assign).
Constructing this provides a good illustration of the S ⋄ E facility.

The algorithm for “playing” the game is as follows:
1. Extract set of most constrained blank squares, along with their values (this

is a subset of possible).

2. Choose (non-reversibly) a square from the domain of this set. Remove this
entry from possible.

3. Choose a value from those available; this must be a reversible choice. Create
a pair from the square and value, and add it to grid.

4. Update the blanks in the constraint zone of the square, i.e. remove the value
just assigned from their available sets.

5. If any of the resulting sets are empty, the grid is now non-viable; in this
case, we must backtrack to step 3, restoring state along the way.

6. Otherwise, update possible itself with these new values.

7. Repeat until grid full.

37

4.5. Case Study: Sudoku solver

4.5.4 Algorithm expansion
1. Concentrating on the most constrained blanks simply seems most logical;

should a wrong choice be made, there will be fewer subsequent attempts
to work through. More sophisticated techniques would be able to reduce
the available values by other comparisons with the current state; our naïve
version does not apply all possible constraints, but instead allows the back-
tracking mechanism to take the strain.

2. The above being the case, it is likely that more than one square will be
returned, so one must be chosen to work with. A point which bears stressing
is that, if a solution exists at all from this stage, it can be found from any
of these squares. Faster from some than others, perhaps, though there is no
way of knowing which. So:

(a) The choice may as well be non-deterministic.
(b) The choice must not be reversible.

The latter point may well not be obvious at first glance (it can be tempting
to assume that any choice should be reversible). However, if none of the
values from the chosen square lead to a viable grid, then reversing will
simply cause another square from the set (if any) to be chosen. But this will
also fail, needlessly embarking on a fruitless and perhaps lengthy search, as
the ultimate non-existence of a solution from that configuration may take
some time to become apparent. If this is repeated every time there is a
choice of squares, the search space is expanded to an enormous degree. This
choice is an example of inappropriate use of a reversible choice, since there
is no division into “wrong” and “right” squares, and therefore nothing to be
gained from trying another one on failure.

3. The choice of value, on the other hand, is clearly critical: probably only one
will lead to a solution.; this should be the only reversible choice in the main
program. If no valid number exists, then a previous assignment must have
been wrong.

4. The assigned value is now no longer available to those blanks constrained
by the current square, so it must be removed from all of their “possible”
assignment sets.

5. This should always leave at least one remaining possible value for a square;
an empty set here indicates we cannot find a solution given this assignment.
This is the test for the reversibility guard, which will provoke backtracking.

6. The action guarded is updating the possible set (described in more detail
below).

38

4.5. Case Study: Sudoku solver

4.5.5 Most Constrained Squares
As described above, we have a function from each blank square to the set of values
available for it, called possible.

We would like to choose our next square from those with the smallest of these
sets. Our way of doing this is to build a set of such squares, and choose one
(non-reversibly as described). For the specification, one preliminary element is
a constant function mcn, which returns the size of the smallest set of available
numbers.

mcn ∈ (SQUARE 7→ P(DIGIT))→ N ∧
∀ poss.(poss ∈ SQUARE 7→ P(DIGIT)⇒

mcn(poss) = min({card(s) | s ∈ ran(poss)}))

Owing to the implementation structure of sets in the RVM, a shortcut can be
utilised for this, though a formal description is required at this stage.

It would be useful if B had a general facility for extracting the first and second
parts of a pair; but as this is not the case we need to define constants to do this
for both an element of grid and one of possible, as they are of different types. This
makes four functions in all (in RVM we can collapse this to a more general pair
of FIRST and SECOND operations). For example, to extract the second part of
an element of possible, thus returning a set of type DIGIT, we define the constant
poss2 with properties as follows.

poss2 ∈ SQUARE × P(DIGIT)→ P(DIGIT) ∧
∀(s,V).(s ∈ SQUARE ∧ V ∈ P(DIGIT) ∧ s 7→ V ∈ SQUARE × P(DIGIT)⇒

poss2(s 7→ V) = V)

And similarly for the other three, which are grid1, grid2, and poss1.
Along with row and col, this makes three pairs of functions we have had to

define to perform the same actions on a pair. What would be a good facility for
RB0 would be a polymorphic version of pair-splitting functions which worked on
any type, the way set union or maplet construction work on sets or elements of
any type. In section 5.4, we will assume the existence of such things, to make the
correspondence with RVM code clearer. In this section we use the differentiated
definitions to remind ourselves which kinds of objects we are dealing with.

The operation itself, getsquares, in the abstract specification uses ordinary set
comprehension to describe the required set of squares.

mcset ←− getsquares =̂
mcset := {x | x ∈ possible ∧ card(poss2(x)) = mcn(possible)}

An implementation-level refinement which more closely resembles the final code is
in RB0, using non-deterministic assignment from a set, a stand-alone guard and

39

4.5. Case Study: Sudoku solver

the diamond construct:

mcset ←− getsquares =̂
VAR x, n IN

n := mcn(possible);
mcset := {x :∈ possible;

card(poss2(x)) = n =⇒ skip ⋄ x}
END

This uses a guard to “filter” out those squares whose associated sets have the
minimum number of members, the relevant part being

card(poss2(x)) = n =⇒ skip ⋄ x

Should the cardinality be other than n, the guard ensures backtracking to make
another choice of x. So only those x for which the set meets the condition will be
in the output set.

4.5.6 Machine moves
We look at our next machine, at the level just below top-level, which we call moves.
It encapsulates most of the elements of the method, including those discussed
above.

After we construct our set of most constrained squares, the next stage is to
make a non-reversible choice from it. This being the case, it might be noted that
there is in fact no need to construct this set — the first element x to meet the
condition in the above operation would do as well as any other. But since our
purpose is more illustrative than to provide a fully-optimised algorithm, we let it
stand.

The usual translation of non-deterministic assignment from a set (:∈) is as a
reversible choice, which is not wanted here for reasons explained earlier (page 38).
So there is a certain notational problem in specifying this. For now we will use
the substitution

x := choice(S), where for any set S, choice(S) ∈ S.

where choice(S) is a non-deterministic choice from the set S, but the corresponding
translation into RVM is not reversible.

As we have seen the more important peripheral aspects of the specification
machine, we go straight to the implementations of the operations, the abstract
versions not being particularly edifying at this stage.

The operation nextup takes the output from getsquares, and makes a non-
reversible choice of square + set of values, which is then the input for the operation
assign; this makes a reversible choice of value from the set of values, constructs
a maplet of square + value, and adds it to grid, the set of filled-in squares. This
square + value is stored in the machine variable assigned.

40

4.5. Case Study: Sudoku solver

The next task is to update those elements of possible which pertain to the
blanks in the constraint zone of assigned, as its value is now no longer available
to them.

OPERATIONS (extract from Implementation movesI)
mcset ←− getsquares =̂
VAR x, n IN

n := mcn(possible);
mcset := {x :∈ possible;

card(poss2(x)) = n =⇒ skip ⋄ x}
END;

nx←− nextup (mset) =̂
VAR x IN

x := choice(mset);
possible := possible − {x};
nx := x

END;

assign (nx) =̂
VAR n IN

n :∈ poss2(nx);
assigned := grid1(nx) 7→ n;
grid := grid ∪ {assigned}

END;

update possible =̂
VAR x,U, upd IN

U := czone(row(grid1(assigned)), col(grid1(assigned)))◁ possible;
IF U , ∅ THEN
upd := {x :∈ U ⋄ poss1(x) 7→ poss2(x) − {grid2(assigned)}};
∅ < ran(upd) =⇒ possible := possible <+upd

END
END

The method of update possible here involves extracting the value from as-
signed with grid2(assigned); then use domain restriction on possible with the set
of blanks in the constraint zone of assigned to produce the subset of possible
pertaining to those blank squares.

41

4.6. Summary

It is possible that the square just assigned is the last blank in its constraint
zone, and no updating will be required, so the next step is only carried out if the
set obtained is not empty.

We now construct a new set from this, where all the sets of values have had
the just-assigned value removed if it was present, and this is the updated set that
needs to be written to possible. However, if one of these sets of values is now
empty, one square has no possible assignments and completion of the grid is no
longer feasible. So this condition is guarded. If it is the case that the empty set is
in the range of the updates, the machine reverses to the point at which the choice
of value was made, the line

n :∈ poss2(nx)

in assign, to choose another value (if any remain).
If all is well and there are no empty sets, we use functional override to update

the set possible.
The remaining task would be to call these operations in a top-level machine,

to make a move and update the status (checking if the game was complete). The
specified implementation would need to work via local variables, along these lines:

mcset ←− getsquares;
nx←− nextup(mcset);
assign(nx);
update possible

The RVM translation could perhaps be optimised to use something more stream-
lined, analogous to

assign(nextup(getsquares));
update possible

This constitutes one step of the solution — a move, as we characterise it. There
will thus be a loop which repeats moves to fill the grid up. If an infeasibility is
encountered, the first reversal will choose another value for the square, but if there
are none left, the reversal must continue back to the last loop, to choose another
value for the square that was assigned in that. It is possible that a whole branch
of paths will prove infeasible, and the grid must go back through several loops to
an earlier stage to choose another value.

4.6 Summary
In this chapter, we have described the changes in B0 and its equivalent GSL,
which will provide the functionality required in RB0. This has mostly been GSL-
based, but with certain AMN-style constructs, e.g. IF-THEN conditionals, and
VAR declarations to aid readability. These, along with loops, will ultimately form
part of RB1. Currently RB0 is in a slightly hybrid state in this regard, and the

42

4.6. Summary

constructions used in this thesis are summarised in Appendix B. PV constructions
have also been described, the foregoing achieving parts of Objective 2.

The use of the introduced constructs has been demonstrated in a formal setting
in a number of small examples and the development of a larger-scale one, achieving
parts of Objective 3 (the remainder of these objectives is addressed in the next
chapter).

Having explored the structure of reversible specifications, in the next chapter
we examine the target execution language for them, describing the extensions that
make Forth into RVM-Forth; and in particular translate the Sudoku machines in
section 5.4.

43

Chapter 5

An Implementation Platform for
our Ideas (The RVM)

The basic features of Forth have been extended in a number of ways to render
it suitable for the implementation of a Reversible Virtual Machine (RVM). Some
of these extensions are to the interface — new facilities and constructs for use
in programming and some are internal changes which allow for simulated reverse
computation.

There are also certain extensions to allow implementation from a more abstract
specification level, in particular a facility for defining sets and sequences, and
performing operations on them. These operations include some non-deterministic
ones, choice from a set for instance, which may or may not be reversible, and
assignment from a set (this will generally be reversible).

A facility for local variables is provided, which is not part of Standard Forth,
although some custom systems provide such a facility. However in this case the
reversibility must be taken into account.

5.1 Differences in Interface and Programming
Constructs

Following the discussion of guards and choice in the previous chapter, one would
expect these to be provided. The code for example (4.3), page 28, with a choice
between two assignments, and a guard, is as follows (with a small addition):

: T1 <CHOICE 1 to X
[] 2 to X CHOICE> X . X 2 = --> ;

The addition is X . which simply prints out the current value of X. The output
is either 2, or 1 followed by 2, as the assignment of 1 fails the condition in the
guard.

T1 1 2 ok

44

5.1. Differences in Interface and Programming Constructs

In this case the implementation runs the choices in order from first to last; in
the sense that this order is arbitrary when writing the code, the construct is
non-deterministic. However, a random running order can be obtained with a
wrapper using the CASE statement and the RANDOM-CHOICE word; this is shown in
the schemas in section 7.6.2.

The general form for the choice construct, then, is

<CHOICE S1 [] S2 [] ... [] SN CHOICE>

where there are N choices of program Si, 1 ≤ i ≤ N.
The guard is written as --> . In the example above, the action after the

guard is merely an unwritten skip, but normally code that required the guard to
be true would follow it.

Suppose we alter the code for program T1 to

: T2 <CHOICE 1 to X
[] 2 to X CHOICE> X . X 3 = --> ;

This means that the guard cannot be true whatever runs prior to its invocation,
so the output is

T2 1 2 ko

The ko at the end is a signal that no feasible path was found after every alternative
had been tried.

The example “Send More Money” (RB0 code in figure 4.1) translates into a
RVM program of a very similar structure, included as Appendix E.

In the translations from RB0 examined in this chapter, we normally use the
RVM upper-case convention for operation names and variables; so a function
sector becomes RVM SECTOR, an operation getsquares becomes GETSQUARES, and
a variable possible becomes POSSIBLE. Also, underscores will become hyphens.
There are a few exceptions to this, but we will quote the relevant RB0 alongside
the translation to avoid any confusion.

Example (4.2), page 31, to search for an index matching a value in an array,
would be specified with this RB0 (renaming the operation more descriptively),
where s is the size of the array:

where in array(e) =̂
i :∈ 1..s;
a[i] = e =⇒ skip

This converts to the following code, with some global set-ups for an array —
with s = 10 — and an index variable. The target value is assigned to the local
variable N (corresponding to e in the RB0), and the program must find this value
on the stack. The value of the index found is left on the stack with INDEX 1LEAVE.

10 VALUE-ARRAY A
0 VALUE INDEX
HERE 10 , 45 , 25 , 78 , 25 , 78 , 33 , 78 , 25 , 69 , 44 , to A

45

5.1. Differences in Interface and Programming Constructs

: WHERE-IN-ARRAY (n -- n)
(: VALUE N :)
1 10 .. RANDOM-CHOICE to INDEX
INDEX of A N = -->
INDEX 1LEAVE ;

If there is more than one instance of the goal value in the array, the value of
the index at the first one found is returned, so we have two locations for 78. A
search for a number not in the array will exit with the message ko.

A series of sample runs should, then, look like this:

69 WHERE-IN-ARRAY . 9 ok
33 WHERE-IN-ARRAY . 6 ok
78 WHERE-IN-ARRAY . 5 ok
78 WHERE-IN-ARRAY . 7 ok
88 WHERE-IN-ARRAY . ko

However, actually running this can give the last two lines as

78 WHERE-IN-ARRAY . 7 ok
88 WHERE-IN-ARRAY . 3 ok

But we know 88 is not in the array, so what has happened? A feature of the
internal organisation of the RVM is that a successful search for a value in this
way will still leave choices to be taken on the history stack, along with the value
of the relevant variable at the time. This is precisely the behaviour required in
prospective value computations, which take place in a garbage-collecting wrapper,
and for general reversibility in a larger context.

In this case, having found a location for 78, the index value is left on the stack,
but the remaining choices are still kept. A search for 88 or any number not in the
array now results in all the locations being searched; but when nothing is found,
reverse execution continues, with the local variable having its last value restored,
and another location of 78 being returned.

Running a stand-alone guarded command like this sequentially is less likely
in a program, but can certainly arise interactively, as we see. The easiest way
around this is to construct a wrapper for the search; the following example is an
S ⋄1 E construct, which we describe in more detail on page 48 in section 5.1.1,
after describing the S ⋄ E implementation itself.

: FIND-ELEMENT (n -- n)
(: VALUE N :)
INT { <COLLECT N WHERE-IN-ARRAY TILL CARD SATISFIED> } CHOICE ;

This leaves at most one value on the stack, and leaves no unresolved choices on
the history stack. Thus we can interactively produce

78 FIND-ELEMENT . 3 ok
55 FIND-ELEMENT . ko

46

5.1. Differences in Interface and Programming Constructs

5.1.1 Prospective Values Implementation
We can demonstrate the S ⋄ E construct using the WHERE-IN-ARRAY program, to
find all the locations of a certain value in the array. The RB0 for this, based on
example (4.2), is

findall =̂ {where in array(e) ⋄ i}
The general form for the construct in RVM-Forth is

<set-type> { <RUN S E RUN> }

So the bunch of results is returned in a set. We examine the construction of sets
and the available operations in more detail shortly, in section 5.1.2 — along with
the stack signatures; those in the following few examples are not crucial. The con-
struction can also be used without an enclosing set for deterministic computations
where a single result is expected.

If S leaves its value for E on the stack, there is no need to do it explicitly as
here. The code to find all the index locations, then, is
: FINDALL (n -- n.P, a set of positions)

(: VALUE N :)
INT { <RUN N WHERE-IN-ARRAY RUN> }
1LEAVE ;

And some sample runs below — the word .SET prints a set.
25 FINDALL .SET {2,4,8}ok
78 FINDALL .SET {3,5,7}ok
88 FINDALL .SET {}ok

An empty set is a perfectly valid return for the program in this case, so there is
no ko if the value is not in the array.

An RVM program constructed literally from the specification in example (4.3),
page 32 is as follows. The RB0 for this is

o←− flatten(S) =̂
VAR x, s IN
o := {e :∈ S; x :∈ e ⋄ x}

END

The type of set S is obtained with DEMO-ELEMENT, and as 1LEAVE leaves the con-
structed set on the stack, no assignment to an output variable like o is necessary.
An automated translation schema would currently produce something along these
lines.
: FLATTEN (x.P.P -- x.P)

(: VALUE S :)
NULL VALUE E NULL VALUE X
S DEMO-ELEMENT { <RUN

S CHOICE to E E CHOICE to X X
RUN> } 1LEAVE ;

47

5.1. Differences in Interface and Programming Constructs

It uses local variables x and s to match those in the specification; however, these
are not really necessary as the stack can be used to store the values that CHOICE
chooses. We can shorten the program by removing these (and the optional local
S) in this way:

: FLATTEN (x.P.P -- x.P)
DUP DEMO-ELEMENT { <RUN CHOICE CHOICE RUN> } NIP ;

The NIP removes an extraneous value from the stack, leaving only the set reference.
The output and the sort of set that it operates on are shown here on a subset

of a power set PSET:

PSET .SET {{3,4,5},{4,6,9},{5,6,7}}ok
PSET FLATTEN .SET {3,4,5,6,7,9}ok

A variant of this form collects results until some criterion is satisfied, for in-
stance a specific value is returned, or the set of results reaches a certain size. The
form for this is

<COLLECT S TILL C SATISFIED>

in which S is an operation producing a result (generally one of several possible),
and C is a condition on the set of results so far collected, returning a flag. When
the flag is true, SATISFIED> stops the collection.

As this would be used inside a set constructor, the size of the set can be a
condition — in particular a non-empty set will indicate that one result has been
found. When one is all that is required, this provides a useful construct, formally
S ⋄1 E, which is implemented as

{ <COLLECT S TILL CARD SATISFIED> }

The type of the set would precede the first { . This provided the wrapper in the
WHERE-IN-ARRAY example on page 46.

The use of the provisional value construct without a set construction, for a
single deterministic output, can be thought of as ascertaining what the result
would be if the computation were to be run. Any state change, for instance
assigning to a global variable, is undone when the reversal takes place. An example
of this use is shown in section 6.1, page 70.

5.1.2 Sets and sequences in the RVM
The general declaration for creating a set in RVM is

<type> { <elem>1 , <elem>2 , <…> , <elem>n }

where the <elem>i are the values or declarations of elements. The comma ,
is a word itself, which reserves storage in the set for each element. Thus the
declaration

INT { 2 , 3 , 5 , 7 , 11 , 13 , }

48

5.1. Differences in Interface and Programming Constructs

would create the set {2, 3, 5, 7, 11, 13} and leave a reference (to the heap) for the
set on the stack. For contiguous sets of integers, there is a shortcut, which is the
postfix version of the notation m..n; so 1 9 .. creates the set of integers from 1
to 9.

The basic elemental types specified in <type> are INT and STRING. We have
operations for set union, intersection and subtraction; these are respectively (for
sets S and T)
S T \/ S T /\ S T \

The postfix as usual requires the arguments in the same order as the infix versions.
An empty set of a specific type can be created with a declaration without any
elements, and sets can be assigned to variables using VALUE, or constants, in the
usual way .

To add or subtract a single element from a set, rather than create a new set
with the element and use union or set subtraction, we provide the operations
ADD-ELEMENT and SUBTRACT-ELEMENT, so obtaining
INT { 2 , 3 , 5 , 7 , 11 , 13 , } 17 ADD-ELEMENT .SET (enter)
{2,3,5,7,11,13,17} ok

While order of elements is not important in set theory, the implementation sorts
the elements numerically or alphabetically, or by size; this is mainly to facilitate
searching, for instance checking membership with IN as in the following, which
has assigned the name P to the set of primes above.
13 P IN . (enter)
-1 ok

More complex kinds of sets and elements are possible; for instance ordered pairs
of elements can be created with the |-> family of operations. In certain environ-
ments, this will deduce the types of the pair elements, however in others it may
have to be augmented with type suffixes, for instance
" Bob" 4681 |->$,I

uses the operator with suffix $,I to create a (string, integer) pair. Pairs are also
created when two sets have their cross product generated with PROD

STRING { " Bob" , " Alice" , } VALUE S 3 4 .. VALUE N
S N PROD .SET (enter)
{(Alice,3),(Alice,4),(Bob,3),(Bob,4)}ok

We can generate the power set of a set with POW, as in
S POW .SET (enter) {{},{Alice},{Bob},{Alice,Bob}}ok

However, POW is more often used as a type specifier in building sets, along with
PROD.

A set of maplets can be treated as a relation and perhaps a function. There are
operations DOM, RAN, and APPLY to extract the domain and range, or to implement
function application. Supposing we defined a function from names to employee
numbers1, then these operations yield

1Such numbers, like telephone numbers, would not normally be treated as integers.

49

5.1. Differences in Interface and Programming Constructs

STRING INT PROD { " Ponsonby" 668 |-> , " Blenkinsop" 792 |-> ,
" Proust" 333 |-> , } VALUE EMPS (enter) ok
EMPS .SET (enter) {(Blenkinsop,792),(Ponsonby,668),(Proust,333)}ok
EMPS " Ponsonby" APPLY . (enter) 668 ok
EMPS RAN .SET (enter) {333,668,792}ok
EMPS DOM .SET (enter) {Blenkinsop,Ponsonby,Proust}ok

Note that the pair-building operator requires no extra type information in this
situation, having “deduced” the types from the set specifier STRING INT PROD.

Such constructs can be nested to arbitrary depth. A function from a pair of
integers to a set of integers, say, that is of type N×N→ P(N) could be encapsulated
in a set of type P((N ×N) × P(N)). An element of such a set would have the form

((n, n), {v1, v2, . . . , vn})

The postfix version of such a type in a declaration is

INT INT PROD INT POW PROD { ...

The final { here corresponds to the initial P, since { obtains the type for the set
it is about to build from an empty set on the stack. We also note no brackets are
required in the postfix syntax as a set P(N × (N × P(N))) would have had quite a
different declaration.

Stack signatures for sets

The postfix form motivates the syntax for sets in stack signatures; the basic types
were listed in table 2.4, page 17. Additionally the symbols * and P are used
to represent cross-product PROD and power set POW, while the components are
separated by full stops for readability. So a set with elements of type INT STRING
PROD INT POW PROD would be represented in a stack comment by

n.$.*.n.P.*.P

The final P defines the parameter as a set. The stack signature for FLATTEN in the
previous section has

(x.P.P -- x.P)

which means that a set of sets of arbitrary type is the input, and a set of elements
of that type is the output.

The parameters can be given labels to facilitate providing additional inform-
ation, for instance FLATTEN could be described with

(s1:x.P.P -- s2:x.P, s2 is general union of all sets in s1)

50

5.2. Internal Features

5.2 Internal Features
Detailed discussion of these would be too specialised for our purposes; we merely
indicate briefly the main features to support the extensions described above.

The most important of these is the history stack, which accepts data required
to restore earlier states of the system during reverse execution. Normal forward
execution uses a return stack and a parameter stack (the normal user stack), and
a frame pointer for local variables. The fundamental operations which deal with
these structures are coded in Assembly language, while the higher-level operations
are coded in Forth from these.

The basic operations include a number of words which manipulate memory
and the system structures; most of these require a reversible version to support
the reversible aspect. This version will typically be augmented to interact with
the history stack, storing the actions undertaken in some way such that state can
be subsequently restored.

Garbage collection is something of an issue where data structures such as sets
are being manipulated; often temporary sets are created during the calculation
of a result, perhaps the construction of another set or data structure. These
temporary sets are then garbage, while the result is not, and would normally be
preserved for reverse execution. Such data structures are accessed by reference,
and the contents must be protected by copying them (e.g. by assignment to a
variable).

The usual way to ensure garbage is reliably collected is to employ a three-stage
process:

1. Run the calculation in forward mode.

2. Evaluate and copy the result or set of results.

3. Reverse the computation to collect all garbage generated by step 1.

We might compare this with Bennett’s three-tape Turing machine described in
section 3.1. The reverse computation here also frees history stack locations, and
restores any variables to their original values.

The above is exactly the structure S ⋄ E, so this can be used as a wrapper
for complex computations to ensure that garbage is collected after the calculation
has been run and any results saved.

5.3 Stack Use when translating to RVM from B
(compared to C)

Here we return to the simple example from section 2.1.8, expanding the example
to three small operations which are used in a calling machine. The development
is included as Appendix D, but we will use simplified fragments in this section.

B operations can have a number of output parameters, whereas C functions
only return a single value, and therefore must cope with B operations using passing

51

5.3. Stack Use when translating to RVM from B (compared to C)

and calling by reference. So in particular we look at how the use of a stack suggests
a simpler parameter-passing mechanism for B operations.

We use a slightly altered version of the operation S, along with simple opera-
tions T and U, which are then used sequentially by the calling machine.

The original operation was

b, c←− S(a) =̂
IF a > 4 THEN

b := 3a;
c := 5a

ELSE
b := 3a

END

This can be translated into RVM using a similar model to the C translation
in section 2.1.8, with pointers and referencing. In the following, the n^ in the
stack signature means that the address of an integer variable should be put on
the stack; these would be declared elsewhere and, unlike in C, RVM variables are
always initialised to some value.

: S (n n^ n^ --)
(: VALUE a VALUE^ b VALUE^ c :)
a 4 > IF

a 3 * to b
a 5 * to c

ELSE
a 3 * to b

THEN ;

So given declarations

0 VALUE B 0 VALUE C

where B and C are initialised to 0, the above operation would be invoked thus:

7 addr B addr C S

The word addr puts the address of the following variable on the stack (one example
of necessary prefix usage in RVM). After S runs, the two variables would have the
values 21 and 35 respectively. However if 3 was substituted for 7 in the invocation,
B would be 9 while C would remain as 0.

However, the RVM need not, as we mentioned earlier, be constrained to para-
meter passing by reference. Using the stack for input and output values (with
local variables to facilitate manipulation inside the operation), the above opera-
tion could be translated in this way:

52

5.3. Stack Use when translating to RVM from B (compared to C)

: S (n -- n n)
(: VALUE a :)
0 VALUE b 0 VALUE c
a 4 > IF

a 3 * to b
a 5 * to c

ELSE
a 3 * to b

THEN b c ;

There are now no addresses involved, nor any external variables — the two output
values are merely left on the stack. The variables b and c are locally declared and
initialised. In many cases, they would not actually be necessary; certainly this
particular example could be optimised to remove them. On the other hand, where
more complex manoeuvres take place (as in the next example) they will be an aid
in keeping track of what is occurring.

Also, when considering automated translations, a consistent way of handling
operation declarations and their actions would be to always use locals, and then
use other means (perhaps also automated) to optimise the resulting code.

5.3.1 Calling Imported Operations
In B, operations such as the one above can be called from a machine or implement-
ation which imports them, and sequentially composed (a semicolon is the symbol
for this). To illustrate this point, we first define two extra one-line operations,

y←− T(x) =̂ y := x2

d ←− U(e, f) =̂ d := e + f

Now we construct an implementation which imports the one containing S, T
and U, containing an operation V, which calls these three operations. The VAR
construct introduces and scopes local variables.

r ←− V(a) =̂
VAR p, q, s IN
p, q←− S(a);
s←− T(q);
r ←− U(p, s)
END

The end result r of this is 3a + 25a2 but only if a > 4. As one might expect,
the B-Toolkit is unable to discharge its proof obligations in this respect, which
can be exemplified by

a ≤ 4⇒ q ∈ N

53

5.4. Case Study: Sudoku solver revisited

There are a further three proof obligations which cascade from this. So here, if
the guard fails, the very type of the local variable q is called into doubt. The C
code produced from this is

void V(int *r, int a) {
int p, q, s;
S(&p, &q, a);
T(&s, q);
U(r, p, s);

}

As the C uses pass-by-reference, there is now a layer of additional complexity in
that addresses must be passed to the inner operations (and the theoretical passing
of &(*r) in the last line becomes simply r). Naturally, as C does not initialise the
locals, the output when the guard is false is undefined.

A translation into RVM following this pattern would be

: V (n n^ --)
(: VALUE a VALUE^ r :)
0 VALUE p 0 VALUE q 0 VALUE s
a addr p addr q S
q addr s T
p s addr r U ;

However a more straightforward version which simply leaves the output on the
stack is possible. The original operations are also translated in this way, so they
do not require addresses to be passed, again leaving their outputs on the stack.

: V (n -- n)
(: VALUE a :)
0 VALUE r
0 VALUE p 0 VALUE q 0 VALUE s
a S to q to p
q T to s
p s U to r r ;

This would be possible to rework using the stack only, without locals; but it would
be a considerable undertaking to design an automated system that could work out
the necessary manipulations to interleave the outputs and inputs correctly.

5.4 Case Study: Sudoku solver revisited
In section 4.5 we developed a pseudo-B specification for a Sudoku program, with
some implementation-level specifications in RB0. We now translate some of these
into RVM to demonstrate how readily they can map onto RVM code without
requiring extensive reworking of the data model, removal of non-determinism, or
unnecessary loops. The reversible facilities are also demonstrated.

54

5.4. Case Study: Sudoku solver revisited

The initial state of the game is with a partly-filled grid; we required ways to
generate the constraint zone for each blank square and the first configuration of
the set possible, where each element is a pair comprising a square (itself a pair of
co-ordinates) and a set of n possible values it can take, that is ((r 7→ c) 7→ V),
where V = {v1, v2, . . . , vn}.

In the machine czones on page 36 we had a number of short functions defined as
constants to generate the components and achieve the stages in building possible.
Unpacking a square into its row and column is done in RVM with FIRST and
SECOND, which work on pairs of all types, as they find the type information within
the pair.

The next two functions are those which generate a complete row or column
given its number (output is a set of maplets). The row generator for instance has
this as its main line:

genrow(r) = {r} × XY

where XY is the set 0 to 8 for co-ordinates (defined in RVM as : XY 0 8 .. ;).
This translates into an RVM operation GENROW with the code:

: GENROW (n -- n.n.*.P)
(: VALUE r :)
INT { r , } XY PROD ;

In this, the word INT is the type of the set, the comma in the set brackets stores the
value r which is on the stack — creating the set {r}, and the word PROD generates
the cartesian product of this with XY. The output from this operation looks like
this

5 GENROW .SET
{(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(5,7),(5,8)} ok

The GENCOL operation is very similar, but with the constant as the second element
in the pair.

Then the sector is produced from the row and column, using the utility corner,
in this way

sector(r, c) = (corner(r)..corner(r) + 2) × (corner(c)..corner(c) + 2))

The RVM translation is

: SECTOR (n n -- n.n.*.P)
(: VALUE r VALUE c :)
r CORNER r CORNER 2 + ..

c CORNER c CORNER 2 + .. PROD ;

This is a case where use of the stack commands would simplify matters a little,
as

r CORNER r CORNER

55

5.4. Case Study: Sudoku solver revisited

can become r CORNER DUP with the same effect.
The union of the row, column and sector sets produced above creates the Con-

straint Zone; the definition in the specification (being function-like in structure)
also maps onto a straightforward operation in RVM.

: CZONE (n n -- n.n.*.P)
(: VALUE r VALUE c :)
r GENROW c GENCOL \/ r c SECTOR \/ ;

Now the set of digits not used in this constraint zone is required as the possible
assignments to the square (the set of available numbers for the square). Construc-
tion of this set involves the complement of the relational image of the constraint
zone, specified earlier as

available(r, c) = DIGIT − grid[czone(r, c)]

Converted for postfix, it maps exactly to RVM-Forth:

: AVAILABLE (n n -- n.P)
(: VALUE r VALUE c :)
DIGIT GRID r c CZONE IMAGE \ ;

Example output, using the square (3,2) with a sample puzzle loaded, would be

3 2 AVAILABLE .SET (enter)
{1,2,5,8,9} ok

All that remains in the machine czones is to initialise the set possible, pairing
each blank square with the set of its available values. This is the operation
init possible in the specification, with RB0 as follows.

init possible =̂
VAR S, s,V IN
S := SQUARE − dom(grid);
possible := {s :∈ S; V := available(row(s), col(s)) ⋄ s 7→ V}

END

In this, S is the set of blank squares. As noted, RVM has operations to extract
the elements of a pair whatever its type (they leave either a scalar value or an
address on the stack); these are FIRST and SECOND, so they are used instead of
row and col. We will also assume the existence of corresponding polymorphic
functions in RB0, so the penultimate line in the above may be written

possible := {s :∈ S; V := available(first(s), second(s)) ⋄ s 7→ V}

and we use these in subsequent extracts from the specification to replace poss2()
and the other definitions.

56

5.4. Case Study: Sudoku solver revisited

: INIT-POSSIBLE (--)
(: :) 0 VALUE S 0 VALUE s 0 VALUE V
XY XY PROD GRID DOM \ to S
INT INT PROD INT POW PROD {

<RUN
S CHOICE to s
s FIRST s SECOND AVAILABLE to V
s V |->

RUN> } to POSSIBLE ;

The translation of the PV semantics follows the pattern described in section
5.1.1 above.

5.4.1 Moves
We progress to filling in the grid in the game. The first requirement is to obtain
the set of most constrained squares — one shortcut we have available stems from
the fact that, internally, the sets in RVM are stored in order. So they have their
smallest element as the first one, which can be picked out automatically (by calling
ELEMENT on it). The size of this corresponds to n in the RB0 below, and the call
to mcn is replaced accordingly in the code which follows.

mcset ←− getsquares =̂
VAR x, n IN

n := mcn(possible);
mcset := {x :∈ possible; card(second(x)) = n =⇒⋄ x}

END

The code now uses the shortcut to find the size of the smallest set, and then
builds the required subset of possible. This is left on the stack, so a separate
assignment to an output variable mcset is not required.

: GETSQUARES (-- n.n.*.n.P.*.P)
(: :) 0 VALUE n 0 VALUE x

POSSIBLE RAN ELEMENT CARD to n
INT INT PROD INT POW PROD {

<RUN
POSSIBLE CHOICE to x
x SECOND CARD n = --> x

RUN> } ;

From the set produced by this, the operation nextup chooses (non-reversibly)

57

5.4. Case Study: Sudoku solver revisited

one square/ values pair, and subtracts it from possible. The RB0 is

nx←− nextup (mset) =̂
VAR x IN

x := choice(mset);
possible := possible − {x};
nx := x

END;

The code leaves x directly on the stack.

: NEXTUP (n.n.*.n.P.*.P -- n.n.*.n.P.*)
(: VALUE mset :) 0 VALUE x
mset PCHOICE to x
POSSIBLE x SUBTRACT-ELEMENT to POSSIBLE x ;

The word PCHOICE in this context works as a non-reversible choice. It is in fact
a probabilistic choice, with a number of other capabilities, and an accompanying
reversible version PCHOICE . We posited a function choice to represent this in
RB0, which is used in the version above.

Now one value must be chosen reversibly from the set to actually assign to the
square; the specification operation does this with its argument nx and one local
variable, n.

assign (nx) =̂
VAR n IN

n :∈ second(nx);
assigned := first(nx) 7→ n;
grid := grid ∪ {assigned}

END;

A direct translation of this would be as follows

: ASSIGN (n.n.*.n.P.* --)
(: VALUE nx :) 0 VALUE n
nx SECOND CHOICE to n
nx FIRST n |->P,I to ASSIGNED (Needs type for constructor)
GRID ASSIGNED ADD-ELEMENT to GRID ;

Optionally, a 0LEAVE can be added at the end. Unfortunately, neither of these
work when the program reverses; the problem is to do with a trade-off between
efficiency and general applicability in the part of the RVM mechanism which deals
with frame restoration on reverse operation. The reversal from a subsequent point
will result in the CHOICE being made again, so the stack frame for this whole
operation should really be restored. But unless specified, it may not be, as it
could in general prove expensive computationally.

58

5.4. Case Study: Sudoku solver revisited

As documented in the RVMmanual [27], the problem occurs because the choice
occurs after the parameter nx has been instantiated, however not all of the stack
is restored; probably only the top two items in the above example. So n and the
set created by nx SECOND are restored, but not the value of nx itself. The call to
FIRST therefore attempts to access memory location 0, and a segmentation fault
invariably occurs.

There are a number of ways around this, the simplest being to add 0LEAVE
to the end of the definition. This is the reversible version of 0LEAVE, and ensures
stack restoration. If concise local syntax is being used, i.e. (: nx :), the word
FRAME-RESTORE has the same effect.

A further possibility is to add a local variable to store the FIRST of nx (the
square), which is not in the specification. The code is then
: ASSIGN (n.n.*.n.P.* --)

(: VALUE nx :) 0 VALUE n
nx FIRST VALUE SQ (New local variable)
nx SECOND CHOICE to n
SQ n |->P,I to ASSIGNED
GRID ASSIGNED ADD-ELEMENT to GRID ;

So in this case, a simplistic default translation using only non-optional code fails.
The compiler could be made smart enough to spot the presence of a potential
reversibility problem and adjust the stack frame restoration behaviour accordingly,
perhaps if more than two stack items were in play. Then it could ensure that
FRAME-RESTORE is added.

Sometimes potential optimisations involve a substantial departure from the
RB0 version. For instance in ASSIGN, the following also achieves the required re-
versible outcome quite neatly without the variable n, or any additional restoration
instructions.

: ASSIGN (n.n.*.n.P.* --)
(: VALUE nx :)
nx FIRST nx SECOND CHOICE |->P,I to ASSIGNED
GRID ASSIGNED ADD-ELEMENT to GRID ;

But there is no way to specify this in this form. An ad hoc workaround might be
possible using a function to encapsulate the non-deterministic choice from a set,
however this is surprisingly involved — requiring a separate version for each type
of set and running into problems with assigning from the empty set.

Such a facility would possibly be useful in RB0, to use the set choice anonym-
ously without requiring an explicit assignment (as a direct argument to another
operation or function), as this translates simply into RVM. However, like the pair
extraction functions first and second, it would have to be polymorphic in nature
such that the output would transparently be of the same type as the elements of
the set without further user intervention. We have already used such a construct
of a non-reversible choice in the substitution choice, corresponding to one of the
uses of the RVM PCHOICE.

59

5.4. Case Study: Sudoku solver revisited

5.4.2 The Update procedure
As we saw in the specification, the update needs to remove the value just assigned
from the blank squares which are no longer entitled to it. So the first thing is to
generate the subset of POSSIBLE which needs updating. This is done by finding
the constraint zone of the square with CZONE, and performing a domain restriction
on POSSIBLE. If the resulting set is not empty — which would mean that all the
squares in the zone have been filled — the operation now builds a new set of this
type to update POSSIBLE. The crucial part is the test for the empty set in the
range, which would mean that at least one square has no more possible values,
completion is infeasible, and the program must reverse. Otherwise, POSSIBLE is
updated by functional override.

update possible =̂
VAR x,U, upd IN

U := czone(row(first(assigned)), col(first(assigned)))◁ possible;
IF U , ∅ THEN
upd := {x :∈ U ⋄ first(x) 7→ second(x) − {second(assigned)}};
∅ < ran(upd) =⇒ possible := possible <+upd

END
END

In the code below, the word <| denotes domain restriction, while the word
<+ denotes functional override. ASSIGNED is a variable holding the last assigned
value, and UNPAIR leaves the first and second elements in that order on the stack
(a minor abbreviation for some repetitive code). We use SUBTRACT-ELEMENT rather
than building a set from the value and using set subtraction.

: UPDATE-POSSIBLE (--)
(: :) 0 VALUE U 0 VALUE upd 0 VALUE x
ASSIGNED FIRST UNPAIR CZONE POSSIBLE <| to U
U ?{} NOT IF

INT INT PROD INT POW PROD { <RUN
U CHOICE to x
x FIRST x SECOND ASSIGNED SECOND SUBTRACT-ELEMENT |->

RUN> } to upd
INT { } upd RAN IN NOT -->

POSSIBLE upd <+ to POSSIBLE THEN ;

The remaining program deals with the initial puzzle loading and set-up (and
the display interface), and with the loop that runs each step, or “move”. Using
the optimisation suggested on page 42, we have the code

: STEP (--)
GETSQUARES NEXTUP ASSIGN UPDATE-POSSIBLE ;

60

5.5. Reversible Random Number Generator

: SOLVE (-- n.n.*.n.*.P)
BEGIN

GRID CARD 81 <
WHILE

STEP
REPEAT ;

A complete listing with initialisation from a file, running and printing out code
is included as Appendix C.

5.5 Reversible Random Number Generator
A subtlety that arose in the formalising of reversibility constructs is that of gener-
ating random numbers. Strictly speaking, if a sequence of instructions (program
fragment) is executed again after reversing, we should require that the same ran-
dom numbers be generated as on earlier runs. Then the conditions will be identical
for each run, and we can formally posit an equivalence.

For instance, in the GSL identity

(S [] T) ; U = (S ; U) [] (T ; U)

there is a choice between two programs, S and T, followed by the program U.
Should U contain a call to a Random Number Generator (RNG), the result should
be same in both instances of U in the right hand side. In a reversible scenario,
this program could run two or more times, and — formally at least — it should
be the same program each time.

However, most RNGs in programming languages have a “seed” value, from
which they algorithmically produce a pseudo-random sequence of numbers. So
the values on successive runs of U will not be the same. But it can be arranged
in the implementation (via an interface of C code) that the RNG is attached to
a state array, initialised by initstate, which can be used as a history stack for
generated random numbers. Thus if a sequence of numbers occurs, reversing to
any point in the sequence will repeat the subsequent numbers in the sequence.

In practice, although very brief to code, this is effectively unnecessary (one
pseudo-random number being as good as another for any particular run). But it
does allow the formal requirements to be achievable in principle. The code and
sample runs are included as Appendix F.

5.6 Summary
We have described the RVM, mostly from the standpoint of the programming
interface, with regard to the changes made to support reversibility and abstract
data types; this addresses Objective 4. An example from chapter 2 was expanded
and translated to compare the parameter-passing with a C translation, and show
a new possibility for implementation.

61

5.6. Summary

Various smaller examples and the Sudoku program from chapter 4 were coded
in RVM-Forth, as directly as possible from the RB0, anticipating the translation
schemas to be introduced in chapters 6 and 7, and addressing the remainder of
Objectives 2 and 3. The constructs of RVM-Forth are summarised in Appendix
B.

A number of elements in the previous examples have included simple constant
functions, translated into RVM-Forth on an ad hoc basis. There is a potential for
more complex and powerful function structures to be used in this way, along with
other less-used facilities in B; we examine these and their translations in the next
chapter.

62

Chapter 6

A More Powerful Implementation
Language

In this chapter we examine ways of extending the role of abstract constants which
define functions in B, including the use of Prospective Value computations. These
allow state to be used in a function without leaving any trace, with formal semantic
support; we include two examples of this, a simple GCD function which uses a
state variable, and a minimax routine which could use the game state without
altering it. This would be one useful way in which state could be used in a
function — to calculate the set of states reachable from the current state, so
that this set could be subject to heuristic evaluation, for instance. A way to
enable reliable translation of such programs into RVM is introduced along with
translation schemas, and some implications for proof obligations are noted.

In section 6.2 we look at a feature of the RVM which allows lambda calculus
techniques to be used beyond the current limited use at abstract level. In this
way we can use functions as first-class objects, creating anonymous or named
functions as required, and using the technique of closure. The bound variables of
lambda constructs are implemented with RVM local variables, which also cover
function variables and standard operation variables. Note: Some of the material
in section 6.2 is based on an earlier treatment in a paper given at the 22nd Euroforth
conference [17].

6.1 An extended functional language of concrete
constants

There is a capability in B, in its abstract machines, for using functions defined
as properties of constants. We have used a number of fairly simple examples in
earlier case studies. These definitions are more akin to those found in functional
languages, and their conceptual ancestor lambda calculus (to which we return
later), rather than procedural specifications. They may also involve recursion,
which is not catered for in B operations — such a function would become an
operation with a loop in the implementation.

The purpose of such a function is not to change state in the machine; it will

63

6.1. An extended functional language of concrete constants

merely run and leave an output. So proof obligations concerning the preservation
of the Invariant would not apply. However they cannot persist to the implementa-
tion stage, as constants must be made concrete — for instance numerical constants
must be given an actual value. Whereas functions remain abstract constants un-
less they can be refined as arrays or sequences. The one proof obligation at the
abstract level is that for existence; does a function with the stated properties
exist?

One issue with the fact that functional constants are specified as a static set
of properties is the difficulty of automating a translation to RVM code. There is
usually more than one way of expressing a set of properties as a conjunction of
predicates, and recursion requires a certain syntactic framework in RVM.

We propose, therefore, to augment the existing system of abstract functions
with a restricted syntax for implementable functions in RB0, based on a functional
language style, in which the abstract functions are re-expressed in a way which
makes automated translation easier. This language will also allow Prospective
Value expressions to be used, and thus potentially allow state variables to be
referred to and altered inside a function, while leaving no trace on the state once
the function has terminated.

The existence proof obligation of the original abstract function is now obviated
by the fact that we have an actual function specified in a functional style; how-
ever the properties of the two would need to be linked in some way. The abstract
version can be implemented in several ways, so this really specifies a family of
functions; what would need to be shown is that the RB0 version is indeed a mem-
ber of this family, that is, it shares the mathematical properties of the abstract
function.

We begin with a simple example of the factorial function, which could be
specified as

PROPERTIES
fact ∈ N1 → N1 ∧
fact(0) = 1 ∧ fact(1) = 1 ∧
n > 1⇒ fact(n) = n × fact(n − 1)

One possible RVM operation to implement this is

: FACT (n -- n)
DUP 1 > IF
DUP 1- RECURSE * THEN ;

This does not intuitively map onto the specification; the use of RECURSE rather
than the function name could be overcome, but the general structure of the spe-
cification does not lend itself to systematic conversion. For example, there is no
explicit conditional in the specification, but rather a list of cases; also the prop-
erties could be listed in a different order. Since Forth is a procedural language,
there is a paradigm shift from the specification to the code that would require
human input to overcome.

64

6.1. An extended functional language of concrete constants

The constant function would at present (if recursive) most likely be imple-
mented as a loop; it can be referenced in a loop invariant in an implemented
operation, but not directly called. However, were the function allowed to persist
to the implementation stage, by being re-expressed in the RB0 expression lan-
guage, we note that it has no effect on state while running, and simply outputs a
value when done. It would only remain to be shown that the output would match
that from the abstract specification, for a given input.

A more involved example is based on the Towers of Hanoi, a venerable and well-
known problem. This lends itself to a recursive solution, as the problem breaks up
into smaller versions of itself, winding up with a single disc being moved. Varying
numbers of poles and discs can be accommodated, but we restrict ourselves to a
simpler version with three poles. The larger the number of discs, the more levels
of recursion will be required.

Having declared a constant POLE, which is the set 1..3, we specify the prop-
erties of the constant hanoi as follows. The variables for the function are source
and dest, the source pole and destination pole, and discs, the number of discs.

PROPERTIES
. . . ∧
hanoi ∈ POLE × POLE × N1 7→ seq(POLE × POLE) ∧
∀ (source, dest, discs).(source ∈ POLE ∧ dest ∈ POLE ∧ discs ∈ N1 ⇒

(discs = 1⇒ (hanoi(source, dest, discs) = [source 7→ dest]) ∧
discs > 1⇒ hanoi(source, dest, discs) =

hanoi(source, 6 − (source + dest), discs − 1)⌢ [source 7→ dest]
⌢hanoi(6 − (source + dest), dest, discs − 1)))

A way of aliasing the quantity 6 − (source + dest) (to via, for instance) would
aid comprehensibility here; this represents the number of the “other” pole, the
one that is not source or dest. In the actual code an ad hoc local variable or
constant might be used to achieve this. We introduce a way of doing this in the
RB0 version shortly.

The function above returns a sequence of “moves”, which are pairs of poles; a
shorthand for “move the top disc from the first pole and put it on the second”.
The function is called from within an operation as in the following, which checks
the types of the arguments first and also that the source and destination poles are
not the same (although it could be arranged for an empty sequence to be returned
in this case).

sol←− solve(src, dest, discs) =̂
PRE src ∈ POLE ∧ dest ∈ POLE ∧ discs ∈ N1 ∧ src , dest
THEN sol := hanoi(src, dest, discs)
END

At some stage, the set N1 would be replaced by something more implementable,
at least taking into account the limits on 32-bit integers.

65

6.1. An extended functional language of concrete constants

The function can be coded in procedural form as below, using the RECURSE
operation rather than the operation name. With three arguments, it makes more
sense to use local variables, to keep track of what one is doing.

(Takes a SOURCE pole, a DEST pole and a number of DISCS)
: HANOI (n n n -- n.n.*.seq)

(: VALUE SOURCE VALUE DEST VALUE DISCS :)
DISCS 1 = IF (one disc left to move)

INT INT PROD [SOURCE DEST |-> ,]
ELSE

SOURCE 6 SOURCE DEST + - DISCS 1- RECURSE
INT INT PROD [SOURCE DEST |-> ,] ^
6 SOURCE DEST + - DEST DISCS 1- RECURSE ^

THEN
1LEAVE ;

A pair of sample runs follow. In the second, four discs are specified, so it requires
twice as many moves to complete.

3 1 3 HANOI ok.
.SEQ [(3,1),(3,2),(1,2),(3,1),(2,3),(2,1),(3,1)]ok
2 3 4 HANOI ok.
.SEQ [(2,1),(2,3),(1,3),(2,1),(3,2),(3,1),(2,1),(2,3),(1,3),

(1,2),(3,2),(1,3),(2,1),(2,3),(1,3)]ok

Before considering other things that functional constants could be used for, we
consider how the transition from the abstract specification to code might be eased
for the above example and similar functions. Such constants are not usually refined
as themselves, but rather absorbed into an operation (so proofs are required that
the operation does exactly what the function did), and of course the expressiveness
of AMN operation language is of a different sort to the expressiveness of the
abstract specification. We consider how the constant properties might be re-
expressed (rather than refined) in an implementation written in RB0, which would
be more amenable to translation into code.

A possible bridge between the two might be modelled on the functional pro-
gramming languages, such as Scheme, Lisp or Haskell, specifically in their ways of
expressing recursive functions. The pattern followed depends on the typing policy
of the language; it might be necessary to specify the type first or not (the latter is
the case for the RVM), however this would be followed by a list of condition-action
pairs. One (or more) of the actions may involve recursion, in which case at least
one condition must include a terminating condition, or base case, which must al-
ways be reached. If the recursion occurs with a decreasing integer argument, for
instance, the termination must involve a lower integer than the initial argument
(or equal to it).

In the programming languages, it is usual to utilise the fact that the conditions
or guards are evaluated in the order written; thus the terminating guard g0 should

66

6.1. An extended functional language of concrete constants

come first, and one or more following guards can use the pattern

g1 ∨ g2 ∨ · · · ∨ gn ∨ ¬
 n∨
i=1

gi

 (6.1)

The final condition could be introduced with a keyword such as otherwise (in
Haskell), or may not even need specifying (as in RVM). Also any other conditions
can use the fact that earlier cases have already been eliminated; in general the
first case to result in true will be executed.

However in a specification we cannot rely on the order in this way. The guards
must be exhaustive and mutually exclusive, such that exactly one will be chosen at
any evaluation. There must be no undefined cases or overlapping ones. This will
still produce perfectly executable code. We return to this with a more formalised
requirement, and a possible syntactic alternative to specify an “otherwise” guard,
in section 6.1.1.

The syntax in such an implementable constant-property specification (that is,
in RB0) can make use of certain aspects of bunch syntax, in particular the bunch
union (a comma) and the bunch guard (−→).

We can illustrate this with a simpler example before returning to the Towers
of Hanoi. A function luc to generate numbers in the Lucas sequence (similar to
the Fibonacci sequence but beginning with 2,1 rather than 1,1) can be specified
thus:

PROPERTIES
. . . ∧
luc ∈ N→ N ∧
luc(0) = 2 ∧
luc(1) = 1 ∧
∀ n.(n ∈ N ∧ n ≥ 2
⇒ luc(n) = luc(n − 1) + luc(n − 2))

As the typing information has already been provided, a version of this in RB0
could use a more functional style of language to encapsulate the computational
parts. This could then be more easily related to Forth, using the CASE construct.
In the following, each condition guards an output, which is a bunch in this context.
The commas are not punctuation, but actually gather the component bunches into
a single resultant bunch.

luc(n) =̂ (6.2)
n = 0 −→ 2,
n = 1 −→ 1,
n > 1 −→ luc(n − 1) + luc(n − 2)

The syntax defines the output of the operation as a union of guarded bunches.
But since the conditions are exhaustive with respect to n being a natural number,

67

6.1. An extended functional language of concrete constants

and mutually exclusive, only one of these will actually be executed. We note that
a closing symbol of some sort would be desirable if more than one function is to
be defined in the relevant RB0 clause.

Now translating this to Forth looks much more possible, allowing for postfix
conversion. The CASE construct would normally compare integers with a value on
the stack to decide a course of action. Alternatively, it can use the word ?OF to
react directly to a boolean flag left by a test; if the test is true the action between
?OF and ENDOF is executed. This latter is the more appropriate construction here;
this gives us

: LUC (n -- n)
(: VALUE N :)
CASE

N 0 = ?OF 2 ENDOF
N 1 = ?OF 1 ENDOF
N 1 > ?OF N 1- RECURSE N 2 - RECURSE + ENDOF

ENDCASE 1LEAVE ;

The third condition could be omitted here; as long as the function conditions
had been properly specified, it would simply be an “otherwise” case, and the line
beginning N 1 > could be shortened to read

N 1- RECURSE N 2 - RECURSE +

Further, in a situation with only two choices, this could be translated using an
IF-ELSE-THEN construct (again some extra work for the translation engine, or
perhaps this could be embedded in RB1).

Our first example of the factorial function fact on page 64 can be treated
similarly to produce

fact(n) =̂

n ≤ 1 −→ 1,
n > 1 −→ n × fact(n − 1)

Whereupon the RVM produced from a translation (converted to IF-ELSE form)
would be

: FACT (n -- n)
(: VALUE N :)
N 1 <=
IF 1
ELSE N N 1- RECURSE *
THEN ;

The RB0 version of hanoi, in the style of fact and luc ((6.2) above), would

68

6.1. An extended functional language of concrete constants

now have the following kind of structure.

hanoi(source, dest, discs) =̂

discs = 1 −→ [source 7→ dest],
discs > 1 −→ hanoi(source, 6 − (source + dest), discs − 1)

⌢ ([source 7→ dest]
⌢ hanoi(6 − (source + dest), dest, discs − 1))

This is clearly easier to relate to the Forth version HANOI on page 66.
As mentioned earlier, a local variable could be used to alias awkward to read

or multiply-used quantities such as 6 − (source + dest). This could perhaps be
rendered in RB0 using the syntax

Let x = F In E End

Analogues to this construct are found in many functional languages, with various
syntaxes. The above is adapted from a similar AMN construction. In the example
above, such a usage would yield

hanoi(source, dest, discs) =̂
Let via = 6 − (source + dest) In

discs = 1 −→ [source 7→ dest],
discs > 1 −→ hanoi(source, via, discs − 1)

⌢ ([source 7→ dest]
⌢ hanoi(via, dest, discs − 1))

End

Here, via is not a true variable, rather a syntactic substitution; for formal
purposes it is merely expanded to its definition. In Forth, the second condition
action of HANOI now becomes more comprehensibly rendered as

(SCOPE 6 SOURCE DEST + - VALUE VIA (local variable)
(...)

SOURCE VIA DISCS 1- RECURSE
INT INT PROD [SOURCE DEST |-> ,] ^
VIA DEST DISCS 1- RECURSE ^ SCOPE)

The (SCOPE ... SCOPE) delimiters would not be required in smaller functions,
where the scope is the whole function in any case.

Another limitation of functions defined in B is that they cannot refer to state
variables; were they able to change state, they would be liable to all the proof
obligations entailed in such a capability. But we have seen cases where operations

69

6.1. An extended functional language of concrete constants

can be carried out reversibly on state, using the prospective value facilities. In
these situations, no lasting change is applied to the state, and no proof obligations
need be incurred; if a function could refer to state variables in this way, within
a reversible construct, then it might be possible to use state and state-based
operations along with a functional style. Naturally, only such a usage would be
allowable, that is, any change is confined within a prospective value computation.

To show how such an enterprise might be achievable, we introduce the example
of a greatest common divisor function, gcd(x, y), which would return the gcd of x
and y. We can define this recursively in a function. Supposing it was desirable to
use a state variable y directly in the machine, rather than passing its value in as
an argument. The normal ways of implementing gcd will change the state of such
a variable.

At specification level we can define a two-variable gcd function, plus a dummy
function g, which takes one variable, as follows:

PROPERTIES
gcd ∈ N × N→ N ∧
∀(u, v).(u ∈ N ∧ v ∈ N⇒
((u = v⇒ gcd(u, v) = u) ∧
(u > v⇒ gcd(u, v) = gcd(u − v, v)) ∧
(u < v⇒ gcd(u, v) = gcd(u, v − u)))) ∧
g ∈ N→ N ∧ / ∗Dummy function ∗ /
∀(x, y).(x ∈ N ∧ y ∈ N⇒ g(x) = gcd(x, y))

As it stands here, g has no connection with the machine variable y, which has
been defined in the VARIABLES clause. We would redefine it in a further detailed
definition for RB0, using the functional bunch style introduced above, with S ⋄ E
for the prospective value computation involving y. This is appropriate in a bunch
union context, as the output of a PV computation is defined as a bunch.

g(x) =̂

x = y −→ x,
x > y −→ g(x − y),
x < y −→ (y := y − x ⋄ g(x))

The assignment y := y − x will not actually have altered the value of y at the
end of g(x). We understand the term y := y − x ⋄ g(x) as representing the value
g(x) would have were it to be run after the assignment y := y − x (a prospective
value, in fact).

This translates directly into RVM, with the PV computation being imple-
mented by a <RUN ... INT> construct. This is not being used within a set
construction (as only one value is expected to be returned), and so requires the
type information to be supplied explicitly in the word INT>.

In the following code, the variable Y is global (i.e. machine level), and must
be declared as reversible, in order that its original value be restored at the end of
the operation. The final condition X Y < has also been omitted.

70

6.1. An extended functional language of concrete constants

36 VALUE_ Y

: G (n1 -- n2, output is gcd(n1,Y))
(: VALUE X :)
CASE

X Y = ?OF X ENDOF
X Y > ?OF X Y - RECURSE ENDOF
<RUN

Y X - to Y
X RECURSE INT>

ENDCASE 1LEAVE ;

As a application of using state in a functional setting, we present a Minimax
function; the machine operations which update the state of the game are used only
in a reversible context, and state can be accessed (read-only) directly. Minimax
requires some heuristic to assign a numerical score to any game position, for
instance a high score might advantage player A and low score player B.

In the following, score is the heuristic to compute the numerical score, the
functions Smin and Smax respectively return the minimum and maximum of a
set, the parameter n allows for a 2n move lookahead, and the machine operations
Amove and Bmove non-deterministically play a move for players A and B. There
will be different evaluation strategies for players A and B; that shown below is
the one for player A to evaluate a provisional move.

Aeval(n) =̂

n = 0 −→ score,
n , 0 −→ Smin ({Bmove ⋄ Smax ({Amove ⋄ Aeval(n − 1)})})

A translation of this, using SETMIN and SETMAX for Smin and Smax, is

: AEVAL (n -- n)
N 0=
IF

SCORE
ELSE

INT { <RUN
BMOVE INT { <RUN

AMOVE N 1- RECURSE RUN> } SETMAX
RUN> } SETMIN

THEN 1LEAVE ;

As in functional programming, Aeval(n) is an expression with a value, however
it has (limited) access to state. Neither Aeval (nor the player B version) nor score
need be passed the state of the game, and although Amove and Bmove change
the state, they do so only reversibly in this context, and the minimax search is
guaranteed to have no side-effects.

71

6.1. An extended functional language of concrete constants

6.1.1 Translation Schema for Functions
If we can standardise the syntax for the functions which have been redefined in an
RB0 implementation (there is as yet no specialised clause for this), from an initial
set of conditions for the abstract function, we can define translations schemas for
the most common cases. We assume the type information has been supplied in
the original Properties clause. In the following, the notation ⟦E⟧ indicates the
result of translating the RB0 expression E into RVM, and the arrow ; means
“becomes”.

The simplest function is without guards, in this form

⟦ fname(x1, x2, . . . , xr) =̂ E ⟧ ;

: fname (: VALUE_ x1 VALUE_ x2 · · · VALUE_ xr :)
⟦E ⟧ ;

There is a possibly empty list of r arguments xi, and the expression E is taken to
leave one value on the stack.

More complex definitions will involve conditionals, in which only one action
must be executed (which may include recursion). In these we have a collection of
guards g1, g2, . . . gn and corresponding actions or expressions E1,E2, . . .En. For the
guards we have two structural preconditions to ensure that at least one and only
one action is executed.

1. Exhaustive: at least one is true, i.e.
n∨
i=1

gi = true

2. Mutually exclusive: no more than one can be true, i.e.

gj ∧ gk = false, j , k and j, k ∈ 1, 2, . . . , n

A possible optimisation would be for the case of two guards only, where an
IF-ELSE construction can be used rather than compiling a CASE construct. This
requires that the translation engine be able to recognise such an occurrence; as-
suming it can, this would yield

⟦ fname(x1, x2, . . . , xr) =̂
g1 −→ E1,

g2 −→ E2⟧ ;

: fname (: VALUE_ x1 VALUE_ x2 · · · VALUE_ xr :)
⟦ g1 ⟧ IF ⟦E1 ⟧
ELSE ⟦E2 ⟧ THEN ;

72

6.1. An extended functional language of concrete constants

The two guards here are complementary, such that g1 ⇒ ¬g2 and g2 ⇒ ¬g1,
from the requirement above.

With more than two guards, the general form will be

⟦ fname(x1, x2, . . . , xr) =̂
g1 −→ E1,

g2 −→ E2,

...

gn −→ En ⟧ ;

: fname (: VALUE_ x1 VALUE_ x2 · · · VALUE_ xr :)
CASE
⟦ g1 ⟧ ?OF ⟦E1 ⟧ ENDOF
⟦ g2 ⟧ ?OF ⟦E2 ⟧ ENDOF
...
⟦ gn ⟧ ?OF ⟦En ⟧ ENDOF

ENDCASE ;

We mentioned earlier that the RVM CASE statement can have an empty final
condition, which is implicitly an “otherwise” condition, meaning “not any of the
preceding conditions”, as shown in expression 6.1 on page 67. A possible keyword
such as otherwise could then be employed as a syntactic shortcut, with this precise
definition: given a set of conditions g1, g2, . . . gm which have been already used,
then

otherwise =̂ ¬(g1 ∨ g2 ∨ . . . ∨ gm)

The RVM’s CASE statement will thus treat this as its final unstated guard.
Using this, the two-guard function would now appear as

⟦ fname(x1, x2, . . . , xr) =̂
g1 −→ E1,

otherwise −→ E2⟧ ;

: fname (: VALUE_ x1 VALUE_ x2 · · · VALUE_ xr :)
⟦ g1 ⟧ IF ⟦E1 ⟧
ELSE ⟦E2 ⟧ THEN ;

While with more than two guards, the general form will be

⟦ fname(x1, x2, . . . , xr) =̂
g1 −→ E1,

g2 −→ E2,

...

gn−1 −→ En−1,

otherwise −→ En ⟧ ;

73

6.2. Lambda expressions

: fname (: VALUE_ x1 VALUE_ x2 · · · VALUE_ xr :)
CASE
⟦ g1 ⟧ ?OF ⟦E1 ⟧ ENDOF
⟦ g2 ⟧ ?OF ⟦E2 ⟧ ENDOF
...
⟦ gn−1 ⟧ ?OF ⟦En−1 ⟧ ENDOF
⟦En ⟧

ENDCASE ;

We also need the translation of the syntax for local aliasing introduced in the
Towers of Hanoi example. This has the form

⟦Let x = F In E End⟧ ;

(SCOPE ⟦F ⟧ VALUE x ⟦E ⟧ SCOPE)

There are also certain other features of the functional style which are not currently
catered for, and might prove useful, which we look at in the next section.

6.2 Lambda expressions
The general form for a lambda expression is:

λ <name> . <body>

In the above, <name> is the parameter or bound variable in the function —
lambda functions have a single parameter only. The process of substituting an
argument for the parameter in an application is known as β-reduction (shown as
β−→), which substitutes occurrences of the bound variable in the body with the

argument expression. Once thus instantiated, the variable cannot change value.
The <body> itself can be anything from a simple operation on the variable to

other nested functions, including embedded function applications.
The simplest example would be the identity function:

λx.x

which returns its argument; so

(λx.x) a
β−→ a

For further examples, we allow the use of arithmetic operations1. So the
functions:

λx.x + 1
λx.x × x

1Neither these nor numbers are initially present in the basic lambda calculus, which is con-
cerned with representing them in terms of more primitive substitution patterns.

74

6.2. Lambda expressions

would respectively increment their argument by one, and square it.

(λx.x × x) 5 β−→ 5 × 5 = 25 (6.3)

These examples all have a single bound variable in the body; variables in the
body which are not bound by the immediate lambda declaration are known as free
variables; these make little sense computationally unless they are in turn bound
by an enclosing function (or perhaps another kind of environment, in a non-pure
lambda setting). In this example:

λy.x − y (6.4)

the variable x is free. It may, however be bound by an enclosing function whose
body is (6.4):

λx.(λy.x − y)

This is the basic way to deal with two or more arguments in Lambda calculus
(known as “currying”). The variable x has now become a local variable from
an outer scope. We use an eager evaluation approach which requires it to be
instantiated before the expression containing it is evaluated.

As regards application, parameters from left to right are substituted by argu-
ments in the same direction, thus in an application of the above:

(λx.(λy.x − y)) 10 3
β−→ (λy.10 − y) 3 (6.5)

The first reduction, substituting 10 for x, now returns a function which subtracts
its argument from 10; here y would be substituted by 3 in the next reduction.

β−→ 10 − 3 = 7

An argument may well be another function. The expression:

λf .(λy.f y)

is a function that applies any given function f to any given argument y, for instance
given the function λx.x + 1 for f and the number 7 for y

(λf .(λy.f y)) (λx.x + 1) 7
β−→ (λy.(λx.x + 1) y) 7
β−→ (λx.x + 1) 7
β−→ 7 + 1 = 8

Closures

The technique described above for dealing with functions of more than one variable
(known as “currying”) can be generalised where lambda expressions are used along
with other types of expressions — in many programming languages, for instance.

75

6.2. Lambda expressions

The variable that was “free” in expression (6.4) could be a variable defined (and
instantiated) in an outer environment. An environment in this context is a set of
bindings, of variables to values.

We can illustrate this as in figure 6.1; one interpretation is that when f(x) is
run in environment 2, the bindings of environment 1 are recalled and the value of
w in this environment is used.

Figure 6.1: Closure.

In practice, the necessary parts of the outer environment are compiled along
with the function as a closed package, the whole being known as a closure. These
are implementable in a variety of ways, which need not involve lambda expressions
or capabilities. Indeed, the term is not used in the context of pure lambda calculus,
as it reduces to simple substitution.

While closures are a useful technique, for instance in creating interface com-
mands for instances of data structures (stacks, queues, and so forth), there is no
way of specifying this sort of usage in B. For pure lambda calculus, the proof
obligation overhead is very low, as they do not affect state, and so have no effect
on the invariant.

6.2.1 Lambda Calculus in B
B provides some capability at the specification level only for lambda calculus;
it can be used directly in operations or a constant can be defined as a lambda
function2. To demonstrate the former usage, an example of an anonymous lambda
function with nested lambdas is:

(λz.(λy.y + (λx.x + y × z)(y + z))) a b (6.6)

After beta reduction this turns out to be a somewhat roundabout way of calcu-
lating

b + ((b + a) + ab)

We return to this example for the RVM implementation, as it has embedded
function execution within the body of another function, but specifying it in a B

2We note that the documentation for such capability is virtually non-existent in our available
tools.

76

6.2. Lambda expressions

machine operation looks like the following; note the types of each variable need
to be supplied within the definition.

o←− lambdemo (a, b) =̂
PRE a ∈ N ∧ b ∈ N
THEN
o := λz.(z ∈ N | λy.(y ∈ N | y + λx.(x ∈ N | x + y × z)(y + z))) (a) (b)

END (6.7)

Alternatively, a constant can be defined as a lambda function in the following
way. In this example, the function lf takes a function f as an argument and returns
a function which applies that function to its own argument. In the unadorned
lambda notation this is

λf .(λy.(f (y)))

For the B specification, type information is supplied to describe lf itself, and
internally for each variable.

PROPERTIES
lf ∈ N→ N→ (N→ N) ∧
lf = λf .(f ∈ N→ N | λy.(y ∈ N | f (y)))

This can then be wrapped in an operation which takes the function g and a
suitable argument a, and applies g(a).

o←− lambdemo2 (g, a) =̂
PRE g ∈ N→ N ∧ a ∈ N
THEN
o := lf (g) (a)

END

6.2.2 A Postfix Notation for Lambda Calculus
We introduce this notation purely for analysis, as a structural bridge between a
B specification (or its RB0 version) and the RVM code. It would be unrealistic
to expect a user specification or implementation to use it.

Function application in Lambda notation is usually shown by a bracketed
function followed by an argument. Postfix will require the argument to appear
first. Conventional Lambda notation uses brackets to delimit the scope of a bound
variable, and for that we will use a specific endλ symbol. Finally conventional
Lambda notation uses brackets to control when a function is applied so it can be
taken from the stack, followed by a definition body or a symbol (defined earlier)
standing for it. However, this would not be automatically applied; an additional
symbol is required analogous to Forth’s EXECUTE. The symbol we use for this

77

6.2. Lambda expressions

is a tick ′ . This usage has a history going back at least as far as Principia
Mathematica, where the application of function f to an argument x is written as
f ′x.

We can now present some examples from the earlier section in an abstract
postfix notation, with the actual RVM-Forth code in the next section. We use the
notation infix ; postfix to show how the infix and postfix forms correspond.
Taking example (6.3), we have:

(λx.x × x) 5 ; 5 λx.x x × endλ ′

The λ and endλ keywords delimit the anonymous definition; at this point it could
be assigned to a suitable variable, or applied, or left on the stack (in the RVM
code this becomes an execution token, an address for the relevant executable code).
The tick ensures application. Instantiation of the variable x by 5 (beta reduction)
now yields the postfix expression “5 5 ×”, interpreted as usual.

The nested definition example (6.5), runs thus:

(λx.(λy.x − y)) 10 3 ;

3 10 λx.λy.x y − endλ endλ ′ ′

Note that the arguments follow a stack order, first at the top. Above that is
the function, however, with outer and inner variables as yet uninstantiated. So
initially there are three items on the stack, as here:

λx.λy.x y − endλ endλ
10
3

The remaining ticks are outside the definition, and are executed as encountered.
The return value of the outer function will be the inner function with its unbound
variables bound.

The first tick will execute the outer definition (λx), which will instantiate x
(anywhere within scope) to the value 10 from the top of the stack:

β−→ 3 λy.10 y − endλ ′

This leaves 3 and the inner function on the stack — now with its x bound to a
constant. The remaining tick executes this, instantiating y to 3, and returning
“10 3 −”.

A possible use for this would be as an intermediate stage in the translation
process, converting the lambda syntax to its postfix form, and perhaps including
type information. This could be used in the context of a 2-pass compiler as
described in Appendix G.

6.2.3 RVM-Forth Implementation
Local Variables and Lambda Parameters

RVM-Forth already has a facility for local variables, with the syntax :

78

6.2. Lambda expressions

: <opname> … (: VALUE <varname> … :) … nLEAVE … ;
The value for the local is taken from the stack — it can be an argument to the

operation, or supplied by an expression within it. The keyword nLEAVE (where n
can be 0, 1, 2, or 3) specifies the number of values left on the stack after the local
environment goes out of scope.

Additional locals may be declared between the :) and the nLEAVE; they will
be initialised from the top of the stack, so suitable values should be found there.

For the lambda implementation this format is used to represent the parameter
for the lambda expression, instantiated from the stack.

As a matter of style, it might be noted that we use the same word VALUE for
both global and local variables, with the latter version being defined in a COMPILER
wordlist which is only searched when in Compile mode.

The Forth uses two keywords for the λ symbol itself. The word :LAMBDA opens
a definition at the outer level, that is, the system enters compile mode. The
corresponding endλ to this is ENDLAM;. The basic form is:

:LAMBDA (: VALUE <name> :) <body> 1LEAVE ENDLAM;
So far this is just an alternative syntax for the Forth Standard :NONAME. How-

ever, lambda definitions may also appear within compiled code, where they are
delimited with the LAMBDA and ENDLAM. They may be nested to any depth.

The simple example (6.3) from page 75 translates from the abstract postfix
notation as:

5 λx.x x × endλ ′ ;

5 :LAMBDA (: VALUE X :) X X * 1LEAVE ENDLAM; EXECUTE

When evaluated this will leave 25 on the stack.
The example where a function forms part of the body, (6.5) on page 75,

provides an illustration of binding from outside the function itself:

3 10 λx.λy.x y − endλ endλ ′ ′ ;

3 10
:LAMBDA (: VALUE X :)

LAMBDA (: VALUE Y :)
X Y - 1LEAVE

ENDLAM 1LEAVE
ENDLAM; EXECUTE EXECUTE

The fact that X is free in the inner lambda is unremarkable in a straightforward
execution such as this. However it is possible to name the inner function, using
the keyword OP. This picks up the name from the input stream and assigns it to
the execution token at the top of the stack, creating a global named operation.
Instead of the final line in the above code, we could, for instance, have

... ENDLAM; EXECUTE OP MINUS

79

6.2. Lambda expressions

This gives us a named function which seems to refer to a variable X declared in a
now-defunct scope and relating to a stack frame which no longer exists.

What has happened is that the evaluation of the outer :LAMBDA has instantiated
the variable X to 10, so that when the inner lambda, i.e. the code

... LAMBDA (: VALUE Y :) X Y - 1LEAVE

is evaluated, X already has a value, and this is what is copied in place of X within
the inner lambda definition.

A final example (specified as (6.7) on page 77 above) demonstrates embed-
ded function execution within the body of another function. The standard infix
lambda expression

(λz.(λy.y + (λx.x + y × z) (y + z))) 3 4

contains an embedded function application inside the λy definition:

(λx.x + y × z) (y + z)

in which the y and z will have been substituted by arguments by the time this is
evaluated. The expression as a whole converts to postfix lambda notation as

4 3 λz.λy.y y z + λx.x y z × + endλ ′ + endλ endλ ′ ′

The second argument to the final “+” is provided by the result of the inner function
application

In RVM-Forth this becomes the following code.

4 3 :LAMBDA (: VALUE Z :)
LAMBDA (: VALUE Y :)

Y Y Z +
LAMBDA (: VALUE X :)

X Y Z * +
1LEAVE ENDLAM EXECUTE (embedded function application)
+ 1LEAVE ENDLAM

1LEAVE ENDLAM;
EXECUTE EXECUTE

The evaluation can be calculated “by hand” as follows:
“−→ substituting 3 for Z”

4 LAMBDA (: VALUE Y :)
Y Y 3 +
LAMBDA (: VALUE X :)

X Y 3 * +
1LEAVE ENDLAM EXECUTE
+ 1LEAVE ENDLAM

EXECUTE

80

6.3. Summary

“−→ substituting 4 for Y”

4 4 3 +
LAMBDA (: VALUE X :)

X 4 3 * +
1LEAVE ENDLAM EXECUTE
+

“−→ substituting 7 for X; definition immediately compiled and executed, which
evaluates
7 4 3 * + as second argument to final +”

4 19 +

Leaving 23.

6.3 Summary
In this chapter we have developed the idea of a functional sublanguage in Re-
versible B. The functions are initially specified as abstract constants, but refined
to concrete constants in a standardised format, with notation drawn from func-
tional programming languages and bunch theory. A translation system for these
was described demonstrating the appropriate RVM constructions, and thus the
foregoing satisfies Objective 5.

Also we explored the possibility of an increased use of Lambda functions and
expressions, with the corresponding RVM implementation for these structures and
a way of approaching the translation from RB0 into RVM. This section addresses
Objective 6.

In the next chapter we turn our attention to the main computational area in
B, the operations and their translation.

81

Chapter 7

Translation Schemas for
Operations

In this chapter, we consider a version of the B0 implementation level language
(hereinafter RB0) with certain additions to the existing syntax. The translations
are to RVM code; an initial obstacle is the conversion from infix notation to
postfix, which we deal with first, moving on to more general expressions.

We translate from the symbolic form below; a machine-readable form of the
symbolic language would need to be finalised, based on the ASCII character set
(perhaps UTF-8 with an eye to Unicode compatibility and later expansion to
include actual symbols). Symbols in existing B have an ASCII translation already,
and in some cases these match the RVM operation names; as the translation would
be run on a machine-readable file there would be no need to translate these in the
actual process (we list these in the first subsection).

There is also the question of whether to base the translations on AMN —
the “syntactic sugar” of Generalised Substitution Language, or RB0 itself with
its extensions to GSL. We supply both versions where appropriate, as the exact
status and extent of AMN with respect to RB0 or RB1 is not yet finalised.

The translations presented may not be exhaustive, but cover all of the more
common constructs, and in addition the syntax for implementable function defin-
itions, and operation definition/invocation using the stack to pass parameters is
included. All of the constructs considered have implementations in RVM Forth.

Notation

Given an RB0 or RB1 formula F we use ⟦F ⟧ to represent the result of translating
F into RVM; we assume the necessary space-separation of resulting tokens is
handled by the translation. We use FIXED font to represent the RVM code, and
mathematical italic to represent variable parts of formulas, including operation
names. We assume such names would be transliterated into RVM, which could
potentially cause name clashes within the Forth environment. But this problem
is separable from that of translation; so we do not consider the solutions to any
such problems (for instance the use of word-lists in Forth).

The symbol ; is used to represent the translation process, the left-hand

82

7.1. Infix Binary Symbols

side “becomes” the right-hand side. Within formulas such as

y←− Op(x)
f (E)
VAR x IN S END

the symbols x, y, and E are understood as standing for lists of variables or expres-
sions (where appropriate), with respective components

x1, x2, . . . , xn
y1, y2, . . . , ym
E1,E2, . . . ,En

We write the list out explicitly when attention is being drawn to what happens
to the components. In B the possibility exists for a formula such as x := E to
stand for a multiple assignment of the components of E to the components of x.
However this is not used in our treatment, for reasons explained in section 7.5.
Ellipses in either side of the translation (. . .) are meta-notation, and not literal
parts of B or code.

7.1 Infix Binary Symbols
The general pattern for translating infix binary symbols is (where ◦ is a non-
specific infix operation)

⟦F1 ◦ F2 ⟧ ; ⟦F1 ⟧ ⟦F2 ⟧ ⟦ ◦ ⟧

Note that the operands remain in the same order, but the operator is moved to
the end.

7.1.1 Binary Symbols which match existing
ASCII versions

These are listed in table 7.1 below.

7.1.2 Other Binary Symbols
⟦∧ ⟧ ; AND
⟦ ∈ ⟧ ; IN
⟦ < ⟧ ; IN NOT
⟦, ⟧ ; <>
⟦mod ⟧ ; MOD
⟦∨ ⟧ ; OR

83

7.2. Translation of Equality

Symbol Translation Symbol Translation
× * ⇒ =>
xy (as x**y) ** −◁ <<|
+ + ◁ <|
− - ≤ <=
.. .. > >
/ / ≥ >=
∩ /\ < <
↑ /|\ ∪ \/
↓ \|/ ⌢ ^
<+ <+ ▷ |>
⊆ <: −▷ |>>
⊂ <<:

Table 7.1: Binary Symbols to ASCII

7.2 Translation of Equality
The = symbol in RVM is not fully polymorphic, so in certain cases specialised
versions of equality are required in the translation. These are required when we
are comparing data structures such as strings, sets/ sequences, or pairs. Strings
must have the same characters in each position, while the other structures must
be compared recursively to ascertain deep equality.

Let F1,F2 be two expressions of the same type as specified in the following.
Integers:
⟦F1 = F2 ⟧ ; ⟦F1 ⟧ ⟦F2 ⟧ =
Strings:
⟦F1 = F2 ⟧ ; ⟦F1 ⟧ ⟦F2 ⟧ STRING=
Sets:
⟦F1 = F2 ⟧ ; ⟦F1 ⟧ ⟦F2 ⟧ SET=
Pairs:
⟦F1 = F2 ⟧ ; ⟦F1 ⟧ ⟦F2 ⟧ PAIR=

7.3 Prefix and Postfix Symbols
Most of these are function applications, whose arguments require brackets. The
general pattern is

⟦ f (E) ⟧ ; ⟦E ⟧ ⟦ f ⟧

Then we have

84

7.4. Declaration of Variables

⟦ card ⟧ ; CARD ⟦max ⟧ ; MAX
⟦ dom ⟧ ; DOM ⟦min ⟧ ; MIN
⟦ front ⟧ ; FRONT ⟦ ran ⟧ ; RAN
⟦ head ⟧ ; HEAD ⟦ size ⟧ ; CARD
⟦ last ⟧ ; LAST ⟦ succ ⟧ ; 1+
⟦ tail ⟧ ; TAIL ⟦ pred ⟧ ; 1-

Unary minus differs in that it works like an operator, and requires no brackets
in B.

⟦−E ⟧ ; ⟦E ⟧ NEGATE

There is one postfix symbol in reasonably common use, the relational inverse.
⟦R−1 ⟧ ; ⟦R ⟧ ~

7.4 Declaration of Variables
For RB0 scalar variables, listed in the VARIABLES clause, we have

⟦ v1, v2, . . . , vn ⟧ ; NULL VALUE_ v1 NULL VALUE_ v2 . . . NULL VALUE_ vn

These examples have been declared as reversible variables, which will have assign-
ments undone during reverse computation. The alternative defining word VALUE
can be used if this is not required, although signalling the choice is not expressible
in B. The choice might be guided by a special comment, at least initially, or RB1
may be a better vehicle for such information. A more ambitious option would be
semantic analysis of the RB0 to determine whether reversible variables would be
required; detailed examination of this issue is beyond the scope of the thesis, but
one case would be variables which, following any choice, are assigned to before
being used in an expression. These would not need to be reversible.

Array variable names are declared in the same undifferentiated list in a B
machine; the fact that they are arrays only becomes apparent in the INVARIANT
clause, where they are defined as functions from the natural numbers to whatever
type is in the array. It thus seems likely that consideration of the types of variables
in the Invariant should precede their actual declaration in the RVM (this would
also apply to sets and sequences). For instance an array variable v of n elements
is declared as

n VALUE-ARRAY_ v

or its non-reversible equivalent.
A more fruitful alternative would be to require some type information in the

VARIABLES clause itself. This is in line with the practice in almost all common
programming languages, and would allow — as variables in RVM need to be ini-
tialised on declaration — more meaningful initialisations than NULL, which is a
typeless value, and can be applied to scalars, pairs, sets, and sequences. Conceiv-
ably information on required reversibility could be incorporated here, allowing for
a choice to be made on whether VALUE or VALUE is required.

85

7.5. Assignment

7.5 Assignment
Individual scalar assignments are simple enough, but B does currently allow mul-
tiple assignments in one statement, in which case the order of values pushed and
pulled from the stack must be taken into account. For a single scalar assignment
we have

⟦ x := E ⟧ ; ⟦E ⟧ to x

If multiple assignment of scalars were to continue with the current syntax, it has
the variables in the same left-to-right order as the values which will be assigned
to them; so one side must be reversed to accommodate the stack operation.

⟦ x1, x2, . . . , xn := E1,E2, . . . ,En ⟧ ; (7.1)

⟦En ⟧ ⟦En−1 ⟧ . . . ⟦E1 ⟧ to x1 to x2 . . . to xn (7.2)

However, there is a clash between this and another proposal involving bunches,
for non-deterministic assignments to variables, (described in the next section).
The problem is a clash in notation between this new form of assignment and B’s
existing multiple assignment as shown in expression (7.1). Here the right-hand
side is not intended to be a bunch, but an ordered list of values. But there are
other notations which can be used for this; at specification level, the parallel
operator || (which does not occur in the current implementation-level language)
yields

x1 := E1 || x2 := E2 || . . . || xn := En

Parallel assignments are not allowed in B0, and would probably be refined to some
form of sequential assignment. This could cause problems in a case such as

x := y || y := x

Performing a sequential assignment x := y ; y := x would not have the desired
effect of swapping the values of x and y. Letting the parallel form stand in RB0,
and using the translation above, (7.2), allows all of the right-hand expressions to
be evaluated first and put on the stack before any assignments are made. In the
swapping example, where x0 and y0 are the initial values of x and y, this would
yield the translation

x0 y0 to x to y

7.5.1 Assignment of Bunch Expressions
Starting with a simple example, we propose that

x := E1,E2

86

7.5. Assignment

represent a non-deterministic assignment of expression E1 or E2 to x. The right-
hand side is a bunch here, and the statement is equivalent to

x := E1 [] x := E2

As justification for this, we can show that the two are equivalent in PV semantics,
as discussed in section 4.4 on page 29, as follows. In this, ⟨x/v⟩ means the pre-
ceding expression with x substituted for v, and the larger equals sign “ = ” is
of lower precedence than all the other operators, in particular the normal equals
“=”. So the top-level equivalences stand out from the equivalences in the indi-
vidual expressions.

x := E1,E2 ⋄ x = x⟨E1,E2/x⟩
= E1,E2

x := E1 [] x := E2 ⋄ x = x := E1 ⋄ x, x := E2 ⋄ x
= E1,E2

Before moving on to the translation schemas for this construction, we must
note that predicate transformer semantics does not support it; to see this we
calculate prd(x := E1,E2) in both PV and predicate transformer forms (prd is
discussed in section 2.1.7, page 12).

PV Semantics has (where x′ is the value of x after the substitution)

prd(S) =̂ x′ : (S ⋄ x)

So we obtain

prd(x := E1,E2) = x′ : (x := E1,E2 ⋄ x)
= x′ : E1,E2 (7.3)

The choice form gives the same result.

prd(x := E1 [] x := E2) = x′ : (x := E1 [] x := E2 ⋄ x)
= x′ : (x := E1 ⋄ x, x := E2 ⋄ x)
= x′ : E1,E2

The predicate transformer form uses the definition of prd as

prd(S) =̂ ¬[S]x , x′

With this, we find that the choice form above gives an equivalent form in non-
bunch notation:

prd(x := E1 [] x := E2) = ¬[x := E1 [] x := E2]x′ , x

= ¬([x := E1]x′ , x ∧ [x := E2]x′ , x)

= ¬[x := E1]x′ , x ∨ ¬[x := E2]x′ , x

= x′ = E1 ∨ x′ = E2

87

7.5. Assignment

The final line of this is operationally equivalent to the result in (7.3).
However, beginning with the PV form of the substitution and using the pre-

dicate transformer prd, we find

prd(x := E1,E2) = ¬[x := E1,E2]x′ , x

= ¬(x′ , x⟨E1,E2/x⟩)
= ¬(x′ , E1,E2)

= x′ = E1,E2

The result in this case is not equivalent to that in (7.3), as this has x′ ending up
as a bunch; whereas it should be an elemental variable, with only a single value.

We therefore conclude that the use of bunch expressions in assignments in this
way can be allowed only at the cost of remaining strictly within PV semantics.

The generalised translation for the non-deterministic assignment itself is

⟦ x := E1,E2, . . . ,En ⟧ ;

<CHOICE ⟦E1 ⟧ [] ⟦E2 ⟧ [] . . . [] ⟦En ⟧ CHOICE> to x

A simplification is possible if the type of x is INT and the choice is from a
contiguous set of integers; then we have (where m < n)

⟦ x := m,m + 1, . . . , n ⟧ ; m n .. CHOICE to x

7.5.2 Assignment to Array elements
Assignment to an array element requires some care, as the array element can be
specified either by an integer denoting its position, as in 3 of ARRAY1, or more
often by some expression, probably involving a variable. The RVM word to is
used for assignment, and will normally be followed by a variable name, to which
the assignment is made. If an attempt is made to assign to a certain position in
the array in this way, for instance

100 to INDEX of ARRAY1

this will result in the value 100 being assigned to INDEX. To avoid this, the words
<< and >> are used around the index expression, so that whatever is in between
them is interpreted as an array index — and not the target variable for to.

⟦ a(i) := E ⟧ ; ⟦E ⟧ to << ⟦ i ⟧ >> of a

If the array position is specified as an integer, the chevrons are not needed, so the
translator, detecting this, could produce the simplified translation

⟦ a(3) := E ⟧ ; ⟦E ⟧ to 3 of a

88

7.6. Control Structures

7.6 Control Structures
7.6.1 Selection
We discussed the conventional IF-ELSE-THEN̊ structures and their relationships
to a definition in terms of choice and guard in section 2.1.5.

These correspond to the basic AMN forms and translations as follows.

⟦ IF g THEN S END ⟧ ; ⟦ g ⟧ IF ⟦ S ⟧ THEN

Where an ELSE clause is included, the translation is

⟦ IF g THEN S ELSE T END ⟧ ; ⟦ g ⟧ IF ⟦ S ⟧ ELSE ⟦ T ⟧ THEN

In either case, the guards are complementary (including the implicit ¬g), so one
choice will always be taken, and reversibility is not invoked (we examine the struc-
tures which incorporate infeasibility in the next section). As these constructs are
in a reversible context, they may be encountered more than once in a backtracking
program, perhaps with different guards being true.

These are defined in GSL in terms of guard and choice. The version with an
ELSE clause is specified as

g =⇒ S [] ¬g =⇒ T

Where T is skip this corresponds to the shortform IF without an ELSE. These
forms could in fact be translated directly using RVM’s choice and guard features,
such that

g =⇒ S [] ¬g =⇒ T

;

<CHOICE ⟦ g ⟧ --> ⟦ S ⟧ [] ⟦ g ⟧ NOT --> ⟦ T ⟧ CHOICE>

But this is a far less efficient way of implementation than to use the primitives
IF, ELSE and THEN in RVM.

Generalising a simple two-way choice to those with three or more, there are
different ways to express these. We first examine nested choices, which have a
simple translation and have an order of evaluation for the guards built in. These
rapidly become unwieldy, and it may be desirable to formulate the structure as a
list of choices. In this case, since reversibility is not to be invoked, an “otherwise”
choice must be included, albeit with merely a skip action. But the guards might
still overlap — that is, more than one may be true in a given situation, and
in a non-deterministic RB0 list such as example (7.5), on page 91, the order of
evaluation is not specified. We introduce a provisional RB1 construct to specify
an order-dependent list of guarded choices, which requires mutual exclusivity in
the corresponding RB0, but maps onto an RVM CASE statement.

The basic IF selections seen above can be nested to any depth — that is,
either S or T can be another IF statement, and so on within them (arranging the

89

7.6. Control Structures

conditions so that the nesting is in the second one imparts an implicit order of
evaluation of the guards).

For example,

g1 =⇒ S1[]
¬g1 =⇒

(g2 =⇒ S2[]
¬g2 =⇒ (7.4)
(g3 =⇒ S3[]
¬g3 =⇒ S4))

As all the nested conditions form complementary pairs, at least one true condition
will be encountered. There is no requirement that only one be true; formally, it is
sufficient that the whole statement (whichever action is invoked by a true guard)
establishes the required postcondition with regard to the invariant.

Many programming languages provide an ELSEIF or ELSIF construct of some
kind to make these more manageable and intelligible; B’s AMN has an ELSIF
structure. RVM Forth does not have this facility as such; we could translate dir-
ectly as nested IFs, with the accompanying profusion of nesting as the number of
choices grows. Alternatively, we propose a CASE construct for RB1 (an adapta-
tion of the ELSIF, and unrelated to the existing AMN CASE) which would have
an simple and intuitive translation to RVM, and a complementary translation to
RB0.

So a possible translation of the semantic pattern above, using AMN, would be
as below. In this case it can be seen that the RVM follows the GSL more closely,
allowing for postfix and delimiting the IFs by THENs.

⟦IF g1 THEN S1
ELSIF g2 THEN S2
ELSIF g3 THEN S3
ELSE S4
END⟧

;

⟦ g1 ⟧ IF ⟦ S1 ⟧
ELSE
⟦ g2 ⟧ IF ⟦ S2 ⟧
ELSE
⟦ g3 ⟧ IF ⟦ S3 ⟧
ELSE ⟦ S4 ⟧
THEN

THEN
THEN

The structure of example (7.4) gives an order to the evaluation of the guards,
which is also the situation in the CASE statement of RVM. Were this possible with
a simple list of choices of guarded commands in GSL, we would be able to map
a generalised version of (7.4) to convert the nested IFs to a list of choices where
the last is effectively an “otherwise” condition. This would look more like a case
statement:

90

7.6. Control Structures

g1 =⇒ S1[]
¬g1 =⇒
(g2 =⇒ S2[]
¬g2 =⇒
...

(gn−1 =⇒ Sn−1[]
¬gn−1 =⇒ Sn) . . .)

→

g1 =⇒ S1[]
g2 =⇒ S2[]
... (7.5)
gn−1 =⇒ Sn−1[]
¬(g1 ∨ g2 ∨ . . . ∨ gn−1) =⇒ Sn

However the ordinary GSL choice [] is non-deterministic, and cannot rely on
order of evaluation in this way, so these two are not equivalent. To make the
choices of the right-hand side commutative, we would have to ensure that exactly
one guard is true; then the behaviour would correspond to that of the left-hand
side. The guards must be made stronger, and the structure that would achieve
this in RB0 is as follows. This is not something one would expect a human to
write, but is quite appropriate for an automatic logic prover.

g1 =⇒ S1[]
g2 ∧ ¬g1 =⇒ S2[]
g3 ∧ ¬(g1 ∨ g2) =⇒ S3[]
... (7.6)
gn−1 ∧ ¬(g1 ∨ g2 ∨ . . . ∨ gn−2) =⇒ Sn−1[]
¬(g1 ∨ g2 ∨ . . . ∨ gn−1) =⇒ Sn

We therefore propose a new CASE statement for RB1, based on the AMN1

ELSIF, but having a direct translation to RVM. For proof analysis purposes, this
would be converted to the RB0 version in example (7.6) above, which replaces the
implicit ordering of choices with mutual exclusivity and exhaustiveness. Where
the programmer was sure he was making a non-backtracking choice, he would use
this construction.

⟦CASE
IF g1 THEN S1
IF g2 THEN S2
...
IF gn−1 THEN Sn−1
ELSE Sn
END⟧

;

CASE
⟦ g1 ⟧ ?OF ⟦ S1 ⟧ ENDOF
⟦ g2 ⟧ ?OF ⟦ S2 ⟧ ENDOF
...
⟦ gn−1 ⟧ ?OF ⟦ Sn−1 ⟧ ENDOF
⟦ Sn ⟧
ENDCASE

1There is an existing CASE in AMN, however it is merely a somewhat redundant re-expression
of the SELECT statement, used in non-deterministic guarded choices.

91

7.6. Control Structures

7.6.2 Stand-alone Guards and Choice
The control structures in the previous section were non-reversing, as they would
not encounter a situation in which none of the guards were true, rendering progress
infeasible. But these are a subtype of more general guarded choice constructs
where the event space need not be fully covered by the conditions, thus allowing
infeasibility. Formally, the order in which the guards are evaluated is not specified,
so they are also non-deterministic.

The most basic form can be thought of as having all its guards true. Then it
is equivalent to a choice between a set of actions (bounded choice), represented in
GSL for n substitutions S as

S1 [] S2 [] . . . [] Sn

The AMN version translated to RVM is

⟦CHOICE S1 OR S2 OR . . . OR Sn END⟧ ;

<CHOICE ⟦ S1 ⟧ [] ⟦ S2 ⟧ [] . . . [] ⟦ Sn ⟧ CHOICE>

Here a subsequent infeasibility and reversal will cause another choice to be
taken; if all choices lead to infeasibility, reversal continues back to any previous
choices.

In section 5.1 it was mentioned that the RVM implementation for choice nor-
mally goes through the choices in the order as given. For a more rigorously
non-deterministic bounded choice we can use the following translation, assuming
the translator has counted the number of choices to n.

⟦ S1 [] S2 [] . . . [] Sn ⟧ ;

1 n .. RANDOM-CHOICE CASE
1 OF ⟦ S1 ⟧ ENDOF
2 OF ⟦ S2 ⟧ ENDOF
...
n OF ⟦ Sn ⟧ ENDOF
ENDCASE

Should an infeasibility be encountered “downstream” of this, such that another
choice of S would be desirable, the RANDOM-CHOICE will choose another number
from 1 to n. Once these have run out, the reversal will continue back to the
previous reversible choice, if applicable.

In the more general case for guarded choices, the GSL framework is

g1 =⇒ S1[]
g2 =⇒ S2[]
...
gn =⇒ Sn

92

7.7. Sets, Ordered Pairs and Sequences

Any number including zero of the guards may be true, so the statement as a whole
can be infeasible; the RVM therefore allows for this with a reversible translation.
The AMN for this construct uses a SELECT statement.

SELECT g1 THEN S1
WHEN g2 THEN S2
...
WHEN gn THEN Sn
END

;

<CHOICE
⟦ g1 ⟧ --> ⟦ S1 ⟧ []
⟦ g2 ⟧ --> ⟦ S2 ⟧ []

...
⟦ gn ⟧ --> ⟦ Sn ⟧

CHOICE>

7.6.3 Loops
In implementations, loops must contain a VARIANT and an INVARIANT section for
proof purposes, to ensure termination and maintenance of the machine invariant.
However, these play no part in the generated code, so the translation structure
can be simplified.

⟦ WHILE g DO S END ⟧ ; BEGIN ⟦ g ⟧ WHILE ⟦ S ⟧ REPEAT

7.7 Sets, Ordered Pairs and Sequences
7.7.1 Enumerated Sets
These can occur as variables, or as sets in the SETS clause; in RVM they may be
reversible, non-reversible or even constants. The basic translation is

⟦ {e1, e2, . . . , en} ⟧ ; TYPE { ⟦ e1 ⟧ , ⟦ e2 ⟧ , . . . ⟦ e3 ⟧ , }

The comma in RVM is an operation to compile the element into the set — so
each element including the final one requires a comma.

It may be desirable on occasion, for instance when discussing pair construction,
to differentiate between the abstract “types” of B, and the corresponding “classes”
of object constructed in the RVM. We have four basic classes of element which
can be members of sets or of pairs in RVM, which are integer, string, pair, and
set. These are all stored with a somewhat different internal structure.

For the construction of the set, its type must be specified, here denoted by the
expression TYPE. Unlike the maximal sets which a type denotes in B, a type in

93

7.7. Sets, Ordered Pairs and Sequences

the RVM is an empty set, and the RVM code uses the words INT, STRING, PROD
and POW to build up an empty set of the required type on the stack. The word
{ , which begins construction of a set, takes this value from the stack. This

mechanism can build sets of arbitrary complexity for elements of the required
class.

The question of when in the development intended strings become actual
strings is not entirely straightforward; strings have been provided by a limited
Library machine in B. We assume for the purposes of this document that a set
from the SETS clause of the specification machine would pass through the trans-
lation process in this way:

RESPONSE = {yes, no, maybe} ;

STRING { " yes" , " no" , " maybe" , } VALUE RESPONSE

7.7.2 Choice from a Set
For the most part, a choice from a set is required to be reversible. There are two
possible translations, one using the simpler CHOICE operation, which takes choices
in the same order as the set is internally represented; and RANDOM-CHOICE, which
randomises the order.

⟦ x :∈ S ⟧ ; ⟦ S ⟧ CHOICE to x

7.7.3 Set Comprehension
While a number of set comprehensions are possible in B, many do not concern
us as they will result in infinite sets which we would not want to construct. A
more common sort, however, is a finite set which might be required during an
operation, or to be its output. This will probably be specified as

{x | x ∈ S ∧ P}

where S is an already defined set, and P is a constraining predicate on x.
In our expanded RB0, the Prospective Values syntax can be used to specify

this more procedurally in an implementation, and translated into RVM.
For semantic reference to types, we use the notation ⟦ v ⟧T or ⟦ S ⟧T to stand for

the type of a variable v or for the type of an element of the set S in the translation
(which will use the words INT, STRING, POW and PROD).

⟦ {x :∈ S; P =⇒ skip ⋄ x} ⟧ ;

⟦ S ⟧T { <RUN
⟦ S ⟧ CHOICE to x
⟦P ⟧ --> x RUN> }

94

7.7. Sets, Ordered Pairs and Sequences

7.7.4 Ordered Pairs
At specification level, ordered pairs can be represented as (x, y), or sometimes just
x, y. However at the translation level, a less ambiguous notation would use the
maplet symbol x 7→ y.

In the context of a set construction as above, the translation is relatively
simple as the type information for the enclosing set will allow the RVM to infer the
classes required for construction using only the maplet creator |-> . Supposing the
specification was for a set of pairs from sets S and T, with each element separately
satisfying some predicate P. One way of specifying this is

{x, y | x ∈ S ∧ y ∈ T ∧ P}

The corresponding RB0, using the diamond constructor, and its translation would
be

⟦ {x :∈ S; y :∈ T; P =⇒ skip ⋄ x 7→ y} ⟧

;

⟦ S ⟧T ⟦ T ⟧T PROD { <RUN
⟦ S ⟧ CHOICE to x
⟦T ⟧ CHOICE to y
⟦P ⟧ --> x y |-> RUN> }

Type inference rules, as in Abrial [1], can be used to infer the types of x and
y, and via the set axiom

x ∈ S ∧ y ∈ T ⇔ x 7→ y ∈ S × T

the type of the resulting set. This is translated into the class information

⟦ S ⟧T ⟦ T ⟧T PROD

which allows the maplet creator |-> to construct a maplet of the correct class for
each element of the final set.

Constructing pairs without type information provided in this way requires
that the RVM know the class of each part in order to use the correct maplet
constructor. There are four classes: integers, strings, sets and pairs. These lead
to sixteen possible constructors; using the symbolic suffixes I, $, S and P to
indicate integer, string, set and pair respectively, these constructors are:

|->I,I |->I,$ |->I,S |->I,P
|->$,I |->$,$ |->$,S |->$,P
|->S,I |->S,$ |->S,S |->S,P
|->P,I |->P,$ |->P,S |->P,P

Using the notation ⟦ x ⟧S to stand for the class symbol in this context, such that
⟦ x ⟧S ∈ {I,$,S,P}, where these specifications are required the translation is

x 7→ y ; x y |->⟦ x ⟧S,⟦ y ⟧S

95

7.8. Prospective Value Computations

7.7.5 Sequences
Sequences are only likely to be explicitly constructed, and their translation is very
similar to that of enumerated sets, but using the operations [] as delimiters
rather than { } . Again, the comma is used to compile the elements into the
sequence, and the expression TYPE will be a postfix expression for the type of
each element.

⟦ [e1, e2, . . . , en] ⟧ ; TYPE [⟦ e1 ⟧ , ⟦ e2 ⟧ , . . . ⟦ en ⟧ ,]

Some sequence operations which are in prefix form with bracketed arguments
become postfix operations in RVM. For a sequence S:

⟦ head(S) ⟧ ; ⟦ S ⟧ HEAD
⟦ tail(S) ⟧ ; ⟦ S ⟧ TAIL
⟦ front(S) ⟧ ; ⟦ S ⟧ FRONT
⟦ last(S) ⟧ ; ⟦ S ⟧ LAST

Concatenating two sequences is:

⟦ S⌢ T ⟧ ; ⟦ S ⟧ ⟦ T ⟧ ^

Appending and prepending a single element e are respectively translated as fol-
lows:

⟦ S← e ⟧ ; ⟦ S ⟧ ⟦ e ⟧ <-
⟦ e→ S ⟧ ; ⟦ e ⟧T [⟦ e ⟧ ,] ⟦ S ⟧ ^

In the latter case, there is no built-in primitive for prepending, so a sequence
is constructed containing the single element, and concatenated with the existing
sequence.

7.7.6 Relational Image and Function Application
In the image, R is the relation, while S is the set generating the image.

⟦R [S] ⟧ ; ⟦R ⟧ ⟦ S ⟧ IMAGE
⟦F(E0) ⟧ ; ⟦F ⟧ ⟦E0 ⟧ APPLY

This is function application as a special case of a relational image, and would be
used where the function was specified as an enumerated set of maplets, rather
than an operation taking its arguments from the stack; so here E0 is a single
expression of the same type as the function domain.

7.8 Prospective Value Computations
The theory of PV semantics (section 4.4) and their implementation in RVM (sec-
tion 5.1.1) have been considered; we also looked at their use in set comprehension
expressions above, section 7.7.3.

96

7.8. Prospective Value Computations

The general usage for deterministic operations, that is where S⋄E returns only
a single value which need not be enclosed in a set, depends on the type of E. In
these cases the <RUN delimiter is paired with a keyword containing the type of E,
so there are four possibilities.

• Where E is an integer expression,

⟦ S ⋄ E ⟧ ; <RUN ⟦ S ⟧ ⟦E ⟧ INT>

• Where E is a string,

⟦ S ⋄ E ⟧ ; <RUN ⟦ S ⟧ ⟦E ⟧ STRING>

• Where E is a set

⟦ S ⋄ E ⟧ ; <RUN ⟦ S ⟧ ⟦E ⟧ SET>

• Where E is a pair,

⟦ S ⋄ E ⟧ ; <RUN ⟦ S ⟧ ⟦E ⟧ PAIR>

A further use is in a situation where a number of values may be returned
satisfying some particular condition — for instance several solutions to a problem,
but only one of these values (any one) is actually required. In such cases, the first
value found would be adequate.

Rather than use a full S ⋄ E construction to collect all the solutions in a set,
we can use the specification S ⋄1 E. This will return one of the possible solutions,
not in a set, without affecting the state (as is usual for PV constructs), and also
performing garbage collection on the search.

The translation uses the <COLLECT ... TILL ... SATISFIED> construction in
RVM, as shown in section 5.1, in a slightly different way:

⟦ S ⋄1 E ⟧ ;

⟦E ⟧T { <COLLECT ⟦ S ⟧ ⟦E ⟧ TILL CARD SATISFIED> } CHOICE

The word CARD here tests the cardinality of the set which is left on the stack by
TILL. Since the set will be non-empty after the first result is found, the value of 1
is taken as “true” by SATISFIED> which then abandons any further search. Then
CHOICE picks out this result and leaves it on the stack.

In section 7.5.1 we considered a form of non-deterministic assignment wherein
the right-hand side is a bunch of values. Since the unadorned S ⋄ E results in a
bunch, we can also admit assignment statements of the form

x := S ⋄ E
where x is assigned one of the values in the bunch resulting from the PV computa-
tion. However, the latter can result in the null bunch, which one would expect to
signal an infeasible assignment, and to trigger reversal; the RVM does this, as the
translation becomes assignment from a set, and choice from an empty set triggers
reversal.

⟦ x := S ⋄ E ⟧ ; ⟦E ⟧T { ⟦ S ⋄ E ⟧ } CHOICE to x

97

7.9. Operation Definition and Invocation

7.9 Operation Definition and Invocation
7.9.1 Definition
There are two possible ways of translating these, as we discussed in section 5.3.
One is to follow a C-like model, using pass-by-reference to assign values to the
output parameters. However, this arises because of a limitation in C which RVM
does not have, and can be replaced by a model where the input values are taken
from the stack, and the output values left on the stack.

In the example below, the operation Opname has n inputs x and m outputs
y; when this operation is called by another operation, it is required that the
output values be in the expected order for assignment to the variables of the
calling operation. We use a list r for the latter group of variables. The definition
translation is

⟦ y1, y2, . . . , ym ←− Opname(x1, x2, . . . , xn) =̂ S ⟧

;

: Opname (: VALUE_ x1 VALUE_ x2 . . . VALUE_ xn :)
0 VALUE_ y1 0 VALUE_ y2 . . . 0 VALUE_ ym
⟦ S ⟧ y1 y2 . . . ym ;

There are some simplifications which can be made, as either the input or output
list might be empty. If local variables are still required in the body of the operation
S, then an empty parameter list can be used:

⟦Opname =̂ S ⟧ ; : Opname (: :) ⟦ S ⟧ ;

If S does not contain any local variable declarations, there is no requirement to
construct and dismantle a stack frame, and the following form is more efficient.

⟦Opname =̂ S ⟧ ; : Opname ⟦ S ⟧ ;

7.9.2 Invocation
The invocation may or may not include assignment. The list of variables r here
belongs to the calling environment, and has m members, the same as the y list of
outputs left on the stack in the above operation.

⟦ r1, r2, . . . , rm ←− Opname(x1, x2, . . . , xn) ⟧

;

x1 x2 . . . xn Opname to rm to rm−1 . . . to r1

98

7.10. Local Variables

7.10 Local Variables
There are three forms for local variables in GSL, with slightly different AMN
forms. The effective difference is that one has the variables initialised to some
value; since this is done by default in RVM (if only to a type-agnostic NULL value),
we can treat these as one. The GSL and AMN forms are

@x.S VAR x IN S END
@x.(P =⇒ S) ANY x WHERE P THEN S END
@x.(x = E =⇒ S) LET x BE x = E IN S END

In the first, it is assumed that x is assigned a value in S consistent with its
usage. In the second, a type is specified, but not necessarily a value, and in the
third the variable is actually initialised to a value. The value will probably change
during S, of course.

In the RVM translation, then, all are equivalent to the third version. We
have only to consider the scope of the variables, which is S. If S is the whole
operation, the scope declaration is unnecessary, and its removal is another possible
optimisation. The scalar translation is

⟦VAR x IN S END ⟧ ;

(SCOPE 0 VALUE_ x ⟦ S ⟧ SCOPE)

The single variable here can be expanded to a list in the same way that the list
in the operation definition (section 7.9.1 above) is so expanded.

A 2008 paper presented at the Euroforth 2008 conference describes a method of
compiling from Forth (specifically the RVM), using a two-pass compiling technique
with an intermediate language which carries type information. This technique has
fed back into work which will further the work of this thesis. The paper is included
as Appendix G.

7.11 Summary
In this chapter we have dealt with Objective 7, the provision of a set of translation
schemas for RB0 operations to RVM, noting that, as mentioned in chapter 4, the
RB0 is at this stage not in a “pure” GSL-style notation, but has some AMN
constructs for clarity. These will ultimately be incorporated into RB1. The RB0
and RVM used is summarised in Appendix B.

In the next, penultimate chapter, we look at the issue of relating the found-
ations of Bunch theory to those of Set theory, to address the perceived lack of a
formal model by some critics.

99

Chapter 8

Theoretical Underpinnings for
Bunch Theory

The thread of Bunch Theory runs through the previous chapters in various ways.
As its roots are in Set theory, the latter having a well-established structure of
axioms and theorems, we thought it would aid the rigour of proofs if this relation-
ship were grounded in a Denotational Semantics which explicitly linked Bunch
and Set theories. Bunch theory departs from Set theory in treating the concepts
of collection and packaging as independent and separable; sometimes a negative
attitude to this is discernible in reviews, for instance.

Using the formal relationship defined in the denotational semantics, bunch pos-
tulates could be disassembled and translated into the corresponding set-theoretic
expressions, which must then correspond to theorems in Set theory. For instance,
an equivalence postulate in bunch form can have its left-hand side translated, and
this set-theoretic form would then translate back — via the appropriate theorem
— into the right-hand side of the bunch equivalence. As a shorthand, we may
refer to the bunch “world” in contrast to the semantic “world”. Some examples
are worked through in a later section.

8.1 Denotational Relation to Set Theory
We begin with a reminder of the basic notation and relationships from Chapter
2. In the following table, table 8.1, A and B are bunches, and the empty bunch
is null. Since the comma is now an operation representing bunch union, we use
the maplet symbol 7→ to create ordered pairs, and we generally reserve brackets
for expressing the precedence of operations.

As regards precedence to reduce the use of brackets, the convention has the
maplet as the highest, followed by bunch intersection, union, subtraction, and
bunch inclusion.

To construct the basic denotational relationships, two kinds of bunch expres-
sions are defined: bunch value expressions and bunch predicates, which may be
true or false. Then a set-theoretic meta-language denotes the meaning of these
within superscripted semantic brackets as follows.

100

8.1. Denotational Relation to Set Theory

Bunch Expression Definition
A,B Union of A and B. Commutative.
A,null = A null is identity for union
A \ B Elements of A not in B
A ′B Intersection of A and B
A ′null = null Absorption by null under intersection.
A : B A is a sub-bunch of B
¢A Cardinality of A

Table 8.1: Basic bunch NotaƟons

Where e is any bunch value expression, we write ⟦e⟧ν for its semantic value
denotation in the meta-language, and where p is a bunch predicate, we write
⟦p⟧τ. An elemental bunch a is represented semantically as the set containing it,
{a}. These and some basic relationships are set out in table 8.2.

Bunch Expression Semantic Definition
e ⟦e⟧ν

p ⟦p⟧τ

null ∅
a {a}
e1, e2 ⟦e1⟧ν ∪ ⟦e2⟧ν
e1 ′e2 ⟦e1⟧ν ∩ ⟦e2⟧ν
e1 7→ e2 ⟦e1⟧ν × ⟦e2⟧ν
{e} {⟦e⟧ν}

Table 8.2: Basic bunch denotaƟons

The bunch union and intersection translate in a natural way to set notation;
we can derive the semantic expression via lower level transformations. With a
and b as elemental bunches, and ; denoting such a transformation (from one
denotational representation to another), while ⇒,⇔ or = implies a standard set-
theoretic or logic result, we can follow through a complete translation using the
rules in table 8.2 (and later, tables 8.3 and 8.4). For instance:

⟦a, b⟧ν ; ⟦a⟧ν ∪ ⟦b⟧ν

; {a} ∪ {b}
= {a, b}

The set at the end is naturally the transformation of the initial bunch a, b.

101

8.1. Denotational Relation to Set Theory

The set theory results used in the following examples are listed below.

{e0} ∩ ({e1} ∪ {e2}) = {e0} ∩ {e1} ∪ {e0} ∩ {e2} (8.1)
{e1} ∪ {e2} ⊆ {e3} ⇔ {e1} ⊆ {e3} ∧ {e2} ⊆ {e3} (8.2)
{e1} ⊆ {e2} ∩ {e3} ⇔ {e1} ⊆ {e2} ∧ {e1} ⊆ {e3} (8.3)
card ({e1} ∪ {e2}) + card ({e1} ∩ {e2}) = card ({e1}) + card ({e2}) (8.4)
{e1} ⊆ {e2} ⇒ card({e1}) ≤ card({e2}) (8.5)
¬{a} ⊆ {e} ⇒ card({e} ∩ {a}) = card(∅) = 0 (8.6)

The maplet construction a 7→ (b, c), where again a, b and c are elemental, is
transformed thus (using the above bunch result a, b ; {a, b}.):

⟦a 7→ (b, c)⟧ν ; ⟦a⟧ν × ⟦b, c⟧ν

; {a} × {b, c}
= {a 7→ b, a 7→ c}

Deriving the same set expression from another bunch expression would show that
the bunch expressions are equivalent. Here we use

⟦a 7→ b, a 7→ c⟧ν ; ⟦a 7→ b⟧ν ∪ ⟦a 7→ c⟧ν

; (⟦a⟧ν × ⟦b⟧ν) ∪ (⟦a⟧ν × ⟦c⟧ν)
; ({a} × {b}) ∪ ({a} × {c})
= {a 7→ b} ∪ {a 7→ c}
= {a 7→ b, a 7→ c}

We find that we have a distributive law for a maplet between a bunch and an
element, that is

a 7→ (b, c) = a 7→ b, a 7→ c

This extends in a similar way to the construction of a maplet between two non-
elemental bunches, which gives, for instance:

(1, 2) 7→ (3, 4) = 1 7→ 3, 1 7→ 4, 2 7→ 3, 2 7→ 4

The derivation would proceed via {1, 2} × {3, 4}, instantiating from the right-hand
side of table 8.2.

Suppose we wish to show a distributive rule for intersection over union,

e0 ′(e1, e2) = e0 ′e1, e0 ′e2

This would proceed as follows, using the established set theory law (referenced
to the list on page 102). Note, in set and bunch notation, unions have lower
precedence than intersection.

⟦e0 ′(e1, e2)⟧ν ; ⟦e0⟧ν ∩ ⟦e1, e2⟧ν

; ⟦e0⟧ν ∩ (⟦e1⟧ν ∪ ⟦e2⟧ν)
; {e0} ∩ ({e1} ∪ {e2})
= {e0} ∩ {e1} ∪ {e0} ∩ {e2} by Result (8.1)

102

8.1. Denotational Relation to Set Theory

In the other direction, we begin with e0 ′e1, e0 ′e2 and find:

⟦e0 ′e1, e0 ′e2⟧ν ; ⟦e0 ′e1⟧ν ∪ ⟦e0 ′e2⟧ν

; ⟦e0⟧ν ∩ ⟦e1⟧ν ∪ ⟦e0⟧ν ∩ ⟦e2⟧ν

; {e0} ∩ {e1} ∪ {e0} ∩ {e2}

Some of the other denotations require a little more explanation. The denota-
tion of {e} is {⟦e⟧ν}, but e might already be a set — for instance {1, 2}. In this
case, {⟦e⟧ν} becomes {{1, 2}}.

The contents of a bunch which is a set (written ∼e) would intuitively be the
bunch or bunch expression in the set. We can specify this in two ways. Given the
bunch above, where e = {1, 2}, the operation

choice (⟦e⟧ν) gives choice{{1, 2}} = {1, 2}

Evaluated thus in the set environment, this becomes the bunch 1,2 in the bunch
“world”. Another way is to use the definite description or unique value quantifier,
written ι or sometimes µ (we use the former). This yields

ιx · x ∈ ⟦e⟧ν

That is, the unique value which is an element of {{1, 2}}.
And the “contents” of a bunch expression which is not a set is defined as the

null bunch.
These and some other common constructs are summarised in table 8.3.

Bunch Expression Semantic Definition Remarks
¢(e) card (⟦e⟧ν) Cardinality
∼e ιx · x ∈ ⟦e⟧ν e is a set; ι unique value
∼e choice (⟦e⟧ν) where choice(S) ∈ S
g −→ e {y | ⟦g⟧τ ∧ y ∈ ⟦e⟧ν} g is a guard (predicate)
§x · g −→ e {x, y | ⟦g⟧τ ∧ y ∈ ⟦e⟧ν · y}
e1 = e2 ⟦e1⟧ν = ⟦e2⟧ν

e1 : e2 ⟦e1⟧ν ⊆ ⟦e2⟧ν Bunch Inclusion
e1 ∈ e2 ⟦e1⟧ν : ⟦∼e2⟧ν e1 right type for set e2

Table 8.3: Further bunch denotaƟons

The bunch guard becomes a restriction within a set comprehension, with the
guard g represented by its predicate denotation ⟦g⟧τ. The bunch comprehension
denotation is a set comprehension of values taken by y in e as x ranges over values
which satisfy g.

In the final line we have e2 as a set, and e1 as some element of an appropriate
type for the set. This is defined in terms of bunch inclusion after applying the

103

8.1. Denotational Relation to Set Theory

contents operator to e2. The expression in the middle column could be further
analysed at a lower level as

⟦e1⟧ν ⊆ ιx · x ∈ ⟦e2⟧ν

In the last three lines of table 8.3, the entries in the left-hand column are
actually bunch predicates; we add a table 8.4 which makes this explicit and also
shows that the common connectives have the denotation one might expect.

Bunch Predicate Expression Semantic Decomposition
⟦e1 = e2⟧τ ⟦e1⟧ν = ⟦e2⟧ν

⟦e1 : e2⟧τ ⟦e1⟧ν ⊆ ⟦e2⟧ν
⟦e1 ∈ e2⟧τ ⟦e1⟧ν : ⟦∼e2⟧ν
⟦e1 ∧ e2⟧τ ⟦e1⟧τ ∧ ⟦e2⟧τ
⟦e1 ∨ e2⟧τ ⟦e1⟧τ ∨ ⟦e2⟧τ
⟦¬e⟧τ ¬⟦e⟧τ

Table 8.4: Bunch predicate denotaƟons

We can derive a number of further bunch axioms via these semantic trans-
formations and set theory. For instance, distributivity of inclusion:

⟦e1, e2 : e3⟧τ ; ⟦e1, e2⟧ν ⊆ ⟦e3⟧ν

; ⟦e1⟧ν ∪ ⟦e2⟧ν ⊆ ⟦e3⟧ν

; {e1} ∪ {e2} ⊆ {e3}
⇔ {e1} ⊆ {e3} ∧ {e2} ⊆ {e3} by Result (8.2)

and then

⟦e1 : e3 ∧ e2 : e3⟧τ ; ⟦e1 : e3⟧ν ∧ ⟦e2 : e3⟧ν

; ⟦e1⟧ν ⊆ ⟦e3⟧ν ∧ ⟦e2⟧ν ⊆ ⟦e3⟧ν

; {e1} ⊆ {e3} ∧ {e2} ⊆ {e3}

Thus we have

e1, e2 : e3 ⇔ e1 : e3 ∧ e2 : e3

as a basic bunch property. Similarly, we can derive

e1 : e2 ′e3 ⇔ e1 : e2 ∧ e1 : e3

⟦e1 : e2 ′e3⟧τ ; ⟦e1⟧ν ⊆ ⟦e2 ′e3⟧ν

; ⟦e1⟧ν ⊆ ⟦e2⟧ν ∩ ⟦e3⟧ν

; {e1} ⊆ {e2} ∩ {e3}
⇔ {e1} ⊆ {e2} ∧ {e1} ⊆ {e3} by Result (8.3)

104

8.1. Denotational Relation to Set Theory

And in the other direction

⟦e1 : e2 ∧ e1 : e3⟧τ ; ⟦e1 : e2⟧ν ∧ ⟦e1 : e3⟧ν

; ⟦e1⟧ν ⊆ ⟦e2⟧ν ∧ ⟦e1⟧ν ⊆ ⟦e3⟧ν

; {e1} ⊆ {e2} ∧ {e1} ⊆ {e3}

Two examples dealing with cardinality: one shows that

¢(e1, e2) + ¢(e1 ′e2) = ¢ e1 + ¢ e2

Arithmetic operators are assumed to have their usual meanings when applied, as
here, to elementary (value) bunches. This also goes for inequalities such as ≤, as
we only apply them to cardinalities in this context. First we have

⟦¢(e1, e2) + ¢(e1 ′e2)⟧ν ; card (⟦e1, e2⟧ν) + card
(
⟦e1 ′e2⟧ν

)
; card (⟦e1⟧ν ∪ ⟦e2⟧ν) + card (⟦e1⟧ν ∩ ⟦e2⟧ν)
; card ({e1} ∪ {e2}) + card ({e1} ∩ {e2})
= card ({e1}) + card ({e2}) by Result (8.4)

and in the other direction,

⟦¢ e1 + ¢ e2⟧ν ; ⟦¢ e1⟧ν + ⟦¢ e2⟧ν

; card (⟦e1⟧ν) + card (⟦¢ e2⟧ν)
; card ({e1}) + card ({e2})

and one relating inclusion to cardinality, which shows that

e1 : e2 ⇒ ¢ e1 ≤ ¢ e2

From e1 : e2 we obtain

⟦e1 : e2⟧τ ; ⟦e1⟧ν ⊆ ⟦e2⟧ν

; {e1} ⊆ {e2}
⇒ card({e1}) ≤ card({e2}) by Result (8.5)

and from the other direction,

⟦¢ e1 ≤ ¢ e2⟧τ ; ⟦¢ e1⟧ν ≤ ⟦¢ e2⟧ν

; card(⟦e1⟧ν) ≤ card(⟦e2⟧ν)
; card({e1}) ≤ card({e2})

Finally, in the following, a is an elementary bunch, so {a} is a singleton set.
This will show

¬(a : e)⇒ ¢(e ′a) = 0

105

8.2. Summary

It also uses the fact that card(∅) = 0. Firstly,

⟦¬(a : e)⟧τ ; ¬⟦a : e⟧τ

; ¬⟦a⟧ν ⊆ ⟦e⟧ν

; ¬{a} ⊆ {e}
⇒ card({e} ∩ {a}) = card(∅) = 0 by Result (8.6)

and then

⟦¢(e ′a) = 0⟧τ ; ⟦¢(e ′a)⟧ν = 0
; card (⟦e ′a⟧ν) = 0
; card (⟦e⟧ν ∪ {a}) = 0
; card({e} ∩ {a}) = 0

8.2 Summary
In this chapter we have addressed Objective 8, by beginning a process of form-
alising Bunch theory, utilising a Denotational approach to relate its theoretical
underpinnings to those of its “parent” theory, Set theory.

In the final chapter we present our conclusions, a summary of the objectives
reached, and a section on future work in the area.

106

Chapter 9

Conclusions and Further Work

In this thesis we have investigated how B’s formal development language at the
implementation level (B0) can be adapted to take advantage of a facility for lo-
gically reversible computations, the latter implemented in a virtual machine with
facilities to execute reversible programs (the RVM). We have investigated the use
of programming structures suggested by reversibility, and the relaxation of some
constraints imposed on B0 by the need for it to be confined to feasible programs;
the original theory allows infeasibility in the initial proof analysis stage, but not at
the executable stage. These measures can result in a more expressive implement-
ation language, RB0, which remains logically provable owing to the underlying
mathematical properties of the new constructs, which have been formalised in
[32, 33, 31].

We began, after introducing the preliminary relevant concepts of B, GSL,
Bunch Theory, and Forth, with a chapter reviewing the early work on the physical
basis for reversible computing. This had its roots in thermodynamic concerns
about power dissipation and the ultimate lower limit on power consumption in
computing. In the 1960s this limit was far less than the actual hardware was
capable of, but in the 21st century, we find it coming ever closer — as long as
non-reversible architectures are used. We saw that the total required dissipation,
depending on the original figure of kT ln 2 per erased bit of information, can be
reduced by introducing reversible computations, as the dissipation is linked to
the loss of information in irreversible computations. Reducing the number of
bits irreversibly erased then reduces the total required energy dissipation. The
physical reversibility so required implies a need for logical reversibility in new
programming paradigms. Some irreversible steps are likely to be required still, for
instance in the initialisation of a stack; but we demonstrated that an assignment
statement (the basis for memory updates) can be made stepwise reversible, and
thus in itself would at least theoretically require no extra expenditure of energy.

We then examined the changes required to allow hitherto forbidden commands
and constructs to be used in RB0, along with the new constructs inspired by re-
versible computing. Use of the latter involves revocation of Dijkstra’s “Law of
the Excluded Miracle” [6], which disallowed infeasible operations in his Guarded
Command Language GCL, and his weakest precondition calculus. Greg Nelson
[21], while lamenting the loss of one of the best names ever given to a “law” of

107

9. Conclusions and Further Work

computing, nevertheless saw that the rigid imposition of this law interfered with
the analysis of programs (where the ability to contravene the law of the excluded
miracle enables us to decompose a conditional into choice and guard constructs)
and with the possibility of using choice to represent the provisional choice as-
sociated with backtracking, which he calls “clairvoyant” choice. We described
how we use semantic reversibility, encapsulated in the interaction between guards
and choice and translated to executable statements, to achieve this backtracking
automatically when confronted with infeasible choices.

We also showed, with some examples, the use of a construct based on the
Prospective Values formalism which enables computations to be run and reversed,
leaving no trace in the state except their result; this can be treated conceptually
as the value that would result if the computation were to be run. An extension
of this idea which utilises the backtracking interpretation allows the collection of
a set of all possible results, for instance from a search, or to build sets of data
satisfying various criteria. Our demonstration uses this in the context of the
Sudoku puzzle to build sets of numbers available for blank squares, and using the
guards and choice syntax to search for a route to a solution, whereby infeasibility
triggers backtracking. The computational heart of the program (i.e. not input/
output) was specified entirely in RB0, which was fully capable of expressing the
operations required using abstract data structures and non-determinism while also
being translatable into executable RVM code.

We looked next at the RVM itself, and the extensions to Forth which enable
it to exploit virtual reversibility and implement Prospective Value computations,
and also its capacity to use and manipulate abstract data types. Translations
of a very simple program into C (generated by the B-Toolkit), and RVM code
showed that the parameter-passing mechanism of the C version, with pointers and
dereferencing, could be considerably simplified by using the RVM stack, though
with the caveat that output variables now must be assigned. Another advantage of
the RVM as an execution platform is that operations translated to conventionally
coded RVM Forth can be invoked interactively, for piecewise exploration of their
behaviour without necessarily running the entire program.

Translations of the Sudoku specification showed that the RB0 would generally
map consistently and quite well to an RVM version; the question of whether it
would be the most efficient we return to below. A deep and thorough analysis
of the Sudoku process and the clues it provides to an experienced player would
result in a program with a much reduced need for backtracking — perhaps even
none at all. Rather than go down this route, we used a fairly naïve analysis with
a single optimisation, and allowed the backtracking mechanism to take the strain.
The resulting program still performs very creditably, solving “fiendish” puzzles in
a fraction of a second, and backtracking up to several hundred times for varying
degrees of difficulty.

To further increase the expressive power of RB0, we investigated extending
the allowable scope of functions described by abstract constants to admit their
use in RB0 implementations — as concrete constants. Such a facility would allow
some computations to be concisely expressed, with recursion for instance; and

108

9.1. Objectives

the “black box” nature of the function leads to there being no changes of state
to engender Invariant preservation proof obligations. We proposed a possible
standardised syntax based on a combination of existing functional languages and
Bunch theory syntax, to describe the output in terms of guarded bunches. The
guards here must fulfil requirements of exhaustiveness and mutual exclusivity in
order that the function have only one output. We showed that a syntax of this
form is translatable into RVM; automatically, if well-formed.

A postfix version of Lambda calculus notation has been developed, and sup-
port for Lambda-style programs and techniques has been built into the RVM. We
examined its possible use in RB0; this allows anonymous functions and the use of
functions as first class objects — for instance their use as parameters and argu-
ments to other functions, and closures. Some of this can currently be achieved at
specification level in B, but must be refined away by the implementation stage;
allowing its persistence to RB0 would introduce the possibility of powerful pro-
gramming techniques from the world of functional programming. We have really
only imperceptibly scratched the surface of what might be a useful addition to the
armoury of B. While the question of translation was not considered in detail, the
postfix Lambda notation was described; this might form the basis of an interme-
diate translation stage, carrying type information, using a two-pass compilation
technique such as that described in Appendix G.

With regard to the translation of the mainstream operations in B, we provided
preliminary schemas for the translation of RB0 and eventually RB1 into RVM.
These schemas were presented based on RB0 (and thus ultimately on GSL), but
AMN equivalents were provided where appropriate; these are semantically iso-
morphic to the corresponding GSL, so will map to the same RVM code. The
schemas can be used to guide the actual translations when the syntax of RB1
is sufficiently mature; the most obvious candidate for future work arises in this
section.

Bunch theory is a radical mathematical departure because, unlike Set theory,
it treats collection and packaging as orthogonal activities. Owing to this radical
nature, it has come in for some criticism, often implicit in the attitudes of some
reviewers, who perhaps regard it as an undermining of the foundations of mathem-
atics by researchers into programming theory. For this reason we explored some
initial ideas relating Bunch theory to Set theory by a denotational semantics, thus
returning to the foundations of the former. This allowed us to relate basic bunch
axioms to analogous constructions in set theory, and prove bunch equivalences by
translating both sides to arrive at the same set-theoretical representation.

9.1 Objectives
We now briefly revisit the list of objectives on page 3 in the Introduction.

1. The first objective was to review the physical background for our work and
why it is a motivation; in chapter 3 we provided a brief history of Reversible
Computing from initial concerns over heat dissipation through the realisa-
tion that viewing computations as reversible processes could, in theory, lead

109

9.1. Objectives

to techniques to reduce this considerably. Another part of the objective
was to consider broadly how the implications of these techniques could be
incorporated into programming and specification; this was addressed in the
second part of chapter 3, concluding that semantic reversibility was appro-
priate for a virtual machine, while a stepwise reversibility makes more sense
at the hardware level.

2. The second objective was first to show how reversible constructs can be
expressed in formal and programming terms; this was covered in chapters
4 and 5, with descriptions of the relevant features of RB0 and those of
RVM. The use of Bunch theory in the analysis of the PV computations was
described in chapter 4.

3. The third objective was to provide demonstrations and case studies showing
development from RB0 to RVM-Forth. A number of small examples were
given in chapter 4, with translations in 5, along with the Send More Money
example (translation in Appendix E.) The larger case study of the Sudoku
program and its translation also contributed to this objective. The develop-
ment of RB1 is an area of future work arising from this, as included in the
Future Work section below.

4. The fourth objective was to document the extensions and enhancements to
RVM-Forth relevant to its support for reversibility in the Virtual Machine
and abstract data structures; these were described in chapter 5. A linguistic
summary is provided in Appendix B.

5. The fifth objective was concerned with how to allow abstract constants which
defined functions to persist to implementation; in the first part of chapter 6
we addressed this by describing the current state of affairs and the problem
of translation. We introduced a proposed standardised format with several
examples of specification at RB0 level and translation to RVM.

6. The sixth objective involved ways of expanding the use of Lambda expres-
sions and functions at implementation stage; this was addressed in the
second part of chapter 6, wherein it was shown that a refined form of a
lambda specification could (without its type information) be translated to a
postfix form and thence to the RVM implementation, which was described
in some detail. This is an area for future work, as some aspects of the RVM
are still under development in order to ease the translation and ensure a
reliable outcome for local and global variables.

7. The seventh objective was to provide translation schemas from the form of
RB0 used in the thesis to RVM, and this was done in chapter 7. Future
translation will concentrate on RB1 as the main source, with translation
into a purer form of RB0 (for proof purposes) on the one hand, and RVM
code on the other.

110

9.2. Further Work

8. The final objective was to begin a process of formalising Bunch theory by
denotational means, and a preliminary exploration of how this could be
achieved is the subject of chapter 8. This is also an area for future work,
with a deeper use of denotational concepts — those of environments and
semantic functions, for instance — to provide verification of Bunch axioms.

9.2 Further Work
A major area of further work which emerges from the foregoing is the finalising
of RB1 to a concrete syntax, which endeavour1 will feed back to the final syntax
of RB0. Then following the translation schemas for operations and functions,
an actual automatic translation engine can be developed, and tested with RB1
versions of the included examples and others which have been developed over the
last few years.

There is as yet no schema for Lambda calculus translation; this could be
developed using the postfix lambda notation described in chapter 6 as an internal
intermediate stage which can also carry type information, in order that the correct
RVM forms of code are generated for its classes of data (e.g. floating point versus
integer).

A few words on time are in order; we have not taken into account the ques-
tion of non-termination of computations in the thesis, the assumption being that
termination is assured for all examples. The B Method works within the total
correctness framework, where the level of abstraction for time is “now or never”.
Formulations which include a fuller notion of time – one such being a calculus
developed by Hehner – would be difficult for us to adopt. This is because our ab-
straction of backtracking uses something that might be called “clairvoyance”, as if
the computation could “see” from the start which paths were infeasible, and thus
avoid them. Then these infeasible paths within a calculation are simply discarded,
with no account being taken of the time required to explore them. The question
of comparative evaluation of the complexity of reversible algorithms versus their
irreversible counterparts is thus a matter for future research.

The two-pass compilation technique is likely to be of more general use in the
translation of RB1, for instance using embedded “hints” with a specific syntax
to automatically decide the most efficient representation of data types specified
in terms of sets or sequences. While these are directly implemented in the RVM,
for some purposes arrays might prove more efficient. This would impose certain
restrictions on the available commands for sequences, should such a translation be
the ultimate aim; some sequence operations are no more efficient in array form,
and one or two are actually more trouble using arrays (for instance arrays are
generally a fixed size, whereas a sequence can always be “grown”. Extending a full
array will be no easier than extending a sequence). The form of RB1 should also
be translatable to RB0, as the former is intended to be the front-end specification
environment.

1A PhD is already underway with this as one of its aims.

111

9.2. Further Work

Another area for development is concerned with the question of automated
proof facilities for RB0, comparable to those available for B. This endeavour will
require deep knowledge of logic and the existing proof techniques used in B at
present. A related enterprise was begun by Zeyda [31], but at the time the ex-
tent to which RB0 would differ from B0 was not known in detail; there is also
the question of whether to base it around weakest precondition semantics, or the
equivalent but more expressive Prospective Value semantics incorporating Bunch
theory. The latter model seems more suited to the virtual reversibility environ-
ment, as the relevant constructs find readier expression therein.

A number of different but related areas of research will need to achieve a
mature level of integration for this to be possible, the theory and praxis coming
together in the production of a combined development environment involving RB1,
its translation to RB0 for the discharging of proof obligations, and translation to
RVM for executable code.

With regard to the RVM itself, it is currently a mature research tool, though
work is underway to provide a more robust distributable form. Among the im-
provements will be a more user-friendly interface and debugging facilities, and
ideally the RVM will be ported to other platforms — at least Windows, as it is
currently confined to Linux. Versions which can be built from the assembler code
and C (in the sets package) using current compilers will be required for both plat-
forms, and also some form of API for its integration into a GUI-based RB-Tool
environment.

112

Bibliography

[1] J-R Abrial. The B Book. Cambridge University Press, 1996.

[2] H G Baker. The thermodynamics of garbage collection. In Y Bekkers and
Cohen J, editors, Memory Management: Proc IWMM’92, number 637 in
Lecture Notes in Computer Science, 1992.

[3] C Bennett. The logical reversibility of computation. IBM Journal of Research
and Development, 6, 1973.

[4] C Bennett. The thermodynamics of computation — a review. International
Journal of Theoretical Physics, 1981.

[5] C Bennett. Notes on the history of reversible computation. IBM Journal of
Research and Development, 32, 2000.

[6] E W Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[7] S E Dunne. Recasting the Hoare-He unifying theory of programs in the con-
text of General Correctness. In A Butterfield and C Pahl, editors, IWFM’01,
2001.

[8] S E Dunne. A theory of generalised substitutions. In D Bert, J Bowen,
M Henson, and K Robinson, editors, ZB2002, Lecture Notes in Computer
Science, no 2272, 2002.

[9] R P Feynman. Lectures on Computation. Westview Press, 1996.

[10] M Frank. Reversible computing: Motivation, progress, and challenges. Com-
puting Frontiers 2005; ACM, 2005.

[11] E Fredkin and T Toffoli. Conservative logic. Technical report, MIT Computer
Science Lab, 1981.

[12] E Fredkin and T Toffoli. Collision-based Computing. Springer-Verlag, Lon-
don, UK, 2002.

[13] E C R Hehner. Bunch theory: A simple set theory for computer science.
Information Processing Letters, 12.1 pp26-31, 1981.

[14] E C R Hehner. A Practical Theory of Programming. Springer Verlag, 1993.

113

BIBLIOGRAPHY

[15] R Landauer. Irreversibility and heat generated in the computing process.
IBM J R&D, 5, 1961.

[16] A R Lynas and W J Stoddart. SuDoku Solver Case Study: from specification
to RVM-Forth. In M. A. Ertl, editor, 21st EuroForth Conference Proceedings,
October 2005.

[17] A R Lynas and W J Stoddart. Adding Lambda Expressions to Forth. In
M. A. Ertl and P. Knaggs, editors, 22nd EuroForth Conference Proceedings,
October 2007.

[18] G Michaelson. Functional Programming through Lambda Calculus. Addison-
Wesley, 1989.

[19] J M Morris and A Bunkenburg. A theory of Bunches. Acta Informatica,
1999.

[20] J M Morris, A Bunkenburg, and M Tyrrell. Term transformers: A new
approach to state. ACM Trans. Program. Lang. Syst., 31(4), 2009.

[21] G Nelson. A generalization of Dijkstra’s calculus. ACM Trans. Program.
Lang. Syst., 11(4), 1989.

[22] J Pöial. Typing tools for typeless stack languages. 22nd EuroForth Confer-
ence, 2006.

[23] Science Daily. Easier route to ‘spintronic’ circuits? Science Daily, 2009.

[24] W Stoddart and P Knaggs. Type inference in stack based languages. Formal
Aspects of Computing, 1992.

[25] W J Stoddart. An execution architecture for B-GSL. In Bowen J and Dunne S
E, editors, ZB2000, number 1878 in Lecture Notes in Computer Science, 2000.

[26] W J Stoddart. Using Forth in an investigation into reversible computation.
In P Knaggs and M A Ertl, editors, 19th EuroForth Conference, 2003.

[27] W J Stoddart. Reversible virtual machine, user manual. Technical report,
University of Teesside, 2005.

[28] W J Stoddart and F Zeyda. Implementing sets for reversible computation.
In A Ertl, editor, 18th Euroforth, Technical University of Vienna, 2002.

[29] W J Stoddart and F Zeyda. Expression transformers in B-GSL. In D Bert,
J Bowen, S King, and M Walden, editors, ZB2003, Lecture Notes in Com-
puter Science, no 2651, 2003.

[30] T Yokoyama and R Glück. A reversible programming language and its invert-
ible self-interpreter. In PEPM ’07: Proceedings of the 2007 ACM SIGPLAN
symposium, pages 144–153. ACM Press, 2007.

114

BIBLIOGRAPHY

[31] F Zeyda. Reversible Computations in B. PhD thesis, Teesside University,
2007.

[32] F Zeyda, W J Stoddart, and S E Dunne. The refinement of reversible com-
putations. In T Muntean and K Sere, editors, 2nd International Workshop
on Refinement of Critical Systems, 2003. Available from www.esil.univ-
mrs.fr/ spc/rcs03/rcs03.

[33] F Zeyda, W J Stoddart, and S E Dunne. A Prospective-Value semantics
for the GSL. In H Treharne, S King, M Henson, and S Schneider, editors,
ZB2005, Lecture Notes in Computer Science, no 3455, 2005.

[34] P Zuliani. Logical reversibility. IBM J R&D, 45(6), 2001.

115

Appendix A

Abstracts of Papers

SuDoku Solver Case Study: from specification to RVM-Forth
Angel Robert Lynas, Bill Stoddart

A project is underway to formulate a development cycle from B — suitably aug-
menting its implementation language B0 with reversibility constructs — to a
coded implementation in the reversible target language RVM-Forth with trans-
lation schemas defined for this final stage. This paper describes the first phase
of a case study using the puzzle SuDoku to investigate possible ways of flesh-
ing out such a development cycle. We adopt an experimental approach, using a
relatively simple specification as a springboard for what a generated code imple-
mentation might look like, and explore correspondences between the specification
and implementation.

Adding Lambda Expressions to Forth
Angel Robert Lynas, Bill Stoddart

We examine the addition of Lambda expressions to Forth. We briefly review the
Lambda calculus and introduce a postfix version of Lambda notation to guide our
approach to a Forth implementation. The resulting implementation provides the
basic facilities of an early binding functional language, allowing the treatment of
functions as first-class objects, manipulation of anonymous functions, and closures.

Using Forth in a Concept-Oriented Computer Language Course
Angel Robert Lynas and Bill Stoddart

We describe a way of teaching fundamentals of Language Systems (for second-year
Computing students), without having to compromise the use of a simple grammar
owing to hardware limitations which need no longer apply in this setting.We
adopt a top-down approach, reading from right-to-left and splitting the input
string on the rightmost operator appropriate to that level. The target platform
is Reversible Virtual Machine (RVM) Forth, so a postfix translation is the aim.

116

A. Abstracts of Papers

We introduce a basic arithmetic grammar and expand it during the course to
allow unary minus, floating point and function application; this shows how type
information can be generated in one pass and resolved in a second, via an internal
intermediate code. Each version of the grammar has its productions mapped onto
a system of equations which serve as the specification for the implementation
functions.

A Virtual Machine for Supporting Reversible Probabilistic
Guarded Command Languages

Bill Stoddart, Angel Robert Lynas, Frank Zeyda (University of York)

We describe a reversible stack-based virtual machine designed as an execution
platform for a sequential programming language used in a formal development
environment. We revoke Dijkstra’s “law of the excluded miracle” to obtain a
formal description of backtracking through the use of naked guarded commands
and non-deterministic choice, with an operational interpretation of the interaction
between guards and choice provided by reversibility. Other constructs supported
by the machine provide for the collection of all results of a search, a semantically
clean “cut” which terminates a search when the accumulated results satisfy some
given criteria, and forms of probabilistic choice, which we distinguish from non-
deterministic choice. The paper includes a number of example programs.

A Design-based Model of Reversible Computation
Bill Stoddart, Frank Zeyda, Angel Robert Lynas

We investigate, within the UTP framework of Hoare He Designs, the effect of see-
ing computation as an essentially reversible process. We describe the theoretical
link between reversibility and the minimum power requirements of a computation,
and we review Zuliani’s work on Reversible Probabilistic Guarded Command Lan-
guage. We propose an alternative formalisation of reversible computing which ac-
comodates backtracking. To obtain a basic backtracking language able to search
for a single result we exploit the already recognised properties of non-deterministic
choice, using it as provisional choice rather than implementer’s choice. We add a
“prospective values” formalism which can describe programs that return all the
possible results of a search, and we show how to formally describe the prema-
ture termination of such a search, a mechanism analogous to the “cut” of Prolog.
An appendix describes some aspects of the wp calculus in terms of Designs, as
needed for our proofs. Support for the programming structures described has
been incorporated in a reversible virtual machine running under i386 Linux.

117

A. Abstracts of Papers

Popit: Implementing a Forth-like Language in C
Bill Stoddart, Angel Robert Lynas, Frank Zeyda

As programming environments and operating systems grow in complexity, stu-
dents of computer science find it increasingly difficult to gain a holistic under-
standing of the computer systems they study. “Popit” is a Forth-like language
designed to be implemented by students in order to expose them to a complete,
though simple, programming system and virtual machine. The Popit implement-
ation exercise is used in a group project module in the second year of the course,
where it is implemented in C. In the fourth year of the course it is offered as an
individual project to be implemented in Scheme.

118

Appendix B

Summary of RB0 and RVM

B.1 RB0 Notation
The RB0 used in the thesis is in a slightly hybrid state, as we have routinely used
certain AMN-style constructs to aid readability — for instance IF-THEN rather
than a decomposed guard/ choice pairing. The relationship between these was
discussed in section 7.6.1, and such usages enable the reader to see the corres-
pondence between the specification and the RVM code more clearly.

In chapter 7 we provided both versions where appropriate; we have eschewed
the GSL @z.S (unbounded choice for variables), along with two similar construc-
tions for reasons explained in section 7.10; these all have the same translation in
RVM, so we have used VAR-IN-END.

The usual mathematical notations of B are common to B and RB0, those used
in substitutions. There follows a summary of the RB0 as used in the thesis, noting
that some constructs would eventually be in the province of RB1. In this list, S
and T are programs, G is a predicate, x is a variable of some type and A is a set
of the same type as x.

Empty Operation. skip.

Assignment. Symbol :=, syntax x := 1.

Guard. Symbol =⇒, syntax G =⇒ S, where G evaluates to true or false, and is
generally assumed to have no side-effects.

Non-deterministic choice. Symbol [], syntax S [] T. The reversibility enables
other choices to be taken until a feasible path is found.

Deterministic choice. IF G THEN S END, or IF G THEN S ELSE T END.
These are non-reversing choices.

Assignment from Set. Symbol :∈, syntax x :∈ A. Non-deterministically assigns
x to some element of A.

Local variables. VAR x, y IN S END.

119

B.2. RVM-Forth

Sequential Composition. Symbol ; , syntax S ; T. Execution of S followed
by execution of T.

Prospective Values Computations Symbol ⋄, syntax S⋄E. The value E would
take if it were evaluated after executing S (implemented by executing S,
evaluating E and storing the result, then reversing execution of E).

Loops. WHILE G DO S END.

B.2 RVM-Forth
There are a great many features and capabilities of ANSI Forth (and so the RVM)
which are not our concern, as they relate to low-level programming, and the sort of
constructs required to manipulate compilation to construct higher-level features.
We have therefore concentrated on the features of the RVM used in relation to
translation from RB0, and so directly relevant to our endeavour.

Also, the common mathematical operators are largely the same, allowing for
conversion to postfix; these are as listed in sections 7.1.1 and 7.3. The elements
below are those more related to substitutions.

The notation in this section will use italic letters S,T ,U for program names (i.e.
unspecified Forth operations), G,P for predicates (Forth expressions leaving true
or false on the stack), and lower-case italic letters x, y, a, b, e for variable names.
These can all be subscripted.

A definite value of any type (a literal expression or the contents of a variable)
will be denoted by V, possibly numbered, and definite values of a specific type will
be I, $, S or P, denoting an integer, string, set, or pair respectively.

Equality. RVM needs different symbols to represent the tests for equality in
different classes of expression.
Integers I I =
Strings $ $ STRING=
Sets S S SET=
Pairs P P PAIR=

Variables. The declaration is

NULL VALUE x
NULL VALUE_ x

An underscore added to the keyword indicates the explicitly reversible ver-
sion of a variable (reversible programs may not need all or any of their
variables declared in this way). The variable can be initialised to a specific
value by replacing NULL with the value.
An array declaration must specify the size n of the array:

n VALUE-ARRAY_ a

120

B.2. RVM-Forth

Assignments. The word to is used, as in

V to x

Multiple assignments can be performed, where several values are pushed
onto the stack, and sequentially assigned.

V0 V1 V2 to x2 to x1 to x0

Note that the values are assigned from the top of the stack, so the order of
the variable names must reflect this.
Assignment to an element of an array will usually require that the index
expression be enclosed in chevrons, to protect the contents from assignment
by to. If a literal integer is supplied, the chevrons are not required.

V to << I >> of a
V to 3 of a

Selection (Non-backtracking). We have the two forms of the IF construction:

G IF S THEN
G IF S ELSE T THEN

These can be nested, so either S or T could be another IF. Or multiple choices
can be listed more intuitively with CASE. As this is non-backtracking, the
final line is treated as an “otherwise” case, with skip if no action is specified.

CASE
G1 ?OF S1 ENDOF
G2 ?OF S2 ENDOF
...
Gn−1 ?OF Sn−1 ENDOF
Sn
ENDCASE

Non-deterministic Selection. Choice between programs is

<CHOICE S1 [] S2 [] · · · [] Sn CHOICE>

Guarded choice:

<CHOICE
G1 --> S1 []
G2 --> S2 []
...
Gn --> Sn

CHOICE>

121

B.2. RVM-Forth

Loops.

BEGIN G WHILE S REPEAT

Sets: Manipulation and Type Specification. There are some set manipu-
lation facilities in RVM, the usual infix operations of union, intersection,
and subtraction, plus domain and range extraction, being the most useful.
Respectively, these are

S1 S2 \/ S1 S2 /\ S1 S2 \
S DOM S RAN

In addition, another two words operate on sets to give the power set and
cartesian product of two sets; these are POW and PROD, as in

S POW S1 S2 PROD

These two words also occur with a somewhat different effect in the construc-
tion of a set; this requires that its type be specified, using combinations of
the following words, each of which leaves a type specfier on the stack, or
acts on those already there.
INT Specifies integers.
STRING Specifies strings.
PROD The cartesian product of two sets, specifies maplets.
POW Specifies a set of the preceding type specifier.

These are deployed in postfix as is usual; here, POW will operate on a type
specifier to change it to a that of a set of that type, while PROD will operate
on two type specifiers to produce the specifier for a maplet consisting of
those classes.
So a specification like the following

STRING POW INT STRING PROD PROD

will allow the construction of a set with elements like (informally)

{ strings } 7→ (integer 7→ string)

Set Construction. The subscript eTYPE in the following few sections refers to
the type of an element in the form of the type specifiers described above,
which will provide the necessary information for the construction of a new
set. The actual construction of a set begins, after the type has been specified,
with the word { .

eTYPE { e1 , e2 , · · · en , }

The comma is a word that allocates storage — so one is required after the
final element.

122

B.2. RVM-Forth

Set Comprehension. A set comprehension (these are finite sets) uses the PV
facilities to build a subset satisfying some predicate from a larger set.

STYPE { <RUN
S CHOICE to x
P --> x RUN> }

Non-deterministic Choice from a Set.

S CHOICE to x
S RANDOM-CHOICE to x

These will provide alternative choices on backtracking, while any remain.

Ordered Pairs. These can be constructed inside a set with the maplet operator
|->, which will pick up the classes of the first and second element from the
type specifier for the set. In other situations, the classes are symbolically
suffixed to the operator to indicate this information. Constructing maplets
of various class combinations will involve, for example

I $ |->I,$
$ S |->$,S
P S |->P,S

The available classes are integer, string, pair and set (suffix elements I, $, S
or P), so there are sixteen possible combinations,

|->I,I |->I,$ |->I,S |->I,P
|->$,I |->$,$ |->$,S |->$,P
|->S,I |->S,$ |->S,S |->S,P
|->P,I |->P,$ |->P,S |->P,P

for the appropriate sequence of first and second element.

Sequences. The construction from a syntax point of view is essentially the
same as for enumeration of sets, but using the sequence delimiters [and
] which are of course Forth words in themselves.

eTYPE [e1 , e2 , · · · en ,]

Concatenation of two sequences Mi is

M1 M2 ^

Appending has a built-in operator, but prepending requires the construction
of a sequence with the new element, and its concatenation to the existing
sequence.

M e <-
eTYPE [e ,] M ^

123

B.2. RVM-Forth

Relational Image and Function Application. Where a relation R or func-
tion F is constructed as a set of maplets, there are operations to return the
relational image (a set) or an element as a result of function application. In
the following, X ⊆ domR.

R X IMAGE
F e APPLY

Prospective Value Computations. These have a non-deterministic applica-
tion in set comprehension, above. Deterministic usage, where one result is
expected, requires type specifiers in the closing delimiter, as below, to match
the expression E. Thus there are four versions:

<RUN S E INT>
<RUN S E STRING>
<RUN S E PAIR>
<RUN S E SET>

We also include the collection of a single result from those available, non-
deterministic and with garbage collection, S ⋄1 E, which is

ETYPE { <COLLECT S E TILL CARD SATISFIED> } CHOICE

Operation Definitions. There are a number of possible forms for these, de-
pending on the requirement for a parameter list (for local variables initial-
ised from the stack on invocation), or for internal local variables (see next
section). We list the forms here, beginning with the simplest. The new
operation is named S, and T is what it does.

: S T ;
: S (: :) T ; (T has local variables, but parameter list empty)
: S (: VALUE_ x1 VALUE_ x2 . . . VALUE_ xn :) T ;

Local Variables. These are variables declared and initialised from inside an
operation. They may or may not require a scope to be specified; if not, the
delimiters can be omitted. The following clause can come anywhere after
the parameter list (which must be supplied, even if empty).

(SCOPE 0 VALUE_ x1 0 VALUE_ x2 . . . 0 VALUE_ xn SCOPE)

124

Appendix C

Sudoku Listing

This is the complete listing for the Sudoku program developed and discussed in
chapters 4 and 5. The first section initialises the data structure from a file read
in by the startup command; some routines for printing out grids follow. The next
sections are the computational heart of the program; finally we have the file read-
in and running commands, along with a garbage-collecting wrapper for the whole
program.

(============= Initialisations ====================)

NULL VALUE_ GRID (REV)
1 9 .. VALUE DIGIT
0 8 .. VALUE XY
(Following holds remaining CHOICEs for each blank)
NULL VALUE_ POSSIBLE (REV)
8 VALUE COLI 8 VALUE ROWI NULL VALUE_ ASSIGNED (REV)

(Generalised GRID-builder; assumes file of 81 numbers loaded on stack)
: BUILD-GRID (n TIMES 81 --)

8 to ROWI
INT INT PROD INT PROD {

BEGIN ROWI -1 >
WHILE

8 to COLI
BEGIN COLI -1 >
WHILE

DUP 0= NOT
IF ROWI COLI |->I,I SWAP |->P,I ,
ELSE DROP
THEN
COLI 1- to COLI

REPEAT
ROWI 1- to ROWI

REPEAT } to GRID ;

125

C. Sudoku Listing

(--)
(Pretty(ish)-print subsystem. Can be ignored)

0 VALUE ELEMINDEX NULL VALUE GRIDSIZE

: UNPAIR (x1.x2.* -- x1 x2)
DUP FIRST SWAP SECOND ;

: VLINE 124 EMIT ;
: LINE VLINE CR ." +---------+---------+---------+" CR ;

(Convert co-ord pairs to scalar square numbers)
: CONVERTGRID (n.n.*.n.P --)

INT INT PROD {
DUP CARD 0 DO

DUP I @ELEMENT
UNPAIR SWAP UNPAIR SWAP 9 * +
SWAP |->I,I ,

LOOP
} NIP ;

: .GRID (n.n.*.n.P --)
CONVERTGRID
0 to ELEMINDEX DUP CARD to GRIDSIZE
81 0 DO ELEMINDEX GRIDSIZE < IF

DUP ELEMINDEX @ELEMENT
ELSE DUP 0 @ELEMENT
THEN
I 27 MOD 0=
IF LINE VLINE ELSE I 9 MOD 0=

IF VLINE CR VLINE ELSE I 3 MOD 0=
IF VLINE
THEN

THEN
THEN
DUP FIRST I = IF

SPACE SECOND . ELEMINDEX 1+ to ELEMINDEX
ELSE 3 SPACES DROP THEN

LOOP LINE DROP CR ;

(=========Utilties; zone generation etc ==============)

: GENROW (n -- n.n.*.P)
(: VALUE r :)

126

C. Sudoku Listing

INT { r , } XY PROD ;

: GENCOL (n -- n.n.*.P)
(: VALUE c :)
XY INT { c , } PROD ;

: CORNER (n -- n)
(: VALUE n :)

n n 3 MOD - ;

: SECTOR (n n -- n.n.*.P)
(: VALUE r VALUE c :)
r CORNER r CORNER 2 + ..
c CORNER c CORNER 2 + .. PROD ;

(Find the constraint zone for a particular square)
: CZONE (n n -- n.n.*.P)

(: VALUE r VALUE c :)
r GENROW
c GENCOL \/
r c SECTOR \/ ;

(Now we find the values a blank square can take)
: AVAILABLE (n n -- n.P)

(: VALUE r VALUE c :)
DIGIT GRID r c CZONE IMAGE \ ;

(--)

: INIT-POSSIBLE (--)
(: :) 0 VALUE S 0 VALUE s 0 VALUE V
XY XY PROD GRID DOM \ to S
INT INT PROD INT POW PROD {

<RUN
S CHOICE to s
s FIRST s SECOND AVAILABLE to V
s V |->

RUN> } to POSSIBLE ;

(Get the next squares from the most constrained -- returns a
subset of POSSIBLE. We cheat a bit by using the set ordering
to find the lowest card in the range of POSSIBLE)

: GETSQUARES (-- n.n.*.n.P.*.P)
(: :) 0 VALUE n 0 VALUE x

POSSIBLE DUP RAN ELEMENT CARD to n
INT INT PROD INT POW PROD {

127

C. Sudoku Listing

<RUN CHOICE to x
x SECOND CARD n = --> x

RUN> } 1LEAVE ;

(Picks next square and its availables (an element of POSSIBLE)
to send to assign)

: NEXTUP (n.n.*.n.P.*.P -- n.n.*.n.P.*)
(: VALUE mset :) 0 VALUE x

mset PCHOICE to x (x .PAIR CR)
POSSIBLE x SUBTRACT-ELEMENT to POSSIBLE x ;

(Assigns from square and set of values a single value, adding
pair to GRID. Hack to preserve square in nx)

: ASSIGN (n.n.*.n.P.* --)
(: VALUE nx :) 0 VALUE n
nx FIRST VALUE SQ
nx SECOND CHOICE to n
SQ n |->P,I to ASSIGNED (Needs type for constructor)
GRID ASSIGNED ADD-ELEMENT to GRID ;

(Remove assigned from the domain of each square in the constraint
zone of the last assigned square -- update by func override. Should
not attempt to update when no blanks need updating)

: UPDATE-POSSIBLE (--)
(: :) 0 VALUE U 0 VALUE upd 0 VALUE x
ASSIGNED FIRST UNPAIR CZONE POSSIBLE <| to U
U ?{} NOT IF

INT INT PROD INT POW PROD { <RUN
U CHOICE to x
x FIRST x SECOND ASSIGNED SECOND SUBTRACT-ELEMENT |->

RUN> } to upd
INT { } upd RAN IN NOT -->

POSSIBLE upd <+ to POSSIBLE THEN ;

(==========Run and step-through facilities ==============)

: START (--)
NULL to GRID NULL to POSSIBLE
32 WORD LOAD-FILE BUILD-GRID INIT-POSSIBLE ;

: STEP (--)
GETSQUARES NEXTUP
ASSIGN UPDATE-POSSIBLE ;

: SOLVE (-- n.n.*.n.*.P)

128

C. Sudoku Listing

BEGIN
GRID CARD 81 <

WHILE
STEP

REPEAT ;

(Takes filename after word, e.g.: TRY-TO-SOLVE S1)
: TRY-TO-SOLVE (--) CR

START SOLVE GRID .GRID ;

(Garbage collecting wrapper for above)
.(TRY <filename> runs the puzzle)
: TRY

<CHOICE
<TRY TRY-TO-SOLVE CUT>

[]
CR

CHOICE> ;

129

Appendix D

Translating to C

This appendix has the small C translation example, introduced in chapter 2 and
expanded in chapter 5; first a machine that specifies basic operations, then one
that calls them. Then the implementation versions of these; the printouts were
produced by the onboard LATEX system in the B-Toolkit.

Following this, the C code generated by the B-Toolkit, and finally the RVM, a
non-optimised version (with simplified variable names) based on the B0 versions.

130

������� ��	
�����	�
���� ������ �������������� ��!" ������#�$%��&�'%��%����(��(��) *

������� ��	
����
�
��������� ������ ������������� ! ��"# ������$�%&��'��$�(&���)*� ��$�%&����+��+ ,--��

�..� �����..������--$�..&..��+ ,//�� 00�11�2� �����11��32������//$�1142��+��5 6

�������������� 	
��
������ 	
����
������		����� ������ ��������� ��� !"��		#�$%��&��#�'%���()�		#�$%����*��* &++�� ���,,� �� ++#�,,%,,&--�� ..�//�0� �� --#�//10��2345667489848:;86954<=6�	
� >?@ABCD EE

�������������� 	
���
���� 	
������� 	
��������������� ������ ��������� !!"##"�� ��!!"##��$$����%����&&�##�%����''�!!"�����(��()*+,,-*./.*.01.,$$ 	
� 234567829: ;&& 	
� 234567829: ;'' 	
� 234567829: ;��<)*+,,-*./.*.01.,/+*=>�	
 ?6@A894 ;	
� ?6@A894 ;$$ 	
� 234567829: ;&& 	
� 234567829: ;'' 	
� 234567829: ;;

D. Translating to C

The translation to C produced by the B-Toolkit is:

//file b2s.h:
void INI_b2s(void);
void SS(int *_bb,int *_cc,int _aa);
void TT(int *_yy,int _xx);
void UU(int *_dd,int _ee,int _ff);

//file b2.h
void INI_b2(void);
void VV(int *_rr,int _aa);

/* file b2s.c */

#include "b2s.h" #
void INI_b2s(void)
{ ; }

void SS(int *_bb,int *_cc,int _aa)
{
if (_aa > 4) {

*_bb = 3*_aa;
*_cc = 5*_aa;

}
else {

*_bb = 3*_aa;
}

}

135

D. Translating to C

void TT(int *_yy,int _xx)
{
*_yy = _xx*_xx;

} }
void
UU(int *_dd,int _ee,int _ff)
{
*_dd = _ee+_ff;

}

/* file b2.c */

#include "b2.h"
#include "b2s.h" #
void INI_b2(void)
{
INI_b2s();

}

void VV(int *_rr,int _aa)
{
int pp,qq,ss;
SS(&pp,&qq,_aa);
TT(&ss,qq);
UU(_rr,pp,ss);

}

136

D. Translating to C

And a fairly literal RVM translation from the implementation version, with
parameter passing done via the stack.

: S (n -- n n)
(: VALUE a :)
0 VALUE b 0 VALUE c
a 4 > IF

a 3 * to b
a 5 * to c

ELSE
a 3 * to b

THEN b c ;

: T (n -- n)
(: VALUE x :)
0 VALUE y
x x * to y y ;

: U (n n -- n)
(: VALUE e VALUE f :)
0 VALUE d
e f + to d d ;

: V (n -- n)
(: VALUE a :)
0 VALUE r
0 VALUE p 0 VALUE q 0 VALUE s
a S to q to p
q T to s
p s U to r r ;

137

Appendix E

Send More Money

This is the complete RVM program to solve the Send More Money problem; after
setting up some variables, the part based on the RB0 in figure 4.1 follows. Finally
there is code to actually run the program and print out the result.

0 9 .. VALUE_ DIGIT
0 VALUE S (-- n) 0 VALUE E (-- n) 0 VALUE N (-- n)
0 VALUE D (-- n) 0 VALUE M (-- n) 0 VALUE O (-- n)
0 VALUE R (-- n) 0 VALUE Y (-- n)

: PUZZLE (--, find a solution to the puzzle)
(: :) (empty list of named parameters)

(create local variables to represent the carry flags)
0 VALUE c0 0 VALUE c1 0 VALUE c2

1 to M DIGIT INT { M , } \ to DIGIT (make most constrained choice first)
DIGIT CHOICE to D DIGIT INT { D , } \ to DIGIT
DIGIT CHOICE to E DIGIT INT { E , } \ to DIGIT
D E + 10 /MOD to c0 to Y
Y DIGIT IN --> DIGIT INT { Y , } \ to DIGIT
DIGIT CHOICE to N DIGIT INT { N , } \ to DIGIT
DIGIT CHOICE to R
N R + c0 + 10 MOD E = -->
N R + c0 + 10 / to c1
DIGIT CHOICE to O
E O + c1 + 10 MOD N = -->
E O + c1 + 10 / to c2
DIGIT INT { R , } \ to DIGIT
DIGIT CHOICE to S
S M + c2 + 10 MOD O = -->
S M + c2 + 10 / M = -->

0LEAVE ;

: SOLUTIONS (-- $.n.*.P.P, returns the set of solns to the puzzle,
each solution is in the form of a function from strings

138

E. Send More Money

(" S", " E" etc) to values. In fact there is only a single solution,
but we allow for multiple solutions in our approach)
STRING INT PROD POW {

<RUN PUZZLE
STRING INT PROD {

" S" S |-> , " E" E |-> , " N" N |-> , " D" D |-> ,
" M" M |-> , " O" O |-> , " R" R |-> , " Y" Y |-> ,

}
SET>

} ;

: .SOLN ($.n.*.P --) (: VALUE SOLN :)
SOLN " S" APPLY . SOLN " E" APPLY . SOLN " N" APPLY . SOLN " D" APPLY .
." + "
SOLN " M" APPLY . SOLN " O" APPLY . SOLN " R" APPLY . SOLN " E" APPLY .
." = "
SOLN " M" APPLY . SOLN " O" APPLY . SOLN " N" APPLY . SOLN " E" APPLY .
SOLN " Y" APPLY . 0LEAVE ;

: REPORT (--)
(: VALUE SOLS :) CR

SOLS CARD 0 DO
SOLS I @ELEMENT .SOLN CR

LOOP
0LEAVE ;

: SENDMORY (--) SOLUTIONS REPORT ;

CR .(SENDMORY runs the puzzle: SEND + MORE = MONEY)

SENDMORY

139

Appendix F

Reversible Pseudo-Random
Number Generator

The code for an RNG which can repeat random numbers generated during a
reversible program; past values are stored on its history stack, so can be restored
with calls to randpop.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define SEED 500
#define BYTES 8
#define RANDSTACKSIZE 100
char randstate[BYTES]; // current random array state
char randstack[RANDSTACKSIZE][BYTES]; // history stack
// pointers for both
void * randstatep = randstate;
void * rstackp = randstack;

// push and pop functions
void randpush() {

memcpy(rstackp, randstatep, BYTES);
rstackp += BYTES; // point at next free entry }

void randpop() {
rstackp -= BYTES; // point at last entry
memcpy(randstatep, rstackp, BYTES); }

// Wrapper to simplify calling rand
long revrandom() {

randpush();
return random(); }

//------------------ Demonstration Wrapper ------------------------

140

F. Reversible Pseudo-Random Number Generator

int main (int argc, char *argv[]) {
initstate(SEED, randstate, BYTES);
puts("Call random() a few times:");
printf("\nInitially, R1: %ld, ", revrandom());
printf("R2: %ld, ", revrandom());
printf("R3: %ld\n", revrandom());
puts("Reverse a single call...");
randpop();
printf("\nAnd we should get R3 again: %ld \n", revrandom());
puts("Reverse twice to second val...");
randpop(); randpop();
printf("\nAnd now, R2: %ld, ", revrandom());
printf("R3: %ld, ", revrandom());
printf("R4: %ld\n", revrandom());
return 0; }

======================================
A couple of sample runs.
Run with 100 as SEED:
[u0019191@SCM-PC-633 12:25pm ~/progwork]$ a.out
Call random() a few times:
Initially, R1: 829870797, R2: 1533044610, R3: 1478614675
Reverse a single call...
And we should get R3 again: 1478614675
Reverse twice to second val...
And now, R2: 1533044610, R3: 1478614675, R4: 1357823696
--
And with 500 as SEED:
[u0019191@SCM-PC-633 12:31pm ~/progwork]$ a.out
Call random() a few times:
Initially, R1: 2001820957, R2: 2037492626, R3: 479770979
Reverse a single call...
And we should get R3 again: 479770979
Reverse twice to second val...
And now, R2: 2037492626, R3: 479770979, R4: 991250784

141

Appendix G

Euroforth 2008

Using Forth in a Concept-Oriented Computer
Language Course

Angel Robert Lynas and Bill Stoddart
University of Teesside

September 2008

142

Abstract

We describe a way of teaching fundamentals of Language Systems (for
second-year Computing students), without having to compromise the use
of a simple grammar owing to hardware limitations which need no longer
apply in this setting.We adopt a top-down approach, reading from right-
to-left and splitting the input string on the rightmost operator appropriate
to that level. The target platform is Reversible Virtual Machine (RVM)
Forth, so a postfix translation is the aim. We introduce a basic arithmetic
grammar and expand it during the course to allow unary minus, floating
point and function application; this shows how type information can be
generated in one pass and resolved in a second, via an internal intermediate
code. Each version of the grammar has its productions mapped onto a
system of equations which serve as the specification for the implementation
functions.

1 Introduction

In teaching Language Systems for Computer Science, the conceptual simplicities
can often be obscured by the compromises made to accommodate purely histor-
ical restrictions on software writing for far more limited computers than those
available today. These compromises take the form, for instance, of extra compli-
cations in the simple grammars, and trying to do several jobs in one pass of the
compiler.

Accepting that we can now directly implement, at least in a pedagogical setting, a
more straightforward approach less hampered by traditional constraints, can lead
to a clarification of the conceptual issues involved in top-down parsing.

We used a basic grammar for infix arithmetical expressions, and used the conver-
sion to postfix as a convenient route for exploring grammar analysis. An expan-
sion to include floating point numbers and other facilities proved to be a fruitful
method for introducing the usage of type information and two-pass compiling with
intermediate code to hide the use of meta-information.

Following some definitions, we describe in Section 2 the overall approach taken,
then in Section 3 the basic grammar presented to the students. In Section 4 we
examine the extensions to this grammar, the actions of the new compiler’s first
pass and those of its second. We conclude with a brief look at a possible future
application of these ideas for subsequent refinements of the course.

1.1 Some Definitions

In the following, we use some fundamental terminology from the study of gram-
mars:

Terminals These are the strings which are the tokens of the language and appear
in generated expressions.

Non-Terminals These are symbols which do not appear in the output, but stand
for classes of terminals, or combinations of those classes.

Productions Specifies one way in which a non-terminal can be expanded to
a sequence of other non-terminals and/or terminals, eventually generating
strings composed entirely of terminals.

2 Higher-Level approach

The usual approach in teaching about language systems has been to adopt a
relentlessly left-to-right method, compatible with historical restraints on memory,
storage and processing capacity. Thus in the interests of efficiency, perhaps one
token is available for “look-ahead” while the current token is being processed
(look-ahead by default referring to the token on the right). See for instance the
popular compiler texts [1] and [2].

Using these techniques, everything is done in a single pass, including storage and
checking of type information (if applicable) and resolution of conditional structure
— though we do not consider the latter here.

Certain things must be sacrificed to this methodology, the first casualty being
simplicity of grammar. A grammar for basic arithmetic could contain a production
(we define <expression> and <term> more fully later)

<expression>::=<expression> + <term>

meaning that one way of constructing an expression is by combining an expression
and a term with a “+” sign in between. This we generally abbreviate to

E ::= E + T

This, however, is not really suitable for left-right parsing owing to the left recur-
sion; that is, an E could expand to E + T + T + · · · + T, so reliably telling where
the first <expression> ends is problematical. The order of E and T specifies left-
associativity for the + operator and others, ensuring that (for instance) a − b − c
is parsed as (a − b) − c, rather than a − (b − c) which gives a different result.

In order to remove this left-recursion, such constructs are usually redefined using
dashed letters to denote “the rest of the expression”, now looking like this

E ::= TE′

E′ ::= +TE′ | ϵ

The symbol ϵ or “null” stands for the empty string. The decomposition of the
expression E can now be approached unambiguously from the left, as the term

2

(processed by a similarly expanded rule) is recognised and the “rest of the ex-
pression” E′ is passed downward for further processing. But this represents a
considerable loss in simplicity compared to the first grammar.

What method, then, could be used to parse productions like E → E + T as is?
Clearly a right to left approach would be more apropriate here, splitting the
expression at the rightmost top-level “+” encountered, where the remaining ex-
pression on the left is dealt with by a recursive call to the expression parser, and
the term is dealt with by the term parser. Terms are split on “*” or “/” if any
occur, again the rightmost, for example T = T ∗ F, where F is a factor with no
top-level operations. We can now fill in the rest of the grammar and formalise the
operation of a recursive parser.

3 A Simple Arithmetic Grammar

The initial grammar developed for the students, which allows for unsigned inte-
gers, identifiers, and bracketed expressions, is as follows. The order of the non-
terminal expansions reflects the precedence order of the operators; lower prece-
dence operators are scanned for first, and the non-terminal split if applicable. The
higher precedence operators appear closest to the terminals in the postfix output
and are thus executed first. The vertical bars on the left-hand side indicate alter-
native productions for the same non-terminal.

Non-Terminals:

E is an Expression; these can contain a plus or minus sign at the top level (i.e.
not within any brackets).

T is a Term, which contains no pluses or minuses at its top level, but can
contain “*” or “/” for multiply or divide.

F is a Factor, containing no top-level operations, but can expand to an un-
signed number U, or an identifier I, or a bracketed expression (E), the con-
tents of which are recursively expanded as an expression. We do not define U
or I further at present; in any case U will be later replaced by a non-terminal
which accommodates both integer and floating point numbers.

E ::= E + T | E − T | T
T ::= T ∗ F | T/F | F
F ::= U | I | (E)

The compilation to postfix is described by a set of equations involving mutually
recursive functions which act on appropriate strings of each non-terminal class.
The right-hand sides of these equations show the output from a given string; at
the top levels, this will involve invoking other functions on part of the string

3

— possibly including the function itself recursively. In the following, lower-case
e, t, f , u and i represent strings belonging to the nonterminals E,T ,F,U and I
respectively; that is, e is a particular expression, t is a particular term, and so on.
We have the functions

PE takes a string e and returns the translation of that string in postfix.

PT takes a string t and returns the translation of that string in postfix.

PF takes a string f and returns the translation of that string in postfix.

If no operators are found by PE or PT , they pass the entire string down to the
next function. The symbol “a” is used for string concatenation. The mutually
recursive equations which define the compilation are

PE(ea "+"a t) = PE(e)a PT(t)a " +" (3.1)
PE(ea "-"a t) = PE(e)a PT(t)a " -"

PE(t) = PT(t)

PT(t a "*"a f) = PT(t)a PF(f)a " *" (3.2)
PT(t a "/"a f) = PT(t)a PF(f)a " /"

PT(f) = PF(f)
PF(u) = u
PF(i) = i

PF("("a ea ")") = PE(e)

At the top two levels — expression and term — the parsing is right to left;
specifically, a Forth operation LSPLIT is used to search for a symbol in {+,−} or
{∗, /} at the top level. The stack parameters are the string to be searched and a
sequence of strings which are the tokens to search for. An example call follows,
but a brief explanation is needed first.

A string in RVM-Forth can be an “ASCII-Zero” or AZ string, which is terminated
by an ASCII null (in other words, a 0 after the final character, like strings in C
and some other languages). They are created with the " word, terminated by
another quote. Also, sequences are created with the syntax

<type> [<element1> , <element2> ,] (and so on)

where the comma word allocates storage for each element. The type can be
simple (integer, string) or composite, involving pairs and nested sets or other
sequences.

An example call to LSPLIT using a string EXPR1, then, is

EXPR1 STRING [" +" , " -" ,] LSPLIT

This would be an call to process EXPR1 using the symbols {+,−}.

4

Should LSPLIT encounter a right bracket “)”, this means that a lower-level expres-
sion is included in the top-level one, which expression will be dealt with by a later
recursive call to PE. So LSPLIT will not continue its search for operators until it
finds the matching left bracket; it will keep track of the level, incrementing for
any right brackets and decrementing for matching left ones, until its own level
zero is reached again.

On encountering a symbol/token in its search set, the operation splits the input
string into a left part, the symbol string, and a right part. As can be seen from
equations (3.1) and (3.2) above, the first part is sent recursively to PE or PT as
appropriate, the second part to PT or PF, while the operation token is output last
of all, so that it occurs after the outputs from parsing the rest of the string. If
no search symbol is found, the entire string is passed down to the next parsing
level.

When the factor level is reached, subsequent processing of U and I can be done
left to right, as no left recursion occurs in these definitions. A factor of the form
“(E)” merely has its brackets stripped and the contents sent back to the top-level
function PE. We include the code for PT (called PT), which parses terms into terms
and factors, as figure 1 below. The local variable syntax uses the words (: and
:) to delineate the declarations, with values being taken from the stack.

: PT (az1 -- az2, parse a term, leaving az2 the postfix
translation of the term az1)

(: VALUE e :)
e STRING [" *" , " /" ,] LSPLIT
VALUE BEFORE VALUE AFTER VALUE OP-STRING
OP-STRING NULL =
IF

BEFORE PF (No op found, so e was a factor)
ELSE

BEFORE RECURSE AFTER PF ^ OP-STRING ^
THEN

1LEAVE ;

Figure 1: RVM-Forth code for PT .

The general technique is known as Recursive Descent Parsing, and is well-known,
though we do not know of its having been implemented in this bidirectional way.
The usual categories of LL(k) or LR(k) do not apply, strictly speaking, as they de-
note solely unidirectional parsing; for instance the Earley recogniser [3], based on
Knuth’s LR(k) algorithm. Our technique is adaptable insofar as right-associative
operators can and will be accommodated by a sort of mirror image of LSPLIT
which would read from left to right.

The parsing can be illustrated with a couple of examples, which can either be
represented as parts of trees (useful for the students initially), or in a linear fashion

5

which follows the equations closely. Given the input string “x∗x−1−(x−1)∗(x+1)”,
for instance, the first parsing step is shown in figure 2.

PE(“x ∗ x − 1 − (x − 1) ∗ (x + 1)”)

“−”

PE(“x ∗ x − 1”) PT(“(x − 1) ∗ (x + 1)”)

Figure 2: Spliƫng at the top level.

The left-hand side of this is then the input to a recursive call to PE; the rest of
this is shown (as far as the Factor level) in figure 3.

PE(“x ∗ x − 1”)

“−”

PE(“x ∗ x”)

PT(“x ∗ x”)

“∗”

PT(“x”)

PF(“x”)

PF(“x”)

PT(“1”)

PF(“1”)

Figure 3: Spliƫng the leŌ-hand half down to Factor level.

In linear style, the first part of this second tree would appear as

PE("x ∗ x − 1") = PE("x ∗ x")a PT("1")a " − "

which we can see follows the pattern of equation 3.1.

As regards performance, we have not yet undertaken any exhaustive time com-
plexity analyses. Some empirical run-throughs indicate that the basic technique
is probably O(n2) for a suitable grammar; the limitations with respect to which
grammars can be handled require further investigation, however.

4 Floating Point Extension

We now consider extending the grammar to include unary minus, function ap-
plication and floating point capability. The inclusion of mixed-mode arithmetic

6

requires the simple compiler to become a two-pass compiler, whereby the first
pass generates intermediate code containing type information, as we now have
integer and floating point to deal with. These require different operations for
arithmetic and printing, and sometimes conversion is required from integer to
floating point.

Unary minus is dealt with by converting the minus sign into a tilde “∼”, as the
compiler uses this internally; it is converted back for the Forth-readable output,
and allows multiple minuses in a row which are converted consistently. The details
are not examined further here. Function application is of the form “<identifier>(<
arg-list>)”, with the arguments comma-separated.

The basic grammar is extended as follows, with the extra non-terminals

F0 This is simply an unsigned factor.

N This replaces U, and is a general number (integer or float), parsed by the
floating point state machine to be described later.

L This is a comma-separated list of arguments to a function.

E ::= E + T | E − T | T
T ::= T ∗ F | T/F | F
F ::= F0 | −F
F0 ::= N | I | (E) | I(L)
L ::= L,E

The list of arguments L is parsed right to left, in a similar way to E and T, but
split by LSPLIT on a comma.

4.1 First Pass (intermediate code)

The generating functions for the upper levels are similar for those in the previous
section, but instead of including a straightforward plus or multiply sign in the
output, they include the string for an internal operation which the second pass of
the compiler will use to resolve the types and assign the correct integer or floating
point version of the Forth operation in the final output; these internal operations
all have an underscore suffix. The first few equations are thus similar to those
near (3.1).

7

PE(ea "+"a t) = PE(e)a PT(t)a " + "

PE(t) = PT(t)

PE(ea "-"a t) = PE(e)a PT(t)a " - "

PT(t a "*"a f) = PT(t)a PF(f)a " * "

PT(t a "/"a f) = PT(t)a PF(f)a " / "

PT(f) = PF(f)

PF("("a ea ")") = PE(e)

Below this, terminals begin to be output in the intermediate code, however these
need to be strings rather than literals; spaces are added where required to ensure
the final output is consistently space-separated. In the equations below, the sym-
bol \" denotes a literal embedded quote, and ϕ is a function identifier (not a
numerical variable). We also have the additional parameters

n Any integer number string.

i Any integer identifier (variable) string — note, no longer a general identifier

l Any list of arguments.

r Any floating point number string.

r′ Any Forth equivalent1 to r.

x Any real identifier string (floating point variable).

The identifiers are stored in symbol tables which specify some predefined families
of identifier strings; this obviates any immediate need for typed declarations,
however this is an area which will be examined at a later stage. Thus identifiers
beginning with the letters i-n, in either case, are integer while all others are
treated as floating point.

We then introduce the additional parsing functions

PF0 Returns the intermediate code for an unsigned factor.

PL Returns the intermediate code for an argument list.
1We distinguish these as they may use different symbols for unary minus in exponent notation.

8

The remaining conversion equations for the intermediate code can now be defined
(note L is shorthand for l, e; and l could be a single e).

PF(" ∼ "a f) = PF(f)a " NEGATE "

PF(f) = PF0(f) (f can be n, i, r, x, or ϕ)
PF0(ϕ(L)) = PL(L)a PF0(ϕ) (PF0 would simply output the string ϕ)
PF0(n) = \"a na \"a " int"

PF0(i) = \"a ia \"a " int"

PF0(r) = \"a r′ a \"a " float"

PF0(x) = \"a xa \"a " float"

PL(la ","a e) = PL(l)a PE(e)
PL(e) = PE(e)

The final four PFO equations show the type information being included in the
output string; for example, the tokens “36” or “3.142” become the strings (with
embedded quotes around the numbers)

“ " 36" int”
“ " 3.142" float”

This is because we are still in the intermediate code, which will be converted
to input for Forth by the second-pass operations — those with the appended
underscore — e.g. + , * . We can now examine these in the context of the
second pass of the compiler.

4.2 Second Pass

For the simple example infix input 10.5+ 5 ∗ 2.5, the first pass will have produced
the intermediate output string with embedded quotes

" 10.5" float " 5" int " 2.5" float * + (4.1)

This is then tokenised and interpreted by the second-pass compiler. At this level,
int and float are interpreted as integer constants, so when the operation * is
reached, the stack has three string/integer pairs on it. The code for * is shown
in figure 4.

It takes four arguments consisting of two string/integer pairs, the integers con-
taining type information. The four possible combinations of int and float are
checked (the second case is applicable here). The numerical/ variable values are
output as strings, followed by the appropriate ordinary arithmetical operators,
here either * or F* (the floating point version). In addition, since F* requires

9

: *_ (az1 type1 az2 type2 -- az3 type3)
(: VALUE e1 VALUE type1 VALUE e2 VALUE type2 :)

CASE
type1 int = type2 int = AND ?OF
e1 e2 ^ " *" ^ int

ENDOF
type1 int = type2 float = AND ?OF
e1 " S>F" ^ e2 ^ " F*" ^ float

ENDOF
type1 float = type2 int = AND ?OF
e1 e2 " S>F" ^ ^ " F*" ^ float

ENDOF
type1 float = type2 float = AND ?OF
e1 e2 ^ " F*" ^ float

ENDOF
(otherwise) " Type error" AZ-ABORT

ENDCASE
2LEAVE ;

Figure 4: RVM-Forth code for * .

that both its arguments be floating point, the conversion operator2 S>F is inserted
in the output string after any integer values.

Finally the constant corresponding to the value is output, either int or float.
Thus the output is a string and an integer, suitable for input to another operation
of this kind.

After * has interpreted and dealt with the relevant parts of string (4.1), we
come to + , which finds the following four arguments on the stack:

"10.5" float "5 S>F 2.5 F*" float

the last two being the output from * . Note these strings are actual strings.

The code for + is very similar to the above, and the final output will be

"10.5 5 S>F 2.5 F* F+" float

The final type indicator is dropped from this (by the second-pass compiler when
the end of the expression is reached), and the remaining string can now be com-
piled by Forth.

For an example with identifiers (subject to the conventions mentioned in 4.1, page
8) we use

(i + 7) ∗ (j + 1.5)

The first pass produces the string (recall these quotes are embedded)
2Single-precision integer to Floating point.

10

" i" int " 7" int +_ " j" int " 1.5" float +_ *_

After both + have been processed, the stack will contain the following:

"i 7 +" int "j S>F 1.5 F+" float

Finally * will produce this

"i 7 + S>F j S>F 1.5 F+ F*"

having dropped the float type indicator.

The second pass does not have such a neatly defined set of equations to encapsu-
late it, as the arguments are no longer a single string, but four arguments (stack
parameters): string, integer, string, integer. Also, NEGATE and F->F , dealing
with negating variables and numbers, and type-checking the arguments for func-
tion applications3, have different signatures again. They also have more conditions
to cover with, for instance, four combinations of int and float. The specifying
equations for + would be:

+ (n1, int, n2, int) = n1 a n2 a " +"

+ (n, int, x, float) = na " S>F"a xa " F+"

+ (x, float, n, int) = " S>F"a xa na " F+"

+ (x, float, x, float) = " S>F"a xa " S>F"a xa " F+"

4.3 Floating Point State Machine

For the general numeric literals subsystem — which handles floating point and
exponent form literals — we adopt a state machine. A feature of the exponent
form for infix expressions is that unary minus in an exponent must be written as a
tilde rather than a normal minus (this does not apply to any other unary minus).
Thus expressions such as

-3.467e∼6 or -2.5e∼10

are admissible. This is to simplify the otherwise unwieldy process of identifying
unary minuses for floating-point exponents and replacing them internally with
tildes; the outputs will have normal minus signs for the usual Forth input. The
machine itself has seven states; N2, N4 and N7 are terminal states, and ϵ denotes
an empty string.

3Neither are described in detail here.

11

N ::= N1 | DN2 | .N3

N1 ::= DN2 | .N3

N2 ::= ϵ | DN2 | .N4 | eN5

N3 ::= DN4

N4 ::= ϵ | DN4 | eN5

N5 ::= N6 | DN7

N6 ::= DN7

N7 ::= ϵ | DN7

5 Conclusions and Further Work

The idea for this course stemmed from a desire to teach Language Systems at a
more pure conceptual level, so that the concepts would be less obscured by their
almost immediate abandoning for a more complex bottom-up approach, as was
previously done.

We therefore used a top-down right-to-left method to parse expressions down to
factor level, using recursive descent techniques to generate postfix versions read-
able by the Forth system — later via intermediate code to hold type information.
The course thus began with deceptively simple concepts and could build naturally
to a reasonably capable two-pass expression compiler. So the students learn about
grammars and programming simple compilers in Forth.

We could go in a number of different directions with this, perhaps expanding in
other ways than the floating point facility; for instance, one idea is to adapt this
approach to make use of RVM Forth’s native support for sets (using the C package
contributed by Frank Zeyda [5]). This could be used to develop, for the course, an
application to accept sets and basic set operations and generators from a suitably
defined grammar, and convert them to valid Forth. Even eschewing floating-point
support here, we still have the issue of types, as sets can contain strings and
integers, and also pairs (maplets, using the ASCII notation |->) and nested sets.
Therefore recursion would again be required to tease out the type information at
each level and generate the appropriate tags for the first-pass output.

For illustration, a brief example of a simple set enumeration with string-integer
pairs and the output which would be generated:

{"Dave" |-> 3291, "Li" |-> 3419} becomes
STRING INT PROD { " Dave" 3291 |-> , " Li" 3419 |-> , }

The grammar would, among other things, have to ensure that the maplet opera-
tor retained left associativity, and had the correct type signature. Some operators
have right associativity, for instance domain restriction, and the bidirectional

12

functionality will be needed to parse these. We will give consideration to a gen-
eralised and consistent system for type declarations in these language grammars,
which would work with the set types of Forth and also with numeric types; also
a closer analysis of the time complexity over a greater variety of grammars.

References

[1] A. V. Aho and J. D. et al Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 2nd edition, 2006.

[2] R. C. Backhouse. Syntax of Programming Languages: Theory and Practice.
Prentice-Hall, 1979.

[3] J. Earley. An Efficient Context-Free Parsing Algorithm. ACM, Vol 13 no. 2,
1970.

[4] W. J. Stoddart and A. R. Lynas. A Reversible Computing Approach to Forth
Floating Point. In M. A. Ertl and P. Knaggs, editors, 23rd EuroForth Con-
ference Proceedings, October 2007. On-line proceedings.

[5] W. J. Stoddart and F. Zeyda. Implementing Sets for Reversible Computation.
In M. A. Ertl, editor, 18th EuroForth Conference Proceedings, 2007. On-line
proceedings.

The RVM-Forth software and manual can be downloaded from
http://www.scm.tees.ac.uk/formalmethods/download/rvm0_1.zip
http://www.scm.tees.ac.uk/formalmethods/download/rvmman.pdf

13

	1 Introduction
	1.1 Overview
	1.2 Thesis
	1.3 Objectives
	1.4 Chapter Overview
	1.5 Contributions

	2 Preliminaries
	2.1 The B Method
	2.1.1 Rationale and Method
	2.1.2 Provability
	2.1.3 Refinement
	2.1.4 Abstract and Concrete Constants
	2.1.5 Generalised Substitution Language and Program Constructs
	2.1.6 Structuring and Limitations
	2.1.7 Proof Model: Predicate Transformers
	2.1.8 Proof Obligations and Code Generation

	2.2 Introduction to Bunch Theory
	2.2.1 Bunch Theory Notation

	2.3 The Forth Language and Virtual Machine
	2.4 Summary

	3 Reversible Computing
	3.1 Physical Reversibility
	3.2 Logical Reversibility
	3.3 Summary

	4 Reversible B
	4.1 B0, RB0, and RB1
	4.2 Stand-alone guarded commands and choice
	4.3 Backtracking interpretation
	4.3.1 Example: Send More Money

	4.4 Prospective Values Formalism
	4.4.1 Referential Transparency

	4.5 Case Study: Sudoku solver
	4.5.1 Data Model
	4.5.2 Constraint Zone
	4.5.3 Method
	4.5.4 Algorithm expansion
	4.5.5 Most Constrained Squares
	4.5.6 Machine moves

	4.6 Summary

	5 An Implementation Platform for our Ideas (The RVM)
	5.1 Differences in Interface and Programming Constructs
	5.1.1 Prospective Values Implementation
	5.1.2 Sets and sequences in the RVM

	5.2 Internal Features
	5.3 Stack Use when translating to RVM from B (compared to C)
	5.3.1 Calling Imported Operations

	5.4 Case Study: Sudoku solver revisited
	5.4.1 Moves
	5.4.2 The Update procedure

	5.5 Reversible Random Number Generator
	5.6 Summary

	6 A More Powerful Implementation Language
	6.1 An extended functional language of concrete constants
	6.1.1 Translation Schema for Functions

	6.2 Lambda expressions
	6.2.1 Lambda Calculus in B
	6.2.2 A Postfix Notation for Lambda Calculus
	6.2.3 RVM-Forth Implementation

	6.3 Summary

	7 Translation Schemas for Operations
	7.1 Infix Binary Symbols
	7.1.1 Binary Symbols which match existing ASCII versions
	7.1.2 Other Binary Symbols

	7.2 Translation of Equality
	7.3 Prefix and Postfix Symbols
	7.4 Declaration of Variables
	7.5 Assignment
	7.5.1 Assignment of Bunch Expressions
	7.5.2 Assignment to Array elements

	7.6 Control Structures
	7.6.1 Selection
	7.6.2 Stand-alone Guards and Choice
	7.6.3 Loops

	7.7 Sets, Ordered Pairs and Sequences
	7.7.1 Enumerated Sets
	7.7.2 Choice from a Set
	7.7.3 Set Comprehension
	7.7.4 Ordered Pairs
	7.7.5 Sequences
	7.7.6 Relational Image and Function Application

	7.8 Prospective Value Computations
	7.9 Operation Definition and Invocation
	7.9.1 Definition
	7.9.2 Invocation

	7.10 Local Variables
	7.11 Summary

	8 Theoretical Underpinnings for Bunch Theory
	8.1 Denotational Relation to Set Theory
	8.2 Summary

	9 Conclusions and Further Work
	9.1 Objectives
	9.2 Further Work

	A Abstracts of Papers
	B Summary of RB0 and RVM
	B.1 RB0 Notation
	B.2 RVM-Forth

	C Sudoku Listing
	D Translating to C
	E Send More Money
	F Reversible Pseudo-Random Number Generator
	G Euroforth 2008

