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Abstract

I study sequent calculus of combined logics in this thesis. Two specific
logics are looked at - Logic BI that combines intuitionistic logic and mul-
tiplicative intuitionistic linear logic and Logic BBI that combines classical
logic and multiplicative linear logic. A proof-theoretical study into logical
combinations themselves then follows.

To consolidate intuition about what this thesis is all about, let us suppose
that we know about two different logics, Logic A developed for reasoning
about Purpose A and Logic B developed for reasoning about Purpose B.
Logic A serves Purpose A very well, but not Purpose B. Logic B serves
Purpose B very well but not Purpose A. We wish to fulfill both Purpose
A and Purpose B, but presently we can only afford to let one logic guide
through our reasoning. What shall we do? One option is to be content with
having Logic A with which we handle Purpose A efficiently and Purpose
B rather inefficiently. Another option is to choose Logic B instead. But
there is yet another option: we combine Logic A and Logic B to derive
a new logic Logic C which is still one logic but which serves both Pur-
pose A and Purpose B efficiently. The combined logic is synthetic of the
strengths in more basic logics (Logic A and Logic B). As it nicely takes
care of our requirements, it may be the best choice among all that have
been so far considered. Yet this is not the end of the story. Depending
on the manner Logic A and Logic B combine, Logic C may have exten-
sions serving more purposes than just Purpose A and Purpose B. Ensuing
is the following problem: we know about Logic A and Logic B, but we
may not know about combined logics of the base logics. To understand
the combined logics, we need to understand the extensions in which base
logics interact each other. Analysis on the interesting parts tends to be
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non-trivial, however. The mentioned two specific combined logics BI and
BBI do not make an exception, for which proof-theoretical development
has been particularly slow. It has remained in obscurity how to properly
handle base-logic interactions of the combined logics as appearing syntac-
tically.

As one objective of this thesis, I provide analysis on the syntactic phe-
nomena of the BI and BBI base-logic interactions within sequent calculus,
to augment the knowledge. For BI, I deliver, through appropriate method-
ologies to reason about the syntactic phenomena of the base-logic interac-
tions, the first BI sequent calculus free of any structural rules. Given its
positive consequence to efficient proof searches, this is a significant step
forward in further maturity of BI proof theory. Based on the calculus, I
prove decidability of a fragment of BI purely syntactically. For BBI which
is closely connected to application via separation logic, I develop adequate
sequent calculus conventions and consider the implication of the underly-
ing semantics onto syntax. Sound BBI sequent calculi result with a closer
syntax-semantics correspondence than previously envisaged. From them,
adaptation to separation logic is also considered.

To promote the knowledge of combined logics in general within computer
science, it is also important that we be able to study logical combinations
themselves. Towards this direction of generalisation, I present the concept
of phased sequent calculus - sequent calculus which physically separates
base logics, and in which a specific manner of logical combination to take
place between them can be actually developed and analysed. For a demon-
stration, the said decidable BI fragment is formulated in phased sequent
calculus, and the sense of logical combination in effect is analysed. A
decision procedure is presented for the fragment.
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Chapter 0

Prerequisites and Notations

Formal Reasoning

It can be error-prone to use an informal language for formal reasoning. Where there is
a merit, I make use of meta-logical connectives as defined below for some object logic.

Definition 1 (Meta-logical connectives for formal reasoning)

1. ∧†: conjunction. Given two sentences S1 and S2 each of which is either a true

or a false statement, S1 ∧† S2 is a true statement if and only if both S1 and S2 are

true statements.

2. ∨†: disjunction. Given two sentences S1 and S2 each of which is either a true

or a false statement, S1 ∨† S2 is a true statement if and only if either S1 or S2 is

a true statement.

3. ¬†: negation. Given a sentence S1, ¬†S1 is a true statement if and only if S1 is

a false statement.

4. →†: material implication. Given two sentences S1 and S2 each of which is

either a true or a false statement, S1→†S2 is a true statement if and only if either

S1 is a false statement or S2 is a true statement.

1



5. ↔†: equivalence. Given a sentence S1 and S2 each of which is either a true or

a false statement, S1↔†S2 is a true statement if and only if both S1 →† S2 and

S2 →† S1.

6. ∀: universal quantification. Given a formula S(x) with a free variable x (which

may be occurring multiple times), ∀x.S(x) is a true statement if and only if, for

all the constants c that could replace x, S(c) is a true statement.

7. ∃: existential quantification. Given a formula S(x) with a free-variable x (which

may be occurring multiple times), ∃x.S(x) is a true statement if and only if there

exists some constant c that could replace x such that S(c) is a true statement.

Binding Order

I adopt the following binding order in a decreasing precedence for all the - logical or
meta-logical indiscriminate - connectives that appear in this thesis. Connectives in the
same group have the same binding precedence.

1. ¬

2. ∧ ∨ ∗

3. ⊃ −∗

4. ; ,

5. ∀ ∃

6. ¬†

7. ∧† ∨†

8. →† ↔†

Example 1 ¬†∀a.¬a ∧ b ⊃ c; d→† f is read as: (¬†((∀a).((((¬a) ∧ b) ⊃ c); d)))→† f .

2



Notations Around Derivation Trees

A proof system defines a set of axioms and other inference rules. I define notations
around derivation trees.

Definition 2 (Inference rules) An inference rule Inf of some proof system PS is in one

of the following forms:

1. One-premise inference rule:

Premise LabelConclusion

in which are given one conclusion “Conclusion” and one premise “Premise”.

“Label” is the name given to the one-premise inference rule. Note that this

and the rest in this definition are schemata. Each of “Premise”, “Label” and

“Conclusion” is instantiated appropriately in PS.

2. Two-premise inference rule:

Premise1 Premise2 LabelConclusion

in which are given one conclusion “Conclusion” and two premises “Premise1”

and “Premise2”. “Label” is the name given to the two-premise inference rule.

3. Axiom:

LabelConclusion

in which is given one conclusion “Conclusion” and no premise. “Label” is the

name given to the axiom rule.

Definition 3 (Derivation trees) Given some proof system PS with a set of inference

rules Infs, a derivation tree with its conclusion Conclusion is defined by the following

simultaneous induction. Hereafter, we denote by Π(Conclusion) a derivation tree whose

root is Conclusion. By ‘root’ of a derivation tree, we mean that it is a conclusion which

is not at the same time a premise in the derivation tree. Symmetrically, by ‘leaf’ of a

derivation tree, we mean that it is a premise which is not at the same time a conclusion

in the derivation tree.

3



1. If Conclusion is the conclusion of an axiom (with label Label), then

LabelConclusion

is a derivation tree. There are two nodes: an empty node in the premise of Label

and Conclusion in the conclusion of Label, in the derivation tree.

2. If Conclusion is the conclusion of some one-premise inference rule Inf with the

premise Premise which is the root of Π(Premise), then;

Π(Premise)
Inf

Conclusion

is a derivation tree. This derivation tree comprises the root node Conclusion and

all the nodes in Π(Premise).

3. If Conclusion is the conclusion of some two-premise inference rule Inf with the

left premise Premise1 and the right premise Premise2 each of which is the root

node of a derivation tree, then;

Π(Premise1) Π(Premise2)
Inf

Conclusion

is a derivation tree. This derivation tree comprises the root node Conclusion and

all the nodes in Π(Premise1) and Π(Premise2).

If all the leaf nodes in a derivation tree are empty nodes, we say that the derivation

tree is closed.

Definition 4 (Derivation depth) Derivation depth of a derivation tree Π(Conclusion)

with the root Conclusion, denoted by der depth(Π(Conclusion)), is defined inductively:

1. If Conclusion is the conclusion of an axiom, it is 1.

2. If Conclusion is the conclusion of a one-premise inference rule with the premise

Premise, then it is 1 + der depth(Π(Premise))).

3. If Conclusion is the conclusion of a two-premise inference rule with the left

premise Premise1 and the right premise Premise2, then it is

1 +max(der depth(Π(Premise1)), der depth(Π(Premise2))).

4



Definition 5 (Transitions) “ ” is defined for two nodes D1 and D2 in a derivation

tree such that D1  D2 is a one-step transition via an inference rule Inf, satisfying (1)

that D2 is the premise (or one of the premises) of Inf and (2) that D1 is the conclusion

of Inf. The notation D1  Inf D2 explicitly states which inference rule applies for the

transition. A transition from D1 to D2 in zero (i.e. no transition) or more applications

of inference rule(s) is denoted by D1  ∗ D2. The notation D1  ∗Infs D2 explicitly

states which inference rule(s) may apply for the transition. D1  + D2 abbreviates

D1  D3  ∗ D2 for some D3 in the derivation tree. D1  k D2 is a transition with

exactly k ≥ 0 steps.

Definition 6 (Derivation length) Given a derivation tree Π(D) with the conclusion

(root) D, derivation length of D1 and D2 denoted by der len(D1, D2) is either unde-

fined in case there exists no transition D1  ∗ D2 or else defined inductively:

1. it is 0 if D1 and D2 refer to the same node in Π(D).

2. it is 1 + der len(D3, D2) if there exists a node D3 in Π(D) such that

D1  D3  ∗ D2.

The following three variations will be used frequently in this thesis. By a double line:

Premise Infs
Conclusion

Premise upward is indicated to derive from Conclusion in zero or more steps making
use of Inf ∈ Infs. Similarly for when there are two premises. By a dotted line:

Premise. . . . . . . . . . . . . . . . Inf
Conclusion

Conclusion is indicated to be derivable from Premise without, in so doing, increasing
the derivation depth. By a double-dotted line:

Premise. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . Inf
Conclusion

Premise is indicated to be derivable from Conclusion just as Conclusion is from Premise.
In another word, a double-dotted line is used to signify a bidirectionality of an infer-
ence rule.

5



Chapter 1

Introduction

Many problems we face are compositional. In fact, not many but save on rare occa-
sions, it is harder to identify a problem that cannot be decomposed into smaller parts.
If solutions to the sub-problems are known, the main problem can be answered in an
incremental manner. But even in cases where solutions to some of them are presently
unknown, they can be worked out and conjoined into the rest. It then appears that there
is no reason why we should not focus on smaller, perceived-to-be easier problems - in
order to maximise our productivity through the modular reasoning.

Separation logic (Cf. Ishtiaq and O’Hearn [2001]; Reynolds [2002]) may be a good
example. Expressiveness power of classical logic and that of multiplicative (intuition-
istic) linear logic combined, it can be used to efficiently reason about heap manipu-
lating programs, allowing us to recognise portions of heap as disjoint resources. Full
expressiveness power of classical logic is attainable on each separated resource. For
instance, such an expression as “some fact p holds true on a part of heap and some fact
¬q holds true on another part of heap such that the two heap portions do not overlap”,
can be stated in separation logic simply as “p ∗ ¬q”. Since the expression assumes that
p and ¬q hold true in disjoint parts of heap, a heap-manipulating program that alters
information in either of them does not need have a side-effect on the information con-
tained in the other: if p is updated to p′ by some program command accessing only the
portion of heap that contains the information, we have p′ ∗ ¬q with no required mod-
ification on ¬q. This concept of local reasoning sparked inspiration and resulted in
many applications (Cf. Bornat et al. [2005]; Calcagno et al. [2009]; Chin et al. [2012];
Distefano et al. [2006]; Parkinson and Bierman [2005]; Yang [2007] for example) sub-
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sequently.
What this line of research seems to suggest is that, with often synthesised problems

around us to face, the vehicle for reasoning itself, i.e. logic, should be also moving to-
wards accommodation of modularity, so that the manner by which we reason about
a given problem can find a closer map to its underlying structure than to a view of it
that a detour through many morphisms may provide. The idea to put together multiple
logics itself has been around for quite a while, enquired for instance within the field of
philosophy, as Caleiro et al. [2005]; Stanford Encyclopedia of Philosophy [2011] note.
With the active evidence of separation logic we were a witness to in the last decade, it
is amply suggested that pragmatic values lie in, and extend from, studies of combined
logics.

Inseparable, however, are issues around the mechanism of interactions between the
base logics to be so combined. Given that a combined logic with no base-logic overlaps
is readily decomposable, it (the mechanism of interactions) is reasonably speaking the
only part in a combined logic which is interesting and which hence merits a thorough
investigation. Nevertheless, analysis on the only part tends to be non-trivial. Further,
if the accumulated knowledge of combined logics is to be incorporated in practice, e.g.

into theorem proving, there also arises a constructive (or computational) concern of
how to formalise the knowledge in a way that is suitable for automation. Hence, with
all the positive expectation notwithstanding, there are also problems that ought to be
addressed before we may be able to see a fuller extent of their possibilities in applica-
tion.

To promote the program, this thesis takes a reasonable approach of studying base-
logic interactions within sequent calculus which, among many types of proof systems
(formalisms as are often called) available, is particularly well-suited for an efficient
automated theorem proving because potential curtailment of search-space explosion
- hindrance to an efficient theorem proving - can be more easily and efficiently at-
tempted. Two broad perspectives will be heeded: one that concerns specific combined
logics, and one that focuses on generalisation, i.e. abstraction, of their logical charac-
teristics in order to attain a higher standpoint. Both are complementary to the other and
help mutually forge ahead the overall program of deepening our understanding about
the nature of logical combinations and of logics so combined.

Into the first direction of specialisation, this thesis augments in constructive steps
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the knowledge of the syntactically observed base logic interactions for BI (a combined
logic of intuitionistic logic and multiplicative intuitionistic linear logic; Cf. O’Hearn
and Pym [1999]) and BBI (a combined logic of classical logic and multiplicative (intu-
itionistic) linear logic just as separation logic is, but more expressive). The reason for
the choice of the specific logics is rather natural, as I itemise below:

1. In view of the practical implication, it is of a great interest that base-logic in-
teractions within separation logic be better understood. However, there exists in
literature no known adequate sequent calculus for separation logic which, had it
been otherwise, could have offered a possibility of studying the syntactically oc-
curring base-logic interactions a posteriori. Its sequent calculus needs to be de-
veloped first. Since separation logic is a specialised BBI (Cf. Larchey-Wendling
and Galmiche [2012]), theoretical investigation into BBI is strongly relevant.

2. Meanwhile, as Galmiche and Larchey-Wendling [2006] indicate, BBI is strictly
more expressive than BI. However, even though considered to be (conversely)
strictly less expressive, BI still poses difficulty in analysis of the syntactically
occurring base-logic interactions as inferrable from earlier work; so much so that
there in fact exists no sensible analysis regarding the matter. It then seems natural
that we first see to ourselves if we can at least analyse the easier problem with
a success, that is, reasonably speaking, if we cannot analyse an easier problem,
then hardly will there be any hope left for more difficult ones.

Thus elucidating the coverage of the specific combined logics to be studied, we may
now proceed to see the main line of objectives into the direction of specialisation.
Along with the other objectives, this thesis first solves a long-standing open problem
in BI proof theory of analysis on the syntactic phenomena of base-logic interactions
as occurring within BI sequent calculi; interactions between structural inference rules
and logical inference rules (that is, structural interactions), specifically. Delivery of
a practically significant contraction-free BI calculus, a hitherto encumbered attempt
due to the lack of the knowledge, is for the first time made successfully through an
adequate methodology that recognises the boundaries between one BI base logic and
the other. Moving on to BBI proof theory, it presents a BBI sequent calculus. It is
developed through contemplation over the syntactic implication of the BBI base-logic
interactions. The knowledge of the structural interactions in BI from the first step then
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applies to the BBI calculus, resulting in a less non-deterministic sequent calculus. Both
are sound with respect to the underlying BBI semantics. By taking into account a par-
ticularity of the heap semantics (semantics for separation logic), derivation of sound
separation logic sequent calculi is immediate.

Into the direction of generalisation, this thesis develops an idea of sequent calculus
in which a specific manner of base-logic interactions to take place within a combined
logic can be actually developed and analysed. This idea I call phased sequent calcu-
lus in which a physical separation of base logics is expressible and in which a logical
combination itself becomes as important a component to consider as the base logics.

The rest of this chapter is dedicated to introduction of semantics and proof systems
of related logics as technical preliminaries, followed by descriptions of research prob-
lems and all the contributions: ones just mentioned and also the rest, in sufficiently
technical terms.

1.1 Technical Preliminaries

We go through semantics and proof systems of related logics. Since no quantified
logics find their way into main chapters of this thesis, it is (even if unstated) tacit that
I look at propositional logics only. A set of propositional variables is denoted by P.
“if and only if” is abbreviated by “iff”. For standard terminologies and philosophical
aspects of those logics, readers are referred to introductory texts on mathematical logic
such as Girard [1987]; Kleene [1952].

1.1.1 Classical logic

Every statement (sentence) is considered already known to be either true or false in
classical logic, which is called the law of excluded middle, and it is by our attempts
that the truth/falsity be found out. To prove some statement true, one may prove the
fact directly by showing that it is true. Alternatively, one may prove that the negation
of the same statement is false, thereupon follows the desired result by the law of the
excluded middle.

Definition 7 (Formulas) A formula A (, B,C) in propositional classical logic is de-

fined by:
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A := p | > | 1 | A ∧A | A ∨A | A⊃A
where p denotes a propositional variable (p ∈ P), > a zero-place logical operator (or

synonymously logical connective) signifying the truth, and 1 a zero-place logical oper-

ator signifying the falsity. In this thesis both > and 1 are primitive. The set of formulas

in propositional classical logic (those that this grammar generates) is denoted by FCL.

¬A abbreviates A⊃1.

The following associativity and commutativity hold within FCL.

Property 1 (Associativity and commutativity)

1. (A1 ∧A2) ∧A3 = A1 ∧ (A2 ∧A3).

2. (A1 ∨A2) ∨A3 = A1 ∨ (A2 ∨A3).

3. A1 ∧A2 = A2 ∧A1.

4. A1 ∨A2 = A2 ∨A1.

Semantics for (propositional1) classical logic is given in the following manner.

Definition 8 (Interpretation) An interpretation ICL is a function that maps proposi-

tional variables into either a logical truth or a logical falsity, ICL : P→ {T,F}.

Definition 9 (Semantics) A model for classical logic is a tuple (ICL, |=) for some ICL,

satisfying the following forcing relations:

• |= p iff ICL(p) = T.

• |= >.

• ¬† [ |= 1].

• |= A ∧B iff [ |= A] ∧† [ |= B].

• |= A ∨B iff [ |= A] ∨† [ |= B].

• |= A⊃B iff ¬†[ |= A] ∨† [ |= B].

1Assumed in the rest as such that I am speaking about propositional logics.
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Ax1
A⊃(B⊃A)

Ax2
(A⊃(B⊃C))⊃((A⊃B)⊃(A⊃C))

Ax3
A ⊃ A∨B

Ax4
B ⊃ A∨B Ax5

(A⊃C)⊃((B⊃C)⊃(A∨B ⊃ C))
Ax6

A∧B ⊃ A

Ax7
A∧B ⊃ B

Ax8
A⊃(B ⊃ A∧B)

Ax9
1⊃A

Ax10
A⊃> Ax11

((A ⊃ 1) ⊃ 1) ⊃ A
A A ⊃ B MP

B

Figure 1.1: Hc: a Hilbert system for propositional classical logic.

id
A ` A

Ψ1 ` A; Φ1 Ψ2;A ` Φ2
Cut

Ψ1; Ψ2 ` Φ1; Φ2

1L
1 ` Φ

>R
Ψ ` >

Ψ;A;B ` Φ
∧L

Ψ;A ∧B ` Φ

Ψ;A ` Φ Ψ;B ` Φ
∨L

Ψ;A ∨B ` Φ

Ψ ` A; Φ Ψ;B ` Φ
⊃ L

Ψ;A⊃B ` Φ

Ψ ` A; Φ Ψ ` B; Φ
∧R

Ψ ` A ∧B; Φ

Ψ ` A;B; Φ
∨R

Ψ ` A ∨B; Φ

Ψ;A ` B; Φ
⊃ R

Ψ ` A⊃B; Φ
Ψ ` Φ

WkL
Ψ;A ` Φ

Ψ;A;A ` Φ
CtrL

Ψ;A ` Φ

Ψ ` Φ
WkR

Ψ ` Φ;A
Ψ ` Φ;A;A

CtrR
Ψ ` Φ;A

Figure 1.2: G1cp: a sequent calculus for propositional classical logic.

Of course, given A ∈ FCL there are 2n conceivable distinct interpretations for n occur-
rences of distinct propositional variables in A.

Definition 10 (Universal validity) A formula A ∈ FCL is said to be universally valid

iff |= A for all the conceivable distinct interpretations of propositional variables oc-

curring in A.

Classical logic can be formalised for example in Hilbert-style calculus (Figure 1.1)1

with a finite number of axiom rules, and MP (modus ponens) that formalises the fol-
lowing: “if A is universally valid and if A⊃B is universally valid, then B is universally
valid”.

Other formalisations are possible. In sequent calculus - the central interest of this
1 To align Hilbert-style systems with sequent-style systems, I explicitly consider Hilbert-style ax-

ioms as inference rules.
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thesis - classical logic is formalised as in Figure 1.2 (an equivalent variant of the propo-
sitional part of LK that Gentzen [1934] originally presented). It postulates structures

and sequents.

Definition 11 (Structures) A structure Ψ(,Φ) of classical logic is defined by Ψ :=

A | Ψ; Ψ. The set of structures that this grammar generates is denoted by SCL.

Property 2 (Associativity and commutativity of structures)

1. (Ψ1; Ψ2); Ψ3 = Ψ1; (Ψ2; Ψ3).

2. (Φ1; Φ2); Φ3 = Φ1; (Φ2; Φ3).

3. Ψ1; Ψ2 = Ψ2; Ψ1.

4. Φ1; Φ2 = Φ2; Φ1.

Definition 12 (Sequents) A sequent in classical logic is defined to be in the form:

Ψ ` Φ for some Ψ ∈ SCL and some Φ ∈ SCL. The set of sequents in G1cp is denoted by

DCL.

Definition 13 (Sequent calculus convention) In any D ∈ DCL, emptiness of an an-

tecedent structure is identified with a > and that of a consequent structure with a 1. As

is conventional, the left to the ` is referred to as the antecedent, and the right to it as

the consequent.

Example 2 Given Ψ1; Ψ2 ` Φ1; Φ2 ∈ DCL, the antecedent part is identified with Ψ1 (or

Ψ2) if Ψ2 (or Ψ1) is empty. Likewise the consequent part is identified with Φ1 (or Φ2) if

Φ2 (or Φ1) is empty.

In this thesis I classify every inference rule of a sequent calculus into one of three
groups. One group comprises a single inference rule Cut which is a rule of transitivity.
Another group comprises a set of rules which either are an axiom without a premise se-
quent or else act upon a logical connective (e.g. id,1L,>R,∧L,∨L,⊃ L,∧R,∨R,⊃ R

in Figure 1.2). They are termed logical (inference) rules. For each logical inference
rule the formula - or formulas in case of id - in the conclusion sequent upon which
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the logical inference rule acts is termed the principal formula(s) or simply the prin-

cipal of the logical inference rule. I also say that the principal of a logical inference
rule is active in the rule. The last group consists of the remaining inference rules (e.g.

WkL,WkR,CtrL and CtrR in Figure 1.2). Each inference rule in this group is called
a structural (inference) rule acting on some structure in the conclusion sequent. I say
that the structure which is acted upon is active in the rule.

But in any case why so many formalisations of the same logic, or any particu-
lar choice out of the many possibilities? There could be as many reasons as there
are formalisms. A primary concern of this thesis is amenability of a proof system to
automation. From that standpoint, the axiom-based Hilbert-style representation of a
logic1 is not the best due to the presence of MP which entails a non-trivial backward
proof search, since what to appear in the premise(s) of MP is not necessarily inferrable
from the conclusion. The use of sequent calculus by contrast has an advantage that,
while the same problem can still arise through Cut, it is relatively simple to establish
the equivalence in expressiveness power between a Cut-embedded sequent calculus
SC1 and its Cut-free version [SC1 − Cut]. The equivalence usually follows from a
cut elimination procedure, i.e. a procedure to eliminate Cut instances out of any given
closed derivation tree through derivation tree permutations.

Theorem 1 (Equivalence of G1cp with G1cp- Cut by Gentzen [1934]) Any sequent

in DCL derivable in G1cp is also derivable in [G1cp - Cut] and vice versa.

1.1.2 Intuitionistic logic

The law of the excluded middle that characterises classical logic is not universally ac-
cepted, disallowed for example by intuitionistic schools (Cf. Brouwer [1908]; Heyting
[1930]; van Dalen [2002] but also Critique of Pure Reason by Kant for his earlier re-
marks). The division is in their viewpoint about infinity. In intuitionistic logic, what
are true are only what have been or guaranteed to be verified true by some constructive
means. The rest remain in the realm of becoming.

Definition 14 (Formulas) A formula A of intuitionistic logic is a set element of FCL.

1One particular Hilbert-style representation of classical logic was indicated in Figure 1.1; there are
shorter possibilities.
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We denote the set of intuitionistic logic formulas by FIL. Clearly FCL = FIL. We assume

that both associativity and commutativity within FIL carry over from FCL.

Kripke [1965] introduces the concept of possible worlds to define models for intu-
itionistic logic. Originally for a set of modal logics (Cf. Kripke [1959]), it captures the
nature of becoming in an intuitive manner.

Definition 15 (Frame) A frame for intuitionistic logic is a tuple (W,≤) with a non-

empty set W of possible worlds partially ordered by ≤.

Definition 16 (Interpretation) An interpretation IIL is a function that maps proposi-

tional variables into a set of possible worlds, IIL : P → P(W ), satisfying the following

monotonicity: ∀w1, w2 ∈W.∀p ∈ P.[w1 ≤ w2] ∧† [w1 ∈ IIL(p)]→† [w2 ∈ IIL(p)].

Definition 17 (Semantics) A Kripke model for intuitionistic logic is a 4-tuple

(W,≤, IIL, |=) for some frame (W,≤) and some interpretation IIL, satisfying, for all

p ∈ P and for all w ∈W :

• w |= p iff w ∈ IIL(p).

• w |= >.

• ¬†[w |= 1].

• w |= A ∧B iff [w |= A] ∧† [w |= B].

• w |= A ∨B iff [w |= A] ∨† [w |= B].

• w |= A ⊃ B iff ∀w′ ∈W.[w ≤ w′] ∧† [w′ |= A]→† [w′ |= B].

Definition 18 (Universal validity) Let A be an intuitionistic logic formula. Then it is

said to be valid in some intuitionistic Kripke model (W,≤, IIL, |=) iff ∀w ∈ W.[w |= A].

It is said to be universally valid iff it is valid in all the conceivable intuitionistic Kripke

models.

Gentzen [1934] first formulates intuitionistic logic LJ in sequent calculus. Figure 1.3
shows a propositional fragment of its equivalent variant G1i.
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id
A ` A

Ψ ` A Φ;A ` B
Cut

Φ; Ψ ` B
1L

1 ` A

>R
Ψ ` >

Ψ;A;B ` C
∧L

Ψ;A ∧B ` C
Ψ;A ` C Ψ;B ` C

∨L
Ψ;A ∨B ` C

Ψ ` A Ψ;B ` C
⊃ L

Ψ;A⊃B ` C
Ψ ` A Ψ ` B ∧R

Ψ ` A ∧B
Ψ ` Ai (i ∈ {1, 2})

∨R
Ψ ` A1 ∨ A2

Ψ;A ` B
⊃ R

Ψ ` A⊃B
Ψ ` B

WkL
Ψ;A ` B

Ψ;A;A ` B
CtrL

Ψ;A ` B

Figure 1.3: G1ip: a sequent calculus for propositional intuitionistic logic.

Definition 19 (Structures and sequents) A structure Ψ for intuitionistic logic is a set

element of SCL. The set of the structures is denoted by SIL. Clearly SIL = SCL. We

assume that both associativity and commutativity within SIL carry over from SCL. A

sequent in intuitionistic logic is defined to be in the form: Ψ ` A for some Ψ ∈ SIL and

some A ∈ FIL. The set of the sequents is denoted by DIL. We assume that the sequent

calculus convention within DIL carries over from DCL.

It is given in his work that LJ and [LJ - Cut] are equivalent in expressiveness. Decid-
ability, however, is not immediate in the set of [G1ip- Cut] inference rules due to the
presence of CtrL which may still stretch a [G1ip- Cut]-derivation branch to infinity.
The question as to whether CtrL can be shown admissible in [G1ip- Cut] becomes
relevant.

As the first step of CtrL elimination, it is a commonplace to attempt absorption of
its effect into logical inference rules. Reasoning towards the objective is usually sim-
pler in weakening-free [G1ip- Cut] (i.e. some equivalent proof system to [G1ip- Cut]
in which the effect ofWkL is absorbed within available logical inference rules). Figure
1.4 shows the resultant calculus, G3ip (Cf. Beth [1955]; Kleene [1952]; Troelstra and
Schwichtenberg [2000]). A so-called inversion lemma holds in G3ip.

Lemma 1 (Inversion lemma) For the following sequent pairs, if the sequent on the

left is G3ip-derivable with the derivation depth of k or less, then so is (are) the se-
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id
Ψ; p ` p 1L

Ψ; 1 ` A >R
Ψ ` >

Ψ;A;B ` C
∧L

Ψ;A ∧B ` C
Ψ;A ` C Ψ;B ` C

∨L
Ψ;A ∨B ` C

Ψ;A⊃B ` A Ψ;B ` C
⊃ L

Ψ;A⊃B ` C

Ψ ` A Ψ ` B ∧R
Ψ ` A ∧B

Ψ ` Ai (i ∈ {1, 2})
∨R

Ψ ` A1 ∨ A2

Ψ;A ` B
⊃ R

Ψ ` A⊃B

Figure 1.4: G3ip: a contraction-free sequent calculus for propositional intuitionistic
logic.

quent(s) on the right. That is, the result is depth-preserving.

Ψ;A ∧B ` C , Ψ;A;B ` C

Ψ;A ∨B ` C , both Ψ;A ` C and Ψ;B ` C

Ψ;A ⊃ B ` C , Ψ;B ` C

Ψ ` A ∧B , both Ψ ` A and Ψ ` B

Ψ ` A ⊃ B , Ψ;A ` B

Proof. Details are found in Curry [1963]; Shütte [1950]; Troelstra and Schwichten-
berg [2000]. �

Lemma 2 (Admissibility of WkL and CtrL) WkLG1ip and CtrLG1ip are both depth-

preserving admissible in [G3ip+ WkLG1ip + CtrLG1ip].

Proof. Lemma 1 simplifies the proof of CtrLG1ip admissibility. Proof approaches are
found in Troelstra and Schwichtenberg [2000]. �

Proposition 1 (Equivalence of G1ip with G3ip) Any Ψ ` A ∈ DIL which is derivable

in G3ip is also derivable in [G1ip- Cut] and vice versa.
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id
Ψ; p ` p 1L

Ψ; 1 ` A >R
Ψ ` >

Ψ;A;B ` C
∧L

Ψ;A ∧B ` C
Ψ;A ` C Ψ;B ` C

∨L
Ψ;A ∨B ` C

Ψ; p;A ` B ⊃ Lp
Ψ; p; p⊃A ` B

Ψ;A ` B ⊃ L>Ψ;>⊃A ` B
Ψ;A1⊃(A2⊃A3) ` C

⊃ L∧
Ψ; (A1 ∧ A2)⊃A3 ` C

Ψ;A1⊃A3;A2⊃A3 ` C ⊃ L∨
Ψ; (A1 ∨ A2)⊃A3 ` C

Ψ;A2⊃A3 ` A1⊃A2 Ψ;A3 ` C ⊃ L⊃
Ψ; (A1⊃A2)⊃A3 ` C

Ψ ` Ai (i ∈ {1, 2})
∨R

Ψ ` A1 ∨ A2

Ψ ` A Ψ ` B ∧R
Ψ ` A ∧B

Ψ;A ` B
⊃ R

Ψ ` A ⊃ B

Figure 1.5: G4ip: a contraction-free sequent calculus for propositional intuitionistic
logic. Implicit contraction does not occur in any inference rule.

Proof. A detailed proof methodology is found in Chapter 3 and Chapter 4 of this
thesis; it is, however, recommended to interested readers who are not yet familiar
with sequent calculi that the proof be attempted with a reference of only Troelstra and
Schwichtenberg [2000]. Lemma 2 for where contraction and weakening are required.
�

In G3ip, any formula duplicate upwards may only occur within ⊃ L, which is a vis-
ible improvement over G1ip towards a more efficient backward theorem proving. As
far as the propositional fragment is concerned, it is actually possible to eliminate the
lingering implicit contraction altogether out of the inference rule, as shown in Figure
1.5. G4ip is an equivalent variant of LJT (by Dyckhoff [1992]) in which decidability of
propositional intuitionistic logic is readily established. Here I reformulate the results
and the proofs in a more detailed and clearer - so do they appear to myself - manner
than are found in Dyckhoff [1992]. Lemma 6 below about the behaviour of intuitionis-
tic implication should be adequately understood before readers move onto Chapter 3.

Definition 20 (Irreducible sequents) A structure Ψ ∈ SIL is said to be irreducible if

it contains as its sub-structure1 none of the following:

1In an ordinary sense. Ψ itself is also a sub-structure of Ψ.
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1. p; p ⊃ A

2. > ⊃ A

3. 1

4. A1 ∧A2

5. A1 ∨A2

Ψ ` A ∈ DIL is said to be irreducible iff Ψ is.

Lemma 3 (Normalisation) Any Ψ ` A ∈ DIL which is not irreducible can be nor-

malised into a set of irreducible sequents such that it be G3ip-derivable iff they are.

Proof. Follows from inversion lemma (Lemma 1) and a good observation of the se-
mantics of 1. �

We now establish (not necessarily depth-preserving) equivalences that hold in G3ip-
space, utilising the following depth-preserving results.

Lemma 4 (Preparatory observations)

1. If D : Ψ;A2 ⊃ A3 ` A2 is G3ip-derivable, then so is D′ : Ψ; (A1∧A2) ⊃ A3 ` A2,

preserving the derivation depth.

2. If D : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` A1 ∨A2 is G3ip-derivable, then so is at least either

D1 : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` A1 or D2 : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` A2, preserving

the derivation depth.

Proof. By induction on derivation depth.

1. For the first case, the base case is trivial. For the inductive cases, assume that
it holds true for all the derivation depths of up to k and show that it still holds
true for the derivation depth of k + 1. Consider what the principal is for the last
inference rule to (forwardly) derive D. If it is some formula in Ψ or the conse-
quent formula, then induction hypothesis and the same inference rule conclude.
Otherwise, if it is the antecedent formula A2 ⊃ A3, then Π(D) looks like:
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D1 : Ψ;A2 ⊃ A3 ` A2 D2 : Ψ;A3 ` A2 ⊃ L
D : Ψ;A2 ⊃ A3 ` A2

Induction hypothesis on D1 concludes.

2. For the second case, the base case is trivial. For the inductive cases, assume that
it holds true for all the derivation depths of up to k and show that it still holds
true for the derivation depth of k + 1. Consider what the principal is for the last
inference rule to (forwardly) derive D. If it is some formula in Ψ, then induction
hypothesis and the same inference rule conclude. If it is the antecedent formula
of either A1 ⊃ A3 or A2 ⊃ A3, or the consequent formula A1∨A2, then induction
hypothesis concludes.

�

Lemma 5 (Equivalences in G3ip)

1. D : Ψ;A ` B is G3ip-derivable iff D′ : Ψ;> ⊃ A ` B is.

2. D : Ψ;A1 ⊃ (A2 ⊃ A3) ` C is G3ip-derivable iff D′ : Ψ; (A1 ∧A2) ⊃ A3 ` C is.

3. D : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` C is G3ip-derivable iff D′ : Ψ; (A1∨A2) ⊃ A3 ` C is.

4. D : Ψ;A2 ⊃ A3 ` A1 ⊃ A2 is G3ip-derivable iff D′ : Ψ; (A1 ⊃ A2) ⊃ A3 ` A1 ⊃
A2 is.

Proof. By induction on derivation depth into both directions. By Lemma 3 we only
consider irreducible sequents.

1. First case is trivial.

2. For the second case, base cases are trivial into both directions. Consider the
inductive cases now. Into the if direction, consider what the principal is for the
last inference rule applied to derive D′. If it is some formula in Ψ or C, then
induction hypothesis and the same inference rule conclude. On the other hand,
if it is the antecedent formula (A1 ∧A2) ⊃ A3, then Π(D′) looks like:
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D′1 : Ψ; (A1 ∧ A2) ⊃ A3 ` A1 ∧ A2 D′2 : Ψ;A3 ` C ⊃ L
D′ : Ψ; (A1 ∧ A2) ⊃ A3 ` C

By induction hypothesis on D′1, it holds that Dx : Ψ;A1 ⊃ (A2 ⊃ A3) ` A1 ∧ A2

is G3ip-derivable. By inversion lemma on Dx, Dy : Ψ;A2 ⊃ A3 ` A2 and Dz :

Ψ;A1 ⊃ (A2 ⊃ A3) ` A1 are both G3ip-derivable. Then by ⊃ L on Dy (as the left
premise sequent) and on D′2 (as the right premise sequent), Da : Ψ;A2 ⊃ A3 ` C
is G3ip-derivable. Then ⊃ L on Dz (as the left premise sequent) and on Da (as
the right premise sequent) concludes. Into the only if direction, consider what the
principal is for the last inference rule applied to derive D. If it is some formula
in Ψ or C, then induction hypothesis and the same inference rule conclude. On
the other hand, if it is the antecedent formula A1 ⊃ (A2 ⊃ A3), then we have the
following partial derivation for D:

D1 : Ψ;A1 ⊃ (A2 ⊃ A3) ` A1

D3 : Ψ;A2 ⊃ A3 ` A2 D4 : Ψ;A3 ` C ⊃ L
D2 : Ψ;A2 ⊃ A3 ` C ⊃ L

D : Ψ;A1 ⊃ (A2 ⊃ A3) ` C

By induction hypothesis on D1, D∗x : Ψ; (A1 ∧ A2) ⊃ A3 ` A1 is G3ip-derivable.
Meanwhile, by Lemma 4 on D3, D∗y : Ψ; (A1 ∧A2) ⊃ A3 ` A2 is G3ip-derivable.
By ∧R on D∗x and on D∗y, D∗z : Ψ; (A1 ∧ A2) ⊃ A3 ` A1 ∧ A2 is G3ip-derivable.
Then ⊃ L on D∗z (as the left premise sequent) and on D4 (as the right premise
sequent) concludes. To be exhaustive, however, we must have of couse consid-
ered the possibility where the A2 ⊃ A3 is not the principal on D2. Suppose we
actually had the following partial derivation for D:

D1 : Ψ;A1 ⊃ (A2 ⊃ A3) ` A1
Inf

D2 ⊃ L
D : Ψ;A1 ⊃ (A2 ⊃ A3) ` C

where Inf ∈ {id,1L,>R}. Then Ψ; (A1 ∧ A2) ⊃ A3 ` C would be clearly deriv-
able with Inf. Suppose, instead, that we actually had the following partial deriva-
tion for D:

D1 : Ψ;A1 ⊃ (A2 ⊃ A3) ` A1

D3 : C1; Ψ;A2 ⊃ A3 ` C2 ⊃ R
D2 : Ψ;A2 ⊃ A3 ` C1 ⊃ C2 ⊃ L

D : Ψ;A1 ⊃ (A2 ⊃ A3) ` C1 ⊃ C2
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But since we have inversion lemma, that D is derivable implies that
C1; Ψ;A1 ⊃ (A2 ⊃ A3) ` C2 is derivable, which would eliminate this particu-
lar ⊃ R application on the right premise sequent of the ⊃ L. Similarly for when
it is ∧R that applies instead of⊃ R. Finally, suppose we had the following partial
derivation for D:

D1 : Ψ;A1 ⊃ (A2 ⊃ A3) ` A1

D3 : Ψ;A2 ⊃ A3 ` Ci ∨R
D2 : Ψ;A2 ⊃ A3 ` C1 ∨ C2 ⊃ L

D : Ψ;A1 ⊃ (A2 ⊃ A3) ` C1 ∨ C2

where i ∈ {1, 2}. Then because D1 and D3 are assumed derivable, so is D′ :

Ψ;A1 ⊃ (A2 ⊃ A3) ` Ci, which would eliminate (that is, push down) this partic-
ular ∨R application on the right premise sequent of the ⊃ L.

3. For the third case, suppose that (A1 ∨A2) ⊃ A3 becomes the principal in D′:

D′1 : Ψ; (A1 ∨A2) ⊃ A3 ` A1 ∨A2 D′2 : Ψ;A3 ` C ⊃ L
D′ : Ψ; (A1 ∨A2) ⊃ A3 ` C

In the meantime, we have the following partial derivation forD with the principal
of either A1 ⊃ A3 or A2 ⊃ A3:

D1 : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` Ai (i ∈ {1, 2}) D2 : Ψ;Aj ⊃ A3;A3 ` C (j = mod2(i) + 1)
⊃ L

D : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` C

where mod 2(x) ≡ x (mod 2) and mod 2(x) ∈ {0, 1}. Base cases are trivial into
both directions. We now consider the inductive cases. Into one direction, it
holds, by induction hypothesis on D′1, that Dx : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` A1 ∨ A2

is G3ip-derivable. By Lemma 4 on Dx, Dy : Ψ;A1 ⊃ A3;A2 ⊃ A3 ` Ai is
also G3ip-derivable for at least either i = 1 or i = 2. Let us assume with no
loss of generality that i = 1 here. Meanwhile, it holds, by induction hypothesis
on D′2 and Lemma 2, that Dz : Ψ;A2 ⊃ A3;A3 ` C is G3ip-derivable. Then
⊃ L on Dy (as the left premise sequent) and Dz (as the right premise sequent)
conclude. Into the other direction, by induction hypothesis on D1, we have Da :

Ψ; (A1 ∨A2) ⊃ A3 ` A1 as G3ip-derivable.1 Then Db : Ψ; (A1 ∨ A2) ⊃ A3 `
A1 ∨A2 is also G3ip-derivable via ∨R. Meanwhile, it holds, by induction on D2,
that Dc : Ψ;A2 ⊃ A3;A3 ` C is G3ip-derivable. By inversion lemma on Dc and

1I assume that i = 1 without a loss of generality.
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Lemma 2, Dd : Ψ;A3 ` C is also G3ip-derivable. ⊃ L on Db (as the left premise
sequent) and Dd (as the right premise sequent) then concludes.

4. For the fourth case, by inversion lemma on both D and D′, we need only show
the following: D′′ : Ψ;A2 ⊃ A3;A1 ` A2 is G3ip-derivable iff D′′′ : Ψ; (A1 ⊃
A2) ⊃ A3;A1 ` A2 is. Therefore it suffices to prove (more generally) that Da :

Ψ;A2 ⊃ A3;A1 ` C is G3ip-derivable iff Db : Ψ; (A1 ⊃ A2) ⊃ A3;A1 ` C is.
Suppose that (A1 ⊃ A2) ⊃ A3 becomes the principal in Db:

D1 : Ψ; (A1 ⊃ A2) ⊃ A3;A1 ` A1 ⊃ A2 D2 : Ψ;A3;A1 ` C ⊃ L
Db : Ψ; (A1 ⊃ A2) ⊃ A3;A1 ` C

By inversion lemma, D1 is G3ip-derivable iff D∗1 : Ψ; (A1 ⊃ A2) ⊃ A3;A1;A1 `
A2 is iff D∗∗1 : Ψ; (A1 ⊃ A2) ⊃ A3;A1 ` A2 is (contraction admissibility due
to Lemma 2). Meanwhile, we have the following for Da with the principal
A2 ⊃ A3:

D′1 : Ψ;A2 ⊃ A3;A1 ` A2 D′2 : Ψ;A3;A1 ` C ⊃ L
Da : Ψ;A2 ⊃ A3;A1 ` C

D′2 is identical to D2. By induction hypothesis (into both directions), D′1 is G3ip-
derivable iff D∗∗1 is. �

Now follows the main contribution of Dyckhoff [1992]. Its purpose is to establish that,
if p ⊃ A for some p ∈ P and some A ∈ FIL is in a sequent, then ⊃ L does not need
apply unless the sequent has p; p ⊃ A on the antecedent.

Lemma 6 (Behaviour of intuitionistic implication)
Let D denote a G3ip-derivable irreducible sequent Ψ ` C ∈ DIL, then D has a closed

derivation in which the principal of the last inference rule to derive D is not in the

form: p ⊃ A for p ∈ P and A ∈ FIL.

Proof. Proof is by contradiction, that is, by classical reasoning that a counter-example
to the current lemma cannot exist.1 Suppose, by way of showing contradiction, that

1We do not need to know in advance whether propositional intuitionistic logic is decidable for this
proof to (classically) go through since the derivation tree is assumed closed. Cf. Davey and Priestley
[2002] for example.

22



there cannot exist any other derivation trees for D with a shorter (in derivation length)
leftmost derivation branch than ones ending in ⊃ L with a formula in the form: p ⊃ A

as its principal, then one such derivation tree Π(D) would look like:

DL

...
D1

...
D2 Inf

D3 : Ψ′; p ⊃ A ` p

...
D4 : Ψ′;A ` C

⊃ L
D : Ψ′; p ⊃ A ` C

where Ψ = Ψ′; p ⊃ A or alternatively Ψ ≡ Ψ′; p ⊃ A (up to associativity and com-
mutativity of “;”), and DL is the conclusion sequent of an axiom rule in the leftmost
derivation branch. As D is irreducible, so is D3 which, therefore, cannot be the con-
clusion sequent of an axiom. Then, since a propositional variable can be active only
for id, the consequent part of D3 cannot be active for some G3ip inference rule Inf. Inf
is hence known to be ⊃ L. Furthermore, that the leftmost derivation branch is shortest
has to dictate that the principal for Inf is not in the form: “p′ ⊃ A′” for some p′ ∈ P

and some A′ ∈ FIL.
These points taken into account, D,D1, D2, D3 and D4 are actually seen taking the

following forms for some other B,B′ ∈ FIL for B 6∈ P:

• D : Ψ′′;B ⊃ B′; p ⊃ A ` C

• D1 : Ψ′′;B ⊃ B′; p ⊃ A ` B

• D2 : Ψ′′;B′; p ⊃ A ` p

• D3 : Ψ′′;B ⊃ B′; p ⊃ A ` p

• D4 : Ψ′′;B ⊃ B′;A ` C

But, then, this perforce implies the existence of an alternative derivation tree Π′(D)

which results by permuting Π(D):

DL

...
D1

...
D2

...
D′4 : Ψ′′;B′;A ` C

⊃ L
Ψ′′;B′; p ⊃ A ` C

⊃ L
D
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D′4 derives from applying inversion lemma (Lemma 1) on D4. A direct contradiction
to the supposition has been drawn, for the leftmost branch in Π′(D) is shorter, i.e.

der lenΠ′(D)(D,DL) < der lenΠ(D)(D,DL).1 �

The equivalence of G3ip to G4ip is proved with the induction measure of sequent
weight.

Definition 21 (Sequent weight) Given a sequent Ψ ` A ∈ DIL, its sequent weight

is defined to be the sum of the formula weights of all the formulas occurring within.

The formula weight of A ∈ FIL, which we here denote by f weight(A), is defined as

follows:

• f weight(A) = 2 if A ∈ {>, 1, p}.

• f weight(A) = f weight(A1)(1 + f weight(A2)) if A = A1 ∧A2.

• f weight(A) = 1 + f weight(A1) + f weight(A2) if A = A1 ∨A2.

• f weight(A) = 1 + f weight(A1)f weight(A2) if A = A1 ⊃ A2.

Proposition 2 (Equivalence of G4ip with G3ip Dyckhoff [1992]) Any Ψ ` A ∈ DIL

which are derivable in G4ip are also derivable in G3ip and vice versa.

Proof. One direction, to show that what G4ip derive are derivable also in G3ip, is
straightforward since all the inference rules in G4ip are derivable in G3ip (Cf. Lemma
5 for G4ip implication rules). Proof into the other direction of showing what G3ip
derive are also derivable in G4ip is by induction on sequent weight. First of all note
that all the G3ip inference rules are identical to a corresponding G4ip inference rule
except for ⊃ L, and that the sequent weight of premise sequent(s) is lower than that of
the consequent sequent. For ⊃ L, consider what the actual instance for A is in A ⊃ B.

1. A = >: trivial.

2. A = 1: Straightforward:

D1 : Ψ;1 ⊃ B ` 1 Ψ;B ` C ⊃ LG3ipD : Ψ;1 ⊃ B ` C
1Cf. Definition 6 for der len, that is, derivation length. The sub-script is used to specify the

particular derivation tree and nodes in the tree.
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The consequent part of D1 is 1, and so for D to be G3ip-derivable, it must be
the case that, for all A ∈ FIL, Ψ ` A is G3ip-derivable. In particular A = C (or
alternatively A ≡ C up to assoc. and commut. as in Property 1).

3. A = A1 ∧A2: Lemma 5.

4. A = A1 ∨A2: Lemma 5.

5. A = A1 ⊃ A2: Lemma 5.

6. A = p: Lemma 6. �

G4ip suggests an efficient decision procedure for propositional intuitionistic logic since
it exhibits a property that the weight of any premise sequent in each G4ip inference rule
is strictly smaller than that of the conclusion sequent. The lingering implicit contaction
on the left premise sequent of ⊃ LG3ip is no longer visible.

Along with G3ip inversions (Cf. Lemma 1), the following inversion results also
hold in G4ip.

Lemma 7 (Additional inversions for G4ip) For the following sequent pairs, if the se-

quent on the left is G4ip-derivable with the derivation depth of k or less, then so is the

sequent shown on the right.

Ψ; (A1 ∧ A2) ⊃ A3 ` C , Ψ;A1 ⊃ (A2 ⊃ A3) ` C

Ψ; (A1 ∨ A2) ⊃ A3 ` C , Ψ;A1 ⊃ A3;A2 ⊃ A3 ` C

Proof. Straightforward. (Note, for the first, that the antecedent formula (A1∧A2) ⊃ A3

can become the principal only for ⊃ L∧, and, for the second, that the antecedent for-
mula (A1 ∨A2) ⊃ A3 can become the principal only for ⊃ L∨.) �
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1.1.3 Multiplicative intuitionistic linear logic without exponentials

According to Girard [1987], neither classical logic nor intuitionistic logic captures
real-life causation adequately. He discountenanced the following example which is
enforced in classical/intuitionistic logic: if a proposition p holds true and a proposition
p ⊃ q holds true, then q holds true, but p still holds true. What Girard [1987] finds prob-
lematic is the monotonic presence of propositions (“stable truths” in Girard [1987]).
But the permanency of something that currently exists is capitalistically denied for in-
stance in the principle of exchange: if we have a sufficient amount of money that buys
a car, then we can exchange our money for the car, but the money so spent no longer
remains with us. This concept of resource exchange is described nicely in linear logic
(Cf. Girard [1987]). In addition to the material implication in classical/intuitionistic
logic, linear implication1 −∗ is used in order to describe; if a proposition p holds true
and another proposition p−∗q holds true, then if the true proposition p is consumed, q
becomes a truth. To say that there are such resources p, q, r · · · , a logical connective
‘times’ ∗2 is used: p ∗ q ∗ r ∗ · · · . To say that there is a ‘zero’ resource, a nullary logi-
cal connective ∗>3 is used. Although this thesis requires only these three (which form
multiplicative intuitionistic lienar logic without exponentials), other features of linear
logic can be learned from Girard [1987].

Definition 22 (Formulas/Structures) A formula in multiplicative intuitionistic linear

logic without exponentials J(,K, L) is defined by J := p | ∗> | J ∗ J | J−∗J . By FMILL the

set of formulas that this grammar generates is denoted. A structure in multiplicative

intuitionistic linear logic without exponentials Υ(,Λ) is defined by Υ := J | J, J . By

SMILL the set of structures that this grammar generates is denoted.

The following associativity and commutativity hold.

Property 3 (Associativity and commutativity)

1. (J1 ∗ J2) ∗ J3 = J1 ∗ (J2 ∗ J3).

2. J1 ∗ J2 = J2 ∗ J1.
1As Girard [1987] calls. In his article, the symbol−◦ is used for linear implication.
2In Girard [1987], the symbol⊗ is instead used.
3In Girard [1987], it is I .
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id
J ` J

Υ ` J Λ, J ` K
Cut

Υ,Λ ` K
∗>R` ∗>

Υ, J,K ` L
∗L

Υ, J ∗K ` L
Υ ` J Λ ` K ∗R

Υ,Λ ` J ∗K
Υ ` J Λ, K ` L −∗L

Υ,Λ, J−∗K ` L

Υ, J ` K −∗R
Υ ` J−∗K

Figure 1.6: MILLp: A sequent calculus for propositional multiplicative intuitionistic
linear logic without exponentials.

3. (Υ1,Υ2),Υ3 = Υ1, (Υ2,Υ3).

4. Υ1,Υ2 = Υ2,Υ1.

A sequent calculus formulation of multiplicative intuitionistic linear logic without ex-
ponentials, MILLp, is found in Figure 1.6.

Lemma 8 (Sequents) A sequent in multiplicative intuitionistic linear logic without

exponentials is defined to be in the form: Υ ` J for some Υ ∈ SMILL and some J ∈
FMILL. The set of the sequents in multiplicative intuitionistic linear logic is denoted by

DMILL.

Definition 23 (Sequent calculus convention) For any sequent in DMILL in the form:

Υ1,Υ2 ` J , the antecedent structure “Υ1,Υ2” is identified with Υ1 (or Υ2) if Υ2 (or

Υ1) is empty.

Example 3 p ` p ∗ ∗> ∈ DMILL is derivable in MILLp as follows.
∗>R` ∗> id

p ` p
∗R

p ` p ∗ ∗>

1.1.4 BI

BI is a combined logic of intuitionistic logic and multiplicative intuitionistic linear
logic without exponentials. A fragment of BI is simply intuitionistic logic and another
fragment simply multiplicative intuitionistic linear logic without exponentials. As a
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whole, however, BI exhibits distinct logical characteristics, allowing any logical con-
nectives available to either of the base logics to appear at any part of a BI formula.

Definition 24 (Formulas) A BI formula F, (G,H) is defined by:

F := p | > | 1 | ∗> | F ∧ F | F ∨ F | F ⊃ F | F ∗ F | F−∗F .

The set of formulas that this grammar generates is denoted by FBI.

The following associativity and commutativity hold within FBI.

Property 4 (Associativity and commutativity)

1. (F1 ∗ F2) ∗ F3 = F1 ∗ (F2 ∗ F3).

2. (F1 ∧ F2) ∧ F3 = F1 ∧ (F2 ∧ F3).

3. (F1 ∨ F2) ∨ F3 = F1 ∨ (F2 ∨ F3).

4. F1 ∗ F2 = F2 ∗ F1.

5. F1 ∧ F2 = F2 ∧ F1.

6. F1 ∨ F2 = F2 ∨ F1.

Semantics of BI based on relational models is developed in Galmiche et al. [2005].

Definition 25 (BI frame Galmiche et al. [2005]) A BI frame is a 4-tuple (W, ε, π,R)

with a set W of possible worlds, a neutral element ε ∈ W , a greatest element π ∈ W ,

and a ternary relation R, satisfying:

1. ∀x ∈W.Rεxx.

2. ∀x, y, z ∈W.Rxyz ↔† Ryxz.

3. ∀x, y, z, t ∈W.(∃u ∈W.Rxyu ∧† Ruzt)↔† (∃v ∈W.Ryzv ∧† Rxvt).

4. ∀x, x′, y, z ∈W.Rxyz ∧† Rεx′x→† Rx′yz.

5. ∀x, y, z, z′ ∈W.Rxyz ∧† Rεzz′ →† Rxyz′.

6. ∀x, y ∈W.Rxyπ.
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id
F ` F

Γ1 ` G Γ(G) ` H
Cut

Γ(Γ1) ` H
1L

Γ(1) ` H >R
Γ ` >

Γ(Øa) ` H >L
Γ(>) ` H

Γ(Øm) ` H ∗>L
Γ(∗>) ` H

∗>R
Øm ` ∗>

Γ(F ;G) ` H
∧L

Γ(F ∧G) ` H

Γ(F ) ` H Γ(G) ` H
∨L

Γ(F ∨G) ` H
Γ1 ` F Γ(Γ1;G) ` H

⊃ L
Γ(Γ1;F ⊃ G) ` H

Γ(F,G) ` H
∗L

Γ(F ∗G) ` H

Γ1 ` F Γ(G) ` H
−∗L

Γ(Γ1, F−∗G) ` H
Γ ` F Γ ` G ∧R

Γ ` F ∧G
Γ ` Fi ∨R

Γ ` F1 ∨ F2

Γ;F ` G
⊃ R

Γ ` F ⊃ G

Γ1 ` F Γ2 ` G ∗R
Γ1,Γ2 ` F ∗G

Γ, F ` G −∗R
Γ ` F−∗G

Γ(Γ1) ` H
Wk L

Γ(Γ1; Γ2) ` H
Γ(Γ1; Γ1) ` H

Ctr L
Γ(Γ1) ` H

Γ(Γ1; Øa) ` H. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . EqAnt1
Γ(Γ1) ` H

Γ(Γ1,Øm) ` H
. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . EqAnt2

Γ(Γ1) ` H

Figure 1.7: LBI: a BI sequent calculus. i ∈ {1, 2}.

7. ∀x, y ∈W.Rπxy →† [π = y].

Definition 26 (Interpretation) An interpretation IBI is a function that maps proposi-

tional variables to the power-set ofW , i.e. IBI : P→ P(W ). The following monotonicity

holds: ∀m,n ∈W ∀p ∈ P.Rεmn ∧† [m ∈ IBI(p)]→† [n ∈ IBI(p)].

Definition 27 (BI Kripke relational model) A BIKripke relational model is a 6-tuple

(W, ε, π,R, IBI, |=) for some BI frame (W, ε, π,R) and some interpretation IBI, satisfying,

for all p ∈ P and for all m ∈W :

m |= p iff m ∈ IBI(p).

m |= >.

m |= 1 iff m = π.

m |= ∗> iff Rεεm.

m |= F1 ∧ F2 iff [m |= F1] ∧† [m |= F2].

m |= F1 ∨ F2 iff [m |= F1] ∨† [m |= F2].

m |= F1⊃F2 iff ∀m′ ∈W.Rεmm′ →† ([m′ |= F1]→† [m′ |= F2]).

m |= F1 ∗ F2 iff ∃m1,m2 ∈W.Rm1m2m ∧† [m1 |= F1] ∧† [m2 |= F2].

m |= F1−∗F2 iff ∀m1,m2 ∈W.[m1 |= F1]→† (Rmm1m2 →† [m2 |= F2]).
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Definition 28 (Universal validity) A formula F ∈ FBI is said to be valid in some BI

Kripke relational model (W, ε, π,R, IBI, |=) iff ∀m ∈ W.[m |= F ]. It is said to be univer-

sally valid iff it is valid in all the conceivable BI Kripke relational models.

Pym [2002] presents the first sequent calculus for BI, as shown in Figure 1.7.

Definition 29 (Structures) A structure Γ is defined by:

Γ := F | Øa | Øm | Γ; Γ | Γ,Γ
where F ∈ FBI. Øa is an additive structural unit and Øm a multiplicative structural

unit. The set of structures that this grammar generates is denoted by SBI.

Property 5 (Associativity and commutativity of structures)
The following hold within SBI:

1. Γ1; (Γ2; Γ3) = (Γ1; Γ2); Γ3.

2. Γ1, (Γ2,Γ3) = (Γ1,Γ2),Γ3.

3. Γ1; Γ2 = Γ2; Γ1.

4. Γ1,Γ2 = Γ2,Γ1.

Distributivity over the two structural connectives, however, is limited, which prompts
us into specifically defining contexts.

Definition 30 (Contexts) A BI context Γ(−) is defined by:

Γ(−) := − | −; Γ | Γ;− | Γ(−); Γ | Γ; Γ(−) | Γ(−),Γ | Γ,Γ(−).

Given any BI context Γ1(−) and any Γ2 ∈ SBI, Γ1(Γ2) is some BI structure Γ3 ∈
SBI that results from replacing the occurrence of “-” in Γ1(−) with Γ2. Γ(Γ1)(Γ2)

abbreviates (Γ(Γ1))(Γ2).

Definition 31 (Sequents) All the sequents appearing in LBI derivations are a set ele-

ment of DBI := {Γ ` F |[Γ ∈ SBI] ∧† [F ∈ FBI]}.

Theorem 2 (Soundness and completeness Galmiche et al. [2005])
Any F ∈ FBI derivable in LBI is universally valid (soundness). Any universally valid

F ∈ FBI is derivable in LBI (completeness).
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1.1.5 BBI and Separation Logic

1.1.5.1 BBI

BBI is a combined logic of classical logic and multiplicative (intuitionistic) linear logic
without exponentials. Galmiche and Larchey-Wendling [2006] present semantics of
BBI based on non-deterministic monoids.

Definition 32 (Formulas) A BBI formula F (, G,H) is a set element of FBI. The set of

BBI formulas is denoted by FBBI. Clearly FBBI = FBI. Both associativity and commuta-

tivity within FBI carry over to FBBI.

Definition 33 (Non-deterministic monoid) A non-deterministic monoid is defined by

a 3-tuple (W, ◦, ε) with a set W of possible worlds, a binary function ◦ : P(W ) ×
P(W )→ P(W ) and a neutral element ε ∈W , satisfying the following:

1. ∀w ∈W.{ε} ◦ {w} = {w} (neutrality).

2. ∀w1, w2 ∈W.{w1} ◦ {w2} = {w2} ◦ {w1} (commutativity).

3. ∀w1 ∈ P(W ) ∀w2 ∈W.w1 ◦ {w2} = {{w3} ◦ {w2} | w3 ∈ w1}.

4. ∀w2 ∈ P(W ) ∀w1 ∈W.{w1} ◦ w2 = {{w1} ◦ {w3} | w3 ∈ w2}.

5. ∀w1, w2, w3 ∈W.{w1} ◦ ({w2} ◦ {w3}) = ({w1} ◦ {w2}) ◦ {w3} (associativity).

6. ∀w ∈ P(W ).∅ ◦ w = ∅ (composition of undefinedness).1

Definition 34 (Interpretation) An interpretation IBBI is a function that maps proposi-

tional variables into the power-set of W , i.e. IBBI : P→ P(W ).

Definition 35 (BBI Kripke semantics) A BBI non-deterministic Kripke model is de-

fined to be a 5-tuple (W, ◦, ε, IBBI, |=) for some non-deterministic monoid (W, ◦, ε), some

interpretation IBBI and a forcing relation |=, satisfying, for all m ∈W :

• m |= p iff m ∈ IBBI(p).

• m |= >.

1∅ denotes an empty set elsewhere in this thesis.
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Ax1
F ⊃ (G ⊃ F )

Ax2
(F ⊃ (G ⊃ H)) ⊃ ((F ⊃ G) ⊃ (F ⊃ H))

Ax3
F⊃F ∨G

Ax4
G⊃F ∨G Ax5

(F⊃H)⊃((G⊃H)⊃(F ∨G⊃H))
Ax6

F ∧G⊃F

Ax7
F ∧G⊃G Ax8

F⊃(G⊃(F ∧G))
Ax9

1 ⊃ F

Ax10
F ⊃ > Ax11

((F ⊃ 1) ⊃ 1) ⊃ F
Ax12

F ⊃ (∗> ∗ F )

Ax13
(∗> ∗ F ) ⊃ F

F1 ⊃ G1 F2 ⊃ G2 ∗
(F1 ∗ F2) ⊃ (G1 ∗G2)

F ⊃ (G−∗H) −∗1
(F ∗G) ⊃ H

(F ∗G) ⊃ H −∗2
F ⊃ (G−∗H)

F F ⊃ G MP
G

Figure 1.8: HBBI: a BBI Hilbert-style system.

• ¬†[m |= 1].

• m |= ∗> iff m = ε.

• m |= F1 ∧ F2 iff [m |= F1] ∧† [m |= F2].

• m |= F1 ∨ F2 iff [m |= F1] ∨† [m |= F2].

• m |= F1 ⊃ F2 iff ¬†[m |= F1] ∨† [m |= F2].

• m |= F1 ∗ F2 iff ∃m1,m2 ∈W.[m ∈ m1 ◦m2] ∧† [m1 |= F1] ∧† [m2 |= F2].

• m |= F1−∗F2 iff ∀m1,m2 ∈W.[m2 ∈ m ◦m1]→† ([m1 |= F1]→† [m2 |= F2]).

Definition 36 (Universal validity) A formula F ∈ FBBI is said to be valid in some BBI

non-deterministic Kripke model (W, ◦, ε, IBBI, |=) iff ∀m ∈ W.[m |= F ]. It is said to

be universally valid iff it is valid in all the conceivable BBI non-deterministic Kripke

models.

They present a BBI Hilbert-style system as shown in Figure 1.8. I call the proof system
HBBI in this thesis.
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Theorem 3 (Soundness and completeness) Any formula F ∈ FBBI which is derivable

in HBBI is universally valid (soundness). Any formula F ∈ FBBI which is universally

valid is derivable in HBBI (completeness).

Proof. Proofs are found in Galmiche and Larchey-Wendling [2006]. �

Theorem 4 (Undecidability of BBI) BBI is undecidable.

Proof. Proofs are found in Brotherston and Kanovich [2010]; Larchey-Wendling and
Galmiche [2012]. �

1.1.5.2 Separation logic

Separation logic, a prominent logic in program analysis, is closely related to BBI. To
define the heap model of separation logic, first assume the following:

• a countable set of variables V ar (= {x1, x2, · · · }).

• a countable set of locations L (= {l1, l2, · · · }).

• a countable set of constants Const (= {c1, c2, · · · }).

• a countable set of values V = L
⋃
Const (= {v1, v2, · · · }).

• an expression Ex which can be an element either of V ar or of V .

• a set of finite partial functions mapping a subset of locations into values Heap =⋃
L′⊆finL(L′ → V ).

Definition 37 (Formulas) A separation logic formula FF (, GG,HH) is defined by:

FF := Ex1 7→Ex2 | > | 1 | ∗> | FF 1 ∧ FF 2 | FF 1 ∨ FF 2 | FF 1⊃FF 2 |
FF 1 ∗ FF 2 | FF 1−∗FF 2. The set of separation logic formulas is denoted by Fsep.
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Definition 38 (Heap monoid) A heap monoid is a 3-tuple (Heap, ◦, {emp}) with a neu-

tral element emp = • → v with an empty domain as an element of Heap, and a binary

function ◦ : Heap× Heap→ Heap, satisfying:

1. ∀h1, h2 ∈ Heap.[dom(h1) ∩ dom(h2) 6= ∅]→† [h1 ◦ h2 = ∅] (disjointness).

2. ∀h1, h2 ∈ Heap.[dom(h1) ∩ dom(h2) = ∅]→† [h1 ◦ h2 = h1 ∪ h2] (disjoint union).

3. ∀h ∈ Heap.{emp} ◦ h = h (neutrality).

4. ∀h1, h2 ∈ Heap.h1 ◦ h2 = h2 ◦ h1 (commutativity).

5. ∀h1, h2, h3 ∈ Heap.h1 ◦ (h2 ◦ h3) = (h1 ◦ h2) ◦ h3 (associativity).

In the condition of disjoint union, the set union h1 ∪ h2 ∈ Heap of the two functions

h1 ∈ Heap and h2 ∈ Heap is in the following sense:

1. dom(h1 ∪ h2) = dom(h1) ∪ dom(h2).

2. ∀l ∈ dom(h1 ∪ h2).[l ∈ dom(h1)]→† [(h1 ∪ h2)(l) = h1(l)].

3. ∀l ∈ dom(h1 ∪ h2).[l ∈ dom(h2)]→† [(h1 ∪ h2)(l) = h2(l)].

Definition 39 (Interpretation) An interpretation Isep is a function that maps elements

of V into themselves (identity map) and elements of V ar into V . That is, with a function

Stack : V ar → V , it satisfies:

1. ∀v ∈ V.Isep(v) = v.

2. ∀x ∈ V ar.Isep(x) = Stack(x).

Definition 40 (Semantics)
A heap model is defined to be a 5-tuple (Heap, ◦, {emp}, Isep, |=) for some heap monoid

(Heap, ◦, {emp}), some interpretation Isep and a forcing relation |=, satisfying, for all

h ∈ Heap:

• h |= Ex1 7→ Ex2 iff

[|dom(h)| = 1] ∧† (∀l ∈ dom(h).[Isep(Ex1) = l] ∧† [h(l) = Isep(Ex2)]).
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• h |= >.

• ¬†[h |= 1].

• h |= ∗> iff h = {emp}.

• h |= FF 1 ∧ FF 2 iff [h |= FF 1] ∧† [h |= FF 2].

• h |= FF 1 ∨ FF 2 iff [h |= FF 1] ∨† [h |= FF 2].

• h |= FF 1 ⊃ FF 2 iff ¬†[h |= FF 1] ∨† [h |= FF 2].

• h |= FF 1 ∗ FF 2 iff

∃h1, h2 ∈ Heap.[∅ 6= h1 ◦ h2] ∧† [h = h1 ◦ h2] ∧† [h1 |= FF 1] ∧† [h2 |= FF 2].

• h |= FF 1−∗FF 2 iff ∀h1 ∈ Heap.[∅ 6= h ◦ h1] ∧† [h1 |= FF 1]→† [h ◦ h1 |= FF 2].

Definition 41 (Unversal validity) A formula FF ∈ Fsep is said to be valid in some

heap model (Heap, ◦, {emp}, Isep, |=) iff ∀h ∈ Heap.[h |= FF ]. It is said to be universally

valid iff it is valid in all the conceivable heap models.

As indicated for example in Larchey-Wendling and Galmiche [2012], with a suitable
function Translate : FBBI → Fsep, it holds that if F ∈ FBBI is universally valid, then
Translate(F ) ∈ Fsep is universally valid. This fact makes the study of logical prop-
erties of BBI a worthwhile for theoretical investigation into the nature of separation
logic.

1.2 Technical Descriptions of Research Problems and
Contributions

Having covered background materials in sufficient details, we shall now go through an
overview of research problems and a list of contributions in technical terms.
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1.2.1 BI proof theory

One of the distinct logical characteristics of BI is shaped by the two adjoint relations
that co-exist in the logic: [F ∧G ` H] ' [F ` G ⊃ H] and [F ∗G ` H] ' [F ` G−∗H],
the former taken from intuitionistic logic, and the latter from multiplicative intuition-
istic linear logic without exponentials (hereafter simply multiplicative intuitionistic
linear logic as no confusion is likely to arise). Insofar as BI comes with additive com-
ponents (which derive from intuitionistic logic) and multiplicative components (which
derive from multiplicative intuitionistic linear logic), it is not so remote from linear
logic in the underlying idea of enriching expressiveness of a logic by composition.
However, the nature as a combined logic is more salient in BI having intuitionistic
logic and multiplicative intuitionistic linear logic as its base logics.

A BI proof system usually distinguishes additive contexts from multiplicative ones
by defining two structural connectives “;” and “,”: the semi-colon reserved for additive
structure formation and the comma for multiplicative structure formation. This differ-
entiation helps insulate additive structures (those connected with “;”, e.g. Γ1; Γ2) from
multiplicative ones (Γ1,Γ2) and vice versa in a syntactically unambiguous way, e.g.

Γ;F ` G
⊃ R

Γ ` F⊃G
Γ, F ` G

−∗R
Γ ` F−∗G

The same differentiation is convenient also for formulation of structural rules in BI

sequent calculi, weakening and contraction in particular, which are available in the
context of BI additive structures only:

Γ(Γ1; Γ1) ` F
Contraction

Γ(Γ1) ` F
Γ(Γ1) ` F

Weakening
Γ(Γ1; Γ1) ` F

1.2.1.1 Research problems

There, however, emerges somewhat a curious phenomenon around the base-logic in-
teractions as observed syntactically. For example in contraction, not simply an additive
structure: “Γ1; Γ2” but also a multiplicative one: “Γ1,Γ2” may duplicate. Given a LBI

sequent Γ(F,G) ` H, the following three are all derivable.

Γ((F ;F ), G) ` H
Ctr1

Γ(F,G) ` H
Γ(F, (G;G)) ` H

Ctr2
Γ(F,G) ` H

Γ((F,G); (F,G)) ` H
Ctr3

Γ(F,G) ` H

Whereas, if it can be proved that only formula contractions like the Ctr1 or the Ctr2

above are required in LBI derivations, it will suffice to have;
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Γ(G;G) ` H
Γ(G) ` H

in place of the general contraction rule Contraction, if not, there cannot be any restric-
tion that can be imposed on the size of what to duplicate, and consequently contraction
analysis will be non-trivial. Is it possible to ascertain that the structural contraction of
the following sort:

Γ((Γ1,Γ2); (Γ1,Γ2)) ` H
MContraction

Γ(Γ1,Γ2) ` H

is admissible,1 or should there be any situations where it must take place? And if it is
not admissible, what exactly is demanding the presence of MContraction? To achieve
contraction restriction, one must first answer these questions by studying the way it
behaves within LBI, paying a particular attention to syntactically occurring base-logic
interactions (simply structural interactions hereafter).

Two issues stand in the way of a successful LBI contraction analysis, however.
The first issue is the structural equivalence Γ,Øm = Γ = Γ; Øa (where Øa denotes the
additive structural unit and Øm the multiplicative structural unit) which is by nature
bidirectional:

Γ(Γ1) ` F
Γ(Γ1; Øa) ` F

Γ(Γ1; Øa) ` F
Γ(Γ1) ` F

Γ(Γ1) ` F
Γ(Γ1,Øm) ` F

Γ(Γ1,Øm) ` F
Γ(Γ1) ` F

Apart from being an obvious source of non-termination, it obscures the core mecha-
nism of structural interactions by a free-transformation of an additive structure into a
multiplicative one and vice versa: a structure “Γ” can be additive because it is equiv-
alent to “Γ; Øa” but it can be also multiplicative because it is equivalent to “Γ,Øm”,
which implies that any structure may be both additive and multiplicative. The second
issue is the difficulty of isolating the effect of contraction from that of weakening. An
earlier work Donnelly et al. [2004] for example attempted absorption of the effect of
structural weakening into the other inference rules for a subset of BI. But their ap-
proach does not fully eliminate the effect of structural weakening because they absorb
it also into structural contraction. Structural weakening still occurs through the modi-
fied structural contraction in their system. But isolation of weakening and contraction
is not the only one difficulty. In addition, it is not so straightforward to know whether,
first of all, either weakening or contraction is immune to the effect of the structural

1An inference rule in a sequent calculus is admissible iff any sequent which is derivable in the
calculus is derivable without the particular rule.
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equivalence. As the result, contraction-free BI sequent calculi, be the contraction-
freeness in the sense of G3i or of G4i (Cf. 1.1.2), have remained in obscurity, the
multitude of technical complications around interactions among LBI structural rules
hindering the emergence.

The current lack of knowledge about structural interactions within BI proof sys-
tems is not so desirable, theoretically but also from a practical viewpoint. Into theorem
proving for example, the presence of bidirectional structural rules and contraction as
explicit structural rules in LBI means that it is difficult to actually prove that an invalid1

BI formula is underivable within the calculus. This is because LBI by itself does not
provide termination conditions for a derivation of a given BI formula unless the deriva-
tion tree actually closes.2 That is, the only case in which no more backward derivation
on a LBI sequent is possible is when it is empty; the only case in which it can be empty
is when it is the premise of an axiom.

For the antithesis of the intricacy of analysis on the structural interactions and the
need for more scalable a calculus, the currently established practice is in fact not to
face the difficulty (Cf. Galmiche et al. [2005]) but instead to turn to semantics. While
it is largely thanks to this judicious decision that we are aware of the indication of BI
decidability (Cf. Galmiche et al. [2005]) which assures that a decision procedure be
extractable, its practical significance has been less significant, as attested by the long
absence of the actual procedure. The given proof for BI decidability in Galmiche et al.
[2005] is in fact paradoxical, as to be stated in Chapter 2.

1.2.1.2 Contribution: development of αLBI and then LBIZ through study of
structural interactions

I present a rigorous study of structural interactions within LBI, which is intended to be
a pathway for resolution of the dilemma that hindered earlier work. I first of all deliver
a new BI sequent calculus αLBI, proving all the following:

• Admissibility of the structural equivalence.

• Admissibility of weakening.

1In a given semantics by a class of models, a formula that is not universally valid is invalid.
2Cf. Definition 3.
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• Admissibility of contraction.

Since those three are all that appear as structural rules in LBI, it is a new BI sequent
calculus comprising logical inference rules only. These admissibility results are depth-
preserving, as to be subsequently shown. Also, answering to the earlier questions as to
whether structural contractions of the sort of MContraction are admissible, they must
be absorbed into the left rule of the two BI implications, but not needed in the rest.
In fact, it follows immediately by eye inspection on the available αLBI inference rules
that they are the only αLBI inference rules in which any kind of contraction needs ab-
sorbed.

Two concepts hold a key to the solutions. One is what I term the essence of struc-
tures which recognises, in a sequent, a set of structures that are intrinsically connected
but which may appear dispersed within the sequent by the presence of redundant deco-
rative artifacts that the multiplicative unit and also weakening collectively create. It is a
notational invention that takes care of interactions between LBI logical inference rules,
weakening and the structural equivalence around the multiplicative unit. Another is
deep absorption of LBI weakening into LBI logical inference rules. It gives rise to a
critical observation of incremental weakening. With it, the effect of contraction in BI

sequent calculi is for the first time demonstrated separable from that of weakening. I
also prove admissibility of Cut directly within [αLBI+ Cut].

The rigorous analysis within the development of αLBI about the structural interac-
tions prompts a tidying-up of the foundation of BI proof theory. I read out a message
inscribed in the set of αLBI inference rules - the positing of the structural units Øa and
Øm, hitherto sources of complexity, has no substance in BI proof systems. Coherent
equivalence as a set of structural rules (Cf. Pym [2002]), one of the long favoured
ideas adopted in earlier BI proof systems (Cf. Brotherston [2012]; Donnelly et al.
[2004]; O’Hearn and Pym [1999]; Pym [2002]), is finally placed under examination
of its adequacy, and, as far as the structural equivalence - one of the conditions in the
coherent equivalence - is concerned, removed. The result is a new BI sequent calculus
comprising logical inference rules only.
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1.2.1.3 Contribution: decidability of a BI fragment - a purely syntactical demon-
stration

Upon derivation of LBIZ begins a search for a syntactically demonstrable decidable
fragment of BI. I will show that [BI - the multiplicative implication - the multiplicative
unit] is decidable. This fragment is termed BIbase.

Concerning the how, my approach is to utilise an implicit contraction elimination
method widely known in intuitionistic logic (Cf. 1.1.2). BIbase is for now the largest
BI fragment which can be purely syntactically proved decidable, and for which there
actually is a proof.

1.2.1.4 Contribution: reasoning BI as BI with structural layers

The present thesis is hoped to draw attention the following: wherever reasoning about
BI proof theory (and also BBI proof theory) is concerned, a particular choice of the
representation of a BI structure (also BBI structure) is not indifferent to the other can-
didates, and there is every reason to be meticulous about it if an accurate reasoning is to
be sought after. Earlier syntactic studies on BI proof theory saw the two constituents:
intuitionistic logic and multiplicative intuitionistic linear logic, but hardly any of them
the boundary between the two (in which the distinct logical characteristics of BI lie). I
reason about BI by considering a structure as a nesting of structural layers.

1.2.2 BBI proof theory

Boolean BI (BBI) is a combined logic of classical logic and multiplicative intuitionis-
tic linear logic as its base logics. Classical logic forms the additive sub-logic of BBI
and multiplicative intuitionistic linear logic the multiplicative sub-logic. One imme-
diate difference from BI is in the availability of classical negation. Pym [2002] for
instance considers a prototypical logic BBI as an extension of logic BI with the law of
the excluded middle. The more recent BBI semantics as developed by Galmiche and
Larchey-Wendling [2006] makes use of non-deterministic monoids, which is strictly
more general, as Larchey-Wendling and Galmiche [2009] note, than the class of heap
models (Cf. Reynolds [2002] for the initial heap semantics). It is known (noted for
instance by Larchey-Wendling and Galmiche [2012]) that the set of BBI formulas uni-
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versally valid in the class of non-deterministic models are in turn universally valid in
the class of heap models, whose fact makes it worthwhile to study BBI. With a firm
theoretical foundation of Logic BBI, a promising research direction of adapting the
knowledge of BBI proof theory into separation logic theory in an incremental man-
ner comes in scope. It is reasonable to suppose that maturity in BBI proof theory
would aid farther progresses into decision problems for separation logic (Cf. Berdine
et al. [2004]; Brochenin et al. [2012]; Calcagno et al. [2001]; Iosif et al. [2013] for
the current status) and/or development of efficient separation logic theorem proving
techniques by consolidating currently available tools (Cf. Berdine et al. [2005, 2011];
Chang and Rival [2008]; Chin et al. [2012]; Distefano and Parkinson [2008]; Distefano
et al. [2006]; Jacobs et al. [2011]; Magill et al. [2008]; Villard et al. [2010]).

The first tool towards this goal was shown by Park et al. [2013] based on an earlier
BBI display calculus (Cf. Brotherston [2012]). A formal system in semantic tableaux
is also known (Cf. Larchey-Wendling and Galmiche [2009]).

1.2.2.1 Research problems

The large enthusiasm around application (via separation logic) notwithstanding, the
core mechanism of base-logic interactions in BBI is still not thoroughly understood,
which is in fact even harder to analyse than the BI base-logic interactions. BBI proof
theory, in which semantic characteristics need finitely formalised, is particularly hard-
hit by the lack of the comprehension. Even for propositional BBI, no proof systems
suitable for an efficient proof search are so far available.

A few BBI proof systems are nonetheless known such as a Hilbert-style system (by
Galmiche and Larchey-Wendling [2006]), a display calculus (by Brotherston [2012])
and its envisaged optimisation (by Park et al. [2013]). These are, however, not very
suitable for a scalable proof search: the axiomatic Hilbert-style system for the obvious
reason of the presence of modus ponens, and the display(-like) BBI proof systems for
extra structural rules postulated (display postulates Belnap [1982]) some of which are
Cut in sequent calculus sense. Both modus ponens and display postulates, allowing an
infinite introduction of new constructs, break down the property that a Cut-free sequent
calculus usually (though probably not always) promises: analyticity of a proof system
which guarantees the need of at most a finite number of distinct constructs required in
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the course of a proof search - no matter how long derivations are to be.

Definition 42 (Distinct new constructs and Analyticity) Given a proof system, an

inference rule available in the proof system is said to be introducing a distinct new

construct (resp. distinct new constructs) if and only if it introduces in premise(s) some

structure (resp. some structures) which is (resp. are) not equivalent to any structure(s)

in the conclusion up to relations that are defined to hold among structures in the proof

system (such as associativity and commutativity). A given proof system is said to be

analytic if and only if (A) there are only finitely many inference rules in the proof sys-

tem and (B) it holds, for any derivation constructable (finitely or infinitely) with the set

of inference rules made available within the system, that the number of distinct new

constructs to be introduced is finitely bounded.

Of the two measures towards a demonstration of decidability of a (propositional) logic
within a proof system: analyticity (which an infinite introduction of distinct con-
structs breaks) and duplication-freeness (which the presence of contraction breaks),
an analytic proof system ensures the first, thereby restricting the cause of decidabil-
ity/undecidability to only one measure than two. In the context of BBI, it is impossible
to also eliminate the need for duplications since such would prove the decidability
of BBI, contradicting the earlier undecidability result (Cf. Brotherston and Kanovich
[2010]; Larchey-Wendling and Galmiche [2012]); however, permitting both infinite
duplication and infinite production of new constructs, overhead to proof searches is
immense. Proof-theoretical investigation into decidable fragments of the logic is also
tricky with a non-analytic proof system such as can be figured from an earlier attempt
(by Kracht [1996]) towards the goal. Therefore a finding of an analytic BBI proof sys-
tem would be a significant progress forward in the emerging research of BBI theorem-
proving and its adaptation to separation logic, as Park et al. [2013] also note.

There are two major technical difficulties that stand in the way of BBI sequent cal-
culus inception. The first - just as in BI - is the limited distributivity between the base
logics. The partial distributivity makes it very hard to see the condition under which
the base-logic interactions occur. The second is a semantic peculiarity of the BBI mul-
tiplicative unit in that it is judged point-wise. For example, the BBI non-deterministic
semantics gives rise to the following result.
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Lemma 9 (Brotherston and Kanovich [2010])
(∗> ∧ F )⊃(F ∗ F ) ∈ FBBI is universally valid.

The same formula which is also in FBI, however, is not generally universally valid in
BI Kripke relational semantics, i.e. there exists a formula for which it is not universally
valid, precisely because that some possible world m in the BI Kripke relational seman-
tics forces ∗> does not perforce dictate that it be ε. The implication that the semantic
difference has on syntax must be closely studied.

1.2.2.2 Contribution: development of BBI sequent calculi

I first present a BBI sequent calculus LBBIp by heeding the underlying semantics. The
following are examined specifically: (1) behaviour of classical implication within BBI

proof systems, (2) collapsing of multiplicative conjuncts, and (3) the non-intuitionistic
multiplicative unit in BBI. For (1), I develop adequate sequent calculus conventions
to take into account the way classical logic is captured within the other BBI sub-logic.
This consideration is similar to the one taken in Park et al. [2013] except that I ex-
plicitly formulate a one-sided calculus. For (2), it is to be noted that a multiplicative
conjunct may exhibit certain coupling with other multiplicative conjuncts. This phe-
nomenon is handled in LBBIp with a special distribution rule. It is also to be identified
that a naive use of the distribution rule could result in an infinite introduction of new
constructs. This problem is also addressed. Its consequence to Cut is then studied. For
(3) which is a lesser-heeded point in BBI proof theory, it is to be observed that a BBI

proof system can have a close semantic-syntax correspondence only if the behaviour
of the multiplicative unit is properly captured within the system. The way it interacts
with multiplicative components must be adequately reflected onto syntax. Dedicated
inference rules around the multiplicative unit are defined, to initiate further investiga-
tion of its peculiarity and impact on BBI sequent calculi.

From LBBIp, I derive a variant αLBBIp by adapting the knowledge of BI structural
interactions (which is to be covered in Chapter 3). Despite uncertainty to still remain
over admissibility of Cut in [αLBBIp+ Cut], it is expected to mark the beginning of
study into BBI sequent calculi from the direction opposite the earlier work: instead of
the top-down methodology starting from a highly expressive display calculus, these
sequent calculi derive from a bottom-up approach. Sound separation logic sequent
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calculi follow immediately from LBBIp and αLBBIp. Admissibility of Cut in a conser-
vative fragment of [αLBBIp+ Cut] is also shown.

1.2.3 Studies into Logical Combinations and Combined Logics

Just as much as it is important to understand the mechanism of base-logic interac-
tions in some specific combined logic, it is also important that we look at the general
problem of logical combinations themselves. Into this direction, I initiate highly con-
structive proof-theoretical studies into logical combinations, delivering the concept of
phased sequent calculus in which interactions between a given set of base logics can
be actually developed and analysed. Being a sequent calculus, analysis of amenability
to automation also comes in scope.

When we reflect upon logical combinations and consequently combined logics
themselves, we are first faced with the following question; “What does it mean by
combining logics?” The posed question is properly answerable only if the definition
of a logical combination is known. Another question soon follows; “Who is giving the
definition?”

It is none other than ourselves who are trying to combine logics, and who, by the
intention, becomes a mediator on behalf of the base logics. In phased sequent calculus,
the mediator is formalised as a set of interaction inference rules, the mediation strength
of which determines how base logics are allowed to interact. For a demonstration of the
phased sequent calculus, I formulate BIbase, and propose the use of state diagrams to
develop and analyse base-logic interactions. As an exhibition of a basic proof search
in phased sequent calculus, I also present a decision procedure for the BI fragment.
The locality embedded within the phased sequent calculus simplifies the termination
argument. It is anticipated that phased sequent calculus is to encompass theory and
application of combined logics.

1.3 Synopsis of the Remaining Chapters

• In Chapter 2, related BI proof systems will be reviewed, some briefly, some
more critically. A cut admissibility proof in LBI by means of BI-MultiCut that
appears in this chapter is part based on Arisaka and Qin [2012].
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• In Chapter 3, reasoning techniques about BI base logic interactions will be intro-
duced and new BI sequent calculi free of any structural rules will be presented.
Decidability of a BI fragment will be proved purely syntactically. No earlier
syntactic proofs for a sizable BI fragment beyond intuitionistic logic or multi-
plicative intuitionistic linear logic without exponentials are for now known.

• In Chapter 4, BBI sequent calculi will be presented through adequate sequent
calculus conventions and semantic observations. The knowledge of structural
interactions in BI sequent calculus is adapted. In the same chapter will be also
found a direction into separation logic sequent calculi, though completeness will
be left open. A cut elimination procedure for a conservative fragment will be
shown. Related work will then be compared. This chapter will conclude studies
into the direction of specialisation.

• In Chapter 5, phased sequent calculus, an idea to promote farther studies into
base-logic interactions and consequently combined logics themselves, will be
introduced. The decidable fragment of BI will be used for an illustration of the
idea. A methodology to engineer a particular sense of logical combination with
abstract state diagrams will be proposed. A decision procedure for the fragment
will be presented. Related work will be then compared.

• In Chapter 6, some future work will be suggested, following a summary of con-
tributions in earlier chapters.

Chapters 2 and 3 form the technical foundations for Chapter 4 and Chapter 5. They
should be therefore read in the written order and should be sufficiently understood
before readers move on farther. Chapter 5 has no technical dependencies on Chapter
4, and may be read just after Chapter 3.
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Chapter 2

Reviews of BI Proof Systems

In this chapter I go through earlier BI proof systems that have a close connection to
my own and, where relevant, provide a closer review for some of them.

2.1 BI Proof Systems

Several BI proof systems are found in literature: a natural deduction system (Cf.

O’Hearn and Pym [1999]), sequent calculi (Cf. Donnelly et al. [2004]; Harland and
Pym [2003]; Pym [2002]), a Hilbert-type system (Cf. Pym et al. [2004]), semantic
tableaux (Cf. Galmiche and Méry [2003]; Galmiche et al. [2005]), a display calculus
(Cf. Brotherston [2012]), a deep inference (Cf. Horsfall [2006]). The history of BI be-
gan in O’Hearn and Pym [1999] as a logic represented by a proof system. Correspond-
ing semantics were developed subsequently in Galmiche and Méry [2003]; Galmiche
et al. [2005]; Harland and Pym [2003]; Pym [2002]; Pym et al. [2004]. The rest of this
section illustrates those that are relevant to this thesis with appropriate comparisons.

2.1.1 LBI

The first BI sequent calculus by Pym [2002] was introduced in the previous chapter.
Along with soundness and completeness, admissibility of Cut also holds in LBI. The
fact, however, does not follow from the suggested proof approach in Pym [2002]. I
briefly illustrate an unaddressed issue in the suggested cut elimination procedure. The
standard notations of the cut rank and the cut level are given first.

46



Definition 43 (Formula size) The size of a formula F ∈ FBI, f size(F ), is defined as

follows: it is 1 if no binary logical operators occur in F ; is f size(F1)+f size(F2)+1

if F = F1 ? F2 for ? ∈ {∧,∨,⊃, ∗,−∗}.

Definition 44 (Cut rank and cut level) The level of a Cut instance is the sum of the

derivation depths of both of its premise sequents. The rank of a Cut instance is the size

of the cut formula F .

2.1.1.1 Issue

Following Pym [2002], the result is supposed to hold and be provable by making use of
only MultiCut (Cf. some standard text such as Troelstra and Schwichtenberg [2000]):

Γ1 ` F Γ2(F ; · · · ;F ) ` G
MultiCut

Γ2(Γ1) ` G

However, there is certain issue in the approach: MultiCut does not take care of the
effect of structural contraction that LBI permits. As it turns out, this issue is just as
much unresolvable as Cut in G1i derivations without MultiCut if only a means of
local permutation (Cf. von Plato [2001] for a global permutation) is adopted.1 Pym
[2002] indicates that the use of local permutation suffices for the proof of admissibility
of Cut in LBI. But it fails to take into account the following case:

Γ1 ` F
Γ3((Γ2, F ); (Γ2, F )) ` H

CtrL
Γ3(Γ2, F ) ` H

Cut
Γ3(Γ2,Γ1) ` H

Call the partial derivation Π1. Then a permutation attempt:

Γ1 ` F
Γ1 ` F Γ3((Γ2, F ); (Γ2, F )) ` H

Cut
Γ3((Γ2,Γ1); (Γ2, F )) ` H

Cut
Γ3((Γ2,Γ1); (Γ2,Γ1)) ` H

CtrL
Γ3(Γ2,Γ1) ` H

entails the irreducibility of the cut level of the lower Cut instance (that which is just
above CtrL).

1Cf. Troelstra and Schwichtenberg [2000] for the details.
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2.1.1.2 LBI Cut Elimination Proof With BI-MultiCut

To actually prove the Cut admissibility by means of local permutation, it hence is
necessary that the effect of structural contraction be encoded into Cut:

Γ1 ` F Γ3((Γ2(F ))×n) ` H
BI-MultiCut

Γ3(Γ2(Γ1)) ` H

where (Γ)×n abbreviates Γ; Γ; · · · ; Γ︸ ︷︷ ︸
n

. With BI-MultiCut, Π1 is transformed cleanly:

Γ1 ` F Γ3((Γ2, F )×2) ` H
BI-MultiCut

Γ3(Γ2,Γ1) ` H

An admissibility proof of Cut in LBI is then achieved.

Theorem 5 (Admissibility of Cut in LBI) Cut is admissible in LBI. There exists a cut

elimination procedure that transforms any closed LBI-derivation into a closed [LBI-

Cut]-derivation.

Proof. By induction on the cut rank and a sub-induction on the cut level. In the below,
(U, V ) denotes, for LBI inference rules U and V , that one of the premises has been just
derived with U and the other with V . “· · · ⇒ · · · ” denotes a derivation permutation
strategy where the left hand side of the “⇒” is the given (partial) derivation whereas
the right hand side is the permuted (partial) derivation. I abbreviate “(Γ(Γ1))(Γ2)” by
“Γ(Γ1)(Γ2)”, as noted in Chapter 1.

(id, id):
id

F ` F id
F ` F

Cut
F ` F

⇒ id
F ` F

(id,>R):
id

F ` F >R
Γ2(F ) ` >

Cut
Γ2(F ) ` >

⇒ >R
Γ2(F ) ` >

(id, 1L):
id

F ` F 1L
Γ2(F )(1) ` H

Cut
Γ2(F )(1) ` H

⇒ 1L
Γ2(F )(1) ` H

(id,∧L): id
F1 ∧ F2 ` F1 ∧ F2

Γ1(F1;F2) ` H
∧L

Γ1(F1 ∧ F2) ` H
Cut

Γ1(F1 ∧ F2) ` H
⇒ Γ1(F1;F2) ` H

∧L
Γ1(F1 ∧ F2) ` H

(id, U): Similar. Straightforward.
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(>R,>R):
>R

Γ1 ` >
>R

Γ2(>) ` >
Cut

Γ2(Γ1) ` >
⇒ >R

Γ2(Γ1) ` >

(>R, 1L):

1.
>R

Γ1 ` >
1L

Γ2(>)(1) ` H
Cut

Γ2(Γ1)(1) ` H
⇒ 1L

Γ2(Γ1)(1) ` H

2.
1L

Γ1(1) ` H >R
Γ2(H) ` >

Cut
Γ2(Γ1(1)) ` >

⇒ >R or 1L
Γ2(Γ1(1)) ` >

(>R,U): Straightforward.

(1L, 1L):
1L

Γ1(1) ` H1
1L

Γ2(H1)(1) ` H2
Cut

Γ2(Γ1(1))(1) ` H2

⇒ 1L
Γ2(Γ1(1))(1) ` H2

(⊥L,U): Straightforward.

(∧R,U) : excluding the Us already examined:

1.

D1 : Γ1 ` F1 D2 : Γ1 ` F2 ∧R
D4 : Γ1 ` F1 ∧ F2

D3 : Γ2((Γ3(F1 ∧ F2))×n−1; Γ3(F1;F2)) ` H
∧L

Γ2((Γ3(F1 ∧ F2))×n) ` H
CtrL

Γ2(Γ3(F1 ∧ F2)) ` H
Cut

Γ2(Γ1) ` H⇒

D1

D2

D4 D3
BI-MultiCut

Γ2(Γ3(Γ1); Γ3(F1;F2)) ` H
Cut

Γ2(Γ3(Γ1); Γ3(F1; Γ1)) ` H
Cut

Γ2(Γ3(Γ1); Γ3(Γ1; Γ1)) ` H
CtrL

Γ2(Γ3(Γ1)) ` H

2.
... ∧R

Γ1 ` F1 ∧ F2

Γ′2((Γ′3(F1 ∧ F2))×n) ` H ′
U

Γ2((Γ3(F1 ∧ F2))×n) ` H
CtrL

Γ2(Γ3(F1 ∧ F2)) ` H
Cut

Γ2(Γ3(Γ1)) ` H

⇒

... ∧R
Γ1 ` F1 ∧ F2 Γ′2((Γ′3(F1 ∧ F2))×n) ` H ′

BI-MultiCut
Γ′2(Γ′3(Γ1)) ` H ′

U
Γ2(Γ3(Γ1)) ` H
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3. Also straightforward when U is instead a two-premise inference rule.

(∨R,U) : excluding the Us already examined:

1. D1 : Γ1 ` Fi ∨R
D4 : Γ1 ` F1 ∨ F2

D2 D3 ∨L
D5 : Γ2((Γ3(F1 ∨ F2))×n) ` H

CtrL
Γ2(Γ3(F1 ∨ F2)) ` H

Cut
Γ2(Γ3(Γ1)) ` H

where [D2 : Γ2((Γ3(F1 ∨ F2))×n−1; Γ3(F1)) ` H] and
[D3 : Γ2((Γ3(F1 ∨ F2))×n−1; Γ3(F2)) ` H].
⇒

D1(i = 1)

D4 D2
BI-MultiCut

Γ2((Γ3(Γ1)); Γ3(F1)) ` H
Cut

Γ2((Γ3(Γ1)); Γ3(Γ1)) ` H
CtrL

Γ2(Γ3(Γ1)) ` H

2. Straightforward, otherwise.

(⊃ R,U) : excluding the Us already examined:

1. D1 : Γ1;F1 ` F2 ⊃ R
D4 : Γ1 ` F1 ⊃ F2

Di
2 D3 ⊃ L

Γ2((Γ4(Γ3;F1⊃F2))×n) ` H
Ctr L

Γ2(Γ4(Γ3;F1⊃F2)) ` H
Cut

Γ2(Γ4(Γ3; Γ1)) ` H

where [D1
2 : Γ3 ` F1] (or [D2

2 : (Γ3;F1⊃F2)×n−1; Γ3 ` F1] in case
[Γ4(Γ3;F1⊃F2) ≡ Γ3;F1⊃F2] up to assoc. and commut.) and
[D3 : Γ2((Γ4(Γ3;F1⊃F2))×n−1; Γ4(Γ3;F2)) ` H].

⇒ D∗2

D1

D4 D3
BI-MultiCut

Γ2(Γ4(Γ3; Γ1); Γ4(Γ3;F2)) ` H
Cut

Γ2(Γ4(Γ3; Γ1); Γ4(Γ3; Γ1;F1)) ` H
Cut

D′
Ctr L

Γ2(Γ4(Γ3; Γ1)) ` H

where D′ is [Γ2(Γ4(Γ3; Γ1); Γ4(Γ3; Γ1; Γ3))`H] for i = 1 or
[Γ2(Γ4(Γ3; Γ1); Γ4(Γ3; Γ1; Γ3; Γ1; Γ3)) ` H] for i = 2, and D∗2 is D1

2 for i = 1,
or the following for i = 2.
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D4 D2
2

BI-MultiCut
Γ3; Γ1; Γ3 ` F1

(∗R,U) : excluding the Us already examined:

1.

D1 D2 ∗R
D4 : Γ2,Γ3 ` F1 ∗ F2

D3 : Γ((Γ1(F1 ∗ F2))×n−1; Γ1(F1, F2)) ` H
∗L

Γ((Γ1(F1 ∗ F2))×n) ` H
CtrL

Γ(Γ1(F1 ∗ F2)) ` H
Cut

Γ(Γ1(Γ2,Γ3)) ` H

where [D1 : Γ2 ` F1] and [D2 : Γ3 ` F2].

⇒

D1

D2

D4 D3
BI-MultiCut

Γ(Γ1(Γ2,Γ3); Γ1(F1, F2)) ` H
Cut

Γ(Γ1(Γ2,Γ3); Γ1(F1,Γ3)) ` H
Cut

Γ(Γ1(Γ2,Γ3); Γ1(Γ2,Γ3)) ` H
CtrL

Γ(Γ1(Γ2,Γ3)) ` H

2. Straightforward, otherwise.

(−∗R,U) : excluding the Us already examined:

1. D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 D3 −∗L
Γ2((Γ4(Γ3, F1−∗F2))×n) ` H

CtrL
Γ2(Γ4(Γ3, F1−∗F2)) ` H

Cut
Γ2(Γ4(Γ1,Γ3)) ` H

where [D2 : Γ3 ` F1] and [D3 : Γ2(Γ4(F2); (Γ4(Γ3, F1−∗F2))×n−1) ` H].
⇒

D2

D1

D4 D3
BI-MultiCut

Γ2(Γ4(F2); Γ4(Γ3,Γ1)) ` H
Cut

Γ2(Γ4(Γ1, F1); Γ4(Γ3,Γ1)) ` H
Cut

Γ2(Γ4(Γ1,Γ3); Γ4(Γ3,Γ1)) ` H
CtrL

Γ2(Γ4(Γ1,Γ3)) ` H

2. Straightforward, otherwise.

(WkL,U) : Straightforward. One contraction followed by one weakening to offset
the effect of the contraction is simply pruned.
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id
p ` p

X ` F F ` Y
Cut’

X ` Y
1L

1 ` Y

>R
X ` >

∗>R
Øm ` ∗>

Øa ` Y >L> ` Y

F ;G ` Y
∧L

F ∧G ` Y
F ` Y G ` Y ∨L
F ∨G ` Y

X ` F G ` Y ⊃ L
F⊃G ` X⇒ Y

Øm ` Y ∗>L∗> ` Y
F,G ` Y

∗L
F ∗G ` Y

X ` F G ` Y −∗L
F−∗G ` X−◦Y

X ` F X ` G ∧R
X ` F ∧G

X ` F ;G
∨R

X ` F ∨G
X, F ` G

⊃ R
X ` F⊃G

X1 ` F X2 ` G ∗R
X1,X2 ` F ∗G

X, F ` G −∗R
X ` F−∗G

X1 ` Y
WkL

X1;X2 ` Y

X;X ` Y
CtrL

X ` Y
Øa;X ` Y. . . . . . . . . . . . . .. . . . . . . . . . . . . . EA1L
X ` Y

Øm,X ` Y. . . . . . . . . . . . . .. . . . . . . . . . . . . . EA2L
X ` Y

X1;X2 ` Y. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . DP1
X1 ` X2 ⇒ Y

X1,X2 ` Y. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . DP2
X1 ` X2−◦Y

Figure 2.1: DLBI: a BI display calculus. An inference rule with a double-dotted line is
bidirectional.

The rest: Straightforward or similar. �

2.1.2 DLBI

Brotherston [2012] formulates BI display calculus as found in Figure 2.1. While the
definition of a formula is carried over from Definition 24, postulated extra structural
connectives ⇒ and −◦ call for fresh definitions for what a DLBI structure or a DLBI

sequent1 is.

1Instead of a sequent, display calculus community tends to call it a consecution. I remain indifferent
to the community-specific terminology in this thesis.
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Definition 45 (DLBI structures)
A DLBI negative structure X is defined by X := F | Øa | Øm | X;X | X,X. A DLBI positive

structure Y is defined by Y := F | X⇒ Y | X−◦Y. The set of the DLBI negative structures

is denoted by NBI, and that of the DLBI positive structures by PBI.

Lemma 10 (DLBI sequents) All the sequents appearing in LBI derivations are a set

element of BBI := {X ` Y|X ∈ NBI ∧† Y ∈ PBI}.

The last two inference rules in Figure 2.1 are commonly termed display postulates
which are the underlying proof-theoretical vehicles that set a display calculus apart
from a sequent calculus.

Example 4 (A comparison of DLBI and LBI derivations) A LBI-derivation and a

DLBI-derivation of (p1, p1−∗p2); p2 ⊃ p3 ` p3 (which is in both DBI and BBI) is re-

spectively:

LBI:

id
p1 ` p1

id
p2 ` p2

id
p3 ` p3

WkL
p2; p3 ` p3 ⊃ L

p2; p2⊃p3 ` p3 −∗L
(p1, p1−∗p2); p2⊃p3 ` p3

DLBI:

id
p1 ` p1

id
p2 ` p2

id
p3 ` p3 ⊃ L

p2⊃p3 ` p2 ⇒ p3 DP1p2; p2⊃p3 ` p3 DP1
p2 ` (p2⊃p3)⇒ p3 −∗L

p1−∗p2 ` p1−◦((p2⊃p3)⇒ p3)
DP2

p1, p1−∗p2 ` (p2⊃p3)⇒ p3
DP1

(p1, p1−∗p2); p2⊃p3 ` p3

It is a well-known fact that Cut’ in a display calculus is admissible so long as it satisfies
Belnap’s conditions (Cf. Belnap [1982]). To spell out the conditions, readers are gently
reminded of the fact that a proof system is a set of inference rules which are schemata.
Take ∨R in DLBI for example, it does not enforce that there be a unique structure “X”
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in the antecedent, and a unique “F ;G” (in the premise) or a unique “F ∨ G” (in the
conclusion) in the consequent for the inference rule to be applicable during a backward
derivation. In ∨R, all of the X, F and G are but schemata which are to be instantiated
by actual structures in NBI and FBI. Similar for all the other inference rules.

Definition 46 (Belnap’s conditions)

Preservation of formulas: For every inference rule available, if it is not Cut’, then

a formula schema that appears in a premise sequent is a sub-formula schema of

a formula schema that appears in the conclusion sequent.

Shape-alikeness of parameters: 1 For every inference rule, if the same schema oc-

curs multiple-times, then it is instantiated by the same actual formula/structure.

Non-proliferation of parameters: For every inference rule and for every structural

schema that occurs within the conclusion of the inference rule, it occurs only

once there.

Position-alikeness of parameters: For every inference rule and for every positive

structural schema that occurs in the inference rule, if it occurs in both premise(s)

and conclusion, it does not occur as a negative structural schema; and for every

inference rule and for every negative structural schema that occurs in the infer-

ence rule, if it occurs in both premise(s) and conclusion, it does not occur as a

positive structural schema.

Display of principal constituents: For the principal (formula) of every inference rule,

if any, if it occurs in the antecedent, then it is the only one constituent in the an-

tecedent; and if it occurs in the consequent, then it is the only one constituent in

the consequent.

Closure under substitution for consequent parameters: For every inference rule

and for positive structural schemata in the inference rule, the inference rule is

closed under simultaneous substitution of arbitrary (actual) structures into the

positive structural schemata.

1There is an inessential difference from the definition given by Belnap here.
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Closure under substitution for antecedent parameters: For every inference rule

which may be partially or wholly instantiated with actual structure(s) and/or

actual formula(s) such that

1. the conclusion sequent comes with some negative structure or some neg-

ative structural schema, say X, and some consequent formula or some

consequent formula schema as the principal, say F (which is a positive

formula/formula schema), and

2. in the inference rule, sequents come with negative structure(s) and/or nega-

tive structural schema(ta) in which F occurs (A) as sub-formula(s) in case

the F in the consequent of the conclusion sequent is a formula or (B) as

sub-formula-schema(ta) in case the F in the consequent of the conclusion

sequent is a formula schema,

simultaneous substitution of X into such occurrence(s) of F in sequents in the

inference rule results in a partial, if not wholly, instantiation of the inference

rule.

Eliminability of matching principal constituents: For every (finite or infinite)

closed derivation tree constructable in a given proof system with a set of in-

ference rules, if there are sequents in the schemata of X ` F and F ` Y such that

(1) the F is the principal in the derivation, that (2) the X ` F is the conclusion

of some inference rule Inf1 and that (3) the F ` Y is the conclusion of some

inference rule Inf2, then one of the following must hold:

1. X is instantiated with F in the derivation.

2. Y is instantiated with F in the derivation.

3. it is possible to derive X ` Y from the premise(s) of Inf1 and Inf2 by means

of inference rules available in the given proof system (excluding Cut’) and

X
′ ` F ′ F ′ ` Y′ Cut′sub

X
′ ` Y′

where X′ and Y
′ are some structure schemata, but F ′ may be instantiated

only by a strict sub-formula of F .
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Lemma 11 (Satisfiability of Belnap’s conditions Brotherston [2012]) DLBI satisfies

Belnap’s conditions.

Proposition 3 (Admissibility of Cut’ in DLBI) Any D ∈ BBI derivable in DLBI is also

derivable in [DLBI- Cut’] and vice versa.

Proof. Follows directly from Lemma 11. �

One must note, however, that Cut’ in DLBI is not identical to Cut in LBI. Naturally, ad-
missibility of Cut’ does not imply that of Cut. Although Brotherston [2012] indicates
a method to attempt a proof that DLBI Cut’ admissibility is tantamount to LBI Cut ad-
missibility, there is certain confusion concerning the difference between Cut and Cut’
in the cited reference.

To prove that Cut admissibility in LBI is implied from Cut’ admissibility in DLBI,
it must be proved that the translation be achievable not without introducing Cut’ but
without introducing Cut. And the fundamental question is whether the display pos-
tulates - if there should be any necessity that they must be used in a derivation - can
be shown Cut-free derivable. The demonstration, however, is impossible, because any
display postulates in DLBI, when they are introducing an extra structural connective⇒
or −◦, are derivable in LBI1 but not in [LBI- Cut]. What Brotherston [2012] terms a
display-normalisation:

1. X1 ` X2 ⇒ Y X1;X2 ` Y.

2. X1 ` X2−◦Y X1,X2 ` Y.

can be straightforwardly shown derivable in [LBI- Cut]. On the other hand, the fol-
lowing are not proved (but also cannot be so proved) derivable in [LBI − Cut] in the
cited reference.

1. X1;X2 ` Y X1 ` X2 ⇒ Y.

2. X1,X2 ` Y X1 ` X2−◦Y.
1Under the following interpretation of structural connectives: ⇒ as ⊃, −◦ as −∗, “;” as ∧, and “,”

as ∗, as in Brotherston [2012].
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Now the question is whether they are then admissible in DLBI, in which case every
DLBI derivation can be permuted into another DLBI derivation that does not require the
problematic sequent transitions.

However, suppose for example that we have p ∧ (p ⊃ q) ` q to derive:

id
p ` p id

q ` q
⊃ L

D2 : p ⊃ q ` p⇒ q
DP1D1 : p; p ⊃ q ` q
∧L

D : p ∧ (p ⊃ q) ` q

But because the above DLBI-derivation is the shortest possible to show that D is a
BI theorem, and because the ⇒ introduction must occur in the sequent transition of
D1  D2, it cannot be that the particular display postulate is admissible. But then,
suppose some DLBI-derivation:

...
D2 : X ` (p1; p2)⇒ q

DP1D1 : p1; p2;X ` q

Cut’ elimination does not eliminate the occurrence ofDP1. The corresponding sequent
calculus derivation with LBI:

p1; p2 ` p1 ∧ p2

...
D∗ : Γ ` (p1 ∧ p2) ⊃ q p1 ∧ p2; (p1 ∧ p2) ⊃ q ` q

Cut
p1 ∧ p2; Γ ` q

Cut
p1; p2; Γ ` q

then still comes with Cut instances which are not implied eliminable from Cut’ elimi-
nation in DLBI.1 Here X corresponds to Γ, and D2 corresponds to D∗.

The confusion may have been induced by certain similarity in appearance between
LBI and DLBI in that both make use of left and right rules. It would not have arisen
if the appearance of the DLBI inference rules had been slightly different. For example,
suppose that we have a Hilbert-system for BI, say HBI, which comes with a MP. Had a
proposition been this, “Suppose HBI is sound and complete with respect to the Kripke
relational semantics. Since [LBI - Cut] is also sound and complete with respect to the
same semantics, and since Cut is a rule of transitivity in LBI, the MP, which is also a

1In fact, already within the cited reference it holds that the display-normal right premise sequent of
⊃ L (in the particular presentation of LBI in the cited reference) does not match with the right premise
sequent of ⊃ L in DLBI, even with the equivalent (up to the display-normalisation) conclusion sequent
for the two inference rules.
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rule of transitivity in HBI1, is admissible; that is, HBI is as expressive as [HBI - MP] as
evidenced by the fact that we can demonstrate the expressiveness equivalence of [LBI
- Cut] with LBI within LBI.”, one would have immediately noticed a problem in the
argument.

2.1.3 TBI

Galmiche et al. [2005] move away from sequent calculus into semantic tableaux to
reformulate BI more semantically. Their calculus TBI is found in Figure 2.2. The
inference rules are presented in a sequent-calculus style since there is no practical
difference if a derivation tree grows downwards (Beth [1955]; Smullyan [1995]), or
upwards in line with sequent calculus derivations. In TBI, every formula comes with
a semantic label attached to it, denoted by x (, y, z) (with or without a sub-script or a
super-script). I go through a set of definitions for the calculus first.2

Definition 47 (Semantic labels) TBI labelling structure is a 4-tuple (W ′, ◦, ε̇,C) with

W ′ as a set of labels representing possible worlds in an underlying BI Kripke seman-

tics, a binary function ◦ : W ′ ×W ′ → W ′, a neutral element ε̇ and a pre-order C on

elements of W ′, satisfying, for all x, y, z ∈W ′:

1. x ◦ ε̇ = x (neutrality).

2. (x ◦ y) ◦ z = x ◦ (y ◦ z) (associativity).

3. x ◦ y = y ◦ x (commutativity).

4. [xC x] (reflexivity).

5. [xC y] ∧† [y C z]→† [xC z] (transitivity).

6. [xC y]→† [(x ◦ z)C (y ◦ z)] (monotonicity).

Definition 48 (A sub-label relation) For any two semantic labels x and y in a TBI

labelling structure, x ≤ y iff there exists some semantic label z such that x ◦ z = y.

1In the sense that F can be seen as> ⊃ F .
2I use my own methodology to define notations; for that reason some may not necessarily appear

or, if they do, coincide with those that are found in Galmiche et al. [2005].
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t F : x
tG : x

t F ∧G : x
K t∧

t F ∧G : x
K

t F : x
t F ∨G : x

K

tG : x
t F ∨G : x

K t∨
t F ∨G : x

K

f F : x2

x1 C x2

t F⊃G : x1

K

tG : x2

x1 C x2

t F⊃G : x1

K t ⊃x1 C x2

t F ⊃ G : x1

K

t F : x′1
tG : x′2

x′1 ◦ x′2 C x
x′1 ◦ x′2 C x′1 ◦ x′2

x′1 C x
′
1

x′2 C x
′
2

t F ∗G : x
K t∗

t F ∗G : x
K

f F : x2

t F−∗G : x1

K

tG : x1 ◦ x2

t F−∗G : x1

K t−∗
t F−∗G : x1

K

ε̇C x
t ∗> : x
K

t ∗> : x
K

f F : x
f F ∧G : x

K

f G : x
f F ∧G : x

K
f∧

f F ∧G : x
K

f F : x
f G : x

f F ∨G : x
K

f∨
f F ∨G : x

K

t F : x′

f G : x′

xC x′

x′ C x′

f F⊃G : x
K

f ⊃
f F ⊃ G : x

K

f F : x2

x2 ◦ x3 C x1

f F ∗G : x1

K

f G : x3

x2 ◦ x3 C x1

f F ∗G : x1

K
f ∗x2 ◦ x3 C x1

f F ∗G : x1

K

t F : x′1
f G : x ◦ x′1
f F−∗G : x

x ◦ x′1 C x ◦ x′1
x′1 C x

′
1

K f−∗
f F−∗G : x

K

Figure 2.2: TBI: a semantic tableaux for BI expressed in a sequent-style. Primed labels
must be new labels distinct from all the others that are already in the conclusion TBI

node.
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More about the labelling structure that it is a partially defined labelling algebra is found
in 3.1 in Galmiche et al. [2005].

Definition 49 (TBI sub-node) A TBI sub-node Q is defined by:

Q := t F : x | f F : x | xC y
where F ∈ FBI and the semantic labels x and y are an element of TBI labelling struc-

ture (that is, an element of W ′).

Definition 50 (TBI node) Let “Q1, Q2, · · · , Qn” for some n ≥ 1 denote a set compris-

ing n TBI sub-nodes “Q1”, “Q2”,. . . , and “Qn”. Then a TBI node K is defined to be

either empty or else defined by K := Q | Q,K.

Every TBI inference rule then has one conclusion node and up to two premise nodes.
In Figure 2.2, sub-nodes of each node are vertically placed for clarity.

Definition 51 (Labels in a TBI node) Let K be a TBI node, then we denote by W ′K
the set of all the semantic labels that appear within K.

Definition 52 (Closable TBI node Galmiche et al. [2005]) A TBI node K is said to

be closable iff at least one of the following four conditions holds for K:

Ax: ∃Q1, Q2 ∈ K ∃F ∈ FBI ∃x, y ∈W ′K .[Q1 = t F : x] ∧† [Q2 = f F : y] ∧† [xC y].1

>: ∃Q1 ∈ K ∃x ∈W ′K .[Q1 = f > : x].

1: ∃Q1, Q2 ∈ K∃F ∈ FBI∃x, y, z ∈W ′K .[Q1 = fF : x]∧†[Q2 = t1 : y]∧†[y ≤ z]∧†[zCx].

∗>: ∃Q1 ∈ K ∃x ∈W ′K .[Q1 = f ∗> : x] ∧† [ε̇C x].

Definition 53 (A TBI derivation) A TBI derivation tree has as the root node two sub-

nodes f F : ε̇ and ε̇ C ε̇, and is said to be closable if all the leaves of the tree are a

closable node.

Galmiche et al. [2005] indicate a method to detect a counter-model for a given initial
TBI node with two TBI sub-nodes f F : ε̇ and ε̇C ε̇.2 They (implicitly) state that TBI is
sound and complete with respect to the class of BI Kripke relational models.

1Note that xC y does only have to be inferrable in K: if, for example, xC z, z C y ∈ K , then it
follows that xC y. Cf. Definition 47.

2The knowledge is not needed in this section and is simply omitted here.
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Proposition 4 (Soundness and completeness of TBI Galmiche et al. [2005])
For any F ∈ FBI and for any TBI node K with two TBI sub-nodes f F : ε̇ and ε̇ C ε̇, if

there exists a closable derivation for K, then ∗> ` F is LBI-derivable (soundness). For

any LBI-derivable sequent ∗> ` F , there exists a closable TBI derivation tree for a TBI

node K with two TBI sub-nodes f F : ε̇ and ε̇C ε̇ (completeness).

They also state decidability of BI in Galmiche et al. [2005] and that of [BI - 1] in
Galmiche and Méry [2003]. However, there are issues in their proof approaches.

To be able to conclude that BI (or [BI- 1]) is decidable, it must be shown that no
derivation trees can grow infinitely without it turning out either to be closable or to
be impossible to be closable. Galmiche and Méry [2003]; Galmiche et al. [2005] rely
upon two techniques to state that BI is decidable: liberalisation of semantic tableaux
rules and the concept of branch redundancy. The first rests upon a classical reasoning
that, positing some entity that encompasses finite and infinite worlds, one could reason
that it knows, before any construction of an initial TBI node: f F : ε̇, ε̇ C ε̇, whether
F is a theorem or a non-theorem. It is implicit that the entity also knows the exact
construction of a TBI derivation tree to prove or refute F . From its perspective, any
derivation that eventually turns out closable in a finite or an infinite world has already
turned out closable. Likewise, any derivation that eventually turns out not to be clos-
able has already turned out as such. Any label assignment that may come into play in
the course of the construction may then be carried out cleverly in some way to permit
only a countable number of new labels to appear in the TBI derivation tree. Liberali-
sation of TBI rules attempts to do this by conjecturing the existence of least possible
worlds in the underlying Kripke semantics that are absolutely necessary to prove F ,
which would then allow the entity to see the least labels corresponding to the least
possible worlds in the construction of a closed derivation tree. But then each new label
that f ⊃, f−∗ and t−∗ introduce can be the least label for any particular principal (active
formula) of the inference rule. It then follows that at most a countable number of labels
are required in any TBI derivation process at least for closed derivation trees since TBI
by design guarantees the subformula property.

To show that nothing that a finite world cannot conclude seeps into the argument,
however, an effective identification of the leastness of labels is still not sufficient. Be-
cause it holds in general that x ◦ x 6= x for all x ∈ W ′ such that x 6= ε̇, it must be also
ascertained that the number of distinct labels by composition be bounded. Suppose the
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identification of the least labels can be indeed effectively achieved. Then the concept
of branch redundancy provides an intuitive guideline for this matter: with now only
a countable number of semantic labels at hand, even if a derivation branch grows in-
finitely, it must still become known, since TBI is sound and complete with respect to
the underlying semantics, that a given formula is either a theorem or a non-theorem.

Let us first consier BI theorems for which there always exists a closed TBI deriva-
tion tree. We assume a very clever derivation tree construction (by the said entity) for
any one of them such that it has the shortest derivation depth. From the presupposition,
we observe that any such derivation tree contains no redundant derivation steps in any
of its derivation tree branches: every derivation step in all the derivation tree branches
is absolutely necessary. In particular, there is no possibility that there appear a se-
quence of derivation steps which makes no progress and which repeats itself. But then,
if we let Dbottom denote the root sequent of the derivation tree and also let Dtop denote
a node in the derivation tree which is the conclusion of an axiom, then for all Dtop in
the derivation tree, we can plausibly define a well-order relation on Dbottom  ∗ Dtop

such that it strictly decreases at each sequent transition. This is an easy case.
However, let us now consider a derivation tree where it must by necessity involve a

repetition of previously taken steps in at least one of its derivation tree branches. Here
we must be more wary. According to Galmiche and Méry [2003]; Galmiche et al.
[2005], this case can be also detected successfully by terminating a TBI derivation tree
construction upon a loop detection. The induction measure that they use is essentially
the length of the loop since the induction measure in Galmiche et al. [2005] is some
information that can be only found out when the loop is detected - which is really a sub-
induction under the induction on the length of the loop. Firstly for finite TBI derivation
trees, their approach certainly succeeds since the length of a loop cannot be infinitely
long. Each such loop is in fact detectable. However, this induction measure somewhat
falls short in the remaining case. Let us consider an infinite derivation branch tree
which loops with an infinite period. Let us denote by Dbegin the very beginning of the
first loop (above the root of the derivation tree) and by Dend the end of the first loop.
Then if we construct the derivation tree branch up to Dend, we will be still unable to
tell that Dbegin  + Dend was a loop. To detect it as a loop, we must see that what
follow Dend, say Dnext begin  + Dnext end, essentially correspond in a one-to-one man-
ner to sequent transitions in Dbegin  + Dend. Only then will we be able to terminate
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the derivation tree branch construction. Suppose, by means of showing contradiction,
that the induction measure of the loop length provides an effective method to us for
detection of the infinite loop. Then it must be that it is possible to get strictly closer to
Dnext end at each sequent transition. In particular it must be that there is a possibility
that the derivation tree branch construction goes past Dend. This, however, cannot be
the case since the length of the loop is assumed infinite, and must therefore contradict
the supposition. And here we see a fundamental problem in using the length of a loop
as an inductive measure. It is not well-ordered: even if we prove all the cases up to the
cycling period of k, we cannot apply induction hypothesis during the construction of a
derivation branch which loops with a period of k+ 1 because it cannot be that the loop
of k + 1 a priori depends on loops of a shorter cycling period. Since neither Galmiche
and Méry [2003] nor Galmiche et al. [2005] takes consideration over finiteness of all
the loops, neither the decidability of [BI − 1] nor that of BI follows by the suggested
proof approach. Whether BI or even [BI - 1] is decidable is still to be found out.

2.1.4 A forward BI sequent calculus

The formal systems introduced so far are mostly for backward proof searches given
some conclusion BI sequent/formula. With LBI for instance, F ∈ FBI is finitely iden-
tified as a theorem iff there exists an upward finite construction of a closed derivation
tree for Øa ` F ∈ DBI up to axioms.

A forward theorem proving Degtyarev [2001] on the other hand judges if a given
formula is a theorem by presupposing a Cut-free proof system (and, with it, at most
a finite set of axiom instances). If there exists a downward finite construction of a
derivation tree up to the given proof obligation, then it will finitely turn out to be a
theorem.

Of course upon a successful construction of a closed derivation tree by either of
the two approaches, the distinction quickly diminishes, since we will then know a cor-
responding construction of a closed tree from the opposite direction. And if a closed
derivation tree is not finitely constructed via forward theorem proving, neither is it
possible to show a finite derivation tree construction via backward theorem proving.
Therefore if there are merits in a study of forward theorem proving, they derive not
from that it can identify more theorems than its backward counterparts but rather from
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that they may be potentially used to gain further insights about the nature of derivation
tree construction process itself which is strongly linked to the behaviour of logic for
which the formal systems have been developed. There is currently one sequent calcu-
lus for forward reasoning for a fragment of BI without units as Donnelly et al. [2004]
present. Its extension to the full BI is yet to be seen.

2.2 Conclusion

In this chapter BI sequent-like proof systems were reviewed, some only briefly, some
more critically. I showed the proof of LBI Cut admissibility, which was stated on
occasions (Cf. Brotherston [2012]; Pym [2002]) but which was not accurately given.
For this particular contribution, readers may choose a reference to Arisaka and Qin
[2012]; however, while it supports a view that DLBI cut admissibility implies LBI cut
admissibility, this thesis does not. On this matter, it is the view stated in this chapter
that takes a precedence.
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Chapter 3

Structural Interactions, Absorption of
Structural Rules and Decidability in
BI Sequent Calculus

The outline of this chapter is as follows:

1. Development of the concept of structural layers that is used in reasoning about
LBI derivations in this thesis.

2. Development of a contraction-free BI sequent calculus αLBI, proving, through
analysis on the syntactic phenomena of the base-logic interactions, admissibili-
ties of LBI structural rules. It is also shown that [αLBI + Cut] is as expressive as
αLBI, and that a cut admissibility holds in [αLBI + Cut].

3. A study on the significance of the structural units posited in LBI, deriving as the
consequence a new BI sequent calculus LBIZ without those.

4. A purely syntactic study into BI decidability, to prove that a fragment of BI

without the multiplicative implication and the multiplicative unit is decidable.

3.1 Reasoning BI as BI with structural layers

In earlier syntactic works, a fine distinction between additive/multiplicative structures
is often encapsulated as a detail in coherent equivalence.

65



Definition 54 (Coherent equivalence) ./ is the equivalence relation on BI structures

satisfying

1. associativity for the comma: Γ1; (Γ2; Γ3) ./ (Γ1; Γ2); Γ3.

2. associativity for the semi-colon: Γ1, (Γ2,Γ3) ./ (Γ1,Γ2),Γ3.

3. commutativity for the comma: Γ1; Γ2 ./ Γ2; Γ1.

4. commutativity for the semi-colon: Γ1,Γ2 ./ Γ2,Γ1.

5. structural equivalence around the additive structural unit: Γ ./ Γ; Øa.

6. structural equivalence around the multiplicative structural unit: Γ ./ Γ,Øm.

7. congruence: [Γ ./ Γ′]→† [Γ1(Γ) ./ Γ1(Γ′)].

However, an arbitrary choice of a representation of BI structures has a considerable
downside of masking the semantically natural viewpoint about them, which is to view
structures as nestings of additive and multiplicative structural layers.

Definition 55 (BI single structure) A BI single structure α is defined by:

α := F | Øm | Øa.

Definition 56 (A BI structure in nested structural layers) An antecedent structure Γ

in nested structural layers is defined by:

Γ := α |M | A

M := α,M′ | A,M′

M′ := α | A | α,M′ | A,M′

A := α;A′ |M;A′

A′ := α |M | α;A′ |M;A′

Each of the A (resp. M) substructures of Γ is termed an additive (resp. multiplicative)

structural layer.
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M0

F1 F6 A

F2 F5 M1

F3 F4

Figure 3.1: F1, ((F3, F4);F2;F5), F6 ∈ SBI as represented in nested structural layers.

In a way, earlier works, by relying upon coherent equivalence, involuntarily relin-
quished a means of recognising the boundary between BI additives and BI multiplica-
tives (in which incidentally lies the distinct logical character of BI). An example of
a BI structure in nested structural layers is found in Figure 3.1. There are two mul-
tiplicative structural layers: “F1, F6,A” and “F3, F4”; and one additive structural layer
“F2;F5;M1”, with A denoting “F2;F5;M1” and M1 denoting “F3, F4”. For any struc-
ture in which two structural layers nest, the structural layer holding the other structural
layer within is described as the outer structural layer of the two, while that enclosed in
the other is described as the inner structural layer.

3.2 αLBI: A Contraction-Free BI Sequent Calculus

In this section I present a new BI sequent calculus αLBI (Figure 3.2) in which no
structural rules appear. Changes are made to the following LBI inference rules:

• idLBI: idαLBI replaces. Weakening and the following LBI-derivable rule:

Γ(Γ1) ` H
EA2

Γ(Γ1, (Øm; Γ2)) ` H

are absorbed.

• ∗>RLBI: ∗>RαLBI replaces. Weakening and EA2 are absorbed.

• ⊃ LLBI: ⊃ LαLBI replaces. Contraction, EA2 and also weakening are absorbed.

• −∗LLBI: −∗L1 αLBI, −∗L2 αLBI, −∗L3 αLBI and −∗L4 αLBI replace. Contraction is ab-
sorbed in all. EqAnt2 LBI is absorbed in−∗L3,4 αLBI. EA2 is absorbed in−∗L1,2,3 αLBI.
Weakening is absorbed “deeply” (to be explained shortly) in −∗L1.
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id
E(Γ; p) ` p 1L

Γ(1) ` F >R
Γ ` >

∗>R
E(Γ; Øm) ` ∗>

Γ(Øa) ` F >L
Γ(>) ` F

Γ(Øm) ` F ∗>L
Γ(∗>) ` F

Γ(F ;G) ` H
∧L

Γ(F ∧G) ` H
Γ ` F Γ ` G ∧R

Γ ` F ∧G
Γ(F ) ` H Γ(G) ` H

∨L
Γ(F ∨G) ` H

Γ ` Fi ∨R
Γ ` F1 ∨ F2

E(Γ1;F⊃G) ` F Γ(G;E(Γ1;F⊃G)) ` H
⊃ L

Γ(E(Γ1;F⊃G)) ` H

Γ;F ` G
⊃ R

Γ ` F⊃G
Γ, F ` G −∗R
Γ ` F−∗G

Γ(F,G) ` H
∗L

Γ(F ∗G) ` H

Re1 ` F1 Re2 ` F2 ∗R1Γ′ ` F1 ∗ F2

Øm ` F1 Γ ` F2 ∗R2Γ ` F1 ∗ F2

Re1 ` F Γ((Re2, G); (Γ′,E(Γ1;F−∗G))) ` H
−∗L1

Γ(Γ′,E(Γ1;F−∗G)) ` H

Γ′ ` F Γ(G; (Γ′,E(Γ1;F−∗G))) ` H
−∗L2

Γ(Γ′,E(Γ1;F−∗G)) ` H

Øm ` F Γ((Γ′, G); (Γ′,E(Γ1;F−∗G)) ` H
−∗L3

Γ(Γ′,E(Γ1;F−∗G))) ` H

Øm ` F Γ(G;F−∗G) ` H
−∗L4

Γ(F−∗G) ` H

Figure 3.2: αLBI: a BI sequent calculus with no explicit structural rules. i ∈ {1, 2}.

• ∗RLBI: ∗R1,2 αLBI replace. Deep weakening absorption for ∗R1 αLBI. Absorption
of EqAnt2 LBI for ∗R2 αLBI.

In the rest of this section, formal definitions for

1. the ‘essence’ E(Γ) of Γ

2. the correspondence between Re1/Re2 and Γ′ in ∗R1 αLBI and −∗L1 αLBI

are provided and then the main properties of αLBI, i.e. admissibility of weakening, that
of EA2, that of both EqAnt1 LBI and EqAnt2 LBI, that of contraction, and its equivalence
to [LBI- Cut], are incrementally proved.
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3.2.1 Essence of antecedent structures in interactions with the mul-
tiplicative unit

Co-existence of IL and MILL in LBI calls for new contraction-absorption techniques
than those found in classics (Troelstra and Schwichtenberg [2000]). Possible interfer-
ences to one structural layer from others need specifically analysed.

To illustrate the technical difficulty, EqAnt2 LBI for instance directly interacts with
WkLLBI. When WkLLBI is absorbed into the rest, the effect propagates to one direction
of EqAnt2 LBI, resulting in:

Γ(Γ1) ` H
EA2

Γ(Γ1, (Øm; Γ2)) ` H

Hence absorption of WkLLBI must involve study of EqAnt2 LBI as well.
The solution I present for this particular issue is absorption of EA2 together with

WkLLBI into LBI logical inference rules. What is here termed the ‘essence’ of an-
tecedent structures arises.

Definition 57 (Essence of structures)
Given a sequent D : Γ(Γ1) ` H, E(Γ1) denotes a structure Γa for which the following

holds: [Γ(Γa)) ` H] ∗EA2
D.

EA2 is derivable in LBI with EqAnt2 LBI and WkLLBI. The following rules are en-
forced:

1. In a given derivation tree, the use of the notation E(· · · ) in multiple sequents in
the derivation tree signifies the same BI structure.

2. E′(Γ) (or E1(Γ) or any essence that differs from E by the presence of a sub-script,
a super-script or both) in the same derivation tree does not have to be coincident
with the BI structure that the E(Γ) denotes.

3. To prevent inundation of many super-scripts and sub-scripts, in the cases where
no ambiguity is likely to arise such as in the following;

Γ(E(Γ1;F ;G)) ` H
∧L

Γ(E(Γ1;F ∧G)) ` H

the essence in the conclusion is assumed to be the same antecedent structure as
the essence in the premise(s) save in what the inference rule modifies.
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Example 5 Given a αLBI-derivation:

id
D1 : F1; ((Øm; Γ1), F1⊃F2) ` F1

id
D2 : F2;F1; ((Øm; Γ1), F1⊃F2) ` F2 ⊃ L

D : F1; ((Øm; Γ1), F1⊃F2) ` F2

the antecedent structures in D, D1 and D2 can be viewed taking on the forms:

E(F1;F1⊃F2), E(F1;F1⊃F2), and E(F2;F1;F1⊃F2).

3.2.2 Correspondence between Re1/Re2 and Γ′: deep weakening ab-
sorption

Correspondence between Re1/Re2 and Γ′ in both ∗R1 αLBI and −∗L1 αLBI is defined
through a binding to a corresponding LBI-derivation.

Definition 58 (Re1/Re2 in ∗R1/−∗L1) In αLBI, correspondence of premise/conclusion

sequents in ∗R1 and −∗L1 are defined with respect to ∗R/−∗L/WkL/CtrL/EqAnt2/EA2

in LBI:

For ∗R1 αLBI: Let D1 be a sequent Γ′ ` F ∗ G as the conclusion sequent of ∗R1 αLBI.

Then the corresponding derivation of ∗R1 αLBI within LBI is defined to be

• D1  ∗WkLLBI
[D′1 : Re1, Re2 ` F ∗G]

• D′1  ∗RLBI [D2 : Re1 ` F ]

• D′1  ∗RLBI [D3 : Re2 ` G]

in which D2 and D3 correspond to the premise sequents of ∗R1 αLBI (with D1 as

its conclusion sequent).

For −∗L1 αLBI: Let D1 be a sequent Γ(Γ′,E(Γ1;F−∗G)) ` H as the conclusion sequent

of−∗L1 αLBI. Then the corresponding derivation of−∗L1 αLBI within LBI is defined

as below. Γa(−) denotes Γ(−; (Γ′,E(Γ1;F−∗G))) and is used for simplification.

• D1  CtrLLBI [D′1 : Γa(Γ
′,E(Γ1;F−∗G)) ` H]

• D′1  
∗
EA2

[D′′1 : Γa(Γ
′, (Γ1;F−∗G)) ` H]

• D′′1  WkLLBI [D′′′1 : Γa(Γ
′, F−∗G) ` H]
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• D′′′1  ∗WkLLBI
[D′′′′1 : Γa(Re1, Re2, F−∗G) ` H]

• D′′′′1  −∗LLBI [D2 : Re1 ` F ]

• D′′′′1  −∗LLBI [D3 : Γa(Re2, G) ` H]

in which D2 and D3 correspond to the premise sequents of −∗L1 αLBI.

In effect, these rules deeply internalise general weakening (WkLLBI) and, in case of
−∗L1, also contraction (CtrLLBI), which would be otherwise explicit in LBI. Since
WkLLBI is general and can extend its reach to several additive structural layers of the
antecedent structure, there naturally are many Re1/Re2 pairs to result through the in-
ternalised weakening process (WkLLBI).

Proposition 5 below indicates that the use of weakening rules which only act for
the outermost additive structural layer of Γ′: WkL1 for ∗R1; or WkL′1,2 for −∗L1, is not
always sufficient.

Γ1 ` H WkL1Γ1; Γ2 ` H
Γ(Γ1, F−∗G) ` H

WkL′1Γ(Γ1, (Γ2;F−∗G)) ` H
Γ(Γ1, F−∗G) ` H

WkL′2Γ((Γ1; Γ2), F−∗G) ` H

Proposition 5 There are sequents D : Γ ` F which are derivable in αLBI and LBI

but not derivable in αLBI’ which is identical to αLBI except for restriction on the

internalised weakening for ∗R1 to WkL1 and for −∗L1 to WkL′1,2.

Proof. With p0; (p1, ((p2, p3); p4)) ` (p5⊃(p1∗p2))∗p3 for ∗R1, and p1, ((p2, p3); p5), (p1∗
p2)−∗(p3−∗p4) ` p4 for −∗L1. Details are left as an exercise. �

Similar LBI-derivations of other altered LBI inference rules are straightforward. Only
Γ1 in the conclusion sequent is discarded (in backward derivation) in −∗L2,3. For −∗L4,
[D : Γ(F−∗G) ` H] CtrL [D′ : Γ(F−∗G;F−∗G) ` H] EqAnt2

[D′′ : Γ((Øm, F−∗G);F−∗G) ` H] to take place first internally, followed by −∗L.
For ⊃ L,

• [D : Γ(E(Γ1;F⊃G)) ` H] CtrL [D′ : Γ(E(Γ1;F⊃G); E(Γ1;F⊃G)) ` H]

• D′  ∗EA2
[D′′ : Γ(Γ1;F⊃G; E(Γ1;F⊃G)) ` H]

• D′′  WkL [D′′′ : Γ(F⊃G; E(Γ1;F⊃G)) ` H]
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to take place firstly. Then, for the left premise sequent:
D′′′  ⊃L [D1 : E(Γ1;F⊃G) ` F ]

and for the right premise sequent:
D′′′  ⊃L [D2 : Γ(G; E(Γ1;F⊃G)) ` H].

3.2.3 Weakening admissibility and EA2 admissibility

Admissibilities of weakening andEA2 are both proved depth-preserving, which means,
in case of weakening, that if a sequent Γ(Γ1) ` H is derivable with derivation depth of
k, then Γ(Γ1; Γ2) ` H is derivable with derivation depth of l such that l ≤ k.

Proposition 6 (LBI3 weakening admissibility) If a sequent D : Γ(Γ1) ` F is αLBI-

derivable, then so is D′ : Γ(Γ1; Γ2) ` F , preserving the derivation depth.

Proof. By induction on derivation depth of Π(D). If it is one, i.e. D is the conclusion
sequent of an axiom, then so is D′. For inductive cases, assume that the current propo-
sition holds for all the derivations of depth up to k. It must be now demonstrated that
it still holds for derivations of depth k + 1. Consider what the last inference rule is in
Π(D).

1. ⊃ L: Π(D) looks like:

...
E(Γ1;F⊃G) ` F

...
Γ(G; E(Γ1;F⊃G)) ` H

⊃ L
Γ(E(Γ1;F⊃G)) ` H

By induction hypothesis on both of the premises, E(Γ1; Γ2;F⊃G) ` F and
Γ(G; E(Γ1; Γ2;F⊃G)) ` H are both αLBI-derivable.1

Then so is Γ(E(Γ1; Γ2;F ⊃ G)) ` H via ⊃ L.

2. −∗L1: Π(D) looks like:

...
Re1 ` F

...
Γ((Re2, G); (Γ′,E(Γ1;F−∗G))) ` H

−∗L1
Γ(Γ′,E(Γ1;F−∗G)) ` H

1Γ2 is assumed to appear at any convenient position to the present proof argument. This does not
detract from the proof precision.
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For this case (and also for ∗R1), we must additionally take into account the in-
ternalised weakening.
Suppose that “Γ′′,E′(Γ1;F−∗G)” results from “Γ′,E(Γ1;F−∗G)” through a se-
quence of induction hypothesis applications at additive structural layers in
“Γ′,E(Γ1;F−∗G)” on the right premise, then by induction hypothesis once more
(on the right premise), Γ((Re2, G); (Γ′′,E′(Γ1;F−∗G)); Γ2) ` H.
Then Γ((Γ′′,E′(Γ1;F−∗G)); Γ2) ` H via −∗L1.

3. Other cases are simpler. �

Proposition 7 (Admissibility of EA2) If a sequent D : Γ(Γ1) ` F is αLBI-derivable,

then so is D′ : Γ(E(Γ1)) ` F , preserving the derivation depth.

Proof. First and foremost, note that E(Γx) is some structure (Cf. Definition 57): there
is no physical symbol E in the antecedent, since it is only for a notational convenience.

Proof is by induction on derivation depth of Π(D). If it is one, i.e. D is the conclu-
sion sequent of an axiom, then so is D′. Inductive cases are straightforward, and left
as an exercise. �

3.2.4 Inversion lemma

The inversion lemma below is important in simplification of the subsequent discussion,
as it signifies that a given sequent D1 can be normalised into a simpler sequent D′1,
simpler in the sense that D′1 has a smaller sum of the sizes of the formulas1 found
within D′1 than D1 does.

Lemma 12 (Inversion lemma for αLBI) For the following sequent pairs, if the se-
quent on the left is αLBI-derivable at most with the derivation depth of k, then so is

1 Definition 43 for the definition of the formula size.
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(are) the sequent(s) on the right.

Γ(F ∧G) ` H, Γ(F ;G) ` H

Γ(F1 ∨ F2) ` H, both Γ(F1) ` H and Γ(F2) ` H

Γ(F ⊃ G) ` H, Γ(G) ` H

Γ(F ∗G) ` H, Γ(F,G) ` H

Γ(>) ` H, Γ(Øa) ` H

Γ(∗>) ` H, Γ(Øm) ` H

Γ(Γ1; Øa) ` H, Γ(Γ1) ` H

Γ(Γ1,Øm) ` H, Γ(Γ1) ` H

Γ ` F ∧G, both Γ ` F and Γ ` G

Γ ` F⊃G, Γ;F ` G

Γ ` F−∗G, Γ, F ` G

Proof. By induction on the derivation depth k.

1. For a αLBI sequent Γ(F ∧G) ` H, the base case is when it is an axiom, and the
proof is trivial. For inductive cases, assume that the statement holds true for all
the derivation depths up to k, and show that it still holds true at k + 1. Consider
what the last inference rule applied is.

(a) >L: The derivation ends in:
Γ(F ∧G)(Øa) ` F >L
Γ(F ∧G)(>) ` F

where the representation Γ(Γ1)(Γ2) is an abbreviation of (Γ(Γ1))(Γ2) which
indicates that Γ1 is not a subbunch of Γ2 nor is Γ2 a subbunch of Γ1.
By induction hypothesis, Γ(F ;G)(Øa) ` F (is αLBI-derivable). Then,
Γ(F ;G)(>) ` F (is αLBI-derivable) as required by (a forward application
of) >L.

(b) ∗>L: Similar.

(c) ∧L: Similar, or trivial when the principal should coincide with F ∧G.

(d) ∨L: The derivation ends in:
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Γ(F ∧G)(F1) ` H Γ(F ∧G)(F2) ` H
∨L

Γ(F ∧G)(F1 ∨ F2) ` H

By induction hypothesis, both Γ(F ;G)(F1) ` H and Γ(F ;G)(F2) ` H.
Then Γ(F ;G)(F1 ∨ F2) ` H as required via ∨L.

(e) ⊃ L: The derivation ends in one of the following:

E(Γ1(F ∧G);F1 ⊃ G1) ` F1 Γ(G1;E(Γ1(F ∧G);F1⊃G1)) ` H
⊃ L

Γ(E(Γ1(F ∧G);F1 ⊃ G1)) ` H

E(Γ′1;F1 → G1) ` F1 Γ′(F ∧G)(G1;E(Γ′1;F1⊃G1)) ` H
⊃ L

Γ′(F ∧G)(E(Γ′1;F1 ⊃ G1)) ` H

By induction hypothesis, both E(Γ1(F ;G);F1 ⊃ G1) ` F1 and
Γ(G1; E(Γ1(F ;G);F1⊃G1)) ` H in case the former, or
Γ′(F ;G)(G1; E(Γ′1;F1⊃G1)) ` H in case the latter.
Then ⊃ L (with the untouched left premise if the latter) produces the re-
quired result.

(f) ∗L: The derivation ends in:

Γ(F ∧G)(F1, G1) ` H
∗L

Γ(F ∧G)(F1 ∗G1) ` H

By induction hypothesis, Γ(F ;G)(F1, G1) ` H. Then, Γ(F ;G)(F1∗G1) ` H
as required via ∗L.

(g) −∗L1: The derivation ends in one of the following, depending on the loca-
tion at which F ∧G appears. In the below inference steps, we assume that
the particular formula F ∧G occurs in Rei(F ∧G) (i ∈ {1, 2}) as the focused
substructure, but not in Rei.1

Re1 ` F1 Γ((Re2, G1); (Γ′,E(Γ1(F ∧G);F1−∗G1))) ` H
Γ(Γ′,E(Γ1(F ∧G);F1−∗G1)) ` H

1 Note, however, that this does not preclude occurrences of F ∧G in case it occurs multiple times
in the conclusion sequent.
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Re1 ` F1 Γ((Re2, G1); (Γ′(F ∧G),E(Γ1;F1−∗G1))) ` H
Γ(Γ′(F ∧G),E(Γ1;F1−∗G1)) ` H

Re1(F ∧G) ` F1 Γ((Re2, G1); (Γ′(F ∧G),E(Γ1;F1−∗G1))) ` H
Γ(Γ′(F ∧G),E(Γ1;F1−∗G1)) ` H

Re1 ` F1 Γ((Re2(F ∧G), G1); (Γ′(F ∧G),E(Γ1;F1−∗G1))) ` H
Γ(Γ′(F ∧G),E(Γ1;F1−∗G1)) ` H

Re1 ` F1 Γ(F ∧G)((Re2, G1); (Γ′,E(Γ1;F1−∗G1))) ` H
Γ(F ∧G)(Γ′,E(Γ1;F1−∗G1)) ` H

Re1 ` F1 Γ((Re2, G1); (Γ2(F ∧G)(Γ′,E(Γ1;F1−∗G1)))) ` H
Γ(Γ2(F ∧G)(Γ′,E(Γ1;F1−∗G1))) ` H

For each, the required sequent results from induction hypothesis for the
particular occurrences of F ∧G on both of the premises, and then −∗L1 by
appropriately carrying out its internal weakening (forwardly) to recover Γ′

(or Γ′(F ;G)) from Re1/Re2 (Cf. Definition 58).

(h) −∗L2,3,4: Similar, but simpler.

(i) ∧R: Similar to ∨L in approach but simpler.

(j) ∨R: Similar.

(k) ⊃ R: The derivation ends in:

Γ(F ∧G);F1 ` G1 ⊃ R
Γ(F ∧G) ` F1 ⊃ G1

By induction hypothesis, Γ(F ;G);F1 ` G1. Then, Γ(F ;G) ` F1 ⊃ G1 as
required via ⊃ R.

(l) ∗R1: The derivation ends in one of the following patterns:
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Re1 ` F1 Re2 ` G1

Γ′(F ∧G) ` F1 ∗G1

Re1(F ∧G) ` F1 Re2 ` G1

Γ′(F ∧G) ` F1 ∗G1

Trivial for the first case. For the second case, induction hypothesis on the
left premise sequent produces Re1(F ;G) ` F1, and then ∗R1, appropriately
carrying out its internal weakening to recover Γ′(F ;G) from Re1(F ;G) and
Re2.

(m) ∗R2: Trivial.

(n) −∗R: Trivial.

2. For a αLBI sequent Γ(F ∨G) ` H: similar.

3. For a αLBI sequent Γ(F ∗G) ` H, the base case is when it is an axiom for which
a proof is trivially given. For inductive cases, assume that it holds true for all
the derivation depths up to k and show that the same still holds for the derivation
depth of k + 1. Consider what the last inference rule is.

(a) ∗L: Trivial if the principal coincides with F ∗G. Otherwise, the derivation
looks like:

Γ(F ∗G)(F1, G1) ` H
∗L

Γ(F ∗G)(F1 ∗G1) ` H

By induction hypothesis, Γ(F,G)(F1, G1) ` H. Then, Γ(F,G)(F1 ∗G1) ` H
as desired via ∗L.

(b) The rest: Similar to the previous cases.

4. For a αLBI sequent D : Γ(Γ1,Øm) ` H, the base case is when it is the conclusion
sequent of an axiom.

(a) id: D : E(Γ′(Γ1,Øm); p) ` p. Then D′ : E(Γ′(Γ1); p) ` p is also an axiom.

(b) 1L, >R: straightforward.

(c) ∗>R: similar to id case.
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For inductive cases, assume that the statement holds true for all the derivation
depths up to k, and show that it still holds true at k + 1. Consider what the last
inference rule applied is.

(a) >L: The derivation ends in one of the following:

Γ(Γ1,Øm)(Øa) ` H >L
Γ(Γ1,Øm)(>) ` H

Γ(Γ1(Øa),Øm) ` H
>L

Γ(Γ1(>),Øm) ` H

By induction hypothesis, Γ(Γ1)(Øa) ` H for the former, or Γ(Γ1(Øa)) ` H
for the latter, is αLBI-derivable. Then so is Γ(Γ1)(>) ` H or Γ(Γ1(>)) ` H
via >L as required.

(b) ∨L: The derivation ends in one of the following:

Γ(Γ1,Øm)(F1) ` H Γ(Γ1,Øm)(F2) ` H
∨L

Γ(Γ1,Øm)(F1 ∨ F2) ` H

Γ(Γ1(F1),Øm) ` H Γ(Γ1(F2),Øm) ` H
∨L

Γ(Γ1(F1 ∨ F2),Øm) ` H

For the former, Γ(Γ1)(F1) ` H and Γ(Γ1)(F2) ` H (induction hypothesis);
then Γ(Γ1)(F1 ∨ F2) ` H via ∨L as required. For the latter, Γ(Γ1(F1)) ` H
and Γ(Γ1(F2)) ` H (induction hypothesis); then Γ(Γ1(F1∨F2)) ` H via ∨L
as required.

(c) ⊃ L: The derivation ends in one of the following:

E(Γ1;F1⊃F2) ` F1 Γ(F2; E(Γ1;F1⊃F2))(Γ2,Øm) ` H
⊃ L

Γ(E(Γ1;F1⊃F2))(Γ2,Øm) ` H

E(Γ1(Γ2,Øm);F1⊃F2) ` F1 Γ(F2; E(Γ1(Γ2,Øm);F1⊃F2)) ` H
⊃ L

Γ(E(Γ1(Γ2,Øm);F1⊃F2)) ` H

E(Γ1;F1⊃F2) ` F1 Γ(Γ2(F2; E(Γ1;F1⊃F2)),Øm) ` H
⊃ L

Γ(Γ2(E(Γ1;F1⊃F2)),Øm) ` H
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For the first case, Γ(F2; E(Γ1;F1⊃F2))(Γ2) ` H (induction hypothesis); then
Γ(E(Γ1;F1⊃F2))(Γ2) ` H via ⊃ L as required.
For the second case, E(Γ1(Γ2);F1⊃F2) ` F1 and Γ(E(Γ1(Γ2);F1⊃F2)) ` H
(induction hypothesis); then Γ(E(Γ1(Γ2);F1⊃F2)) ` H via ⊃ L as required.
For the third case, induction hypothesis on the right premise sequent, then
⊃ L to conclude.

(d) −∗L1: This case is non-trivial, and so I detail the proof. Firstly, we cover
easier cases when the derivation ends in one of the following:

Re1 ` F Γ((Re2, G); (Γ2,E(Γ3(Γ1,Øm);F−∗G))) ` H
−∗L1

Γ(Γ2,E(Γ3(Γ1,Øm);F−∗G)) ` H

Re1 ` F1 Γ(Γ1,Øm)((Re2, G); (Γ2,E(Γ3;F−∗G))) ` H
−∗L1

Γ(Γ1,Øm)(Γ2,E(Γ3;F−∗G)) ` H

Re1 ` F1 Γ(Γ1((Re2, G); (Γ2,E(Γ3;F−∗G))),Øm) ` H
−∗L1

Γ(Γ1(Γ2,E(Γ3;F−∗G)),Øm) ` H

For each, induction hypothesis, if applicable, and−∗L1 conclude. Now con-
sider more complex cases where “Γ1,Øm” occurs in the conclusion sequent
as Γ(Γ2(Γ1,Øm),E(Γ3;F−∗G)) ` H. Less involved cases are when the in-
ternalised weakening process either retains or discards the whole “Γ1,Øm”:

Re1(Γ1,Øm) ` F Γ((Re2, G); (Γ2(Γ1,Øm),E(Γ3;F−∗G))) ` H
−∗L1

Γ(Γ2(Γ1,Øm),E(Γ3;F−∗G)) ` H

Re1 ` F Γ((Re2(Γ1,Øm), G); (Γ2(Γ1,Øm),E(Γ3;F−∗G))) ` H
−∗L1

Γ(Γ2(Γ1,Øm),E(Γ3;F−∗G)) ` H

Re1 ` F Γ((Re2, G); (Γ2(Γ1,Øm),E(Γ3;F−∗G))) ` H
−∗L1

Γ(Γ2(Γ1,Øm),E(Γ3;F−∗G)) ` H
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The first assumes that the specific “Γ1,Øm” does not occur in Re2; the
second that it does not occur in Re1; the third that it does not occur in Re1

or in Re2. Each of them is concluded via induction hypothesis and then
−∗L1.
On the other hand, if “Γ1,Øm” should be split among the two premises,
then we must monitor the internalised derivation process (Definition 58)
more closely. In case the internalised contraction, EA2 and weakening on
[D : Γ(Γ2(Γ1,Øm),E(Γ3;F−∗G)) ` H] lead to [D1 : Γ′(Γ′1,Øm, F−∗G) `
H] where

• Γ′(−) abbreviates Γ(−; (Γ2(Γ1,Øm),E(Γ3;F−∗G)))

• and the “Øm” in “Γ′1,Øm” is the same (modulo contraction) “Øm” in
“Γ1,Øm” in D,

then we have the following transition in LBI-space: D  CtrLLBI D
′  ∗EA2

D′′  ∗WkLLBI
[D1 : Γ′(Γ′1,Øm, F−∗G) ` H]. Consider possible scenarios for

the last transitions in LBI-space.

i. If D1  −∗LLBI [D2 : Γ′1 ` F ] and D1  −∗LLBI [D3 : Γ′(Øm, G) ` H]: then
induction hypothesis on D3 (for both “Øm, G” and “Γ1,Øm”) and −∗L2

conclude.

ii. If D1  −∗LLBI [D2 : Øm ` F ] and D1  −∗LLBI [D3 : Γ′(Γ′1, G) ` H]:
then D′3 : Γ((Γ′1, G); (Γ2(Γ1),E(Γ3;F−∗G))) ` H is αLBI-derivable (in-
duction hypothesis); D′′3 : Γ((Γ2(Γ1), G); (Γ2(Γ1),E(Γ3;F−∗G))) ` H is
then also αLBI-derivable (Proposition 6)1.
Then Γ(Γ2(Γ1),E(Γ3;F−∗G)) ` H as required via −∗L3.

iii. If (1) Γ′1 is in the form: Γ′2,Γ
′
3 (2) D1  −∗LLBI [D2 : Γ′2 ` F ] and (3)

D1  −∗LLBI [D3 : Γ′(Γ′3,Øm, G) ` H]: then induction hypothesis on D3

and −∗L1 conclude.

iv. If (1) Γ′1 is in the form: Γ′2,Γ
′
3 (2) D1  −∗LLBI [D2 : Γ′2,Øm ` F ] and (3)

D1  −∗LLBI [D3 : Γ′(Γ′3, G) ` H]: then induction hypothesis on both of
the premises and then −∗L1 conclude.

1The internalised derivation process from D into D1 explains why this holds.
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(e) −∗L3: The derivation ends in one of the following:

Øm ` F Γ((Γ2(Γ1,Øm), G); (Γ2(Γ1,Øm),E(Γ3;F−∗G))) ` H
−∗L3

Γ(Γ2(Γ1,Øm),E(Γ3;F−∗G)) ` H

Øm ` F Γ((Γ2, G); (Γ2,E(Γ3(Γ1,Øm);F−∗G))) ` H
−∗L3

Γ(Γ2,E(Γ3(Γ1,Øm);F−∗G)) ` H

Øm ` F1 Γ(Γ1,Øm)((Γ2, G); (Γ2,E(Γ3;F−∗G))) ` H
−∗L3

Γ(Γ1,Øm)(Γ2,E(Γ3;F−∗G)) ` H

Øm ` F1 Γ(Γ1((Γ2, G); (Γ2,E(Γ3;F−∗G))),Øm) ` H
−∗L3

Γ(Γ1(Γ2,E(Γ3;F−∗G)),Øm) ` H

Trivial except for the first case by induction hypothesis and −∗L3. For
the first case, again trivial if Γ2(Γ1,Øm) is not “Γ1,Øm”; otherwise, if it
is “Γ1,Øm”, then by induction hypothesis on the right premise sequent,
Γ((Γ2, G); (Γ2,E(Γ3;F−∗G))) ` H is αLBI-derivable. But, then, by eye
inspection on −∗L3, it is immediate that Γ(Γ2,E(Γ3;F−∗G)) ` H is also
αLBI-derivable, as required.

(f) The rest: similar or straightforward.

5. The rest: similar or straightforward. �

3.2.5 Admissibility of EqAnt1,2

Proposition 8 (Admissibility of EqAnt1,2) EqAnt1 LBI and EqAnt2 LBI are admissible

in αLBI. Depth preservation holds.

Proof. Follows from (1) inversion lemma showing depth-preserving admissibility of

Γ(Γ1; Øa) ` H
Γ(Γ1) ` H

Γ(Γ1,Øm) ` H
Γ(Γ1) ` H

(2) Proposition 6 showing depth-preserving admissibility of
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Γ(Γ1) ` H
Γ(Γ1; Øa) ` H

and (3) Proposition 7 showing depth-preserving admissibility of

Γ(Γ1) ` H
Γ(Γ1,Øm) ` H

�

3.2.6 Preparation for contraction admissibility in ∗R1/−∗L1

I dedicate one subsection here to fortify ourselves with a further observation about the
generation process of Re1/Re2, preparing for the main proof of contraction admissibil-
ity. Following Proposition 6 and Proposition 8, an observation is made concerning the
internalised weakening (WkLLBI) within ∗R1 and −∗L1: there is no need to consider an
arbitrary WkLLBI application in the process.

Lemma 13 (Sufficiency of incremental weakening) In an application of ∗R1 (in back-

ward derivation) on a αLBI-derivable sequent D : Γ′ ` F ∗ G, if there exists a αLBI-

derivable pair of D1 and D2 such that D  ∗R1 D1 and D  ∗R1 D2, then there exists a

αLBI-derivable pair of D′1 and D′2 such that D  ∗R′1 D
′
1 and D  ∗R′1 D

′
2 where ∗R′1

is defined here to be ∗R except that its internalised weakening is carried out only with

WkL1 and WkL2 as stated below:

Γ1 ` H WkL1Γ1; Γ2 ` H
Γ1,Γ2 ` H

WkL2
Γ1, (Γ2; Γ3) ` H

Similarly, in an application of −∗L1 (in backward derivation) on a sequent

D : Γ(Γ′,E(Γ1;F−∗G))) ` H, it suffices to apply the following restricted weakening

rules in the internalised weakening process:

Γ(Γ2, F−∗G) ` H
WkL′1Γ(Γ2, (Γ1;F−∗G)) ` H

Γ(Γ2, F−∗G) ` H
WkL′2Γ((Γ2; Γ3), F−∗G) ` H

Γ(Γ2,Γ3, F−∗G) ` H
WkL′3Γ(Γ2, (Γ3; Γ4), F−∗G) ` H
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Proof.

∗R1 : Under the assumption made, there exists a αLBI-derivable pair of D1 : Re1 ` F
and D2 : Re2 ` G from the conclusion sequent D : Γ′ ` F ∗G such that D  ∗R1

D1 and D  ∗R1 D2. Internally (Cf. Definition 58) Re1/Re2 results from a finite
number of WkLLBI applications on D as follows: D  ∗WkLLBI

[D′ : Re1, Re2 `
F∗G]. InD′, notice that the outermost structural layer of the antecedent structure
is multiplicative. If Γ′ in D was an additive structural layer, i.e. Γ′ denoting
α1; . . . ;αm;M1; . . . ;Mn for m + n ≥ 2, m ≥ 0 and n ≥ 1, then a finite number
of WkLLBI applications must have taken place at this additive structural layer
(which is the outermost structural layer in Γ′) such that (in backward derivation)
all but one multiplicative structural layer Mk, 1 ≤ k ≤ n were discarded in the
transition. But this process is also achieved via WkL1. Once the outermost
structural layer is multiplicative, it is either the case that some Re′1/Re′2 pair can
be formed on the antecedent part for D′1 and D′2 such that Re′1 ` F and Re′2 ` G
are both αLBI-derivable, or not. We are done if it can be formed. Otherwise, the
current outermost multiplicative structural layer holds A(s) as its constituent(s)
whose M constituent (again only one of them) must be connected at the current
outermost multiplicative structural layer, which is achieved through WkL2. This
incremental process eventually produces the Re′1/Re′2 pair on the antecedent part,
provided that a situation that satisfies all the below conditions does not arise.

• for all D∗ : Re∗1, Re
∗
2 ` F ∗G such that D  ∗{WkL1,WkL2} D

∗ as the internal
weakening process within ∗R1, not both D∗1 : Re∗1 ` F and D∗2 : Re∗2 ` G
are αLBI-derivable.

• there exists D∗∗ : Re∗∗1 , Re
∗∗
2 ` F ∗ G such that D∗  ∗WkLLBI

D∗∗ (as the
internal weakening process within ∗R1), and that both D∗∗1 : Re∗∗1 ` F and
D∗∗2 : Re∗∗2 ` G are αLBI-derivable.

Suppose, by way of showing contradiction, that there exists a αLBI-derivation in
which both conditions above satisfy. Then it cannot be the case that
D∗  ∗{WkL1,WkL2} D

∗∗ for the obvious reason that otherwise we would have
D∗∗ as D∗, an immediate contradiction to the supposition. Therefore it must be
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the case that the Re∗∗i (for i ∈ {1, 2}) looks like α1, α2, · · · , αm,A1,A2, · · · ,An

for m + n ≥ 2,m ≥ 0, n ≥ 1 such that it does not coincide with any pos-
sible Re∗i . However, such a condition perforce implies by the definition of
∗R1 that there exists a possible D∗1 : Re∗1 ` F (resp. D∗2) that looks like:
α1, α2, · · · , αm,A∗1,A∗2, · · · ,A∗n ` F (similarly for D∗2) such that, in LBI-space:
[D∗1 : α1, α2, · · · , αm,A∗1,A∗2, · · · ,A∗n ` F ] ∗WkL

[D∗∗1 : α1, α2, · · · , αm,A1,A2, · · · ,An ` F ] and similarly for D∗2  ∗WkL D
∗∗
2 . But

then Proposition 6 dictates that αLBI-derivability of D∗∗1 (resp. D∗∗2 ) implies
αLBI-derivability of D∗1 (resp. D∗2), a direct contradiction to the supposition.

−∗L1 : Similar. The starting point for the implicit weakening in these rules is Γ′ in
the conclusion sequent D : Γ(Γ′,E(Γ1;F−∗G))) ` H. An application of WkL′1 is
mandatory (Cf. Definition 58) in case the principal is (or will be) in an additive
structural layer connected to Γ1.

�

Corollary 1 (Maximal Re1/Re2) For a αLBI-derivable sequent D : Γ′ ` F ∗ G, if

there exists a pair of αLBI-derivable sequents D′1 : Re′1 ` F and D′2 : Re′2 ` G such

that D  ∗R1 D
′
1 and D  ∗R1 D

′
2, then there exists a pair of αLBI-derivable sequents

D1 : Re1 ` F and D2 : Re2 ` G such that all the following conditions satisfy.

• D  ∗R1 D1 (resp. D  ∗R1 D2) with incremental weakening (Lemma 13).

• D1 (resp. D2) is a sequent that results from Proposition 6 on D′1 (resp. D′2)1.

• there exists no D∗1 : Re∗1 ` F (resp. D∗2 : Re∗2 ` G) such that all the following

conditions satisfy.

– D∗1 (resp. D∗2) is a sequent that results from Proposition 6 on D1 (resp. D2).

– D∗1 6./ D1 (resp. D∗2 6./ D2).

– D  ∗R1 D
∗
1 (resp. D  ∗R1 D

∗
2).

1 That is, there is a transition Di  ∗WkLLBI
D′i in LBI-space. An application of Proposition 6 onD′i

is reflexive if it only introduces “Øa”s due to Proposition 8.

84



Such a Re1/Re2 pair is called a maximal Re1/Re2 pair. Likewise, with an abbreviation

Γa(−) denoting Γ(−; (Γ′,E(Γ1;F−∗G))), for a αLBI-derivable sequent

D : Γ(Γ′,E(Γ1;F−∗G)) ` H, if there exists a pair of αLBI-derivable sequents D′1 :

Re′1 ` F and D′2 : Γa(Re
′
2, G) ` H such that D  −∗L1 D

′
1 and D  −∗L1 D

′
2, then there

exists a pair of αLBI-derivable sequents D1 : Re1 ` F and D2 : Γa(Re2, G) ` H such

that the following conditions all satisfy.

• D  −∗L1 D1 (resp. D  −∗L1 D2) with incremental weakening (Lemma 13).

• D1 (resp. D2) is a sequent that results from Proposition 6 on D′1 (resp. D′2).

• there exists no D∗1 : Re∗1 ` F (resp. D∗2 : Γa(Re
∗
2, G) ` H) such that the following

conditions all satisfy.

– D∗1 (resp. D∗2) is a sequent that results from Proposition 6 on D1 (resp. D2).

– D∗1 6./ D1 (resp. D∗2 6./ D2).

– D  −∗L1 D
∗
1 (resp. D  −∗L1 D

∗
2).

It is inferrable from Corollary 1 that neither ∗R2, −∗L2 nor −∗L3 needs embed an inter-
nalised weakening. In the rest, I assume only some maximal Re1/Re2 pair for ∗R1 and
−∗L1.

3.2.7 Admissibility of contraction in αLBI

Contraction admissibility in αLBI follows.

Theorem 6 (Contraction admissibility in αLBI)
If D : Γ(Γa; Γa) ` F is αLBI-derivable, then so is D′ : Γ(Γa) ` F , preserving the

derivation depth.

Proof. By induction on the derivation depth of Π(D). The base cases are when it is 1,
i.e. when D is the conclusion sequent of an axiom. To consider which axiom has been
applied, if it is >R, then it is trivial to show that if Γ(Γa; Γa) ` > is αLBI-derivable,
then so is Γ(Γa) ` >. Also for 1L, a single occurrence of 1 on the antecedent part of
D suffices for the 1L application, and the current theorem is trivially provable in this
case, too. For both id and ∗>R, Π(D) looks like:
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Γ;α ` F

where (α, F ) is (p, p) for id, and (Øm,
∗>) for ∗>R. As the antecedent is either a single

structure or its outermost structural layer, i.e. Γ;α, is additive, irrespective of where Γa

in D is, if D is αLBI-derivable, then so is D′.
For inductive cases, suppose that the current theorem has been proved for any

derivation depth of up to k, it must be then demonstrated that it still holds for the
derivation depth of k + 1. Consider what the αLBI inference rule applied last is, and,
in case of a left inference rule, consider where the active structure Γb of the inference
rule is in Γ(Γa; Γa).

1. >L, and Γb is >: if it does not appear in Γa, induction hypothesis on the premise
sequent concludes. Otherwise, Π(D) looks like:

...
D1 : Γ(Γ′a(Øa); Γ′a(>)) ` H

>L
D : Γ(Γ′a(>); Γ′a(>)) ` H

where Γ′a(>) represents Γa (assumed similarly for all the remaining cases). From
αLBI inversion lemma, if D1 is derivable, so is D′1 : Γ(Γ′a(Øa); Γ′a(Øa)) ` H. By
induction hypothesis on D′1, D′′1 : Γ(Γ′a(Øa)) ` H is also derivable. Then a
forward (assumed similarly for all the remaining cases) application of >L on
D′′1 , i.e. D′′1 as the premise sequent, deriving the conclusion sequent via >L at
derivation depth k + 1, concludes.

2. ∗>L, and Γb is ∗>: similar to the case >.

3. ∧L, and Γb is F1 ∧ F2: if it does not appear in Γa, induction hypothesis on the
premise sequent. Otherwise, Π(D) looks like:

...
D1 : Γ(Γ′a(F1;F2); Γ′a(F1 ∧ F2)) ` H

∧L
D : Γ(Γ′a(F1 ∧ F2); Γ′a(F1 ∧ F2)) ` H

D′1 : Γ(Γ′a(F1;F2); Γ′a(F1;F2)) ` H is αLBI-derivable (inversion lemma); D′′1 :

Γ(Γ′a(F1;F2)) ` H is also αLBI-derivable (induction hypothesis); then ∧L on D′′1
concludes.

86



4. ⊃ L, and Γb is Γ′;F ⊃ G: if it does not appear in Γa, then the induction hypothesis
on both of the premises concludes. If it is entirely in Γa, then Π(D) looks either
like:

...
D1 : E(Γ′;F ⊃ G) ` F

...
D2 ⊃ L

D : Γ(Γ′a(E(Γ′;F ⊃ G)); Γ′a(E(Γ′;F ⊃ G))) ` H

where D2 : Γ(Γ′a(G; E(Γ′;F⊃G)); Γ′a(E(Γ′;F⊃G))) ` H, or, in case Γa is
E(Γ′a);F⊃G, like:

...
D1 : E(Γ′a);F⊃G; E(Γ′a);F⊃G ` F

...
D2 ⊃ L

D : Γ(E(Γ′a);F⊃G; E(Γ′a);F⊃G) ` H

where D2 : Γ(G; E(Γ′a);F⊃G; E(Γ′a);F⊃G) ` H. In the former,
D′2 : Γ(Γ′a(G; E(Γ′;F⊃G)); Γ′a(G; E(Γ′;F⊃G))) ` H (weakening admissibility);
D′′2 : Γ(Γ′a(G; E(Γ′;F⊃G))) ` H (induction hypothesis); then ⊃ L on D1 and D′′2
concludes. In the latter, induction hypothesis on D1 and on D2 followed by ⊃ L

conclude. Finally, if only a substructure of Γb is in Γa with the rest spilling out
of Γa, then similar to the latter case.

5. ∗R1: Π(D) looks like:

...
D1 : Re1 ` F1

...
D2 : Re2 ` F2 ∗R1

D : Γ(Γa; Γa) ` F1 ∗ F2

We show that the internalised weakening process to generate a maximal Re1/Re2

pair must either weaken away one Γa completely or preserve Γa; Γa as a sub-
structure of Re1 (or Re2). But due to the formulation of the pair (c.f. Corollary
1), such must be the case. If Γa; Γa is preserved in Re1, then induction hypothesis
on D1 concludes; otherwise, it is trivial to see that only a single Γa (if any) needs
to be present in D.

6. −∗L1, and Γb is Γ′,E(Γ1;F−∗G): if Γb is not in Γa, then induction hypothesis on
the right premise sequent concludes. If it is in Γa, Π(D) looks like:
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...
D1 : Re1 ` F

...
D2 −∗L1

D : Γ(Γ′a(Γ
′,E(Γ1;F−∗G)); Γ′a(Γ

′,E(Γ1;F−∗G))) ` H

where D2 is:

Γ(Γ′a((Re2, G); (Γ′,E(Γ1;F−∗G))); Γ′a(Γ
′,E(Γ1;F−∗G))) ` H

D′2 : Γ(Γ′a((Re2, G); (Γ′,E(Γ1;F−∗G))); Γ′a((Re2, G); (Γ′,E(Γ1;F−∗G)))) ` H via
Proposition 6 is also αLBI-derivable. D′′2 : Γ(Γ′a((Re2, G); (Γ′,E(Γ1;F−∗G))))

` H via induction hypothesis. Then −∗L1 on D1 and D′′2 concludes. If, on the
other hand, Γb is in Γa, then it is (or will be after “EA2”s) either in Γ1 or in Γ′.
But if it is in Γ1, then it must be weakened away, and if it is in Γ′, similar to the
∗R1 case.

7. Other cases are similar to one of the cases already examined. �

I now justify the absorption of structural contraction in ⊃ L and −∗L1,2,3.

Proposition 9 (Non-admissible structural contraction) There exist sequents which

are derivable in [LBI - Cut] but not derivable in [LBI - Cut] without structural con-

traction.

Proof. For −∗L1,2,3, use a sequent >−∗p1,>−∗(p1⊃p2) ` p2 and assume that every
propositional variable is distinct. Then without contraction, there are several deriva-
tions of which two sensible ones are shown below (the rest similar).

1.
>R>−∗(p1⊃p2) ` > p1 ` p2 −∗L

D : >−∗p1,>−∗(p1⊃p2) ` p2

2. >R>−∗p1 ` >

Øa ` p1
id

p2 ` p2 ⊃ L
Øa; p1⊃p2 ` p2 EqAnt1Lp1⊃p2 ` p2 −∗L

D : >−∗p1,>−∗(p1⊃p2) ` p2
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In both of the derivation trees above, one branch is open. Moreover, such holds true
when only formula-level contraction is permitted in LBI. The sequent D cannot be
derived under the given restriction. In the presence of structural contraction, however,
another construction is possible:

Π(D1) Π(D2)
−∗L

(>−∗p1,>−∗(p1 ⊃ p2)); (>−∗p1,>−∗(p1 ⊃ p2)) ` p2
CtrL

D : >−∗p1,>−∗(p1 ⊃ p2) ` p2

where Π(D1) and Π(D2) are:

Π(D1):

>R>−∗(p1 ⊃ p2) ` >

Π(D2):

>R>−∗p1 ` >

id
p1 ` p1

id
p2 ` p2

WkL
p1; p2 ` p2 ⊃ L

p1; p1 ⊃ p2 ` p2 −∗L
p1; (>−∗(p1 ⊃ p2)) ` p2

where all the derivation tree branches are closed upward.
For ⊃ L, with (Øm; p1), (Øm; p1⊃p2) ` p2. Without structural contraction we have

(only two sensible ones are shown; the rest similar):

1.

Øm ` p1

id
p2 ` p2

WkL
Øm; p2 ` p2

EA2
(Øm; p1), (Øm; p2) ` p2 ⊃ L

D : (Øm; p1), (Øm; p1⊃p2) ` p2

2.

p1 ` p2
WkL

Øm; p1 ` p2
EA2

D : (Øm; p1), (Øm; p1⊃p2) ` p2

In the presence of structural contraction, there is a closed derivation.
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id
p1 ` p1

WkL
Øm; p1; Øm ` p1

id
p2 ` p2

WkL
Øm; p1; Øm; p2 ` p2 ⊃ L

Øm; p1; Øm; p1⊃p2 ` p2
EA2

((Øm; p1), (Øm; p1⊃p2)); ((Øm; p1), (Øm; p1⊃p2)) ` p2
CtrL

D : (Øm; p1), (Øm; p1⊃p2) ` p2

�

3.2.8 Equivalence of αLBI to LBI

The following equivalence theorem of αLBI to LBI concludes this section.

Theorem 7 (Equivalence between αLBI and LBI) D : Γ ` F is αLBI-derivable iff it

is [LBI- Cut]-derivable (iff it is LBI-derivable).

Proof. Into the only if direction, assume that D is αLBI-derivable, and then show that
there is a [LBI- Cut]-derivation for each αLBI derivation. But this is obvious because
each αLBI inference rule is derivable in LBI: ∗R1,2 αLBI, −∗L1,2,3,4 αLBI, ⊃ LαLBI, idαLBI
and ∗>RαLBI as stated in 3.2.2; all the other αLBI rules are identical to LBI’s.1

Into the if direction, assume that D is [LBI- Cut]-derivable, and then show that
there is a corresponding αLBI-derivation to each [LBI- Cut] derivation by induction
on the derivation depth of ΠLBI(D) (ΠLBI(D) denotes a [LBI- Cut]-derivation of D).

If it is 1, i.e. if D is the conclusion sequent of an axiom, I note that 1LLBI is
identical to 1LαLBI; idLBI and ∗>RLBI via idαLBI and resp. ∗>RαLBI with Proposition
6 and Proposition 7; and >RLBI as identical to >RαLBI. For inductive cases, assume
that the if direction holds true up to the [LBI- Cut]-derivation depth of k, then it must
be demonstrated that it still holds true for the [LBI- Cut]-derivation depth of k + 1.
Consider what the LBI rule applied last is:

1. ⊃ LLBI: ΠLBI(D) looks like:

...
D1 : Γ1 ` F

...
D2 : Γ(Γ1;G) ` H

⊃ LLBI
D : Γ(Γ1;F⊃G) ` H

1Note again that EA2 is [LBI- Cut]-derivable with WkLLBI and EqAnt2 LBI.
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By induction hypothesis, both D1 and D2 are also αLBI-derivable. Proposition
6 on D1 in αLBI-space results in D′1 : Γ1;F⊃G ` F , and on D2 results in D′2 :

Γ(Γ1;G;F⊃G) ` H. Then an application of ⊃ LαLBI on D′1 and D2 concludes in
αLBI-space.

2. −∗LLBI: ΠLBI(D) looks like:

...
D1 : Γ1 ` F

...
D2 : Γ(G) ` H

−∗LLBI
D : Γ(Γ1, F−∗G) ` H

By induction hypothesis, D1 and D2 are also αLBI-derivable.

(a) If Γ(G) is G, i.e. if the antecedent part of D2 is a single structure (G), then
Proposition 6 on D2 results in D′2 : G; (Γ1, F−∗G) ` H in αLBI-space. Then
−∗L2 αLBI on D1 and D′2 leads to D′ : Γ1, F−∗G ` H as required. Instead of
D′2, D∗2 : G;F−∗G ` H in case Γ1 is Øm, and −∗L4 αLBI instead of −∗L2 αLBI.

(b) If Γ(G) is Γ′(Γ′′, G), then Proposition 6 on D2 leads to
D′2 : Γ′((Γ′′, G); (Γ′′,Γ1, F−∗G)) ` H. Then −∗L1 αLBI on D1 and D′2 leads
to D′ : Γ′(Γ′′,Γ1, F−∗G) ` H as required. Instead of D′2, D∗2 : Γ′((Γ′′, G);

(Γ′′, F−∗G)) ` H in case Γ1 is Øm, and −∗L3 αLBI instead of −∗L1 αLBI.

(c) Finally, if Γ(G) is Γ′(Γ′′;G) ` H, then Proposition 6 on D2 leads to
D′2 : Γ′(Γ′′;G; (Γ1, F−∗G)) ` H. Then −∗L2 αLBI on D1 and D′2 leads to D′ :

Γ′(Γ′′; (Γ1, F−∗G)) ` H as required. Instead of D′2, D∗2 : Γ′(Γ′′;G;F−∗G) `
H in case Γ1 is Øm. Then −∗L4 αLBI instead of −∗L2 αLBI.

3. WkLLBI: Proposition 6.

4. CtrLLBI: Theorem 6.

5. EqAnt1 LBI: Proposition 8.

6. EqAnt2 LBI: Proposition 8.

7. The rest: straightforward. �
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3.3 αLBI Cut Elimination

I now prove admissibility of Cut in αLBI + Cut directly. Just as in the case of in-
tuitionistic logic, cut admissibility proof for a contraction-free BI sequent calculus is
simpler than that for LBI (which is found in Chapter 2 of this thesis). Since it has
been already proved that weakening admissibility holds preserving derivation depth,
we may simplify permutation via a context sharing cut, CutCS , which is easily verified
derivable in αLBI + Cut:

Γ1 ` F Γ2(F ; Γ1) ` H
CutCS

Γ2(Γ1) ` H

where Γ1 is shared across the premises.

Theorem 8 (Cut admissibility in αLBI) There is a cut elimination procedure to prove

admissibility of Cut directly within αLBI + Cut.

Proof. I show the procedure by induction on cut rank and a sub-induction on cut level,
making use of CutCS . In this proof, (U, V ) denotes, for some αLBI inference rules U
and V , that one of the premises has been just derived with U and the other with V . In
the pairs of derivations, the first is the derivation tree to be permuted and the second
the permuted derivation tree.

(id, id):

1.
id

E(Γ1; p) ` p id
E′(Γ2; p) ` p

Cut
E′′(Γ2; E(Γ1; p)) ` p

⇒

id
E′′(Γ2; E(Γ1; p)) ` p

Of course, for the above permutation to be correct, we must be able to
demonstrate the fact that the antecedent structure of the conclusion sequent
of the permuted derivation tree is E′′′(Γ2; Γ1; p) such that
[E′′′(Γ2; Γ1; p)] ≡ [E′′(Γ2; E(Γ1; p))] (equivalence up to associativity and com-
mutativity of binary structural connectives). But note that it only takes
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a finite number of (backward) EA2 applications (Cf. Proposition 7) on
Γ2; E(Γ1; p) ` p to upward derive Γ2; Γ1; p ` p. The implication is that,
since Γ2; E(Γ1; p) ` p results upward from E′′(Γ2; E(Γ1; p)) ` p also in a fi-
nite number of backward EA2 applications, the antecedent structure must
be in the form: E′′′(Γ2; Γ1; p).

2.

id
E(Γ1; p) ` p id

E′(Γ2(p); q) ` q
Cut

E′′(Γ2(E(Γ1; p)); q) ` q
⇒

id
E′′(Γ2(E(Γ1; p)); q) ` q

Other patterns for which one of the premises is an axiom sequent are straightforward.
For the rest, if the cut formula is principal only for one of the premise sequents,

then we follow the routine (Cf. Troelstra and Schwichtenberg [2000]) to permute up
the other premise sequent for which it is the principal. For example, in case we have
the derivation pattern below:

D1 D2 ∨L
D5 : Γ1(H1 ∨H2) ` F1⊃F2

D3 : E(Γ3;F1⊃F2) ` F1 D4 : Γ2(F2;E(Γ3;F1⊃F2)) ` H
⊃ L

D6 : Γ2(E(Γ3;F1⊃F2)) ` H
Cut

Γ2(E′(Γ3; Γ1(H1 ∨H2))) ` H

where D1 : Γ1(H1) ` F1⊃F2 and D2 : Γ1(H2) ` F1⊃F2, the cut formula F1⊃F2 is
not the principal on the left premise. In this case we simply apply Cut on the pairs:
(D1, D6) and (D2, D6), to conclude:

D1 D6
Cut

Γ2(E′′(Γ3; Γ1(H1))) ` H
D2 D6

Cut
Γ2(E′′′(Γ3; Γ1(H2))) ` H

∨L
Γ2(E′(Γ3; Γ1(H1 ∨H2))) ` H

Of course for this particular permutation to be correct, we must be able to demonstrate
in the permuted derivation tree that E′(Γ3; Γ1(H1 ∨H2)) ≡ E′′′′(Γ3) ? Γ1(H1 ∨H2) with
? either a semi-colon or a comma (equivalence up to associativity and commutativity
of binary structural connectives), that E′′(Γ3; Γ1(H1)) ≡ E′′′′(Γ3) ? Γ1(H1), and that
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E′′′(Γ3; Γ1(H2)) ≡ E′′′′(Γ3) ? Γ1(H2). But this is vacuous since the cut formula which is
replaced with the structure Γ1(H1) or Γ1(H2) is a formula.

Cases that remain are those for which both premises of the cut instance have the
cut formula as the principal. We go through each to conclude the proof.

(∧L,∧R):

D1 : Γ1 ` F1 D2 : Γ1 ` F2 ∧R
Γ1 ` F1 ∧ F2

D3 : Γ2(F1;F2) ` H
∧L

Γ2(F1 ∧ F2) ` H
Cut

Γ2(Γ1) ` H

⇒

D2

D1 D3
Cut

Γ2(Γ1;F2) ` H
CutCS

Γ2(Γ1) ` H

(∨L,∨R):

D1 : Γ1 ` Fi (i ∈ {1, 2})
∨R

Γ1 ` F1 ∨ F2

D2 : Γ2(F1) ` H D3 : Γ2(F2) ` H
∨L

Γ2(F1 ∨ F2) ` H
Cut

Γ2(Γ1) ` H

⇒

D1 D(2 or 3)
Cut

Γ2(Γ1) ` H

The right premise sequent is D2 if i = 1; or D3 if i = 2.

(⊃ L,⊃ R):

D1 : Γ1;F1 ` F2 ⊃ R
D4 : Γ1 ` F1⊃F2

D2 : E(Γ3;F1⊃F2) ` F1 D3 : Γ2(F2;E(Γ3;F1⊃F2)) ` H
⊃ L

Γ2(E(Γ3;F1⊃F2)) ` H
Cut

Γ2(E(Γ3; Γ1)) ` H

⇒
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D4 D2
Cut

E(Γ3; Γ1) ` F1 D1
Cut

Γ1; E(Γ3; Γ1) ` F2

D4 D3
Cut

Γ2(F2; E(Γ3; Γ1)) ` H
CutCS

Γ2(Γ1; E(Γ3; Γ1)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 6
Γ2(Γ3; Γ1; E(Γ3; Γ1)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 7

Γ2(E(Γ3; Γ1); E(Γ3; Γ1)) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 6
Γ2(E(Γ3; Γ1)) ` H

(∗L, ∗R1):

D1 : Re1 ` F1 D2 : Re2 ` F2 ∗R1Γ1 ` F1 ∗ F2

D3 : Γ2(F1, F2) ` H
∗L

Γ2(F1 ∗ F2) ` H
Cut

Γ2(Γ1) ` H

⇒

D2

D1 D3
Cut

Γ2(Re1, F2) ` H
Cut

Γ2(Re1, Re2) ` H. . . . . . . . . . . . . . . . . . . . . . . Proposition 6
Γ2(Γ1) ` H

(∗L, ∗R2):

D1 : Øm ` F1 D2 : Γ1 ` F2 ∗R1Γ1 ` F1 ∗ F2

D3 : Γ2(F1, F2) ` H
∗L

Γ2(F1 ∗ F2) ` H
Cut

Γ2(Γ1) ` H

⇒

D2

D1 D3
Cut

Γ2(Øm, F2) ` H
Cut

Γ2(Øm,Γ1) ` H. . . . . . . . . . . . . . . . . . . . Proposition 8
Γ2(Γ1) ` H

(−∗L1,−∗R):

D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 : Re1 ` F1 D3 : Γ2((Re2, F2);E(Γ′, (Γ3;F1−∗F2))) ` H
−∗L1

Γ2(E(Γ′, (Γ3;F1−∗F2))) ` H
Cut

Γ2(E(Γ′, (Γ3; Γ1))) ` H
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⇒

D2

D1

D4 D3
Cut

Γ2((Re2, F2); (Γ′,E(Γ3; Γ1))) ` H
Cut

Γ2((Re2,Γ1, F1); (Γ′,E(Γ3; Γ1))) ` H
Cut

Γ2((Re2,Γ1, Re1); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 6
Γ2((Γ′, (Γ3; Γ1)); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 7

Γ2((Γ′,E(Γ3; Γ1)); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 6
Γ2(Γ′,E(Γ3; Γ1)) ` H

(−∗L2,−∗R):

D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 : Γ′ ` F1 D3 : Γ2(F2; (Γ′,E(Γ3;F1−∗F2))) ` H
−∗L2

Γ2(Γ′,E(Γ3;F1−∗F2)) ` H
Cut

Γ2(Γ′,E(Γ3; Γ1))) ` H

⇒

D2

D1

D4 D3
Cut

Γ2(F2; (Γ′,E(Γ3; Γ1))) ` H
Cut

Γ2((Γ1, F1); (Γ′,E(Γ3; Γ1))) ` H
Cut

Γ2((Γ′,Γ1); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 6
Γ2((Γ′, (Γ3; Γ1)); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 7

Γ2((Γ′,E(Γ3; Γ1)); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 6
Γ2(Γ′,E(Γ3; Γ1)) ` H

(−∗L3,−∗R):

D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 : Øm ` F1 D3 : Γ2((Γ′, F2); (Γ′,E(Γ3;F1−∗F2))) ` H
−∗L2

Γ2(Γ′,E(Γ3;F1−∗F2)) ` H
Cut

Γ2(Γ′,E(Γ3; Γ1)) ` H

⇒
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D2

D1

D4 D3
Cut

Γ2((Γ′, F2); (Γ′,E(Γ3; Γ1))) ` H
Cut

Γ2((Γ′,Γ1, F1); (Γ′,E(Γ3; Γ1))) ` H
Cut

Γ2((Γ′,Γ1,Øm); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 8
Γ2((Γ′,Γ1); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 6

Γ2((Γ′, (Γ3; Γ1)); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 7
Γ2((Γ′,E(Γ3; Γ1)); (Γ′,E(Γ3; Γ1))) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 6

Γ2(Γ′,E(Γ3; Γ1)) ` H

(−∗L4,−∗R):

D1 : Γ1, F1 ` F2 −∗R
D4 : Γ1 ` F1−∗F2

D2 : Øm ` F1 D3 : Γ2(F2;F1−∗F2) ` H
−∗L2

Γ2(F1−∗F2) ` H
Cut

Γ2(Γ1) ` H

⇒

D2

D1

D4 D3
Cut

Γ2(F2; Γ1) ` H
Cut

Γ2((Γ1, F1); Γ1) ` H
Cut

Γ2((Γ1,Øm); Γ1) ` H. . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 8
Γ2(Γ1; Γ1) ` H. . . . . . . . . . . . . . . . . . . Theorem 6

Γ2(Γ1) ` H

�

Proposition 10 (Analyticity of αLBI) αLBI is analytic.

Proof. It suffices to demonstrate that the number of Re1/Re2 pairs that ∗R1 and −∗L1

can generate onto the premise sequents is finitely bounded since, even if a Øm should
be introduced on the left premise via a −∗L3 or a −∗L4, subsequent applications of the
either of the αLBI inference rules would only result in introducing the same Øm. But
due to the generation process of the pair in each αLBI inference rule, it must be the
case. �
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id
E(Γ; p) ` p 1L

Γ(1) ` F >R
Γ ` >

∗>R
E(Γ; ∗>) ` ∗>

Γ(F ;G) ` H
∧L

Γ(F ∧G) ` H
Γ ` F Γ ` G ∧R

Γ ` F ∧G

Γ(F ) ` H Γ(G) ` H
∨L

Γ(F ∨G) ` H
Γ ` Fi ∨R

Γ ` F1 ∨ F2

E(Γ1;F⊃G) ` F Γ(G;E(Γ1;F⊃G)) ` H
⊃ L

Γ(E(Γ1;F⊃G)) ` H
Γ;F ` G

⊃ R
Γ ` F⊃G

Γ(F,G) ` H
∗L

Γ(F ∗G) ` H
Re1 ` F1 Re2 ` F2 ∗R

Γa,Γb ` F1 ∗ F2

Re1 ` F Γ((Re2, G); (Γa,Γb,E(Γ1;F−∗G))) ` H
−∗L

Γ(Γa,Γb,E(Γ1;F−∗G)) ` H
Γ, F ` G −∗R
Γ ` F−∗G

Figure 3.3: LBIZ: a BI sequent calculus with zero occurrence of explicit structural
rules and structural units. i ∈ {1, 2}.

3.4 Departure from Coherent Equivalence

In this section we study emptiness of an antecedent structure within DBI, and develop
a new presentation for αLBI. As we just saw, αLBI comes with several inference rules
for the left multiplicative implication and the right multiplicative conjunction, which
is necessary under the present assumption of ours (Cf. Definition 54) that structural
counterparts of the zero-place logical operators be quantifiable. It holds in both LBI

and αLBI derivations that Γ be different from “Γ; Øa” which is also different from
“Γ,Øm”, i.e. both Øa and Øm have an entity. To identify where the many inference
rules originate, however, it is precisely in the fact that the coherent equivalence within
a BI proof system expresses the structural equivalence. By departing from it those
many rules for the mentioned two connectives are merged into one, as preferred.

3.4.1 Demerit of coherent equivalence

Coherent equivalence is an equivalence relation up to associativity, commutativity and
the structural equivalence Γ = Γ,Øm = Γ; Øa. Earlier works on BI proof theory (apart
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from one semantic calculus by Galmiche et al. [2005]; it is, however, unsound1) ap-
pear to all incorporate it into their respective proof system. Though associativity and
commutativity can harmlessly reside within a BI proof system as:

Γ2 ` F (Γ1 ≡ Γ2)
Exchange

Γ1 ` F
where Γ1 ≡ Γ2 denotes the equivalence of Γ1 and Γ2 up to associativity and commuta-
tivity, the structural equivalences (EqAnt1,2 LBI; Cf. Figure 1.7) cannot be so innocuous.
Unlike with Exchange above which only permutes structures, they permit an arbitrary
introduction of new structural units at any structural layers of an antecedent structure.
Further, to achieve such manipulations, there must be posited “structural” units - a fair
amount of notational cost, obscuring the intrinsic nature of the system.

3.4.2 Emergence of LBIZ

Thanks to the earlier analysis in the development of αLBI, however, we know that
neither Γ = Γ; Øa nor Γ = Γ,Øm needs given any autonomy as structural rules in a
BI sequent calculus. The cumbersome variation of inference rules for the left multi-
plicative implication and the right multiplicative conjunction can be thus unified into a
single inference rule, obviating, in so doing, also structural units themselves. The new
BI sequent calculus LBIZ is found in Figure 3.3 which brings BI sequent calculus in
line with other logics’ (Cf. Definition 13 and Definition 23).

Definition 59 (Sequent calculus convention in LBIZ) For an antecedent structure in

the form: “Γ1; Γ2”, its emptiness is identified with >, i.e. “Γ1; Γ2” is identified with Γ1

(resp. with Γ2) in case Γ2 (resp. Γ1) is empty. Likewise, for an antecedent structure in

the form: “Γ1,Γ2”, its emptiness is identified with ∗>, i.e. “Γ1,Γ2” is identified with Γ1

(resp. Γ2) in case Γ2 (resp. Γ1) is empty.

Under the convention, ∗R2 αLBI for instance does not need defined in separation, since
the condition for the (backward) inference rule application is precisely when Γa,Γb

is identified with Γa (or Γb). To accommodate the absence of Øm in LBIZ, we also
slightly modify the EA2 inference rule as relevant in the essence.

Γ(Γ1) ` H
EA2

Γ(Γ1, (
∗>; Γ2)) ` H

1Cf. Chapter 2 of this thesis.
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Γ(p;G) ` H ⊃ Lp
Γ(p; p⊃G) ` H

Γ(F1⊃G;F2⊃G) ` H
⊃ L∨

Γ((F1 ∨ F2)⊃G) ` H

Γ(F1⊃(F2⊃G)) ` H
⊃ L∧

Γ((F1 ∧ F2)⊃G) ` H
Γ(G) ` H

⊃ L>
Γ(>⊃G) ` H

Γ1;F2⊃G ` F1 ⊃ F2 Γ(Γ1;G) ` H ⊃ L⊃
Γ(Γ1; (F1⊃F2)⊃G) ` H

Γ1 ` F1 ∗ F2 Γ(Γ1;G) ` H
⊃ L∗

Γ(Γ1; (F1 ∗ F2) ⊃ G) ` H

Figure 3.4: A set of ⊃ L rules. No implicit contraction occurs for all.

It is trivial to see that LBIZ is otherwise equivalent to αLBI, and that all the previous
results go through.

3.5 On BI Decidability: A Syntactic Observation

In this section, I consider BI decidability from a syntactic perspective, based on LBIZ.
Though LBIZ is contraction-free in the sense that an explicit structural rule of con-
traction does not appear within, the termination property is not immediately apparent
once ⊃ L and/or −∗L appear in a derivation. This is because contraction, though only
implicit, does occur within the two inference rules. Towards the conclusion of the BI

decision problem, I here initiate the research by showing the decidability of [BI - mul-
tiplicative implication - multiplicative unit], which is at the time of this thesis writing
the largest BI fragment that is demonstrably provable to be decided.

Definition 60 (LBIZ1) LBIZ1 comprises the following LBIZ inference rules:

Axioms: id 1L >R

Other logical rules: ∧L ∧R ∨ L ∨R ⊃ L ⊃ R ∗ L ∗R

In line with the restriction, we assume the availability of only those connectives in
LBIZ1 to all the sequents appearing in a LBIZ1 derivation, and term the fragment BIbase.

3.5.1 Implicit contraction elimination in LBIZ1

My intention is to prove that replacement of ⊃ LLBIZ1 with those in Figure 3.4 results
neither in a loss nor in a gain of expressiveness, to render LBIZ1 contraction-free even
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implicitly.

3.5.1.1 Preparation

First of all, we make an observation that ⊃ L in LBIZ1 does not have to be as general
as ⊃ L in LBIZ due to the absence of the multiplicative unit. It suffices to have:

Γ1;F⊃G ` F Γ(Γ1;G) ` H ⊃ LLBIZ1Γ(Γ1;F⊃G) ` H

Lemma 14 (Inversion) Along with LBIZ inversion which inherits αLBI inversion, the

following holds in LBIZ1: if Γ(F⊃G) ` H is LBIZ1-derivable at most with the deriva-

tion depth of k, then so is Γ(G) ` H.

Proof. For a αLBI sequent Γ(F ⊃ G) ` H, the base case is when it is an axiom, in
which case the proof is trivial. For inductive cases, assume that it holds true for the
derivation depths up to k, and show that it still holds true at the derivation depth of
k + 1. Consider what the last inference rule is.

1. ⊃ LLBIZ1: If the principal coincides with the F ⊃ G, then it is trivial via⊃ LLBIZ1 .
Otherwise, the derivation ends in either of the two below:

Γ′(F ⊃ G);F1 ⊃ G1 ` F1 Γ2(Γ′(F ⊃ G);G1) ` H ⊃ LLBIZ1Γ2(Γ′(F ⊃ G);F1 ⊃ G1) ` H

Γ2;F1 ⊃ G1 ` F1 Γ(F ⊃ G)(Γ2;G1) ` H ⊃ LLBIZ1Γ(F ⊃ G)(Γ2;F1 ⊃ G1) ` H

Induction hypothesis on both of the premises in case the former, or on the right
premise, and then ⊃ LLBIZ1 to conclude.

2. The rest: Similar to the consideration taken in the proof of the αLBI inversion
lemma. �
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Lemma 15 (LBIZ1 weakening and contraction admissibility) Both weakening and

contraction (CtrLLBI and WkLLBI) are admissible in LBIZ1.

Proof. Trivial for weakening admissibility (Cf. Proposition 6). Theorem 6 for con-
traction admissibility apart from the case of left additive implication which is handled
with Lemma 14. �

Proposition 11 (Equivalence) For a given LBIZ1 sequent D : Γ ` H, it is LBIZ1-

derivable (with ⊃ LLBIZ1) iff it is [LBIZ - −∗L - −∗R - ∗>L - ∗>R]-derivable.

Proof. There is only one that differs in the absence of the multiplicative unit and the
multiplicative implication between LBIZ1 and the subset of LBIZ, namely ⊃ L. Hence
we only need prove that ⊃ L in the one is derivable in the other. Proof is by induction
on derivation depth into both directions. Into the if direction, we need to show that
⊃ LLBIZ with the restriction is derivable in LBIZ1. By induction hypothesis, we have
both D1 : Γ1;F⊃G ` F and D2 : Γ(G; Γ1;F⊃G) ` H derivable in LBIZ1. By ⊃ LLBIZ1

on D1 and D2, we then have D′ : Γ(Γ1;F⊃G;F⊃G) ` H derivable in LBIZ1. A conclu-
sion is via Lemma 15. Similar for the only if direction via the admissible weakening
and contraction in the restricted LBIZ to BIbase. �

With this, we simply assume ⊃ LLBIZ1 as the left additive implication rule in LBIZ1,
dropping the subscript hereafter.

For the main result to follow, two more concepts are needed: (1) sequent weights;
and (3) irreducible LBIZ1 sequents. Readers may find it useful to refer back to 1.1.2 of
this thesis, which is a pre-requisite for the current discussion.

Definition 61 (Sequent weights) Given a sequent D : Γ ` H, its weight is defined to

be the sum of the formula weight of all the formulas in D. The formula weight of a

formula F , f weight(F ), is defined as follows:

• f weight(F ) = 2 if F ∈ {>, 1, p}.

• f weight(F ) = f weight(F1)(1 + f weight(F2)) if F ∈ {F1 ∧ F2, F1 ∗ F2}.

• f weight(F ) = 1 + f weight(F1) + f weight(F2) if F = F1 ∨ F2.
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• f weight(F ) = 1 + f weight(F1)f weight(F2) if F = F1⊃F2.

Definition 62 (Irreducible LBIZ1 sequents)
An antecedent structure Γ in LBIZ1 is said to be irreducible if it contains as its sub-

structure none of the following:

1. p; p⊃G

2. >⊃G

3. 1

4. H1 ∧H2

5. H1 ∨H2

6. H1 ∗H2.

A LBIZ1 sequent D : Γ ` F is said to be irreducible if Γ is irreducible.

Lemma 16 (Normalisation) Any LBIZ1 sequent D which is not irreducible can be

reduced into a set of irreducible sequents such that D be derivable iff they are.

Proof. Basically follows from LBIZ inversion which inherits the αLBI inversion
lemma, and Lemma 14. A sequent with a 1 in the antecedent part is immediately in-
consistent1 and derivable. �

3.5.1.2 Implicit contraction elimination for ⊃ Lp, and ⊃ L∗1

I now show that any ⊃ LLBIZ1 application on “p⊃G” can be deferred until “p; p⊃G”

appears as a sub-structure in the antecedent part. Such also is the case for (F1 ∗F2)⊃F3

under a set of conditions.
1Here, by a sequent Γ ` F being inconsistent, I mean that Γ ` 1 is derivable.
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Lemma 17 Any LBIZ1-derivable irreducible sequent D : Γ ` H has a closed deriva-

tion in which the principal of the last rule applied is neither p⊃G (on the antecedent

part of D), nor (F1 ∗ F2)⊃G if not all of the following conditions satisfy:

• [D : Γ(Γ1; (F1 ∗ F2)⊃G) ` H] ⊃L [D1 : Γ1; (F1 ∗ F2)⊃G ` F1 ∗ F2]

• D1  ∗R [D2 : Re1 ` F1]

• D1  ∗R [D3 : Re2 ` F2]

• D2 and D3 (and hence also D1) are both LBIZ1-derivable.

Proof. By contradiction. As in Dyckhoff [1992] (Cf. Chapter 1 of this thesis), we
assume that inference rules to apply in the leftmost branch were cleverly chosen so that
the derivation length betweenD and the conclusion sequent of an axiom in the leftmost
branch is shortest.1 Suppose, by way of showing contradiction, that there cannot exist
any other shorter derivations of D than the ones ending in ⊃ L with the principal of a
formula in the form either p⊃G, or (F1 ∗ F2)⊃G (under the condition that not all the
four conditions satisfy). Then Π(D), a derivation of D, looks like:

...
D3

...
D4 Inf

D1 : Γ1;F77⊃G ` F77

...
D2 : Γ(Γ1;G) ` H

→ L
D : Γ(Γ1;F77⊃G) ` H

where F77 is p if the principal is “p⊃G”; or is “F1 ∗ F2” if it is “(F1 ∗ F2)⊃G”. As D is
irreducible, so is D1 which, therefore, cannot be the conclusion sequent of an axiom. If
F77 is p, then the consequent formula of D1 can be active only for an axiom. Likewise,
due to the given condition, if F77 is F1 ∗ F2 in D1, its consequent part cannot be active
for Inf. Therefore, Inf is known to be ⊃ L. Moreover, as the leftmost branch is
supposed shortest, the principal for Inf must be from among those constituents residing
in the same additive structural layer as the F77⊃G. Furthermore, that the leftmost
branch is shortest has to dictate that the principal for Inf is in neither of the following
forms: “pi⊃Gi”, or “(Fj1 ∗Fj2)⊃Gj” for some propositional variable pi, some Fj1 ∗Fj2
(satisfying the same condition as stated) and some formula Gi, or Gj .

These points taken into account, D, D1, D2, D3 and D4 are actually seen taking the
following forms for some other formula F :

1This, incidentally, is a classical proof. I leave a constructive proof open.
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• D : Γ(Γ1;F⊃G′;F77⊃G) ` H

• D1 : Γ1;F⊃G′;F77⊃G ` F77

• D2 : Γ(Γ1;F⊃G′;G) ` H

• D3 : Γ1;F⊃G′;F77⊃G ` F

• D4 : Γ1;G′;F77⊃G ` F77

But, then, this perforce implies the existence of an alternative derivation Π′(D) which
results by permuting Π(D):

...
D3

...
D4

...
D′2 : Γ(Γ1;G′;G) ` H

⊃ L
Γ(Γ1;G′;F77⊃G) ` H

⊃ L
D

D′2 can be shown derivable from D2 via Lemma 14. A direct contradiction to the sup-
position has been drawn, for the leftmost branch in Π′(D) is shorter. �

From Lemma 17 follows an observation.

Lemma 18 In LBIZ1, ⊃ L′∗ as below is admissible.

D1 : Γ1; (F1 ∗ F2)⊃G ` F1 ∗ F2 D2 : Γ(Γ1;G) ` H ⊃ L′∗D : Γ(Γ1; (F1 ∗ F2)⊃G) ` H

Proof. Any application of ⊃ L with (F1 ∗ F2)⊃G as its principal can be deferred until
all the four conditions hoisted in Lemma 17 are satisfied. Under the assumption, there
exists a pair of sequent transitions via ∗R from the left premise sequent D1 of the ⊃ L′∗
into D2 and D3 such that (1) D1  ∗R D2 ; (2) D1  ∗R D3 ; and (3) both D2 and D3 are
LBIZ1-derivable. Then, because in D1 the outermost structural layer of the antecedent
for which (F1 ∗F2)⊃G is a constituent is not a multiplicative structural layer, nor can it
be (F1 ∗F2)⊃G (otherwise D1 is not LBIZ1-derivable), it must be an additive structural
layer, and moreover, it must be such that there exists at least one multiplicative struc-
tural layer as its constituent (because the four conditions in Lemma 17 are assumed

105



satisfied). By the way a maximal Re1/Re2 pair is formed, it cannot be the case that
two constituents of the outermost additive structural layer be retained simultaneously.
And so there could be only one from among the M constituents which is to remain
after a sequence of the internalised weakening so that the result be a multiplicative
structural layer to appear at the outermost structural layer. But (F1 ∗ F2)⊃F3 is not a
multiplicative structural layer. �

Proposition 12 Replacement of ⊃ LLBIZ1 with those in Figure 3.4 is sound and com-

plete.

Proof. One direction: to assume inference rules in Figure 3.4 and to show correspond-
ing derivations with ⊃ LLBIZ1 , is trivial. Into the other direction, proof is by induction
on sequent weight. We consider what the actual instance F is in the principal F⊃G,
and turn to Lemma 17 and Lemma 18, for ⊃ L∗1, and ⊃ Lp. ⊃ L> is straightforward.
If F = 1, F ⊃ G is a useless construct in the antecedent. Cf. Lemma 5 for the other
cases. �

A decidability result follows.

Theorem 9 (Decidability of BIbase) BIbase is decidable.

Proof. For all the LBIZ1 inference rules, the sequent weight defined strictly decreases
from any conclusion sequent into premise sequent(s). Furthermore, every sequent to
appear during a derivation is finite (and so the weight of any sequent to appear during
a derivation is also finite). �

3.6 Conclusion

Here is a summary of the contributions in the present chapter.

1. Delivery of αLBI as a structural-rule-free BI sequent calculus.
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2. A direct proof of admissibility of Cut within [αLBI+ Cut].

3. Development of a sequent calculus convention to align BI proof theory with
other logics’ in the manner emptiness of a structure in a sequent is treated. Many
varieties in the two αLBI multiplicative inference rules, the left multiplicative
implication and the right multiplicative conjunction, were unified into LBIZ.

4. A purely syntactic proof of BIbase decidability, which, at the time of this writing,
is the largest decidable fragment of the logic BI which actually comes with a
proof.1

This chapter was motivated broadly by the two objectives: the one, the analysis of in-
teractions between structural inference rules and logical inference rules in BI sequent
calculi; the other, derivation of a purely syntactic decidability result for BIbase. Both
concluded successfully.

To begin with, a new BI sequent calculus αLBI was presented, which concluded a
long standing open research problem of absorption of the LBI structural rules into the
logical rules, in particular of contraction and of the structural equivalences hindering
scalable backward proof searches. The goal was attained through analysis of the way
they behave in LBI derivations. Weakening, contraction and the structural equivalence
around the units, i.e. all the LBI structural rules, were all found depth-preserving ad-
missible in αLBI. To the best of my knowledge, none of them were closely analysed
in earlier work, let alone the simultaneous solution.

Though fairly remote, a work by Donnelly et al. [2004] is related closest nonethe-
less for weakening absorption which succeeded in absorption of the effect into the
other inference rules within their forward sequent calculus for a unit-less subset of BI.
The approach of theirs, however, comes with certain shortage in that the said effect
of weakening is absorbed not only into logical inference rules, but spills out also into
another structural rule of contraction that lingers on. Defeated to an extent is their in-
tention of structural weakening elimination, because, as a matter of fact, it still occurs
through the new structural rule, though now bearing a different label. Another issue to

1If one is permitted to restrict the occurrences of the multiplicative unit or those of the multiplicative
implication only to those subformula positions which do not need incur structural contraction, one
may artificially derive a larger decidable fragment. This restriction itself, however, would impose an
expensive restriction on what form a BI formula can fit in, and therefore impracticable.
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ensue from coupling the two structural inference rules is amplification of the difficulty
in analysing the behaviour of contraction.

For the remaining two LBI structural inference rules, there existed no known sen-
sible results. They manifest as sources of non-termination in earlier BI proof systems
such as LBI and DLBI (Cf. Chapter 1 and Chapter 2); it is very hard to actually prove
that an invalid BI formula is underivable in those systems.

Of these, contraction absorption seems to have remained a particularly hard prob-
lem, and the reasons that I consider added to the complexity are the following:

1. that practically any structure, not just formulas, may duplicate in BI sequent
calculus.

2. that a sound understanding of interactions between weakening and the structural
equivalence is a prerequisite for a successful contraction analysis.

3. that a sound understanding of both the interactions between additive and multi-
plicative structural layers and the behaviour of weakening are the prerequisites
for a successful contraction analysis.

To pierce the layered complexity, this chapter presented two key ideas: the essence
of structures, and deep weakening absorption which led to the discovery of the con-
cept of maximal Re1/Re2 pairs. The former provided a satisfactory clue to the second
difficulty cited above, and the latter to the third difficulty. Interactions between the
structural rules were analysed and, as a result, the effect of contraction was for the first
time fully decoupled from that of weakening and the structural equivalence, leading to
a concise and natural proof of the contraction admissibility as exhibited. A direct cut
elimination procedure was then laid down for [αLBI+ Cut].

The technical inquiry into the nature of BI proof systems was farther forged ahead
with evaluation of the significance of the coherent equivalence - a common wisdom, as
has been, in BI proof theory. Owing largely to the αLBI delivery, an insight nonethe-
less dawned on: the notational complexity around the BI units in LBI germinates from
incorporation of the structural equivalence (which is one of the conditions of the coher-
ent equivalence) into the proof system. By shedding off the extrinsic legacy, the core
of αLBI was successfully extracted into LBIZ with zero structural rules and structural
units.
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It was then used to prove decidability of BIbase (a fragment of BI without the mul-
tiplicative unit and the multiplicative implication), purely syntactically. The viewpoint
of a structure as a nesting of structural layers provided a clue (Cf. Lemma 18) to ex-
tend the Dyckhoff’s method (Cf. Chapter 1) beyond propositional intuitionistic logic,
to constitute a proof of BIbase decidability. To the best of my knowledge, it is the
largest BI fragment that has ever been given an actual decidability proof. A BIbase

decision procedure is found in Chapter 5 as a side contribution of the chapter.
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Chapter 4

Defining BBI Sequent Calculi

The outline of this chapter is as follows:

1. Development of adequate conventions for a BBI sequent calculus, and analysis
of BBI semantics and its implication on syntax.

2. Formalisation of a BBI sequent calculus LBBIp with proofs of its soundness and
completeness.

3. Development of another BBI sequent calculus αLBBIp, which results from ab-
sorbing structural rules of LBBIp.

4. Adaptation of the sequent calculi to separation logic.

5. Identification of a conservative cut eliminable fragment of [αLBBIp+ Cut].

6. Comparisons of the BBI sequent calculi with earlier BBI proof systems.

4.1 Preparations with Fundamental Notations

A BBI sequent calculus requires a new syntactic convention that captures a logical
combination of classical logic and a variant of multiplicative intuitionistic linear logic
with the non-intuitionistic ∗> (Cf. Chapter 1). Since there are no BBI sequent calculi
known at present, I begin by providing intuition, introducing only so many fundamen-
tal notations as sufficient to get us started on this topic. To reflect the effect of the law
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of the excluded middle, we shall strictly distinguish negative structures from positive
ones.

Definition 63 A negative BBI structure Γ is defined by:

Γ := F |M | A

M := F,M′ | A,M′

M′ := F | A | F,M′ | A,M′

A := F ; A′ |M; A′

A′ := F |M | F ; A′ |M; A′

Each of the A (resp. M) sub-structures of Γ is termed a negative additive (resp. multi-

plicative) structural layer.

Definition 64 A positive BBI structure ∆ is defined by: ∆ := F | ∆; ∆.

The set of Γ that the above grammar generates is denoted by N and that of ∆ by P.

Property 6 (Associativity and commutativity)
The following properties hold within N and P:

1. (Γ1, Γ2), Γ3 = Γ1, (Γ2, Γ3).

2. (Γ1; Γ2); Γ3 = Γ1; (Γ2; Γ3).

3. Γ1, Γ2 = Γ2, Γ1.

4. Γ1; Γ2 = Γ2; Γ1.

5. (∆1; ∆2); ∆3 = ∆1; (∆2; ∆3).

6. ∆1; ∆2 = ∆2; ∆1.

Negative structures are represented in nested structural layers as in BI proof theory (Cf.

Chapter 3). Positive structures are represented in list.
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4.1.1 Exponent-less LBBIp sequents

To cement the basic, we for now limit our attention to the sequents in the following set
E := {Γ ` ∆ | [Γ ∈ N] ∧† [∆ ∈ P]}. The notation “Γ(Γ1)” is used (just as in BI proof
theory Cf. Chapter 1) to specify which part of an antecedent structure is currently being
accessed via an inference rule, stating that Γ1 occurs as a sub-structure of Γ(Γ1). That
is, informally, Γ(−) represents a negative structure with a “hole” which is filled with
Γ1 like Γ(Γ1). For a formal definition (albeit for SBI) of a context, readers are referred
back to Chapter 1.

For the correspondence between structures and formulas, I define the following
interpretation of (exponent-less) sequents.

Definition 65 (Interpretation of a positive structure) Interpretation of a positive

structure is a function · : P→ FBBI recursively defined as follows:

• F → F .

• ∆1; ∆2 → ∆1 ∨∆2.

Definition 66 (Interpretation of a negative structure) Interpretation of a negative

structure is a function ·∂ : N→ FBBI recursively defined as follows:

• F ∂ → F .

• Γ1; Γ2∂
→ (Γ1∂

∧ Γ2∂
).

• Γ1, Γ2∂
→ (Γ1∂

∗ Γ2∂
).

4.2 LBBIp: BBI Sequent Calculus

In this section, three major technical difficulties concerning the development of a BBI

sequent calculus are discussed. The first one arises from the fact that negation normal
form of a BBI formula (via De Morgan and other laws in Boolean algebra for reduction)
is not always knowable unlike classical logic. The second one comes from collapsing
of BBI multiplicative conjuncts. And the third one from the non-intuitionistic ∗>. A
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BBI sequent calculus LBBIp is developed by heeding these. For the exact order of the
materials to appear in this section, a discussion on the partial negation normal form
and a development of sequent calculus conventions precede the others. The collapsing
of multiplicative conjuncts and the impact of the non-intuitionistic multiplicative unit
will then be analysed with reference to corresponding LBBIp inference rules. The role
of the falsity within BBI sequent calculi will be also mentioned.

4.2.1 On the partial negation normalisation

Let us suppose:

1. We have a sequent D : (F1;F2⊃F3), F4 ` F5 such that D ∈ E.

2. It holds that ∀W ∈ ND ∀m ∈ W.[m |= (F1∧(F2 ⊃ F3)) ∗ F4] →† [m |= F5] (Cf.

Definition 65 and Definition 66).

3. We have a sequent calculus which is sound and complete with respect to BBI

Kripke non-deterministic semantics (Cf. Chapter 1).

Then there should exist a closed derivation tree for D constructable in the supposed
proof system.

Now suppose we know that it is F2⊃F3 that becomes the principal. Also recall the
inference rule ⊃ L in classical logic sequent calculus such as G1c (Cf. Chapter 1):

Ψ ` A1; Φ Ψ;A2 ` Φ ⊃ LG1cΨ;A1⊃A2 ` Φ

for some A1, A2 ∈ FCL and some Ψ,Φ ∈ SCL. By sheer syntactic speculation on
⊃ LG1c, then, we could have the following backward derivation of D with F2⊃F3 as the
principal:

D2 : F1, F4 ` F5;F2 (F1;F3), F4 ` F3

D : (F1;F2⊃F3), F4 ` F5

which transfers F2 onto the consequent (looked from conclusion to premises). This,
however, does not reflect the BBI base-logic interactions property onto syntax. To elu-
cidate, by the set of current suppositions, D2 should be universally valid, i.e. ∀W ∈
ND ∀m ∈ W.[m |= F1 ∗ F4] →† [m |= F5 ∨ F2]. But an error is immediately noticed by
recalling that [m |= F ∨G]↔† [m |= F ] ∨† [m |= G]: suppose that some possible world
m forces F1 ∗F4, then D2 says that the same possible world is used for judgement of F5
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and F2, which cannot be generally appropriate. More informally, the problem that this
bottom-up derivation step has is that F2 is somehow connected additively to F5, or to
“F1, F4” interchangeably, whereas it is “F1” to which it should be additively connected.

Solution To respect the property of multiplicative capturing of additive compo-
nents, therefore, an additive implication must be resolved at the additive structural
layer of whom it is a constituent. However, recall that classical logic exhibits symme-
try. Instead of ⊃ LG1c, a one-sided inference rule works just as well:

Ψ;A1⊃1 ` 1 Ψ;A2 ` 1 ⊃ L′G1cΨ;A1⊃A2 ` 1

We may therefore consider an alternative derivation of D:

D3 : ((F1;F2⊃1), F4);F5 ⊃ 1 ` 1 ((F1;F3), F4);F5 ⊃ 1 ` 1
D : ((F1;F2⊃F3), F4);F5 ⊃ 1 ` 1

as semantics dictates (Cf. Chapter 1). A solution to the multiplicative capturing of
additive components was successfully given. Since we have

• [(F1 ∧ F2)⊃1] ' [(F1⊃1) ∨ (F2⊃1)].1

• [(F1 ∨ F2)⊃1] ' [(F1⊃1) ∧ (F2⊃1)].

• [(F1⊃F2)⊃1] ' [F1 ∧ (F2⊃1)].

• [1 ⊃ 1] ' >.

• [> ⊃ 1] ' 1.

we can define a set of inference rules to deal with formulas in the form: F⊃1, in case
F is in one of the forms: {>,1, F1 ∧ F2, F1 ∨ F2, F1 ⊃ F2}.

Syntactic issue We must, however, consider the possibility that F2 be in one of
the forms: {∗>, F1 ∗ F2, F1−∗F2}, for which no pseudo De Morgan equivalence is (yet)
defined. The above solution of ours then do not automatically reduce a formula in the
form: G ⊃ 1 into its (pseudo) negation normal form. Though somehow extrinsic, it is
also non-aesthetic to have to state those formulas with the tailing “⊃ 1”.

1Equivalence via De Morgan and duality.
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4.2.1.1 Refinement of LBBIp sequents

To handle the slight syntactic inconvenience, we now extend the earlier notion of se-
quents in order to have a tidier syntactic representation.

Definition 67 (Negative structure with exponents) By � we denote a LBBIp negative
structure with exponents which is defined by:

� := F∆ |M∆ | A∆

M := F∆,M
′∆ | A∆,M

′∆

M′ := F | A | F∆,M
′∆ | A∆,M′∆

A := F 1;A
′
1 |M1;A

′
1

A′ := F |M | F 1;A
′
1 |M1;A

′
1

All the sub-structures �1 of � are associated with some positive structure ∆ ∈ P which

is termed the exponent (of the sub-structure it is associated to). The set of � is denoted

by A. Also we define a function log : A→ P such that log� is the exponent associated

to �.

Just as in Definition 63, each of the A (resp. M) sub-structures is termed a (negative)
additive (resp. multiplicative) structural layer. For presentational convenience, we also
use the equivalent notation, Γ∆, to explicitly state log�(= ∆) of �.

Example 6
For a negative structure with exponents: (F∆1

1 , F∆2
2 )∆3 , the following hold:

• logF∆1
1 = ∆1.

• logF∆2
2 = ∆2.

• log(F∆1
1 , F∆2

2 )∆3 = ∆3.

Property 7 (Associativity and commutativity) The following associativity and com-

mutativity hold within A:

1. (�1,�2),�3 = �1, (�2,�3).

2. (�1;�2);�3 = �1; (�2;�3).
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3. �1,�2 = �2,�1.

4. �1;�2 = �2;�1.

Definition of LBBIp sequents now follows.

Definition 68 (LBBIp sequents) A LBBIp sequent is defined to be a set element of

DBBI := {� ` ∆ | [� ∈ A] ∧† [∆ ∈ P]}.

4.2.1.2 Interpretation of exponents and relation between E and DBBI

It is clear that E and DBBI are essentially the same by the following interpretation of
� ∈ A.

Definition 69 (Interpretation of an exponentiated negative structure)
Interpretation of an exponentiated negative structure is a function : A → FBBI recur-

sively defined as follows:

• F 1 → F .

• If ∆ 6= 1, then F∆ → (F 1 ∧ (∆⊃1)).

• (Γ1

1 ; Γ1

2)1 → (Γ1

1 ∧ Γ1

2).

• (Γ1

1 ,Γ
1

2)1 → (Γ1

1 ∗ Γ1

2).

• If ∆1 6= 1, then ((Γ∆1
1 ,Γ1

2)1)→ ((Γ1

1 ∧ (∆1⊃1)) ∗ Γ1

2).

• If ∆1 6= 1 and if ∆2 6= 1, then (Γ∆1
1 ,Γ∆2

2 )1 → ((Γ1

1 ∧ (∆1 ⊃ 1)) ∗ (Γ1

2 ∧ (∆2 ⊃ 1))).

• If ∆ 6= 1, then Γ∆ → Γ1 ∧ (∆ ⊃ 1).

We have the following result concerning the relation between E and DBBI.

Lemma 19 (Isomorphism) DBBI and E are isomorphic.

Proof. Obvious by Definition 65, Definition 66, Definition 69, De Morgan and duality.
�

I end this sub-sub-section 4.2.1.2 with a concluding remark on the derivation of
D : (F1;F2⊃F3), F4 ` F5, which looked like:
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D3 : ((F1;F2 ⊃ 1), F4);F5 ⊃ 1 ` 1 ((F1;F3), F4);F5 ⊃ 1 ` 1
D : ((F1;F2 ⊃ F3), F4);F5 ⊃ 1 ` 1

By mapping each sequent in E in the derivation into DBBI, we gain:

D3 : (F F2
1 , F4)F5 ` 1 D′ : ((F1;F3), F4)F5 ` 1

D : ((F1;F2⊃F3), F4)F5 ` 1

4.2.1.3 Conventions for BBI sequent calculi

Sequent calculus conventions are now formally introduced for LBBIp.

Definition 70 (BBI equivalences) “�ant” is the equivalence relation on exponenti-

ated negative structures satisfying:

1. If ∆1 ≡ ∆2 (up to assoc. and commut.), then Γ∆1 �ant Γ∆2 .

2. �1 ≡ �2 (up to assoc. and commut.; Cf. Property 7).

3. If �1 �ant �2 and �(�1) ∈ DBBI, then �(�1)�ant �(�2).

“�pos” is the equivalence relation on positive structures satisfying:

1. ∆1 ≡ ∆2 (up to assoc. and commut.).

2. ∆; 1 �pos ∆.

“�ant” is the equivalence relation on exponentiated negative structures satisfying:

1. �1 ≡ �2 (up to assoc. and commut. as in Property 7).

2. If ∆1 �pos ∆2, then Γ∆1 �ant Γ∆2 .

3. (Γ1;>1)∆ �ant Γ∆.

4. (Γ∆1
1 , ∗>1)∆2 �ant Γ(∆1;∆2).

5. If �1 �ant �2 and �(�1) ∈ DBBI, then �(�1) �ant �(�2).

For a close syntax-semantic correspondence, it is more useful to be able to focus on an
antecedent sub-structure which is at least as large as an additive structural layer (pro-
vided there is any structural layer) rather than some of its constituents. This is because
all the constituents of an additive structural layer are judged by the same possible world
in the underlying BBI Kripke non-deterministic semantics.
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Definition 71 (Layer focus) Given an antecedent structure �(�1) of which �1 is a

sub-structure, we denote by returnA(�(�1)) the following:

• it is �2 with �2 �ant (�1;�3)∆ if there exists a structure �3 such that:

(a) �3 is a sub-structure of �(�1).

(b) there exists no sub-structure �4 of �(�1) such that (�2;�4)∆′ is a sub-structure

of �(�1).

(c) ( the �1 that occurs in �2 is the same as the focused sub-structure �1 of �(�1).)

• it is �1, otherwise.

Definition 72 (Sequent calculus convention) Notational conventions for BBI sequent

calculi are set forth as follows:

1. Γ abbreviates Γ1.

2. �{Γ∆1
1 } ` {∆2} abbreviates �(Γ

(∆1;∆2)
1 ) ` 1 where

returnA(�(Γ
(∆1;∆2)
1 )) = Γ

(∆1;∆2)
1 .

3. In a LBBIp sequent, emptiness of an exponentiated negative structure in “�1;�2”

is identified with >, i.e. “�1;�2” is identified with �2 (resp. �1) in case �1 (resp.

�2) is empty.

4. In a LBBIp sequent, emptiness of an exponentiated negative structure in “�1,�2”

is identified with ∗>, i.e. “�1,�2” is identified with �2 (resp. �1) in case �1 (resp.

�2) is empty.

5. In a LBBIp sequent, emptiness of a positive structure in “∆1; ∆2” is identified

with 1, i.e. “∆1; ∆2” is identified with ∆2 (resp. ∆1) in case ∆1 (resp. ∆2) is

empty.

LBBIp is found in Figure 4.1.

4.2.2 On the collapse of multiplicative conjuncts

Under the BBI Kripke non-deterministic semantics, collapsing of multiplicative con-
juncts (which is nominally considered a special distribution in the rest) is permitted. I
first introduce the notion of the relative structural distance.
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Ax
F ` F

Γ∆1
1 ` 1

1ps
�{Γ1} ` {∆1}

�{Γ1;F1;F2} ` {∆1} ∧L
�{Γ1;F1 ∧ F2} ` {∆1}

�{Γ1;F1} ` {∆1} �{Γ1;F2} ` {∆1} ∨L
�{Γ1;F1 ∨ F2} ` {∆1}

�{Γ1; (F1, F2)} ` {∆1} ∗L
�{Γ1;F1 ∗ F2} ` {∆1}

�{Γ1} ` {∆1;F1} �{Γ1;F2} ` {∆1} ⊃ L
�{Γ1;F1⊃F2} ` {∆1}

�{Γ1;G} ` {∆1} (F ∈ Ξ)
−∗L∗>

�{Γ1;F−∗G} ` {∆1}

Γ∆1
1 ` F (Ξ ∩ F = ∅) �{Γ∆2

2 , G} ` {∆3} −∗LI
�{Γ∆1

1 ,Γ∆2
2 , F−∗G} ` {∆3}

�{Γ1} ` {∆1;F1} �{Γ1} ` {∆1;F2} ∧R
�{Γ1} ` {∆1;F1 ∧ F2}

�{Γ1} ` {∆1;F1;F2} ∨R
�{Γ1} ` {∆1;F1 ∨ F2}

∗> ` F1 �{Γ1} ` {∆1;G1} ∗R∗>
�{Γ1} ` {∆1;F1 ∗G1}

Γ∆1
1 ` F1 Γ∆2

2 ` G1 ∗RI
Γ∆1

1 ,Γ∆2
2 ` F1 ∗G1

Γ∆1
1 , F1 ` F2 (Ξ ∩ F1 = ∅)

−∗RI
Γ∆1

1 ` F1−∗F2

�{Γ1;F1} ` {∆1;F2} ⊃ R
�{Γ1} ` {∆1;F1⊃F2}

�{Γ1} ` {∆1;G} (F ∈ Ξ)
−∗R∗>

�{Γ1} ` {∆1;F−∗G}
�{Γ1} ` {∆1}

Wk L
�{Γ1; Γ2} ` {∆1}

�{Γ1} ` {∆1}
Wk R

�{Γ1} ` {∆1;F}
�{Γ1; Γ2; Γ2} ` {∆1}

Ctr L
�{Γ1; Γ2} ` {∆1}

�{Γ1} ` {∆1;F ;F}
Ctr R

�{Γ1} ` {∆1;F}
�{Γ1} ` {∆1; S∧(F1 × F2) ∗ S∨(G1 ×G2)}

dR
�{Γ1} ` {∆1;F1 ∗G1;F2 ∗G2}

�{Γ1} ` {∆1; ∆2} ∗>WkL
�{Γ∆1

1 , (∗>; Γ2)∆3} ` {∆2}
�{(∗>; Γ1)∆2 , (∗>; Γ1)∆2} ` {∆1} ∗>CtrL

�{∗>; Γ1} ` {∆1; ∆2}

�{Γ1} ` {∆1;F} �{Γ2;F} ` {∆2}
Cut

�{Γ1; Γ2} ` {∆1; ∆2}

Ξ is a set of BBI formulas such that ∀F ∈ Ξ.[F ` ∗>] ∧† [∗> ` F ].

Figure 4.1: LBBIp: a sequent calculus for BBI. Definition 72 for calculus conventions.

Definition 73 (Relative structural distance) Relative structural distance between a

structure �(�1) and its focused sub-structure �1, denoted by str dist(�(−)), is defined

as follows:
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• it is 0 if “�(−)�ant −”.

• it is str dist(Γ2(−)) + 1 if the set of conditions below are satisfied:

1. there exists some Γ′1 and some ∆ such that �(−)�ant (Γ2(−); Γ′1)∆.

2. there exists no pair of Γ′′1 and Γ3(−) such that Γ2(−)�ant Γ3(−); Γ′′1.

• it is str dist(�2(−)) + 1 if the set of conditions below are satisfied:

1. there exists some �′1 and some ∆ such that �(−)�ant (�2(−),�′1)∆.

2. there exists no pair of �′′1 and �3(−) such that �2(−)�ant �3(−),�′′1.

The special distributivity holds between the multiplicative conjunction and the additive
disjunction.

Lemma 20 Let dRanother denote the following rule:

�{Γ1} ` {∆1; (F1 ∧ F2) ∗ (G1 ∨G2)}
dRanother

�{Γ1} ` {∆1;F1 ∗G1;F2 ∗G2}

Then it is locally sound with respect to the BBI Kripke non-deterministic semantics, i.e.
it holds that if �(Γ

(∆1;(F1∧F2)∗(G1∨G2))
1 ) ⊃ 1 is universally valid, then so is

�(Γ
(∆1;F1∗G1;F2∗G2)
1 ) ⊃ 1.

Proof. In Appendix A. �

To illustrate how dRanother acts in a BBI sequent calculus, let us replace dR with
dRanother in LBBIp. Let us call the alternative proof system LBBIp’.

Example 7 Let D ∈ DBBI be p, q ` (p ∗ (r ⊃ q)); (p ∗ r). Then it is LBBIp’-derivable:

Ax
p ` p Ax

p ` p
∧R

p ` p ∧ p

Ax
r ` r {Wk L, Wk R}

q; r ` s; r
⊃ R

q ` r ⊃ q; r
∨R

q ` (r ⊃ s) ∨ r
∗RI

p, q ` (p ∧ p) ∗ ((r ⊃ s) ∨ r)
dRanother

p, q ` (p ∗ (r ⊃ s)); (p ∗ r)

Also, let D′ ∈ DBBI be (>(p∗(q⊃1));((p⊃1)∗(r⊃1)), p)(q∨r)∗p ` 1:
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∗> ` p ∨ (p ⊃ 1)

Ax
p ` p

q ` q; r
∨R

q ` q ∨ r ∗RI
({q}, p)(q∨r)∗p ` {1}

⊃ R
({>}, p)(q∨r)∗p ` {q ⊃ 1}

Ax
p ` p

r ` q; r
∨R

r ` q ∨ r ∗RI
({r}, p)(q∨r)∗p ` {1}

⊃ R
({>}, p)(q∨r)∗p ` {r ⊃ 1}

∧R
({>}, p)(q∨r)∗p ` {(q ⊃ 1) ∧ (r ⊃ 1)}

∗R∗>
({>}, p)(q∨r)∗p ` {(p ∨ (p ⊃ 1)) ∗ ((q ⊃ 1) ∧ (r ⊃ 1))}

dRanother
({>}, p)(q∨r)∗p ` {(p ∗ (q ⊃ 1)); ((p ⊃ 1) ∗ (r ⊃ 1))}

(The second derivation can be shortened by brining the derivation step of ∗RI below

∗R∗> and dR; this particular derivation tree is simply to illustrate the use of ∗R∗> when

it does not take as the principal a formula in the exponent of the outermost antecedent

structure.)

LBBIp achieves nearly the same effect with dR as LBBIp’ with dRanother. In fact,
for soundness and completeness, it does not really matter which is used. However,
LBBIp’ is unfortunately non-analytic even without Cut due to the interactions between
dRanother and CtrR.

Proposition 13 (Non-analyticity of LBBIp’)
dRanother and CtrR lead to non-analyticity, i.e. infinite introduction of distinct new

constructs, in LBBIp’.

Proof. Let D ∈ DBBI be H ` F1 ∗ G1. Then there exists a derivation tree such as
the following (arbitrarily chosen for the sake of illustration; note that associativity and
commutativity as defined earlier are freely available) in which the introduction of new
constructs is unbounded:

...
H ` F1 ∗G1; (F1 ∨G1) ∗ (G1 ∧ F1); ((F1 ∨G1) ∧ F1) ∗ ((G1 ∧ F1) ∨G1)

dRanother
H ` F1 ∗G1; (F1 ∨G1) ∗ (G1 ∧ F1); (F1 ∨G1) ∗ (G1 ∧ F1);F1 ∗G1

CtrR
H ` F1 ∗G1; (F1 ∨G1) ∗ (G1 ∧ F1)

dRanotherH ` F1 ∗G1;F1 ∗G1;F1 ∗G1
CtrR

H ` F1 ∗G1;F1 ∗G1

�

The given example derivation tree in Proposition 13 introduces (looked backward)
a new construct (F1 ∨ G1) ∗ (G1 ∧ F1) in the first dRanother application and another
new construct ((F1 ∨G1) ∧ F1) ∗ ((G1 ∧ F1) ∨G1) in the second dRanother application.
Since CtrR and dRanother are available in [LBBIp’ - Cut], this infinite process cannot
be prevented from occurring.
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4.2.2.1 Ensuring analyticity with dR through synthesising operators

We nonetheless notice with a knowledge of laws in Boolean algebra that satisfiability
of (F1∨G1)∧F1 (resp. (G1∧F1)∨G1) coincides with that of F1 (resp. G1). Hence if the
process of synthesising two multiplicative conjuncts is systematically carried out, then
starting with a finite number of multiplicative conjuncts in an exponent, there could re-
sult only a finite number of multiplicative conjuncts even in the presence of CtrR. We
achieve this by internally processing the premise sequent of dRanother farther, draw-
ing ideas from the Boolean algebra, resulting in dR as we see in Figure 4.1. For this
purpose, first we define BBI literals and an equivalence relation .

=.

Definition 74 (BBI literals) A BBI literal f, (g, h) is defined by the following gram-

mar: f := p | ∗> | F ⊃ F | F ∗ F | F−∗F .

Definition 75 (Equivalence relation .
=) We define a binary relation .

= as one that sat-

isfies the following:

1. f ∧ (g ∧ h)
.
= (f ∧ g) ∧ h (associativity 1).

2. f ∨ (g ∨ h)
.
= (f ∨ g) ∨ h (associativity 2).

3. f ∧ g .
= g ∧ f (commutativity 1).

4. f ∨ g .
= g ∨ f (commutativity 2).

5. f ∧ (g ∨ h)
.
= (f ∧ g) ∨ (f ∧ h) (distributivity 1).

6. f ∨ (g ∧ h)
.
= (f ∨ g) ∧ (f ∨ h) (distributivity 2).

7. f ∧ f .
= f (identity 1).

8. f ∨ f .
= f (identity 2).

9. f ∨ (f ∧ g)
.
= f (absorption 1).

10. f ∧ (f ∨ g)
.
= f (absorption 2).

11. 1 ∨ f .
= f .

12. 1 ∧ f .
= 1.
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13. > ∨ f .
= >.

14. > ∧ f .
= f .

Based on the above knowledge, we let dRLBBIp:

�{Γ1} ` {∆1; S∧(F1 × F2) ∗ S∨(G1 ×G2)}
dR

�{Γ1} ` {∆1;F1 ∗G1;F2 ∗G2}

perform certain normalisation operations on the premise.

Definition 76 (Synthesis operators)
The conjunctive synthesis operator S∧ : FBBI × FBBI → FBBI is a function that takes

two BBI formulas F and G and returns a BBI conjunctive normal form of F ∧ G such

that (1) it be the least modulo .
= and that (2) all the BBI literals in the BBI conjunctive

normal form occur as a sub-formula of at least either F or G.

The disjunctive synthesis operator S∨ : FBBI × FBBI → FBBI is a function that takes

two BBI formulas F and G and returns a BBI disjunctive normal form of F ∨ G such

that (1) it be the least modulo .
= and that (2) all the BBI literals in the BBI disjunctive

normal form occur as a sub-formula of at least either F or G.

The normalisation ensures a nice property.

Proposition 14 (Analyticity) dR and CtrR do not lead to non-analyticity in LBBIp.

Proof. With a finite number of BBI literals to synthesise through dR and CtrR, no
clause of either the BBI disjunctive or the BBI conjunctive normal form can contain an
infinite number of BBI literals. The number of clauses is necessarily finite in the BBI

disjunctive/conjunctive normal form. �

Moreover, the operations can be syntactically carried out, by comparing the formu-
las to be synthesised, say F , with all the possible BBI conjunctive (disjunctive) normal
forms, say G1, · · · , Gk (k is necessarily finite), to test if there is a match. The process
can be conducted in some sequent calculus for classical logic.

4.2.3 On direct and indirect cut formulas

The availability of dR has an implication on Cut. Suppose that we have a LBBIp-
derivation:
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Ax
p ` p

∗>; q ` q; 1
⊃ R∗> ` q; q ⊃ 1
∨R∗> ` q ∨ (q ⊃ 1)
∗R∗>

D3 : p ` p ∗ (q ∨ (q ⊃ 1))
dR

D1 : p ` p ∗ q; p ∗ (q ⊃ 1)

...
D2 : p ∗ (q ⊃ 1) ` 1

Cut
p ` p ∗ q

The Cut instance introduces a cut formula of p ∗ (q ⊃ 1) (a direct cut formula) on D1

and D2. If we carefully examine the derivation, however, there is actually another cut
formula indirectly introduced through a synthesis of the direct cut formula with a for-
mula which existed prior to the backward Cut application. In the above derivation, it
is p ∗ (q∨ (q ⊃ 1)) as appearing in D3. It is a cut formula since it could not have existed
if not for the Cut application introducing the direct cut formula. Hence, comparing the
left branch with D2 to which only the direct cut formula is introduced, we notice that
the indirect cut formula has been forgotten being introduced into D2, resulting in an in-
tention mismatch on the part of Cut between the two derivation branches of its. This is
not in keeping with our intention (i.e. with our understanding about Cut) and certainly
not desirable for cut admissibility analysis since the intention mismatch would inflict
on a successful elimination of Cut. In a more general scenario than the very simple
example given above, it is rather difficult to know how many indirect cut formulas a
direct formula would introduce over the course of a derivation. Practically, there are
two conceivable solutions to the intention mismatch: one that modifies the direct cut
formula on the right premise of a Cut instance in case it should be, in the left deriva-
tion branch, used to introduce an indirect cut formula - a try-and-amend approach. The
second that I adopt in this thesis is to not permit introduction of indirect cut formulas,
since any such formulas can be directly introduced, precluding any potential intention
mismatches. Under this strategy, the above derivation becomes:

...
D′1 : p ` p ∗ q;H

...
D′2 : H ` 1

Cut
p ` p ∗ q

where the direct cut formula is H ≡ (p ∗ (q ⊃ 1))∨ (p ∗ (q ∨ (q ⊃ 1))) (or H = (p ∗ (q ⊃
1)) ∨ (p ∗ (q ∨ (q ⊃ 1))) without a loss of generality).
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4.2.4 Significance of the multiplicative unit

Significance of the multiplicative unit in BBI proof theory has not been paid so much
attention. Unlike a general consensus that the multiplicative base logic of BBI is the
same as that of BI, there is a crucial difference in that ∗> in BBI does not behave intu-
itionistically but Boolean.

For a closer syntax-semantics correspondence, I regard ∗> explicitly as a Boolean
component, which leads to dedicated inference rules around ∗>. To sharply recognise
the BBI formulas that are semantically indistinguishable from ∗>, LBBIp defines a set
Ξ which holds certain class of BBI formulas. They are termed BBI multiplicative the-
orems.

Definition 77 (Multiplicative theorems) A multiplicative theorem is defined to be a

BBI formula F iff ∀W ∈ ND.([ε |= F ] ∧† (∀m ∈W.[m 6= ε]→† ¬†[m |= F ])).

Definition 78 (Collector) The LBBIp-collector Ξ is a set of BBI formulas such that

for all F that it holds, both F ` ∗> and ∗> ` F are LBBIp-derivable.

Intuitively, Ξ can hold all the multiplicative theorems in an event where LBBIp is com-
plete with respect to the BBI Kripke non-deterministic semantics.

We now go through relevant LBBIp inference rules. First, although contraction is
generally understood to be unavailable in a multiplicative context, the Boolean ∗> se-
mantics strongly determines satisfiability of other formulas additively connected to it
(F is said to be additively connected to ∗> iff it is a constituent of the same additive
structural layer as ∗> is) with respect to ε, and so we have ∗>CtrL. Second, although
the multiplicative implication F1−∗F2 is generally understood to be intuitionistic, the
Boolean semantics for ∗> makes an exception: if F1 is in Ξ, then the behaviour of F1 is
no longer distinguishable from ∗>. We therefore have −∗R∗> and −∗L∗> which do not act
intuitionistically. Additionally, we have another inference rule ∗R∗> for multiplicative
conjuncts.

By having syntax that closely matches with the underlying semantics, we for in-
stance have a very natural derivation of ∗> ∧ F ⊃ F ∗ F , eliciting no surprise:

Ax
F ` F

WkL>; ∗>;F ` F
Ax

F ` F
WkL>; ∗>;F ` F ∗RI

(>; ∗>;F ), (>; ∗>;F ) ` F ∗ F ∗>CtrL>; ∗>;F ` F ∗ F
∧L>; ∗> ∧ F ` F ∗ F
⊃ R> ` (∗> ∧ F )⊃(F ∗ F )
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4.2.5 On the treatment of falsity

The role that the falsity “1” undertakes in BBI sequent calculus must be studied closely.
It holds in BBI that if F ⊃ 1 is universally valid, then neither F nor F ∧ G, nor F ∗ G
is satisfiable. An observation follows.

Lemma 21 (Bottom lemma) If ∀W ∈ ND ∀m ∈ W.¬†[m |= �1], then ∀W ∈ ND ∀m ∈
W.[m |= �(�1) ⊃ 1] for an arbitrary �(−) (but such that �(�1) ∈ A).

Proof. In Appendix B. �

1ps (Figure 4.1) results based on Lemma 21. We now also know that the following
Cut is derivable with 1ps in LBBIp:

D1 : �′{Γ1} ` {F ; ∆1} �{Γ2;F} ` {∆2}
Cut

�{Γ1; Γ2} ` {∆1; ∆2}

where �{Γ1} ` {F ; ∆1} 1ps D1.
I call a special case where �

′(−) = − as the intuitionistic Cut that can exhibit
certain multiplicity:

Γ′∆
′ ` F �((Γ1;F )∆1)A . . . ((Γk;F )∆k)A ` 1

Cut∗
�((Γ1; Γ′)(∆1;∆′))A . . . ((Γk; Γ′)(∆1;∆′))A ` 1

where (1) returnA(�(Γ∆a
a )A) = Γ∆a

a for some Γ∆a
a and (2) �(Γ1)(Γ2) . . . (Γk) (for some

Γ1, . . . ,Γk) abbreviates (. . . ((�(Γ1))(Γ2)) . . .)(Γk).

Lemma 22 Cut∗ is derivable in LBBIp.

Proof. Straightforward. �

4.3 Main Properties of LBBIp
In this section main properties of LBBIp: soundness and completeness, are proved. For
the soundness proof, the result below around ∨ (and dually ∧) is made use of.

Lemma 23 (Equivalence for ∨)
∀W ∈ ND.(∀m ∈W.[m |= �(F1)] ∨† [m |= �(F2)])↔† (∀m ∈W.[m |= �(F1 ∨ F2)]).
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Proof. In Appendix C. �

Theorem 10 (Soundness of LBBIp) If Γ∆ ` 1 is LBBIp-derivable, then Γ∆ ⊃ 1 (or

Γ ⊃ ∆) is universally valid.

Proof. By induction on the derivation depth. Mostly straightforward. Note that [m |=
Γ∆ ⊃ 1] ↔† ([m |= Γ] →† [m |= ∆]), as expected. Trivial for Ax. For inductive cases,
assume that the current theorem holds true for all the LBBIp derivations of derivation
depth up to k, and show that it still holds true for LBBIp derivations of derivation depth
k + 1. Consider what the last inference rule applied is.

1ps: by induction hypothesis, we have Γ∆1
1 ⊃ 1 as a universally valid BBI formula.

Then immediate via Bottom lemma.

∧L: “;” in antecedent is the structural proxy of ∧. Vacuous.

∨L: Lemma 23.

∗L: “,” in the antecedent part is the structural proxy of ∗. Vacuous.

⊃L: similar to “∨L”. Lemma 23.

−∗L∗>: trivial by the definition of a multiplicative theorem.

−∗LI: no essential difference from BI −∗L (Cf. literature Brotherston [2009]; Pym
[2002]). Straightforward.

∧R: similar to ∨L. Note [(F1 ∧ F2) ⊃ 1] ' [(F1 ⊃ 1) ∨ (F2 ⊃ 1)] (equivalence via De
Morgan). Lemma 23.

∨R: “;” in a positive structure is the structural proxy of “∨”. Vacuous.

∗R∗>: formally a sub-induction on the relative structural distance str dist(�(−)).
The straightforward proof is nonetheless omitted except I note that ε satisfies F1

due to induction hypothesis on the left premise.

∗RI: no essential difference from BI ∗R.
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⊃ R: a sub-induction on relative structural distance. Straightforward by definition of
the Kripke semantics for “⊃” for the base case. For inductive cases, Lemma 23.

−∗RI: By induction hypothesis, we have:
∀W ∈ ND ∀m ∈ W.(∃m1,m2 ∈ W.[m ∈ m1 ◦m2] ∧† [m1 |= �] ∧† [m2 |= F ]) →†

[m |= G].
We must now show that ∀W ∈ ND ∀m′,m1,m2 ∈ W.[m′ |= �] →† ([m1 |= F ] →†

([m2 ∈ m′ ◦m1]→† [m2 |= G])).
Here assume arbitrary ma,mb,mc ∈W such that [ma |= �] ∧† [mb |= F ] ∧† [mc ∈
ma ◦mb]. If the assumption is not self-contradictory in itself, we must be able to
show that [mc |= G] from the hypotheses, which holds true trivially.

−∗R∗>: Trivial by the definition of a multiplicative theorem.

WkL: straightforward.

WkR: straightforward.

CtrL: straightforward.

CtrR: straightforward.

dR: Lemma 20 and Definition 76.

∗>WkL: straightforward.

∗>CtrL: a sub-induction on the relative structural distance str dist(�(−)). For base
cases of the sub-induction, ∀W ∈ ND ∀m ∈W :

1. if ∃m1,m2.[m ∈ m1 ◦m2] ∧† [m1 |= (∗>; Γ1)∆2 ] ∧† [m2 |= (∗>; Γ1)∆2 ], then it
must hold that m1 = m2 = ε = m and, by induction hypothesis of the main
induction, also that [m |= ∆1].

2. otherwise, (¬†(∃m1,m2.[m ∈ m1 ◦ m2] ∧† [m1 |= (∗>; Γ1)∆2 ] ∧† [m2 |=
(∗>; Γ1)∆2 ])) →† ([m1 6= ε] ∧† [m2 6= ε]). Then m cannot be ε. Then m
cannot force (∗>; Γ1)∆2 .

Then straightforward. Proofs for inductive cases follow the approaches in Lemma
23, though simpler.
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Cut: a sub-induction on str dist(�(−)). Base case is trivial. For inductive cases,

1. if �(−) �ant (Γ′(−); Γ′1)∆′ such that str dist(Γ′(−)) = l and that
str dist(�(−)) = l + 1, then ∀W ∈ ND:

(a) if ∀m ∈ W.¬†[m |= Γ′1], then by Bottom lemma, we have
∀m ∈W.¬†[m |= (Γ′((Γ1; Γ2)∆1;∆2); Γ′1)∆′ ].

(b) otherwise, by induction hypothesis of the sub-induction and that of
the main induction, we have either ¬†[m |= (Γ′(Γ1; Γ2)∆1;∆2 ; Γ′1)∆′ ], or
[m |= ∆′] as required.

2. if �(−) �ant (�′(−),�′1)∆′ such that str dist(�′(−)) = l and that
str dist(�(−)) = l+1: also the proof approaches as we saw in Lemma 23
work.

�

Theorem 11 (Completeness of LBBIp) Any universally valid BBI formula F ∈ FBBI

is derivable in LBBIp, i.e. >F ` 1 (or > ` F ).

Proof. It suffices to show that each Hilbert inference rule (Cf. Figure 1.8) is derivable
in LBBIp. Proof is by induction on the derivation depth in the BBI Hilbert system.

F⊃(G⊃F ):

Ax
F ` F

WkL>;F ;G ` F
⊃ R>;F ` G⊃F
⊃ R> ` F⊃(G⊃F )

(F⊃(G⊃H))⊃((F⊃G)⊃(F⊃H)): Also straightforward.

F⊃F ∨G: Also straightforward.

(F⊃H)⊃((G⊃H)⊃(F ∨G⊃H)):
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Ax
F ` F

WkR
F ` F ;H

Ax
H ` H

WkL
F ;H ` H

⊃ L
F ;F⊃H ` H

WkL>;F ;F⊃H;G⊃H ` H

Ax
G ` G

WkR
G ` G;H

Ax
H ` H

WkL
G;H ` H

⊃ L
G;G⊃H ` H

WkL>;G;F⊃H;G⊃H ` H
∨L>;F ∨G;F⊃H;G⊃H ` H

⊃ R>;F⊃H;G⊃H ` F ∨G⊃H
⊃ R>;F⊃H ` (G⊃H)⊃(F ∨G⊃H)
⊃ R> ` (F⊃H)⊃((G⊃H)⊃(F ∨G⊃H))

F ∧G ⊃ F : straightforward.

F⊃(G⊃F ∧G): straightforward.

1⊃F : straightforward.

F⊃>: straightforward.

((F⊃1)⊃1) ⊃ F : straightforward.

F⊃(∗> ∗ F ):

Ax∗> ` ∗>
Ax

F ` F
WkL>;F ` F ∗R∗>>;F ` ∗> ∗ F

⊃ R> ` F⊃(∗> ∗ F )

(∗> ∗ F )⊃F :

Ax
F ` F ∗>WkL∗>, F ` F

∗L∗> ∗ F ` F
WkL>; ∗> ∗ F ` F
⊃ R> ` ∗> ∗ F⊃F

MP:

> ` F
> ` F⊃G

Ax
F ` F

WkR
F ` F ;G

Ax
G ` G

WkL
F ;G ` G

⊃ L
F ;F⊃G ` G

Cut
F ` G

Cut> ` G

∗:
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D1 : F1 ` G1 D2 : F2 ` G2 ∗RIF1, F2 ` G1 ∗G2 ∗L
F1 ∗ F2 ` G1 ∗G2

WkL>;F1 ∗ F2 ` G1 ∗G2 ⊃ R> ` (F1 ∗ F2)⊃(G1 ∗G2)

Cf. MP for the remaining derivation tree construction for both D1 and D2.

−∗1:

1. G is not in Ξ:

> ` F⊃(G−∗H)

Ax
F ` F

1ps
({F}, G)H ` {F}

Ax
G ` G Ax

H ` H −∗LIG−∗H,G ` H
WkL

(G−∗H;F ), G ` H
⊃ L

(F⊃(G−∗H);F ), G ` H
Cut

F,G ` H
∗L

F ∗G ` H
WkL>;F ∗G ` H
⊃ R> ` F ∗G⊃H

2. G is in Ξ.

> ` F⊃(G−∗H)

Ax
F ` F

1ps
({F}, G)H ` {F}

G ` ∗>
Ax

H ` H ∗>WkL∗>, H ` H
Cut

H,G ` H −∗L∗>G−∗H,G ` H
WkL

(G−∗H;F ), G ` H
(F⊃(G−∗H);F ), G ` H

Cut
F,G ` H

∗L
F ∗G ` H

WkL>;F ∗G ` H
⊃R> ` F ∗G⊃H

−∗2:

1. G is not in Ξ:

> ` F ∗G⊃H

Ax
F ` F Ax

G ` G ∗RIF,G ` F ∗G
WkR

F,G ` F ∗G;H

Ax
H ` H

WkL
H; (F,G) ` H

⊃ L
F ∗G⊃H; (F,G) ` H

Cut
F,G ` H −∗RIF ` G−∗H

WkL>;F ` G−∗H
⊃ R> ` F⊃(G−∗H)

2. G is in Ξ:
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id
�{E((Γ1; p)(p;∆))} ` {1}

∗>R
�{E((Γ1; ∗>)(∗>;∆1))} ` {1}

1L
�{Γ1; 1} ` {∆1}

>R
�{Γ1} ` {>; ∆1}

Re∆1
1 ` S+(F1 ∗G1; . . . ;Fk ∗Gk) Re∆2

2 ` S−(F1 ∗G1; . . . ;Fk ∗Gk) ∗RI
�{E(Γ

(∆′;F1∗G1;...;Fk∗Gk)
1 )} ` {1}

∗> ` S+(F1 ∗G1; . . . ;Fk ∗Gk) �{E(Γ
(∆1;F1∗G1;...;Fk∗Gk)
1 )} ` {S−(F1 ∗G1; . . . ;Fk ∗Gk)} ∗R∗>

�{E(Γ
(∆1;F1∗G1;...;Fk∗Gk)
1 )} ` {1}

Γ
(∆1;F1−∗F2)
1 , F1 ` F2 (Ξ ∩ F1 = ∅)

−∗RI
�{E(Γ

(∆1;F1−∗F2)
1 )} ` {1}

Re∆1
1 ` F (Ξ ∩ F = ∅) �{(Re∆2

2 , G); (Γ∆a
a ,Γ∆b

b ,E((Γ2;F−∗G)∆3))} ` {∆′}
−∗LI

�{Γ∆a
a ,Γ∆b

b ,E((Γ2;F−∗G)∆3)} ` {∆′}

�{(∗>; Γ1)∆, (∗>; Γ1)∆} ` {∆} ∗>CtrL
�{∗>; Γ1} ` {∆}

Figure 4.2: A set of αLBBIp inference rules to replace corresponding LBBIp inference
rules with.

> ` F ∗G⊃H

∗> ` G Ax
F ` F ∗RCF ` F ∗G

WkR
F ` F ∗G;H

Ax
H ` H

WkL
H;F ` H

⊃ L
F ∗G⊃H;F ` H

Cut
F ` H −∗R∗>F ` G−∗H

WkL>;F ` G−∗H
⊃ R> ` F⊃(G−∗H)

�

4.4 A Variant of LBBIp: Absorption of Structural Rules

In this section, a variant of LBBIp: αLBBIp, is presented by adapting the earlier method-
ology within BI proof theory. This sequent calculus is both weakening-free and
distribution-free in the sense of not permitting their phenomena to occur in any struc-
tural rules within αLBBIp. It is also partially contraction-free in that the phenomenon
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of CtrL does not occur in any structural rules.
αLBBIp derives from modifying the following inference rules in LBBIp.

• Ax LBBIp: split into four rules: idαLBBIp ,1LαLBBIp ,>RαLBBIp and ∗>RαLBBIp . 1ps LBBIp ,
WkLLBBIp andWkRLBBIp are absorbed into these. In addition, ∗>WkL is absorbed
into idαLBBIp and ∗>RαLBBIp .

• ∗RI LBBIp: ∗RI αLBBIp replaces. 1ps LBBIp , dRLBBIp , WkLLBBIp , WkRLBBIp ,
∗>WkLLBBIp , and CtrRLBBIp are absorbed.

• ∗R∗> LBBIp: ∗R∗> αLBBIp replaces. dRLBBIp , ∗>WkLLBBIp , WkLLBBIp , WkRLBBIp and
CtrRLBBIp are absorbed.

• −∗RI LBBIp: −∗RI αLBBIp replaces. 1ps LBBIp , CtrRLBBIp and ∗>WkLLBBIp are ab-
sorbed.

• −∗LI LBBIp: −∗LI αLBBIp replaces. WkLLBBIp ,WkRLBBIp , ∗>WkLLBBIp andCtrLLBBIp

are absorbed.

• ∗>CtrLLBBIp: ∗>CtrLαLBBIp replaces. CtrRLBBIp is absorbed.

These rules are found in Figure 4.2.

Definition 79 (αLBBIp) αLBBIp comprises the following inference rules.

Axioms: id >R 1L ∗>R
Other logical rules: ∧L ∧R ∨ L ∨R ⊃L ⊃R ∗ L
∗RI ∗R∗> −∗RI −∗R∗> −∗LI −∗L∗>

Structural rule: ∗>CtrL
each of which is identical to a corresponding inference rule in LBBIp unless otherwise

stated earlier (underlined in this definition for clarity). Collector Ξ holds a set of BBI

multiplicative theorems which are αLBBIp-derivable.

The rest of this section exhibits main properties of αLBBIp: admissibility of 1ps LBBIp;
that of dR; that of ∗>WkLLBBIp , WkLLBBIp and WkRLBBIp; αLBBIp inversion lemma;
admissibility of CtrLLBBIp and CtrRLBBIp

1; and the equivalence of αLBBIp to [LBBIp-
Cut]. The presentation style is kept closely aligned to that in Chapter 3 for ease of

1Note for CtrRLBBIp that its phenomenon still occurs in the structural rule ∗>CtrL.
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comparisons between LBIZ and αLBBIp. My hope is that such juxtapositions be an aid
for further study into the intrinsic characters of structural interactions (i.e. syntactic
phenomena of the base logic interactions) within those specific combined logics.

The essence of BBI structures; synthesis operators S+(· · · ) and S−(· · · ); and the
correspondence between Re∆1/Re∆2 in the premise sequent(s) and negative structures
in the conclusion sequent are first defined.

4.4.1 Essence, synthesis and Re∆1
1 /Re∆2

2 pair

4.4.1.1 Essence of negative structures

As in BI proof theory (Cf. Chapter 3), ∗>WkL is not totally disjoint from WkL. The
concept of the ‘essence’ introduced back then is adjusted here for BBI.

Definition 80 (Essence of structures) An essence of a negative structure �a ∈ A is a

negative structure E(�a) ∈ A, satisfying the following for some context �(−):

• [D : �(E(�a)) ` 1] ∗∗>WkL [D′ : �(�a) ` 1]

• Both D and D′ are an element of DBBI.

4.4.1.2 On the synthesis operators and the Re∆1
1 /Re∆2

2 pair

As dR is no longer available in αLBBIp, what it achieves must be made possible within
αLBBIp logical inference rules. Further, it is noticeable that not only dR but CtrR is
unavailable in the calculus. The LBBIp synthesis operators need adjusted adequately,
taking into account the effects of CtrR and dR upon them.

Definition 81 (αLBBIp synthesis operators)
Let D denote �{Γ∆1

1 } ` {F1 ∗ G1; · · · ;Fk ∗ Gk} for k ≥ 1 such that D ∈ DBBI. Let

D  syn D
′ denote the following transition on D:

• D  ∗{CtrRLBBIp ,dRLBBIp}
[D′′ : �{Γ∆1

1 } ` {H1 ∗H2; ∆x}]

• D′′  ∗WkRLBBIp
[D′ : �{Γ∆1

1 } ` {H1 ∗H2}]

such that CtrRLBBIp in D  ∗ D′′ applies only to those Fi ∗ Gi (1 ≤ i ≤ k) and/or any

formula in the form Fx ∗ Gx that dRLBBIp in the same transition may produce, that (2)
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dRLBBIp takes place on those formulas, and that (3) all the Fi ∗ Gi are synthesised at

least once. Then the pair (S+(F1 ∗G1; · · · ;Fk ∗Gk),S−(F1 ∗G1; · · · ;Fk ∗Gk)) is defined

to be either (H1, H2) or (H2, H1).

The Re∆1
1 /Re∆2

2 pair is also defined through a binding of ∗RI and −∗LI to a corre-
sponding LBBIp-derivation.

Definition 82 (Re∆1
1 /Re∆2

2 in ∗RI/−∗LI) In αLBBIp, correspondence of premise and

conclusion sequents in ∗RI and −∗LI are defined with respect to ∗RI/−∗LI/∗>WkL

/WkL/WkR/CtrL/CtrR/dR/1ps in LBBIp:

For ∗RIαLBBIp:
Let D1 : �{E(Γ

(∆′;F1∗G1;··· ;Fk∗Gk)
1 ))} ` {1} be the conclusion sequent of the infer-

ence rule. Let Fx denote F1 ∗G1; · · · ;Fk ∗Gk. Then the corresponding derivation

of ∗RIαLBBIp within LBBIp is defined to be

• D  ∗∗>WkLLBBIp
[D′1 : �{Γ∆′

1 } ` {Fx)}]

• D′1  
∗
1ps LBBIp

[D′′1 : Γ∆′
1 ` Fx]

• D′′1  syn [D′′′1 : Γ∆′
1 ` S+(Fx) ∗ S−(Fx)]

• D′′′1  
∗
{WkRLBBIp ,WkLLBBIp}

[D′′′′1 : Re∆1
1 , Re∆2

2 ` S+(Fx) ∗ S−(Fx)]

• D′′′′1  ∗RLBBIp
[D2 : Re∆1

1 ` S+(Fx)]

• D′′′′1  ∗RLBBIp
[D3 : Re∆2

2 ` S−(Fx)]

D2 and D3 correspond to the premise sequents of ∗RIαLBBIp (with D1 as its con-

clusion sequent).

For −∗LI αLBBIp:
Let D1 : �{Γ∆a

a ,Γ∆b
b ,E((Γ2;F−∗G)∆3)} ` {∆′} as the conclusion sequent of the

inference rule. Then the corresponding derivation of −∗LI αLBBIp within LBBIp is

defined as below.

• D1  CtrLLBBIp
[D′1 : �{(Γ∆a

a ,Γ∆b
b ,E((Γ2;F−∗G)∆3));

(Γ∆a
a ,Γ∆b

b ,E((Γ2;F−∗G)∆3))} ` {∆′}]

• D′1  
∗
∗>WkL [D′′1 : �{(Γ∆a

a ,Γ∆b
b , (Γ2;F−∗G)∆3);

(Γ∆a
a ,Γ∆b

b ,E((Γ2;F−∗G)∆3))} ` {∆′}]
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• D′′1  
∗
{WkRLBBIp ,WkLLBBIp}

[D′′′1 : �{(Re∆1
1 , Re∆2

2 , F−∗G);

(Γ∆a
a ,Γ∆b

b ,E((Γ2;F−∗G)∆3))} ` {∆′}]

• D′′′1  −∗LI LBBIp
[D2 : Re∆1

1 ` F ]

• D′′′1  −∗LI LBBIp
[D3 : �{(Re∆2

2 , G);(Γ∆a
a ,Γ∆b

b ,E(Γ2;F−∗G))} ` {∆′}]

D2 and D3 correspond to the premise sequents of −∗LI αLBBIp (with D1 as its

conclusion sequent).

As we saw in Chapter 3, these rules internalise LBBIp backward derivation steps.
Derivations of other new inference rules within LBBIp are similar and straightforward
except possibly for ∗R∗> αLBBIp whose LBBIp-binding is:

• Let Fx denote F1 ∗ G1; · · · ;Fk ∗ Gk, let D denote the conclusion sequent of the
inference rule, i.e. D : �{E(Γ

(∆1;Fx)
1 )} ` {1}. Also let ∆y denote logE(Γ

(∆1;Fx)
1 ).

• D  CtrL [D′ : �{E(Γ
(∆1;Fx)
1 ); E(Γ

(∆1;Fx)
1 )} ` {∆y}

• D′  ∗∗>WkL [D′′ : �{Γ1; E(Γ
(∆1;Fx)
1 )} ` {∆1;Fx; ∆y}]

• D′′  syn [D′′′ : �{Γ1; E(Γ
(∆1;Fx)
1 )} ` {∆1; S+(Fx) ∗ S−(Fx); ∆y}]

• D′′′  ∗{WkL,WkR} [D′′′′ : �{E(Γ
(∆1;Fx)
1 )} ` {S+(Fx) ∗ S−(Fx)}]

• D′′′′  ∗R∗> [D2 : ∗> ` S+(Fx)]

• D′′′′  ∗R∗> [D3 : �{E(Γ
(∆1;Fx)
1 )} ` {S−(Fx)}]

where D2 and D3 correspond to the premise sequents of the αLBBIp inference rule.
The essence of structures does not appear in additive inference rules (axioms ex-

cluded) unlike BI (Cf. LBIZ in Chapter 3).

4.4.2 Main results

Main results about αLBBIp are proved in the following order: admissibility of 1ps; that
of WkL, WkR and ∗>WkL; αLBBIp inversion lemma; admissibility of CtrL, CtrR and
dR; equivalence of αLBBIp to [LBBIp- Cut]. Most of the results (in this subsection)
are dependent on earlier results (in this subsection). Admissibility results are depth-
preserving.
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4.4.2.1 Admissibility of 1ps

The effect of 1ps LBBIp is taken into account in the set of αLBBIp inference rules.

Proposition 15 (Admissibility of 1ps) If a sequent D : Γ∆ ` 1 is αLBBIp-derivable,

then so is �{Γ} ` {∆}, preserving the derivation depth.

Proof. By induction on derivation depth of Π(D). For the base cases, we note that
id,1L,>R and ∗>R all absorb the effect of 1ps within. But then inductive cases are
trivial. �

4.4.2.2 Admissibility of weakening

Proposition 16 (Admissibility of ∗>WkL )
If a sequent D : �{Γ1} ` {∆1} is αLBBIp-derivable, then so is D′ : �{E(Γ∆1

1 )} ` {1},
preserving the derivation depth.

Proof. In Appendix D. �

Proposition 17 (Admissibility of additive weakening)
If a sequent D : �{Γ1} ` {∆1} is αLBBIp-derivable, then so is D′ : �{Γ1; Γ2} `
{∆1; ∆2}, preserving the derivation depth.

Proof. In Appendix E. �

4.4.2.3 Inversion lemma

The following depth-preserving inversion lemma holds in αLBBIp.

Lemma 24 (Inversion lemma for αLBBIp) For the following sequent pairs, if the se-
quent shown on the left is αLBBIp-derivable at most with the derivation depth of k,
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then the sequent(s) shown on the right are also αLBBIp-derivable, preserving deriva-
tion depth.

�(F ∧G) ` 1 , �(F ;G) ` 1 (4.1)

�(F1 ∨ F2) ` 1 , both �(F1) ` 1

and �(F2) ` 1 (4.2)

�{Γ1;F ⊃ G} ` {∆} , both �{Γ1} ` {∆;F}

and �{Γ1;G} ` {∆} (4.3)

�(F ∗G) ` 1 , �(F,G) ` 1 (4.4)

�(F−∗G) ` 1(F ∈ Ξ) , �(G) ` 1(F ∈ Ξ) (4.5)

�{Γ1} ` {∆;F ∧G} , both �{Γ1} ` {∆;F}

and �{Γ1} ` {∆;G} (4.6)

�{Γ1} ` {∆;F ∨G} , �{Γ1} ` {∆;F ;G} (4.7)

�{Γ1} ` {∆;F⊃G} , �{Γ1;F} ` {∆;G} (4.8)

�{Γ1} ` {∆;F−∗G}(F ∈ Ξ) , �{Γ1} ` {∆;G}(F ∈ Ξ) (4.9)

Proof. In Appendix F. �

4.4.2.4 Admissibility of contraction

Definition 83 (Incremental weakening for ∗RI/−∗LI) Incremental internal weak-
ening for ∗RI makes use only of the following weakening rule in the internalised weak-
ening process:

�1,Γ2 ` F1 ∗ F2
Wk

�1, (Γ2; Γ3)∆1 ` F1 ∗ F2

Similarly, incremental internal weakening for −∗LI makes use only of the following

weakening rules in the internal weakening process:

�{Γ∆1
1 , F−∗G} ` {∆′}

Wk′1
�{Γ∆1

1 , (Γ2;F−∗G)∆3} ` {∆′}
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�{�1,Γ2, F−∗G} ` {∆′}
Wk′2

�{�1, (Γ2; Γ3)∆2 , F−∗G} ` {∆′}

Lemma 25 (Maximal Re∆1
1 /Re∆2

2 ) Let Fx denote (F1 ∗G1; · · · ;Fk ∗Gk) for some k ≥
1, then for a αLBBIp-derivable sequent D : �{E(Γ

(∆1;Fx)
1 )} ` {1}, if there exists a pair

of αLBBIp-derivable sequents D′1 : Re
∆′1
1′ ` S+(Fx) and D′2 : Re

∆′2
2′ ` S−(Fx) such that

D  ∗RI
D′1 and D  ∗RI

D′2, then there exists a pair of αLBBIp-derivable sequents

D1 : Re∆1
1 ` S+(Fx) and D2 : Re∆2

2 ` S−(Fx) such that all the following conditions

satisfy.

• D  ∗RI
D1 (resp. D  ∗RI

D2) with incremental weakening (Definition 83).

• D1 (resp. D2) is a sequent that results from Proposition 17 on D′1 (resp. D′2).1

• there exists no D?
1 : Re

∆?
1

1? ` S+(Fx) (resp. D?
2 : Re

∆?
2

2? ` S−(Fx)) such that all the

following conditions satisfy.

– D?
1 (resp. D?

2) is a sequent that results from Proposition 17 on D1 (resp.

D2).

– Re∆1
1 6�ant Re

∆?
1

1? (resp. Re∆2
2 6�ant Re

∆?
2

2? ).

– D  ∗RI
D?

1 (resp. D  ∗RI
D?

2).

Such a Re∆1
1 /Re∆2

2 pair is called a maximal Re∆1
1 /Re∆2

2 pair. Likewise, with Γ′ denot-

ing (Γ∆a
a ,Γ∆b

b ,E((Γ2;F−∗G)∆3))1, if there exists a pair of αLBBIp-derivable sequents

D′1 : Re
∆′1
1′ ` F and D′2 : �{(Re∆′2

2′ , G); Γ′}) ` {∆′} such that (1) F is not in Ξ, that (2)

D  −∗LI
D′1 and that (3) D  −∗LI

D′2, then there exists a pair of αLBBIp-derivable

sequents D1 : Re∆1
1 ` F and D2 : �{(Re∆2

2 , G); Γ′} ` {∆′} such that the following

conditions all satisfy.

• D  −∗LI
D1 (resp. D  −∗LI

D2) with incremental internal weakening.

• D1 (resp. D2) is a sequent that results from Proposition 17 on D′1 (resp. D′2).

1That is, there is a transition Di  ∗ D′i in LBBIp-space with LBBIp-additive-weakening applica-
tions.
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• there exists no D?
1 : Re

∆?
1

1? ` F (resp. D?
2 : �{(Re∆?

2
2? , G); Γ′} ` {∆′}) such that the

following conditions all satisfy.

– D?
1 (resp. D?

2) is a sequent that results from Proposition 17 on D1 (resp.

D2).

– Re
∆?

1
1? 6�ant Re

∆1
1 (resp. �(((Re

∆?
2

2? , G); Γ′)∆′) 6�ant �(((Re∆2
2 , G); Γ′)∆′)).

– D  −∗L D?
1 (resp. D  −∗L D?

2).

Proof. In Appendix G. �

Proposition 18 (αLBBIp contraction admissibility) If a sequent D : �{Γ1; Γ2; Γ2} `
{∆1;H;H} is αLBBIp-derivable, then so is D′ : �{Γ1; Γ2} ` {∆1;H}, preserving the

derivation depth.1

Proof. In Appendix H. �

Proposition 19 (Admissibility of dR) If a sequent �{Γ1} ` {∆1; S∧(F1×F2)∗S∨(G1×
G2)} is αLBBIp-derivable, then so is �{Γ1} ` {∆1;F1 ∗ G1;F2 ∗ G2}, preserving the

derivation depth.

Proof. By induction on derivation depth of Π(D). Trivial for the base cases. Also
trivial for all the left inference rules by induction hypothesis on the premise sequents.
For the right inference rules, neither F1 ∗G1 nor F2 ∗G2 can become the principal for
any inference rules other than ∗RI or ∗R∗>. But these rules already absorb the effect
within. Induction hypothesis for the rest. �

1It may appear more rigorous if the statement is divided into two cases, i.e. into the left additive
contraction and the right additive contraction (with the proof via a simultaneous induction). However,
as the depth-preserving additive weakening admissibility has been proved, they can be handled at once
without a loss of generality.
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4.4.2.5 Equivalence of αLBBIp to LBBIp - Cut

For the proof, we make use of the formula depth along with derivation depth.

Definition 84 (Formula depth) The depth of a formula F , f depth(F ), is defined as

follows. It is 1 if F = {1,>, ∗>, p}; is max(f depth(F1), f depth(F2)) + 1 if F = F1 ·F2

for · ∈ {∧,∨,⊃, ∗,−∗}.

Proposition 20 (Equivalence of αLBBIp with LBBIp- Cut)
D : � ` 1 is αLBBIp-derivable with the collector ΞαLBBIp containing all the BBI mul-

tiplicative theorems derivable in αLBBIp iff it is [LBBIp- Cut]-derivable with the col-

lector ΞLBBIp containing all the BBI multiplicative theorems derivable in LBBIp- Cut.

Proof. In Appendix I. �

4.5 Adaptation to Separation Logic

Thanks to a theoretical result by Larchey-Wendling and Galmiche [2012], adaptation
of BBI sequent calculi into separation logic sequent calculi come into an easy reach.
One characteristic semantic difference exists in the condition of disjointness in the
composition of elements of Heap, however; in the heap semantics, a composition of
two elements is defined only if there is no overlap between them. To capture the
condition, I define the following axiom:

1overlap
Ex1 7→ Ex2, Ex1 7→ Ex3 ` ∆

The soundness of 1overlap is immediate. Then a sound separation logic sequent calcu-
lus results by adding it to LBBIp such that (1) the resultant calculus takes separation
logic formulas instead of BBI formulas and that (2) structures to appear in the calculus
comprise separation logic formulas instead of BBI formulas.

Similar holds true for αLBBIp in that to use it for separation logic, it suffices to add
to it the following inference rule:
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1overlap
�(E((Ex1 7→ Ex2; Γ1)∆1),E((Ex1 7→ Ex3; Γ2)∆2)) ` 1

in addition to the same two changes in the case of LBBIp. Soundness of the resultant
separation logic calculus is again immediate due to the relation between BBI semantics
and separation logic semantics (Cf. Chapter 1).

4.6 On Cut Eliminations

Whether Cut is admissible in [αLBBIp+ Cut] (which is equivalent to whether it is
admissible in LBBIp) is, however, not very straightforward, particularly around −∗RI .
Nonetheless, cut elimination succeeds for a conservative fragment of [αLBBIp+ Cut]:
[αLBBIp + Cut]−, with the following changes:

1. −∗R∗>: use instead:

Γ∆1
1 , F1 ` F2 −∗RIΓ1 ` F1−∗F2; ∆1

2. ∗R∗>: use instead:

∗> ` F1 �{E(Γ
(∆1;G1)
1 )} ` {G1} ∗R∗>

�{E(Γ
(∆1;F1∗G1)
1 )} ` {1}

3. ∗RI : use instead:

Re∆1
1 ` F1 Re∆2

2 ` G1 ∗RI
�{E(Γ

(∆1;F1∗G1)
1 )} ` {1}

4. The following collector Ξ is used for [αLBBIp + Cut]−: Ξ holds BBI multiplica-
tive theorems that are [αLBBIp + Cut]− derivable.

Proposition 21 (Cut elimination procedure) Cut is admissible in [αLBBIp + Cut]−.

Proof. Found in Appendix J. �
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id
p ` p

X ` F F ` Y
Cut’

X ` Y
1L

1 ` Y >R
X ` >

∗>R
Øm ` ∗>

Øa ` Y >L> ` Y
]F ` Y

¬L¬F ` Y
F ;G ` Y

∧L
F ∧G ` Y

F ` Y G ` Y ∨L
F ∨G ` Y

X ` F G ` Y ⊃ L
F⊃G ` ]X;Y

Øm ` Y ∗>L∗> ` Y
F,G ` Y

∗L
F ∗G ` Y

X ` F G ` Y −∗L
F−∗G ` X−◦Y

X ` ]F
¬R

X ` ¬F
X ` F X ` G ∧R

X ` F ∧G
X ` F ;G

∨R
X ` F ∨G

X;F ` G
⊃ R

X ` F⊃G
X1 ` F X2 ` G ∗R
X1,X2 ` F ∗G

X, F ` G −∗R
X ` F−∗G

X1 ` Y
WkL

X1;X2 ` Y

X ` Y1
WkR

X ` Y1;Y2

X;X ` Y
CtrL

X ` Y
X ` Y;Y

CtrR
X ` Y

Øa;X ` Y. . . . . . . . . . . . . .. . . . . . . . . . . . . . EA1L
X ` Y

X ` Y; Øa. . . . . . . . . . . . . .. . . . . . . . . . . . . . EA1R
X ` Y

Øm,X ` Y. . . . . . . . . . . . . .. . . . . . . . . . . . . . EA2L
X ` Y

X1;X2 ` Y. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . DP1
X1 ` ]X2;Y

X1; ]]X2 ` Y. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . DP2
X1;X2 ` Y

X ` Y1;Y2. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . DP3
X; ]Y1 ` Y2

X ` Y1; ]]Y2. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . DP4
X ` Y1;Y2

X1,X2 ` Y. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . DP5
X1 ` X2−◦Y

Figure 4.3: DLBBI: a display calculus for BBI by Brotherston [2012]. DP1, DP2, DP3,
DP4 and DP5 are commonly termed display postulates.

4.7 Conclusion and Related Work

Here is a summary of contributions in this chapter:

1. Development of BBI sequent calculus conventions and BBI sequent calculi through
analysis on the implication of the underlying semantics onto syntax.

2. Identification of a conservative Cut-eliminable class of BBI sequent calculi with
the first detailed cut elimination procedure known so far as a foothold for further
research into this direction.

4.7.1 Related work

Known results related closest are ones by Brotherston [2012]; Park et al. [2013]. Broth-
erston introduced a BBI display calculus DLBBI, as shown in Figure 4.3.
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Definition 85 (DLBBI structures) A DLBBI negative structure X and a DLBBI positive

structure Y are mutually defined by the following grammars:

X := F | Øa | Øm | X;X | X,X | ]Y.

Y := F | Øa | Y;Y | ]X | X−◦Y.

The set of DLBBI negative structures is denoted by NDLBBI , whereas that of DLBBI positive

structures by PDLBBI .

Definition 86 (DLBBI sequents) The set of DLBBI sequents is defined by:

DDLBBI := {X ` Y | [X ∈ NDLBBI ] ∧† [Y ∈ PDLBBI ]}.

¬ and ] are both primitive in DLBBI, but I treat ¬F as an abbreviation of F ⊃ 1, and ]X
(resp. ]Y) as an abbreviation of X ⇒ 1 (resp. Y ⇒ 1) where ⇒ 1 is what represents ].
Cut’ is admissible in DLBBI (Cf. Brotherston [2012]). Introduction of both ] and −◦ in a
backward proof search must be allowed, however. To show that an upward introduction
of ] is necessary, p; p ⊃ q ` q may be used. To show that an upward introduction of −◦
is necessary, p, p−∗q ` q may be used.

For a more scalable proof search, some de-displaying seems to have proved useful
(Cf. Goré et al. [2009]). Park et al. [2013] borrowed the idea of nested sequents (Cf.

Kashima [1994]) and envisaged an optimisation of DLBBI into SBBI by the following
main modifications:

1. The presence of −◦ on the consequent is not permitted in SBBI, which can only
appear on the antecedent. The following DLBBI derivations:

X1; ](X2−◦(F1; · · · ;Fk)) ` Øa
DP1

X1 ` ]](X2−◦(F1; · · · ;Fk)); Øa
EA1R

X1 ` ]](X2−◦(F1; · · · ;Fk))
DP4

X1 ` X2−◦(F1; · · · ;Fk)
DP5

X1,X2 ` F1; · · · ;Fk

are compiled as one step derivation in SBBI:

X1; (X2 ` Øa)� Øa ` F1; · · · ;Fk �` Øa
TCS

X1,X2 ` F1; · · · ;Fk

One characteristic of the calculus SBBI is that nesting of sequents within a se-
quent is permitted, as clear from the above derivation step. (X2 ` Øa) � Øa `
F1; · · · ;Fk � corresponds to ](X2−◦(F1; · · · ;Fk)) in the first derivation.
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2. No explicit use of DL1−4 occurs in a SBBI derivation.

Since several DLBBI derivation steps are identified redundant (as shown above) within
SBBI, “proof searches in SBBI are always simpler than in DLBBI (except in trivial cases)”
(a quotation from Park et al. [2013]).

To make an observation on cut admissibility and analyticity, they state that SBBI is
sound and complete with respect to the underlying BBI semantics, and that Cut” (a
rule of transitivity in SBBI) in the proof system is admissible. A few remarks could be
useful, nonetheless. First for analyticity, introductions of a SBBI structural connective
internalising both −◦ and ] are still permitted to occur in SBBI, which, in conjunction
with available contractions, leads to an infinite introduction of new distinct constructs.
Again the new structural connective (· · · )� · · · � can be shown neither admissible nor
implied eliminable from admissibility of Cut”. The use of multiplicative-implication-
like display-like postulates to simulate not only the multiplicative implication but also
the semantic peculiarity of the multiplicative conjunction and of the multiplicative unit
makes the identification of maximally analytical BBI fragment a taxing process.

Proposition 22 (Couplings of multiplicative connectives in DLBBI and SBBI)
The structural connective for the multiplicative implication available within DLBBI and

SBBI is expressive enough to simulate the semantics of the multiplicative conjunction

and that of the multiplicative unit.

Proof. For the multiplicative conjunction, use the following DLBBI sequent Park et al.
[2013]: p ` (p ∗ q); (p ∗ ¬q). Its DLBBI-derivation is:

id
q ` q

WkL
Øm; q ` q

{DP1, DP3}
Øm; ]q ` ]q

¬R
Øm; ]q ` ¬q id

p ` p
∗R

p, (Øm; ]q) ` p ∗ ¬q
WkR

p, (Øm; ]q) ` (p ∗ q); (p ∗ ¬q)
{DP1, DP3, DP4, DP5}

Øm; ](p−◦((p ∗ q); (p ∗ ¬q))) ` q id
p ` p

∗R
p, (Øm; ](p−◦((p ∗ q); (p ∗ ¬q)))) ` p ∗ q

WkR
p, (Øm; ](p−◦((p ∗ q); (p ∗ ¬q)))) ` (p ∗ q); (p ∗ ¬q)

{DP1, DP4, DP5}
Øm ` p−◦((p ∗ q); (p ∗ ¬q))

DP5
Øm, p ` (p ∗ q); (p ∗ ¬q)

EA2L
p ` (p ∗ q); (p ∗ ¬q)
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The use of DP5 is necessary to derive the given sequent, even though there appears no
−∗ within the sequent.

For the multiplicative unit, use the following sequent: Øm; p ` p ∗ p. Its DLBBI-
derivation is as follows:

Øm; p ` p

]p ` ]p
{WkL,WkR,EA2L}

(Øm; ]p), (Øm; p) ` p ∗ p; ]p
DP1,3,4,5

Øm; ]((Øm; p)−◦(p ∗ p; ]p)) ` p
{∗R,WkR}

(Øm; ]((Øm; p)−◦(p ∗ p; ]p))), (Øm; p) ` p ∗ p; ]p
{DP1,4,5, CtrR}

Øm, (Øm; p) ` p ∗ p; ]p
EA2LØm; p ` p ∗ p; ]p

{DP2, DP3, CtrL}
Øm; p ` p ∗ p

The use of DP5 is again necessary to derive the given sequent despite the absense of
−∗ in the sequent. �

For the SBBI cut elimination which is stated holding in Park et al. [2013], it may be
indeed holding; its proof may not, however, follow from (1) equivalence of SBBI to
DLBBI and (2) Cut’ admissibility in DLBBI: SBBI does not satisfy Belnap’s conditions
(Cf. Belnap [1982]) and Cut” is not the same as Cut’ in DLBBI.

In Park et al. [2013], it is also shown how to absorb contraction inference rules in
the calculus into the other logical inference rules to derive a variant CSBBI for a more ef-
ficient proof search than possible within SBBI. The absorption spills out into structural
rules, nonetheless, and elimination of structural contraction remains a future work.

4.7.2 Conclusion

In this chapter, a groundwork was taken towards a delivery of a BBI sequent calculus.
Great cares were taken to ensure a closer semantic-syntax correspondence than previ-
ously envisaged such as by Brotherston [2012]; Park et al. [2013]. A sound and ana-
lytic BBI proof system αLBBIp was derived, which aimed for a complementary study
to theirs towards a mutual goal of an efficient BBI theorem proving. Instead of starting
analysis on the highly expressive mechanism with display postulates, taming their ex-
pressiveness wherever redundancies are witnessed (Park et al. [2013]), I began a search
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for analytic fragments of BBI proof systems, carrying out a semantic examination pri-
marily on the following: (1) a partial distributivity between the additive-multiplicative
base-logics and (2) the significance of the non-intuitionistic multiplicative unit in Logic
BBI which is more commonly considered as a part of the multiplicative intuitionistic
linear logic (which behaves intuitionistically). If we consider the work by Park et al.
[2013] as a top-down approach, the approach taken in this chapter is then bottom-up.
For (1), it was reported that a multiplicative conjunct (F1 ∗ F2) may exhibit certain
coupling effect with other multiplicative conjuncts. This phenomenon was treated in
the special distributivity rule dR. Consideration over its implication upon analyticity
and Cut was then taken. One advantage of LBBIp over DLBBI and SBBI draws from the
absence of certain inconvenience in Brotherston [2012]; Park et al. [2013] where the
semantic peculiarity of the multiplicative conjunction and of the multiplicative unit has
to be simulated with the multiplicative implication (−◦, (· · · ) � · · · �; Cf. Proposi-
tion 22). LBBIp will be able to handle the fragment of BBI without the multiplicative
implication by simply dropping the inference rules for the connective, to contrast. For
the multiplicative unit, LBBIp strictly treats it as a Boolean component with dedicated
inference rules. Further studies into semantics-syntax correspondences, I here believe,
should unfold a more precise picture about how the multiplicative unit behaves within
BBI sequent calculus. From LBBIp, a variant αLBBIp was derived that absorbed the
effects of LBBIp structural rules (partial absorption for contraction). Admissibility of
Cut was then stated for a conservative αLBBIp with a cut elimination procedure. It
is hoped that these BBI sequent calculi become the starting point for a set of work to
follow into bottom-up BBI sequent calculus derivation, just as DLBBI was for SBBI. The
technique that Ciabattoni et al. [2008] showed in order to extract structural inference
rules from Cut may be one useful approach to consider.
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Chapter 5

Phased Sequent Calculus

Complex analysis is often anticipated for expressive logics, as we saw in the previous
chapters. For instance, in Chapter 3 as part of LBIZ development, deep absorption of
LBI weakening into LBI logical inference rules was proposed, which did what was
required of in the proof of contraction admissibility. Nevertheless, the Re1/Re2 pair
is somewhat mystified, since it may not be any substructure but rather a collection of
some substructures that occur in the conclusion sequent. Further, the internalisation
of a number of LBI operations within a LBIZ logical rule does not fail to obscure the
manner by which base logic interactions take place, nor does it bespeak the rationale
behind in a perspicuous manner. But the farther we step away from those logics, the
more apparent becomes the following more fundamental inquiry: “First of all, how
were intuitionistic logic and multiplicative intuitionistic linear logic combined?” LBIZ

retains almost no trace of the origin of the logical combination. From the inference
rules of LBIZ, it cannot be made entirely certain, either, if BI is the combined logic of
the base logics or a combined logic of the two. In this chapter, I consider a general
problem of formulation of a combined logic within sequent calculus, which gives rise
to the concept of phased sequent calculus as one that allows development of a manner
in which base-logics interact, of the origin of the logical combination itself.
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5.1 Phased Sequent Calculus: Sequent Calculus to De-
rive Logical Combinations

Phased sequent calculus is a sequent calculus that externally observes a set of base log-
ics. Put in another way, it is a sequent calculus as a meta sequent calculus. Base logics
of a combined logic form base components in phased sequent calculus of the combined
logic. Those base components each have their own derivability relation so that, if we
have a combined logic of two base logics, one of the base components has a derivabil-
ity relation `1, while the other has a derivability relation `2. This first consideration is
akin to the one found in Schechter [2011] or else in Cruz-fillipe and Sernadas [2005]
to physically isolate base logics. This achieves the intended effect of mine where none
of the base components can be conscious of any others. In fact there is a physical
separation between any two of them. Apart from the base components, there can -
though does not have to - be meta-base-component components called communication
components. Each communication component, defined over two base components,
can observe both components in a particular manner, and in the particular observa-
tion is a particular logical combination. I say “particular” because exactly what the
observation is remains unknown until it is determined. This achieves the intended
effect of mine that base logics combine when they are recognised at once somehow.
Therefore, unlike orthodox sequent calculi, the phased sequent calculus consists of
two basic building-blocks: two or more base components and zero or more communi-
cation components. As a fundamental principle of the formalism, a base component
does not spontaneously communicate with other base components (as stated above).
Suppose that we are conscious of two propositional logics1 LA = L(P,CA, InfA) and
LB = L(P,CB, InfB) with propositional variables P, logical connectives CA and respec-
tively CB, and a set of inference rules InfA and respectively InfB. A phased sequent
calculus for a combined logic LC of LA and LB with two base components representa-
tive of LA and LB but without a communication component will, as another principle
of the formalism, recognise all the formulas built from propositional variables and
CA

⋃
CB. Inferences on formulas themselves, however, can take place only within a

base component, which implies, in the absence of communication facilitated between

1It does not matter if a logic is propositional or otherwise, nor does it matter if the number of logics
to be combined is two or greater; but I only talk about two propositional logics here to provide intuition.
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the two, that, while a set of formulas in LC becomes generally larger than that recog-
nised in LA or in LB, what LA (resp. LB) may handle are only those connectives that it
recognises. This is defined to be the most basic combined logic derivable from LA and
LB within the phased sequent calculus that respects the two said fundamental princi-
ples, which we represent as LC = L(P,CA

⋃
CB, InfA, InfB, ∅), the third and the fourth

defining available inference rules to each base component. This maps to a psycho-
logical state of ours where we do not systematically know links between LA and LB,
though somehow conscious of them. As we direct more attention to combination itself,
however, LC may gradually mould into an agreeable logic to us with fair properties,
into a stand-alone logic, when an interaction principle, i.e. the meaning of ‘combina-
tion’ of LA and LB, is agreed upon that thenceforth acts as a bridge over LA and LB. In
phased sequent calculus, it is built as a set of inference rules: InfA↔B. A more general
definition of LC now derives: LC = L(P,CA

⋃
CB, InfA, InfB, InfA↔B).

We could also take the following viewpoint about the phased sequent calculus:
base components represent small worlds that are self-functional but unaware of the
world outside themselves, whereas communication components act as mediators (or
interpreters) on behalf of the small worlds. By the strength of mediation the mediators
exercise, the small worlds become more glued or more detached (with respect to cer-
tain criteria that allow us to measure the detachedness).

The phased sequent calculus permits us to freely set those mediators as the roots of
distinct logical characteristics of a combined logic, i.e. the semantics of ‘combination’
itself.1

Let us consider our specific example of combining BIbase additive sub-logic and
BIbase multiplicative sub-logic in order to enforce intuition of the previous paragraphs.
A general (in our sense of respecting the two properties) representation of a combined
logic of BIbase additive sub-logic and BIbase multiplicative sub-logic is:
L(P, {>,1,∧,∨,⊃, ∗}, InfBIm, InfBIa, Infs) where:

1In case of a dissent to the use of the term ‘semantics’, I reckon there in fact is conceivable a
correspondence of some semantics to derivations a set of inference rules may construct. By considering
derivations within a proof system, I reckon we are studying the semantic characteristics at a higher-
level than at the level of individual models. Note, however, that phased sequent calculus allows some
interesting enterprise: provided we first know semantics, it can view any logic L as a combined logic of
a restricted L with a set of particular models and a restricted L with a set of all the other conceivable
models which are connected through mediation of an appropriate mediator.
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• InfBIm = {id1, ∗L, ∗R, Cut1}

• IntBIa = {id2, 1L,>R,∧L, ∨L,⊃{p,>,∧,∨,⊃,∗} L,∧R,∨R,⊃ R, Cut2}

in which id1 and id2 are respectively:

id1p ` p id2Γ; p ` p

and both Cut1 and Cut2 are appropriate inference rules that reflect transitivity (CutLBIZ1
in this specific case of ours), while all the rest of inference rules are exactly from LBIZ1.
Now, let us suppose Infs to be empty. This represents an immature form of combination
of the two that are more fairly said to have been confounded (perhaps amid confusion
on the part of one who works on the two logics) than calculatingly combined. The
resultant combined logic, whose name shall remain anonymous, does not lack in any
inconvenience. It recognises all the BIbase formulas; and yet it exhibits knowledge ei-
ther of {id1, ∗L, ∗R, Cut1} (Inf1) or of {id2,1L,>R,∧L,∨L,⊃··· L,∧R,∨R,⊃ R, Cut2}
(Inf2) but not of both; a somewhat fashionable state of a logic. Let us suppose a for-
mula: (((p1 ∧ p2) ∗ p3) ∧ p4) ⊃ (p1 ∗ p3). If it so happens that the anonymous combined
logic that we just conjured up exhibits knowledge of Inf1, we are immediately struck
by this feeling that we be quite unable to do anything with the given formula. It may,
equally probably, exhibit knowledge of Inf2 on the other hand, in which case may be
drawn the following derivation:

((p1 ∧ p2) ∗ p3); p4 ` p1 ∗ p3 ∧L
((p1 ∧ p2) ∗ p3) ∧ p4 ` p1 ∗ p3 ⊃ R` (((p1 ∧ p2) ∗ p3) ∧ p4) ⊃ (p1 ∗ p3)

although it does not present much prospect from there on.
It seems, in the context of phased sequent calculus, that what is not knowable in a

small world becomes an unknown predicate to it: the given formula would contain the
following unknown predicate ??1((((p1 ∧ p2) ∗ p3) ∧ p4) ⊃ (p1 ∗ p3)) if the combined
logic exhibits knowledge of Inf1, or else it would the following unknown predicates
??2((p1∧p2)∗p3) and ??3(p1 ∗p3). These predicates cannot be knowable in a respective
small world (either the case), and reasoning comes to an abrupt halt upon exhausting
the other derivation options.1

1Nonetheless, they still exist in the anonymous logic as what ordinarily appear to be pointless
existences!
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By positing a mediator with an adequate strength of mediation, however, the clumsy
motley can turn into a logic which may be perceived to be more interesting to a wider
audience. With an adequate mediation, the combination becomes BIbase in which the
supposed formula is recognised as a theorem. But the mediator in our present spe-
cific case is none other than Infs, which is a formalisation of what it means by a logic
combination of the base logics. Phased sequent calculus is then a fairly general proof-
theoretical framework that allows the sense of logical combination to be studied: it
assumes no premeditated logical combination (apart from the two mentioned condi-
tions), which is determined not in the way that we see agreeable to some understanding
that we may entertain about what it should mean by ‘combination’, but in accordance
with the definition of communication components (the mediators), which may on some
occasion afford us precisely what to us is an ideal combination or may simply not.

5.2 PBI: A Specific Calculus for BIbase
A thorough investigation into the mechanism of ‘combination’ given multiple logics
within the proposed formalism is, however, too large to be even marginally exhausted
in a single chapter of a thesis. Such being my present foreboding, it is kept, for theory,
an introductory note to phased sequent calculus with a specific example of BIbase,
and for application, a supplementary material to Chapter 3 of this thesis providing a
decision procedure for the BI fragment.

To begin, a set of definitions for BIbase are (re-)constructed. The definition for
BIbase formulas is the same, but listed here as a reminder.

Definition 87 (BIbase formulas) A BIbase formula F (, G,H) is defined by:

F := p | > | 1 | F ∧ F | F ∨ F | F ⊃ F | F ∗ F .

By FBIbase we denote the set of the BIbase formulas that this grammar generates.

Definition 88 (Structures) A BIbase structure Γ is defined by:

Γ := A |M M := F | A1, · · · ,Am︸ ︷︷ ︸
m≥2

A := F | M1; · · · ;Mn︸ ︷︷ ︸
n≥2

By SBIbase we denote the set of the structures that this grammar generates. Each A

(resp. M) is termed an additive (resp. a multiplicative) structural layer.
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Associativity and commutativity hold within FBIbase and SBIbase as noted in 1.1.4 (for
BI), but re-listed here also for a reminder:

Property 8 (Associativity and commutativity)

1. F1 ∧ (F2 ∧ F3) = (F1 ∧ F2) ∧ F3.

2. F1 ∨ (F2 ∨ F3) = (F1 ∨ F2) ∨ F3.

3. F1 ∗ (F2 ∗ F3) = (F1 ∗ F2) ∗ F3.

4. F1 ∧ F2 = F2 ∧ F1.

5. F1 ∨ F2 = F2 ∨ F1.

6. F1 ∗ F2 = F2 ∗ F1.

7. Γ1; (Γ2; Γ3) = (Γ1; Γ2); Γ3.

8. Γ1, (Γ2,Γ3) = (Γ1,Γ2),Γ3.

9. Γ1; Γ2 = Γ2; Γ1.

10. Γ1,Γ2 = Γ2,Γ1.

In defining contexts, note that a phased sequent calculus poses a mediator (or media-
tors) observing base-logic interactions which the small worlds (or base components)
themselves cannot observe. The following definition reflects the viewpoint of our spe-
cific BIbase mediator.

Definition 89 (Depth-aware contexts and structures) SL1 and SL2 contexts of de-

gree i ≥ 0 are defined inductively:

• 0Ω1(−) := −M.

• 1Ω2(−) := −A,Γ (for some Γ ∈ SBIbase).

• (2i+2)Ω1(−) := ((2i)Ω1(−); Γ1),Γ (for some Γ1,Γ ∈ SBIbase; assumed similarly in

the rest) such that Γ1 is not empty.
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• (2i+3)Ω2(−) := ((2i+1)Ω2(−); Γ1),Γ. such that Γ1 is not empty.

• 0Ω2(−) := −A.

• 1Ω1(−) := −M; Γ such that Γ is not empty.

• (2i+2)Ω2(−) := ((2i)Ω2(−),Γ1); Γ such that Γ is not empty.

• (2i+3)Ω1(−) := ((2i+1)Ω1(−),Γ1); Γ such that Γ is not empty.

where a −M or a −A denotes that only a M and respectively a A may replace the hole.
iΩj for i ≥ 0 and j ∈ {1, 2} then denotes a BIbase structure with an associated SLj

context of degree i such that there exists at least one focusable sub-strucure. Given

some iΩj(Γ), we say that Γ is focused.

Example 8

1. If 0Ω1 = (((p1; p2), F3); p4), F5, then the entire “(((p1; p2), F3); p4), F5” can be

focused, but not any others.

2. there cannot be any 0Ω2 such that 0Ω2 = (((p1; p2), F3); p4), F5.

3. there cannot be any 1Ω1 such that 1Ω1 = (((p1; p2), F3); p4), F5.

4. If 1Ω2 = (((p1; p2), F3); p4), F5, then the entire “((p1; p2), F3); p4” and the entire

“F5” can be focused, but not any others.

5. If 2Ω1 = (((p1; p2), F3); p4), F5, then the entire “(p1; p2), F3” can be focused, but

not any others.

6. there cannot be any 2Ω2 such that 2Ω2 = (((p1; p2), F3); p4), F5.

7. there cannot be any 3Ω1 such that 3Ω1 = (((p1; p2), F3); p4), F5.

8. If 3Ω2 = (((p1; p2), F3); p4), F5, then the entire “p1; p2” and the entire “F3” can

be focused, but not any others.

9. If 4Ω1 = (((p1; p2), F3); p4), F5, then the entire “p1” and the entire “p2” can be

focused, but not any others.
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10. there cannot be any iΩ2 with i ≥ 4 such that iΩ2 = (((p1; p2), F3); p4), F5.

11. there cannot be any iΩ1 with i ≥ 5 such that iΩ1 = (((p1; p2), F3); p4), F5.

Lemma 26 For all Γ ∈ SBIbase , if there exists some (2i)Ωj for i ≥ 0 and j ∈ {1, 2} such

that (2i)Ωj ≡ Γ (up to assoc. and commut. as in Property 8), there exists no (2i+1)Ωj

such that (2i+1)Ωj ≡ Γ.

Definition 90 (PBI Sequents)
The set DSL1 of SL1 sequents is defined by:

DSL1 := {iΩ1 `1 F | [i ≥ 0] ∧† [iΩ1 ∈ SBIbase ] ∧† [F ∈ FBIbase ]}.
The set DSL2 of SL2 sequents is defined by:

DSL2 := {iΩ2 `2 F | [i ≥ 0] ∧† [iΩ2 ∈ SBIbase ] ∧† [F ∈ FBIbase ]}.
The set DPBI of PBI sequents is then defined by DPBI := DSL1

⋃
DSL2 .

It trivially holds that DSL1

⋂
DSL2 = ∅. PBI is found in Figure 5.1.

Definition 91 (PBI) PBI comprises two non-communication components and one com-

munication component (a mediator).

• SL1 rules (base):

SL1id ∗L ∗R

• Interaction rules (mediator):

Transfer ↓ ∗Lock ↓ ∨Lock ↓ 1Peel ↓ Revert ↓
Transfer ↑ ∗Lock ↑ ∨Lock ↑ 1Peel ↑ Revert ↑

• SL2 rules (base):

SL2id 1L >R ∧ L ∨ L ⊃L{p,>,∧,∨,⊃,∗} ∧R ∨R ⊃ R

I denote the set of interaction rules by InfI . Those in [· · · ] in PBI inference rules

are side conditions (and not premise sequents) that must satisfy when the particular

inference rules apply.

All the logical inference rules in PBI, apart from the difference in the nature of con-
texts, behave in the same way as those corresponding ones in BIbase. Significance of
interaction rules are detailed in 5.3.
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SL1id0Ω1(p) `1 p

kΩ1(〈Γ〉, F,G) `1 H ∗LkΩ1(〈Γ〉, F ∗G) `1 H

j1Ω1 `1 Ha
j2Ω1 `1 Hb [Γa = j1Ω1 and Γb = j2Ω1]

∗R0Ω1(Γa,Γb) `1 Ha ∗Hb

jΩ1 `1 H [jΩ1 = 0Ω2]
Transfer ↑

0Ω2 `2 H

jΩ2 `2 H [jΩ2 = 0Ω1]
Transfer ↓

0Ω1 `1 H

kΩ1 `1 H [kΩ1 = (k+1)Ω2]
Revert ↑

(k+1)Ω2 `2 H

kΩ2 `2 H [kΩ2 = (k+1)Ω1]
Revert ↓

(k+1)Ω1 `1 H

0Ω1(Γa) `1 1
1Peel ↑

0Ω2(Γa; Γb) `2 H

0Ω2(Γa) `2 1
1Peel ↓

0Ω1(Γa,Γb) `1 H

(k+1)Ω1 `1 Ha ∨Hb [(k+1)Ω1 = kΩ2]
∨Lock ↑

kΩ2 `2 Ha ∨Hb

(k+2)Ω2 `2 Ha ∨Hb [(k+2)Ω2 = (k+1)Ω1]
∨Lock ↓

(k+1)Ω1 `1 Ha ∨Hb

0Ω1 `1 Ha ∗Hb [0Ω1 = proj(jΩ2)]
∗Lock ↑

jΩ2 `2 Ha ∗Hb

j2Ω2 `2 Hl ∗Hr [j2Ω2 = j1Ω1]
∗Lock ↓

j1Ω1 `1 Hl ∗Hr

SL2id0Ω2(Γ; p) `2 p
>RjΩ2 `2 >

1LkΩ2(Γ; 1) `2 H

kΩ2(Γa;F ;G) `2 H ∧LkΩ2(Γa;F ∧G) `2 H

kΩ2(Γa;F ) `2 H
kΩ2(Γa;G) `2 H ∨LkΩ2(Γa;F ∨G) `2 H

kΩ2(Γa; p;F ) `2 H ⊃ LpkΩ2(Γa; p; p ⊃ F ) `2 H

kΩ2(Γa;G) `2 H ⊃ L>kΩ2(Γa;> ⊃ G) `2 H

kΩ2(Γa;Fa ⊃ (Fb ⊃ Fc)) `2 H ⊃ L∧kΩ2(Γa; (Fa ∧ Fb) ⊃ Fc) `2 H

kΩ2(Γa; (Fa ⊃ Fc); (Fb ⊃ Fc)) `2 H ⊃ L∨kΩ2(Γa; (Fa ∨ Fb) ⊃ Fc) `2 H

0Ω2(Γa;Fb ⊃ Fc) `2 Fa ⊃ Fb
kΩ2(Γa;Fc) `2 H ⊃ L⊃kΩ2(Γa; (Fa ⊃ Fb) ⊃ Fc) `2 H

jΩ2 `2 Fa ∗ Fb [jΩ2 = Γa]
kΩ2(Γa;Fc) `2 H ⊃ L∗kΩ2(Γa; (Fa ∗ Fb) ⊃ Fc) `2 H

0Ω2(Γ;Fa) `2 Fb [jΩ2 = Γ]
⊃ RjΩ2 `2 Fa ⊃ Fb

jΩ2 `2 Fa
jΩ2 `2 Fb ∧RjΩ2 `2 Fa ∧ Fb

jΩ2 `2 Fx [x ∈ {a, b}]
∨RjΩ2 `2 Fa ∨ Fb

Figure 5.1: PBI: a phased sequent calculus defining BIbase. j ∈ {0, 1} with or without
a sub-script. k ≥ 0.
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Definition 92 (PBI conventions)

1. Given a PBI sequent with some antecedent (sub-) structure in the form: “Γ1; Γ2”,

Γ1 or Γ2 may be empty. Its emptiness is identified with a >.1

2. Given a PBI sequent, for an antecedent structure in the form: “Γ1,Γ2”, neither

Γ1 nor Γ2 can be empty. The notation: “〈Γ〉”, is used to explicitly denote that Γ

which is enclosed in “〈· · · 〉” may be empty.

Example 9 ∗L is (backward) applicable to a PBI sequent F ∗ G `1 H even if there

are no other surrounding structures. ∗R does not (backward) apply to a PBI sequent

D : Fa ` Ha ∗Hb since there is only one formula in the antecedent.

The function proj applies in the process of a backward derivation step of ∗Lock ↑. In the
context of a PBI derivation, it acts as an incremental weakening as we saw in Chapter
3.

Definition 93 (Projection) Let M denote either a formula in the form: H1 ∗ H2 or

a structure in the form: “Γ1,Γ2”. Let projunit : SSL2 ⇀ SSL1 be a partial function

defined by: projunit(
0Ω2(M; Γ2)) = 0Ω1(M). Then a partial function proj : SSL2 ⇀

SSL1 is defined as follows:

• proj(0Ω2(Γ1; Γ2)) = projunit(
0Ω2(Γ1; Γ2)).

• proj(1Ω2) = 0Ω1(Γ) where Γ is a BIbase structure that derives from applying

projunit to one or more focusable sub-structures of 1Ω2 (assume that each of

them is a SL2 structure with the 0-th context degree).

The following example shows how proj works.

Example 10 Let p1 ∗ p2, (p3; (p4, p5)) be a SL2 antecedent structure of the context de-

gree 1. Then the output of proj((p1 ∗ p2, (p3; (p4, p5)))) is either of the below;

• p1 ∗ p2, (p3; (p4, p5)) (when projunit applies on p1 ∗ p2)

1This identification is only relevant in the left premise sequent of ⊃ L∗ when Γa is empty in the
conclusion sequent.
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• p1∗p2, p4, p5 (when it applies on p3; (p4, p5) and when it applies both on p3; (p4, p5)

and on p1 ∗ p2)

each of which is a SL1 antecedent structure of the 0-th context.

And the following example clarifies why it is a partial function.

Example 11 Let p1 ⊃ p2, p3 ⊃ p4 be another SL2 antecedent structure of the context

degree 1. Then proj(p1 ⊃ p2, p3 ⊃ p4) is undefined. Let p1 ⊃ p2, p3 ⊃ p4 `2 p5 ∗ p6 be

a SL2 sequent with the context degree of 1. Then ∗Lock ↑ cannot apply on the sequent

since the side condition cannot be satisfied.

The expressiveness of PBI is to be subsequently shown equivalent to LBIZ1’s. A char-
acterisation of semantics more faithful to the underlying principle of the phased se-
quent calculus is a fruitful future work.

5.3 Base-Logic Interactions within PBI

The set of PBI sequents is a union of DSL1 and DSL2 with an empty intersection (Cf.

Definition 90). In the context of a backward derivation tree construction, i.e. backward
theorem-proving, then, we know a priori that no SL1 (resp. SL2) rules apply to any
D ∈ DSL2 (resp. D ∈ DSL1). I term by phase what imposes such a condition on PBI

sequents, to emphasise the syntactic viewpoint about a small world (or a base compo-
nent). A phase can be of SL2 or of SL1. All the SL1 (resp. SL2) sequents are in a SL1

(resp. SL2) phase. Interactions between the two phases, i.e. phase switches, cannot
be achieved within the base components, which must be facilitated by the mediator.
A PBI phase switch (looked from conclusion to premise(s)) from a SL1 phase into a
SL2 phase is induced via Transfer ↓, Revert ↓, 1Peel ↓, ∗Lock ↓ and ∨Lock ↓, while
that from a SL2 phase into a SL1 phase is induced via Transfer ↑, Revert ↑,1Peel ↑
, ∗Lock ↑ and ∨Lock ↑.

5.3.1 Interactions as a set of transitions

Since a mediator is an interpretation superimposed on the two phases, it is possible to
entirely characterise its actions in a state diagram, as shown in Figure 5.2, abstracting
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01 12 21 32 41

02 11 22 31 42

t ↓, ∗ ↓ ∨ ↑ ∨ ↓ ∨ ↑

t ↑,∨ ↑ ∨ ↓ ∨ ↑ ∨ ↓

r ↑, ∗ ↑ r ↓ r ↑ r ↓

r ↓, ∗ ↓ r ↑ r ↓ r ↑

t ↓, 1 ↓t ↑, 1 ↑, ∗ ↑

Figure 5.2: A state diagram of PBI base-logic interactions characterised by PBI in-
teraction rules, shown up to the 4th contexts (to continue farther, if possible at all,
in the same pattern thereupon). State labels indicate the context-degree and their
sub-scripts either of the small worlds SL1 which 1 represents or SL2 which 2 does.
Following short-hand labels for PBI interaction rules are used in the state diagram:
Transfer ↓ 7→ t ↓, Revert ↓ 7→ r ↓,1Peel ↓ 7→ 1 ↓,∨Lock ↓ 7→ ∨ ↓, ∗Lock ↓ 7→ ∗ ↓,
Transfer ↑ 7→ t ↑, Revert ↑ 7→ r ↑,1Peel ↑ 7→ 1 ↑, ∨Lock ↑ 7→ ∨ ↑, ∗Lock ↑ 7→ ∗ ↑.

away logical inference steps to take place in each phase. The implication is that, when
we intend to derive a combined logic, a particular manner of logical combination can

be proof-theoretically developed and analysed by working on the abstract model. This
can aid, given some base logics, an adequate derivation of a combined logic befitting a
particular application.

5.3.2 Types of PBI phase switches

From the perspective of a logical combination engineering, it is useful that we classify
interaction rules by types and grasp the senses of logical combination in effect.

5.3.2.1 Phase switches by transfer

Phase switches by transfer: Transfer ↑, Transfer ↓, Revert ↑, Revert ↓, represent
natural transitions from one phase to another, adjusting the context-degree adequately.
Transfer ↑, Transfer ↓ never decrease the context-degree, whereas Revert ↑, Revert ↓
always do.

Example 12 An example with (p1 ∨ p2) ∗ p3 `1 (p1 ∨ p2) ∗ p3; logical connectives

accessible in a sequent are highlighted in red:

159



SL2idp1 `2 p1 ∨R
p1 `2 p1∨p2

SL2idp2 `2 p2 ∨R
p2 `2 p1∨p2 ∨L

p1∨p2 `2 p1∨p2
Transfer ↓

p1 ∨ p2 `1 p1 ∨ p2
SL1idp3 `1 p3 ∗R

p1 ∨ p2, p3 `1 (p1 ∨ p2)∗p3 ∗L
(p1 ∨ p2)∗p3 `1 (p1 ∨ p2)∗p3

Transfer ↑
(p1 ∨ p2) ∗ p3 `2 (p1 ∨ p2) ∗ p3

Another example with p1; (p2, p3) `1 p1:

SL1id
p1; (p2, p3) `2 p1

Revert ↓
p1; (p2, p3) `1 p1

5.3.2.2 Phase switches by peeling

A phase switch can also be induced via a peeling operation which discards, i.e. peels,
structural layers of a sequent in the current phase. A peeling operation of the mediator
intends to identify formula(s)/structure(s) which the mediator supposes is buried in a
structure inaccessible in the current phase with the current context-degree. In PBI,
there are two peeling rules: 1Peel ↓ and 1Peel ↑ with the intention of locating 1 which
may be hidden in an inner structural layer.

Example 13 An example of peelings with p1, (p2 ∧ (p3 ∗ (p4 ∧ 1))) `1 p2; those logical

connectives accessible are highlighted in red:

1L
p4; 1 `2 1 ∧L
p4∧1 `2 1

1Peel ↓
p3, (p4 ∧ 1) `1 1 ∗L
p3∗(p4 ∧ 1) `1 1

1Peel ↑
p2; (p3 ∗ (p4 ∧ 1)) `2 1 ∧L
p2∧(p3 ∗ (p4 ∧ 1)) `2 1

1Peel ↓
p1, (p2 ∧ (p3 ∗ (p4 ∧ 1))) `1 p2

5.3.2.3 Phase switches by locking

Lockings are a mode of communication that facilitates a greater flexibility in the way
phases interact. Within PBI, they are the most complex phase switches. While the
intention of a locking is - to the extent that it tries to collect sufficient information
by digging deeper into inner structural layers - similar to that by peeling, there is
also a difference in that it does not in general reveal an inner structural layer as the

160



outermost one, which would happen if with peeling. Instead, a phase shift by locking
lets the intention of the mediator (to collect sufficient information for some locked

formula that requires them) carried over to the next phase, along with adjustment of
the context-degree.

Example 14 An example of PBI derivation of p1, ((p2 ∗ p3); p4) `1 (p5⊃(p1 ∗ p2)) ∗ p3

involving ∗Lock ↑ and ∗Lock ↓; in the below derivation those logical connectives ac-

cessible are highlighted in red:

SL1idp1 `1 p1
SL1idp2 `1 p2 ∗R

p1, p2 `1 p1∗p2 ∗Lock ↑
p5; (p1, p2) `2 p1 ∗ p2 ∗Lock ↓
p5; (p1, p2) `1 p1∗p2

Transfer ↑
p5; (p1, p2) `2 p1 ∗ p2 ⊃ R
p1, p2 `2 p5⊃(p1 ∗ p2)

Transfer ↓
p1, p2 `1 p5 ⊃ (p1 ∗ p2)

SL1idp3 `1 p3 ∗R
p1, p2, p3 `1 (p5 ⊃ (p1 ∗ p2))∗p3 ∗L
p1, p2∗p3 `1 (p5 ⊃ (p1 ∗ p2))∗p3 ∗Lock ↑

p1, (p2 ∗ p3; p4) `2 (p5 ⊃ (p1 ∗ p2)) ∗ p3 ∗Lock ↓
p1, (p2 ∗ p3; p4) `1 (p5 ⊃ (p1 ∗ p2))∗p3

As the above derivation illustrates, ∗Lock ↑↓ dig out multiplicative components in

order to apply ∗R.

Another example of PBI derivation of p1; ((p2∗p3)∨p4)∗p5 `2 (p2∗p3∗p5)∨(p4∗p5)

involving ∨Lock ↑ and ∨Lock ↓; those logical connectives accessible are highlighted

in red:

p2∗p3 `1 p2∗p3
SL1idp5 `1 p5 ∗R

p2∗p3, p5 `1 p2∗p3∗p5 ∗Lock ↑
p1; ((p2 ∗ p3), p5) `2 p2 ∗ p3 ∗ p5 ∗Lock ↓
p1; ((p2 ∗ p3), p5) `1 p2∗p3∗p5

Transfer ↑
p1; ((p2 ∗ p3), p5) `2 p2 ∗ p3 ∗ p5 ∨R

p1; ((p2 ∗ p3), p5) `2 (p2 ∗ p3 ∗ p5)∨(p4 ∗ p5)
Revert ↓

p1; ((p2 ∗ p3), p5) `1 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)
Revert ↑

p1; ((p2 ∗ p3), p5) `2 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)

SL1idp4 `1 p4
SL1idp5 `1 p5 ∗R

p4, p5 `1 p4∗p5 ∗Lock ↑
p1; (p4, p5) `2 p4 ∗ p5 ∗Lock ↓
p1; (p4, p5) `1 p4∗p5

Transfer ↑
p1; (p4, p5) `2 p4 ∗ p5 ∨R

p1; (p4, p5) `2 (p2 ∗ p3 ∗ p5)∨(p4 ∗ p5)
Revert ↓

p1; (p4, p5) `1 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)
Revert ↑

p1; (p4, p5) `2 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)
∨L

p1; (((p2 ∗ p3)∨p4), p5) `2 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)
∨Lock ↓

p1; (((p2 ∗ p3) ∨ p4), p5) `1 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)
∗L

p1; ((p2 ∗ p3) ∨ p4)∗p5 `1 (p2 ∗ p3 ∗ p5) ∨ (p4 ∗ p5)
∨Lock ↑

p1; ((p2 ∗ p3) ∨ p4) ∗ p5 `2 (p2 ∗ p3 ∗ p5)∨(p4 ∗ p5)
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As the above derivation illustrates, ∨Lock ↑↓ let the sense of intuitionistic ∨ to extend

to all the structural layers.

In the above example only one disjunction in the antecedent part was required to be first
handled before the ∨R. In general, however, there could be more than one disjunctions
in the antecedent that must be solved. The mediator may need fine-tune the context-
degree via Revert ↑ so that all the required ∨L for the ∨R can take place without an
omission.

5.4 Equivalence of PBI with LBIZ1

I now show that PBI is as expressive as LBIZ1. One direction is trivial with the follow-
ing bottom lemma.

Lemma 27 (Bottom lemma) Let t be some positive integer and let Γ(1) ` F denote

some LBIZ1-derivable BIbase sequent. Then

• Γ(1) ` G is also LBIZ1-derivable for an arbitrary G ∈ FBIbase .

• If Γ(1) ≡ Γ1(1); · · · ; Γt, then Γ1(1); · · · ; Γs ` F for any 0 ≤ s ≤ t is also LBIZ1-

derivable.

• If Γ(1) ≡ Γ1(1), · · · ,Γt, then Γ1(1), · · · ,Γs ` F for any 0 ≤ s ≤ t is also LBIZ1-

derivable.

• Γ(1); Γ1; · · · ; Γt ` F is also LBIZ1-derivable.

• Γ(1),Γ1, · · · ,Γt ` F is also LBIZ1-derivable.

Proof. Straightforward. �
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5.4.1 LBIZ1 is not less expressive than PBI

Proposition 23 If kΩi `i F ∈ DPBI with k ≥ 0 and i ∈ {1, 2} is derivable in PBI, then

Γ ` F (∈ DBIbase) with Γ = kΩi is LBIZ1-derivable.

Proof. It suffices to show that each PBI inference rule is derivable in LBIZ1. Trivial
for all the non-interaction rules. Consider now the remaining inference rules:

1. Transfer ↑, Transfer ↓, Revert ↑, Revert ↓: implicit in LBIZ1.

2. 1Peel ↑, 1Peel ↓: Lemma 27.

3. ∨Lock ↑,∨Lock ↓: implicit in LBIZ1.

4. ∗Lock ↑, ∗Lock ↓: ∗Lock ↓ is implicit in LBIZ1. To the projection in ∗Lock ↑,
weakening (which is admissible in LBIZ1) corresponds. �

5.4.2 PBI is not less expressive than LBIZ1

Some observations about LBIZ1 derivations precede the main result.

5.4.2.1 Preparations

The following sub-structural layer relation is used in the rest.

Definition 94 (Sub-structural layer relation) We define a relation � on two struc-

tures s ∈ SBIbase and t ∈ SBIbase such that: s � t iff s is a sub-structural layer of t. By

s ≺ t we denote that s is a strict sub-structural layer of t.

Example 15 Let p1; (p2, (p3; p4)) be a LBIZ1 structure. Then we have the following to

hold:

1. p1 ≺ (p1; (p2, (p3; p4))).

2. (p2, (p3; p4)) ≺ (p1; (p2, (p3; p4))).

3. p2 ≺ (p1; (p2, (p3; p4))).
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4. (p3; p4) ≺ (p1; (p2, (p3; p4))).

5. p3 ≺ (p1; (p2, (p3; p4))).

6. p4 ≺ (p1; (p2, (p3; p4))).

7. p2 ≺ (p2, (p3; p4)).

8. (p3; p4) ≺ (p2, (p3; p4)).

9. p3 ≺ (p2, (p3; p4)).

10. p4 ≺ (p2, (p3; p4)).

11. p3 ≺ (p3; p4).

12. p4 ≺ (p3; p4).

To reason about structural layers in the course of a backward derivation, meta-notations
as references to structural layers and their transitions are additionally defined.

Definition 95 (Names) We define by T := {τ1, τ2, · · · , τa, τb, · · · } the set of names.

Definition 96 (Named structures/sequents)
A structure Γ ∈ SBIbase is said to be named iff, for every structural layer s such that

s � Γ, there exists a distinct name τs that refers to s (i.e. a name used always refers to

one structural layer). A sequent D ∈ DBIbase is said to be named iff the antecedent part

of D is named.

I conveniently use the standard terminologies in computer science: ?τs to denote s and
&s to denote τs if τs is the name that refers to s.

Definition 97 (Transitions on named sequents) Let D : Γ ` F be a named LBIZ1

sequent. Let sD denote a structural layer within a particular sequent D. Let fresh :

SBIbase × T → {T,F} be a predicate such that, for some named BIbase structure Γ and

some name τ , fresh(Γ, τ) iff τ is not a name already used for some structural layer

in Γ. Then we define transitions on the names of D in D  Inf D
′ (D′ is also a named

sequent) as follows for each non-axiom Inf available in LBIZ1:
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1. ∧R,∨R: the antecedent of D′ is the same named BIbase structure as that of D.

2. ⊃ R: D and D′ look like Γ ` F1 ⊃ F2 and respectively Γ;F1 ` F2.

(a) if Γ is a M with at least two constituents, then Γ;F1 is a named BIbase

structure such that Γ in D′ is the same named BIbase structure as in D, that

fresh(Γ, τ), and that ?τ = (Γ;F )D′ .

(b) otherwise, if Γ is a A, then for all sD′ � (Γ;F1)D′:

i. if [sD′ = (Γ1;F1)D′ ], then [&sD′ = &ΓD].

ii. otherwise, if sD′ is the particular F1 in D′, then fresh(ΓD, τ) and

[&F1D′ = τ ].

iii. otherwise, [sD′ = (?(&sD′))D] (That is to say, informally, that apart

from the outermost structural layer in the antecedent of D′, all the

names are simply carried over from ΓD to ΓD′ .)

such that, for all two distinct names τ1 and τ2 shared between D and D′ if
?τ1D ≺ ?τ2D, then ?τ1D′ ≺ ?τ2D′ . (That is to say, informally, that all the

structural layers in D′ are equivalent up to commut. and assoc. to those in

D.)

3. ∗R: For the internalised weakening Wk1 and Wk2:

Γ1 ` F WkL1Γ1; Γ2 ` F
Γ1,Γ2 ` F

WkL2
Γ1, (Γ2; Γ3) ` F

we have;

• [D : Γ1; Γ2 ` F ]  Wk1 [D′ : Γ1 ` F ]: all the names in D are preserved

in D′ except that, if Γ2 is not empty, then (1) the name τa such that τa =

&(Γ1; Γ2)D and (2) all the names used for Γ2D, are absent in D′.

• [D : Γ1, (Γ2; Γ3) ` F ]  Wk2 [D′ : Γ1,Γ2 ` F ]: all the names in D are

preserved in D′ except that, if Γ3 is not empty, then (1) the name τa such

that τa = &(Γ2; Γ3)D and (2) all the names used for Γ3D, are absent in D′.

With the above preparation, suppose that the internalised weakening produces

Da : Γ1,Γ2 ` F1∗F2, thenD′ looks like Γi ` Fi for i ∈ {1, 2}. Then the antecedent

part of D′ is the same named structure Γi as in Da.
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4. ∧L: D and D′ look like Γ(F ∧G) ` H and respectively Γ(F ;G) ` H. Let τ1 and

τ2 be two names such that [τ1 6= τ2]∧†fresh(Γ(F ∧G), τ1)∧†fresh(Γ(F ∧G), τ2).

Then for all sD′ � Γ(F ;G)D′:

(a) if sD′ is the focused F , then [&sD′ = τ1].

(b) otherwise, if sD′ is the focused G, then [&sD′ = τ2].

(c) otherwise, [sD′ = ((?(&sD′))D)rep] where trep is the structural layer that

results from replacing, in a structural layer t (� Γ(F ∧ G)), the particular

occurrence of F ∧G (if any) as the focused part of Γ(F ∧G) with F ;G.

such that, for every two distinct names τa and τb shared between D and D′, if
?τaD ≺ ?τbD, then ?τaD′ ≺ ?τbD′ .

5. ∨L: D and D′ look like Γ(F1∨F2) ` H and respectively Γ(Fi) ` H for i ∈ {1, 2}.
Then for all sD′ � Γ(Fi), [sD′ = ((?(&sD′))D)rep] where trep is the structural

layer that results from replacing, in a structural layer t, the particular occurence

of F1 ∨ F2 (if any) as the focused part of Γ(F1 ∨ F2) with Fi.

6. ∗L: D and D′ look like Γ(F ∗ G) ` H and respectively Γ(F,G) ` H. Let τ1 and

τ2 be two names such that [τ1 6= τ2]∧† fresh(Γ(F ∗G), τ1)∧† fresh(Γ(F ∗G), τ2).

Then for all sD′ � Γ(F,G):

(a) if sD′ is the focused F in Γ(F,G), then &sD′ = τ1.

(b) otherwise, if sD′ is the focused G in Γ(F,G), then &sD′ = τ2.

(c) otherwise, [sD′ = ((?(&sD′))D)rep] where trep is the structural layer which

results from replacing, in a structural layer t, the particular F ∗G (if any)

as occurring in the focused part of Γ(F ∗G).

such that, for every two distinct names τa and τb shared between D and D′, if
?τaD ≺ ?τbD, then ?τaD′ ≺ ?τbD′ .

7. ⊃ L{p,>,∧}: D looks like Γ(F ) ` H and D′ looks like Γ(F ′) ` H where F and F ′

for each inference rule are:

(a) p; p ⊃ G and p;G (⊃ Lp).
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(b) > ⊃ G and G (⊃ L>).

(c) (F1 ∧ F2) ⊃ G and F1 ⊃ (F2 ⊃ G) (⊃ L∧).

Then for all sD′ � Γ(F ′):

(a) if sD′ is the focused G, then &sD′ is &(p ⊃ G)D, &(> ⊃ G)D or

&((F1 ∧ F2) ⊃ G)D (for the focused formula) depending on which infer-

ence rule,

(b) otherwise, [sD′ = ((?(&sD′))D)rep] where trep is the structural layer that

results from replacing, in a structural layer t, the particular p ⊃ G, > ⊃ G

or (F1 ∧ F2) ⊃ G) (if any) as occurring in the focused part of D with G, G,

or F1 ⊃ (F2 ⊃ G)

such that, for every two distinct names τa and τb shared between D and D′, if
?τa D ≺ ?τb D, then ?τa D′ ≺ ?τb D′ .

8. ⊃ L∨: D looks like Γ((F1 ∨ F2) ⊃ G) ` H and D′ like Γ(F1 ⊃ G;F2 ⊃ G) ` H.

Let τ1 and τ2 be two names such that [τ1 6= τ2] ∧† fresh(Γ((F1 ∨ F2) ⊃ G), τ1) ∧†

fresh(Γ((F1 ∨ F2) ⊃ G), τ2). Then for all sD′ � Γ(F1 ⊃ G;F2 ⊃ G)D′:

(a) if sD′ is the focused Fi ⊃ G for i ∈ {1, 2}, then [&sD′ = τi],

(b) otherwise, [sD′ = ((?(&sD′))D)rep] where trep is the structural layer that

results from replacing, in a structural layer t, the particular (F1 ∨ F2) ⊃ G
(if any) as occurring in the focused part of D with F1 ⊃ G;F2 ⊃ G,

such that, for every two distinct names τa and τb shared between D and D′, if
?τa D ≺ ?τb D, then ?τa D′ ≺ ?τb D′ .

9. ⊃ L⊃: D looks like Γ(Γ1; (F1 ⊃ F2) ⊃ G) ` H. D′ looks like Γ(Γ1;G) ` H if it is

the right premise sequent of the inference rule, or like Γ1;F2 ⊃ G ` F1 ⊃ F2 if it

is the left premise sequent of the inference rule. Assume without loss of generality

that Γ1; (F1 ⊃ F2) ⊃ G is an additive structural layer in Γ(Γ1; (F1 ⊃ F2) ⊃ G),

then for all sD′ � Γ(Γ1;G)D′ (if the right premise) or for all sD′ � (Γ1;F2 ⊃ G)D′

(if the left premise):
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(a) if sD′ is the focused G (if the right premise) or is the focused F2 ⊃ G

(if the left premise), then [&sD′ = &((F1 ⊃ F2) ⊃ G)D] for the focused

(F1 ⊃ F2) ⊃ G in D.

(b) otherwise, [sD′ = ((?(&sD′))D)rep] where trep is the structural layer that

results from replacing, in a structural layer t, the particular (F1 ⊃ F2) ⊃ G
(if any) as occurring in the focused part of D with G (if the right premise)

or with F2 ⊃ G (if the left premise);

such that, for every two distinct names τa and τb shared between D and D′, if
?τaD ≺ ?τbD, then ?τaD′ ≺ ?τbD′ .

10. ⊃ L∗: D looks like Γ(Γ1; (F1 ∗ F2) ⊃ G) ` H. D′ looks like Γ(Γ1;G) ` H if it

is the right premise sequent of the inference rule, or like Γ1 ` F1 ∗ F2 if it is the

left premise sequent of the inference rule. Assume without loss of generality that

the focused Γ1; (F1 ∗ F2) ⊃ G is an additive structural layer in D, then for all

sD′ � Γ(Γ1;G)D′ (if the right premise) or for all sD′ � Γ1D′ (if the left premise):

(a) if sD′ is the focused G (if the right premise), then [&sD′ = &((F1 ∗ F2) ⊃
G)D] for the focused (F1 ∗ F2) ⊃ G in D,

(b) otherwise, [sD′ = ((?(&sD′))D)rep] where trep is the structural layer that

results from replacing, in a structural layer t, the particular (F1 ∗ F2) ⊃ G

(if any) as occurring in the focused part of D with G (if the right premise)

or with emptiness (if the left premise);

such that, for every distinct names τa and τb shared between D and D′, if ?τaD ≺
?τbD, then ?τaD′ ≺ ?τbD′ .

5.4.2.2 LBIZ1 permutation properties

Lemma 28 (Permutation of additive inference rules) Let D : Γ ` F be a named

LBIZ1 sequent. Then, for any transition D  +
Infs D

′ with a set of inference rules Infs
that includes all the left inference rules but no right inference rules, and for any two

additive structural layers ?τ1 and ?τ2 such that ?τ1 ≺ ?τ2 � Γ, it holds that if an

additive inference rule Inf ∈ Infs applies at ?τ1, there exists a transition D  ∗Infs
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Da  Inf Db  ∗Infs D
′ such that no additive inference rules apply at ?τ2 in the transition

Db  ∗Infs D
′.

Proof. Assume, without loss of generality, that a name, once introduced, will never
be introduced anew later in a transition. First prove for a specific case where ?τ2 is the
outermost additive structural layer in Γ, i.e. either ?τ2 = Γ or there exists a structural
layer u such that [u = Γ] ∧† (∀u′ � Γ.[?τ2 ≺ u′] →† [u′ = u]). Suppose that no
additive inference rules apply at ?τ2, then the condition vacuously holds. Suppose that
no additive inference rules apply at ?τ2 in Db  ∗Infs D

′, then again vacuous. Otherwise,
we would originally have the following transition: D  ∗Infs Dc  Inf Dd  ∗Infs De  Inf’

Df  ∗Infs D
′ such that Inf’ is the first additive left inference rule that applies at ?τ2 in

Dd  ∗Infs De  Inf′ Df  ∗Infs D
′. Proof is then by induction on the number of additive

inference rules that apply at ?τ2 in the transition: De  Inf’ Df  ∗Infs D
′. Base case was

just exhibited (i.e. no such Inf’). For inductive cases of the sub-induction, assume that
the present case holds true for all the cases where the total number of additive inference
rules that apply at ?τ2 are l or less, and prove that it still holds true for a total number
of l + 1. Consider which additive left inference rule Inf’ is:

1. ∧L: Then the principal for Inf’ is in the form: H1 ∧H2 in the antecedent part of
De. But we have inversion lemma that replaces H1 ∧ H2 with H1;H2 in LBIZ1.
Now because we have ?τ1 ≺ ?τ2 � Γ in D, ?τ2 must be in the form: H1 ∧H2; Γ′

such that ?τ1 ≺ Γ′. Then it is immediate that the inversion can apply prior to Inf:
we achieve the effect through ∧L. There now remain only l additive inference
rules to apply at ?τ2 in Df  ∗Infs D

′.

2. ∨L: Similar.

3. ⊃ L{p,>,∧,∨}: Similar.

4. ⊃ L{⊃,∗}: ifDf is the right premise sequent of⊃ L{⊃,∗} withDe as its conclusion
sequent, then reasoning is similar to the ∧L case. Otherwise, if Df is the left
premise sequent of ⊃ L{⊃,∗}, then firstly notice that Inf cannot be ⊃ L{⊃,∗},
since the derivation step would bring ?τ1 at the outermost structural layer in the
antecedent part, i.e. there could no longer be any additive structural layer u in
the antecedent part such that ?τ1 ≺ u. Though fairly obvious with an informal
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means, we nevertheless complete the present sub-proof by sub-induction on the
length k of the transition Dd  k

Infs De. If it is 0, then the original transition looks
like: D  ∗Infs Dc  Inf Dd  Inf′ Df  ∗Infs D

′. The order of Inf and Inf’ can be
then swapped: D  ∗Infs Dc  Inf′ Dx  Inf Df  ∗Infs D

′ such that there remain
only l additive inference rules to apply at ?τ2 in Df  ∗Infs D

′.
For inductive cases of the sub-induction, assume that D  ∗Infs Dc  Inf Dd  k

Infs

De  Inf′ Df  ∗Infs D
′ can be permuted into D  ∗Infs D1  Inf′ D2  ∗Infs D3  Inf

D4  ∗Infs D
′ such that there remain only l additive inference rules to apply at ?τ2

in D4  ∗Infs D
′, and show that such permutation is bound to be successful also

for D  ∗Infs Dc  Inf Dd  k
Infs Dd′  (Infa∈Infs) De  Inf′ Df  ∗Infs D

′. Consider
what Infa is in the transition Dd′  Infa De. If Infa applies at some constituent
of a multiplicative structural layer with two or more constituents, then almost
vacuous. Otherwise:

(a) ∧L: then, at whichever additive structural layer u(≺ ?τ2) it applies, we have
the following permuted transition: D  ∗Infs Dc  Inf Dd  k

Infs Dd′  Inf′

Dx  Infa Df  ∗Infs D
′.

(b) ∨L: similar.

(c) ⊃ L{>,∧,∨}: similar.

(d) ⊃ L{⊃,∗}: then, Df cannot be the left premise sequent of the inference rule
since it applies at u ≺ ?τ2. But then similar.

(e) ∗L: similar.

Hence, in each of the cases above, induction hypothesis of the sub-induction
concludes.

Then the present case concludes by induction hypothesis of the main induction.
For a general case where ?τ2 is some additive structural layer which is not neces-

sarily the outermost, the proof approach is similar to the above specific case (which
acts as the base case). �

Permutability of multiplicative inference rules is proved in a similar but by far sim-
pler manner.
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Lemma 29 (Permutation of multiplicative inference rules)
Let D : Γ ` F be a named LBIZ1 sequent. Then, for any transition D  +

Infs D
′ with a

set of inference rules Infs that includes all the left inference rules but no right inference

rules, and for any two multiplicative structural layers ?τ1 and ?τ2 such that ?τ1 ≺ ?τ2 �
Γ, it holds that if ∗L applies at ?τ1, there exists a transition D  ∗Infs Da  ∗L Db  ∗ D′

such that ∗L does not apply at ?τ2 in the transition Db  ∗Infs D
′.

Proof. Assume, without loss of generality, that a name, once introduced, will never
be introduced anew later in a transition. Because multiplicative unit is not present in
BIbase, any multiplicative structural layer in the form: “Γa,Γb” can neither be Γa nor
be Γb. And because no multiplicative implication is present in BIbase, a multiplicative
structural layer, once generated, cannot reduce in the number of constituents without
a ∗R which, by the way, is not in Infs. It holds for all BIbase formulas in the form
G1 ∗ G2(� Γ) that ?τ1 6≺ G1 ∗ G2. Then due to the assumption that ?τ1 ≺ ?τ2 � Γ, we
simply bring all the ∗L to apply at ?τ2 before any ∗L at ?τ1 by LBIZ1 inversion. �

Definition 98 (Permutation-inversion normal LBIZ1 derivations)
A permutation-inversion normal LBIZ1 derivation is a LBIZ1 derivation such that

1. for all transitions D  ∗Infs D1 for a set of inference rules which includes all the

LBIZ1 left inference rules but no LBIZ1 right inference rules, (assuming without

loss of generality that (1) D is named and that (2) a name, once introduced, will

never be introduced anew later), it holds that for any two additive structural

layers ?τ1 and ?τ2 such that ?τ1 ≺ ?τ2, any additive left inference rules to apply

at ?τ2 applies before any left inference rules to apply at ?τ1.

2. for all transitions D  ∗Infs D1 for a set of inference rules which includes all the

LBIZ1 left inference rules but no LBIZ1 right inference rules, (assuming without

loss of generality that (1) D is named and that (2) a name, once introduced, will

never introduced anew later), it holds that for any two multiplicative structural

layers ?τ1 and ?τ2 such that ?τ1 ≺ ?τ2, any ∗L to apply at ?τ2 applies before any

∗L to apply at ?τ1.
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3. ∧R,⊃ R apply as soon as any one of them becomes applicable. This rule has a

higher priority than the following two.

4. ∨R, ∗R apply as soon as either of them becomes applicable preserving deriv-

ability upwards. This rule has a higher priority than the last rule.

5. ∗L,∧L,∨L,⊃ L{∧,∨,p,>} apply as soon as any one of them becomes applicable.

5.4.2.3 Main results

The second part of the equivalence proof now follows.

Proposition 24 If D : Γ ` F ∈ DBIbase is LBIZ1-derivable, then kΩi `i F (∈ DPBI) is

PBI-derivable for any k ≥ 0 (such that there exists, in the antecedent of D, at least one

focusable structure with the k-th context degree) and kΩi = Γ.1

Proof. The proof is most general with k = 0, due to the availability of Revert ↑
and Revert ↓. Hence, it suffices to prove only the case. Without loss of generality,
assume Π(D) to be permutation-inversion normal. Also we do not consider unneces-
sarily longer derivations than necessary where an axiom is involved: if some axiom(s)
and some non-axiom are both applicable to a sequent D′ preserving derivability up-
wards, it is (one of the) axiom(s) that applies. Proof is by induction on the derivation
depth of Π(D) and a sub-induction on sequent weight (Cf. Definition 61). For base
cases, consider which axiom has applied.

1. id: If the antecedent part is a formula, namely a propositional variable, apply
SL1id or SL2id depending on the value of i. Otherwise, apply SL2id possibly
with the help of Transfer ↓.

2. 1L: Then there exists at least one 1 in the antecedent part of D which becomes
active for 1L (in LBIZ1). Then one such 1 can be revealed by (a sequence of)
1Peel ↑, 1Peel ↓. Then possibly with the aid of Transfer ↓, 1L (in PBI) con-
cludes.

3. >R: trivial with >R (in PBI) possibly with the aid of Transfer ↓.
1Readers are kindly reminded that, for any k > 0, the value of i is always determined.
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For inductive cases, assume that the current proposition holds true for all the
permutation-normal derivations of D with the derivation depth not greater than j and
show that it still holds true for permutation-normal derivations of derivation depth j+1.
Consider what the last LBIZ1 inference rule applied is:

1. ∧R: apply ∧R (in PBI; similarly for the rest) possibly with the help of Transfer ↓.

2. ⊃ R: apply ⊃ R possibly with the help of Transfer ↓

3. ∨R: apply ∨R possibly with the help of Transfer ↓.

4. ∗R: LBIZ1 incremental weakening is achieved via ∗Lock ↑ and ∗Lock ↓ (possibly
with the help of Transfer ↑). Then apply ∗R.

5. ∧L: say that the principal is Fa ∧ Fb. If the LBIZ1 inference rule applies at the
outermost additive structural layer (in the antecedent part of the LBIZ1 sequent),
then ∧L concludes, possibly with the help of Transfer ↓ to focus the particular
occurrence of the principal. If it does not apply at the outermost additive struc-
tural layer, then consider what form the consequent formula of the sequent is
in:

(a) p: by the stated assumption at the beginning of the present proposition,
neither id nor 1L is applicable to the sequent. Then there exists at least one
multiplicative structural layer. Suppose that we have, in Γ, o (≥ 1) outer-
most multiplicative structural layers: u1, · · · , uo. Since Π(D) is permutation-
inversion normalised, D cannot be derived unless there is some
ui = A1, · · · ,Al for 1 ≤ i ≤ o and 2 ≤ l such that Am ` 1, 1 ≤ m ≤ l,
is LBIZ1-derivable. If the principal does not occur in Am, then vacuous;
induction hypothesis of the sub-induction concludes, otherwise.

(b) 1: similar.

(c) H1 ∨ H2: by the definition of a permutation-inversion normal derivation,
∨R does not apply either because the antecedent part is inconsistent,1 or be-
cause some ∨L(s) must be first handled. For the former, a similar approach
to the previous sub-cases holds. For the latter, we have Transfer ↓, Revert ↓,

1By an antecedent structure Γ being inconsistent, I mean that Γ ` 1 is derivable.
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∨Lock ↓, Transfer ↑, Revert ↑,∨Lock ↑ to focus relevant structural layers.
Then apply ∧L on the principal Fa ∧ Fb.

(d) H1 ∗H2: by the definition of a permutation-inversion normal derivation, ∗R
does not apply either because the antecedent part is inconsistent or because
inner structural layers must be first processed and incremental weakening
must be then applied to conjoin relevant inner multiplicative structural lay-
ers at the outermost multiplicative structural layer. Straightforward in case
it is inconsistent. Otherwise, if ∧L must apply on Fa ∧ Fb in order that D
be LBIZ1-derivable, then the outermost additive structural layer of D must
- because by the stated assumption Fa ∧ Fb is not a constituent of the out-
ermost additive structural layer - look like M1; · · · ;Mm for 2 ≤ m such
that there exist at least two of the constituents, say Mα and Mβ for which
it holds either that [(Fa ∧ Fb) ≺ Mα] or that [(Fa ∧ Fb) ≺ Mβ]. But then
the constituent which does not hold Fa ∧ Fb as a sub-structure is irrelevant
to the LBIZ1-derivability of D due to Lemma 13 and Corollary 1. By ad-
missibility of weakening in LBIZ1, then, we simply weaken the irrelevant
structure, thereupon applies induction hypothesis of the sub-induction.

6. ∨L: similar.

7. All variations of ⊃ L: similar.

8. ∗L: similar with one difference that we be looking at multiplicative structural
layers instead.

Induction hypothesis of the main induction concludes. �

Theorem 12 (Equivalence of PBI with LBIZ1) PBI is as expressive as LBIZ1.

Proof. Follows from Proposition 23 and Proposition 24. �
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5.5 A BIbase Decision Procedure with PBI

In this section I present one decision procedure, exhibiting a basic proof search method-
ology in phased sequent calculus. The emphasis is not on efficiency.

The termination argument is made rather intuitive and simple thanks to the physical
separation between the base components rendering feasible a compositional approach.
In fact, there is little difficulty involved in the proof of a finite derivation growth in
each individual phase, since SL1 derives from propositional intuitionistic logic and
SL2 from a fragment of propositional multiplicative intuitionistic linear logic, each of
which is decidable (and is hence terminating). Therefore, if we succeed in finding a
proof search tactic that eliminates infinite transitions between states in Figure 5.2, then
the desired result follows due to (1) the finiteness of a derivation within every phase
and (2) the finiteness of interaction transitions.

5.5.1 Preparations

For convenience, a phase in a PBI derivation tree is differentiated from later (when
the derivation tree is looked backwards) phases with, for instance, a monotonously
increasing super-script of a positive integer n: SLn1 → SLn+1

2 → SLn+2
1 → SLn+3

2 · · ·
or SLn2 → SLn+1

1 → SLn+2
2 → SLn+3

1 · · · depending on the initial phase of the given
conclusion sequent D ∈ DPBI. I first state an inversion lemma.

Definition 99 (Phase depth)
A phase depth of a PBI sequent D ∈ DPBI, i.e. phase depth(D), is defined to be a

relative derivation depth with respect to the particular phase in which it is, with the

following inductive definition.

• it is 1 if (1) D is the conclusion sequent of a SL1 or SL2 axiom or if (2) there

exists a transition D  D′ such that [D ∈ DSL1 ]∧† [D′ ∈ D′SL2
] or [D ∈ DSL2 ]∧†

[D′ ∈ D′SL1
].

• it is phase depth(D′) + 1 if there exits a transition D  Inf D
′ for some one-

premised SL1 (resp. SL2) inference rule Inf and some D′ ∈ DSL1 (resp. D′ ∈
DSL2).
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• it is 1 + max(phase depth(D′), phase depth(D′′)) if there exist transitions

D  Inf D
′ and D  Inf D

′′ such that Inf is a two-premised SL1 (resp. SL2) in-

ference rule and that D′, D′′ ∈ DSL1 (resp. D′, D′′ ∈ DSL2) are the two premise

sequents.

Lemma 30 (PBI inversion lemma) In the following pairs of PBI sequents, if the se-
quent shown on the left is PBI-derivable within the phase depth i, then so is (are) the
sequent(s) shown on the right. k ≥ 0 and j ∈ {0, 1}.

kΩ1(〈Γ〉, F ∗G) `1 H
kΩ1(〈Γ〉, F,G) `1 H (5.1)

kΩ2(Γ;F ∧G) `2 H
kΩ2(Γ;F ;G) `2 H (5.2)

kΩ2(Γ;F ∨G) `2 H both kΩ2(Γ;F ) `2 H

and kΩ2(Γ;G) `2 H (5.3)
kΩ2(Γ; p ⊃ F ; p) `2 H

kΩ2(Γ; p;F ) `2 H (5.4)
kΩ2(Γ;> ⊃ F ) `2 H

kΩ2(Γ;F ) `2 H (5.5)
kΩ2(Γ; (Fa ∧ Fb) ⊃ Fc) `2 H

kΩ2(Γ;Fa ⊃ (Fb ⊃ Fc)) `2 H (5.6)
kΩ2(Γ; (Fa ∨ Fb) ⊃ Fc) `2 H

kΩ2(Γ; (Fa ⊃ Fc); (Fb ⊃ Fc)) `2 H (5.7)
kΩ2(Γ; (Fa ⊃ Fb) ⊃ Fc) `2 H

kΩ2(Γ;Fc) `2 H (5.8)
kΩ2(Γ; (Fa ∗ Fb) ⊃ Fc) `2 H

kΩ2(Γ;Fc) `2 H (5.9)
jΩ2 `2 F ∧G both jΩ `2 Fand jΩ `2 G (5.10)
jΩ2 `2 F ⊃ G 0Ω2(Γ;F ) `2 G ([jΩ2 = Γ]) (5.11)

Proof. Induction hypothesis on the total number of phases to appear in the derivation
of the PBI sequent and a sub-induction on the phase depth. Standard, otherwise. Cf.

Lemma 1, Lemma 7, Lemma 12 and Lemma 14. �

As usual, all the axioms and fully invertible inference rules are safe to apply at any
point during a derivation.

Definition 100 (Safe/unsafe rules) We define safe and unsafe inference rules for all

PBI inference rules Inf 6∈ InfI .

Safe rules: SL1id, SL2id,1L, ∗L,>R,∧L,∨L,⊃ L{p,>,∧,∨},∧R,⊃ R.
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Unsafe rules: ∗R,⊃ L{⊃,∗},∨R.

5.5.2 Detailing the intention of the mediator

I now detail the intention of the mediator in order to finitely restrict the use of inter-
action rules. To simplify the discussion, we may assume some ‘initial’ PBI sequent
(though not at all any necessity other than for simplification) of 0-th context degree
(Cf. Proposition 24). Without loss of generality, we may also assume that every infer-
ence rule applicable in a phase while preserving derivability upwards applies before an
interaction rule is called.

Thus setting up premises for reasoning, we recall that each interaction rule reflects
certain intention of the mediator. For example, 1Peel ↑ and 1Peel ↓ both suppose
that the antecedent is inconsistent1 at inner structural layer(s) and (upward) discard,
on the supposition, the outermost structural layer but one that holds the suspected
structural layer. By this, we learn that the intention of the mediator relays along the
derivation upwards, possibly resulting in a chain of 1Peel ↓ and 1Peel ↑. The partic-
ular derivation of the premise sequent closes only if what the mediator supposed turns
out to be correct: that the antecedent is inconsistent and that structures to be peeled
away are irrelevant to identification of the inconsistency. If it is inaccurate, then the
derivation can fail and another guess may be made. There then would be no need for
Transfer ↑, Transfer ↓, Revert ↑, Revert ↓ once a guess is made. Then, there cannot
be an infinite phase switching to be initiated via 1Peel ↓ or 1Peel ↑.

A similar observation holds true also for ∗Lock ↑↓ and ∨Lock ↑↓. First, in the case
of ∗Lock, the intention of the mediator is such that a consequent formula in the form:
H1 ∗ H2 be only locked via ∗Lock ↓ in a SL2 phase, which is released via ∗Lock ↑:
there is a handshake between ∗Lock ↓ and ∗Lock ↑. Second, in the case of ∨Lock, it is
∨Lock ↑ that locks a consequent formula in the form: H1∨H2 into a SL1 phase. The in-
tention of the mediator continues to be effective in the SL1 phase, which shifts phases,
upon completion of applications of required ∗Ls, into the next SL2 phase, such that
all the ∨Ls that must apply before ∨R on the particular H1 ∨H2 be processed. While
the intention is effective, there is no need for Transfer ↑, Transfer ↓, ∗Lock ↑, ∗Lock ↓
(Revert ↑ may still apply, as it is possible that some additive structural layer is or

1By the antecedent Γ of a sequent Γ ` F being inconsistent, I mean that Γ ` 1 is derivable.
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becomes, for example, a formula in the form: G1 ∗ G2).1 Once the mediator judges
(which may be accurate or inaccurate) that all the ∨L that must be treated have been
treated, ∨R applies in a SL2 with the help of Revert ↑, Revert ↓ to bring the degree of
the context to 0 or 1 (depending on whether the outermost structural layer is additive
or multiplicative).

Finally for Transfer ↑ and Transfer ↓, their intention is to switch phases so that
what are unknown in the current phase be passed to the other phase which recognises
them, and that a progress in derivation be consequently made.

5.5.3 Main results

Observations were made about the intention of the mediator in the previous sub-
section, which is reflected within the algorithm

∮
below. All the safe rules may apply

unconditionally and in any order, whereas unsafe rules and transfer rules are generally
non-deterministic because of a choice involved in:

• whether the rule should apply at all (derivability may not be upward preserved).

• how to project when ∗Lock ↑ applies.

• how to divide constituents of the outermost multiplicative structural layer (as the
outermost structural layer) in two upon ∗R.

• which applicable inference rule should apply.

These need taken into account during a proof search by means of an information
record, allowing a potential backtrack (all the relevant information such as the values
of pointers and so on are to be recorded).

Algorithm
∮

:
Input: a sequent 0Ωi `i F ∈ DPBI with i set either 1 or 2 appropriately.
Output: true or false.
(Remark: curr keeps track of the sequent to be processed. A Boolean variable
modified indicates that in the current phase there applied at least one logical

1 G1 ∗ G2 as the only one constituent of a focusable additive structural layer with the context
degree of k is, in a SL1 phase, a constituent of a multiplicative structural layer focusable not with the
(k + 1)th-degree context but with the (k − 1)th-degree context.
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inference rule. Its initial value is true. A string variable Interact records a
label of certain interaction rule. The last two are used to prevent an infinite
switching of phases.)
init: set a pointer curr to refer to the root PBI sequent 0Ωi `i F . Set modified
to true. Set Interact to “irrelevant”.
L1: if ?curr ∈ DSL2 , go to LSL2 .
LSL1: // In a SL1 phase

1. If a safe rule Inf is applicable to ?curr, take the following derivation step:
?curr Inf D

′. Set modified to true. Set curr to refer to D′. Go to LSL1 .

2. If the consequent part of ?curr is a 1 and if 1Peel ↓ is applicable at all, then
record a backtrack point and take the following derivation step:
?curr  1Peel↓ D

′. Set Interact to “irrelevant”. Set modified to false.
Set curr to refer to D′. Go to L1.

3. If the consequent part of ?curr is in the form: H1 ∗ H2 and if
Inf ∈ {∗R,1Peel ↓, ∗Lock ↓} is applicable at all, then record a backtrack
point and take the following derivation step: ?curr  Inf D′ where D′

is the only premise or the right premise in case Inf is ∗R. If Inf is ∗R,
set modified to true, and store the left premise sequent and the value
of Interact for a future processing. If Inf is ∗Lock ↓, set Interact to
“∗Lock ↓”. If Inf is 1Peel ↓, set Interact to “irrelevant”. Set modified to
false. Set curr to refer to D′. Go to L1.

4. If the consequent part of ?curr is in the form: H1 ∨ H2, and if Interact
is “∨Lock ↑”, then apply ∨Lock ↓ if possible at all: ?curr  ∨Lock↓ D′. Set
curr to refer to D′. Set modified to false. Go to L1.

5. If Interact is not “∨Lock ↑” and if the context-degree is 1, then take the
following derivation step: ?curr  Revert↓ D

′. Set modified to false. Set
curr to refer to D′. Set Interact to “irrelevant”. Go to L1.

6. If modified and if Inf ∈ {Transfer ↓,1Peel ↓} is applicable at all, then
record a backtrack point and apply Inf: ?curr  Inf D

′. Set Interact to
“irrelevant”. Set modified to false. Set curr to refer to D′. Go to L1.

7. Go to LE.
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LSL2: // In a SL2 phase

8. If a safe rule Inf is applicable to ?curr, take the following derivation step:
?curr  Inf D

′ where D′ is the only or the right premise sequent of Inf. In
case Inf generates two premise sequents, store the left premise sequent and
the value of Interact for a future processing. Set modified to true. Set
curr to refer to D′. Go to LSL2 .

9. If there exists a formula in the form: (H1 ⊃ H2) ⊃ H3 or (H1 ∗H2) ⊃ H3

as a constituent of a focusable structural layer, then first record a backtrack
point and make a judgement as to whether, upon application of ⊃ L⊃ or
⊃ L∗ on the formula, the left premise sequent is PBI-derivable. If it is
judged not to be the case, then delete the backtrack point just recorded and
do nothing; otherwise, take the following derivation step on the particular
formula: ?curr  ⊃L⊃ D′ or ?curr  ⊃L∗ D′ where D′ is the right premise
sequent of the inference rule. Store the left premise sequent and the value
“irrelevant” for a future processing. Set modified to true. Set curr to
refer to D′. Go to LSL2 .

10. If the consequent part of ?curr is a 1, and if 1Peel ↑ is applicable at
all, then record a backtrack point and take the following derivation step:
?curr  1Peel↑ D

′. Set Interact to “irrelevant”. Set modified to false.
Set curr to refer to D′. Go to L1.

11. If the consequent part of ?curr is in the form H1 ∗ H2 and if Interact

is “∗Lock ↓”, and if ∗Lock ↑ is applicable, then record a backtrack point
and take the following derivation step: ?curr  ∗Lock↑ D′. Set modified to
false. Set Interact to “irrelevant”. Set curr to refer to D′. Go to L1.

12. If there exists at least one formula that is in the formH1∗H2 as the only con-
stituent of some focusable (necessarily antecedent) structural layer, then
apply Inf ∈ {Transfer ↑, Revert ↑} (depending on the current context de-
gree): ?curr  Inf D

′.1 Set modified to false. Set curr to refer to D′. If
Inf is Transfer ↑, then set Interact to “irrelevant”. Go to L1.

1What this does is to decrement the context degree by 1 or transfer from 0 to 0.
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13. If Interact is “∨Lock ↑” and if either ∨Lock ↑, ∨R or Revert ↑ is applica-
ble, then record a backtrack point and then

(a) either ∨Lock ↑,

(b) or, possibly with a sequence of Revert ↑, Revert ↓ to first decrease
the context degree down either to 0 or 1 depending on the outermost
structural layer, ∨R,

to have the derivation step: ?curr  Inf D
′. Set curr to refer to D′. If the

first option, set modified to false. If the second option, set modified to
true, and set Interact to “irrelevant”. Go to L1.

14. If the consequent part of ?curr is in the form H1 ∨ H2, and if Interact

is not “∨Lock ↑”, and if Inf ∈ {1Peel ↑,∨Lock ↑,∨R} is applicable, then
record a backtrack point, and apply ?curr  Inf D

′. If Inf is ∨R, then set
modified to true; otherwise set it to false. If Inf is ∨Lock ↑, then set
Interact to “∨Lock ↑”; otherwise set it to “irrelevant”. Set curr to refer to
D′. Go to L1.

15. If modified then apply Inf ∈ {Transfer ↑, Revert ↑} if possible at all:
?curr  Inf D

′. Set modified to false. Set Interact to “irrelevant”. Set
curr to refer to D′. Go to L1.

LE: //No more rules to apply to curr: backtrack or move to an unattempted
branch.

16. If ?curr is the conclusion sequent of an axiom, then if there is a stored
unexamined left premise sequent, then set curr to refer to the sequent, set
modified to true, set Interact to the stored string value, and go to L1;
otherwise, return true.

17. If ?curr is not the conclusion sequent of an axiom, then backtrack to the
nearest backtracking point recorded. If there is another unexamined option
at the backtrack point, take some decision that has not yet been made, revert
the values of Interact and modified to those at the backtrack point, set
curr appropriately, and go to L1; otherwise, return false.

The termination proof of the above algorithm is given in a compositional manner.
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Lemma 31 Each SL1/SL2 phase terminates.

Proof. For each SL1/SL2 inference rule, the weight of the premise sequent(s) is
strictly smaller than that of the conclusion sequent. There can be at most a finite num-
ber of non-deterministic choices involved in the unsafe SL1/SL2 inference rule. �

Lemma 32 There are no infinite switchings between the two phases via interaction

rules.

Proof. If any logical inference rule applies backward, the sequent weight always
decreases (Cf. Lemma 31). It hence suffices to show that we cannot have an infinite
transition D  ∗InfI D

′. But if either 1Peel ↑ or 1Peel ↓ applies backward, then the se-
quent weight always decreases. So we only need to show thatD  ∗InfI\{1Peel↑,1Peel↓} D

′

cannot be infinite. But if ∗Lock ↓ applies backward, then the next transition is, since
we attempt to have such an infinite transition, always induced by ∗Lock ↑ (Cf. LSL2 of
the algorithm). By the definition of projection in the rule, however, some antecedent
structure is weakened away, i.e. the sequent weight decreases, or there is at least one
formula in the form H1 ∗ H2 in the antecedent which becomes accessible in the next
SL1 phase. Meanwhile, ∗Lock ↑ can never apply unless Interact is “∗Lock ↓”. There-
fore we only need to show that D  ∗InfI\{1Peel↑,1Peel↓,∗Lock↓,∗Lock↑} D

′ cannot be infinite.
Now, if ∨Lock ↑ applies backward, since we attempt to have such an infinite tran-

sition, the next derivation step is determined to be ∨Lock ↓ into the next SL2 phase.
Possible steps are 12 (Transfer ↑ cannot apply as the context degree is by now at least
2) and 13 of the algorithm. But if 12 is taken, then there is at least one formula in the
form: H1 ∗ H2 accessible in the antecedent in the next SL1 phase; and if 13 is taken,
the context degree increases and this sequence simply repeats, which must imply, since
any PBI sequent is finite and there is at most a finite number of structural layers, that,
at some point, context-degree can no longer increase via ∨Lock ↑,∨Lock ↓. Hence we
in fact only need to show that D  ∗InfI\{1Peel↑,1Peel↓,∗Lock↓,∗Lock↑,∨Lock↑,∨Lock↓} D

′ cannot
be infinite.

Next, if Transfer ↑ applies, then, since we attempt to have such an infinite transi-
tion, we find that neither Transfer ↓ nor Revert ↓ is possible in the shifted SL1 phase.
If Transfer ↓ applies, since we attempt to have such an infinite transition, the only
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possible step in the shifted SL2 phase is 12. But if 12 is taken, then there exists at least
one accessible formula in the form H1 ∗H2 in the next SL1 phase. Therefore we now
only need to show that D  ∗{Revert↑,Revert↓} D

′ cannot be infinite.
To conclude the present proof, we simply observe that context-degree cannot keep

decreasing since every PBI sequent is finite. �

Theorem 13 (BIbase decision procedure) The algorithm
∮

terminates. It is a BIbase

decision procedure.

Proof. Termination follows from Lemma 31 and Lemma 32. Proof of the second
obligation follows as below. We go through each step in

∮
for the proof of the second

obligation.

1. If a phase is of SL1, safe SL1 inference rules, i.e. SL1 axioms and ∗L can apply.
This step ensures recognition of axioms and normalisation (up to inversion) of a
given SL1 sequent into a normalised SL1 sequent.

2. For a normalised SL1 sequent, if the consequent part is a 1, the sequent is not
PBI-derivable unless its antecedent is inconsistent. This step covers all the pos-
sibilities of a structure to keep in the antecedent. To show that this step omits
nothing, we need to consider the cases where the context degree is greater than
or equal to 1, in which 1Peel ↓ does not apply due to the mismatch on the
context-degree. If it is 1, however, it is impossible, given the algorithm steps,
that modified be false. Then Transfer ↓ is bound to apply at the step 6 to pass
the computation to the next SL2 phase of 0-th context degree, as required. For
other greater values of the context degree k ≥ 2,

∮
never allows, in the course of

a proof search, that the context-degree be k if the consequent were a 1. There-
fore we must show that such sequents are redundant in derivations of PBI from
which

∮
derived. However, we know that the context-degree can only increase

above 2 via ∨Lock ↑. According to the intention of the mediator as detailed in the
previous sub-section, the interaction rule is called because antecedent formula(s)
in the form: H1 ∨H2 must first be processed such that derivability be preserved
upwards. However, according to the intention, it is the case that, once those such
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antecedent formula(s) have been successfully processed, then the context-degree
must revert to either 0 or 1 for an application of ∨R, to offset the potency of the
intention.

3. For a normalised SL1 sequent, if the consequent part is in the form: H1 ∗H2:

(a) if the context-degree is 0, then possibilies that could be thought of are (1)
∗R is applicable straight ahead, preserving derivability, (2) the antecedent
is inconsistent, and (3) incremental weakening must take place in order that
∗R become applicable. (And of course an additional possibility that none
of these are applicable.) This step covers all.

(b) if it is 1, then possibilities that could be thought of is that incremental weak-
ening must take place in order that ∗R become applicable. This step covers
all.

(c) there is no need for consideration to arise for all the other greater context-
degrees.

4. For a normalised SL1 sequent, if the consequent part is in the form: H1 ∨H2:

(a) the context-degree is 0: then it was not locked in the previous SL2 phase
into the current phase. So it is either that such previous SL2 phase does not
exist, i.e. the current phase is the first phase, or that it was revealed via a ∗R
application. Either of the cases, it is impossible, given

∮
, that modified be

false. Step 6, if possible at all, is taken, skipping this step and also step 5,
as required.

(b) it is 1: if the previous SL2 phase has locked the consequent formula with
∨Lock ↑ into the current SL1 phase, then by the intention of the mediator
effective in the current phase, ∨Lock ↓ is the only one that may apply,
which is taken care of in this step. Otherwise, the consequent formula
must be in this form because the current phase is the first phase and/or
because ∗R applied in the current phase to reveal it on the consequent.
Either way, if it is possible at all, Revert ↓ must apply to swith phases
into the next SL2 phase, and the question is whether, in such a case where
Revert ↓ must apply,

∮
in fact allows the rule to apply. But in both of the

184



possibilities, Interact is assumed not to be “∨Lock ↑”, which then satisfies
the conditions of the step 5, as required.

(c) it is greater: then it must be the case that there exists at least one preceding
phase to the current one and that the previous phase switch was induced by
∨Lock ↑. Then by the intention of the interaction rule, only ∨Lock ↓ needs
considered if possible at all, which is taken care of in this step.

5. For a normalised SL1 sequent whose consequent is not in the form: 1, H1∗H2 or
H1 ∨H2, and for which the context-degree is 1, if any PBI inference rule should
apply, it is Revert ↓ only. This step always applies the interaction rule where
applicable.

6. For a normalised SL1 sequent whose consequent is not in the form: 1, H1 ∗H2

or H1 ∨H2, and for which the context-degree is not 1:

(a) the context-degree is 0: then, if any PBI inference rule is applicable at all,
it is some interaction rule. The antecedent may be inconsistent in which
case 1Peel ↓ applies, or Transfer ↓ applies if, just as it is the intention of
the interaction rule, any progress should be possible by the phase switch.
Now the question is whether

∮
facilitates such. The first case is taken care

of in this step. For Transfer ↓,
∮

permits the rule only if modified is true.
Therefore it does not apply if the current sequent is the premise sequent of
Transfer ↑ that switched the previous phase into the current phase. (The
other interaction rules cannot be applicable under the current set of condi-
tions.) Now consider if such should detract from expressiveness. Suppose
that Transfer ↓ were necessary on the sequent, then in the next SL2 phase,
the context-degree must be 0, since that for the conclusion sequent of the
last Transfer ↑ is 0, which means that there is only one formula in the
antecedent of the sequent. But then, since the Transfer ↑ must have - due
to the intention of the interaction rule - applied because no more progress
was possible in the previous SL2 phase, and since no progress was made in
the switched SL1 phase either, it is known that there would be no progress
in the next SL2 phase. Therefore it is rather immediate that the sequent
cannot be PBI-derivable. This step is skipped into step 7 that treats the
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situation.

(b) it is greater than or equal to 2: by the earlier reasoning, this case is redun-
dant.

7. For a normalised SL1 sequent whose consequent is not in the form: 1, H1 ∗ H2

or H1 ∨ H2, and for which the context-degree is not 1, and if 1Peel ↓ should
apply at all, then derivability would not be preserved upwards, and further, that
no progress would be possible if Transfer ↓ should apply, then there can be
applicable no PBI inference rule - since the use of Revert ↓ is constrained - on
the sequent. Such a situation is taken care of in this step. This concludes our
reasoning for a SL1 phase.

8. In a SL2 phase, all the safe SL2 PBI inference rules can apply in any order to
accessible structures, as can be achieved in this step.

9. If a formula in the form: (H1 ⊃ H2) ⊃ H3 or (H1 ∗H2) ⊃ H3 is accessible, then
⊃ L⊃ or, respectively, ⊃ L∗ applies, provided that the derivability preserves up-
wards for the left premise sequent of the inference rule. Note that in such a case
the context degree of the left premise sequent goes below 2 (0 or 1, depending
on the appearance of the antecedent part of the sequent) with certain intention of
the mediator that might have been carried over from the previous phase(s) also
getting offset. The decision as to whether to apply those inference rules needs
taken on a non-deterministic basis, which is taken care of in this step.

10. For a SL2 sequent which is normalised and for which, if either a ⊃ L⊃ or a ⊃ L∗
(if possible at all) applies, derivability upwards will not preserve, and for which
a 1 is the consequent formula:

(a) the context-degree is 0: if the antecedent part is inconsistent, then 1Peel ↑
applies, as taken care of in this step. If not, then if any progress is possible
at all in the next SL1 phase, Transfer ↑ applies to induce a phase switch;
otherwise, the sequent is PBI-underivable. No conditions of any step satisfy
but steps 15 and 17 in

∮
, which fulfills what it must.1

1In case it is PBI-derivable, the step 15 instead of the step 17 may be taken. This, however, only
leads to that, in the next SL1 phase, no progress would be possible, and consequently that modified
would remain false to go to step 7, as required.
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(b) it is 1: then the antecedent is inconsistent, or there is at least one formula in
the form H1 ∗H2 which is accessible in the 0th-degree context if in a SL1

phase, in which case Revert ↑ should be called such that 1Peel ↓ or ∗L be
subsequently applied. The latter is taken care of at step 12 which is the only
step with satisfiable conditions given the current set of assumptions. For the
former, if modified, then the step 15 is the only step with satisfiable con-
ditions.

∮
does not permit any step to be taken if modified is false. The

question is whether such restriction should not detract from completeness.
Since the current context degree is supposed to be 1, the current sequent
must be the premise sequent of Transfer ↓ (with the conclusion sequent of
the context-degree 0).1 But if Transfer ↓ had applied, 1Peel ↓ could have
applied, and so the previous decision was wrong, which, however, would
be corrected eventually through backtracking.

(c) it is greater: redundant, since the context formula is not in the form: H1 ∨
H2.

11. For a normalised SL2 sequent such that, if either a ⊃ L⊃ or a ⊃ L∗ should
apply (if applicable at all), then derivability does not preserve upwards for the
left premise sequent, and for which it holds that a formula in the form H1 ∗H2 is
the consequent formula and also that it was locked in the previous phase into the
current phase via ∗Lock ↓, then, by the intention of the interaction rule, there is
- if possible at all - only one interaction rule, namely ∗Lock ↑ which may apply
on the sequent. The process is taken care of in this step.

12. For a normalised SL2 sequent such that, if either a ⊃ L⊃ or a ⊃∗ should apply
(if applicable at all), then derivability upwards does not preserve for the left
premise sequent, that its consequent formula is not a 1, and that the intention of
the mediator to probe sufficient information for a consequent formula Ha ∗Hb is
not in effect, then if there exists at least one formula in the form Ha ∗Hb which
is accessible in SL1 with the context-degree one smaller (if the current context
degree is greater than or equal to 1) or 0 (if it is 0 already), then Revert ↑ or
Transfer ↑ can meaningfully apply, which is taken care of in this step.

1 Revert ↓ is not adequate since the consequent formula is not in the form: H1 ∨ H2. Cf. the
sub-case 2 of the current proof to see why it is not adequate.
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13. For a normalised SL2 sequent such that, if either a ⊃ L⊃ or a ⊃ L∗ should
apply (if applicable at all), then derivability does not preserve upwards for the
left premise sequent, if it is ∨Lock ↓ that induced the previous phase switch
with the intention of the mediator of probing some antecedent formula(s) in the
form Ha ∨ Hb presently in effect, then the context-degree in the current phase
is at least 2, or greater. If there is no antecedent formulas in the form Hc ∗ Hd

which are accessible in SL1 with the context-degree one smaller (if the current
context-degree is greater than or equal to 1) or 0 (if it is 0 already), then we need
consider if those antecedent formula(s) in the form Ha ∨ Hb had been already
processed. If so, the intention of the mediator in effect may be offset through
∗R (preceding which is a sequence of Revert ↑ and Revert ↓); otherwise, the
intention is carried over (if possible at all) to the next SL1 phase via ∨Lock ↑.
Both are taken care of in this step.

14. For a normalised SL2 sequent such that, if either a ⊃ L⊃ or a ⊃ L∗ should apply,
then derivability does not preserve upwards for the left premise of the inference
rule(s), if there are no antecedent formulas in the form Hc ∗Hd accessible in SL1

with the context-degree one smaller or 0, and if the consequent formula is in the
form H1 ∨H2, and also if the intention of the mediator to probe some antecedent
formula(s) in the form Ha ∨Hb is not in effect, then there are a few possibilities.

(a) the context-degree is 0: if the antecedent is inconsistent, then 1Peel ↑ ap-
plies, as possible in this step. If the consequent formula can be outright
processed via ∨R, this step can again execute the process. If it needs locked
into the next SL1 phase, then ∨Lock ↑ should apply, which this step allows.
The last two eliminate a need for Transfer ↑with the particular consequent
formula, to conclude that nothing is omitted in this sub-case.

(b) it is 1: by the set of conditions here, if any PBI inference rule should be
applicable, it is ∨R or ∨Lock ↑, which is possible in this step.

(c) it is greater: there is no need to consider this case since the intention of the
mediator to search for antecedent formula(s) in the form: Ha ∨Hb is not in
effect.

15. For a normalised SL2 sequent such that (1) if either a ⊃ L⊃ or a ⊃ L∗ should
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apply, then derivability does not preserve upwards for the left premise of the
inference rule(s), that (2) the consequent formula is not in the form 1, H1 ∗ H2

or H1 ∨ H2, and that (3) there are no antecedent formulas in the form Hc ∗ Hd

accessible in SL1 with the context-degree one smaller or 0, then if any PBI

inference rule should apply, it is either Transfer ↑ or Revert ↑. In case there
preceeded some logical inference rules, or in case the current phase is the first
phase, then this step allows either of them to apply (if applicable). The question
that remains is whether nothing is omitted by the decision to not apply either
in the other cases. But, due to the thrid condition set at the beginning of this
sub-case, there is no formula in the form Ha ∗Hb that may become accessible by
the phase switch, which prevents any progress in the next SL1 phase.

16. Derivations continue for each open branch. This step concludes the proof in
case all the non-deterministic guesses were made in such a way not to blemish
upward derivability.

17.
∮

allows backtracking to cover all the possibile non-deterministic choices.

�

For the complexity of the algorithm, I only conjecture that the brute-force approach
with backtracks makes

∮
exponentially complex. More detailed studies into computa-

tional complexity are better opportuned once the decidability of BI is concluded. It is
not immediate whether BIbase has any applications.

5.6 Conclusion

The present chapter exhibited the following:

1. Illustration of the concept of phased sequent calculus as one that can be used to
engineer a particular sense of logical combination.

2. A working example of phased sequent calculus PBI for BIbase with the abstract
state diagram capturing base-logic interactions in effect.

3. A decision procedure for the fragment.
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As was purported, the concept of the phased sequent calculus was introduced as one
that proof-theoretically asks what it means by a logical combination. The effective-
ness of such inquisition hinges solely on a delicate effort to not combine logics, since
the moment we combine them, a particular sense of logical combination is already in
effect, which then wipes off any hope of studying the particular logical combination
altogether (because it is then a definition, an axiom, which cannot be questioned), a
rather unwanted event. It is hence a critical requirement that a platform to study log-
ical combinations be able to express physical separation of the base logics. Phased
sequent calculus, to my knowledge, is one that has come to the ‘zero’ closest within
sequent calculus, in so doing without rendering it a mere adjunction of two base logics
since the second principle of phased sequent calculus (Cf. 5.1) must still hold even for
the most basic phased sequent calculus of given base logics. For a demonstration of
the basic mechanisms of the platform, BIbase as found decidable in Chapter 3 was for-
mulated. As one practical merit of the physical separation, it becomes easier to study
the manner in which base logics interact within a combined logic, which led to the
delivery of a BIbase decision procedure in a compositional manner.

Several work are related. A modern logical combination methodology was pio-
neered by Gabbay [1996], known as Fibring, which continues to reign in the field of
combined logics as a vital concept. Phased sequent calculus shares the fundamental
idea with his work, of defining a combined logic by defining the sense of logical com-
bination, which is expressed primarily in his fifth agenda: “Program 5. Study possible
natural interactions between the logics . . . which are meaningful . . . conditional logics
. . . and so on.” Even though the fifth agenda of Gabbay’s appears to have so far gained
comparatively low popularity in the post-Gabbay Fibring work, in considering one ex-
treme vision that computer science advances: what actually work, whatever they are,

are virtuous, it is this fifth agenda that I here believe will become a central focus in
future work in combined logics.

The more refined modulated Fibring by Caleiro et al. [2005] which extends Gab-
bay’s Fibring to a wide range of logics also relates to phased sequent calculus. Via a
categorical treatment, it addresses the following collapsing problem: combining two
logics, the one semantically collapses into the other. With the modulated Fibring,
one can obtain a non-collapsing result if (s)he so wishes to avoid the phenomenon.
For more empirical working non-collapsing examples, there are some earlier works,

190



including BI, such as found in Moortgat [1997]; O’Hearn and Pym [1999] where com-
ponents of a logic are strongly differentiated from those of the other(s) via indexing1 for
a tighter structural control, a familiar idea within sub-structural logics Dosěn [1993].
In the context of combining the strongly differentiated logics (such as implicit in the
“most basic logical combination” in the phased sequent calculus sense), if they are to
exhibit any interactions, then there must be certain entities that encompass them, re-
sulting in the concept of Bridges in Caleiro et al. [2005] and the mediators in phased
sequent calculus.

Concerning the collapsing of logics, which forms one theme also in Schechter
[2011], the principle of phased sequent calculus implies that, insofar as it is possi-
ble for us to imagine two smaller disjoint worlds (of a world) in one of which a logic
A and in the other of which a logic B remain potent, and insofar as it is possible for
us to perceive the two smaller worlds - that is, the concurrent logical processes - at
once, the moment we indeed conceive them, there would already occur a combination
of the base logics within the reflection of ours in which neither is collapsing. As to
whether logics ought or ought not collapse upon combination therefore, the question
can be answered in the affirmative (that it ought to collapse) only if the sense of a log-
ical combination of the base logics one entertains in his/her mind should dictate that it
be so, and in the negative only if it be otherwise.

Phased sequent calculus relates to the Schechter’s (where he exhibits a logical com-
bination methodology of Juxtaposition) in that phased sequent calculus and Juxtapo-
sition are both non-Hilbert platforms. His juxtaposed consequence relations present
certain similarity to the intuition behind phased sequent calculus. But there are at the
same time differences. Semantically, for example, he seeks after a philosophically
natural model, the class of coherent juxtaposed models as he terms. Suppose a com-
bined logic with two base logics for instance, then in a coherent juxtaposed model
(c.j.m hereafter) for the combined logic essentially reside two models, one for each
small world representative of A and respectively B. In the c.j.m it holds that, for every
possible formula constructable in the combined logic from the available propositional
variables and the logical connectives, it has a designated semantic value in the small
world representative of A iff it does in the other small world representative of B. As
the semantics then dictates, there should exist no unrecognised formula in either of the

1BI, as we saw, uses “;” and “,” which can be alternatively represented as “,i” and “,j” with indexes.
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small worlds unless it is unrecognised in the both, in turn dictating that combined log-
ics of the following sort: L(P,C, Inf1, Inf2, ∅) with some connectives C is not generally
expressible under Juxtaposed semantics.1 By contrast, phased sequent calculus does
not preclude the possibility that what is perceptible may form a part of knowledge in a
small world even though it is not (yet) registered as such in the others.

Finally, there are a few work related to Fibring in sequent calculus such as by
Coniglio [2007]; Cruz-fillipe and Sernadas [2005]. Coniglio [2007] considers a prob-
lem of recovering a logic by fibring its fragments in sequent calculus. It turned out
that it was not generally possible to achieve the recovery since fibring may not pre-
serve meta-property such as (if we consider intuitionistic logic) “A;B ` C implies
A ` B ⊃ C”. Coniglio [2007] then considers meta-fibring which is a particular combi-
nation paradigm that preserves those meta-properties, achieving the recovery. Collaps-
ing of logics, however, occur more prominently with meta-fibring than with fibring.
Cruz-fillipe and Sernadas [2005] describes a general idea to achieve Fibring in sequent
calculus using categorical notations. Just as in phased sequent calculus, their approach
keeps logics separate. Unlike phased sequent calculus, however, phase switches are
not described in terms of derivations but in terms of transference functions that map
formulas that belong to a base logic in terms of formulas that belong to another base
logic. In the PBI case above, phase switches by transfer are easily achievable in their
paradigm. Any phase switches which do not carry intention to the next phase can be
also captured easily. However, it is not clear how phase switches by peeling which
propagate the intention of the mediator through can be concisely expressed in their
methodology or if it is expressible, much less the more intricate phase switches by
locking. Phased sequent calculus can simulate the idea of Cruz-fillipe and Sernadas
[2005] within, but the converse is not very obvious.

To conclude, compared with the so far mentioned work, I focused more on the
engineering aspect of logical combinations, having application of combined logics in
mind. Sequent calculus was then a natural and timely choice. To engineer a suitable
sense of combination, the abstract methodology of state diagrams was proposed for an
efficient development and analysis of logical combinations themselves. It is my hope
that phased sequent calculus and Fibring will mutually forge ahead the program of

1Let us call back into our mind the anonymous logic as we saw earlier in this chapter and the
unknown predicates.
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producing adequate reasoning platforms tailored to specific applications.
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Chapter 6

Thesis Conclusion

Under the theme of studying base-logic interactions of combined logics within sequent
calculus, both specialisation with BI (Chapter 3) and BBI (Chapter 4), and generalisa-
tion with phased sequent calculus (Chapter 5) were covered. Critical assessments of
earlier work were also presented for BI (Chapter 2).

Achievements as seen in Chapter 3 and Chapter 4 illustrate a general need for dedi-
cated theoretical frameworks to adequately reason about what makes a combined logic
distinct from either of the base logics. With the specific combined logics of BI and
BBI, we observed that there could exist parts (namely the mutually extended parts)
which should be better expressed not within the philosophy of base logics but within
that of a combined logic of which they are a constituent. The importance of a close
study of semantics was stressed particularly in Chapter 4 for BBI. This line of research
to pursue a tight syntax-semantics correspondence should be a worthwhile for an effi-
cient theorem-proving.

It is also important that we establish a solid proof-theoretical framework in which
a particular sense of logical combination can be engineered. With the delivery of
phased sequent calculus, I presently believe that we at last gained a platform which
is application-oriented, and which, also in consultation with the accumulated knowl-
edge of combined logics within philosophy, will promote derivations of appropriate
combined logics befitting applications with a calculated logical combination in place.
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6.1 Summaries of Contributions in Earlier Chapters

I now state what have been covered.

6.1.1 BI proof theory (Chapter 2, Chapter 3 and Chapter 5)

1. Critical reviews of earlier results in BI proof theory, identifying apparent issues
in the earlier proofs of BI decidability and of cut elimination in BI sequent cal-
culus.

2. An official proof of admissibility of Cut in LBI.

3. Delivery of αLBI and LBIZ without any structural rules which hitherto hindered
scalable proof searches within BI sequent calculus.

4. Cut admissibility proof within [αLBI + Cut], which also vacuously extends to
[LBIZ + Cut].

5. Proof of decidability of BIbase, which is a BI fragment without the multiplica-
tive implication and the multiplicative unit, and a decision procedure for the
fragment.

6. Emphasis of the importance of regarding BI as BI than as an extension of either
intuitionistic logic or of multiplicative intuitionistic linear logic, i.e. the empha-
sis that the mutually extended parts in a combined logic may no longer possess
a logical characteristic as exemplified in its base logics.

6.1.2 BBI proof theory (Chapter 4)

1. Delivery of BBI sequent calculi that exhibit a closer syntax-semantic correspon-
dence than previously envisaged.

2. Identification of a cut-eliminable class of BBI sequent calculi.
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6.1.3 General studies into logical combinations (Chapter 5)

1. Development of the concept of phased sequent calculus in which a sense of log-
ical combination of base logics as defined by mediator(s) can be developed and
analysed.

2. Proposal of abstract state diagrams to keep track of the intention of mediators to
engineer logical combinations constructively.

6.2 Future Work

There are several work around Logic BI and Logic BBI that extend the results of this
thesis.

1. Purely syntactic proof of decidability/undecidability of the full BI.

2. Proof/refutation of an earlier conjecture by Brotherston [2012] and Park et al.
[2013] that there does not exist an analytic BBI sequent calculus.

3. Development of a semantically natural sound separation logic sequent calcu-
lus with user-defined inductive predicates to be competent against the currently
prominent separation logic theorem provers.

Also, there are a few work that may be of interest to BI and BBI communities.

1. Certification of proofs.

2. Development of BBI semantics in which the multiplicative unit behaves intu-
itionistically, so that dedicated inference rules around the multiplicative unit for
the current BBI semantics become unsound.

3. Investigation into decidable BBI fragments.

For phased sequent calculus, there are a number of future work conceivable. Here I
only mention one of them that has a moderate degree of importance. Study of Cut in
phased sequent calculus will be important. In the case of BIbase, it sufficed to have
PBI as presented in Chapter 5, as it was shown equivalent to a Cut-free BIbase sequent
calculus LBIZ1. There would be only a superficial merit if we considered Cut in PBI,
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since we, speaking on a reasonable ground, know the answer. In a more general con-
text, however, it is important that we consider the following: whether Cut, a rule of
transitivity should only belong to base components or also to mediators.
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Appendix A - Proof of Lemma 20

By induction on str dist(�(−)). If �(−) = −, then ∀W ∈ ND ∀m ∈W :

1. if ¬†[m |= Γ∆1
1 ], then vacuous.

2. otherwise, [m |= (F1 ∧ F2) ∗ (G1 ∨G2)]↔†

∃m1,m2 ∈W.[m ∈ m1 ◦m2] ∧† [m1 |= F1 ∧ F2] ∧† [m2 |= G1 ∨G2]↔†

∃m1,m2 ∈W.[m ∈ m1◦m2]∧†[m1 |= F1]∧†[m1 |= F2]∧†([m2 |= G1]∨†[m2 |= G2])

→†

∃m1,m2 ∈ W.[m ∈ m1 ◦ m2] ∧† (([m1 |= F1] ∧† [m2 |= G1]) ∨† ([m1 |= F2] ∧†

[m2 |= G2]))→†

(∃m1,m2 ∈ W.[m ∈ m1 ◦ m2] ∧† [m1 |= F1] ∧† [m2 |= G1])) ∨† (∃m1,m2 ∈
W.[m ∈ m1 ◦m2] ∧† [m1 |= F2] ∧† [m2 |= G2]), as required.

For inductive cases, assume the current lemma holds true for all 0 ≤ str dist(�(−)) ≤ l,
and show that it still holds true for str dist(�(−)) = l + 1.

1. �(−) is in the form: (Γ′(−); Γ′1)∆ such that str dist(Γ′(−)) = l and that
str dist(�(−)) = l + 1. Then ∀W ∈ ND ∀m ∈W :

(a) if ¬†[m |= Γ′1 ∧ (∆ ⊃ 1)], then vacuous.

(b) otherwise, it holds that:
∀W ∈ ND ∀m ∈W.[m |= Γ′(Γ

(∆1;(F1∧F2)∗(G1∨G2))
1 ) ⊃ 1]→†

[m |= Γ′(Γ
(∆1;(F1∧F2)∗(G1∨G2))
1 ) ⊃ 1], by induction hypothesis.

2. �(−) is in the form: (�′(−),�′1)∆ such that str dist(�′(−)) = l and that
str dist(�(−)) = l + 1. Then ∀W ∈ ND ∀m ∈W :

(a) if ¬†[m |= ∆ ⊃ 1], then vacuous.
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(b) otherwise, we show that ¬†[m |= (�′(Γ
(∆1;(F1∧F2)∗(G1∨G2))
1 ),�′1)]→†

¬†[m |= (�′(Γ
(∆1;(F1∗G1);(F2∗G2))
1 ),�′1)]. By case studies. For simplification,

we denote �′(Γ(∆1;(F1∧F2)∗(G1∨G2))
1 ) by �

′
pre and �

′(Γ
(∆1;(F1∗G1);(F2∗G2))
1 ) by

�
′
conc. Now ∀m′ ∈W.:

i. if [m′ |= �
′
pre,�

′
1], then vacuous.

ii. otherwise, if ¬†[m′ |= �
′
pre,�1](↔†

∀m1,m2 ∈ W.[m1 |= �1] →† ([m′ ∈ m1 ◦ m2] →† ¬†[m2 |= �
′
pre]).

If ¬†[m′ |= �
′
pre] ∧† [m′ |= �

′
1], then by induction hypothesis we have

∀m1,m2 ∈ W.[m1 |= �1] →† ([m′ ∈ m1 ◦m2] →† ¬†[m2 |= �
′
cons]) ↔†

¬†[m′ |= �
′
cons,�

′
1], as required. �
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Appendix B - Proof of Lemma 21

Proof is by induction on str dist(�(−)).

1. �(−) = −: immediate.

2. For inductive cases, assume that the current lemma holds true for all �(�1) for
which 0 ≤ str dist(�(−)) ≤ l. Then we must show that it still holds true for
str dist(�(−)) = l + 1.

(a) �(−) is in the form: (Γ′(−); Γ′1)∆ such that str dist(Γ′(−)) = l and that
str dist(�(−)) = l + 1. By induction hypothesis, it holds that ∀W ∈
ND ∀m ∈ W.¬†[m |= Γ′(�1)]. Then it is immediate, by the logical equiva-
lence around 1, that ∀W ∈ ND ∀m ∈ W.¬†[m |= (Γ′(�1); Γ′1)∆] ↔† [m |=
�(�1) ⊃ 1], as required.

(b) �(−) is in the form: (�′(−),�′1)∆ such that str dist(�′(−)) = l and that
str dist(�(−)) = l + 1. By induction hypothesis, it holds that ∀W ∈
ND ∀m ∈ W.¬†[m |= �

′(�1)]. Then, again by the logical equivalence around
1, it follows that ∀W ∈ ND∀m ∈W.¬†[m |= (�′(�1),�′1)∆]↔† [m |= �(�1) ⊃
1], as required. �
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Appendix C - Proof of Lemma 23

Proof is by induction on the relative structural distance str dist(�(−)).

1. if str dist(�(−)) = −, then vacuous by the semantics of ∨ in the BBI Kripke
non-deterministic semantics.

2. otherwise, if �(−) �ant (Γ′(−); Γ′1)∆ such that str dist(Γ′(−)) = k and that
str dist(�(−)) = k + 1, then ∀W ∈ ND.(∀m ∈ W.[m |= Γ′(F1 ∨ F2)]) ↔† (∀m ∈
W.[m |= Γ′(F1)] ∨† [m |= Γ′(F2)]) by induction hypothesis. But then ∀W ∈ ND:

(a) for the obligation of (∀m′ ∈W.[m′ |= (Γ′(F1); Γ′1)∆]∨† [m′ |= (Γ′(F2); Γ′1)∆])

→† (∀m′′ ∈W.[m′′ |= (Γ′(F1 ∨ F2); Γ′1)∆]:

i. if [m′ |= Γ′1]→† [m′ |= ∆], then vacuous.

ii. otherwise, induction hypothesis concludes.

(b) Similarly for the other direction.

3. otherwise, if �(−) �ant (�′(−),�′1)∆ such that str dist(�′(−)) = k and that
str dist(�(−)) = k + 1, then ∀W ∈ ND.(∀m ∈ W.[m |= �

′(F1 ∨ F2)]) ↔† (∀m ∈
W.[m |= �

′(F1)] ∨† [m |= �
′(F2)]) by induction hypothesis. But then ∀W ∈ ND:

(a) for the obligation of (∀m′ ∈W.[m′ |= (�′(F1),�′1)∆]∨† [m′ |= (�′(F2),�′1)∆])

→† (∀m′′ ∈W.[m′′ |= (�′(F1 ∨ F2),�′1)∆]):

i. if [m′ |= ∆ ⊃ 1], then vacuous.

ii. otherwise, note first that we have:
[m′ |= (�′(F1),�′1)1] ∨† [m′ |= (�′(F2),�′1)1]↔†

∃m1,m2.[m
′ ∈ m1 ◦m2] ∧† (([m1 |= �

′(F1)] ∧† [m2 |= �
′
1])

∨†([m1 |= �
′(F2)] ∧† [m2 |= �

′
1]))↔†
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∃m1,m2.[m
′ ∈ m1 ◦m2] ∧† [m1 |= �

′(F1 ∨ F2)] ∧† [m2 |= �
′
1]↔†

[m′ |= (�′(F1 ∨ F2),�′1)1]. Hence, as far as such m′ (those that satisfy
∆) asm′′ are concerned, we are done. But there cannot be any othermx

as m′′ which does not satisfy (�′(F1 ∨ F2),�′1)∆, and which, even de-
spite that, satisfies either (�′(F1),�′1)∆ or (�′(F2),�′1)∆, as, otherwise,
such would contradict the previous (vacuous) sub-proof.

(b) Similarly for the other direction. �
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Appendix D - Proof of Proposition 16

By induction on derivation depth of Π(D). If it is 1, then D is the conclusion sequent
of an axiom. id and ∗>R both absorb ∗>WkL. Neither 1L nor >R requires any but 1 or
respectively >. For inductive cases, assume that the current proposition holds true for
all the αLBBIp-derivations of derivation depth up to k and prove that it still holds true
for αLBBIp-derivations of derivation depth k+ 1. Consider what the last inference rule
applied is in Π(D).

1. ∧L: Π(D) looks like:

...
D1 : �{Γ1;F1;F2} ` {∆1} ∧L
D : �{Γ1;F1 ∧ F2} ` {∆1}

By induction hypothesis,
D′1 : �{E((Γ1;F1;F2)∆1)} ` {1} is αLBBIp-derivable. But then the result follows
via (a forward application of) ∧L. Note that we are only interested in reaching
the proof of the current proposition; specifically, we are not applying ∗>WkL to
split the focused F1;F2 such as into (F1, (

∗>; Γ1)); (F2, (
∗>; Γ2)) to make it unable

to apply ∧L (that is, to make it unable to have F1 ∧ F2).

2. ⊃ L: Π(D) looks like:

...
D1 : �{Γ1} ` {∆1;F1}

...
D2 : �{Γ1;F2} ` {∆1} ⊃ L

D : �{Γ1;F1⊃F2} ` {∆1}

Apply a sub-induction on the number of (new) (∗>; Γ′i)
∆is that E(Γ

(∆1;F1)
1 ) has

introduced. If zero, then vacuous. Now suppose that the current case holds for
up to l new introductions of (∗>; Γ′i)

∆′i structures (i = 1, · · · , l), then we have:
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D′′1 : �(E(Γ
(∆1;F1)
1 )) ` 1 D′′2 : �(E((Γ1;F2)∆1)) ` 1

⊃ L
D′′ : �(E((Γ1;F1⊃F2)∆1)) ` 1

We must now show that it still holds when we introduce one more structure
(∗>; Γ′l+1)∆′l+1 .

(a) For anyD?
1 : �((∗>; Γ′l+1)∆′l+1 ,E(Γ

(∆1;F1)
1 )) ` 1 such thatD?

1  ∗>WkL D
′′
1 , the

same introduction of (∗>; Γ′l+1)∆′l+1 into D′′2 results in
D?

2 : �((∗>; Γ′l+1)∆′l+1 , E((Γ1;F2)∆1)) ` 1. By induction hypothesis of the
sub-induction, we then have
D? : �((∗>; Γ′l+1)∆′l+1 ,E((Γ1;F1⊃F2)∆1)) ` 1.
But by induction hypothesis of the main induction, both D?

1 and D?
2 are

αLBBIp-derivable. So is D?.

(b) For anyD?
1 : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ∆2;F1

1 ))∆3) ` 1 such that ∆2; ∆3 ≡ ∆1 (up
to assoc. and commut. of “;”), the same introduction of the new structure
into D′′2 results in:
D?

2 : �(((∗>; Γ′l+1)∆′l+1 ,E((Γ1;F2)∆2))∆3) ` 1. By induction hypothesis of
the sub-induction, we then have:
D? : �(((∗>; Γ′l+1)∆′l+1 ,E((Γ1;F1⊃F2)∆2))∆3) ` 1.
But by induction hypothesis of the main induction, both D?

1 and D?
2, and

consequently also D? are αLBBIp-derivable.

(c) For any D?
1 : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ∆2

1 ))(∆3;F1)) ` 1 such that ∆2; ∆3 ≡ ∆1,
the same introduction into D′′2 leads to:
D?

2 : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ1;F2)∆2)∆3) ` 1.
By induction hypothesis of the sub-induction, we then have;
D? : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ1;F1⊃F2)∆2)∆3) ` 1.
Induction hypothesis of the main induction then concludes.

(d) For any D?
1 : �(E(((∗>; Γ′l+1)∆′l+1 ,Γ

(∆2;F1)
2 );E′(Γ∆3

3 ))) ` 1 for ∆2; ∆3 ≡ ∆1

and Γ2; Γ3 ≡ Γ1, the same introduction into D′′2 leads to:
D?

2 : �(E(((∗>; Γ′k+1)∆′k+1 , (Γ2;F2)∆2);E′(Γ∆3
3 ))) ` 1.

Induction hypothesis of the sub-induction and of the main-induction then
conclude.

(e) The other variations: similar.
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3. The other additive inference rules: simpler.

4. All the multiplicative inference rules except for −∗L∗> and −∗R∗>: the effect is
absorbed. For −∗LI , because the essence is multiplicatively connected to the
surrounding negative structures (Γ∆a

a and/or Γ∆b
b ), whether those are made an

essence (or essences) does not affect the inference rule. Cf. the internalised
weakening process within −∗LI as defined earlier.

5. −∗R∗>: Π(D) looks like:

...
D1 : �{Γ1} ` {∆1;G} (F ∈ Ξ)

−∗R∗>
D : �{Γ1} ` {∆1;F−∗G}

Trivial via induction hypothesis as nothing changes in this derivation step but the
principal.

6. −∗L∗>: similar.

7. ∗>CtrL: Π(D) looks like:

...
D1 : �{(∗>; Γ1)∆1 , (∗>; Γ1)∆1} ` {∆1} ∗>CtrL

D : �{∗>; Γ1} ` {∆1}

Vacuous to prove that D is derivable from D1, which the current assumption
(i.e. the above derivation) precisely shows. To prove a general case where D′ :

�{E((∗>; Γ1)∆1)} ` {1} where E((∗>; Γ1)∆1) �ant (E′(∗>), (∗>; E(Γ1))∆1), by in-
duction hypothesis we have D′1 : �(E′(∗>), {(∗>; E(Γ1))∆1 , (∗>; E(Γ1))∆1}) ` {∆1}
αLBBIp-derivable. Then ∗>CtrL concludes. �
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Appendix E - Proof of Proposition 17

By induction on derivation depth of Π(D). If it is 1, then D is the conclusion sequent
of an axiom. id and ∗>R both absorb ∗>WkL. Neither 1L nor >R requires any but 1 or
respectively >. For inductive cases, assume that the current proposition holds true for
all the αLBBIp-derivations of derivation depth up to k and prove that it still holds true
for αLBBIp-derivations of derivation depth k+ 1. Consider what the last inference rule
applied is in Π(D).

1. ∧L: Π(D) looks like:

...
D1 : �{Γ1;F1;F2} ` {∆1} ∧L
D : �{Γ1;F1 ∧ F2} ` {∆1}

By induction hypothesis,
D′1 : �{E((Γ1;F1;F2)∆1)} ` {1} is αLBBIp-derivable. But then the result follows
via (a forward application of) ∧L. Note that we are only interested in reaching
the proof of the current proposition; specifically, we are not applying ∗>WkL to
split the focused F1;F2 such as into (F1, (

∗>; Γ1)); (F2, (
∗>; Γ2)) to make it unable

to apply ∧L (that is, to make it unable to have F1 ∧ F2).

2. ⊃ L: Π(D) looks like:

...
D1 : �{Γ1} ` {∆1;F1}

...
D2 : �{Γ1;F2} ` {∆1} ⊃ L

D : �{Γ1;F1⊃F2} ` {∆1}

Apply a sub-induction on the number of (new) (∗>; Γ′i)
∆is that E(Γ

(∆1;F1)
1 ) has

introduced. If zero, then vacuous. Now suppose that the current case holds for
up to l new introductions of (∗>; Γ′i)

∆′i structures (i = 1, · · · , l), then we have:
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D′′1 : �(E(Γ
(∆1;F1)
1 )) ` 1 D′′2 : �(E((Γ1;F2)∆1)) ` 1

⊃ L
D′′ : �(E((Γ1;F1⊃F2)∆1)) ` 1

We must now show that it still holds when we introduce one more structure
(∗>; Γ′l+1)∆′l+1 .

(a) For anyD?
1 : �((∗>; Γ′l+1)∆′l+1 ,E(Γ

(∆1;F1)
1 )) ` 1 such thatD?

1  ∗>WkL D
′′
1 , the

same introduction of (∗>; Γ′l+1)∆′l+1 into D′′2 results in
D?

2 : �((∗>; Γ′l+1)∆′l+1 , E((Γ1;F2)∆1)) ` 1. By induction hypothesis of the
sub-induction, we then have
D? : �((∗>; Γ′l+1)∆′l+1 ,E((Γ1;F1⊃F2)∆1)) ` 1.
But by induction hypothesis of the main induction, both D?

1 and D?
2 are

αLBBIp-derivable. So is D?.

(b) For anyD?
1 : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ∆2;F1

1 ))∆3) ` 1 such that ∆2; ∆3 ≡ ∆1 (up
to assoc. and commut. of “;”), the same introduction of the new structure
into D′′2 results in:
D?

2 : �(((∗>; Γ′l+1)∆′l+1 ,E((Γ1;F2)∆2))∆3) ` 1. By induction hypothesis of
the sub-induction, we then have:
D? : �(((∗>; Γ′l+1)∆′l+1 ,E((Γ1;F1⊃F2)∆2))∆3) ` 1.
But by induction hypothesis of the main induction, both D?

1 and D?
2, and

consequently also D? are αLBBIp-derivable.

(c) For any D?
1 : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ∆2

1 ))(∆3;F1)) ` 1 such that ∆2; ∆3 ≡ ∆1,
the same introduction into D′′2 leads to:
D?

2 : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ1;F2)∆2)∆3) ` 1.
By induction hypothesis of the sub-induction, we then have;
D? : �(((∗>; Γ′l+1)∆′l+1 ,E(Γ1;F1⊃F2)∆2)∆3) ` 1.
Induction hypothesis of the main induction then concludes.

(d) For any D?
1 : �(E(((∗>; Γ′l+1)∆′l+1 ,Γ

(∆2;F1)
2 );E′(Γ∆3

3 ))) ` 1 for ∆2; ∆3 ≡ ∆1

and Γ2; Γ3 ≡ Γ1, the same introduction into D′′2 leads to:
D?

2 : �(E(((∗>; Γ′k+1)∆′k+1 , (Γ2;F2)∆2);E′(Γ∆3
3 ))) ` 1.

Induction hypothesis of the sub-induction and of the main-induction then
conclude.

(e) The other variations: similar.
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3. The other additive inference rules: simpler.

4. All the multiplicative inference rules except for −∗L∗> and −∗R∗>: the effect is
absorbed. For −∗LI , because the essence is multiplicatively connected to the
surrounding negative structures (Γ∆a

a and/or Γ∆b
b ), whether those are made an

essence (or essences) does not affect the inference rule. Cf. the internalised
weakening process within −∗LI as defined earlier.

5. −∗R∗>: Π(D) looks like:

...
D1 : �{Γ1} ` {∆1;G} (F ∈ Ξ)

−∗R∗>
D : �{Γ1} ` {∆1;F−∗G}

Trivial via induction hypothesis as nothing changes in this derivation step but the
principal.

6. −∗L∗>: similar.

7. ∗>CtrL: Π(D) looks like:

...
D1 : �{(∗>; Γ1)∆1 , (∗>; Γ1)∆1} ` {∆1} ∗>CtrL

D : �{∗>; Γ1} ` {∆1}

Vacuous to prove that D is derivable from D1, which the current assumption
(i.e. the above derivation) precisely shows. To prove a general case where D′ :

�{E((∗>; Γ1)∆1)} ` {1} where E((∗>; Γ1)∆1) �ant (E′(∗>), (∗>; E(Γ1))∆1), by in-
duction hypothesis we have D′1 : �(E′(∗>), {(∗>; E(Γ1))∆1 , (∗>; E(Γ1))∆1}) ` {∆1}
αLBBIp-derivable. Then ∗>CtrL concludes. �
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Appendix F - Proof of Lemma 24

By induction on the derivation depth of a sequent. First consider easier ones (4.6) -
(4.8). (4.1) - (4.4) are slightly more difficult around ∗RI (and −∗LI). (4.5) and (4.9) are
trivial.

�{Γ1} ` {∆1;F ∧G}: base cases are when it is the conclusion sequent of an axiom.
Trivially both �{Γ1} ` {∆1;F} and �{Γ1} ` {∆1;G} are axioms. For inductive
cases, assume that this case holds true for all the derivations of derivation depth
up to k, and prove that it still holds true at derivation depth k+ 1. Consider what
the last inference rule applied is. Note that there is almost no relation between
symbols across distinct derivations except what matter ( Γ1, ∆1 and F∧G). Same
symbols may be re-used, lest we should witness a flooding of sub/super-scripts.1

1. ∧L: the derivation then looks either like:
...

D1 : �{Γ′1;H1;H2} ` {∆1;F ∧G}
∧L

�{Γ′1;H1 ∧H2} ` {∆1;F ∧G}

or like:
...

D2 : �{Γ′(�1);H1;H2} ` {∆′} ∧L
�{Γ′(�1);H1 ∧H2} ` {∆′}

where log�1 = ∆1;F ∧G, or like:

D3 : �(�1){Γ′;H1;H2} ` {∆′} ∧L
�(�1){Γ′;H1 ∧H2} ` {∆′}

1I do not reiterate this notice in the rest.
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where log�1 = ∆1;F ∧G.
For the first, by induction hypothesis on D1, both �{Γ′;H1;H2} ` {∆1;F}
and �{Γ′;H1;H2} ` {∆1;G} are αLBBIp-derivable. Then both �{Γ′;H1 ∧
H2} ` {∆1;F} and �{Γ′;H1 ∧H2} ` {∆1;G} are αLBBIp-derivable via ∧L
(forward; I do not reiterate in the rest).
For the second, by induction hypothesis on D2, both
�{Γ′(�1);H1;H2} ` {∆′} with log�1 = ∆1;F and �{Γ′(�1);H1;H2} `
{∆′} with log�1 = ∆1;G are αLBBIp-derivable. ∧L concludes.
The last is similar to the second case.

2. ∧R: trivial in case the principal of the inference rule coincides with the
“F ∧G”. Otherwise the derivation looks either like:

...
D1 : �{Γ1} ` {∆′1;F ∧G;H1}

...
D2 : �{Γ1} ` {∆′1;F ∧G;H2} ∧R

�{Γ1} ` {∆′1;F ∧G;H1 ∧H2}

or like:
...

D3 : �(�′){Γ1} ` {∆′;H1}

...
D4 : �(�′){Γ1} ` {∆′;H2} ∧R

�(�′){Γ1} ` {∆′;H1 ∧H2}

where log�′ = ∆1;F ∧G.
For the first, by induction hypothesis on D1, both D′1 : �{Γ1} ` {∆′1;F ;H1}
and D′′1 : �{Γ1} ` {∆′1;G;H1} are αLBBIp-derivable. Meanwhile by induc-
tion hypothesis on D2, both D′2 : �{Γ1} ` {∆′1;F ;H2} and D′′2 : �{Γ1} `
{∆′1;G;H2} are αLBBIp-derivable. Then D′ : �{Γ1} ` {∆′1;F ;H1 ∧ H2}
and D′′ : �{Γ1} ` {∆′1;G;H1 ∧H2} are αLBBIp-derivable via ∧R.
Similar for the second.

3. ∨L: similar, straightforward.

4. ∨R: similar, straightforward.

5. ⊃ L: the derivation then looks like:
...

D1 : �{Γ′1} ` {∆′1;F ∧G;H1}

...
D2 : �{Γ′1;H2} ` {∆′1;F ∧G}

⊃ L
�{Γ′1;H1⊃H2} ` {∆′1;F ∧G}

Hence similar to ∧R case, i.e. induction hypothesis on both premises and a
forward application of ⊃ L for both. The other cases are trivial.
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6. ⊃ R: straightforward.

7. ∗L: straightforward.

8. ∗RI : derivation then looks like:

...
D1 : Re∆a

1 ` S+(F1 ∗G1; · · · ;Fl ∗Gl)

...
D2 : Re∆b

2 ` S−(F1 ∗G1; · · · ;Fl ∗Gl) ∗RI
�{E(Γ

(∆′;F1∗G1;··· ;Fl∗Gl;F∧G)
1 )} ` {1}

Then in forward derivation with D1 and D2, if neither Re∆a
1 nor Re∆b

2 re-
tains F∧G, do a forward weakening with F orG instead of F∧G; otherwise,
inversion lemma and a forward application of ∗RI .

9. ∗R∗>: Let Fx denote F1∗G1; · · · ;Fl∗Gl and let ∆y denote logE(Γ
(F∧G;∆1;Fx)
1 ).

The derivation looks like:
...

D1 : ∗> ` S+(Fx)

...
D2 : �{E(Γ

(F∧G;∆1;Fx)
1 )} ` {S−(Fx)}} ∗R∗>

�{E(Γ
(F∧G;∆1;Fx)
1 )} ` 1

Induction hypothesis on D2 and a forward application of ∗R∗> conclude.

10. −∗LI : straightforward. Cf. ∗RI .

11. −∗RI : derivation then looks like:

Γ
(F∧G;∆1;F1−∗F2)
1 , F1 ` F2 −∗RI

�{E(Γ
(F∧G;∆1;F1−∗F2)
1 )} ` {1}

Induction hypothesis on the premise and then a forward application of−∗RI
conclude.

12. −∗R∗>: derivation then looks like:
...

D1 : �{Γ1} ` {∆1;F ∧G;H2} (H1 ∈ Ξ)
−∗R∗>

D : �{Γ1} ` {∆1;F ∧G;H1−∗H2}

Inversion on F ∧G and then a forward application of −∗R∗>.

13. −∗L∗>: straightforward.

14. ∗>CtrL: straightforward.

�{Γ1} ` {∆1;F ∨G}: similar.
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�{Γ1} ` {∆1;F⊃G}: similar.

�{Γ1} ` {∆1;F−∗G} (F ∈ Ξ): similar. The focused F−∗G does not become the prin-
cipal for −∗RI since F is in the collector.

Now consider the rest.

�{Γ1;F ∧G} ` {∆1}: trivial for the base cases. For inductive cases, assume that this
case holds true for all the derivations of derivation depth up to k and show that
it still holds true at derivation depth k + 1. Consider what the last inference rule
applied is.

1. ∧L: trivial if the principal of the inference rule coincides with the “F ∧G”.

Otherwise the derivation looks like:
...

D1 : �{Γ′1;H1;H2;F ∧G} ` {∆1} ∧L
�{Γ′1;H1 ∧H2;F ∧G} ` {∆1}

By induction hypothesis onD1,D′1 : �{Γ′1;H1;H2;F ;G} ` {∆1} is αLBBIp-
derivable; a forward application of ∧L (on “H1;H2”) then concludes. The
other cases are trivial.

2. ∧R: the derivation then looks like:
...

D1 : �{Γ′1;F ∧G} ` {∆′1;H1}

...
D2 : �{Γ′1;F ∧G} ` {∆′1;H2} ∧R

�{Γ′1;F ∧G} ` {∆′1;H1 ∧H2}

By induction hypothesis both on D1 and D2,
D3 : �{Γ′1;F ;G} ` {∆′1;H1} and
D4 : �{Γ′1;F ;G} ` {∆′1;H2} are both αLBBIp-derivable. Then a forward
application of ∧R concludes. The other cases are trivial.

3. ∨L: the derivation then looks like:
...

D1 : �{Γ′1;F ∧G;H1} ` {∆1}

...
D2 : �{Γ′1;F ∧G;H2} ` {∆1} ∨L

�{Γ′1;F ∧G;H1 ∨H2} ` {∆1}

By induction hypothesis on both D1 and D2,
D3 : �{Γ′1;F ;G;H1} ` {∆1} and
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D4 : �{Γ′1;F ;G;H2} ` {∆1} are both αLBBIp-derivable. Then a forward
application of ∨L concludes. The other cases are trivial.

4. ∨R: straightforward.

5. ⊃ L: straightforward.

6. ⊃ R: straightforward.

7. ∗L: straightforward.

8. ∗RI : Let Hx denote F1 ∗ G1; · · · ;Fl ∗ Gl. Then the derivation looks either
like:

...
D1 : Re∆a

1 ` S+(Hx)

...
D2 : Re∆b

2 ` S−(Hx) ∗RI
�((Γ1;F ∧G)∆1){E(Γ

′(∆′;Hx))} ` {1}

or like:
...

D3 : (Re1(F ∧G))∆a ` S+(Hx)

...
D4 : Re∆b

2 ` S−(Hx) ∗RI
�{E((Γ′((Γ1;F ∧G)∆1))(∆′;Hx))} ` {1}

or like:
...

D5 : Re∆a
1 ` S+(Hx)

...
D6 : (Re2(F ∧G))∆b ` S−(Hx) ∗RI

�{E((Γ′((Γ1;F ∧G)∆1))(∆′;Hx))} ` {1}

or like:
...

D7 : Re∆a
1 ` S+(Hx)

...
D8 : Re∆b

2 ` S−(Hx) ∗RI
�{E((Γ′((Γ1;F ∧G)∆1))(∆′;Hx))} ` {1}

The focused “F ∧ G” in a premise sequent is assumed coincident with the
focused “F ∧G” in the conclusion sequent.

For the first case, through (forward) internalised weakening with “F ;G”

instead of F ∧G.
For the second and the third cases, induction hypothesis on the premise se-
quent in which F ∧ G occurs, and then a forward application of ∗RI . The
last case is similar to the first case.

9. ∗R∗>: similar.
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10. −∗LI : similar.

11. −∗L∗>: vacuous.

12. −∗RI : similar.

13. −∗R∗>: vacuous.

14. ∗>CtrL: straightforward.

�{Γ1;F1 ∨ F2} ` {∆1}: straightforward.

�{Γ1;F⊃G} ` {∆1}: mostly straightforward, but we consider one case.

1. ⊃ L: if the principal of the inference rule coincides with the “F⊃G”, then
trivial. Otherwise, the derivation looks either like:

...
D1 : �{Γ′1;F⊃G} ` {∆1;H1}

...
D2 : �{Γ′1;F ⊃ G;H2} ` {∆1} ⊃ L

�{Γ′1;F⊃G;H1⊃H2} ` {∆1}

or like:

...
D3 : �((Γ1;F ⊃ G)∆1){Γ′} ` {∆′;H1}

...
D4 : �((Γ1;F ⊃ G)∆1){Γ′;H2} ` {∆′} ⊃ L

�((Γ1;F⊃G)∆1){Γ′;H1⊃H2} ` {∆′}

or like:

...
D5 : �{Γ′((Γ1;F ⊃ G)∆1)} ` {∆′;H1}

...
D6 : �{Γ′((Γ1;F ⊃ G)∆1);H2} ` {∆′} ⊃ L

�{Γ′((Γ1;F⊃G)∆1);H1⊃H2} ` {∆′}

For the first, by induction hypothesis on D1 and D2, both
D′1 : �{Γ′1} ` {∆1;F ;H1} and
D′2 : �{Γ′1;H2} ` {∆1;F}
are αLBBIp-derivable. Furthermore, both D′′1 : �{Γ′1;G} ` {∆1;H1} and
D′′2 : �{Γ′1;G;H2} ` {∆1} are αLBBIp-derivable. ⊃ L then concludes.
Similar for the rest.

�{Γ1;F ∗G} ` {∆1}: straightforward.
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�{Γ1;F−∗G} ` {∆1} (F ∈ Ξ) : straightforward. The focused F−∗G does not become
the principal for −∗LI since F is in the collector. �
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Appendix G - Proof of Lemma 25

I prove that the incremental weakening is sufficient. Then the rest follows as a trivial
corollary.

∗RI : Under the assumption made, there exists a αLBBIp-derivable pair of D1 :

Re∆1
1 ` S+(Fx) and D2 : Re∆2

2 ` S−(Fx) from the conclusion sequent D :

�{E(Γ
(∆′;Fx)
1 )} ` {1} such that D  ∗RI

D1 and D  ∗RI
D2. Internally

Re∆1
1 /Re∆2

2 results from a finite number of WkLLBBIp and WkRLBBIp applica-
tions on D as follows: D  ∗{1ps LBBIp ,

∗>WkLLBBIp}
[D′ : Γ∆′

1 ` Fx]  syn [D′′ : Γ∆′
1 `

S+(Fx) ∗ S−(Fx)] ∗{WkLLBBIp ,WkRLBBIp}
[D′′′ : Re∆1

1 , Re∆2
2 ` S+(Fx) ∗ S−(Fx)]. In

D′′′, in case neither Re∆1
1 nor Re∆2

2 is empty, then the outermost structural layer
of the antecedent structure is multiplicative. If Γ∆′

1 in D′′ was an additive struc-
tural layer, i.e. Γ∆′

1 denotes (F1; . . . ;Fm;M1

1 ; . . . ;M1

n)∆′ for m + n ≥ 2, m ≥ 0

and n ≥ 1, then a finite number of WkLLBBIp and WkRLBBIp applications must
have taken place at this additive structural layer (which is the outermost struc-
tural layer in Γ∆′

1 ) such that (in backward derivation) all but one multiplicative
structural layer M1

k, 1 ≤ k ≤ n were discarded in the transition. But this pro-
cess is also achieved via Wk, leading to a sequent M1

k ` S+(Fx) ∗ S−(Fx). Once
the outermost structural layer is multiplicative, it is either the case that some
Re

∆′1
1′ /Re∆′2

2′ pair can be formed on the antecedent part for D′1 and D′2 such that
Re

∆′1
1′ ` S+(Fx) and Re∆′2

2′ ` S−(Fx) are both αLBBIp-derivable, or not. We are
done if it can be formed. Otherwise, the current outermost multiplicative struc-
tural layer holds A(s) as its constituent(s) whose M constituent (again only one
of them) must be connected at the current outermost multiplicative structural
layer, which is achieved also through Wk. This incremental process eventually
produces the Re∆′1

1′ /Re∆′2
2′ pair on the antecedent part, provided that a situation
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that satisfies all the below conditions does not arise.

• there exists D∗ : Re
∆∗1
1∗ , Re

∆∗2
2∗ ` S+(Fx) ∗ S−(Fx) such that

D′′  ∗Wk D
∗ as the internal weakening process within ∗RI .

• not both D∗1 : Re
∆∗1
1∗ ` S+(Fx) and D∗2 : Re

∆∗2
2∗ ` S−(Fx) are αLBBIp-

derivable.

• there exists D∗∗ : Re
∆∗∗1
1∗∗ , Re

∆∗∗2
2∗∗ ` S+(Fx) ∗ S−(Fx) such that

D∗  ∗{WkLLBBIp ,WkRLBBIp}
D∗∗ (as the internal weakening process within

∗RI).

• both D∗∗1 : Re
∆∗∗1
1∗∗ ` S+(Fx) and D∗∗2 : Re

∆∗∗2
2∗∗ ` S−(Fx) are αLBBIp-

derivable.

• D∗1 (resp. D∗2) is a sequent that results from additive weakening admissi-

bility on D∗∗1 (resp. D∗∗2 ), i.e. there exists in LBBIp-space the following

derivation (i ∈ {1, 2}):

D∗∗i {A finite number of WkLLBBIp , WkRLBBIp applications}
D∗i

Suppose, by way of showing contradiction, that there exists a αLBBIp-derivation
in which all the five conditions above satisfy. Then additive weakening admissi-
bility dictates that αLBBIp-derivability of D∗∗1 (resp. D∗∗2 ) implies
αLBBIp-derivability of D∗1 (resp. D∗2), a direct contradiction to the supposition.

−∗L : Similar. The starting point is Γ∆a
a ,Γ∆b

b , (Γ2;F−∗G)∆3 in the conclusion sequent
D : �{(Γ∆a

a ,Γ∆b
b , (Γ2;F−∗G)∆3); Γ′} ` {∆′}. An application of Wk′1 is manda-

tory in case either ∆3 or Γ2 is not empty. �
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Appendix H - Proof of Proposition 18

By induction on the derivation depth of Π(D). We assume maximal pairs for ∗RI/−∗LI
(Cf. Lemma 25). Base cases when D is the conclusion sequent of an axiom are trivial.
For inductive cases, assume that the current proposition holds true for all the deriva-
tions of derivation depth up to k and show that it still holds true at derivation depth
k + 1. Consider what the αLBBIp inference rule last applied is by cases on where φ:
the active negative (φn) or positive (φp) formula, is in �{Γ1; Γ2; Γ2} or respectively in
{∆1;H;H}.

∧L and φn is F1 ∧ F2: if φn does not appear in Γ2, induction hypothesis on the premise
sequent. Otherwise Π(D) looks like:

...
D1 : �((Γ1; Γ2{Γ3;F1;F2}; Γ2((Γ3;F1 ∧ F2)∆′))(∆1;H;H)) ` {∆′}

∧L
�((Γ1; Γ2{Γ3;F1 ∧ F2}; Γ2((Γ3;F1 ∧ F2)∆′))(∆1;H;H)) ` {∆′}

D′1 : �{Γ1; Γ2((Γ3;F1;F2)∆′); Γ2((Γ3;F1;F2)∆′)} ` {∆1;H;H} is αLBBIp deriv-
able (inversion lemma); then also D′′1 : �{Γ1; Γ2((Γ3;F1;F2)∆′)} ` {∆1;H} (in-
duction hypothesis); then a forward application of ∧L concludes.

∧R and φp is F1 ∧ F2: if φp is not H, induction hypothesis on both of the premises.
Otherwise:

...
D1 : �{Γ1; Γ2; Γ2} ` {∆1;F1;F1 ∧ F2}

...
D2 : �{Γ1; Γ2; Γ2} ` {∆1;F2;F1 ∧ F2} ∧R

�{Γ1; Γ2; Γ2} ` {∆1;F1 ∧ F2;F1 ∧ F2}

Then both D′1 : �{Γ1; Γ2; Γ2} ` {∆1;F1;F1} and
D′2 : �{Γ1; Γ2; Γ2} ` {∆1;F2;F2} are αLBBIp-derivable;
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D′′1 : �{Γ1; Γ2} ` {∆1;F1} and
D′′2 : �{Γ1; Γ2} ` {∆1;F2} are also αLBBIp-derivable (induction hypothesis);
then a forward application of ∧R on D′′1 and D′′2 concludes.

∨L and φn is F1 ∨ F2: similar, straightforward. I say simply straightforward to also
mean a similar case in the rest.

∨R and φp is F1 ∨ F2: straightforward.

⊃ L and φn is F1⊃F2: if it does not appear in Γ2, then induction hypothesis on both
of the premises. Otherwise Π(D) looks like:

...
D1

...
D2 ⊃ L

�((Γ1; Γ2{Γ3;F1⊃F2}; Γ2((Γ3;F1⊃F2)∆′))(∆1;H;H)) ` {∆′}

where
D1 : �((Γ1; Γ2{Γ3}; Γ2((Γ3;F1⊃F2)∆′))(∆1;H;H)) ` {∆′;F1} and
D2 : �((Γ1; Γ2{Γ3;F2}; Γ2((Γ3;F1⊃F2)∆′))(∆1;H;H)) ` {∆′}.
Then
D′1 : �{Γ1; Γ2((Γ3)∆′;F1); Γ2((Γ3)∆′;F1)} ` {∆1;H;H} and
D′2 : �{Γ1; Γ2((Γ3;F2)∆′); Γ2((Γ3;F2)∆′)} ` {∆1;H;H} are αLBBIp-derivable
(inversion lemma);
D′′1 : �{Γ1; Γ2((Γ3)∆′;F1)} ` {∆1;H} and
D′′2 : �{Γ1; Γ2((Γ3;F2)∆′)} ` {∆1;H}
are also αLBBIp-derivable (induction hypothesis); a forward application of ⊃ L

then concludes.

⊃R and φp is F1⊃F2 : if φp it not H, then induction hypothesis. Otherwise, Π(D)

looks like:

...
D1 : �{Γ1; Γ2; Γ2;F1} ` {∆1;F2;F1⊃F2} ⊃ R
�{Γ1; Γ2; Γ2} ` {∆1;F1⊃F2;F1⊃F2}

Then D′1 : �{Γ1; Γ2; Γ2;F1;F1} ` {∆1;F2;F2} is αLBBIp-derivable (inversion
lemma). Then D′1 : �{Γ1; Γ2;F1} ` {∆1;F2} is also αLBBIp-derivable (induction
hypothesis); a forward application of ⊃ R then concludes.
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∗L and φn is F1 ∗ F2: If φn does not appear in Γ2, then induction hypothesis. Other-
wise Π(D) looks like:

...
D1 : �((Γ1; Γ2{Γ3; (F1, F2)}; Γ2((Γ3;F1 ∗ F2)∆′))(∆1;H;H)) ` {∆′}

∗L
�((Γ1; Γ2{Γ3;F1 ∗ F2}; Γ2((Γ3;F1 ∗ F2)∆′))(∆;H)) ` {∆′}

Then
D′1 : �(Γ1; Γ2((Γ3; (F1, F2))∆′); Γ2((Γ3; (F1, F2))∆′)) ` {∆1;H;H}
is αLBBIp-derivable (inversion lemma);
D′′1 : �{Γ1; Γ2((Γ3; (F1, F2))∆′)} ` {∆1;H}
is also αLBBIp-derivable (induction hypothesis); a forward application of ∗L
then concludes.

∗RI and φp is F1 ∗G1: For this case and ∗R∗>, synthesis operations may be taking
place on several formulas in the form: Fi ∗ Fj . Let us call those that are used in
the process of synthesising S+(· · · ) ∗ S−(· · · ) active for the inference rule. If φp
is not active, then induction hypothesis. Otherwise, supposing that Gx denotes
F1 ∗G1; · · · ;Fl ∗Gl, Π(D) looks like:

...
D1 : Re∆a

1 ` S+(Gx)

...
D2 : Re∆b

2 ` S−(Gx) ∗RI
D : �{Γ1; Γ2; Γ2} ` {∆1;F1 ∗G1;F1 ∗G1}

where �((Γ1; Γ2; Γ2)(∆1;F1∗G1;F1∗G1))�ant �
′(E(Γ

(∆3;Gx;F1∗G1)
3 )). Let us consider

the internalised transitions for this αLBBIp inference rule:
D  ∗{∗>WkL,1ps} [D′ : Γ

(∆3;F1∗G1)
3 ` Gx] syn

[D′′ : Γ
(∆3;F1∗G1)
3 ` S+(Gx)∗S−(Gx)] ∗Wk [D′′′ : Re∆a

1 , Re∆b
2 ` S+(Gx)∗S−(Gx)].

At the internal state of D′′′, if neither Re∆a
1 nor Re∆2

2 is empty, then by the def-
inition of a maximal Re∆a

1 /Re∆b
2 pair, the duplicated F1 ∗ G1 must have been

(upward) weakened away in the internal transition D′′  D′′′. For the same rea-
son, if Γ∆3

3 �ant Γ2; Γ2; Γ4 (for some Γ4), then at least one of the Γ2 must have
been (upward) weakened away, to conclude.
On the other hand, if either Re∆a

1 or Re∆b
2 is empty and the other is Γ

(∆3;F1∗G1)
3 ,

then we replace the derivation by ∗RI with that by ∗R∗>, then induction hypoth-
esis and then a forward application of ∗R∗> to conclude. Note, in this case, that
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from the applicability of ∗RI we know that the context of the antecedent of the
right premise sequent can be got rid of without blemishing the upward derivabil-
ity via admissibilities of 1ps LBBIp and ∗>WkLLBBIp .

∗R∗> and φp is F1 ∗G1: Induction hypothesis and a forward application of ∗R∗>.

−∗LI and φn is (Γ∆a
a ,Γ∆b

b ,E((Γc;F1−∗F2)∆c))∆4: if φn does not appear in Γ2, then in-
duction hypothesis. If it is in Γ2, then Π(D) looks like:

...
D1 : Re∆d

1 ` F1 (Ξ ∩ F1 = ∅)

...
D2 −∗LID

where

D2 : �{Γ1; Γ2(((Re∆e
2 , F2); (Γ∆a

a ,Γ∆b
b ,E((Γc;F1−∗F2)∆c)))∆′′);

Γ2((Γ∆a
a ,Γ∆b

b ,E((Γc;F1−∗F2)∆c))∆′′)} ` {∆1;H;H}

and

D : �{Γ1; Γ2((Γ∆a
a ,Γ∆b

b ,E((Γc;F1−∗F2)∆c))∆′′);

Γ2((Γ∆a
a ,Γ∆b

b ,E((Γc;F1−∗F2)∆c))∆′′)} ` {∆1;H;H}.
Then
D′2 : �{Γ1; Γ2(((Re∆e

2 , F2); (Γ∆a
a ,Γ∆b

b ,E((Γc;F1−∗F2)∆c)))∆′′);

Γ2(((Re∆e
2 , F2); (Γ∆a

a ,Γ∆b
b ,E((Γc;F1−∗F2)∆c))∆′′))} ` {∆1;H;H}

is αLBBIp-derivable (additive weakening admissibility);

D′′2 : �{Γ1; Γ2(((Re∆b
2 , F2); (Γ∆a

a ,Γ∆b
b ,E((Γc;F1−∗F2)∆c)))∆′′)} `{∆1;H}

is also αLBBIp-derivable (induction hypothesis); a forward application of −∗LI
then concludes.
If, on the other hand, Γ2 is in φn, then

1. if it is not in Γa, nor in Γb, nor in Γc after the internalised backward ∗>WkL,
then the “Γ2; Γ2” must have been multiplicatively weakened away. Simpler

222



than the above case.

2. if it is in Γc after the multiplicative weakening, then the internalised back-
ward additive weakening must weaken away the “Γ2; Γ2”. Again simpler.

3. if it is in Γa (or in Γb) after both of the weakening processes, then similar
to ∗RI case.

−∗RI and φp is F1−∗F2: If φp is not H, then induction hypothesis. Otherwise, CtrR is
absorbed in this inference rule.

−∗L∗> and φn is F1−∗F2: By the applicability of the inference rule, F1 is in the collec-
tor Ξ. Inversion lemma, induction hypothesis and then a forward application of
−∗L∗> conclude.

−∗R∗> and φp is F1−∗F2: straightforward.

∗>CtrL: the effect of CtrR is absorbed in this inference rule. Induction hypothesis
(and a forward application of ∗>CtrL) conclude.

�
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Appendix I - Proof of Proposition 20

Proof is by induction on derivation depth of Π(D) into both directions. But first we
prove the following ground case: D′ : � ` 1 is αLBBIp-derivable with an empty collec-
tor Ξ′ iff it is [LBBIp- Cut] derivable with Ξ′.

Into the only if direction, assume that D′ is αLBBIp-derivable with Ξ′, then show
that there is a [LBBIp - Cut]-derivation for each αLBBIp derivation with the same
empty collector. Modified rules are derivable in LBBIp, as stated in 4.4.1. All the
other αLBBIp inference rules are identical to a corresponding LBBIp inference rule. No
derivations with Ξ′ involve either −∗L∗> or −∗R∗> derivation steps.

Into the if direction, assume that D′ is [LBBIp- Cut]-derivable, then show that there
is a αLBBIp-derivation for each, using Ξ′.

If derivation depth of Π(D′) is 1, i.e. if D′ is the conclusion sequent of an axiom,
we need to show that F ` F is αLBBIp-derivable for F ∈ FBBI. Hence a sub-induction
on f depth(F ). If it is 1, i.e. if it is a propositional variable p,>, 1 or ∗>, then id,>R,1L
or respectively ∗>R.

For inductive cases of the sub-induction, assume that it holds true for all formulas
of formula depth up to k. We must now show that it still holds true for all the formulas
F ∈ FBBI of formula depth k + 1.

1. F = F1 ∧ F2:

D1 : F1 ` F1 Wk L
F1;F2 ` F1

D2 : F2 ` F2 Wk L
F1;F2 ` F2 ∧R

F1;F2 ` F1 ∧ F2 ∧L
F1 ∧ F2 ` F1 ∧ F2

Induction hypothesis on both D1 and D2, and then appropriate αLBBIp forward
derivation steps to reach the conclusion sequent in αLBBIp-space.
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2. F = F1 ∨ F2: straightforward.

3. F = F1⊃F2: straightforward.

4. F = F1 ∗ F2:

D1 : F1 ` F1 D2 : F2 ` F2 ∗RIF1, F2 ` F1 ∗ F2 ∗L
F1 ∗ F2 ` F1 ∗ F2

5. F = F1−∗F2:

F1 ` F1 F2 ` F2 −∗LIF1−∗F2, F1 ` F2 −∗RIF1−∗F2 ` F1−∗F2

to conclude.
For inductive cases, assume that the current proposition into the if direction holds

true for [LBBIp- Cut]-derivations of derivation depth up to k, then show that it still
holds true at derivation depth of k+1. Consider what the last [LBBIp- Cut] rule applied
is.

1ps: Proposition 15.

∧L: same inference rule in αLBBIp.

∨L: same.

∧R: same.

∨R: same.

⊃ L: same.

⊃ R: same.

∗L: same.

∗RI LBBIp: ΠLBBIp(D) looks like:
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...
D1 : Γ∆1

1 ` F1

...
D2 : Γ∆2

2 ` F2 ∗RI LBBIp
Γ∆1

1 ,Γ∆2
2 ` F1 ∗ F2

By induction hypothesis, both D1 and D2 are also αLBBIp-derivable. But then it
is straightforward to show that D is also αLBBIp-derivable by a forward applica-
tion of ∗RI αLBBIp .

∗R∗> LBBIp: ΠLBBIp(D) looks like:

...
D1 : ∗> ` F1

...
D2 : �{Γ1} ` {∆1;F2} ∗R∗> LBBIp

D : �{Γ1} ` {∆;F1 ∗ F2}

Both D1 and D2 are αLBBIp-derivable (induction hypothesis); D′2 : �{Γ1} `
{∆1;F2;F1 ∗ F2} is also αLBBIp-derivable (induction hypothesis and weakening
admissibility); then a forward application of ∗R∗> αLBBIp concludes.

−∗RI LBBIp: similar, straightforward.

−∗R∗> LBBIp: same.

−∗LI LBBIp: ΠLBBIp(D) looks like:

...
D1 : Γ∆1

1 ` F

...
D2 : �{Γ∆2

2 , G} ` {∆} −∗LI LBBIp
D : �{Γ∆1

1 ,Γ∆2
2 , F−∗G} ` {∆}

Both D1 and D2 are αLBBIp-derivable. Straightforward by Proposition 17.

−∗L∗> LBBIp: same.

WkLLBBIp: Proposition 17.

WkRLBBIp: Proposition 17.

CtrLLBBIp: Proposition 18.

CtrRLBBIp: Proposition 18.
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∗>WkLLBBIp: Proposition 16.

∗>CtrLLBBIp: With Proposition 17.

dRLBBIp: Proposition 19.

To conclude the proof, we must show that ΞαLBBIp = ΞLBBIp . For this, we note that nei-
ther [LBBIp − Cut] nor αLBBIp introduces a new distinct formula in the form F1−∗F2

in the course of a backward derivation. Meanwhile, all the sub-formulas at any given
point of a backward derivation in [LBBIp- Cut] or αLBBIp derivation tree must com-
prise sub-formulas up to synthesis operations of the conclusion of the derivation tree.
Also the synthesis operations do not modify formulas in the form F1−∗F2. These mean
in particular that if F1 in the form F1−∗F2 is a sub-formula of a given sequent such that
F1 is in the collector in use, then F1 needs shown [LBBIp- Cut] (or αLBBIp) derivable
(by the definition of a collector). However, the test (to show that both F1 ` ∗> and
∗> ` F1 are derivable) does not involve a question of whether F1−∗F2 is already in the
collector. That is, there exists a partial pre-order on the tests themselves whose base
case is the ground case as we saw earlier. �
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Appendix J - Proof of Proposition 21

Proof is by induction on cut rank and a sub-induction on cut level. Here, (U, V ) denotes,
for some [αLBBIp + Cut]− inference rules U and V , that one of the premises has been
just derived with U and the other with V . In the following, the first derivation is the
original derivation tree, and the second derivation a permuted derivation tree of the
original derivation tree.

Throughout, I make use of the following derivable Cut:

�{Γ1} ` {∆1;F} �{((F ; ∗>; Γ2)∆2)×n} ` {∆2}
BBI-MultiCut

�{∗>; Γ1; Γ2} ` {∆1; ∆2}

where �×n denotes �, · · · ,�︸ ︷︷ ︸
n

.

(id, id):

1.
id

�{p; Γ1} ` {p; ∆1}
id

�{p; Γ2} ` {p; ∆2}
Cut

�{Γ2; Γ1; p} ` {∆1; ∆2; p}
⇒

id
�{Γ2; Γ1; p} ` {∆1; ∆2; p}

Incidentally we analyse in case an essence appears (where the cut formula
is active for id on both of the premises). First and foremost, we recall
that the significance of an essence is only notational. Hence, its presence
causes a difference from the above permutation if the left premise sequent
�{E((p; Γ1)(p;∆1))} ` {logE((p; Γ1)(p;∆1))} is in the form:
�
′{Γ′1} ` {(p; ∆′1)} where:

• A. �′(Γ
′(p;∆′1)
1 )�ant �(E((p; Γ1)(p;∆1))).
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• Γ′1 6�ant Γ′′2; p for some Γ′′2.

The left sequent of the Cut is then: �′{Γ′1} ` {p; ∆′1}. But then the con-
text for the right premise sequent is also �

′(−). This implies that the right
premise sequent is at least in the form: �′{p; Γ4} ` {∆4} (for some Γ4 and
∆4) such that [B. �′((p; Γ4)∆4)�ant �(E((p; Γ2)(p;∆2)))]. Applying Cut, we
derive �′{Γ3; Γ4} ` {∆3; ∆4}. If ∆4 �ant p; ∆′4 (for some ∆′4; similarly in
the rest), then we have that �′((Γ3; Γ4)∆3;∆′4;p) �ant �(E((Γ5; p)(∆5;p))) by
B. Otherwise, we again have that
�
′((Γ3; Γ4)(∆3;∆4))�ant �(E(Γ6; p)(∆6;p)) by A and B.

2.
id

�{Γ1; p} ` {p; ∆1}
id

�{Γ2; p; q} ` {q; ∆2}
Cut

�{Γ2; Γ1; p; q} ` {q; ∆1; ∆2}
⇒

id
�{Γ2; Γ1; p; q} ` {q; ∆1; ∆2}

(a) If an essence is required in one of the premise sequents for the id:
trivial if it is the left premise sequent since the conclusion sequent of
Cut would then look like: �′{Γ3; q} ` {∆3; q}. If it is the right premise
sequent, then the negative structure whose exponent holds the p is in
the conclusion sequent of the Cut, which implies that the conclusion
sequent is in the form: �′′(E((Γ4; p)(p;∆4))) ` 1.

(b) If an essence is required in both of the premise sequents and if the
sequents are not in the form considered so far:

i. if the left premise sequent is in the form
�1(p; Γ′′1(�2{Γ′′2})) ` {p; ∆′′} such that log�2(Γ

′′(p;∆′′)
2 ) = ∆x:

A. if the right premise sequent is in the form
�1(p; Γ′′1(�2(p; q; Γ′′′2 (�3{Γ′′′3 })))) ` {q; ∆′′′3 }: then the conclusion
sequent would be:
�1(p; Γ′′1(�2(q; Γ′′2; Γ′′′2 (�3{Γ′′′3 })))) ` {q; ∆′′′3 } such that
log�2(· · · ) = ∆x; ∆′′. But then, since id applies on the right
premise sequent, it also applies on the conclusion sequent.

B. if it is in the form
�1{p; Γ′′1(�2((p; q; Γ′′′2 )∆′′′2 ))} ` {q; ∆′′′3 }: then the conclusion se-
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quent would be:
�1{p; Γ′′1(�2((q; Γ′′′2 ; Γ′′2)(∆′′′2 ;∆′′)))} ` {q; ∆′′′3 }. Again id applies
on this sequent because it does on the right premise sequent.

C. the rest: similar.

ii. if the left premise sequent is in the form
�1{�′′1((p; Γ2)∆2)} ` {p; ∆′′}: then almost symmetrical to the pre-
vious case study.

3. The rest (; if the cut formula is not the principal in either of the premise
sequents): trivial.

(id, 1L):
trivial if the cut formula is not 1. Otherwise, similar to (id, id).

(id,>R):
trivial if the cut formula is not >. Otherwise similar to (id, id) case.

(id, ∗>R):
straightforward.

(id,∨L):

1.

id
D1 : �{Γ1; p} ` {∆1; p}

D2 : �{p; Γ2;F1} ` {∆2} D3 : �{p; Γ2;F2} ` {∆2} ∨L
�{p; Γ2;F1 ∨ F2} ` {∆2}

Cut
�{Γ1; p; Γ2;F1 ∨ F2} ` {∆1; ∆2}

⇒
D1 D2

Cut
�{Γ1; p; Γ2;F1} ` {∆1; ∆2}

D1 D3
Cut

�{Γ1; p; Γ2;F2} ` {∆1; ∆2} ∨L
�{Γ1; p; Γ2;F1 ∨ F2} ` {∆1; ∆2}

2.

D2 : �(p; Γ1(�2{p; Γ4;F1})) ` {∆2} D3 : �(p; Γ1(�2{p; Γ4;F2})) ` {∆2} ∨L
D4 : �(p; Γ1(�2{p; Γ4;F1 ∨ F2})) ` {∆2}

id
D1 : �(p; Γ1(�2{Γ3})) ` {p; ∆} D4

Cut
�(p; Γ1(�2{Γ3; Γ4;F1 ∨ F2})) ` {∆; ∆2}

⇒
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D1 D2
Cut

�(p; Γ1(�2{Γ3; Γ4;F1})) ` {∆; ∆2}
D1 D3

Cut
�(p; Γ1(�2{Γ3; Γ4;F2})) ` {∆; ∆2} ∨L

�(p; Γ1(�2{Γ3; Γ4;F1 ∨ F2})) ` {∆; ∆2}

3.

id
D1 : �{�1((p; Γ2)∆1)} ` {p; ∆}

D2 : �{p; Γ3;F1} ` {∆2} D3 : �{p; Γ3;F2} ` {∆2} ∨L
�{p; Γ3;F1 ∨ F2} ` {∆2}

Cut
�{Γ3;F1 ∨ F2;�1((p; Γ2)∆1)} ` {∆; ∆2}

⇒
D1 D2

Cut
�{Γ3;F1;�1((p; Γ2)∆1)} ` {∆; ∆2}

D1 D3
Cut

�{Γ3;F2;�1((p; Γ2)∆2)} ` {∆; ∆2} ∨L
�{Γ3;F1 ∨ F2;�1((p; Γ2)∆1)} ` {∆; ∆2}

4.

D2 : �{Γ2;F1} ` {∆2} D3 : �{Γ2;F2} ` {∆2} ∨L
D4 : �{Γ2;F1 ∨ F2} ` {∆2}

id
D1 : �{Γ1; p} ` {p;F1 ∨ F2; ∆1} D4

Cut
�{Γ1; p; Γ2} ` {p; ∆1; ∆2}

⇒

id
�{Γ1; p; Γ2} ` {p; ∆1; ∆2}

5.
Let �x(−) denote (p; ∗>; Γ4((Γ3;−)∆′))∆2 for this case. Assume n ≥ 2.

D2 : �{�x(F1), (�x(F1 ∨ F2))×n−1} ` {∆2} D3 : �{�x(F2), (�x(F1 ∨ F2))×n−1} ` {∆2} ∨L
�{(�x(F1 ∨ F2))×n} ` {∆2} ∗>CtrL
D4 : �{Γx(F1 ∨ F2)} ` {∆2}

id
D1 : �{�1((p; Γ2)∆3)} ` {p; ∆1} D4

Cut
�{�1((p; Γ2)∆3); ∗>; Γ4((Γ3;F1 ∨ F2)∆′)} ` {∆1; ∆2}

⇒
We derive the following first by inversion lemma and BBI-MultiCut.

D1 D′2 : �{(�x(F1))×n} ` {∆2}
BBI-MultiCut

D5 : �{�1((p; Γ2)∆3); ∗>; Γ4((Γ3;F1)∆′))} ` {∆1; ∆2}

D1 D′3 : �{(�x(F2))×n} ` {∆2}
BBI-MultiCut

D6 : �{(�1((p; Γ2)∆3); ∗>; Γ4((Γ3;F2)∆′))} ` {∆1; ∆2}
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The permutation is then:

D5 D6 ∨L
�{�1((p; Γ2)∆3); ∗>; Γ4((Γ3;F1 ∨ F2)∆′)} ` {∆1; ∆2}

6. The rest: straightforward.

(id,∨R):

1.
D1 : �{Γ1} ` {F1;F2; ∆1; p}

∨R
�{Γ1} ` {F1 ∨ F2; ∆1; p} id

D2 : �{Γ2; p} ` {p; ∆2}
Cut

�{Γ2; Γ1} ` {p; ∆2;F1 ∨ F2; ∆1}
⇒

D1 D2
Cut

�{Γ1; Γ2} ` {p; ∆2;F1;F2; ∆1} ∨R
�{Γ1; Γ2} ` {p; ∆2;F1 ∨ F2; ∆1}

2. The rest: straightforward.

(id,∧L), (id,∧R), (id,⊃ L), (id,⊃ R):
straightforward.

(id, ∗L):
similar to (id,∧L).

(id, ∗RI), (id, ∗R∗>), (id,−∗RI):
straightforward, we will go through these ((U, ∗RI),
(U, ∗R∗>) and (U,−∗RI)) later for more involved cases.

(id,−∗R∗>):

1.

D1 : �{Γ1} ` {∆1;F2; p}(F1 ∈ Ξ)
−∗R∗>

D3 : �{Γ1} ` {∆1;F1−∗F2; p} id
D2 : �{Γ2; p} ` {∆2}

Cut
�{Γ1; Γ2} ` {∆1; ∆2;F1−∗F2}
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where �((Γ2; p)∆2) �ant �A(E((ΓB; p)(∆A;p))) for some context �A(· · · ),
and some essence construct: E((ΓB; p)(∆A;p)).
⇒

D1 D2
Cut

�{Γ1; Γ2} ` {∆1; ∆2;F2}(F1 ∈ Ξ)
−∗R∗>

�{Γ1; Γ2} ` {∆1; ∆2;F1−∗F2}
2. The rest: straightforward.

(id,−∗LI):
there are a few sub-cases, but we will examine later with more involved cases.

(id,−∗L∗>):
straightforward.

(id, ∗>CtrL):
taken care of in BBI-MultiCut.

(>R,>R):
straightforward.

(>R, 1L):

1.
>R

�{Γ1} ` {>; ∆1; 1} 1L
�{Γ2; 1} ` {∆2}

Cut
�{Γ1; Γ2} ` {∆1; ∆2;>}

⇒

>R
�{Γ1; Γ2} ` {∆1; ∆2;>}

2.
1L

�{Γ1; 1} ` {∆1;>} >R
�{Γ2;>} ` {∆2}

Cut
�{Γ1; Γ2; 1} ` {∆1; ∆2}

⇒

1L
�{Γ2; Γ2; 1} ` {∆1; ∆2}

3. The rest: straightforward.

(>R, ∗>R):
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1.
>R

�{Γ1} ` {∆1;>}
∗>R

�{>; Γ2; ∗>} ` {∗>; ∆2}
Cut

�{Γ1; Γ2; ∗>} ` {∗>; ∆2; ∆1}
⇒

∗>R
�{Γ1; Γ2; ∗>} ` {∗>; ∆2; ∆1}

2.
∗>R

�{Γ1; ∗>} ` {∗>; ∆1}
>R

�{Γ2; ∗>} ` {>; ∆2}
Cut

�{Γ1; ∗>; Γ2} ` {>; ∆2; ∆1}
⇒

>R
�{Γ1; ∗>; Γ2} ` {>; ∆2; ∆1}

3. The rest: straightforward.

(>R,∧L):

1.

>R
D1 : �{Γ1} ` {>; ∆1}

D2 : �{Γ2;>;F1;F2} ` {∆2} ∧L
�{Γ2;>;F1 ∧ F2} ` {∆2}

Cut
�{Γ2; Γ1;F1 ∧ F2} ` {∆1; ∆2}

⇒
D1 D2

Cut
�{Γ2; Γ1;F1;F2} ` {∆1; ∆2} ∧L
�{Γ2; Γ1;F1 ∧ F2} ` {∆1; ∆2}

2. The rest: since the first case is almost identical to (id,∨L) (in fact simpler
because ∧L is a single-premise rule), I omit reiterating the cut elimination
procedure for the remaining cases.

(>R,∧R), (>R,∨L), (>R,⊃ L), (>R,⊃ R), (>R, ∗L), (>, ∗RI) :

straightforward.

(>R, ∗R∗>), (>R,−∗RI), (>R,−∗RI), (>R,−∗R∗>), (>R,−∗LI) :

straightforward, more involved cases later.

(>R,−∗L∗>):
straightforward.
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(>R, ∗>CtrL):
taken care of in BBI-MultiCut.

(1L, 1L):

1L
�{Γ1; 1} ` {1; ∆1}

1L
�{Γ2; 1} ` {∆2}

Cut
�{Γ2; Γ1; 1} ` {∆1; ∆2}

⇒

1L
�{Γ2; Γ1; 1} ` {∆1; ∆2}

(1L, ∗>R):

1.
1L

�{Γ1; 1} ` {∆1; ∗>}
∗>R

�{Γ2; ∗>} ` {∗>; ∆2}
Cut

�{Γ2; Γ1; 1} ` {∗>; ∆2; ∆1}
⇒

1L
�{Γ2; Γ1; 1} ` {∗>; ∆2; ∆1}

2.
∗>R

�{Γ1; ∗>} ` {∗>; ∆1; 1} 1L
�{Γ2; ∗>; 1} ` {∆2}

Cut
�{Γ2; Γ1; ∗>} ` {∗>; ∆1; ∆2}

⇒
∗>R

�{Γ2; Γ1; ∗>} ` {∗>; ∆1; ∆2}

(1L, {∧L,∧R,∨L,∨R,⊃ L,⊃ R, ∗L, ∗RI , ∗R∗>,−∗RI ,−∗R∗>,−∗LI ,−∗L∗>}):
straightforward.

(1L, ∗>CtrL):
taken care of in BBI-MultiCut.
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(∗>R, ∗>R):
straightforward.

(∗>R, the rest):
straightforward. Cf. id cases.

(∧L,∧L):
straightforward.1

(∧L,∧R):

1.
D1 : �{Γ1} ` {F1; ∆1} D2 : �{Γ1} ` {F2; ∆1} ∧R

�{Γ1} ` {F1 ∧ F2; ∆1}
D3 : �{Γ2;F1;F2} ` {∆2} ∧L
�{Γ2;F1 ∧ F2} ` {∆2}

Cut
�{Γ2; Γ1} ` {∆1; ∆2}

⇒

D2

D1 D3
Cut

�{Γ2; Γ1;F2} ` {∆2; ∆1}
Cut

�{Γ2; Γ1; Γ1} ` {∆1; ∆2; ∆1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(CtrL), (CtrR)}
�{Γ1; Γ2} ` {∆1; ∆2}

Recall that additive contraction is admissible in αLBBIp. A dotted line
indicates that the conclusion is derivable with not a greater derivation depth
than the premise sequent is.

2. For this case, let �x(−) denote (Γ2; ∗>;−)∆2 .

D3 : �{(�x(F1 ∧ F2))×n−1,�x(F1;F2)} ` {∆2} ∧L
D5 : �{(�x(F1 ∧ F2))×n} ` {∆2} ∗>CtrL
D6 : �{Γ2; ∗>;F1 ∧ F2} ` {∆2}

D1 : �{Γ1} ` {F1; ∆1} D2 : �{Γ1} ` {F2; ∆1} ∧R
D4 : �{Γ1} ` {F1 ∧ F2; ∆1} D6

Cut
�{Γ2; ∗>; Γ1} ` {∆1; ∆2}

⇒
1In fact, additive cases are all similar to classical logic cases up to BBI-MultiCut and the surround-

ing context.
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D2

D1 D′3 : �{(�x(F1;F2))×n} ` {∆2}
BBI-MultiCut

�{Γx(Γ1;F2)} ` {∆1; ∆2}
Cut

�{Γx(Γ1; Γ1)} ` {∆1; ∆1; ∆2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(CtrL), (CtrR)}
�{Γ2; ∗>; Γ1} ` {∆1; ∆2}

where D′3 derives from D3 via inversion lemma.

3. The rest: straightforward.

(∧L,∨L):
straightforward.

(∧L,∨R):
Let �x(−) denote (Γ2; ∗>;−;H1 ∨H2)∆2 .

1.

D1 : �{Γ1} ` {H1;H2; ∆1} ∨R
D3 : �{Γ1} ` {H1 ∨H2; ∆1}

D2 : �{(�x(F1 ∧ F2))×n−1,�x(F1;F2)} ` {∆2} ∧L
D4 : �{(�x(F1 ∧ F2))×n} ` {∆2} ∗>CtrL

�{Γx(F1 ∧ F2)} ` {∆2}
Cut

�{Γ2; ∗>; Γ1;F1 ∧ F2} ` {∆1; ∆2}
⇒
D3 D′2 : �{((Γ2; ∗>;F1;F2;H1 ∨H2)∆2)×n} ` {∆2}

BBI-MultiCut
�{Γ2; ∗>; Γ1;F1;F2} ` {∆1; ∆2} ∧L
�{Γ2; ∗>; Γ1;F1 ∧ F2} ` {∆1; ∆2}

D′2 derives from D via inversion lemma.

2. Let �x(−) denote (Γ2; ∗>;−)∆2 .

D1 : �{Γ1} ` {H1;H2;F1 ∧ F2; ∆1} ∨R
D3 : �{Γ1} ` {H1 ∨H2;F1 ∧ F2; ∆1}

D2 : �{(�x(F1 ∧ F2))×n−1,�x(F1;F2)} ` {∆2} ∧L
�{(�x(F1 ∧ F2))×n} ` {∆2} ∗>CtrL
D4 : �{Γx(F1 ∧ F2)} ` {∆2}

Cut
�{Γ2; ∗>; Γ1} ` {∆1;H1 ∨H2; ∆2}

⇒
D1 D4

Cut
�{Γ2; ∗>; Γ1} ` {∆1;H1;H2; ∆2} ∨R
�{Γ2; ∗>; Γ1} ` {∆1;H1 ∨H2; ∆2}

3. The rest: straightforward.

(∧L,⊃ L):
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1.

D2 : �{Γ2;G} ` {∆2;H1} D3 : �{Γ2;G;H2} ` {∆2} ⊃ L
D4 : �{Γ2;G;H1⊃H2} ` {∆2}

D1 : �{Γ1;F1;F2} ` {G; ∆1} ∧L
�{Γ1;F1 ∧ F2} ` {G; ∆1} D4

Cut
�{Γ2; Γ1;F1 ∧ F2;H1⊃H2} ` {∆1; ∆2}

Permutation is straightforward by Cut(D1, D2) and Cut(D1, D3).

2. The rest: straightforward, that is, all the answers can be found in the pat-
terns previously studied.

(∧L,⊃ R):
Let �x(−) denote (Γ2; ∗>;H1 ⊃ H2;−)∆2 .

1.

D1 : �{Γ1;H1} ` {H2; ∆1} ⊃ R
D3 : �{Γ1} ` {H1⊃H2; ∆1}

D2 : �{(�x(F1 ∧ F2))×n−1,�x(F1;F2)} ` {∆2} ∧L
D4 : �{(�x(F1 ∧ F2))×n} ` {∆2} ∗>CtrL

�{Γx(F1 ∧ F2)} ` {∆2}
Cut

�{Γ2; ∗>; Γ1;F1 ∧ F2} ` {∆1; ∆2}

We saw a similar pattern before.

2. The rest: straightforward.

(∧L, ∗L):

1.

D1 : �{Γ1;F1;F2} ` {H1 ∗H2; ∆1} ∧L
�{Γ1;F1 ∧ F2} ` {H1 ∗H2; ∆1}

D2 : �{Γ2; (H1, H2)} ` {∆2} ∗L
D3 : �{Γ2;H1 ∗H2} ` {∆2}

Cut
�{Γ2; Γ1;F1 ∧ F2} ` {∆1; ∆2}

⇒

D1 D3
Cut

�{Γ2; Γ1;F1;F2} ` {∆1; ∆2} ∧L
�{Γ2; Γ1;F1 ∧ F2} ` {∆1; ∆2}

2. Similar when ∗>CtrL applies on the right premise sequent, up to the use
of BBI-MultiCut.
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3. The rest: straightforward.

(∧L, ∗RI):
Let �x(−) denote (Γ2; ∗>;H1 ∗H2;−)∆2 .

1.

D1 : Re∆1
1 ` H1 D2 : Re∆2

2 ` H2 ∗RI
D4 : �{Γ∆1

1 } ` {H1 ∗H2}

D3 : �{(�x(F1 ∧ F2))×n−1,�x(F1;F2)} ` {∆2} ∧L
�{(�x(F1 ∧ F2))×n)) ` {∆2} ∗>CtrL
�{Γx(F1 ∧ F2)} ` {∆2}

Cut
�{Γ2; ∗>; Γ1;F1 ∧ F2} ` {∆1; ∆2}

We saw this pattern before. Note that it does not matter what the essence
for the ∗RI is, and consequently what the Re∆a

1 /Re∆b
2 pair is, since the

permutation concludes with intuitionistic ‘Cut’s.

2. The rest: straightforward.

(∧L, ∗R∗>):
similar.

(∧L, {−∗RI ,−∗R∗>,−∗LI ,−∗L∗>}):
straightforward.

(∧L, ∗>CtrL):
taken care of in BBI-MultiCut.

(∧R,∧R):

1.

D3 : �{Γ2;F1 ∧ F2} ` {∆2;H1} D4 : �{Γ2;F1 ∧ F2} ` {∆2;H2} ∧R
D6 : �{Γ2;F1 ∧ F2} ` {∆2;H1 ∧H2}

D1 : �{Γ1} ` {F1; ∆1} D2 : �{Γ1} ` {F2; ∆1} ∧R
D5 : �{Γ1} ` {F1 ∧ F2; ∆1} D6

Cut
�{Γ1; Γ2} ` {∆1; ∆2;H1 ∧H2}

⇒
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D5 D3
Cut

�{Γ2; Γ1} ` {∆2;H1; ∆1}
D5 D4

Cut
�{Γ2; Γ1} ` {∆2;H2; ∆1} ∧R

�{Γ2; Γ1} ` {∆1; ∆2;H1 ∧H2}
2. The rest: straightforward.

(∧R, {∨L,∨R,⊃ L,⊃ R}):
straightforward.

(∧R, ∗L):

1.

D1 : �{Γ1} ` {F1; ∆1} D2 : �{Γ1} ` {F2; ∆1} ∧R
D4 : �{Γ1} ` {F1 ∧ F2; ∆1}

D4

D3 : �{Γ2;F1 ∧ F2; (H1, H2)} ` {∆2} ∗L
�{Γ2;F1 ∧ F2;H1 ∗H2} ` {∆2}

Cut
�{Γ2; Γ1;H1 ∗H2} ` {∆1; ∆2}

⇒
D4 D3

Cut
�{Γ2; Γ1; (H1, H2)} ` {∆1; ∆2} ∗L
�{Γ2; Γ1;H1 ∗H2} ` {∆1; ∆2}

2.

D1 : �{Γ1} ` {F1;H1 ∗H2; ∆1} D2 : �{Γ1} ` {F2;H1 ∗H2; ∆1} ∧R
D5 : �{Γ1} ` {F1 ∧ F2;H1 ∗H2; ∆1}

D5

D3 : �{Γ2; (H1, H2)} ` {∆2} ∗L
D4 : �{Γ2;H1 ∗H2} ` {∆2}

Cut
�{Γ2; Γ1} ` {∆1; ∆2;F1 ∧ F2}

⇒

D1 D4
Cut

�{Γ2; Γ1} ` {∆1;F1; ∆2}
D2 D4

Cut
�{Γ2; Γ1} ` {∆1;F2; ∆2} ∧R

�{Γ2; Γ1} ` {∆1;F1 ∧ F2; ∆2}
3. The rest: straightforward.

(∧R, {∗RI , ∗R∗>,−∗RI ,−∗R∗>}):
straightforward.

(∧R,−∗LI):
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1.
Let �′(−) denote �((�a(−),Γ∆b

b ,E((Γ3;H1−∗H2)∆3))∆4).

D3 D4 −∗LI
D6 : �((�a{F1 ∧ F2; Γ2},�∆b

b ,E((Γ3;H1−∗H2)∆3))∆4) ` {∆2}

D1 : �′{Γ1} ` {∆1;F1} D2 : �′{Γ1} ` {∆1;F2} ∧R
�((�a{Γ1},Γ∆b

b ,E((Γ3;H1−∗H2)∆3)∆4) ` {∆1;F1 ∧ F2} D6
Cut

�((�a{Γ2; Γ1},�∆b
b ,E((Γ3;H1−∗H2)∆3))∆4) ` {∆2; ∆1}

⇒

D2

D1 D′6 : �′{F1;F2; Γ2} ` {∆2}
Cut

�((�a{Γ2;F2; Γ1},Γ∆b
b ,E((Γ3;H1−∗H2)∆3))∆4) ` {∆1; ∆2}

Cut
�((�a{Γ2; Γ1; Γ1},Γ∆b

b ,E((Γ3;H1−∗H2)∆3))∆4) ` {∆1; ∆1; ∆2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Ctr L) (Ctr R)
�((�a{Γ2; Γ1},Γ∆b

b ,E(Γ3;H1−∗H2)∆3)∆4) ` {∆1; ∆2}

2. The rest: straightforward.

(∧R,−∗L∗>):
straightforward.

(∧R, ∗>CtrL):
taken care of in BBI-MultiCut.

(∨L,∨L):
straightforward.

(∨L,∨R):

1.

D2 : �{Γ2;F1} ` {∆2} D3 : �{Γ2;F2} ` {∆2} ∨L
D4 : �{Γ2;F1 ∨ F2} ` {∆2}

D1 : �{Γ1} ` {F1;F2; ∆1} ∨R
�{Γ1} ` {F1 ∨ F2; ∆1} D4

Cut
�{Γ2; Γ1} ` {∆1; ∆2}
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D3

D1 D2
Cut

�{Γ2; Γ1} ` {∆1;F2; ∆2}
Cut

�{Γ2; Γ1; Γ2} ` {∆1; ∆2; ∆2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Ctr L) (Ctr R)}
�{Γ2; Γ1} ` {∆1; ∆2}

2. The rest: straightforward.

(∨L, {⊃ L,⊃ R, ∗L, ∗RI , ∗R∗>,−∗RI ,−∗R∗>,−∗LI ,−∗L∗>}):
straightforward.

(∨L, ∗>CtrL):
taken care of in BBI-MultiCut.

(∨R,∨R):
straightforward.

(∨R, the rest):
straightforward.

(⊃ L,⊃ L):
straightforward.

(⊃ L,⊃ R):

1.
D1 : �{Γ1;F1} ` {F2; ∆1} ⊃ R
�{Γ1} ` {F1⊃F2; ∆1}

D2 : �{Γ2} ` {∆2;F1} D3 : �{Γ2;F2} ` {∆2} ⊃ L
�{Γ2;F1⊃F2} ` {∆2}

Cut
�{Γ2; Γ1} ` {∆1; ∆2}

⇒
D2 D1

Cut
�{Γ1; Γ2} ` {∆1; ∆2;F2} D3

Cut
�{Γ1; Γ2; Γ2} ` {∆1; ∆2; ∆2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Ctr L) (Ctr R)}

�{Γ1; Γ2} ` {∆1; ∆2}
2. The rest: straightforward.
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(⊃ L, the rest):
straightforward.

(⊃ R,⊃ R):
straightforward.

(⊃ R, the rest):
straightforward.

(∗L, ∗L):
straightforward.

(∗L, ∗RI):

1.
D1 : Re∆a

1 ` F1 D2 : Re∆b
2 ` F2 ∗RI

�{Γ1} ` {∆1;F1 ∗ F2}
D3 : �{Γ2; (F1, F2)} ` {∆2} ∗L
�{Γ2;F1 ∗ F2} ` {∆2}

Cut
�{Γ2; Γ1} ` {∆1; ∆2}

⇒

D2

D1 D3
Cut

�{Γ2; (Re∆a
1 , F2)} ` {∆2}

Cut
�{Γ2; (Re∆a

1 , Re∆b
2 )} ` {∆2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Wk L) (Wk R)}

�{Γ1; Γ2} ` {∆1; ∆2}

It does not so much matter what Re∆a
1 /Re∆b

2 pair is or what E(Γ
(∆′;F1∗F2)
A )

such that �′(E(Γ
(∆′;F1∗F2)
A ))�ant �(Γ

(∆1;F1∗F2)
1 ) is for this proof to go through.

2. The rest: straightforward.

(∗L, ∗R∗>):

1.
D1 : ∗> ` F1 D2 : �{Γ1} ` {∆1;F1 ∗G1;G1} ∗R∗>

�{Γ1} ` {∆1;F1 ∗G1}
D3 : �{Γ2; (F1, G1)} ` {∆2} ∗L
D4 : �{Γ2;F1 ∗G1} ` {∆2}

Cut
�{Γ1; Γ2} ` {∆1; ∆2}
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⇒
D2 D4

Cut
�{Γ1; Γ2} ` {∆1; ∆2;G1}

D1 D3
Cut

�{Γ2;G1} ` {∆2}
Cut

�{Γ1; Γ2; Γ2} ` {∆1; ∆2; ∆2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Ctr L) (Ctr R)}
�{Γ1; Γ2} ` {∆1; ∆2}

2. The rest: straightforward.

(∗L, {−∗RI ,−∗R∗>,−∗LI ,−∗L∗>}):
straightforward.

(∗L, ∗>CtrL):
taken care of in BBI-MultiCut.

(∗RI , ∗RI):

1. If the cut formula does not occur in Re∆c
3 or in Re∆d

4 ;

D1 : Re∆a
1 ` F1 D2 : Re∆b

2 ` F2 ∗RI
D5 : �{Γ1} ` {∆1;F1 ∗ F2}

D3 : Re∆c
3 ` H1 D4 : Re∆d

4 ` H2 ∗RI
�{Γ2;F1 ∗ F2} ` {∆2;H1 ∗H2}

Cut
�{Γ2; Γ1} ` {∆1; ∆2;H1 ∗H2}

⇒
D3 D4 ∗RI

�{Γ2; Γ1} ` {∆1; ∆2;H1 ∗H2}

If the cut formula occurs either in Re∆c
3 or in Re∆d

4 then assume Re∆c
3 to be

holding it with no loss of generality. The permutation will be then;

D2

D1 D′3 : Re∆c
3 (F1, F2) ` H1

Cut
Re∆c

3 (Re∆a
1 , F2) ` H1

Cut
Re∆c

3 (Re∆a
1 , Re∆b

2 ) ` H1 D4 ∗RI
�{Γ1; Γ2} ` {∆1; ∆2;H1 ∗H2}

In the internalised weakening for the ∗RI application (looked from premise
to conclusion), Γ1 is recovered from “Re∆a

1 , Re∆b
2 ”.

2. The rest: straightforward.

(∗RI , the rest):
straightforward.
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(∗R∗>, ∗R∗>):
straightforward.

(∗R∗>, the rest):
straightforward.

(−∗RI ,−∗RI):
straightforward.

(−∗RI ,−∗LI):

1.

D2 : Re∆c
1 ` F1 (F1 ∩ Ξ = ∅) D3 : �(((Re∆d

2 , F2); (Γ∆a
a ,Γ∆b

b , {Γc;F1−∗F2}))∆4) ` {∆3} −∗LI
D5 : �((Γ∆a

a ,Γ∆b
b , {Γc;F1−∗F2})∆4) ` {∆3}

D1 : Γ∆1
1 , F1 ` F2 (F1 ∩ Ξ = ∅)

−∗RI
D4 : �((Γ∆a

a ,Γ∆b
b , {Γ2})∆4) ` {F1−∗F2; ∆2} D5

Cut
�((Γ∆a

a ,Γ∆b
b , {Γc; Γ2})∆4) ` {∆2; ∆3}

⇒

D2

D1

D4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Wk L) (Wk R)}
D′4 : �(((Re∆d

2 , F2); (Γ∆a
a ,Γ∆b

b , {Γ2}))∆4) ` {F1−∗F2; ∆2} D3
Cut

�(((Re∆d
2 , {F2}); (Γ∆a

a ,Γ∆b
b , (Γc; Γ2)(∆2;∆3)))∆4) ` {1}

Cut
�(((Re∆d

2 ,Γ∆1
1 , F1); (Γ∆a

a ,Γ∆b
b , (Γc; Γ2)(∆2;∆3)))∆4) ` 1

Cut
�{(Re∆d

2 ,Γ∆1
1 , Re∆c

1 ); (Γ∆a
a ,Γ∆b

b , (Γc; Γ2)(∆2;∆3))} ` {∆4}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Wk L) (Wk R) (∗>Wk L)}
�{(Γ∆a

a ,Γ∆b
b , (Γc; Γ2)(∆2;∆3)); (Γ∆a

a ,Γ∆b
b , (Γc; Γ2)(∆2;∆3))} ` {∆4}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(Ctr L)}

�{Γ∆a
a ,Γ∆b

b , (Γc; Γ2)(∆2;∆3)} ` {∆4}

2.
D2 : Re∆c

1 ` F1 (Ξ ∩ F1 = ∅) D3 : �(((Re∆d
2 , F2); (Γ∆a

a ,Γ∆b
b ,E′((∗>; Γ4;F1−∗F2)∆3)))∆4) ` 1

−∗LI
D5 : �((Γ∆a

a ,Γ∆b
b ,E′((∗>; Γ4;F1−∗F2)∆3))∆4) ` 1

∗>CtrL
D6 : �((Γ∆a

a ,Γ∆b
b ,E((∗>; Γ4;F1−∗F2)∆3))∆4) ` 1

D1 : Γ∆1
1 , F1 ` F2 (Ξ ∩ F1 = ∅)

−∗RI
D4 : �((Γ∆a

a ,Γ∆b
b ,�A{Γ1})∆4) ` {F1−∗F2; ∆1} D6

Cut
�((Γ∆a

a ,Γ∆b
b ,�A{∗>; ΓB; Γ1})∆4) ` {∆1; ∆A}

where the following hold.
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(a) E((∗>; Γ4;F1−∗F2)∆3)�ant �A((∗>; ΓB;F1−∗F2)∆A).

(b) E
′((∗>; Γ4;F1−∗F2)∆3)�ant �A((((∗>; ΓB;F1−∗F2)∆A)×n)∆A).

⇒

D2

D1

D′4 : �(((Re∆d
2 , F2); (Γ∆a

a ,Γ∆b
b ,�A{Γ1}))∆4) ` {F1−∗F2; ∆1} D3

BBI-MultiCut
�(((Re∆d

2 , F2); (Γ∆a
a ,Γ∆b

b ,�A{∗>; ΓB; Γ1}))∆4) ` {∆1; ∆A}
Cut

�(((Re∆d
2 , F1,Γ

∆1
1 ); (Γ∆a

a ,Γ∆b
b ,�A{∗>; ΓB; Γ1}))∆4) ` {∆1; ∆A}

Cut
�(((Re∆c

1 , Re∆d
2 ,Γ∆1

1 ); (Γ∆a
a ,Γ∆b

b ,�A{∗>; ΓB; Γ1}))∆4) ` {∆1; ∆A}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Wk L) (Wk R) (∗>Wk L)
D∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Ctr L)

�((Γ∆a
a ,Γ∆b

b ,�A{∗>; ΓB; Γ1})∆4) ` {∆1; ∆A}

where
D∗ : �(((Γ∆a

a ,Γ∆b
b ,�A((∗>; ΓB; Γ1)(∆1;∆A))); (Γ∆a

a ,Γ∆b
b ,�A{∗>; ΓB; Γ1}))∆4) `

{∆1; ∆A}.

3. Let �x denote �A((∗>; Γc;F1−∗F2)∆A).

D2 : Re∆c
1 ,�×mx ` F1 (F ∩ Ξ = ∅) D3 : �(((Re∆d

2 , F2,�
×l
x ); (Γ∆a

a ,Γ∆b
b , (�×nx )∆A))∆4) ` 1

−∗LI
�((Γ∆a

a ,Γ∆b
b , (�×nx )∆A)∆4) ` 1

∗>CtrL
D5 : �(Γ∆a

a ,Γ∆b
b ,�x) ` 1

D1 : Γ∆1
1 , F1 ` F2 (Ξ ∩ F1 = ∅)

−∗RI
D4 : �((Γ∆a

a ,Γ∆b
b ,�A{Γ1})∆4) ` {F1−∗F2; ∆1} D5

Cut
�((Γ∆a

a ,Γ∆b
b ,�A{∗>; Γc; Γ1})∆4) ` {∆1; ∆A}

where 0 ≤ m+ l ≤ n− 1.
⇒
We have:

D1 −∗RI
D′1 : Γ∆1

1 ` F1−∗F2

We then have:

D′1 D2
BBI-MultiCut

D6 : Re∆c
1 ,�A((∗>; Γc; Γ1)(∆1;∆A)) ` F1

D′1 D3
BBI-MultiCut∗

D7 : �(((Re∆d
2 , F2,�A((∗>; Γc; Γ1)(∆1;∆A))); (Γ∆a

a ,Γ∆b
b ,�A((∗>; Γc; Γ1)(∆1;∆A))))∆4) ` 1

by recalling the multiplicity in the intuitionistic Cut. Then;
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D6

D1 D7
Cut

�(((Re∆d
2 ,Γ∆1

1 , F1,�A((∗>; Γc; Γ1)(∆1;∆A))); (Γ∆a
a ,Γ∆b

b ,�A((∗>; Γc; Γ1)(∆1;∆A))))∆4) ` 1
Cut

�(((Re∆d
2 ,Γ∆1

1 , Re∆c
1 , (�A((∗>; Γc; Γ1)(∆1;∆A)))×2); (Γ∆a

a ,Γ∆b
b ,�A((∗>; Γc; Γ1)(∆1;∆A))))∆4) ` 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infs

�(((Γ∆a
a ,Γ∆b

b , (�A((∗>; Γc; Γ1)(∆1;∆A)))×4); (Γ∆a
a ,Γ∆b

b ,�A((∗>; Γc; Γ1)(∆1;∆A))))∆4) ` 1 ∗>CtrL
�(((Γ∆a

a ,Γ∆b
b ,�A((∗>; Γc; Γ1)(∆1;∆A))); (Γ∆a

a ,Γ∆b
b ,�A((∗>; Γc; Γ1)(∆1;∆A))))∆4) ` 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (CtrL)

�((Γ∆a
a ,Γ∆b

b ,�A((∗>; Γc; Γ1)(∆1;∆A)))∆4) ` 1

where WkL,WkR, ∗>WkL ∈ Infs.

4. The rest: straightforward.

(−∗RI ,−∗L∗>):
straightforward. The principal for either of the premise sequents of the particular
Cut instance cannot become the principal for the other.

(−∗RI , ∗>CtrL):
taken care of in BBI-MultiCut.

(−∗R∗>,−∗L∗>):

1.

D1 : �{Γ1} ` {∆1;F2} (F1 ∈ Ξ)
−∗R∗>

D3 : �{Γ1} ` {∆1;F1−∗F2}
D2 : �{Γ2;F2} ` {∆2} (F1 ∈ Ξ)

−∗L∗>
D4 : �{Γ2;F1−∗F2} ` {∆2}

Cut
�{Γ1; Γ2} ` {∆1; ∆2}

⇒

D1 D2
Cut

�{Γ1; Γ2} ` {∆1; ∆2}

2. The rest: straightforward.

(−∗R∗>, ∗>CtrL):
taken care of in BBI- MultiCut.
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(−∗LI , the rest):
straightforward.

(−∗L∗>, the rest):
straightforward.

The rest: straightforward. �

Note that, in case the principal of either of the Cut premise sequents does not reside
in the same additive structural layer as the cut formula, permutation is very simple
(via inversion lemma and depth-preserving weakening admissibilities if needed). For
example, we may have the following derivation:

D1 : ∗> ` F1 D2 : �{Γ1} ` {∆1;F1 ∗G1;G1} ∗R∗>
�{Γ1} ` {∆1;F1 ∗G1}

D3 : Re∆a
1 ` H1 D4 : Re∆b

2 ` H2 ∗RI
�
′{Γ2} ` {∆2;H1 ∗H2}

Cut
�{Γ1; ΓA} ` {∆1; ∆A}

where �′((Γ2)(∆2;H1∗H2)) �ant �((ΓA;F1 ∗ G1)∆A) with the condition that �′(−) 6�ant

�
′(−), which simply permutes into;

D3 D4 ∗RI
�{Γ1; ΓA} ` {∆1; ∆A}
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Rajeev Goré, Linda Postniece, and Alwen Tiu. Taming displayed tense logics using
nested sequents with deep inference. In TABLEAUX, volume 5607 of Lecture Notes

in Computer Science, pages 189–204. Springer, 2009. 144

James Harland and David J. Pym. Resource-distribution via boolean constraints. ACM

Trans. Comput. Log., 4(1):56–90, 2003. 46

Arend Heyting. Die formalen regeln der intuitionistischen logik. Die Preeussis-

che Akadamie der Wissenschaften. Sitzungsberichte. Physikalische-Mathematische

Klasse., pages 42–56, 1930. 13

Benjamin R. Horsfall. The logic of bunched implications: A memoir. Master’s thesis,
University of Melbourne, 2006. 46

Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The Tree Width of Separation Logic
with Recursive Definitions. In CADE, volume 7898 of Lecture Notes in Computer

Science, pages 21–38. Springer, 2013. 41

Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable data
structures. In POPL, pages 14–26, 2001. 6

252



REFERENCES

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and
Frank Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and
Java. In NASA Formal Methods, volume 6617 of Lecture Notes in Computer Science,
pages 41–55. Springer, 2011. 41

Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):
119–135, 1994. 144

Stephen C. Kleene. Introduction to META-MATHEMATICS. North-Holland Publish-
ing Co., 1952. 9, 15

Marcus Kracht. Power and weakness of the modal display calculus, pages 93–121.
Kluwer Academic Publishers, 1996. 42

Saul Kripke. A completeness theorem in modal logic. J. Symb. Log., 24(1):1–14, 1959.
14

Saul Kripke. Semantical analysis of intuitionistic logic I. In M. Dummett and J. N.
Crossley, editors, Formal Systems and Recursive Functions. North-Holland Publish-
ing Co., 1965. 14

Dominique Larchey-Wendling and Didier Galmiche. Exploring the relation between
intuitionistic BI and boolean BI: an unexpected embedding. Mathematical Struc-

tures in Computer Science, 19(3):435–500, 2009. 40, 41

Dominique Larchey-Wendling and Didier Galmiche. Non-deterministic semantics and
the undecidability of boolean BI. ACM Trans. Comput. Log., 2012. 8, 33, 35, 40,
42, 141

Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Thor: A tool for
reasoning about shape and arithmetic. In CAV, volume 5123 of Lecture Notes in

Computer Science, pages 428–432. Springer, 2008. 41

Michael Moortgat. Categorial type logics. HANDBOOK OF LOGIC AND LAN-

GUAGE, pages 93–177, 1997. 191

Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of

Symbolic Logic, 5(2):215–244, 1999. 8, 39, 46, 191

253



REFERENCES

Jonghyun Park, Jeongbong Seo, and Sungwoo Park. A theorem prover for boolean BI.
In POPL, pages 219–232. ACM, 2013. 41, 42, 43, 143, 144, 145, 146, 147, 196

Matthew J. Parkinson and Gavin Bierman. Separation logic and abstraction. In Jens
Palsberg and Martı́n Abadi, editors, POPL, pages 247–258. ACM, 2005. 6

David J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.
Kluwer Academic Publishers, 2002. 30, 39, 40, 46, 47, 64, 127

David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Possible worlds and resources:
the semantics of BI. Theor. Comput. Sci., 315(1):257–305, 2004. 46

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74. IEEE, 2002. 6, 40

Joshua Schechter. Juxtaposition: a new way to combine logics. Rev. Symb. Log., 4(4):
560–606, 2011. 149, 191
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