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Abstract 

Petroleum Development Oman (PDO) and Oman Electricity Transmission Company 

(OETC) are running the main 132kV power transmission grids in the Sultanate of Oman. 

In the year 2001, PDO and OETC grids were interconnected with a 132kV Over head 

transmission line linking Nahada 132kV substation at PDO's side to Nizwa 132kV sub-

station at OETC's side. Since then the power exchange between PDO and OETC is driven 

by the natural impedances of the system and the frequency and power exchange is 

controlled by manually re-dispatching the generators. In light of the daily load profile and 

the forecasted Gulf Cooperation Council (GCC) states electrical interconnection, it is a 

great challenge for PDO and OETC grids operators to maintain the existing operation 

philosophy. The objective of this research is to investigate Automatic Generation Control 

(AGC) technology as a candidate to control the grid frequency and the power exchange 

between PDO and OETC grid. For this purpose, a dynamic power system model has been 

developed to represent PDO-OETC interconnected power system. The model has been 

validated using recorded data from the field which has warranted the requirement of 

refining the model. Novel approaches have been followed during the course of the model 

refining process which have reduced the modelling error to an acceptable limit. The refined 

model has then been used to assess the performance of different AGC control topologies. 

The recommended control topologies have been further improved using sophisticated 

control techniques like Linear Quadratic Regulator (LQR) and Fuzzy Logic (FL). Hybrid 

Fuzzy Logic Proportional Integral Derivative (FLPID) AGC controller has produced 

outstanding results. The FLPID AGC controller parameters have then been optimised using 

Multidimensional Unconstrained Nonlinear Minimization function (fminsearch) and 

Particle Swarm Optimisation (PSO) method. The PSO has been proved to be much 

superior to fminsearch function. The robustness of the LQR, the fminsearch optimized 

FLPID and the PSO FLPID optimized AGC controllers has been assessed. The LQR 

robustness found to be slightly better than the FLPID technique. However the FLPID 

supercedes the LQR due to the limited number of field feedback signals in comparison to 

the LQR. Finally, a qualitative assessment of the benefits of the ongoing GCC 

interconnection project on PDO and OETC has been done through modelling approach. 

The results proved that the GCC interconnection will bring considerable benefits to PDO 

and OETC but the interconnection capacity between PDO and OETC needs to be 

enhanced. However, the application of AGC on PDO and OETC will alleviate the PDO-

OETC interconnection capacity enhancement imposed by the GCC interconnection. 
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Preface 

The field of Automatic Generation Control (AGC) has been extensively explored by 

researchers during the last few decades. Due to the developing control technologies and the 

power sector in general, the field of AGC has always been the interest of many researchers. 

However most of the researchers have considered small sized power systems in their 

analysis and most of them are focused on developing competitive controller performance. 

Therefore the modelling process for AGC studies remained virtually the same as it was 

originally developed in the early seventies of the last century. 

PDO and OETC are running the main interconnected power system networks in Oman. In 

the other hand, there are ongoing projects to interconnect all electrical networks of all the 

six member states of the Gulf Cooperation Council (GCC). There are advantages and 

challenges associated with the future GCC electrical interconnection. One of the challenges 

is the control of system frequency and power exchange. AGC is one of the potential 

candidates which can be considered to address the control issue of system frequency and 

power exchange.  

The aspiration of this research is to investigate the implementation of AGC to a practical 

size power system and to explore new horizons in the modelling process.     

Therefore, this report details the findings of a comprehensive case study of applying 

Automatic Generation Control (AGC) to the PDO-OETC interconnected power system. 

The investigation covers the modelling process and the AGC controller design aspects. The 

report also demonstrates the results of a qualitative assessment of the implication of the 

Gulf Countries Council (GCC) electrical interconnection project on PDO-OETC 

interconnected power system. 
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Definitions 

AAAC: All Aluminum Alloy Conductor 

ACE: Area Control Error 

AET: Absolute Error multiplied by Time 

AGC: Automatic Generation Control 

DLN: Dry Low NOx combustor 

FL: Fuzzy Logic 

FLPID: Fuzzy Logic Proportional Integral Derivative controller 

GCC: Gulf Cooperation Council 

GRC: Generation Rate Constraint 

GTG: Gas Turbine Generator 

HVDC: High Voltage Direct Current 

Hz: Hertz 

IAET: Integral of Absolute Error multiplied by Time 

IPS: Integrated Power Station 

LDC: Load Dispatch Centre 

LQR: Linear Quadratic Regulator 

MF: Membership Function 

MVA: Mega Volt Ampere 

MVAr: Mega Volt Ampere reactive 

MW: Mega Watt 

NERC: North American Electric Reliability Corporation 

OETC: Oman Electricity Transmission Company 

PDO: Petroleum Development Oman 

PI: Proportional Integral controller 

PID: Proportional Integral Derivative controller 

PSO: Particle Swarm Optimisation method 

SCADA: Supervisory Control And Data Acquisition 

UAE: United Arab Emirates 

UIE: Utility Infrastructure-Electrical department within PDO 
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Chapter 1: Introduction 

Petroleum Development Oman (PDO) company owns and operates the largest industrial 

power system in the Sultanate of Oman. PDO owns all the power stations, transmission 

grid and the distribution network comprising its power system. The PDO power system is 

about 40 years old and is supplying all PDO’s oil and gas fields.  

PDO's power system got interconnected with Oman Electricity Transmission Company 

grid (OETC) in the year 2001. OETC operates the government power system which 

consists of independent power producers and the transmission grid. The two power 

systems are interconnected with a 132kV transmission line between Nahada 132kV 

substation (PDO) and Nizwa 132kV substation (OETC). The power exchange is driven 

naturally by the system impedances. Therefore the scheduled power exchange is controlled 

through manual generation dispatch but there is no automatic control. With the 

continuously changing operating points, it has always been difficult to maintain the 

scheduled power exchange. From this perspective, the feasibility of Automatic Generation 

Control (AGC) becomes apparent.  In this research, the Automatic Generation Control 

(AGC) of PDO-OETC interconnected power systems will be studied in detail. This work 

can be regarded as a case study which will touch most of the practical aspects of AGC 

modelling and application.  

Furthermore, the Gulf Cooperation Council (GCC) states that the electrical interconnection 

project is ongoing and is being commissioned in stages. Once the project is substantially 

completed, all six member states (Kingdom of Saudi Arabia, Kuwait, Kingdom of Bahrain, 

Qatar, United Arab Emirates and the Sultanate of Oman) electrical networks will be fully 

integrated as one electrical grid. The GCC electrical interconnection will address its own 

challenges in operating the individual states power systems. This study will focus on the 

dynamic and steady state implications of the GCC interconnection on PDO and OETC 

power systems. 

The layout of this report is divided into fifteen chapters. Chapter one comprises this 

introduction. Chapter two discusses the aims and objectives of this study. Chapter three 

reviews the literature published in the field under study including Automatic Generation 

Control and GCC interconnection. Chapter four illustrates the modelling approach of PDO 

and OETC interconnection power systems from its basic principles. Chapter five illustrates 

the different approaches followed in testing the developed PDO and OETC power systems 

model and discusses the main features of the model. Chapter six discusses two different 

approaches in validating the developed PDO and OETC power systems model, the 
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mathematical validation approach and the validation against real life scenarios logs. 

Chapter seven discusses the model refining approaches followed to minimise the model 

error considering different practical concepts. This chapter has also discussed the key 

model parameters fine tuning process using the commonly used "fminsearch" MATLAB 

function. Chapter eight illustrates the approach followed in developing the state space 

representation of the developed PDO and OETC power systems model.  The design of 

PDO and OETC power systems Automatic Generation Control (AGC) has been discussed 

in depth in Chapter nine. Fifteen AGC control topologies have been designed and 

simulated and the best AGC control topologies have been recommended for both PDO and 

OETC power systems. Chapter ten goes one step further and illustrates the design of 

certain AGC control topologies using Linear Quadratic Regulator method and compares 

the results with the ones which have been obtained in chapter nine. Chapter eleven goes a 

further step forward and illustrates the design of PDO and OETC AGC control using the 

Fuzzy Logic theory. The results have been compared with the previously obtained results 

in chapter nine and ten. The PDO and OETC AGC control performance using the 

previously adopted Fuzzy Logic control theory has been further optimised in chapter 

twelve using different optimisation methods like fminsearch MATLAB function and the 

Particle Swarm Optimisation Method (PSO). Certain AGC performance guidelines have 

been adopted for the optimisation process and the performance of the optimised AGC 

controllers has been compared with the results obtained in chapter nine, ten and eleven. 

The robustness of the PDO and OETC AGC controllers to the modelling process 

uncertainties has been verified in chapter thirteen. Chapter fourteen of this report discusses 

the implications of the GCC interconnection on PDO and OETC power systems dynamic 

and steady state performance with and without the application of AGC control. Chapter 

fifteen acts as a summary of the findings of the whole study and has identified a scope of 

work which can be considered in future studies. In light of the data sourcing difficulties, 

every effort has been made to make reasonable practical assumptions where deemed 

necessary. The practical recommendations out of this study can be used by PDO and 

OETC power systems engineers. 

Based on the results of this research, two conference papers have been published so far and 

are given in Appendix 1.        
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Chapter 2: Aims and Objectives 

The research topic in hand is very wide and the focus of the study is to implement the very 

well established Automatic Generation Control theory to PDO-OETC electrical power 

system and to explore new horizons in the modelling approach.  

The following summarises the objectives of this research: 

• To model PDO and OETC power systems for Automatic Generation Control study 

• To investigate the response of the model to step load changes.  

• To investigate the effect of model uncertainties and non-linearity on the general 

model response characteristics.   

• To investigate new horizons in modelling for Automatic Generation Control 

studies.  

• To investigate the effect of practical generation constraints by incorporating these 

practical limitations into the model.  

• To validate the developed PDO-OETC power system model against real life data 

• To explore the suitable Automatic Generation Control topologies  

• To design Automatic Generation Controller which can accommodate all model 

uncertainties and non-linearity.  

•   To optimise the controller performance to suite both PDO and OETC control 

standards considering the nature of each system.  

• To assess the robustness of the developed controllers 

• To study the impact of GCC interconnection on both PDO and OETC power 

systems. 

• To assess the performance of PDO-OETC AGC in light of the GCC 

interconnection 
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Chapter 3: Literature review 

Power supply frequency is considered as a key factor of power supply quality. Speed of 

induction and synchronous motors are dependant on the supply frequency. A deviation in 

the supply frequency will affect the speed of these motors and consequently, the 

performance of the process in which they are installed. Therefore it is extremely important 

to maintain the supply frequency at its nominal value. And in case of frequency deviation 

due to transient conditions, nominal frequency must be restored in an acceptable period of 

time. Power systems regulators usually specify performance indices which must be 

maintained by the power systems operators. 

Frequency deviations are caused by an unbalance between the output power of the 

generators and the load demand. This power mismatch will be compensated by a change in 

the rotational kinetic energy of the generators ending up with a deviation in the generators 

speed and hence the frequency. The general idea of controlling the frequency is to maintain 

the balance between the generated power and the consumed power. Since the existence of 

alternating current power systems, different philosophies have been applied to maintain the 

supply frequency.  The most common control modes are the Isochronous control, Droop 

control and Automatic Generation Control. In the Isochronous control mode, a big 

generator will be assigned the task of maintaining the frequency and the rest of generators 

will be running at constant power output. In the Droop control mode, all generators will 

respond to the frequency deviation. Automatic Generation Control (AGC) is achieved by 

adding a supervisory control loop to the Droop control loop in order to achieve better 

performance. The main aim of AGC is to maintain zero steady state frequency deviation 

and to track the load demands.  

AGC has been around for the past few decades and it came into practical applications in 

many power systems around the world. AGC becomes particularly useful in interconnected 

power systems as it can control the power exchange between the neighbouring systems and 

enhances the overall system stability. The interest in AGC is growing up rapidly due to the 

interest in interconnected power systems.  

Modelling of power systems will be associated with different types of uncertainties due to 

the continuously changing parameters and characteristics, load fluctuations and modelling 

errors (Shayeghi and Shayanfar, 2006; Ali and Abd-Elazim, 2011). Moreover, power 

system parameters are a function of the operating points (Karnavas and Papadopoulos, 

2002) and these points do change continuously due to the daily load variation and 

generation scheduling.  
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Conventionally, Proportional Integral (PI) controllers have been adopted to solve the AGC 

problem (Oysal, 2005). The PI controller is successful in achieving a zero steady state 

frequency deviation. However, due to the non-linear power systems, PI controller has a 

poor dynamic response (Karnavas and Papadopoulos, 2002).   

Many of the published literature have proposed a number of control strategies to improve 

the AGC performance. Some researchers focused on utilising better tuning methods to tune 

a PID based AGC like Maximum Peak Resonance Specification (MPRS) method 

(Khodabakhshian and Hooshmand, 2010) and Particle Swarm Optimisation method 

(Jadhav and Vadirajacharya, 2012). In some of the literature, optimal control techniques 

(Azzam, 1999; Elgerd and Fosha 
(2)

, 1970) and variable structure control (Bengiamin and 

Chan, 1982) were proposed to solve the AGC problem and have shown a robust control 

results. However they are based on state feedback which makes it very difficult to 

implement because information about the states are either not available or difficult to 

obtain (Shayeghi et al
 (2)

, 2006). 

A significant number of the published papers attempted to apply the fuzzy logic controllers 

to AGC (Karnavas and Papadopoulos, 2002; Shayeghi et al 
(2)

, 2006; Shayeghi et al 
(1)

, 

2007; Güzelkaya and Eksin, 2004; Çam, 2007; Çam and Kocaarslan 
(1)

, 2005; Demiroren 

and Yesil, 2004; Lee et al, 2006; El-Sherbiny et al, 2002; Feliachi and Rerkpreedapong, 

2005; Kocaarslan and Çam 
(3)

, 2005; Çam and Kocaarslan 
(2)

, 2005; Chang and Fu, 1997; 

Ghoshal and Goswami, 2003; Ghoshal 
(1)

, 2004; Ghoshal 
(2)

, 2004). Since fuzzy logic 

controllers are good in dealing with complicated, non-linear, indefinite and time-variant 

systems (Çam and Kocaarslan 
(2)

, 2005), they seem to be feasible for the AGC. In the 

published literature, many fuzzy logic arrangements were proposed like the basic PI & PID 

fuzzy controllers (Demiroren and Yesil, 2004), self tuning & Fuzzy gain scheduling (Yesil 

et al, 2004; Çam, 2007; Çam and Kocaarslan 
(1)

, 2005; Feliachi and Rerkpreedapong, 2005; 

Kocaarslan and Çam 
(3)

, 2005; Çam and Kocaarslan 
(2)

, 2005; Chang and Fu, 1997) and 

multi-stage fuzzy controller (Shayeghi et al 
(2)

, 2006; Shayeghi et al 
(1)

, 2007; Sudha and 

Santhi, 2011).  

Artificial Neural Networks (ANN) controllers were also used by some researchers to solve 

the AGC problem (Shayeghi and Shayanfar, 2006; Shayeghi et al 
(3)

, 2007; Hemeida, 

2005). The merit of ANN is that it can deal with uncertain system models and parameters 

making it quite suitable for power systems applications. The merits of combining ANN and 

Fuzzy logic for AGC controllers has also been explored by researchers (Khuntia and 

Panda, 2012). However, ANN needs some recorded data from the field for the training 

purpose which again imposes some difficulties in its practical applications.      
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Genetic algorithm is also used by some researchers (Ghoshal and Goswami, 2003; 

Ghoshal, 2004) to calculate the initial controller gains in cooperation with fuzzy logic 

controllers.  

It became obvious requirement that AGC controllers must be robust to cater for system 

non-linearity and uncertainties and decentralised to reduce the required signals from the 

field. 

The effects of the generating units' limitations received a considerable attention by the 

researchers in the AGC filed. Generation rate constraint and governors dead band have 

been modelled by some researchers (Shayeghi et al 
(2)

, 2006; Yesil et al, 2004; Demiroren 

and Yesil, 2004; El-Sherbiny et al, 2002) in an effort to eliminate modelling errors.  

The power market in some countries has been restructured from the vertical hierarchy to 

the bilateral contracts environment where distribution companies can make direct contracts 

with generation companies elsewhere in the grid (Shayeghi et al 
(2)

, 2006). This mode of 

operation puts more burdens on the grid operators. Some work has been done to use the 

traditional AGC with some modification to operate the new deregulated power system 

environment (Shayeghi et al 
(2)

, 2006; Shayeghi et al 
(3)

, 2007; Bevrani et al, 2004). The 

possible bilateral contracts are represented by introducing the concept of an augmented 

generation participation matrix which represents all possible contracts between generation 

and distribution companies (Shayeghi et al 
(2)

, 2006; Rakhshani and Sadeh, 2010). The 

effects of the possible contracts are then treated as a set of new input disturbances 

(Shayeghi et al 
(3)

, 2007).  

Almost all the published papers have considered simple power system models with few 

control areas and generators for the analysis. The general idea can then be applied to any 

specific power system. However the scale of the problem can be better quantified by using 

practical size power systems models. 

The Gulf Cooperation Council (GCC) states, Kingdom of Saudi Arabia, Sultanate of 

Oman, United Arab Emirates, State of Qatar, State of Kuwait and Kingdom of Bahrain, 

have established the GCC Electrical Interconnection Authority in July 2001 aiming for 

fully integrated electrical infrastructure within the GCC states. Most of researchers in the 

field of GCC electrical interconnection have studied the GCC interconnection from its 

economics and viability point of view (Konstantinos et al, 2007; Al-Asaad, 2009; Al-

Alawi, 1999). Less attention was given by the researchers to the technical challenges like 

the power system dynamics and power exchange, a gap which will be filled by this study.  
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Chapter 4: Model Development 

4.1. Introduction 

This part of the report demonstrates the power system modelling approach followed to 

model PDO and OETC electrical power systems. The modelling process is kept fit for 

purpose to produce a reasonably sized model which can be used to study and analyse PDO 

and OETC power systems in order to achieve the objectives of this research project.  

 For example, modelling of generators prime movers can be a very complicated task due to 

the complexity of these units. In general, full thermodynamic or hydrodynamic models 

development leads to a computationally expensive solution (Smith and Chen, 1993, p. 83). 

Often the level of complicity can be alleviated by making the model fit for purpose and by 

accepting a certain amount of errors. For Automatic Generation Control (AGC) studies a 

simplified model of prime movers can be used which leads to an acceptable accuracy of 

the input power variation to the generator (Smith and Chen, 1993, p. 83). 

Moreover, there are significant difficulties and challenges to get "name plate" data for all 

installed equipments to be modelled. Instead, realistic assumptions have been made 

throughout the modelling process based on information about similar installations or 

commonly used figures in international journals and text books.     

4.2. Steam turbine modelling 

There are different types of steam turbines installations. Steam turbine can be either 

tandem-compound or cross-compound depending on the number of shafts it has 

(KUNDUR, 1994, p. 418). Tandem-compound turbine has all turbines sections on a single 

shaft driving a single generator (KUNDUR, 1994, p. 418). Cross-compound turbine has 

two shafts each with its turbine's sections driving two generators each connected to a 

different shaft (KUNDUR, 1994, p. 418). The cross-compound steam turbines are of better 

efficiency but they are rarely used because they are expensive. Tandem-compound is 

commonly used and can be of reheating or non-reheating steam cycle (KUNDUR, 1994, 

pp. 418-421). 

There are no steam turbines generators connected to PDO grid but there are steam turbines 

generators connected to OETC grid and are of non-reheating tandem-compound type. 

Therefore, in this study, the non-reheating tandem-compound steam turbines will only be 

modelled for steam turbines generators representation.        
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4.2.1. Principle of operation 

In steam turbines installations, fuel is burned under a boiler, whereby steam is produced.  

The produced steam, at high pressure and speed, will hit the inclined blades of a turbine 

wheel and will drive it round.  There will be a pressure drop across the first wheel blades, 

but enough is left to drive the second wheel and a third or fourth on the same shaft.  Finally 

the steam is exhausted into a condenser, turned back into water and returned to the boiler 

to be heated and used again (Shell Global Solutions, 2007).  Figure 4.1 shows the different 

stages of the operation cycle of a non reheat steam turbine. The available mechanical 

torque on the shaft can be used to drive the generator by coupling it to the main turbine 

shaft.  

Figure 4.1: Non-reheating steam turbine system (Shell Global Solutions, 2007) 

4.2.2. Modeling of steam turbines for dynamic studies 

 The real power generated by a steam turbine generator is controlled by means of the prime 

mover torque. This torque is affected by opening or closing the steam control valve of the 

steam turbine. The steam control valve is controlled by the governor which modulates the 

steam control valve opening in response to the turbine speed. A load change will affect the 

electrical torque and will cause a mismatch between the electrical torque and the machine 

mechanical torque. Hence the machine speed will change and the governor will respond 

accordingly.    

Figure 4.2 depicts schematically the typical turbine control arrangement (Elgerd and Fosha 

(1)
, 1970; Elgerd and Fosha 

(2)
, 1970). 



 

-22- 

 

Figure 4.2: Typical turbine control arrangement. 

The steam control valve housing is called the steam chest (KUNDUR, 1994, p. 425). A 

substantial amount of steam can be accommodated in the steam chest and the inlet piping 

to the high pressure section of the steam turbine (KUNDUR, 1994, p. 425).  The response 

of the steam flow to a change in the control valve opening exhibits a time constant TCH due 

to the charging time of the steam chest and the inlet piping (KUNDUR, 1994, p. 425). For 

AGC studies, a steam turbine can be represented by first order transfer function with a time 

constant TCH (KUNDUR, 1994, p. 598). 

The steam turbine governing system can be Mechanical-hydraulic, Electrohydraulic or 

Digital Electrohydraulic (KUNDUR, 1994, pp. 434-443). The governing system response 

exhibits a time constant TG due to the response time of the overall governor. For dynamic 

studies, a steam turbine governing system can be represented by first order transfer 

function with a time constant TG (KUNDUR, 1994, p. 589). 

For AGC studies the non-reheating steam turbine and its governing system can be 

represented by two first order transfer functions as shown in Figure 4.3 (Elgerd and Fosha 

(1)
, 1970; Elgerd and Fosha 

(2)
, 1970; KUNDUR, 1994, pp. 589-598).  

 

Figure 4.3: Steam turbine and governor model (Elgerd and Fosha 
(1)

, 1970; KUNDUR, 

1994, pp. 593-598) 
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In Figure 4.3 Tg (in seconds) is the governor time constant, Tch (in seconds) is the 

charging time constant of the turbine and R (Hz/p.u MW) is the static speed droop of the 

turbine generator. To a very good approximation, the typical values of these constants are 

0.3 s for Tgh and 0.2 s for Tg (KUNDUR, 1994, p. 598). In PDO and OETC, the droop 

control is set to 4% of the nominal frequency of 50Hz and hence: 

puMWHzHzR /25004.0 =×=   

4.3. Gas turbine modelling  

Gas turbines can be provided in one shaft or two shafts designs. In the two shaft design, the 

second shaft is used to drive a low pressure turbine that requires a low speed. However, in 

practice the single shaft is the most common one (Anderson and Fouda, 2003, p 514). All 

gas turbine generators sets at PDO and OETC are of the single shaft design.    

4.3.1. Principle of operation 

The principle of gas turbine is similar to that of the steam turbine except that there is no 

boiler or water. Instead, the fuel is burned in a combustion chamber where it produces a 

hot, high-pressure gas.  The burned gas will expand causing a reaction on each row of 

blades on a rotor and will drive it round (Shell Global Solutions, 2007). 

In order for the fuel to burn, oxygen is needed, and it must be at high pressure in order to 

enter the combustion chamber. Therefore an air compressor is fitted integrally with the 

turbine (Shell Global Solutions, 2007).The principle of the gas turbine is shown 

schematically in Figure 4.4. 

Figure 4.4: Single Shaft Gas Turbine Set 
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4.3.2. Modelling of gas turbine for dynamic studies 

The amount of fuel flowing to the combustion chamber is controlled by the governor and 

hence controlling the output mechanical power on the shaft.   

Modern electrohydraulic governors are used in all PDO and OETC power systems gas 

turbine generating units. The schematic of the electrohydraulic governor is shown in 

Figure 4.5. For gas turbine generators, the governor will sense the frequency deviation by 

comparing the turbine speed with the set speed and will actuate the Fuel Control Valve 

accordingly.  

Studies of the system in Figure 4.5 revealed that the gas turbine and its governing system 

can be represented by three first order transfer functions (Smith and Chen, 1993, pp.121-

122 & p. 221). One transfer function represents the governor lag time, the second transfer 

function represents the control valve lag time and the third transfer function represents the 

fuel charging characteristics. Figure 4.6 shows the dynamic model of gas turbine 

generators which will be used for this study. The same model is used by PDO for dynamic 

studies (Petroleum Development Oman 
(3)

, 2004). The governor time constant (Tg) is 0.05 

s, the control valve time constant (Tc) is 0.05 s and the fuel system time constant (Tf) is 

0.4s. The droop control is set to 4% of the nominal frequency of 50Hz and hence: 

puMWHzR /25004.0 =×=   

 

Figure 4.5: Electrohydraulic governor schematic (Shell Global Solutions, 2007) 
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Figure 4.6: Governor/turbine model of gas turbine generator (Petroleum Development 

Oman 
(3)

, 2004) 

4.4. Oman Power System Topology 

Oman power systems consist of two major independently owned and operated power 

system grids, PDO grid and the government grid. The government grid is operated by 

Oman Electricity Transmission Company (OETC) with independent power producers 

connected to it. The main Load Dispatch Centre (LDC) of OETC is located in the capital 

of Oman ''Muscat''.  

PDO owns and operates its own power system. The main control centre is Located in the 

interior of Oman "Yibal".  

 

Both PDO and OETC grids operate at 132kV transmission level. OETC does also have 

overhead power transmission lines operating at 220kV level. PDO and OETC are 

interconnected through NahadaNizwa 132kV OHTL. The normal operation of the line is 

within ±10 MW and is providing extra security for both grids during emergencies and peak 

hours. PDO and OETC are not sharing the spinning reserve and each is maintaining N-1 

security spinning reserve.  

Both PDO and OETC grids are monitored and controlled via SCADA software. The 

exchange of power between PDO and OETC is controlled manually by the generation 

dispatch. Figure 4.7 shows the general topology of both PDO (in red) and OETC (in green) 

grids.    
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Figure 4.7: PDO and OETC grids 
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4.5. PDO power system model 

PDO power system consists of thirteen power stations located near the load centres. These 

power stations are interconnected together with 132kV transmission network. It is a very 

practical feature of the system that generating units are distributed along the grid where 

supply security and voltage profile are enhanced. 

PDO power system consists of different sizes of gas turbines driven generators which are 

Frame 5, Frame 6B, Frame 6A and Frame 9E. The MW rating of these turbines based on 

Oman normal summer ambient temperature is shown in Table 4.1.  

Gas Turbine 

Generator 

F5 F6B F6A F9E 

Rating (MW) 15.2 28.2 51.6 96.2 

Table 4.1: PDO Gas Turbine Generators rating 

 

Table 4.2 shows the number of each type of Gas Turbine Generators installed in each 

power station of PDO.                                                                                                              

 

 

Power station F5 F6B F6A F9E 

Lekhwair  2   

Yibal  2   

Fahud  1   

Saih Nihayda  1   

Qarn Alam   2 1 

Saih Rawl IPS  2   

Suwaihat  1   

Mukhaiznah    2 

Hubara  3   

Rima 2    

Nimr  2   

Marmul 3    

Haima West   1  

Table 4.2: PDO Gas Turbine generators locations and installed number. 
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Table 4.3 contains detailed information about PDO gas turbines generators. These 

information are extracted from the operation and maintenance manuals of the gas turbine 

generators. A 2000MVA base is assumed to be suitable base for the system and all 

subsequent calculations will be based on it. The per unit rating of each generator is 

calculated by dividing the rating of the generator by the base MVA. The constant of inertia 

is defined as the kinetic energy in watt-seconds at rated speed divided by the MVA base 

(KUNDUR, 1994, p. 128). The following Equation 4.1 is used to calculate the constant of 

inertia denoted by H in seconds (KUNDUR, 1994, p. 133): 

( )
MVA

RPMJ
H

2

91048.5
×

××= −

-------------------- (4.1) 

Where J= moment of inertia in kg.m
2
  

 RPM= rated speed 

 MVA= base MVA  

Generator 

type 

Per unit 

rating based 

on 

2000MVA 

Inertia 

(kg.m
2
) 

Speed 

(RPM) 

Constant 

of inertia 

H (s) 

Number 

installed 

Total H 

(s) 

F5 0.0076 1521 5121 0.109292 5 0.546461 

F6B 0.0141 1892 5115 0.135632 14 1.898852 

F6A 0.0258 8590 3000 0.211829 3 0.635488 

F9E 0.0481 18521 3000 0.456728 3 1.370184 

Total 

accumulated 

H 

4.450985 

 

Table 4.3: Details of PDO Gas Turbine Generators 

 

 

4.6. OETC power system model 

OETC power system consists of seven major power stations interconnected by a 132kV 

transmission network. The load is distributed among the cities of Oman. However Muscat 

has the largest load demand since it is the capital of Oman. Minimal data are available 

about OETC power system to support this study; therefore some reasonable assumptions 

were made to accomplish this work. 
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OETC power system consists of different sizes of gas turbines driven generators and non-

reheating tandem-compound steam turbines driven generators. The MW rating of these 

turbines based on Oman normal summer ambient temperature is shown in Table 4.4.  

Turbine 

Generator 

F5 F6B F9E ST1 ST2 ST3 

Rating 

(MW) 

15.2 28.2 96.2 10 40 220 

Table 4.4: OETC generators rating 

 

Table 4.5 shows the number of each type of generators installed in each power station 

connected to OETC grid.                                                                                                            

   

Power station F5 F6B F9E ST1 ST2 ST3 

Ghubrah 9 2 2 3 3  

Rusail   6    

Wadi Jizzi 3 10     

Manah  3 2    

Al Kamil   3    

Barka   2   1 

Sohar   3   1 

Table 4.5: OETC generators locations and installed number 

 

Due to non availability of data of steam turbines, ST1 steam turbine in Table 4.5 is 

assumed to be equivalent to F5 gas turbine in terms of inertia. However a steam turbine 

model will still be used to represent ST1. In the same manner, ST2 steam turbine is 

assumed to be equivalent to F6B gas turbine and ST3 steam turbine is equivalent to F9F 

gas turbine. Steam turbine models will be used to represent ST2 and ST3.  

Table 4.6 contains detailed information about OETC generating units. A 2000MVA base is 

assumed to be suitable base for the system and all subsequent calculations will be based on 

it. The per unit rating of the each generator is calculated by dividing the rating of the 

generator by the base MVA .The constant of inertia H in Table 4.6 is calculated using 

Equation 4.1.  
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Table 4.6: Details of OETC Generators 

4.7. PDO-OETC interconnected model for AGC studies 

4.7.1. Modelling of control areas 

The following analysis is based on the assumption that the electrical interconnection within 

each individual control area (PDO & OETC) (Figure 4.8) are so strong at least in relation 

to the ties between them, that the whole area can be characterized by a single frequency 

(Elgerd and Fosha 
(1)

, 1970).  

 

 

Figure 4.8: Interconnection of individual control areas. 

 

Practically, when the system deviates from the constant nominal frequency, every bus 

voltage will experience its own angular velocity or frequency. Assuming electrical 

interconnection within a control area is so strong, this will result in all generators 

belonging to that area swing in unison. If this assumption is not permissible, then one must 

subdivide the area into sub-areas. Having said this assumption is valid for PDO and OETC 

grids, only two control areas will be considered, PDO and OETC. (Throughout this report, 

Generator type 

Per units rating 

based on 

2000MVA Inertia Speed H (s) 

Number 

installed Total H (s) 

F5 0.0076 1521 5121 0.109292 15 1.639384 

F6B 0.0141 1892 5115 0.135632 18 2.441381 

F9E 0.0481 18521 3000 0.456728 18 8.221101 

F9F 0.11 35150 3000 0.866799 2 1.733598 

 Note 

ST1 is assumed to be equal to F5 

ST2 is assumed to be equal to F6B 

ST3 is assumed to be equal to F9F 

Total H 

of the 

system 14.03546 
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∆ symbolises a perturbation of a first order magnitude. The superscript * indicates 

"nominal" value. Area i is a synonym of PDO and area v is a synonym of area OETC). 

 

The net power surplus in the control area following a disturbance PD  equals PG-PD  

MW, and this power will be absorbed by the system in three ways: 

 

1) By increasing the running generators' kinetic energy Wkin at the rate; 
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2) By an increased load consumption: all typical loads (because of the dominance of 

motor load) experience an increase fPD D ∂∂= /  MW/Hz with speed or frequency. This D 

parameter can be found empirically (Elgerd and Fosha 
(1)

, 1970); 

There are different types of loads supplied by PDO and OETC power systems. Static load 

characteristics are represented by the following equations (KUNDUR, 1994, p. 273): 

[ ]( )fDpVpVpPP
o ∆+++= 132

2

1 --------------------------------------(4.3) 

[ ]( )fDqVqVqQQ
o ∆+++= 132

2

1 ---------------------------------------- (4.4) 

Where P is the new real power demand of load after the perturbation and Q is the reactive 

power. P
0
 and Q

0 
are respectively the nominal real and reactive power. V is the supply 

voltage and f is the supply frequency. The constants p1 and q1 account for constant 

impedance loads, p2 and q2  for constant current loads and p3 and q3 for constant power 

loads. The constant D is the damping factor and it counts for the percentage change in load 

power due to 1% change in supply frequency (Saadat, 2002, p. 530). D has different values 

in Equation 4.3 and Equation 4.4. 

At this stage of this study we are only concerned about the real power P. Moreover, we 

assume that voltage remains unchanged when frequency changes. Equation 4.3 then 

reduces to: 



 

-32- 

[ ]( )

( )fDPP

ppp

fDpppPP
o

∆+=∴
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1

1

1

0

321

321



    ------------------------------------------(4.5)  

The typical value of D is 0 to 3 (KUNDUR, 1994, p. 273).  

Kundur (1994, p. 311) suggested that residential load is having D=0.8 during summer and 

1.0 during winter. On average we can assume that residential load is having D=0.9 through 

the year. Kundur (1994, p. 311) also suggested that industrial load is having D=2.6 through 

the year.   

Considering PDO power system, 95% of the load is industrial and 5% is residential. This 

leads to the following calculation of D: 

515.26.2%959.0%5 =×+×=D  

Hence, the frequency damping factor for PDO power system under this study will be used 

as 2.515% change in load power for every 1% change in frequency. In this study, the 

nominal system frequency is 50Hz and a global 2000 MVA base is used, so the damping 

factor should be scaled to the 2000 MVA base and 50Hz nominal frequency. PDO power 

system load demand is about 540MW and using the base MVA, the frequency damping 

factor is calculated as below: 

HzpuMWD /106.13
50

1

2000

540
515.2 3−×=××=

   

Considering OETC power system, 20% of the load is industrial and 80% is residential. 

This leads to the following calculation of D: 

24.16.2%209.0%80 =×+×=D  

Hence, the frequency damping factor for OETC power system under this study will be 

used as 1.24% change in load power for every 1% change in frequency. OETC power 

system load demand is about 2400MW and using the system nominal frequency and the 

base MVA, the frequency damping factor is calculated as below: 

HzpuMWD /1076.29
50

1

2000

2400
24.1 3−×=××=

   

Note that the per unit frequency damping factor (D) is dependant on the load type, size and 

time of the year, hence D changes as these parameters change. This adds uncertainty in the 

modelling process.   

 

3) By increasing the export of power, via tie lines, with the total amount Ptie MW 

defined positive out of the area.  

In summary, the following power equilibrium equation applies to area i: 
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( ) tieiiii

kini

DiGi PfDf
dt

d

f

W
PP ∆+∆+∆=∆−∆

*

*

2 ------------------------------------------(4.6) 

All terms have dimension MW. It is more practical to divide the equation by Pri, the total 

rated area power expressed in MW. Since all area parameters are calculated in per unit 

base of 2000MVA, the term Pri will equal to 2000MVA.  

The equation then takes on to the form: 

( ) tieiiii

i

DiGi PfDf
dt

d

f

H
PP ∆+∆+∆=∆−∆

*

2

  ----------------------------------------------(4.7) 

Where the inertia constant Hi is defined as: 

ri

kini
i

P

W
H

∗

=

, MWs/MW or s. ------------------------------------------------------(4.8)  

In equation (4.7) all powers are now in per unit of Pri which equals the base MVA. 

The differential equation (4.7) is linear with constant coefficients, and upon Laplace 

transformation it takes on the form: 

( ) ( ) ( )[ ] )(
1

sFi
sT

K
sPsPsP

pi

pi

tieiDiGi ∆=
+

∆−∆−∆

      ---------------------------------------(4.9) 

Where for brevity, the following new parameters have been introduced:  

i

i

pi
Df

H
T

×
=

*

2

, s  ---------------------------------------------------------------------------(4.10) 

i

pi
D

K
1

=

, Hz/p.u.MW   ---------------------------------------------------------------------(4.11) 

Upon defining the area transfer function: 

( )
pi

pi

pi
sT

K
sG

+
=

1
    ---------------------------------------------------------------------------(4.12) 

The control area can be represented by the block diagram in Figure 4.9. 
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Figure 4.9: Control area block diagram. 

Table 4.7 shows calculated parameters of PDO and OETC control areas: 

Control 

area 

Load 

MW 

D                       

(p.u.MW/Hz) 

H  

(s) 

Tp 

(s) 

Kp 

(Hz/p.u.MW) 

PDO 540 13.6x10
-3 

4.450985 13.09113 73.53 

OETC 2400 29.76x10
-3 

14.03546 18.86487 33.6 

Table 4.7: PDO and OETC control areas parameters. 

Incremental Tie-Line Power Ptiei : the total real power exported from area i, Ptiei, equals 

the sum of all out flowing line powers, Ptieiv, in the lines connecting area i with 

neighboring areas (Elgerd and Fosha 
(1)

, 1970), i.e., 

=
v

tieivtiei PP

   -------------------------------------------------------------------------------(4.13) 

In our case, there is only one tie line between PDO and OETC which is Nahada-Nizwa 

132kV interconnector. 

If the line losses are neglected, the line power can be written in the form: 

( )vi

riiv

vi

tieiv
PX

VV
P δδ −= sin

  -----------------------------------------------------------------(4.14)      

Where 

ij

ii eVV
δ=

 

vj

vv eVV
δ=

 

are the terminal bus voltages of the line, and Xiv is its reactance. If the phase angles deviate 

from their nominal values i
*
 and v

*
 by the amounts i and v, respectively, then we 

obtain: 



 

-35- 

( )
( )vi

vi

tieiv
tieiv

P
P δδ

δδ
∆−∆

−∂

∂
=∆

   ----------------------------------------------------------(4.15) 

Thus  

( )( )vivi

riiv

vi

tieiv
PX

VV
P δδδδ ∆−∆−=∆

∗∗
cos

   ---------------------------------------------(4.16) 

the phase angle changes are related to the area frequency changes by 

∆=∆ dtfii πδ 2
  , 

∆=∆ dtf vv πδ 2 ---------------------------------------------------------------------------(4.17) 

Upon combination of equations (4.16) and (4.17) one obtains: 

( ) ∆−∆=∆
∗

dtfdtfTP viivtieiv   ------------------------------------------------------------(4.18) 

Where: 

( )∗∗∗
−= vi

riiv

vi

iv
PX

VV
T δδπ cos2

, p.u.MW/Hz   -------------------------------------------(4.19) 

is the synchronizing torque coefficient, or the electrical stiffness of the tie line. Note that it 

is expressed in per unit megawatts of the base MVA. Upon Laplace transformation one 

gets (Elgerd and Fosha 
(1)

, 1970):  

( ) ( ) ( )[ ]sFsF
s

T
sP vi

iv
tieiv ∆−∆=∆

∗

  ---------------------------------------------------------(4.20) 

The total increment in exported power from area i (symbolised in block diagram in Figure 

4.10) is finally obtained from equation (4.13): 

( ) ( ) ( )[ ]sFsFT
s

sP vi

v

ivtiei ∆−∆=∆  ∗1

  ----------------------------------------------------(4.21) 
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Figure 4.10: Incremental tie-line power out of area i. 

 

In our study there are two areas involved, PDO and OETC, thus we have one 

synchronizing coefficient and Figure 4.10 reduces to Figure 4.11. Tiv is the sysnchronising 

torque coefficient between PDO and OETC power systems. Fi represents PDO frequency 

deviation and Fv represents OETC frequency deviation.  

 

Figure 4.11: Tie line power between PDO and OETC 

Referring to Equation 4.19, Xiv is calculated based on the impedances shown in Figure 4.12 

where PDO and OETC systems are represented by a voltage source behind their respective 

network impedances and the tie line impedance. For typical power transmission lines, 

resistance is much smaller than reactance (KUNDUR, 1994, p. 204). Therefore lossless 

transmission line assumption yields acceptable results (Saadat, 2002, p.161). Hence, for 

AGC modelling the tie line between the control areas is represented by its reactance only 

(KUNDUR, 1994, p. 601; Saadat, 2002, p.545) and the resistance of the line is neglected 

(Bhatt et al, 2011). In Figure 4.12, X(OETC) is calculated from the short circuit level 
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impedance at Nizwa looking towards OETC grid. Similarly, X(PDO) is calculated from the 

short circuit level impedance at Nahada looking towards PDO grid. The mentioned short 

circuit level impedance covers the transmission network, generator transformer and the 

generator impedances.    

 

Figure 4.12: Impedance for calculating the synchronising coefficient 

EPDO<PDO: is the equivalent internal voltage source of PDO system 

EOETC<OETC: is the equivalent internal voltage source of OETC system 

Xtie: is the tie line impedance 

X(OETC): is the short circuit level impedance of OETC grid (without PDO) at Nizwa 

substation bus.  

X(PDO): is the short circuit level impedance of PDO grid (without OETC) at Nahada 

substation bus. 

Nizwa-Nahada 132kV line (the tie line) is constructed using AAAC (All Aluminum Alloy 

Conductor) with reactance of 0.2985/km and the line is about 67km in length. The tie 

line impedance is then calculated as below: 

Ω≅×= 20672985.0Xtie  

The base impedance of the system is calculated as below: 

( )
Ω== 712.8

2000

132
2

MVA

kV
Zbase

 

The per unit tie line impedance is then calculated as below: 

..3.2
712.8

20

)(

)(
)( up

Zbase

Xtie
puXtie ≅=

Ω

Ω
=

 

From PDO document (Petroleum Development Oman LLC 
(1)

, 2006), the maximum short 

circuit level at Nizwa 132kV substation bus without PDO grid is 2286MVA. Using the 

2000MVA base, the per unit impedance X(OETC) is calculated as below: 

..875.0
2286

2000
)( up

MVA

MVA
OETCX ==
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From PDO document (Petroleum Development Oman LLC 
(1)

, 2006), the maximum short 

circuit level at Nahada 132kV substation bus without OETC grid is 571MVA. Using the 

2000MVA base, the per unit impedance X(PDO) is calculated as below: 

..503.3
571

2000
)( up

MVA

MVA
PDOX ==

 

Back to Equation 4.19, the value of Xiv is the summation of Xtie, X(OETC) and X(PDO) 

and is calculated as below: 

..678.6503.3875.03.2)()( upPDOXOETCXXtieXiv =++=++=   

At a transmission level the real power (MW) flows from the leading voltage bus to the 

lagging voltage bus (Saadat, 2002, p. 546). For zero power exchange between two busses, 

their voltages angles should be equivalent. Considering Equation 4.19 and assuming zero 

power exchange between PDO and OETC power systems as the nominal condition and 

using per unit values of Tiv (KUNDUR, 1994, p. 602), the equation reduces to: 

..2 up
X

VV
T

iv

vi

iv π=
∗

 

Assuming internal voltages sources of the two systems are equivalent and equal to 1p.u, 

the synchronising torque coefficient between PDO and OETC systems is finally calculated 

as below: 

./.94.0
678.6

11
2 HzuMWpTiv ≅

×
×=

∗
π

 

It is worth mentioning that synchronising coefficient is one source of non-linearity of the 

whole model because it depends on the system operating points like voltage values and 

angles which are continuously changing. 

  

4.7.2. Overall PDO system model 

Since PDO power system consists of thirteen power stations, each of them will be 

represented as subsystem in PDO model. Since there are no steam turbines installed at 

PDO, each subsystem in the model will contain its gas turbines model which was 

developed earlier as shown in Figure 4.6. For example, Lekhwair Power Station consists of 

two F6B gas turbine generators running in parallel as shown in Figure 4.13. The output of 

each turbine is multiplied by a factor (calculated earlier in Table 4.3) to counter for its 

rating in per unit. 
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DROOP control signal
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1
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Figure 4.13: Lekhwair power station model 

Upon combining the block diagrams of the Power Stations Subsystems and Figure 4.9, we 

obtain the overall PDO perturbation model shown in Figure 4.14. 

 

Figure 4.14: PDO power system perturbation model. 

 



 

-40- 

4.7.3. Overall OETC system model 

OETC power system consists of seven power stations, so each of them will be represented 

as subsystem in OETC model. Since there are steam and gas turbines installed at OETC, 

each subsystem in the model will contain its steam and gas turbines models which were 

developed earlier in Figure 4.3 and Figure 4.6. For example, Barka Power Station consists 

of two F9E gas turbine generators and one steam turbine running in parallel as shown in 

Figure 4.15. The output of each turbine is multiplied by a factor (calculated earlier in Table 

4.6) to counter for its rating in per unit. 

DROOP control signal

Control signal

Change in output power

1

Out1

1

Tsch.s+1

Turbine dynamic  

1

Tsg.s+1

Governor  

1

Tgg.s+1

Governor 

1

Tgg.s+1

Governor

0.11

Gain  

0.0481

Gain 

0.0481

Gain

1

Tgch.s+1

Fuel system 

1

Tgch.s+1

Fuel system

1

Tgc.s+1

Control valve 

1

Tgc.s+1

Control valve

2

In2

1

In1

 

Figure 4.15: Barka power station model 

Upon combining the block diagrams of the Power Stations Subsystems and Figure 4.9, we 

obtain the overall OETC perturbation model shown in Figure 4.16. 

 

Figure 4.16: OETC power system perturbation model. 
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4.7.4. Overall perturbation model of PDO and OETC systems: 

By masking Figure 4.14 and Figure 4.16 into subsystems and combining those with Figure 

4.11, the overall perturbation model of PDO-OETC systems is achieved and is shown in 

Figure 4.17. This model will serve as the basis for further analysis.  

Before proceeding we must explain the presence of the block constant a12. This constant 

equals to the following: 

  rOETC

rPDO

P

P
a −=12

  ------------------------------------------------------(4.22) 

i.e. the negative ratio between the rated megawatts of PDO and OETC respectively.  

In Figure 4.17, if the areas have different ratings, we clearly have the following relation 

between PtiePDO and PtieOETC: 

tiePDOtiePDO

rOETC

rPDO

tieOETC PaP
P

P
P ∆=∆−=∆ 12

      ------------------------------------(4.23) 

In our case, both PDO and OETC control areas parameters has been calculated based on a 

common base MVA, hence a12 equals to -1.  

 

Figure 4.17: Block diagram of PDO-OETC perturbation model. 

Table 4.8 summarisses the parameters values of the complete perturbation model of PDO 

and OETC system.  

Control area Overall perturbation model  

Tp Kp Tiv a12 

PDO 13.09113 73.53 

OETC 18.86487 33.6 

0.94 -1 

Table 4.8: Overall perturbation model parameters. 
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Chapter 5: Model Testing 

5.1. Testing Methodology 

The complete PDO-OETC model went through step response test and parameters 

sensitivity test. Both tests are discussed in details in the following sections of the report. 

The settling time of the responses is traditionally measured as the time taken to reach 

certain percentage of the final settling value, typically ±1% or ±2%. However since the 

power system frequency deviation is a very important indicator of the system healthiness, 

the typical percentage values could be erroneous as they could mean a very big value or 

too small value. Hence, for power system frequency deviation a certain value should be 

considered which will serve for either small or large load disturbances. From experience 

with PDO-OETC power system operation, a ±0.001Hz frequency deviation is an 

acceptable band. Therefore the settling time is always calculated as the time taken from the 

time frequency starts to deviate until it reaches ±0.001Hz of the steady state deviation 

value. Since, there are two transient frequencies, and one of them shall be selected for the 

settling time calculation, PDO frequency has been considered for settling time calculation. 

This approach of settling time calculation has been considered throughout the following 

chapters of the report.      

5.1.1. Step response test 

The step response test is aiming to investigate the overall model behaviour when subjected 

to step load disturbances. Step load disturbances are usually experienced when the load is 

peaking up instantaneously during summer due to the air conditioning requirement, when 

radial feeders trips due to protection operation and when process trip is initiated causing 

whole plant to stop. Another way of step disturbance is when generators trip which will 

have the same effect on the frequency as increasing loads. In this study three load 

disturbances values are used: 

• 30MW: which is also approximately equivalent to F6B generator trip.  

• 60MW: which is also approximately equivalent to F6A generator trip. 

• 100MW: which is also approximately equivalent to F9E generator trip.  

All these disturbances are applied one at a time at both PDO and OETC grids. The system 

frequency and the tie line power following the load disturbance are recorded.   
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5.1.2. Parameters sensitivity test 

The parameters sensitivity test is aiming to investigate the sensitivity of the model to 

modelling uncertainties and errors associated with each parameter. Errors with the 

following model parameters are considered practically acceptable: 

• Steam and Gas turbines parameters: ±10% error was used. 

• PDO and OETC Load damping factor D: ±10% error was used. 

• PDO and OETC systems inertia H: ±10% error was used. 

• Synchronising Torque coefficient Tiv: ±20% error was used. 

Error values were selected based on the extent of uncertainty and possible errors envisaged 

during the modelling process. A 30MW load disturbance at PDO was used to simulate the 

model. The plus error percentage and the minus error percentage were simulated separately 

each at a time. 

5.2. Step response tests results 

Following step load disturbance, each system (PDO and OETC) will have its own transient 

frequency. These two frequencies will then unify to one steady state frequency with the 

effect of the synchronising torque. For all step load disturbances tests, these two transient 

frequencies are shown together in one graph and the tie line power deviation is shown in a 

separate graph. In total, six step response tests have been carried out and the results are 

shown in Figures 5.1 to 5.12. A summary table of the graphical results is also shown in 

Table 5.1. In Table 5.1, the sign convention of the tie line power deviation is such that it is 

positive when the flow of power is from PDO towards OETC and negative when the flow 

of power is from OETC towards PDO. This sign convention is valid throughout the 

subsequent work.   

The most important aspects of the simulation figures which might interest the reader are 

the steady state deviation, the settling time, the number of oscillations and the oscillations 

amplitudes.   
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1. 30MM step load disturbance at PDO grid: 

0 5 10 15 20 25 30 35
49.96

49.965

49.97

49.975

49.98

49.985

49.99

49.995

50

50.005

50.01

 

 

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

PDO & OETC frequencies after 30MW  load disturbance at PDO grid

PDO frequency

OETC frequency

 

Figure 5.1: PDO and OETC frequencies following 30MW load disturbance at PDO grid 
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Figure 5.2: Tie line power following 30MW load disturbance at PDO grid 

 

 

 



 

-45- 

 

 

 

2. 30MW step load disturbance at OETC grid. 

 

0 5 10 15 20 25 30 35
49.96

49.965

49.97

49.975

49.98

49.985

49.99

49.995

50

50.005

50.01

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

PDO & OETC frequencies after 30MW load disturbance at OETC grid

 

 

PDO frequency

OETC frequency

 

Figure 5.3: PDO and OETC frequencies following 30MW load disturbance at OETC grid 

 

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8
x 10

-3

Time (s)

R
e
a
l 
p
o
w

e
r 

(p
.u

.)

Tie line power deviation after 30MW load disturbance at OETC grid

 

Figure 5.4: Tie line power following 30MW load disturbance at OETC grid 
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3. 60MW step load disturbance at PDO 
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Figure 5.5: PDO and OETC frequencies following 60MW load disturbance at PDO grid 
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Figure 5.6: Tie line power following 60MW load disturbance at PDO grid 
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4. 60MW step load disturbance at OETC 

 

0 5 10 15 20 25 30 35
49.94

49.95

49.96

49.97

49.98

49.99

50

50.01

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

PDO & OETC frequencies after 60MW load disturbance at OETC grid

 

 

PDO frequency

OETC frequency

 

Figure 5.7: PDO and OETC frequencies following 60MW load disturbance at OETC grid 
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Figure 5.8: Tie line power following 60MW load disturbance at OETC grid 

 

 



 

-48- 

 

 

 

5. 100MW step load disturbance at PDO 
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Figure 5.9: PDO and OETC frequencies following 100MW load disturbance at PDO grid 
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Figure 5.10: Tie line power following 100MW load disturbance at PDO grid 

 

 



 

-49- 

 

 

 

6. 100MW step load disturbance at OETC 
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Figure 5.11: PDO and OETC frequencies following 100MW load disturbance at OETC 

grid 
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Figure 5.12: Tie line power following 100MW load disturbance at OETC grid 

 

 



 

-50- 

 

 

 

 

Location 

Load 

disturbance 

(MW) 

Load 

disturbance 

(p.u.) 

Steady 

state 

frequency 

(Hz) 

Steady 

state 

frequency 

deviation 

(Hz) 

Settling 

time (s) 

Steady 

state tie 

line power 

flow 

towards 

OETC 

(p.u.) 

Steady 

state tie 

line power 

flow 

towards 

OETC 

(MW) 

PDO 30 0.015 49.985 0.015 13.1 -0.0114 -22.8 

PDO 60 0.03 49.97 0.03 16.2 -0.0228 -45.6 

PDO 100 0.05 49.95 0.05 20.2 -0.0379 -75.8 

OETC 30 0.015 49.985 0.015 6.97 0.0036 7.2 

OETC 60 0.03 49.97 0.03 11.1 0.0072 14.4 

OETC 100 0.05 49.95 0.05 13.2 0.0121 24.2 

Table 5.1: Summary of step response results 

 

5.3. Step response results discussion: 

PDO and OETC power systems are interconnected by a relatively short overhead 

transmission line with low impedance. It has the effect of strong interconnection whereby a 

load disturbance in one system will noticeably affect the other system. Looking at Figures 

5.1 to 5.12, it is clear that both PDO and OETC systems respond to load disturbances 

collaboratively. For example, in Figure 5.1 and Figure 5.2, a 30 MW load disturbance at 

PDO grid causes frequency oscillations in both PDO and OETC grids and both transient 

frequencies have settled to the same frequency with a steady state deviation from the 

nominal frequency. 

In general, the simulated system response characteristics are similar for different load 

disturbances values. However settling time and steady state deviation values vary 

according to the size of the load disturbance. Looking at Table 5.1, one can see the settling 

time increases when the load disturbance size increases. Moreover, the steady state 

frequency deviation is directly proportional to the size of load disturbance.  

Also from Table 5.1, one can see a load disturbance of the same size will cause exactly the 

same frequency deviation regardless whether it happens at PDO grid or at OETC grid. The 

reason behind it is all generators in both systems are synchronised together and they will 
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participate in recovering the system regardless of the load disturbance location. On the 

other hand, the tie line power deviation varies according to the load disturbance location 

because PDO and OETC grids have different generation capacities. For instance, OETC 

system has much larger generation capacity than PDO system and therefore during load 

disturbances at OETC grid most of the extra power will come from OETC generators. As a 

result, minimal power will flow from PDO to OETC. Whereas when load disturbance arise 

at PDO grid, some of the extra power will come from PDO generators but the bulk of it 

will flow from OETC to PDO.  

5.4. Parameters sensitivity test results 

A 30MW load disturbance at PDO grid was used for these tests. One frequency and the tie 

line power flow was enough to investigate the impact of modelling errors on the model 

response characteristics. PDO frequency is selected because it is the basis for settling time 

calculation. For each test, the model was simulated three different times, the first one with 

nominal parameters, the second one with the negative error in the parameters and the third 

one with the positive error in the parameters. All three cases results were shown together in 

one graph for both tie line power and PDO frequency.  Therefore eight graphs were 

produced for four tests and are shown in Figure 5.13 to Figure 5.20. A summary of the 

graphical results is also shown in Table 5.2.  

There are three important aspects of the simulation figures, the amplitude and frequency of 

oscillations and the change in steady state deviation.     

0 5 10 15 20 25 30 35 40
49.965

49.97

49.975

49.98

49.985

49.99

49.995

50

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

PDO frequency after 30MW load disturbance at PDO grid

 

 

with nominal turbines parameters
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Figure 5.13: Turbines parameters uncertainty impact on the model step response 

characteristics (PDO frequency) 
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with nominal turbines parameters 

with -10% error in turbines parameters
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Figure 5.14: Turbines parameters uncertainty impact on the model step response 

characteristics (Tie line power) 
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with nominal load frequency damping factor

with -10% error in load frequency damping factor
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Figure 5.15: Load frequency damping factor uncertainty impact on the model step response 

characteristics (PDO frequency) 



 

-53- 

0 5 10 15 20 25 30 35 40
-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

Time (s)

R
e
a
l 
p
o
w

e
r 

(p
.u

.)

Tie line power deviation after 30MW load disturbance at PDO grid

 

 

with nominal load frequency damping factor

with -10% error in load frequency damping factor

with +10% error in load frequency damping factor

 

Figure 5.16: Load frequency damping factor uncertainty impact on the model step response 

characteristics (Tie line power) 
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with nominal system inertia values

with -10% error in system inertia values

with +10% error in system inertia values

 

Figure 5.17: System inertia values uncertainty impact on the model step response 

characteristics (PDO frequency) 
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with nominal system inertia values

with -10% error in system inertia values
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Figure 5.18: System inertia values uncertainty impact on the model step response 

characteristics (Tie line power) 
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with nominal synchronising torque coeffecient value
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Figure 5.19: Synchronising torque coefficient value uncertainty impact on the model step 

response characteristics (PDO frequency) 
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with nominal synchronising torque coeffecient value

with -20% error in synchronising torque coeffecient value

with +20% error in synchronising torque coeffecient value

 

Figure 5.20: Synchronising torque coefficient value uncertainty impact on the model step 

response characteristics (Tie line power) 

 

 

    

Settling 

time (s) 

 

 

Steady state PDO 

frequency (Hz) 

 

 

Steady state Tie 

line power flow 

towards OETC 

(p.u.) 

-10% 10.8 49.985 -0.0114 

Nominal 13.1 49.985 -0.0114 

Turbines 

parameters 

  10% 16.3 49.985 -0.0114 

-10% 13.1 49.985 -0.0114 

Nominal 13.1 49.985 -0.0114 

Load frequency 

damping factor 

 10% 13 49.985 -0.0114 

-10% 13.4 49.985 -0.0114 

Nominal 13.1 49.985 -0.0114 System inertia 

  10% 12.7 49.985 -0.0114 

-20% 11 49.985 -0.0114 

Nominal 13.1 49.985 -0.0114 

Synchronising 

torque coefficient 

 20% 15.1 49.985 -0.0114 

Table 5.2: Summary table of parameters sensitivity tests results 
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5.5. Parameters sensitivity test results discussion 

The model response characteristics depend on the model parameters values. However some 

parameters have bigger influence on the model response characteristics and hence their 

inherent errors have bigger impact on the model response characteristics. This can be 

clearly seen from Figure 5.13 to Figure 5.20 and Table 5.2.  

A ±10% error in turbines parameters has a slight impact on the general shape of the system 

response characteristics; see Figure 5.13, Figure 5.14 and Table 5.2. There is no impact on 

the steady state frequency and tie line power value. The settling time is faster in the case of 

lower turbines time constants (-10% error) and slower in the case of higher turbines time 

constants (+10%). This is a logical result since with low time constants the turbines are 

faster in picking up the extra load and therefore they will settle quicker. The number of 

frequency oscillations is the same for all cases but amplitude is smaller in the case of 

slower turbines (+10% error) than in the case of faster turbines (-10% error). This is an 

expected result since with harsh acceleration and deceleration there will be more 

overshoot.  

Although the errors in the turbine parameters has had an affect on the settling time it has 

had only a small impact on the amplitude and frequency of oscillations and no impact on 

the steady state deviation. Therefore, the model sensitivity to modelling errors in turbines 

parameters values is considered limited.      

A ±10% error in the load frequency damping factor has negligible effect in the general 

shape of the model response characteristics; see Figure 5.15, Figure 5.16 and Table 5.2. 

The settling time is more or less the same in all three cases. The number of oscillations and 

amplitudes are also the same for all three cases. The final steady state values are 

approximately the same. All in all, the model is not sensitive to modelling uncertainty in 

the load frequency damping factor because an error in the load frequency damping factor 

will appear as a slight increase or decrease in the system load which usually has a 

negligible effect on the system.  

A ±10% error in the system inertia values has a noticeable effect in the model response 

characteristics; see Figure 5.17, Figure 5.18 and Table 5.2. It is clear that the same number 

of oscillations exists but with a small difference in the oscillatory frequency. The 

amplitude of oscillations is also different for all three cases. The steady state values are the 

same for all three cases. With fixed mechanical driving torque, a lighter inertia (-10% 

error) will move quicker than a heavier inertia (+10% error) and that is exactly what is 

happening in Figure 5.17. Furthermore, a lighter inertia has less damping ability and so 

will have higher amplitude oscillations which have increased the settling time as it can be 
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seen from Table 5.2. In general, the model is sensitive to the system inertia values and 

modelling uncertainty in the system inertia will have a noticeable effect on the model 

response characteristics.  

A ±20% error in synchronising torque coefficient has a significant effect on the general 

model response characteristics; see Figure 5.19, Figure 5.20 and Table 5.2. The bigger the 

synchronising torque coefficient is, the more oscillatory is the model response and the 

longer is the settling time. Synchronising torque coefficient is a measure of how strong is 

the link between the two power systems (PDO & OETC). Large synchronising torque 

coefficient results in more interaction between the two power systems and hence more 

oscillations are evident. A ±20% error is the expected modelling error due to the fact that 

synchronising torque coefficient value depends on the operating points of the system which 

are varying continuously. Generally speaking, the synchronising torque coefficient is the 

most important factor which influences the model response characteristics and therefore 

the model is quite sensitive to modelling uncertainty associated with it.   

5.6. Summary 

The developed PDO-OETC power system model went through two types of tests, step 

response test and parameters sensitivity test. 

The step response tests proved that frequency deviation is directly proportional to the size 

of the load disturbance. The same load disturbance size will cause the same frequency 

deviation regardless of the location of the load disturbance being at PDO or at OETC side. 

However the tie line power deviation is dependant on the location of the load disturbance. 

The same size of load disturbance at PDO side will cause more tie line power deviation 

than when applied at OETC side. 

The parameters sensitivity test proved that uncertainties and modelling errors in turbine 

parameters and load frequency damping factor has minimal impact on the model response 

characteristics. However uncertainties and modelling errors in the system inertia and the 

synchronising torque coefficient will have a measurable effect on the model response 

characteristics.  
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Chapter 6: Model validation 

6.1. Introduction: 

The AGC model has been around for the last three decades and often has been applied to 

two areas with one generating unit at each area. Few researchers have extended the model 

to three areas with more than one generating unit in each area. The majority of researchers 

have used the model published by Elgerd & Fosha (1970 
(1)

; 1970 
(2)

) in early seventies. In 

almost all published papers, researchers were rather concerned about designing controllers 

than the modelling process itself. In addition, most of the researchers in AGC field did not 

have the chance to use real life systems as basis for their studies. Therefore the model 

validity has received little attention.  

In this study and as a novel approach, the AGC model was applied to two interconnected 

real life practical size power systems, PDO and OETC power systems. Furthermore, the 

model validity is of a concern which has led to exploring new horizons in the modelling 

process.  

There are two types of errors inherited with almost any modelling process. The first type is 

the error associated with representing the system with mathematical equations. There 

might be a lack of understanding and imaginations of the system in hand which will result 

in optimistic assumptions and extreme simplifications. The second type of errors will be in 

the mathematical manipulations. Since no such model exists that can perfectly represent a 

real life system, we shall accept few percentages of error.  

From the above argument, two steps of model validation become apparent; one is the 

mathematical validation process and the other one is the real life system comparison 

process. 

The mathematical validation process will tell us how good we are in utilising the 

traditional AGC model principles. In the other hand, the real life system comparison 

process will tell us to what extent the traditional AGC model principles are representing 

the real system.  

Both of those two model validation methods are followed. The outcome of both of those 

methods will be discussed and an overall summary will be provided at the end of this 

chapter.  
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6.2. Mathematical model validation: 

The PDO-OETC AGC model was developed based on the principles introduced by Elgerd 

& Fosha (1970 
(1)

; 1970 
(2)

).  The first process of model validation is the mathematical 

validation which involves comparing the calculated results with the model simulation 

results. The outcome of this process will give indication of any mathematical manipulation 

errors or errors associated with using the Simulink software. Kundur (1994, pp. 604-605) 

summarised equations to calculate the steady state frequency deviation at any area 

(Equation 6.1), the tie line power deviation following load disturbance at area 1 (Equation 

6.2) and the tie line power deviation following load disturbance at area 2 (Equation 6.3) . 

These equations summarise the modelling process and they are straight forward as given 

below: 
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Where:  

f∆ : is the steady state frequency deviation in Hz 

12P∆ : is the tie line power flow from area 1 to area 2 in p.u. MW 

21P∆ : is the tie line power flow from area 2 to area 1 in p.u. MW 

LP∆ : is the total load disturbance in p.u. MW 

1LP∆ : is the load disturbance in area 1 in p.u. MW 

2LP∆ : is the load disturbance in area 2 in p.u. MW 

1R : is the droop regulation setting in area 1 in Hz 

2R : is the droop regulation setting in area 2 in Hz 

1D : is the load damping factor in area 1 in p.u.MW/Hz 

2D : is the load damping factor in area 2 in p.u.MW/Hz 
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For the mathematical model validation process, four scenarios have been assessed to 

examine the model validity. The scenarios are: 

• 30MW step load disturbance at PDO grid 

• 100MW step load disturbance at PDO grid 

• 30MW step load disturbance at OETC grid 

• 100MW step load disturbance at OETC grid 

 

The PDO-OETC model parameters were used to calculate the steady state frequency 

deviation using Equation 6.1. The above four scenarios were also simulated using the 

developed PDO-OETC model.  

 

6.2.1. Calculated results 

For PDO-OETC model, the used parameters are as follows:  

1R =2 Hz/p.u.MW 

2R =2 Hz/p.u.MW 

1D =13.6x10
-3

 p.u.MW/Hz 

2D =29.76x10
-3

 p.u.MW/Hz 

The terms 
1

1

R
 and 

2

1

R
in equations 6.1 and 6.2 are in p.u.MW/Hz based on the size of 

generation capacity of each respective area. Therefore they have to be changed into the 

global 2000MVA based used in the modelling process. PDO has a total generation capacity 

of 914.2MW and OETC has a total generation capacity of 2927MW based on the summer 

ratings of their respective generation units.    

A 30MW load disturbance equals to 0.015 p.u.MW and a 100MW load disturbance equals 

to 0.05 p.u.MW. The calculated results are as below: 
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• 100MW step load disturbance at PDO grid: 
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• 30MW step load disturbance at OETC grid: 
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• 100MW step load disturbance at OETC grid: 
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6.2.2. Simulated results: 

The simulation results were presented earlier during the step response tests and are shown 

in Table 5.1 in chapter 5. 

Both the calculated results and simulated results are summarised in Table 6.1 below. The 

error percentage was calculated with reference to the calculated results. 
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Table 6.1: Summary of mathematical model validation results.  

 

From above table 6.1 one can see that the simulated results are exactly the same as the 

mathematically calculated results. The error percentage was zero in all cases. Thus, it 

concludes that the modelling process is successful in implementing the traditional AGC 

modelling approach.   

 

6.3. Real life system comparison   

The simulation results of PDO-OETC model will be compared with real life system 

behaviour following load disturbances. The outcome of this process will give a clear 

indication whether the traditional AGC model mimics the real life system behaviour or not. 

This validation process is constrained by the availability of real life system disturbances 

scenarios.  

Power system operators at PDO main control centre observe the frequency deviation 

following load disturbances though the SCADA system sampling time limitation doesn't 

permit precise recording of such oscillations. However, the disturbance recorder installed 

Steady state frequency deviation 

(Hz) 

Tie line power deviation from PDO 

to OETC (p.u.MW) 

 

Calculated 

results 

Simulated 

results 

Percentage 

error 

Calculated 

results 

Simulated 

results 

Percentage 

error 

30MW step load 

disturbance at PDO 

grid 

-0.015 -0.015 0% -0.0114 -0.0114 0% 

100MW step load 

disturbance at PDO 

grid 

-0.05 -0.05 0% -0.0379 -0.0379 0% 

30MW step load 

disturbance at OETC 

grid 

-0.015 -0.015 0% 0.0036 0.0036 0% 

100MW step load 

disturbance at OETC 

grid 

-0.05 -0.05 0% 0.0121 0.0121 0% 
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at PDO grid in Yibal power station is able to record such oscillations. As discussed earlier 

in chapter 5, tripping of generators has almost equal effect on frequency profile as step 

load disturbances. Furthermore, tripping of generators scenarios happens frequently and so 

it will be used to validate the model.   

Few scenarios of frequency deviation following tripping of generators have been recorded 

using the disturbance recorder installed at PDO Yibal power station. However the installed 

disturbance cannot produce the disturbance records in data format like spread sheet, 

therefore it has been necessary to manually interpret the graphs into data. It helps plotting 

the real graphs with the simulated graphs in one figure which will help in comparing the 

results. As per the operation practice, following any disturbance in the grid, the power 

systems operators will intervene as soon as possible to stabilise the system frequency by 

re-dispatching the generators. Assuming that fifteen seconds (15 s) is a reasonable time for 

the operator to react, the real graphs data are considered up to 15 seconds. After 15 

seconds, the data are considered as unreliable because they may not be a natural dynamic 

response of the power system, but also contains operator intervention effort. Therefore, the 

real graphs are plotted up to 15 seconds. Furthermore, it is necessary to align the real graph 

with the simulated graph and both have to start from 50Hz nominal point for easy 

comparison. It has been achieved by subtracting or adding any starting deviation from 

50Hz in the real graphs so that the starting point is sharp at 50Hz. The alignment has not 

affected the response characteristics but the starting and settling points.      

6.3.1. Disturbance scenarios 

The following six scenarios were captured during the year 2008 in which the real system 

configurations were the same as the model configuration. The scenarios were ordered 

based on the size of the disturbance: 

1. 113MW loaded steam turbine generator tripped at OETC grid on 20/5/2008 @ 

2159hrs. 

2. 140MW loaded gas turbine generator load rejection test at OETC grid on 25/5/2008 

@ 1047hrs. 

3. 140MW loaded gas turbine generator load rejection test at OETC grid on 26/5/2008 

@ 1128hrs. 

4. 140MW loaded gas turbine generator load rejection test at OETC grid on 24/6/2008 

@ 1754hrs. 

5. 144MW loaded gas turbine generator load rejection test at OETC grid on 21/5/2008 

@ 1029hrs. 
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6. 158MW loaded steam turbine generator tripped at OETC grid on 26/5/2008 @ 

1510hrs. 

The general operating conditions of PDO-OETC interconnected power system during the 

summer time can be summarised as follows: 

• High load demand 

• Low spinning reserve 

• Some generating units are operating at base load (no spinning reserve) 

• Combined cycles generating units are in preselect load (Droop control 

disabled) 

6.3.1.1. Disturbance scenario 1: 

On 20
th

 of May 2008 @ 2159hrs, following the tripping of 113MW generator at OETC 

grid, the system frequency at PDO side behaved as shown in Figure 6.1. This scenario has 

been simulated using the developed PDO-OETC model and the system frequency at PDO 

side behaved as shown in Figure 6.2. which also shows the interpreted real graph aligned 

with the simulated graph.    

The most important features of the figures to look at are the rate of the initial drop in the 

system frequency following the disturbance, the amplitude and frequency of oscillations 

and the steady state deviation. 

 

Figure 6.1: Scenario 1; Real behaviour of PDO frequency following 113MW generator trip 

at OETC grid 
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Figure 6.2.: Scenario 1; Real and Simulated behaviour of PDO frequency following 

113MW generator trip at OETC grid 

6.3.1.2. Disturbance scenario 2: 

On 25
th

 of May 2008 @ 1047hrs, following load rejection test of 140MW generator at 

OETC grid, the system frequency at PDO side behaved as shown in Figure 6.3. The 

scenario has been simulated using the developed PDO-OETC model and the system 

frequency at PDO side behaved as in Figure 6.4 which also shows the interpreted real 

graph aligned with the simulated graph.   .   
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Figure 6.3: Scenario 2; Real behaviour of PDO frequency following 140MW generator 

load rejection test at OETC grid 
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Figure 6.4: Scenario 2; Real and Simulated behaviour of PDO frequency following 

140MW generator load rejection test at OETC grid 

6.3.1.3. Disturbance scenario 3: 

On 26
th

 of May 2008 @ 1128hrs, following load rejection test of 140MW generator at 

OETC grid, the system frequency at PDO side behaved as shown in Figure 6.5. The 

scenario has been simulated using the developed PDO-OETC model and the system 



 

-67- 

frequency at PDO side behaved as in Figure 6.6 which also shows the interpreted real 

graph aligned with the simulated graph.      

 

Figure 6.5: Scenario 3; Real behaviour of PDO frequency following 140MW generator 

load rejection test at OETC grid 
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Figure 6.6: Scenario 3; Real and Simulated behaviour of PDO frequency following 

140MW generator load rejection test at OETC grid 
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6.3.1.4. Disturbance scenario 4: 

On 24
th

 of June 2008 @ 1754hrs, following load rejection test of 140MW generator at 

OETC grid, the system frequency at PDO side behaved as shown in Figure 6.7. The 

scenario has been simulated using the developed PDO-OETC model and the system 

frequency at PDO side behaved as in Figure 6.8 which also shows the interpreted real 

graph aligned with the simulated graph.      

 

Figure 6.7: Scenario 4; Real behaviour of PDO frequency following 140MW generator 

load rejection test at OETC grid 
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Figure 6.8: Scenario 4; Real and Simulated behaviour of PDO frequency following 

140MW generator load rejection test at OETC grid 
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6.3.1.5. Disturbance scenario 5: 

On 21
st
 of May 2008 @ 1029hrs, following load rejection test of 144MW generator at 

OETC grid, the system frequency at PDO side behaved as shown in Figure 6.9. The 

scenario has been simulated using the developed PDO-OETC model and the system 

frequency at PDO side behaved as in Figure 6.10 which also shows the interpreted real 

graph aligned with the simulated graph.   

 

Figure 6.9: Scenario 5; Real behaviour of PDO frequency following 144MW generator 

load rejection test at OETC grid 
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Figure 6.10: Scenario 5; Real and Simulated behaviour of PDO frequency following 

144MW generator load rejection test at OETC grid 
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6.3.1.6. Disturbance scenario 6: 

On 26
th

 of May 2008 @ 1510hrs, following the tripping of 158MW generator at OETC 

grid, the system frequency at PDO side behaved as shown in Figure 6.11. The scenario has 

been simulated using the developed PDO-OETC model and the system frequency at PDO 

side behaved as in Figure 6.12 which also shows the interpreted real graph aligned with the 

simulated graph.   

 

Figure 6.11: Scenario 6; Real behaviour of PDO frequency following 158MW generator 

trip at OETC grid 
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Figure 6.12: Scenario 6; Real and Simulated behaviour of PDO frequency following 

158MW generator trip at OETC grid 
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6.3.2. Summary of real life comparison validation process: 

From above scenarios, the following results shown in Table 6.2 can be summarised where 

the error percentage is calculated with reference to the real data. Note that the settling time 

is not considered in the comparison because we don’t consider the real data beyond the 15s 

which is the estimated time for the operator intervention to start.  

 Real system 

results 

Simulated 

results 

Percentage 

error 

Scenario 1 113MW disturbance 

at OETC on 

20/5/2008 @2159hrs 

Frequency 

deviation 

(Hz) 

-0.077 -0.056 -27.3% 

Scenario 2 140MW disturbance 

at OETC on 

25/5/2008 @1047hrs 

Frequency 

deviation 

(Hz) 

-0.097 -0.07 -27.8% 

Scenario 3 140MW disturbance 

at OETC on 

26/5/2008 @1128hrs 

Frequency 

deviation 

(Hz) 

-0.103 -0.07 -32% 

Scenario 4 140MW disturbance 

at OETC on 

24/6/2008 @1754hrs 

Frequency 

deviation 

(Hz) 

-0.133 -0.07 -47.4% 

Scenario 5 144MW disturbance 

at OETC on 

21/5/2008 @1029hrs 

Frequency 

deviation 

(Hz) 

-0.096 -0.072 -25% 

Scenario 6 158MW disturbance 

at OETC on 

26/5/2008 @1510hrs 

Frequency 

deviation 

(Hz) 

-0.117 -0.079 -32.5% 

Table 6.2: Summary of model validation results.  

6.3.3. Discussion of real life comparison validation process 

Looking at the six scenarios in hand, one can see that all of them were captured during the 

summer time, May and June. Hence, the analysis of the scenarios should consider the 

operating conditions of the power system during that period of time. In hot countries like 

Oman, the summer time imposes high demand for electricity due to the excessive usage of 

air conditioning. Unfortunately, the power generation units have the lowest generation 

capability during summer due to the high ambient temperature. The summer peak load 

period starts at about 1200hrs and ends at about 1600hrs. The top of the load pyramid is 
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usually reached at about 1400hrs in the afternoon which is coinciding with the ambient 

temperature peak point. During the peak load hours the power system generators are 

usually at maximum output and minimal spinning reserve is available. Depending on the 

location, process and economics, some generating units will be loaded to their maximum 

load and they have zero spinning reserve; this is what we call the base load of the 

generating units. The system operators have to maintain enough spinning reserve to 

maintain the "N-1" security standard. In most occasions they are able to get most of the 

spinning reserve from particular units but not all. This will have an impact on the system 

frequency response following disturbance.  

Let us assume that all synchronised generating units have spinning reserve of few MWs 

and they are in droop control mode. Following load disturbance, all generating units droop 

control loop will start and continue acting while there is a rate of change of the frequency. 

As a result, most of the accumulated system spinning reserve will be consumed and turned 

into extra MW generation. However there will be some spinning reserve still not consumed 

and is not turned into MW generation because the frequency has already settled with 

steady state error. This is because the droop control loop has stopped acting when the rate 

of change of the frequency is zero. Here it is worth mentioning that frequency would have 

settled down with steady state error even if there was no extra generation of MWs. The 

load disturbance would have been compensated from the kinetic energy of all generators 

and frequency would have settled with huge steady state error. However, since we have 

many generators with spinning reserve ready to be converted during the existence of the 

rate of change of frequency, we managed to settle the frequency with minimum steady 

state deviation. Moreover, since the spinning reserve has not been totally consumed, the 

system operator role now comes in picture where he will start changing the loading 

reference point of the generators which are still having some spinning reserve and will 

bring back the frequency to the acceptable range of 50Hz.  

Now imagine that we have all the spinning reserve stipulated by the "N-1" supply security 

standard reserved in few generating units but not all. Following the load disturbance, those 

few generators will be the only ones which are able to produce extra MWs because they 

are the only ones which are having the spinning reserve. Although the total spinning 

reserve is enough to compensate the load disturbance, however there is a limited time 

frame for those few generators to convert as much as possible of the available spinning 

reserve into extra MW generation. The generators droop control loop will continue acting 

while there is a rate of change of frequency. When the later becomes zero, then the droop 

control loop will stop acting leaving most of the available spinning reserve unconverted to 
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MW generation. Therefore, the steady state frequency deviation will be much bigger than 

in the first case where we have had the spinning reserve distributed amongst all generators 

in the grid. 

This is what really happens during the summer peak load period, even if enough spinning 

reserve is maintained; it will be distributed amongst small number of generators but not all. 

Therefore we expect, same size load disturbance will cause more steady state frequency 

deviation during the summer period than during the winter period especially if it happens 

during the peak load hours.      

Looking at the real scenarios summary Table 6.2, one can see all scenarios happen during 

the summer period but at different times of the day. The settling time was not considered 

as a criterion for the comparison and validation due to many error sources involved with it. 

Therefore only visual comparison from the produced graphs is considered; this will help 

avoiding misleading conclusions. 

Looking at Figures 6.2, 6.4, 6.6, 6.8, 6.10 and 6.12, it is crystal clear that there is 

significant error in the frequency steady state deviation between the real system behaviour 

and the simulated one. From Table 6.2, this error is -27.3% for scenario one, -27.8% for 

scenario two, -32% for scenario 3, -47.4% for scenario 4, -25% for scenario 5 and -32.5% 

for scenario six. Scenarios one, two, three, five and six all happened in May whereas 

scenario four happened in June. It is noticed that the steady state frequency deviation error 

for scenario happened in May are all in the range of -30% and the error of the scenario 

happened in June was -47.4%. All scenarios occurred in May have similar effect on the 

frequency because the power system operating conditions are almost the same due to a 

similar profile of the ambient temperature. However, June will be much hotter and 

therefore the power system would have different operating conditions. The generators 

spinning reserve is lower in June than in May. Moreover, the number of units operating at 

base load is more in June than in May. All this contributed to having more error between 

real life and simulated system behaviour in the June than in May. 

From all the above arguments, there is an error between the simulations and the real data 

and the extent of the error depends on the system operating points. The error came from 

optimistic assumptions and modelling errors. The model is assuming that all installed units 

are synchronised to the grid, operating at droop control mode and all of them are having 

spinning reserve. This operating condition is very rare in real life power systems; therefore 

the simulation has resulted in some errors.  

From the comparison Figures, we can conclude that we need to do more work to resolve 

the frequency steady state deviation error and to improve the damping effort of the 
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oscillations. The simulated response oscillations are mimicking the real response 

oscillation with some differences in the amplitude and frequency of oscillations.  

From modelling perspective, we want to be as close as practically possible to the real 

system response. However it is not practically possible and is not feasible to get exactly the 

same simulation response as the real system response.  

For instance, there is an error in the frequency steady state deviation; therefore we need to 

consider the practical system operating conditions to reduce this error. Moreover, the 

simulation response is more oscillatory than the real one; therefore we need to further 

improve the damping torque of the model. On the other hand, there is a huge work to be 

done on the prime movers modelling and synchronising torque, therefore it is not feasible 

to put all this efforts to eliminate the difference in the oscillatory frequency. However we 

can fine tune some of the model parameters to reduce the difference in the oscillatory 

frequency and get as close as possible to the real response.      

Overall, the model response does not exactly match the real response of the system but it 

performs very well. Further refining the model will bring the two responses closer to each 

other and will minimise the overall error. Two approaches will be followed in the model 

refining process, one is to revisit the modelling assumption and process in order to model 

and incorporate the feasible practical aspects. The second one is to fine tune selected 

model parameters which were calculated at the early stage of the modelling process. As a 

novel approach in the field of AGC modelling, there are two identified fields where we can 

improve our model based on the feasibility: 

• Considering the generation units which are at base load and which are at preselect 

load (fixed load) 

• Considering the generators damping torque.   

Adding to those two points, the commonly known Generation Rate Constraint will be 

considered and its impact on the model response will be determined.  

After considering the above practical aspects, the fine tuning process of some selected 

parameters will be done using the common MATLAB "fminsearch" technique.  

6.3.4. Summary of real life comparison validation process 

The following points summarise this validation process: 

• Simulated results are having a certain error in the steady state frequency deviation 

when compared with the real results. The error sources are understood.  

•  The real life system responses followed the same pattern in all scenarios. 

• The simulated responses mimic the real responses in general. 
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• The simulated responses are more oscillatory than the real life responses. The 

reason behind this is understood.  

• Feasible further work scope is identified to improve the model response. 

6.4. Overall discussion of the model validation process 

The mathematical validation process proved that the traditional AGC modelling principles 

were applied successfully to the PDO-OETC interconnected power system.  

The real life comparison validation process proved that the developed model response is 

having almost the same pattern as the real life system with some explainable shortfalls.  

In spite the difficulty in modelling such complex power system, the developed model 

proved to be acceptable and valid for further analysis.    

However, the model needs to go through a refining process to bring it to the maximum 

possible accuracy.  Some novel approaches will be followed during the refining process.  

The following items are a summary of the key elements of the further work to be carried 

out in order to refine the traditional AGC modelling process: 

• Consider generating units which are in base load and units which are in preselect 

control mode. This is a novel approach.  

• Consider the generators damper windings effect. This is a novel approach.  

• Consider the Generation Rate Constraint 

• Fine tuning a selected number of the model parameters using the common 

MATLAB ''fminsearch'' technique.  

 

The next chapter will address and discuss the suggested further work.  
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Chapter 7: Model refining 

In this part of the report, a process to refine the developed model will be followed. Some of 

the real life practical aspects will be assessed to see their impact on the model response 

characteristics and to evaluate the benefits of considering those aspects in the modelling 

process. In the other hand there are some assumptions introduced during the model 

development stage which are suspect of being the reason behind the errors encountered 

during the model validation process. Some of these assumptions will be revisited and 

incorporated in the model in order to make it close enough to the reality.  

A more classical method of model fine tuning will then be followed to fine tune a selected 

number of the model parameters. This method is about minimising the error between the 

real data and simulated response by varying the values of certain parameters. The ultimate 

aim of this process is to reduce the difference in the oscillatory frequency between the 

simulated response and the real response of the power system. A common MATLAB 

function called the ''fminsearch'' will be used for this task. A unique Mfile programme will 

be written to execute this task. The whole process will be carried out after incorporating 

the practical aspects discussed earlier.   

Overall, the model refining process will be done in two steps. The first part of the refining 

process will look into the following practical aspects: 

• Peak load or base load effect on the model dynamic response.  

• Preselect load control mode effect on the model dynamic response 

• Modelling the generators damper windings effect.  

• Consideration of Generation Rate Constraint (GRC) 

 

The second part will be fine tuning a selected number of the model parameters. Those 

parameters are selected based on the results of the parameter sensitivity test discussed 

earlier in section 5.4 which are identified to be: 

• System inertia 

• Synchronising torque.  

 7.1. Base load effect test 

Oman's summer is very hot and therefore the peak load occurs during summer due to the 

air conditioning requirements and the lower efficiency of motors. In addition to the high 

demand of electricity during summer, the generation capability of generation units is 

reduced due to high ambient temperature. High ambient temperature increases the exhaust 
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temperature and therefore the gas turbines reach their thermal limits with lower power 

outputs than in the winter. Therefore, it is quite normal phenomenon to see few generation 

units running on base load during summer. Generation units which are running on base 

load have no more power to deliver following an increase in load demand and their power 

output will remain at maximum. Running some of the generation units on base load 

confines the system available spinning reserve in a less number of units and hence reduces 

the system ability to recover following load disturbances. The load disturbances will be 

treated by the generation units which are maintaining the system spinning reserve.      

The aim of this test is to illustrate the effect of reaching base load on the transient stability 

of PDO-OETC power system. So often some generation units from PDO and OETC reach 

their base load as per Table 7.1. The scenario will be implemented by introducing zero 

gain in series of the droop control signal to the particular generation unit in PDO-OETC 

power systems model. A 30MW load disturbance will be applied at PDO grid to conduct 

the test. PDO frequency and tie line power deviation will be monitored following the load 

disturbance at PDO grid.     

 

PDO OETC 

Power station Generation units Power station Generation units 

Fahud 1x F6B Rusail 1x F9E 

Lekhwair 2x F6B Wadi Al-Jizzi 3x F6B 

Yibal 2x F6B Manah 1x F6B & 1x F9E 

Saih Nihaydah 1x F6B Al-Kamil 1x F9E 

Suwaihat 1x F6B   

Table 7.1: Units running on base load during summer 

7.1.1. Test results 

The above test was conducted and the results are shown in Figure 7.1, Figure 7.2 and Table 

7.2.  

Considering the figures below, the reader should focus on the differences from the nominal 

model response in terms of steady state deviation, the amplitude and frequency of 

oscillations.  
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Figure 7.1: Comparison of PDO frequency following 30MW load disturbance at PDO grid 

using both the nominal model and model with generation units on base load.  
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Figure 7.2: Comparison of Tie line power deviation following 30MW load disturbance at 

PDO grid using both the nominal model and model with generation units on base load. 
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 Steady state 

frequency (Hz)  

Steady state power 

flow towards 

OETC (p.u.) 

Settling time 

(s) 

Nominal model  49.985 -0.0114 13.1 

Nominal model 

with some units on 

peak load 

49.982 -0.0116 16.6 

Table 7.2: Summary of base load effect test 

 

7.1.2. Discussion 

From Figure 7.1, Figure 7.2 and Table 7.2, it is clear when some generation units reaches 

their maximum loading limit, the system has experienced more frequency and tie line 

power deviation than in the nominal model case. The system response was slower than in 

the nominal model case. The slower response can be seen from the slight difference in the 

oscillatory frequency between the oscillations of the nominal model response and the 

model with some generation units on base load.  

 The above results can be related to the fact that fewer machines are now available to turn 

the available system spinning reserve into extra load MW than in the nominal model case. 

Consequently, it has delayed the system response and caused more deviation.  

In general, the above results lead to the fact that during summer the system transient 

stability is jeopardised to an extent depending on how many generation units has reached 

their loading saturation limits even when adequate system spinning reserve is maintained. 

7.1.3. Summary 

The base load phenomenon has considerable effect on the system response characteristics 

and therefore it is worth considering when refining the traditional approach of AGC 

modelling. It is a novel approach in the field of AGC studies.  
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 7.2. Nominal model response with some generation units on 

preselect load 

Practical operation philosophies sometimes tend to run big or complex generation units at 

fixed load by selecting base load or preselect load control mode in the unit control system. 

In this case the droop control will be disabled and the unit output power will not change 

even during load disturbances and frequency deviation. The unit will continue producing 

the same amount of power regardless of the frequency value. 

Some gas turbines generators sets are equipped with complex mode of combustion in order 

to optimise the emission gases. The main exhaust gases are COx and NOx and the complex 

combustion mode is aimed to reduce the harm to the environment by optimising the 

combustion. Such mode of combustion is often referred to as the Dry Low NOx (DLN) 

mode. In the DLN mode of combustion, the fuel injection goes through two transitions as 

we increase the loading of the unit depending on the combustion temperature. During these 

transitions, combustion flame might be lost due to many factors ending up with tripping 

the unit. Once the unit passes the second transition it is then on the safe side and should run 

reliably. Unloading the unit is then risky as it goes back through the transition stages where 

it might loose flame and trip. For these types of gas turbine generators, it is always 

recommended to keep them loaded to the final stage of combustion. Therefore, gas 

turbines equipped with DLN combustion are often run at fixed load using the preselect 

load control mode in order to ensure stable operation. The preselect load control mode will 

ensure the unit is running on fixed loading regardless of the frequency value.      

      

The preselect load control mode is quite popular control mode. It is also used for units 

running on combined power and heat cycle processes where a fixed exhaust temperature is 

needed. In this case the preselect load control will ensure the unit is running on fixed 

output and hence fixed exhaust temperature.  

In PDO, there are eleven (11) units based on DLN mode of combustion and two (2) out of 

the eleven are on combined heat and power cycle. All these eleven units are often running 

on preselect load control mode for better system stability. The load variations and 

disturbances are catered by other units on the grid which are running on conventional 

combustion mode and are on droop control. 

At OETC, The Grid Code (Oman Electricity Transmission Company, 2005) demands for 

all generating units to participate in frequency recovery following load disturbances as 

stated in clause CC.6.3.2.1 and SDC3.4.2. Therefore all generating units at OETC grid are 

assumed to be running on droop control.   
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The test will investigate the above discussed operation philosophy impact on the nominal 

system model response and the system ability to recover from load disturbances. The test 

was carried out under the following conditions: 

• Eleven (11) units from PDO are running on preselect load control (2 F6B units at 

Saih Rawl IPS, 3 F6B units at Hubara PS, 2 F6A and 1 F9E at Qarn Alam PS, 2 

F9E units at Mukhaiznah PS and 1 unit at Haima West PS) 

• 30MW load disturbance is applied at PDO grid.  

7.2.1. Test results 

The above test was conducted by introducing zero gain in series with the droop control 

signal to the particular units running on preselect load control. Tie line power deviation 

and PDO frequency were considered for comparing the responses of the nominal model 

and model with preselect load units. The results are shown in Figure 7.3, Figure 7.4 and 

Table 7.3.   
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Figure 7.3: Comparison of PDO frequency following 30MW load disturbance at PDO grid 

using both the nominal model and model with preselect load units.  
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Figure 7.4: Comparison of Tie line power deviation following 30MW load disturbance at 

PDO grid using both the nominal model and model with preselect load units.  

 

 

 Steady state 

frequency (Hz)  

Steady state power 

flow towards 

OETC (p.u.) 

Settling time 

(s) 

Nominal model 

with all generation 

units on droop 

control 

49.985 -0.0114 13.1 

Nominal model 

with some units on 

preselect load 

49.983 -0.0133 20.6 

Table 7.3: Summary of Preselect load test 

7.2.2. Discussion 

From Figure 7.3, Figure 7.4 and Table 7.3, it is clear that the system is less stable with 

some generation units on preselect load control. This is obvious from the longer settling 

time and the bigger frequency deviation. When some generation units are in preselect load, 

they will not participate with real power during load disturbances. Even if adequate 

spinning reserve is maintained in the rest of the generation units, there is no enough time 

for droop control to convert the spinning reserve into MW generation. Hence, allowing 
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more deviation in the steady state frequency same as discussed earlier in section 7.1. The 

real power flow from OETC to PDO is also bigger in this case than the nominal system 

model. It can be understood as with limited generation units in PDO grid available for 

droop control, PDO grid will be less able to accommodate load disturbances and hence 

extra power will flow from OETC to PDO. 

7.2.3. Summary 

The Preselect load control mode has considerable effect on the system response 

characteristics and therefore it is worth considering when refining the traditional approach 

of AGC modelling. It is a novel approach in the field of AGC studies.   

7.3. Modelling generators damper windings effect 

During the nominal model development stage, it was assumed that following any load 

disturbances the net power will be absorbed by the system in three ways: 

1. By increasing the running generators' kinetic energy Wkin  

2. By increasing load consumption 

3. By increasing the export of power 

The above assumption has been accepted since the very early start of AGC modelling in 

the early seventies of the last century (Elgerd and Fosha 
(1)

, 1970; Elgerd and Fosha 
(2)

, 

1970). 

However, if we consider the power system dynamics in a global view, then we can trace 

other factors which influence the development of the perturbation model. For instant, there 

are many sources of damping power represented by (Saadat, 2002, p. 473): 

• Load dynamics 

• Damper windings 

• Speed/torque characteristics of the prime movers 

During the nominal model development process, the damping power resulting from the 

load dynamics was only considered. This power was represented by the load frequency 

damping factor D which was used in the perturbation model.  

As a novel approach, the damping power resulting from generators damper windings will 

be modelled and incorporated to the well known AGC model. The generators damper 

windings are known to damp the power and frequency oscillations. The new model will be 

tested to study the effect of generators damper windings on the overall response of the 

perturbation model.   
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7.3.1. Modelling approach 

Generators damper windings are usually in the form of copper or brass rods embedded in 

pole face of the generator rotor. Those rods are connected to end rings to form short-

circuited windings similar to squirrel cage induction motors (KUNDUR, 1994, p. 47). As 

long as there is a slip between the system frequency and the generator rotor speed, 

induction motor action will take place between the rotating magnetic filed of the stator and 

the damper windings. Accordingly a damping torque will be established on the rotor trying 

to minimise the slip between the angular velocity of the rotor and the system frequency 

(Saadat, 2002, p. 473).  The damping power is approximately proportional to the speed 

deviation and is represented as follows (Saadat, 2002, p. 473): 

dt

d
KPd D

δ
=  ……………………………………………(7.1) 

Where KD is the damping coefficient which can be determined either from the design data 

or by test. KD is given in p.u. torque/p.u. speed (KUNDUR, 1994, p. 131). Since base 

torque is given as (KUNDUR, 1994, p. 130): 

0ω
base

base

MVA
T =  ……………………………………(7.2) 

Where 0ω is the rated angular speed in rad/s.  

Therefore, 
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T ==×==
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ω
  ………………………..(7.3) 

Hence, KD can be considered as in p.u. Power/p.u. speed.  

The rate of change of torque angle represents a change in the angular frequency as follows: 

dt

dδ
ω =∆   …………………………………………………(7.4) 

The damping power is then given as: 

ω∆= DKPd   ………………………………(7.5) 

Where ω∆  is in p.u. 

In order to integrate the damping power to the overall model swing equation, speed 

deviation must be in Hz. Since, 

00

....
f

f
f upup

∆
=

∆
=∆=∆

ω

ω
ω    ……………………………………(7.6) 

Therefore, 

f
f

K
Pd D ∆=

0

   …………………………………………….(7.7) 
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Introducing: 

0f

K
K D=    ……………………………………………..(7.8) 

Where K is in p.u. Power/Hz 

The damping power is then given by the simple expression: 

fKPd ∆= …………………………….(7.9) 

Where,  

Pd = p.u. power 

K= p.u. power/Hz 

f∆ = Hz 

 

Back to the assumption during the model development stage, that all power stations in one 

area are strongly interconnected and therefore are assumed to be connected to one bus, the 

same assumption will be applied to the damper windings power. Based on this assumption, 

all generators will be swinging in unison and the damping power produced by all 

generators damper windings will be in phase and acting in the same direction. Hence all 

damper windings power of all generators in one area will be summated together and 

included in the swing equation as one element. Furthermore, during transients and for PDO 

generators, PDO frequency will be considered as the generators speed and OETC 

frequency will be considered as the grid speed. Therefore as long as there is a difference 

between PDO frequency and OETC frequency, PDO generators damper windings will try 

to minimise the transient slip between the two frequencies by producing a damping power. 

Similarly, for OETC generators, OETC frequency will be considered as OETC generators 

speed and PDO frequency will be considered as the grid speed. The term f∆ will be the 

difference between the PDO and OETC frequencies deviation which effectively equals to 

the difference between the two frequencies. The f∆ value will be used to calculate the 

PDO generators damper windings power and the same value but with a negative sign will 

be used to calculate the OETC generators damper windings. 

From above discussion, the change in the generators damper windings power is given as: 

)( viii ffKPd ∆−∆=∆ ……………………………………….(7.10) 

And by Laplace transform: 

))()(()( sFsFKsPd viii ∆−∆=∆  ………………………..(7.11) 

The generators damper windings power can be integrated to the overall model swing 

equation as below (KUNDUR, 1994, p. 131; Saadat, 2002, p. 473): 
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2  ………………….(7.12) 

And in the overall transfer function: 

( ) ( ) ( ) ( )[ ] ( )sFi
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      ………..(7.13) 

7.3.2. Calculation of accumulated damping coefficient Ki 

PDO (Petroleum Development Oman LLC 
(3)

, 2004, p. 6) has given a value of generators 

damping coefficient equal to 2 p.u. for F5, F6B, F6A and F9E gas turbine generators based 

on the rated MVA of each generator. The value is assumed to be applicable to all 

generators in PDO and OETC systems. Summary of generators, their ratings and installed 

number in each system is shown in Table 7.4.  

 F5 F6B F6A F9E ST1 ST2 ST3 

MVA 

rating 

22 35 77 121 12.5 50 275 

Installed 

number 

in PDO 

5 14 3 3 0 0 0 

Installed 

number 

in 

OETC 

12 15 0 18 3 3 2 

Table 7.4: Summary of generators, ratings and installed number in PDO and OETC 

systems. 

In order to calculate the accumulative generators damping coefficient, each generator 

coefficient has to be changed to the base MVA rather than the rated MVA.    

Since individual generator damping factor is given as
0f

K
K D= , then the PDO accumulated 

generators damping coefficient is calculated as below: 

( ) HzMWupPDOK /..1088.2312137733514225
502000

2
)( 3−×=×+×+×+×

×
=  

   

Similarly, OETC accumulated generators damping coefficient is calculated as below: 
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( ) HzMWupOETCK /..1009.7427525035.1231211835152212
502000

2
)( 3−×=×+×+×+×+×+×

×
=

The above two values can be directly used at the overall perturbation model.  

The overall perturbation model will look as shown in Figure 7.5. PDO and OETC 

subsystems are shown in Figures 7.6 and 7.7 respectively where Kdwpdo is PDO 

generators damper windings torque coefficient and Kdwoetc is OETC generators damper 

windings torque coefficient.   
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Figure 7.5: PDO-OETC perturbation model including generators damper windings torque 
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Figure 7.6: PDO perturbation model including generators damper windings torque 
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Figure 7.7: OETC perturbation model including generators damper windings torque 

 

7.3.3. Testing the new model 

The perturbation model with the generators damper windings torque coefficients was 

tested and the results are compared with the nominal perturbation model. The test was 

carried out under the following conditions: 

• 30MW step load disturbance will be applied at PDO & OETC grids one at a time.  

• Settling time will be considered as PDO frequency settling time to the nearest +-

0.001 Hz of the final steady state value.  

 

The results are shown in Figures 7.8 to 7.13 and Table 7.5.  
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Figure 7.8: PDO frequency following 30MW load disturbance at PDO grid 
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Figure 7.9: OETC frequency following 30MW load disturbance at PDO grid 
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Figure 7.10: Tie line power deviation following 30MW load disturbance at PDO grid 

 

0 5 10 15 20 25 30 35 40
49.975

49.98

49.985

49.99

49.995

50

Time (s)

F
re

q
u
e
n
c
y
 (

H
z
)

PDO frequency following 30MW load disturbance at OETC grid

 

 

Without generators damper windings torque 

With generators damper windings torque

 

Figure 7.11: PDO frequency following 30MW load disturbance at OETC grid 
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Figure 7.12: OETC frequency following 30MW load disturbance at OETC grid 
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Figure 7.13: Tie line power deviation following 30MW load disturbance at OETC grid 
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Disturbance 

size and 

location 

Model status Steady 

state 

frequency 

(Hz) 

Steady state 

power flow 

towards OETC 

(p.u.) 

Settling time 

(s) 

Nominal model 

without generators 

damper windings 

torque 

49.985 -0.0114 13.1 30MW load 

disturbance 

at PDO grid 

Nominal model 

with generators 

damper windings 

torque 

49.985 -0.0114 7.88 

Nominal model 

without generators 

damper windings 

torque 

49.985 0.0036 6.97 30MW load 

disturbance 

at OETC 

grid 

Nominal model 

with generators 

damper windings 

torque 

49.985 0.0036 4.77 

Table 7.5: Summary of generators damper windings effect test 

7.3.4. Discussion 

From Figure 7.8 to Figure 7.13 and Table 7.5, it is clear that incorporating the generators 

damper windings effect has improved the settling time of the overall system model 

response. The frequency oscillations are better damped with the consideration of the 

damper winding effect; therefore the oscillations amplitudes were reduced.  

The incorporation of generators damper windings effect is a novel approach in the field of 

AGC modelling and it has proved some improvement in the model dynamic response.   

7.3.5. Summary 

The generators damper windings torque has noticeable effect on the system response 

characteristics. Therefore it is worth considering when refining the traditional approach of 

AGC modelling. This consideration is a novel approach in the field of AGC studies.  
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7.4. Generation Rate Constraint consideration 

Different types of power generation plants exhibit different response to fast load pickup 

following load disturbances in the grid. The rate of change of the generation plant real 

power output is often limited depending on the type of the plant. For instant, rapid change 

in steam turbines power output will draw excessive steam from the boiler which will cause 

steam condensation due to adiabatic expansion (Moon et al, 2002). The steam 

condensation may produce water droplets which will abrade the turbine blades by hitting. 

Therefore it is a must to limit the generation rate of change to limit the excessive wear and 

tear on the turbine components. Hence steam turbines governing systems are provided with 

generation rate constraints. Likewise, gas turbines are limited on the maximum 

temperature which its combustion components can withstand without excessive wear and 

tear. Therefore gas turbines governing system is equipped with maximum fuel valves 

opening limit to limit the amount of fuel injected to the gas turbine combustion 

components.   

Consideration of these generation rates limits or constraints will actually introduce non-

linearity in gas turbines and steam turbines dynamic models.   

Therefore, as part of the model refining process, it was decided to investigate the effect of 

Generation Rate Constraints (GRC) on the model response characteristics. A number of 

researchers have considered the GRC in their modelling process for AGC studies (Farhangi 

et al, 2012; Shayeghi and Shayanfar, 2006; Shayeghi, et al 
(2)

, 2006; Yesil et al, 2004; 

Demiroren and Yesil, 2004; El-Sherbiny et al, 2002; Chang and Fu, 1997; Konstantinos et 

al, 2007). However, most of the researchers whom considered the GRC have been dealing 

with small power systems consisting of a few number of generation units. In this section of 

the report, we are investigating the effect of GRC on the system frequency response 

characteristics of the practical size PDO-OETC model. The outcome of this work will 

determine the feasibility of considering the GRC when modelling large scale power 

systems for AGC studies.  

7.4.1. Generation Rate Constraint 

Generation Rate Constraint in gas turbines is achieved by limiting the fuel gas inlet to the 

gas turbine combustion chamber. It is achieved by introducing valve opening limits in the 

gas turbine governing system. PDO is following GE recommendations for modelling gas 

turbines GRC (Petroleum Development Oman LLC 
(3)

, 2004, p13]. The GRC limits the 

thermal stress of the gas turbines. As per PDO practice, the following limits shown in 

Table 7.6 are considered for gas turbines generators and therefore are used in this study: 
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Min limit of GRC (p.u.) Max limit of GRC (p.u.) 

-0.1 1.5 

Table 7.6: Gas Turbines Generation Rate Constraint limits  

 

The above values are assumed suitable for all installed gas turbines generators at PDO and 

OETC power systems. The values in Table 7.6 are in per unit of the Fuel Stroke Reference 

(FSR) value. A typical gas turbine model with a GRC incorporated will look like Figure 

7.14. 
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 Figure 7.14: A power station model consisting of one gas turbine with GRC 

 

Steam turbine generation rate constraint GRC is achieved by limiting the rate of the change 

of the steam flow through the steam turbine. All steam turbines installed at OETC grid are 

of the non-reheating type. This kind of steam turbines can demonstrate faster response than 

the reheating type due to the higher steam storing capacity of the boiler than the re-heater. 

This will allow the non-reheating steam turbine boiler giving up more steam without 

significant pressure drop. Yesil et al (2004) suggests the generation rate constraint GRC 

limits values shown in Table 7.7 for non-reheating type steam turbine generator which will 

be used in this study for all OETC side steam turbines.  

Min limit of GRC (p.u./s) Max limit of GRC (p.u./s) 

-0.015 0.015 

Table 7.7: Steam Turbine Generation Rate Constraint limits  

 

A typical steam turbine model with a GRC incorporated will look like the one in Figure 

7.15 (Farhangi et al, 2012; Shayeghi and Shayanfar, 2006; Shayeghi et al 
(2)

, 2006; Yesil, 

2004). 
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 Figure 7.15: A power station model consisting of one steam turbine with GRC 
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7.4.2. Simulation results 

The developed PDO-OETC model has been modified to include the GRC in all generating 

units' models in both PDO and OETC power systems. The modified PDO-OETC model 

has been simulated as per following conditions: 

• -100MW load disturbance at OETC grid 

• 100MW load disturbance at OETC grid 

• -200MW load disturbance at OETC grid 

• 200MW load disturbance at OETC grid 

The selection of the above load disturbances sizes is based on the normal and maximum 

expected load disturbances that can arise within PDO. A 100 MW load disturbance can 

normally happen at PDO or OETC. A 200MW load disturbance is not usual at PDO but 

can happen at OETC side due to the larger size generating units installed at OETC. As far 

as the generators are concerned, the load disturbance can be at PDO or OETC grids. 

Therefore it was decided to consider a load disturbance at OETC grid for this test since 

OETC is vulnerable to both normal and maximum load disturbances scenarios. This wide 

range of load disturbances is essential to explore the effects of GRC. The above scenarios 

were simulated with the nominal model and with the modified model (with GRC) and the 

results are shown in figures 7.16 to 7.19 respectively. 
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Figure 7.16: PDO frequency following -100MW load disturbance at OETC grid with and 

Without GRC 
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Figure 7.17: PDO frequency following +100MW load disturbance at OETC grid with and 

Without GRC 
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Figure 7.18: PDO frequency following -200MW load disturbance at OETC grid with and 

Without GRC 
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Figure 7.19: PDO frequency following +200MW load disturbance at OETC grid with and 

Without GRC 

7.4.3. Results discussion  

Figure 7.16 and Figure 7.17 show that the GRC has no effect on the system frequency 

response characteristics or the final steady state deviation when considering ±100MW load 

disturbance. The response is exactly the same with and without GRC. It means that the 

GRC limits do not come into picture for relatively small load disturbances because each 

generator in the grid is required to recover a small portion of the total load disturbance. 

Similarly, Figure 7.18 and Figure 7.19 show that the response was exactly the same with 

and without the GRC limits. It implies that even a ±200MW load disturbance will not hit 

the GRC limits. 

From the above analysis one can conclude that when modelling large scale interconnected 

power system for AGC studies, consideration of GRC will not add any practical value. 

7.4.4. Summary 

GRC is a limit which is introduced in the generation units control circuits to limit the 

thermal and mechanical stresses on the generation units. Modelling of GRC has been of 

interest to many researchers. The GRC modelling is feasible when we are considering 

small size power systems with small number of generators. Apparently, with small number 

of generation units, the GRC limits will be hit with small size load disturbance and hence 

introducing some nonlinearity into the system response. On the other hand, when 

considering large scale power system like the PDO-OETC power system, the GRC limits 



 

-99- 

will not be hit with practical size load disturbances. Furthermore, modelling of GRC will 

put extra burden on the modelling effort and the computation effort. Therefore it is 

concluded that as far as PDO-OETC power system is concerned, modelling of GRC is not 

feasible because it is not adding any practical value.  

7.5. The refined PDO-OETC power systems model 

This section summarises the efforts devoted in considering some of the practical aspects 

for the sake of refining PDO-OETC power systems model. From the analysis shown in the 

model refining process, it is apparent that some practical aspects are important and they 

directly impact the model response characteristics. The following are the practical aspects 

which are considered important to produce the refined model: 

• Base load effect 

• Preselect load control mode effect 

• Generators damper windings effect.  

 

The above three aspects are incorporated in the original PDO-OETC power system model 

to see their overall impact on the model response. The model is then simulated and 

compared with the real life scenarios.   

7.5.1. Simulation results 

The above three aspects have been modelled and incorporated in the refined model. The 

refined model has been used to simulate the six real scenarios discussed earlier in the 

model validation process. Accordingly six graphs have been produced one for each 

scenario and are shown in Figure 7.20 to Figure 7.25. The figures also compare the refined 

model response with the nominal model response and the real response. The focus is on the 

rate of change of the frequency following the disturbance, the steady state deviation and 

the amplitude and frequency of oscillations. A summary table has been also produced and 

is shown in Table 7.8. The table compares the simulation results of the nominal model and 

the refined model with the real system response.  
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Figure 7.20: Scenario 1; Real and Simulated behaviour of PDO frequency following 

113MW generator trip at OETC grid 
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Figure 7.21.: Scenario 2; Real and Simulated behaviour of PDO frequency following 

140MW generator trip at OETC grid 
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Figure 7.22: Scenario 3; Real and Simulated behaviour of PDO frequency following 

140MW generator trip at OETC grid 
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Figure 7.23: Scenario 4; Real and Simulated behaviour of PDO frequency following 

140MW generator trip at OETC grid 
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Figure 7.24: Scenario 5; Real and Simulated behaviour of PDO frequency following 

144MW generator trip at OETC grid 
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Figure 7.25: Scenario 6; Real and Simulated behaviour of PDO frequency following 

158MW generator trip at OETC grid 
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 Model 

Real 

system 

results 

Simulated 

results 

Percentage 

error 

Nominal 

Model 
-0.056 -27.3% 

Scenario 1 

113MW disturbance 

at OETC on 

20/5/2008 @2159hrs 

Frequency 

deviation 

(Hz) 
Refined 

Model 

-0.077 

-0.08 +3.9% 

Nominal 

Model 
-0.07 -27.8% 

Scenario 2 

140MW disturbance 

at OETC on 

25/5/2008 @1047hrs 

Frequency 

deviation 

(Hz) 
Refined 

Model 

-0.097 

-0.099 +2% 

Nominal 

Model 
-0.07 -32% 

Scenario 3 

140MW disturbance 

at OETC on 

26/5/2008 @1128hrs 

Frequency 

deviation 

(Hz) 
Refined 

Model 

-0.103 

-0.099 -3.9% 

Nominal 

Model 
-0.07 -47.4% 

Scenario 4 

140MW disturbance 

at OETC on 

24/6/2008 @1754hrs 

Frequency 

deviation 

(Hz) 
Refined 

Model 

-0.133 

-0.099 -25.6% 

Nominal 

Model 
-0.072 -25% 

Scenario 5 

144MW disturbance 

at OETC on 

21/5/2008 @1029hrs 

Frequency 

deviation 

(Hz) 
Refined 

Model 

-0.096 

-0.102 +6.25% 

Nominal 

Model 
-0.079 -32.5% 

Scenario 6 

158MW disturbance 

at OETC on 

26/5/2008 @1510hrs 

Frequency 

deviation 

(Hz) 
Refined 

Model 

-0.117 

-0.112 -4.3% 

Table 7.8: Summary of nominal model and refined model results.  

7.5.2. Discussion 

From figures 7.20 to 7.25 and Table 7.8, it can be clearly seen that the consideration of the 

three practical aspects has greatly improved the model response accuracy with reference to 

the real system response. The percentage error is within ±10% limit for all scenarios which 

happened in the same month i.e. the same operating points. The only scenario which is still 

persisting around 20% error was scenario 4. This scenario happened at the end of June 

where the system has different operating points than other scenarios. It can be explained as 

there are more units operating at base load towards the hottest period of the summer, 

therefore we shall expect more deviation in the frequency.  
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However, the difference in the oscillatory frequency is still persisting between the 

simulated response and the real response. It will be dealt with in the next section of this 

report which is concerned about fine tuning some of the model parameters.    

7.5.3. Summary 

Utilising the practical understanding of the power system operation proved to be extremely 

useful in refining the modelling approach and the model response. The model response has 

been greatly improved to an acceptable error limits. The results proved that the refined 

model is of enough accuracy and is suitable for further analysis. However there is still 

some difference in the oscillatory frequency persisting between the simulated response and 

the real life system response which will be considered in the next section of this report. 

7.6. Fine tuning of PDO-OETC power systems refined model 

In this part, the refined model of PDO-OETC power systems will be further fine tuned 

using MATLAB ''fminsearch'' optimisation method. An Mfile has been written to do the 

task. Section 5.4 has summarised that the PDO-OETC power system model is quite 

sensitive to modelling errors in the following two parameters: 

• Power system inertia 

• Synchronising torque coefficient 

Therefore the above two parameters will be fine tuned so that the simulated response 

closely matches the real response. An Mfile has been written to fine tune PDO inertia 

constant, OETC inertia constant and the synchronising torque coefficient.  

7.6.1. MATLAB Mfile 

Two Mfile programs have been written to execute the task. The first one is called the 

"PdoOetc_Opt" and the second one is the "Simulator". The second Mfile will call upon the 

first programme as part of the simulation process. The overall aim is to simulate the model 

while changing the three parameters PDO inertia constant (Hpdo), OETC inertia constant 

(Hoetc) and synchronising torque coefficient (Tiv). Each time, the integral of the squared 

error (difference between the simulated and real responses) will be calculated in order to be 

minimised. The simulation can be aborted anytime when the two responses (simulated and 

real) are closely matching with focus on the difference in the oscillatory frequency. The 

PDO-OETC refined model has been used and is shown in Figure 7.26. The two Mfiles are 

shown in Appendix 2. 
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Figure 7.26: PDO-OETC refined model used for the parameters tuning process 

7.6.2. Parameters tuning results 

The two Mfiles developed earlier were used to simulate Real life scenario number 2. 

Scenario 2 is selected because it is proven earlier that it is the closest one to the simulated 

results. Therefore using scenario 2 for the tuning will avoid misleading results.  

The tuning has been done and the result shown in Figure 7.27 is found to be the best in 

terms of reduction in the oscillatory frequency difference. The constants Hpdo, Hoetc and 

Tiv which produced Figure 7.27 are shown in Table 7.9.  
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Figure 7.27: Scenario 2: PDO frequency following 140MW load disturbance at OETC side 

after model parameters tuning 
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 Hpdo Hoetc Tiv 

Original values 4.45098    14.03546   0.94 

Tuned values 4.8417 15.5023 0.7220 

Percentage change  + 8.8% +  10.5% - 23.2% 

Table 7.9: PDO-OETC refined model tuned parameters 

From Table 7.9, one can see that the percentage changes in system inertia and 

synchronising torque coefficient are consistent with the error ranges used in the parameters 

sensitivity tests in section 5. The above tuned parameters will be used to simulate the 

remaining five scenarios discussed earlier in section 7.5.  

7.6.3. Simulation results 

The refined model with the tuned parameters has been used to simulate the other five real 

scenarios (1,3,4,5&6) discussed earlier in the model validation process. Scenario 2 is 

already shown in Figure 7.27 above. Accordingly five more graphs have been produced 

one for each scenario and are shown in Figure 7.28 to Figure 7.32. The figures also 

compare the refined model with the fine tuned parameters simulation response with the 

nominal model response, the refined model response and the real system response. Since 

this exercise is mainly to reduce the difference in the oscillatory frequency between the 

simulated and real responses, there is no necessity to calculate the steady state deviation 

error again as it was comprehensively discussed earlier in section 7.5.  
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Figure 7.28: Scenario 1; Real and Simulated behaviour of PDO frequency following 

113MW generator trip at OETC grid 
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Figure 7.29: Scenario 3; Real and Simulated behaviour of PDO frequency following 

140MW generator trip at OETC grid 
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Figure 7.30: Scenario 4; Real and Simulated behaviour of PDO frequency following 

140MW generator trip at OETC grid 
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Figure 7.31: Scenario 5; Real and Simulated behaviour of PDO frequency following 

144MW generator trip at OETC grid 
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Figure 7.32: Scenario 6; Real and Simulated behaviour of PDO frequency following 

158MW generator trip at OETC grid 

7.6.4. Discussion 

From Figures 7.27 to 7.32, it is qualitatively clear that the difference in the oscillatory 

frequency between the simulated response using the refined model with fine tuned 

parameters and real response has been remarkably reduced in all six scenarios if compared 
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with the nominal model and the refined model. It is apparent now that the simulated 

oscillations using the refined model with fine tuned parameters are more aligned with the 

real response oscillations although they are not perfectly aligned. Getting closer and closer 

to the real response proves that all the modelling effort devoted in this study is in the right 

direction. The percentage change in Hpdo, Hoetc and Tiv parameters is within an 

acceptable range as can be seen from Table 7.9. It is particularly acceptable if we consider 

the significant number of assumptions been placed during the modelling process and the 

large scale model in general.  

The new deduced PDO-OETC model parameters which are shown in Table 7.9 completes 

the model refining process and the model will be considered for further analysis.    

7.6.5. Summary 

The parameters tuning method is considered as part of the model refining process and is 

targeted to reduce the difference in the oscillatory frequency between the simulated 

response and real response of PDO-OETC power system. A selected number of parameters 

have been considered based on the model sensitivity to those parameters. These parameters 

are PDO power system inertia constant, OETC power system inertia constant and the 

synchronising torque coefficient. The parameters tuning method has been successful in 

reducing the difference in the oscillatory frequency between the simulated response 

oscillations and the real life response oscillations. The newly tuned parameters will be used 

in the refined model for further analysis. 

7.7. Summary of the model refining process   

A systematic approach has been followed starting with the model development based on 

the traditional approach, then the model validation and finally the model refining process. 

The aim of the whole task is to get confidence on the model validity in representing the 

real system. Consequently all results and recommendations based on this model will be of 

sufficient accuracy. The final results proved that the modelling process is in the right 

direction and most of the assumptions made are realistic assumptions. On the other hand 

some assumptions have been revisited and verified in order to refine the model. The 

refined model proves to be of better accuracy than the nominal model. The refined model 

parameters have then been fine tuned for further accuracy. The refined model with the fine 

tuned parameters will be used to develop control philosophies and to design AGC 

controllers. All subsequent work will be based on the final fine tuned model of PDO-

OETC power system.    
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Chapter 8: State space representation of PDO-OETC 

perturbation model  

8.1. Introduction 

In state space representation of dynamic systems, we are concerned with three types of 

variables, input variables, output variables and state variables. In order to represent a 

dynamic system in state space, the dynamic model must involve elements which can 

memorize the values of the inputs. Integrators are considered as memory devices therefore 

the output of such integrators can be considered as the variable that define the integral state 

of the dynamic system (OGATA, 2008, p. 71). For a given dynamic system, there are 

different state space representations but the number of states will remain the same in all of 

them. The number of states is a character of the dynamic model because it is based on the 

differential equations representing the system. 

In this part, PDO-OETC model will be represented in state space form based on the 

differential equations of the model. Then the derived state space model step response will 

be compared with the earlier developed continuous model step response.            

8.2. PDO-OETC model differential equations 

For state space representation there are certain equations can be summated together and 

represented by one equation giving the same output as the whole set. For example PDO has 

25 gas turbines running in parallel in different power stations and are represented by one 

gas turbine with a capacity equaling to the 25 gas turbines. OETC has two types of 

turbines, gas and steam turbines; therefore it will be represented by one steam turbine and 

one gas turbine. Their capacity will be equalling to the accumulated capacity of all turbines 

of the same type. The above assumption has resulted in great reduction in the number of 

the state variables of the states space representation. Hence, the following eleven equations 

are representing PDO-OETC perturbation model:    
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The above equations variables and constants are defined as below: 

tieP∆ : Tie line power deviation 

pdof∆ : PDO frequency deviation 

pdoPgg∆ : Change in the mechanical power output of PDO gas turbines generators 

pdoXgc∆ : Change in the control valve position of PDO gas turbines generators 

pdoXgg∆ : Change in the governor signal of PDO gas turbines generators 

oetcf∆ : OETC frequency deviation 

oetcPgg∆ : Change in the mechanical power output of OETC gas turbines generators 

oetcXgc∆ : Change in the control valve position of OETC gas turbines generators 

oetcXgg∆ : Change in the governor signal of OETC gas turbines generators 

oetcPsg∆ : Change in the mechanical power output of OETC steam turbines generators 

oetcXsg∆ : Change in the governor signal of OETC steam turbines generators 

pdoPc∆ : Change in PDO generators loading reference point 

oetcPc∆ : Change in OETC generators loading reference point 

pdoPd∆ : Change in PDO load  
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oetcPd∆ : Change in OETC load 

f : Nominal frequency of 50Hz 

12a : Sign reversing constant (-1)  

pdoR : Droop control gain of PDO generators 

oetcR : Droop control gain of OETC generators 

ivT : Synchronizing torque coefficient 

pdoH : PDO generators accumulated inertia 

pdoKg : PDO gas turbines generators p.u. capacity 

pdoD : PDO load damping coefficient 

pdoKdw : Accumulated PDO generators damper windings torque coefficient 

oetcKg : OETC gas turbines generators p.u. capacity 

oetcKs : OETC steam turbines generators p.u. capacity 

oetcD : OETC load damping coefficient 

oetcKdw : Accumulated PDO generators damper windings torque coefficient 

Tgch : Gas turbine charging time constant 

Tgc : Gas turbine control valve time constant 

Tgg : Gas turbine governor time constant 

Tsch : Steam turbine charging constant 

Tsg : Steam turbine governor time constant 

8.3. State space matrices formulation 

In state space representation, the PDO-OETC perturbation model will be represented in the 

following form: 

( ) ( ) ( )

( ) ( ) ( )tDutCxty

tButAxtx

+=

+=
•

 ………………………………………………(8.12) 

Where: 

x : is the states vector 

y : is the output vector 

u : is the input vector 

A : is the state matrix 

B : is the input matrix  
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C : is the output matrix 

D : is the direct transmission matrix 

OGATA (2008, pp. 70-74) has very clear and constructive steps on how to formulate the 

state space matrices from the differential equations. Following the same steps the PDO-

OETC model matrices are formulated as below: 

1. The state matrix A: 

 

There are eleven states, therefore the matrix A is 11x11.   
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2. The input matrix B: 

 

There are two inputs in the model: PDO control input signal and OETC control input 

signal, therefore the B matrix is 11x2: 
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3. The output matrix C: 

 

In PDO-OETC model there are three outputs considered, PDO frequency, OETC 

frequency and the Tie line power. Therefore the C matrix is 3x11. 
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4. The direct transmission matrix D: 

 

In PDO-OETC model there are no direct links between the inputs and outputs i.e. no feed 

forward signal. Therefore the D matrix is a zero matrix of size 3x2. 
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8.4. Testing of state space model   

The derived state space form of PDO-OETC model has been tested by comparing its step 

response with the earlier developed PDO-OETC continuous-time model. The considered 

operating condition of the system is when all generators are online and all are on droop 

control. A MATLAB script has been written to calculate the state space matrices. The 

script is shown in Appendix 3.  

Considering PDO control input signal, a step input signal of 1 p.u. size at PDO control 

input signal has produced the response shown in Figures 8.1 to 8.3 using both the state 

space model and the continuous model. The main focus of the simulation is to spot any 

difference between the state space model response and the continuous model response. 
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Figure 8.1: PDO frequency deviation following step control signal at PDO side using both 

the continuous model and state space model 
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Figure 8.2: OETC frequency deviation following step control signal at PDO side using 

both the continuous model and state space model 
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Figure 8.3:  Tie line power deviation following step control signal at PDO side using both 

the continuous model and state space model 

 

Considering OETC control input signal, a step input signal of 1 p.u. size at OETC control 

input signal has produced the response shown in Figures 8.4 to 8.6 using both the state 

space model and the continuous model.  
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Figure 8.4: PDO frequency deviation following step control signal at OETC side using 

both the continuous model and state space model 
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Figure 8.5: OETC frequency deviation following step control signal at OETC side using 

both the continuous model and state space model 
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Figure 8.6: Tie line power deviation following step control signal at OETC side using both 

the continuous model and state space model 

From Figures 8.1 to 8.6, it is crisp clear that the continuous-time model response is exactly 

the same as the state space model. It proves that the state space model formulation is 

successful and the derived state space form of PDO-OETC model can be used for further 

analysis.    

8.5. Summary 

State space form of PDO-OETC model has been derived and tested. The results prove that 

the derived state space model is accurate and has produced exactly the same response as 

the continuous-time model of PDO-OETC power systems. Therefore, the derived state 

space form of the model can be used for further analysis.  
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Chapter 9: Design of Automatic Generation Control of 

PDO-OETC interconnected power system 

9.1. Introduction 

PDO and OETC power systems are growing entities and their fast growth is driven by the 

wide scale development in the Sultanate of Oman. PDO power system has gone through 

many expansion projects to increase the generation capacity driven by the new load 

demand associated with the Enhanced Oil Recovery schemes. On the other side, OETC 

power system is growing in a faster pattern driven by the load demand of the large scale 

industrial projects and the increasing population. All this has resulted in a significant 

growth in both systems since they are first interconnected back in 2001. In the early days, 

the tie line power flow was controllable using the generation dispatch and there was no 

necessity for complicated control scheme to control the frequency and the power exchange. 

Nowadays, the large residential load demand profile at OETC side imposes a great 

challenge in the control and operation of the interconnected power system. The power flow 

through the tie line is dependant on the daily load profile and a huge effort is devoted by 

PDO and OETC power system operators to maintain it at the nominal limits of ±10MW. 

The traditional way of controlling the flow is now more exhaustive than the utilisation of 

AGC controller. During OETC peak load hours, PDO operators find themselves squeezed 

in holding their MW from flowing to OETC and the MW exchange often deviates from the 

agreed nominal limits. Therefore the idea of having AGC controller is gaining acceptance 

amongst both power systems operators. 

The ultimate aim of AGC is to achieve the following fundamental requirements: 

• Zero steady state frequency deviation following load disturbance 

• Zero steady state tie line power deviation following load disturbance 

• Load disturbance is compensated locally at the disturbed control area and 

restoration of the nominal generation dispatch of none disturbed control area in the 

steady state condition 

Before commencing on the detailed technical design of an AGC controller and details of 

the controller types, it is of paramount importance to discuss the operational aspects of 

PDO and OETC power systems. Furthermore we need to draw a control philosophy that 

suits both PDO and OETC power systems considering the nature of both systems, the 

regulatory framework governing the operation of both systems and the endeavour of both 

systems to have an AGC controller.   
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9.2. Nature of PDO and OETC power systems 

PDO power system is smaller than OETC power system in terms of generation capacity. 

This fact is reflected on the rotating inertias of both systems. OETC is having about three 

times the inertia than PDO is having and therefore PDO has about quarter of the overall 

power system inertia. This fact has an interesting impact on the frequency and tie line 

power flows. A disturbance at PDO side will greatly affect the power exchange than the 

same size disturbance at OETC side. Any power mismatch between the generation and the 

load will mainly be compensated by the rotating inertias resulting in frequency deviation. 

Since PDO is having about quarter of the system inertia, quarter of the mismatch will be 

compensated locally and three quarters will be compensated next door from OETC as a 

power flow through the tie lines. Vice versa, three quarters of the mismatch at OETC will 

be compensated locally and only one quarter will be compensated next door from PDO as 

a power flow through the tie lines. Therefore, a load disturbance at PDO will be obvious 

from the tie line flow and a load disturbance at OETC will be obvious from the frequency 

deviation. 

On the other hand, PDO load is industrial in nature and is constant throughout the day. 

Whereas OETC load is mainly a residential load which peaks up for few hours during the 

day. Hence, there are less load disturbances within PDO when compared with OETC.   

9.3. Regulations governing the control and operation of PDO and 

OETC power systems 

PDO power system is a monopoly solely owned and operated by Petroleum Development 

Oman Ltd. PDO power system is designed and operated as per PDO specifications. 

On the other hand, OETC power system is built according to the government standards. 

OETC power system is privatised where the transmission grid is solely run by OETC. The 

power generation is through independent power producers and the distribution is divided 

between other companies based on territorial basis. The Authority for Electricity 

Regulation is on top of all these companies as the regulator. The grid code (Oman 

Electricity Transmission Company SAOC, 2005) stipulates the operation interface 

requirements between the generation, transmission and distribution companies. In the grid 

code, PDO is annotated as an internally interconnected system with OETC. The grid code 

and the stand alone service level agreement between PDO and OETC forms the regulatory 

framework for the pool operation.  

In general, PDO has better control on its power generation since all the power generation 

units and power transmission overhead lines are controlled by the same body. In the other 
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hand, OETC has less control on the power generation units due to the separate owner of 

the power generation units. Generation dispatch is done manually through paperwork and 

telephoning which imposes extraordinary challenge to the OETC grid operators to 

maintain the balance between load demand and generation.  

The AGC controller is quite feasible especially for OETC which will make control and 

generation dispatch relatively easy to the present situation.  

9.4. Control philosophies 

AGC controller is a supervisory control loop which can be flexibly applied. Traditionally, 

the Area Control Error (ACE) is used as a feedback to the AGC controller which 

comprises both the frequency deviation and the tie line power deviation. The concept of 

ACE will be discussed in details in the subsequent sections. Usually one controller is 

installed at each control area and both of them cooperate together to maintain the nominal 

values of frequency and power exchange. Each controller is designed and tuned to 

compensate load disturbances arising within its control area in the steady state condition. 

During the load disturbance the neighbouring area controller will act during the transient 

period only and brings back its original generation dispatch in steady state condition. 

Consequently, each area is responsible for load disturbances arising within its territory and 

it will get help from the other area only during the transient period. Effectively, AGC will 

help both the frequency and tie line power to stabilise faster. 

The study will consider three control philosophies and then in each control philosophy 

AGC will be designed and tested using different feedback signals. Eventually a short term 

and long term recommendations for PDO and OETC power systems will be attempted.  

The three control philosophies are: 

1. AGC applied to PDO power system alone 

• Grid frequency as a feedback signal 

• Tie line power as a feedback signal 

• Area Control Error (ACE) as a feedback signal 

2. AGC applied to OETC power system alone 

•  Grid frequency as a feedback signal 

• Tie line power as a feedback signal 

• Area Control Error (ACE) as a feedback signal 

3. AGC applied to both PDO and OETC power systems 

• PDO uses grid frequency as a feedback signal & OETC uses grid 

frequency as a feedback signal 
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• PDO uses grid frequency as a feedback signal & OETC uses tie 

line power as a feedback signal 

• PDO uses grid frequency as a feedback signal & OETC uses Area 

Control Error (ACE) as a feedback signal 

• PDO uses tie line power as a feedback signal & OETC uses grid 

frequency as a feedback signal 

• PDO uses tie line power as a feedback signal & OETC uses tie line 

power as a feedback signal 

• PDO uses tie line power as a feedback signal & OETC uses Area 

Control Error (ACE) as a feedback signal 

• PDO uses Area Control Error (ACE) as a feedback signal & 

OETC uses grid frequency as a feedback signal 

• PDO uses Area Control Error (ACE) as a feedback signal & 

OETC uses tie line power as a feedback signal 

• PDO uses Area Control Error (ACE) as a feedback signal & 

OETC uses Area Control Error (ACE) as a feedback signal 

Therefore a total number of 15 control topologies will be investigated. All above 

topologies will be initially investigated using Ziegler Nichols PID controller. The closed 

loop tuning method will be used for all control topologies.  

Throughout the fifteen control topologies test, the following simulation conditions will be 

used: 

• The controller performance is tested when subjected to internal load disturbance at 

PDO and external load disturbance at OETC.  

• A step load disturbance of 100MW is used for all tests.  

• PDO frequency is considered as the grid frequency for the settling time calculation. 

9.5. Base case of PDO-OETC model 

The refined PDO-OETC power system perturbation model developed in chapter 7 will be 

used. However the refined model has considered generation units which are normally in 

preselect load control and units which are reaching base load during the recorded real 

scenarios. Those considerations have been used only to validate the model using the 

prevailing operating conditions during the time the real scenarios were recorded. Since the 

refined model is proved valid, the AGC controller should be designed based on the ideal 

case whereby all generators are having enough spinning reserves and all of them are on 

droop control. The AGC controller robustness can be tested using different operating 
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conditions. Therefore the base case of the PDO-OETC model which will be used for the 

controller design and tuning is the same model as developed in chapter 7 except that there 

are no generation units running at base load or on preselect control mode.  

As a reference point, the base case was simulated while subjected to 100MW load 

disturbance once at PDO side and once at OETC side. Since AGC will impact the common 

grid frequency, generators output and power exchange between PDO and OETC, the 

simulation results will focus on five main aspects: 

1. PDO frequency,  

2. OETC frequency,  

3. Tie line power,  

4. Mechanical power output of a sample gas turbine at PDO 

5. Mechanical power output of a sample gas turbine at OETC.  

The sample gas turbines size is selected to be F6B machines for both PDO and OETC. The 

simulation results are shown in Figures 9.1 to 9.6 which cover all mentioned five aspects. 

Table 9.1 shows a summary of settling times, power and frequency deviation. The settling 

time is always calculated based on PDO frequency when reaching the final steady state 

value ±0.001Hz. 

Considering the frequency and tie line power figures, the steady state deviation, the settling 

time and the oscillatory nature of the response are the most important aspects to look at in 

those figures. On the other hand, the steady state deviation is the most important aspect 

when considering the mechanical power figures.  
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Figure 9.1: Grid frequency following 100MW load disturbance at PDO side 
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Figure 9.2: Tie line power deviation following 100MW load disturbance at PDO side 
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Figure 9.3: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side  
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Figure 9.4: Grid frequency following 100MW load disturbance at OETC side 
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Figure 9.5: Tie line power deviation following 100MW load disturbance at OETC side 
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Figure 9.6: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side 

 

  Base case 

response 

Frequency deviation (Hz) -0.05 

Settling time (s) 10.9 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 

Frequency deviation (Hz) -0.05 

Settling time (s) 7.74 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 

Table 9.1: Base case response summary 

 

From Figure 9.1 to Figure 9.6 and Table 9.1 one can summarise the base case model 

response characteristics following step load disturbance as: 

• Frequency settles with a steady state offset 

• Tie line power settles with a steady state offset 

• The same size generators deliver the same amount of power regardless whether 

they are at PDO or at OETC side.  

• Response is oscillatory but stable 
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9.6. AGC of PDO power system alone 

In this part, three control topologies will be investigated using PID controller. The base 

case model will be used whereby PDO and OETC remain interconnected. The three control 

topologies are applying AGC to PDO power system only using different feedback signals 

to the controller: 

1. PDO grid frequency as a feedback signal 

2. Tie line power as a feedback signal 

3. PDO Area Control Error as a feedback signal 

The PID controller is not the best control technique however it is good to get the first 

impression about the control topology performance. The closed loop tuning method 

(Ultimate Sensitivity Method) will be used to tune the PID controller for all control 

topologies.  

9.6.1. AGC of PDO using grid frequency as a feedback signal 

The grid frequency recorded at PDO side is used as the feedback signal for the controller. 

The PDO-OETC model with the controller is shown in Figure 9.7 and the used PID 

controller is shown in Figure 9.8. The controller closed loop gain was increased gradually 

until the ultimate gain was reached which has produced the stable oscillatory response. The 

ultimate gain and oscillation period were recorded and are shown in Table 9.3. 
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Figure 9.7: PDO-OETC model with PDO frequency PID AGC controller. 
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Figure 9.8: PID controller structure.  

 

9.6.1.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown in Table 9.2 

(OGATA, 2008, p. 685).  

Type of controller Kc Ti Td 

P 0.5Ku  0 

PI 0.45Ku (1/1.2)Pu 0 

PID 0.6Ku 0.5Pu 0.125Pu 

Table 9.2: Zeigler-Nichols tuning rule based on ultimate gain and ultimate period. 

 

Table 9.3 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

3.465 1.21 2.079 0.605 0.15125 

Table 9.3: PDO AGC PID controller parameters based on grid frequency feedback 

 

9.6.1.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier in 

section 9.5 for each test. The results are shown in Figures 9.9 to 9.14 in Appendix 4. Table 

9.4 shows a summary of the controller performance in terms of grid frequency and tie line 

power.  
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 5.6 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 4.9 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0.05 

Table 9.4: PDO alone frequency PID AGC controller performance summary  

 

9.6.1.3. Results discussion 

The simulation results with the PDO alone frequency PID AGC controller show clear 

improvements in comparison with the base case results. From Figure 9.9 to Figure 9.14 in 

Appendix 4 and Table 9.4, one can see the following: 

• The frequency steady state offset is brought to zero when a step load disturbance is 

applied to PDO or OETC. It satisfies one of the fundamental requirements of AGC. 

The settling time is also superb in the range of 5 seconds. The frequency 

oscillations are better damped than in the base case.  

• The tie line power steady state offset is brought to zero in the case when the load 

disturbance is applied at PDO side. It means the controller is able to accommodate 

any disturbance within PDO area and generate the required power locally at PDO 

without importing power from OETC. However when the disturbance is applied at 

OETC side, PDO contribution is much more with the controller than in the base 

case. From Table 9.4, one can see that PDO generators will be taking the whole 

burden due to the controller action when a disturbance is applied at OETC. The 

value of 0.05 p.u. equals to 100MW i.e. the whole load disturbance will be 

compensated by PDO generators. In fact, it will impose many challenges to PDO in 

terms of extra maintenance cost of turbines, extra fuel consumption and possible 

tripping of the tie line. 

• PDO and OETC generators of the same size are no longer participating with the 

same amount of power following load disturbances. Figure 9.11 and Figure 9.14 

show that PDO generators are taking the entire burden following load disturbance 

irrespective of the disturbance location. However, OETC droop control acts during 

the transients which helps damping the frequency oscillations. 
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• The load disturbance of 100MW is very common within PDO and OETC power 

systems and is considered as a realistic load disturbance which represents about 

10.9% of PDO total generation capacity and 3.4% of OETC total generation 

capacity. Although not shown, inspection of the controller effort shows a maximum 

variation of approximately 20% of individual generation unit output which is about 

5.6MW for a F6B unit. Hence, for the range of controller parameters considered 

here, the controller output is always well within the individual generation units 

capability and does not infringing any constraints or overstress the generation units. 

 

9.6.1.4. Summary 

The PDO alone frequency PID AGC controller was tuned using the closed loop method 

and its performance was good enough. However the control topology itself will impose 

great burden on PDO generators because the controller is using the grid frequency as the 

only feedback signal or reference point. It means the controller will act at any disturbance 

in the frequency regardless of its location. Furthermore, the developed control loop has 

also dominated the droop control loop of OETC generators therefore there steady state 

participation was always zero regardless of the disturbance location. Implementing this 

control topology at PDO will enquire more maintenance cost of its gas turbines due to the 

continuous manoeuvring of the governing systems. It will also increase fuel gas 

consumption, deviates from power exchange agreement and may cause tripping incidents 

of the tie line power.  

Therefore this control topology is not recommended for implementation due to the adverse 

impact on PDO generation.   

   

9.6.2. AGC of PDO using tie line power as feedback signal 

The tie line power deviation is used as the feedback signal for the controller. The PDO-

OETC model with controller is shown in Figure 9.15 and the used PID controller structure 

is the same as shown earlier in Figure 9.8. The controller closed loop gain was increased 

gradually until the ultimate gain has been reached which has produced the stable 

oscillatory response. The ultimate gain and oscillation period were recorded and are shown 

in Table 9.5. 
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Figure 9.15: PDO-OETC model with PDO tie line power PID AGC controller. 

 

9.6.2.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. 

Table 9.5 summarises the PID controller parameters used in this part of the study: 

 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

1.402 1.989 0.8412 0.9945 0.248625 

Table 9.5: PDO  AGC PID controller parameters based on tie line power feedback 

9.6.2.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier in 

section 9.5 for each test. The results are shown in Figures 9.16 to 9.21 in Appendix 4. 

Table 9.6 shows a summary of the controller performance in terms of grid frequency and 

tie line power.  

 

 

 



 

-131- 

  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 38.61 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 -0.066 

Settling time (s) 7.74 29.8 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.6: PDO alone tie line power PID AGC controller performance summary  

 

9.6.2.3. Results discussion 

From Figure 9.16 to Figure 9.21 in Appendix 4 and from table 9.6, the following is noted: 

• The model response with the PDO alone tie line power PID AGC controller is 

more oscillatory than in the base case. Therefore the settling time is longer than in 

the base case. The response is oscillatory because the tie line power suffers inter-

area oscillations making it a bad feedback signal to the controller; hence the 

oscillatory response.  The Zeigler Nichols closed loop tuning method gives first 

approximation of the PID controller parameters. Therefore the controller 

performance can be further improved by using more sophisticated tuning methods 

or by using different control techniques. 

• The grid frequency steady state offset is brought back to zero when the disturbance 

is applied at PDO. This is because stopping tie line power flow from OETC to 

PDO requires PDO generators to generate the whole power mismatch. Therefore 

the generators kinetic energy is restored hence the frequency back to normal. The 

controller action is in favour of frequency because the disturbance is at PDO. 

However when the disturbance has been applied at OETC side, PDO controller 

was trying to hold the tie line power flow towards OETC by reducing PDO 

generation; hence jeopardising  the frequency. Therefore the frequency deviation is 

more than in the base case. It is one of the drawbacks of this particular control 

topology. 

• The tie line power was well controlled and brought back to zero following load 

disturbances at PDO and OETC. However the response was oscillatory, but it can 

be improved by using more sophisticated control methods.  
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• The change in mechanical power output of PDO and OETC gas turbines is fair in 

terms of the geographical location of the load disturbance. Load disturbance at 

PDO is mainly compensated by PDO generators and a load disturbance at OETC is 

mainly compensated by OETC generators. However, due to OETC has no AGC, 

when the load disturbance is applied at OETC the power mismatch has to be 

compensated by droop control only which will never bring the frequency deviation 

back to zero. In addition, PDO controller has reduced PDO generation to below 

nominal to stop the residual power resulting from kinetic energy reduction of PDO 

generators from flowing to OETC.   

 

9.6.2.4. Summary 

The Zeigler Nichols closed loop tuning method has been used to tune the PDO alone tie 

line power PID AGC controller. The controller has successfully maintained the power 

exchange at nominal values following load disturbances. The model response with 

controller was oscillatory and required more time to settle than in the base case. The PDO 

alone control topology using tie line power as feedback control has proved some 

drawbacks: 

• It requires sophisticated tuning methods or modern control methods to improve the 

response 

• It has jeopardised the frequency when the disturbance is at OETC and has reduced 

PDO generation to below nominal.  

Therefore this particular control topology is not recommended for implementation due to 

the adverse consequences on the grid stability.  

   

9.6.3. AGC of PDO using grid frequency and tie line power as feedback 

signal 

The grid frequency and tie line power deviation are used to form the feedback signal for 

the controller. The concept of Area Control Error (ACE) will be introduced and discussed 

in details in the following section. 

9.6.3.1. AGC controller structure using the Area Control Error (ACE) 

The concept of ACE is introduced to satisfy the following two objectives of AGC 

following load disturbance at any control area (KUNDUR, 1994, p. 606): 
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• Maintain the grid frequency at the nominal value 

• Maintain the power exchange between the control areas at scheduled value.  

The ACE is a feedback signal to the AGC controller made up of the tie line power 

deviation added up to the frequency deviation weighted by a bias factor. The concept of 

ACE is proved to satisfy the above two objectives of AGC (KUNDUR, 1994, p. 606). The 

frequency-response characteristic factor  is used for calculating the ACE (KUNDUR, 

1994, p. 606; Khodabakhshian et al, 2012). Thus the ACE for PDO is calculated as:  

pdopdotiepdo fPACE ∆+∆= β  ……………………………(9.1)     

Where 

D
R

+=
1

β   ……………………………………………(9.2) 

R is the droop setting in Hz/p.u.MW and D is the load damping factor in p.u.MW/Hz. The 

term 
R

1
must be scaled to reflect the p.u. capacity of each area. This is achieved by 

multiplying the term 
R

1
 by the area MW capacity and dividing by the base MVA which is 

2000MVA. For PDO, the summer firm capacity is 914.2MW therefore  is calculated as 

below: 

HzMWupD
R

pdo

pdo

pdo /..24215.0106.13
2000

2.914

2

11 3 =×+×=+= −β  

The frequency-response characteristic factor  is one way of telling the AGC controller the 

weight of its area with respect to the rest of the system. By accurately calculating the 

frequency-response characteristic factor , the AGC controller steady state contribution is 

diminished during outside load disturbances and the control area will respond to outside 

load disturbances as if there is no AGC controller applied. It means only droop control will 

be in action and will have a steady state contribution. Hence, the normal response to 

outside load disturbances is preserved. Higher values of the frequency-response 

characteristic factor  will incur positive AGC controller steady state contribution and 

lower values will incur negative AGC steady state contribution.    

Considering the ACE of PDO power system, the PDO-OETC model with the controller is 

shown in Figure 9.22 and the used PID controller structure is the same as shown earlier in 

Figure 9.8. The controller closed loop gain has been increased gradually until the ultimate 

gain is reached which has produced the stable oscillatory response. The ultimate gain and 

oscillation period were recorded and are shown in Table 9.7. 
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Figure 9.22: PDO-OETC model with PDO frequency and tie line power PID AGC 

controller. 

9.6.3.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. Table 9.5 summarises the PID controller parameters used in this part of the study: 

 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

1.69 1.842 1.014 0.921 0.23025 

Table 9.7: PDO AGC PID controller parameters based on tie line power feedback and grid 

frequency 

9.6.3.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier in 

section 9.5 for each test. The results are shown in Figures 9.23 to 9.28 in Appendix 4. 

Table 9.8 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 22.6 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 -0.05 

Settling time (s) 7.74 15.34 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0.0121 

Table 9.8: PDO alone frequency and tie line power PID AGC controller performance 

summary  

9.6.3.3. Results discussion 

From Figure 9.23 to Figure 9.28 in Appendix 4 and from Table 9.8, the following is noted: 

• The model response with the PDO alone frequency and tie line power PID AGC 

controller is more oscillatory than the base case. Therefore the settling time is 

longer. It is again due to the use of the tie line power signal for the PID controller 

feedback. The response can always be improved by fine tuning the controller 

parameters or by using different control technology.  

• The frequency steady state offset is brought to zero following a load disturbance at 

PDO side. However following a load disturbance at OETC, the frequency settles 

with an offset equals the base case offset. It means that the controller did what it is 

ought to be done and limited its action to PDO side load disturbances. 

• The tie line power deviation is brought back to zero following the load disturbance 

at PDO side. It means that the controller has satisfied its objective of controlling 

both PDO frequency and tie line power at nominal values. The AGC controller loop 

does not have a steady state contribution in response to load disturbance at OETC 

side. Although there is always a response during the transients, but there is no 

steady state impact. However the droop control loop of PDO generators contributes 

during the transient and steady state just as normal as there is no AGC control loop.     

• The mechanical power change of F6B turbines shows that PDO turbines are the 

only ones responsible for balancing the power mismatch following load 

disturbances at PDO side. Furthermore they participate during load disturbances at 

OETC side with their droop control loop. Therefore they produce the same power 

as OETC turbines following load disturbances at OETC side. It proves that the PID 

controller has no steady state impact following load disturbances at OETC side. 
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Unlike previous control topologies of PDO alone AGC controller, this control topology 

proves to be more conservatives following load disturbances outside its control area. 

Hence it makes the controller more suitable for application.  

9.6.3.4. Summary 

The Zeigler Nichols closed loop tuning method was used to tune the PDO alone frequency 

and tie line power PID AGC controller. The controller has successfully maintained the grid 

frequency and power exchange at nominal values following load disturbances at PDO side. 

The controller did not respond to load disturbances at OETC side, therefore the results 

were exactly the same as in the base case. The model response with controller was 

oscillatory and required more time to settle than in the base case. The PDO alone control 

topology using frequency and tie line power as feedback control has proved the advantage 

of limiting its actions to PDO load disturbances only. Therefore OETC load disturbances 

will not be dumped on PDO generators.  

Hence this control topology is recommended for implementation due to its conservative 

action.  

 

9.7. AGC of OETC power system alone 

In this part, three control topologies will be investigated using PID controller. The base 

case model will be used where PDO and OETC remain interconnected. The three control 

topologies are applying AGC to OETC power system only using different feedback signals 

to the controller: 

1. Grid frequency as a feedback signal 

2. Tie line power as a feedback signal 

3. OETC Area Control Error as a feedback signal 

The PID controller and the closed loop tuning method (Ultimate Sensitivity Method) will 

be used for all control topologies.  

9.7.1. AGC of OETC using grid frequency as a feedback signal 

The grid frequency measured at OETC side is used as the feedback signal for the 

controller. The PDO-OETC model with the controller is shown in Figure 9.29 and the used 

PID controller is the same as shown earlier in Figure 9.8. The controller closed loop gain 

has been increased gradually until the ultimate gain is reached which has produced the 
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stable oscillatory response. The ultimate gain and oscillation period were recorded and are 

shown in Table 9.9. 
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Figure 9.29: PDO-OETC model with OETC frequency PID AGC controller. 

9.7.1.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.9 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

3.689 1.265 2.2134 0.6325 0.158125 

Table 9.9: OETC AGC PID controller parameters based on grid frequency feedback 

9.7.1.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier in 

section 9.5 for each test. The results are shown in Figures 9.30 to 9.35 in Appendix 4. 

Table 9.10 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 10.5 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 -0.05 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 5.84 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.10: OETC alone frequency PID AGC controller performance summary  

 

9.7.1.3. Results discussion 

The simulated results with the OETC alone frequency PID AGC controller show clear 

improvements in comparison with the base case results. From Figure 9.30 to Figure 9.35 in 

Appendix 4 and Table 9.10, one can see the following: 

• The frequency steady state offset is brought to zero when a step load disturbance is 

applied at PDO or OETC. Thus, satisfying one of the fundamental requirements of 

AGC. The settling time is also good. The frequency oscillations are better damped 

than in the base case.  

• The tie line power steady state offset is brought to zero in the case when the load 

disturbance is applied at OETC side. This means the controller is able to 

accommodate any disturbance within OETC area and generate the required power 

locally at OETC without importing power from PDO. However when the 

disturbance is applied at PDO side, OETC contribution is more with the controller 

than in the base case. From Table 9.10 and Figure 9.32, one can see that OETC 

generators will be taking the whole burden due to the controller action when a 

disturbance is applied at PDO side. The tie line power deviation value of 0.05 p.u. 

equals to 100MW i.e. the whole load disturbance will be compensated by OETC 

generators. It will impose many challenges to OETC in terms of extra maintenance 

cost of turbines, extra fuel consumption and possible tripping of the tie line 

(depends on the over current protection settings of the line). 

• PDO and OETC generators of the same size are no longer participating with the 

same amount of power following disturbance. Figure 9.32 and Figure 9.35 show 

that OETC generators are taking the entire burden following load disturbance 
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irrespective of the disturbance location. However, PDO generators droop control 

acts during the transient which helps damping the frequency oscillations. 

• In general, the results follow the same pattern as in the case when the frequency 

AGC controller was applied to PDO only. However in OETC case, the system 

response takes more time to settle; this is because the controller is manoeuvring the 

speed of the dominating inertia of the grid which will need more damping effort to 

settle.      

9.7.1.4. Summary 

The OETC alone frequency PID AGC controller was tuned using the closed loop method 

and its performance was good enough. However the control topology itself will impose 

great burden on OETC generators because the controller is using the grid frequency as the 

only feedback signal or reference point. It means the controller will act for any disturbance 

in the frequency regardless of its location. Furthermore, the developed control loop has 

also dominated the droop control loop of PDO generators therefore their steady state 

participation is always zero regardless of the disturbance location. If OETC is going to 

implement this control topology, they will enquire more maintenance cost of their gas 

turbines due to the continuous manoeuvring of the governing systems. It will also increase 

fuel gas consumption, deviates from power exchange agreement and may cause tripping 

incidents of the tie line.  

Therefore this control topology is not recommended for implementation due to the adverse 

impact on OETC generation.   

   

9.7.2. AGC of OETC using tie line power as a feedback signal 

The tie line power deviation is used as the feedback signal for the controller. The PDO-

OETC model with controller is shown in Figure 9.36 and the used PID controller structure 

is the same as shown earlier in Figure 9.8. The controller closed loop gain was increased 

gradually until the ultimate gain has been reached which has produced the stable 

oscillatory response. The ultimate gain and oscillation period were recorded and are shown 

in Table 9.11.  



 

-140- 

Ptie

-1

negative sign-1
a12

-1
a1

Fpdo

To Workspace4

Ptie

To Workspace3

Foetc

To Workspace2

dFoetc

To Workspace1

dFpdo

To Workspace

Tiv

Synchronising torque

 coeffecient

PDO control signal

PDO & OETC 

frequency deviation

Control signal

P tie

DF

Frequency deviation

PDO

OETC reference

In1 Out1

OETC controller

DF

P tie

Control signal

Frequency deviation

OETC

1

s

Integrator

u+50

Bias1

u+50

Bias

 

Figure 9.36: PDO-OETC model with OETC tie line power PID AGC controller. 

9.7.2.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. 

Table 9.11 summarises the PID controller parameters used in this part of the study: 

 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

1.348 1.996 0.8088 0.998 0.2495 

Table 9.11: OETC AGC PID controller parameters based on tie line power feedback 

 

9.7.2.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier in 

section 9.5 for each test. The results are shown in Figures 9.37 to 9.42 in Appendix 4. 

Table 9.12 shows a summary of the controller performance in terms of grid frequency and 

tie line power.  
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 -0.206 

Settling time (s) 10.9 41.6 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 25.1 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.12: OETC alone tie line power PID AGC controller performance summary  

9.7.2.3. Results discussion 

From Figure 9.37 to Figure 9.42 in Appendix 4 and from table 9.12, the following is noted: 

• The model response with the OETC alone tie line power PID AGC controller is 

more oscillatory than in the base case. Therefore the settling time is longer than in 

the base case. The tie line power suffers inter-area oscillations making it a bad 

feedback signal to the controller; hence the oscillatory response.  The Zeigler 

Nichols closed loop tuning method gives first approximation of the PID controller 

parameters. Therefore the controller performance can be further improved by fine 

tuning its parameters. In general the controller performance can be improved by 

using more sophisticated tuning method or by using different control method. 

• The grid frequency steady state offset is brought back to zero when the disturbance 

is applied at OETC. This is because stopping tie line power flow from PDO to 

OETC required OETC generators to generate the whole power mismatch therefore 

the generators kinetic energy is restored hence the frequency back to normal. The 

controller action was in favour of frequency because the disturbance was at OETC. 

However when the disturbance was applied at PDO side, OETC controller was 

trying to hold the tie line power flow towards PDO by reducing OETC generation; 

hence jeopardising  the frequency. Therefore the frequency deviation was more 

than in the base case. This is one of the drawbacks of this control topology. 

• The tie line power was well controlled and brought back to zero following load 

disturbances at PDO and OETC. However the response was oscillatory, but it can 

be treated by using more sophisticated control methods.  

• The change in mechanical power output of PDO and OETC gas turbines is fair in 

terms of the geographical location of the load disturbance. Load disturbance at 

PDO is mainly compensated by PDO generators and a load disturbance at OETC is 
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mainly compensated by OETC generators. However, due to PDO has no AGC, 

when the load disturbance is applied at PDO the power mismatch has to be 

compensated by droop control only which will never bring the frequency deviation 

back to zero. Add to that, OETC controller has reduced OETC generation to below 

nominal to stop the residual power resulting from kinetic energy reduction of 

OETC generators from flowing to PDO.   

9.7.2.4. Summary 

The Zeigler Nichols closed loop tuning method is used to tune the OETC alone tie line 

power PID AGC controller. The controller has successfully maintained the power 

exchange at nominal values following load disturbances. The model response with 

controller is oscillatory and requires more time to settle than in the base case. The OETC 

alone control topology using tie line power as feedback control has proved some 

drawbacks: 

• It requires sophisticated tuning methods or modern control methods to improve the 

response 

• It has jeopardised the frequency when the load disturbance was at PDO and has 

reduced OETC generation to below nominal dispatch.  

Therefore this control topology is not recommended for implementation due to the adverse 

consequences on the grid stability.  

9.7.3. AGC of OETC using Area Control Error as a feedback signal 

The grid frequency and tie line power deviation are used to form the feedback signal for 

the controller. The concept of Area Control Error (ACE) will be used. The frequency-

response characteristic factor  of OETC is calculated following the same procedure shown 

earlier in section 9.7.3.1. 

For OETC, the summer firm capacity is 2927MW therefore  is calculated as below: 

HzMWupD
R

oetc

oetc

oetc /..76151.01076.29
2000

2927

2

11 3 =×+×=+= −β  

  Considering the ACE of OETC power system, the PDO-OETC model with the controller 

is shown in Figure 9.43 and the used PID controller structure is the same as shown earlier 

in Figure 9.8. The controller closed loop gain was increased gradually until the ultimate 

gain has been reached which has produced the stable oscillatory response. The ultimate 

gain and oscillation period were recorded and are shown in Table 9.13. 
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Figure 9.43: PDO-OETC model with OETC frequency and tie line power PID AGC 

controller. 

 

9.7.3.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. 

Table 9.13 summarises the PID controller parameters used in this part of the study: 

 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

1.468 1.755 0.8808 0.8775 0.219375 

Table 9.13: OETC AGC PID controller parameters based on frequency and tie line power 

feedback 

9.7.3.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier in 

section 9.5 for each test. The results are shown in Figures 9.44 to 9.49 in Appendix 4. 

Table 9.14 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 -0.05 

Settling time (s) 10.9 14 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 -0.0379 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 10.4 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.14: OETC alone frequency and tie line power PID AGC controller performance 

summary  

9.7.3.3. Results discussion 

From Figure 9.44 to Figure 9.49 in Appendix 4 and from Table 9.14, the following is 

noted: 

• The model response with the OETC alone frequency and tie line power PID AGC 

controller is more oscillatory than the base case. Therefore the settling time is 

longer. This is again due to the use of the tie line power signal for the PID 

controller feedback. The response can always be improved by fine tuning the 

controller parameters or by using different control technology.  

• The frequency steady state offset was brought to zero following a load disturbance 

at OETC side. However following a load disturbance at PDO, the frequency settles 

with an offset equals the base case offset. It means the controller does what is ought 

to be done and limits its action to OETC side load disturbances. 

• The tie line power deviation was brought back to zero following the load 

disturbance at OETC side. This means the controller has satisfied its objective of 

maintaining both OETC frequency and tie line power at nominal values. The AGC 

control loop did not respond to out-side zone disturbances at PDO side. Although 

there is always participation during the transients, but there is no steady state 

impact. However the OETC generators droop control loop has acted normally 

during load disturbance at PDO side as it can be seen from Figure 9.46   

• The mechanical power change of F6B turbines shows that OETC turbines are the 

only ones responsible for balancing the power mismatch following load 

disturbances at OETC side. Whereas they participate during load disturbances at 
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PDO side with their droop control loop. Therefore they produced the same power 

as PDO turbines following load disturbances at PDO side. 

Unlike previous control topologies of OETC alone AGC controller, this control topology 

proves to be more conservatives following load disturbances outside its control area. This 

makes the controller more suitable for practical application. 

 

9.7.3.4. Summary 

The Zeigler Nichols closed loop tuning method was used to tune the OETC alone 

frequency and tie line power PID AGC controller. The controller has successfully 

maintained the grid frequency and power exchange at nominal values following load 

disturbances at OETC side. The controller did not respond to load disturbances at PDO 

side. The model response with the controller was oscillatory and required more time to 

settle than in the base case. The OETC alone control topology using Area Control Error as 

a feedback signal has proved the advantage of limiting its actions to OETC load 

disturbances only. Therefore PDO load disturbances will not be dumped on OETC 

generators.  

Hence this control topology is recommended for implementation due to its conservative 

action.  

 

9.8. AGC of both PDO & OETC power systems 

In this part, nine control topologies will be investigated using PID controller. The base case 

model will be used where PDO and OETC remain interconnected. The nine control 

topologies are applying AGC to both PDO and OETC power systems using different 

feedback signals to the controller: 

1. PDO uses grid frequency as a feedback signal & OETC uses grid frequency as a 

feedback signal 

2. PDO uses grid frequency as a feedback signal & OETC uses tie line power as a 

feedback signal 

3. PDO uses grid frequency as a feedback signal & OETC uses Area Control Error 

(ACE) as a feedback signal 

4. PDO uses tie line power as a feedback signal & OETC uses grid frequency as a 

feedback signal 



 

-146- 

5. PDO uses tie line power as a feedback signal & OETC uses tie line power as a 

feedback signal 

6. PDO uses tie line power as a feedback signal & OETC uses Area Control Error 

(ACE) as a feedback signal 

7. PDO uses Area Control Error (ACE) as a feedback signal & OETC uses grid 

frequency as a feedback signal 

8. PDO uses Area Control Error (ACE) as a feedback signal & OETC uses tie line 

power as a feedback signal 

9. PDO uses Area Control Error (ACE) as a feedback signal & OETC uses Area 

Control Error (ACE) as a feedback signal 

The PID controller and the closed loop tuning method (Ultimate Sensitivity Method) are 

used for all control topologies. Since OETC is having most of the grid generation inertia 

connected to it, the PID controller of OETC will be tuned first. Then PDO PID controller 

will be tuned while the OETC PID is active. The ultimate aim of the investigation is to find 

out each control topology characteristics in terms of participation in disturbances recovery, 

frequency deviation and power exchange between the two control areas. The quality of the 

response is less important at this stage.  

 

9.8.1. AGC of PDO (using grid frequency) and OETC (using grid 

frequency) 

The grid frequency measured at PDO side is used as the feedback signal for PDO 

controller and the grid frequency measured at OETC side is used as a feedback signal for 

OETC controller. The PDO-OETC model with the controllers is shown in Figure 9.50 and 

the used PID controllers are the same as the one shown earlier in Figure 9.8. OETC 

controller is tuned first and therefore the PID parameters are the same as shown earlier in 

section 9.7.1.1. The OETC PID controller parameters were fed in the model and then PDO 

controller tuning started. The PDO controller closed loop gain was increased gradually 

until the ultimate gain has been reached which has produced the stable oscillatory 

response. The ultimate gain and oscillation period were recorded and are shown in Table 

9.15 along with OETC controller parameters.  
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Figure 9.50: PDO-OETC model with PDO (using grid frequency) OETC (using grid 

frequency) PID AGC controller. 

9.8.1.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.15 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

PDO 3.767 1.171 2.2602 0.5855 0.146375 

OETC 3.689 1.265 2.2134 0.6325 0.158125 

Table 9.15: PDO & OETC AGC PID controller parameters based on grid frequency 

feedback 

9.8.1.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.51 to 9.56 in Appendix 4. 

Table 9.16 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 4.65 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 -0.0155 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 4.16 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0.0053 

Table 9.16: PDO & OETC PID frequency based AGC controller performance summary  

9.8.1.3. Results discussion 

The simulation results with the PDO & OETC frequency PID AGC controller show clear 

improvements in comparison with the base case results. From Figure 9.51 to Figure 9.56 in 

Appendix 4 and Table 9.16, one can see the following: 

• The frequency steady state offset is brought to zero when a step load disturbance is 

applied to PDO or OETC. It satisfies one of the fundamental requirements of AGC. 

The settling time is also good.  

• The tie line power steady state offset is reduced by more than 50% than in the base 

case when the disturbance is applied at either side of the control areas. This will 

result in better stable operation of the tie line reducing the risk of tripping.  

• The original generation dispatch is never restored even in the case of outside 

control area disturbance. Figure 9.53 and Figure 9.56 show that both PDO and 

OETC generators are participating in the disturbance compensation and their 

original dispatch has changed. However, it is noticed that when a disturbance arise 

within a certain control area, its own generators takes most of the compensation 

burden which is a fair phenomenon. This will maintain the cooperation spirit and 

fairness.  

• In general, this control topology has good merits like removing the frequency offset 

and reducing the tie line exchange offset without jeopardising the system stability.      

9.8.1.4. Summary 

The PDO & OETC frequency based PID AGC controller was designed and tuned using the 

Ultimate Sensitivity Method. The control topology performance has satisfied one of the 

key aspects of AGC which is eliminating the frequency offset. However it failed to 

completely remove the power exchange offset but managed to reduce it significantly. The 
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controller performance was also good in terms of settling time and oscillations though the 

controller performance is not the focus of the analysis but the control topology.   

This concludes that there is no envisaged risk of applying this topology though it will not 

satisfy all the AGC aims.  

9.8.2. AGC of PDO (using grid frequency) and OETC (tie line power) 

The grid frequency measured at PDO side is used as the feedback signal for PDO 

controller and the tie line power deviation is used as a feedback signal for OETC 

controller. The PDO-OETC model with the controllers is shown in Figure 9.57 and the 

used PID controllers are the same as the one shown earlier in Figure 9.8. OETC controller 

is tuned first and therefore the PID parameters are the same as shown earlier in section 

9.7.2.1. The OETC PID controller parameters were fed in the model and then PDO 

controller tuning started. The PDO controller closed loop gain was increased gradually 

until the ultimate gain was reached which has produced the stable oscillatory response. The 

ultimate gain and oscillation period were recorded and are shown in Table 9.17 along with 

OETC controller parameters. 
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Figure 9.57: PDO-OETC model with PDO (using grid frequency) OETC (using tie line 

power) PID AGC controller. 

9.8.2.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.17 summarises the PID controller parameters used in this part of the study: 



 

-150- 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative time 

constant) 

PDO 3.295 1.222 1.977 0.611 0.15275 

OETC 1.348 1.996 0.8080 0.998 0.2495 

Table 9.17: PDO (using grid frequency) & OETC (using tie line power) PID AGC 

controller parameters 

9.8.2.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.58 to 9.63 in Appendix 4. 

Table 9.18 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 

 

  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 8.35 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 8.175 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.18: PDO (using grid frequency) & OETC (using tie line power) PID AGC 

controller performance summary   

 

9.8.2.3. Results discussion 

The simulation results with the PDO (using grid frequency) & OETC (using tie line power) 

PID AGC controllers show clear improvements in comparison with the base case results. 

From Figure 9.58 to Figure 9.63 in Appendix 4 and Table 9.18, one can see the following: 

• The frequency steady state offset is brought to zero when a step load disturbance is 

applied at PDO or OETC. It satisfies one of the fundamental requirements of AGC. 

The settling time is also good.  

• The tie line power steady state offset is also brought to zero following load 

disturbances at PDO or OETC. It satisfies another requirement of AGC. 
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• The original generation dispatch is restored in the case of outside control area 

disturbance. Figure 9.60 shows that PDO generation takes the entire steady state 

load mismatch following load disturbance at PDO side whereas OETC generation 

participates only during the transients and then restores its original dispatch. The 

same scenario is reversed when the load disturbance is applied at OETC side as can 

be seen from Figure 9.63. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC which makes it a good candidate for practical application. .      

9.8.2.4. Summary 

The PDO (using grid frequency) & OETC (using tie line power) PID AGC controller was 

designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied all the key aspects of AGC which are eliminating the frequency 

offset, eliminating the tie line offset and restoring the original generation dispatch 

following load disturbances. The controller performance is also good in terms of settling 

time and oscillations though the controller performance is not the focus of the analysis but 

the control topology.   

This concludes that this control topology has a great potential and can be considered for 

practical application.  

   

 

9.8.3. AGC of PDO (using grid frequency) and OETC (Area Control 

Error) 

The grid frequency measured at PDO side is used as the feedback signal for PDO 

controller and OETC's Area Control Error (ACE) is used as the feedback signal for OETC 

controller. The PDO-OETC model with the controllers is shown in Figure 9.64 and the 

used PID controllers are the same as the one shown earlier in Figure 9.8. OETC controller 

is tuned first and therefore the PID parameters are the same as shown earlier in section 

9.7.3.1. The OETC PID controller parameters were fed into the model and then PDO 

controller tuning started. The PDO controller closed loop gain was increased gradually 

until the ultimate gain has been reached which has produced the stable oscillatory 

response. The ultimate gain and oscillation period were recorded and are shown in Table 

9.19 along with OETC controller parameters.  
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Figure 9.64: PDO-OETC model with PDO (using grid frequency) & OETC (using Area 

Control Error) PID AGC controller. 

9.8.3.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. Table 9.19 summarises the PID controller parameters used in this part of the study: 

Table 9.19: PDO (using grid frequency) & OETC (using Area Control Error) PID AGC 

controller parameters 

9.8.3.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.65 to 9.70 in Appendix 4. 

Table 9.20 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative time 

constant) 

PDO 1.355 1.796 0.813 0.898 0.2245 

OETC 1.468 1.755 0.8808 0.8775 0.219375 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 5.76 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 4.52 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.20: PDO (using grid frequency) & OETC (using Area Control Error) PID AGC 

controller performance summary   

9.8.3.3. Results discussion 

The simulation results with the PDO (using grid frequency) & OETC (using Area Control 

Error) PID AGC controller show clear improvements in comparison with the base case 

results. From Figure 9.65 to Figure 9.70 in Appendix 4 and Table 9.20, one can see the 

following: 

• The frequency steady state offset is brought to zero when a step load disturbance is 

applied to PDO or OETC. It satisfies one of the fundamental requirements of AGC. 

The settling time is also good.  

• The tie line power steady state offset is brought to zero following load disturbances 

at PDO or OETC. It satisfies another requirement of AGC. 

• The original generation dispatch is restored in the case of outside control area load 

disturbances. Figure 9.67 shows that PDO generation takes the entire steady state 

load mismatch following load disturbance at PDO side whereas OETC generation 

participates only during the transients and then restores its original dispatch. The 

same scenario is reversed when the load disturbance is applied at OETC side as can 

be seen from Figure 9.70. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC making it a good candidate for practical application. .      

9.8.3.4. Summary 

The PDO (using grid frequency) & OETC (using Area Control Error) PID AGC controller 

was designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied all the key aspects of AGC which are eliminating the frequency 
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offset, eliminating the tie line power offset and restoring the original generation dispatch 

for outside control area disturbances. The controller performance is also good in terms of 

settling time and oscillations though the controller performance is not the focus of the 

analysis at this stage but the control topology.   

This concludes that this control topology has a great potential and can be considered for 

practical application.  

 

9.8.4. AGC of PDO (using tie line power) and OETC (using grid 

frequency) 

The tie line power deviation is used as the feedback signal for PDO controller and the grid 

frequency measured at OETC side is used as the feedback signal for OETC controller. The 

PDO-OETC model with the controllers is shown in Figure 9.71 and the used PID 

controllers are the same as the one shown earlier in Figure 9.8. OETC controller is tuned 

first and therefore the PID parameters are the same as shown earlier in section 9.7.1.1. The 

OETC PID controller parameters were fed into the model and then PDO controller tuning 

started. The PDO controller closed loop gain was increased gradually until the ultimate 

gain has been reached which has produced the stable oscillatory response. The ultimate 

gain and oscillation period were recorded and are shown in Table 9.21 along with OETC 

controller parameters.  
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Figure 9.71: PDO-OETC model with PDO (using tie line power) & OETC (using grid 

frequency) PID AGC controller. 
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9.8.4.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. Table 9.21 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

PDO 1.605 2.269 0.963 1.1345 0.283625 

OETC 3.689 1.265 2.2134 0.6325 0.158125 

Table 9.21: PDO (using tie line power) & OETC (using grid frequency) PID AGC 

controller parameters 

9.8.4.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.72 to 9.77 in Appendix 4. 

Table 9.22 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 

  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 31.8 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 18.8 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.22: PDO (using tie line power) & OETC (using grid frequency) PID AGC 

controller performance summary   

9.8.4.3. Results discussion 

The simulation results with the PDO (using tie line power) & OETC (using grid frequency) 

PID AGC controller show clear improvements in terms of offset in comparison with the 

base case results. However the response is more oscillatory and hence the settling time is 

longer. The settling time and oscillations can be improved by using advanced control 
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techniques. From Figure 9.72 to Figure 9.77 in Appendix 4 and Table 9.22, one can see the 

following: 

• The frequency steady state offset is brought to zero when a step load disturbance is 

applied at PDO or OETC. It satisfies one of the fundamental requirements of AGC. 

• The tie line power steady state offset is brought to zero following disturbances at 

PDO or OETC. It satisfies another requirement of AGC. The tie line signal suffers 

inter area oscillations and it is used for the lower inertia system (PDO) therefore it 

has made the system response more oscillatory.  

• The original generation dispatch is restored in the case of outside control area 

disturbance. Figure 9.74 shows that PDO generation takes the entire steady state 

load mismatch following load disturbance at PDO side whereas OETC generation 

participates only during the transients and then restores its original dispatch. The 

same scenario is reversed when the load disturbance is applied at OETC side as can 

be seen from Figure 9.77. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC making it a good candidate for practical application. A different control 

technique or tuning method will improve the settling time and oscillations.      

9.8.4.4. Summary 

The PDO (using tie line power) & OETC (using grid frequency) PID AGC controller was 

designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied all the key aspects of AGC which are eliminating the frequency 

offset, eliminating the tie line offset and restoring the original generation dispatch for 

outside control area disturbances. The controller performance is not good in terms of 

settling time and oscillations but can be improved by using a different control technique or 

a different tuning method. 

This concludes that this control topology has a relatively good performance and can be 

considered for practical application.  

 

9.8.5. AGC of PDO (using tie line power) and OETC (using tie line 

power) 

The tie line power deviation is used as the feedback signal for both PDO and OETC 

controllers. The PDO-OETC model with the controllers is shown in Figure 9.78 and the 

used PID controllers are the same as the one shown earlier in Figure 9.8. OETC controller 
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is tuned first and therefore the PID parameters are the same as shown earlier in section 

9.7.2.1. The OETC PID controller parameters were fed into the model and then PDO 

controller tuning started. The PDO controller closed loop gain was increased gradually 

until the ultimate gain has been reached which has produced the stable oscillatory 

response. The ultimate gain and oscillation period were recorded and are shown in Table 

9.23 along with OETC controller parameters.  
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Figure 9.78: PDO-OETC model with PDO (using tie line power) & OETC (using tie line 

power) PID AGC controller. 

9.8.5.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.23 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate 

gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

PDO 0.45 1.935 0.27 0.9675 0.241875 

OETC 1.348 1.996 0.8088 0.998 0.2495 

Table 9.23: PDO (using tie line power) & OETC (using tie line power) PID AGC 

controller parameters 
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9.8.5.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.79 to 9.84 in Appendix 4. 

Table 9.24 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 

  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 -0.154 

Settling time (s) 10.9 133 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 -0.017 

Settling time (s) 7.74 102 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.24: PDO (using tie line power) & OETC (using tie line power) PID AGC 

controller performance summary   

9.8.5.3. Results discussion 

The simulation results with the PDO (using tie line power) & OETC (using tie line power) 

PID AGC controller show clear drawbacks in terms of offset and oscillations in 

comparison with the base case results. The response is highly oscillatory and the settling 

time is very long. The settling time and oscillations may not be improved dramatically 

even by using advanced control techniques. From Figure 9.79 to Figure 9.84 in Appendix 4 

and Table 9.24, one can see the following: 

• The frequency always settles with an offset whenever a step load disturbance is 

applied at PDO or OETC. In fact it settles with a higher steady state deviation than 

in the base case when the disturbance is applied at PDO side. The high frequency 

oscillations are not only due to the deficiency of the basic tuning method but also 

because both systems are pulling each other due to using the same signal but having 

different inertia values. The high inertia value makes the overall response slower 

than in the lower inertia case and hence the pulling scenario.  

• The tie line power steady state offset is brought to zero following disturbances at 

PDO or OETC. It satisfies one requirement of AGC. The tie line signal suffers inter 

area oscillations and it is used for both the lower inertia system and the higher 

inertia system, hence causing the oscillatory response with the high settling time.   
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• The original generation dispatch is never restored whether the disturbance is within 

or outside the control area. Figure 9.81 shows that PDO generation takes most of 

the steady state load mismatch following load disturbance at PDO side but OETC 

generation original dispatch has also been affected. The same scenario is reversed 

when the load disturbance is applied at OETC side as can be seen from Figure 9.84. 

• In general, this control topology has satisfied only one fundamental requirements of 

AGC and jeopardised the overall stability of the power system. A different control 

technique or tuning method may not be able to improve the settling time and 

oscillations. Consequently, this control topology is a bad one and there might be 

high risks associated with its practical applications.        

9.8.5.4. Summary 

The PDO (using tie line power) & OETC (using tie line power) PID AGC controller was 

designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied only one of the key aspects of AGC which is eliminating the tie 

line offset. The controller performance is very poor in terms of settling time and 

oscillations which may not be easily improved by using a different control technique or a 

different tuning method. 

This concludes that this control topology has a bad performance and should not be 

considered for practical application.  

 

9.8.6. AGC of PDO (using tie line power) and OETC (using Area Control 

Error) 

The tie line power deviation is used as the feedback signal to PDO controller and OETC's 

Area Control Error (ACE) is used as the feedback signal to OETC controller. The PDO-

OETC model with the controllers is shown in Figure 9.85 and the used PID controllers are 

the same as the one shown earlier in Figure 9.8. OETC controller is tuned first and 

therefore the PID parameters are the same as shown earlier in section 9.7.3.1. The OETC 

PID controller parameters were fed in the model and then PDO controller tuning started. 

The PDO controller closed loop gain was increased gradually until the ultimate gain has 

been reached which has produced the stable oscillatory response. The ultimate gain and 

oscillation period were recorded and are shown in Table 9.25 along with OETC controller 

parameters. 
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Figure 9.85: PDO-OETC model with PDO (using tie line power) & OETC (using Area 

Control Error) PID AGC controller. 

9.8.6.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.25 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative time 

constant) 

PDO 1.355 1.796 0.813 0.898 0.2245 

OETC 1.468 1.755 0.8808 0.8775 0.219375 

Table 9.25: PDO (using tie line power) & OETC (using Area Control Error) PID AGC 

controller parameters 

 

9.8.6.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.86 to 9.91 in Appendix 4. 

Table 9.26 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 58.8 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 44.6 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.26: PDO (using tie line power) & OETC (using Area Control Error) PID AGC 

controller performance summary   

 

9.8.6.3. Results discussion 

The simulation results with the PDO (using tie line power) & OETC (using Area Control 

Error) PID AGC controller show clear improvements in terms of offset in comparison with 

the base case results. The response is oscillatory and the settling time is longer than in the 

base case. The settling time and oscillations can be improved by using advanced control 

techniques. From Figure 9.86 to Figure 9.91 in Appendix 4 and Table 9.26, one can see the 

following: 

• The frequency offset is eliminated whenever a step load disturbance is applied at 

PDO or OETC. It has satisfied a fundamental requirement of AGC. The response is 

oscillatory and the settling time is longer than in the base case.   

• The tie line power steady state offset is brought to zero following load disturbances 

at PDO or OETC. It satisfies another requirement of AGC. The tie line signal 

suffers inter area oscillations and it is used in calculating the Area Control Error of 

OETC as well a direct feedback signal to PDO AGC controller hence causing the 

oscillatory response with the high settling time.   

• The original generation dispatch is restored whenever the disturbance is outside the 

control area. Figure 9.88 shows that PDO generation takes the entire steady state 

load mismatch following load disturbance at PDO. Similarly, as can be seen from 

Figure 9.91, OETC generation takes the entire steady state load mismatch 

following load disturbance at OETC. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC. A different control technique or tuning method will be able to improve the 

settling time and oscillations. There are visible advantages of practically applying 
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this control topology if the response oscillations can be improved using a better 

control technique 

9.8.6.4. Summary 

The PDO (using tie line power) & OETC (using Area Control Error) PID AGC controller 

was designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied all of the key aspects of AGC which are eliminating frequency 

offset, eliminating the tie line offset and restoring the original generation dispatch for 

outside control area load disturbances. The controller performance is poor in terms of 

settling time and oscillations which can be improved by using a different control technique 

or a different tuning method. 

This concludes that this control topology has a reasonable performance and can be 

considered for practical application especially if the response oscillations are reduced by 

using advanced control techniques.  

9.8.7. AGC of PDO (using Area Control Error) and OETC (using grid 

frequency) 

PDO's Area Control Error (ACE) is used as the feedback signal to PDO controller and the 

grid frequency measured at OETC side is used as the feedback signal to OETC controller. 

The PDO-OETC model with the controllers is shown in Figure 9.92 and the used PID 

controllers are the same as the one shown earlier in Figure 9.8. OETC controller is tuned 

first and therefore the PID parameters are the same as shown earlier in section 9.7.1.1. The 

OETC PID controller parameters were fed into the model and then PDO controller tuning 

started. The PDO controller closed loop gain was increased gradually until the ultimate 

gain has been reached which has produced the stable oscillatory response. The ultimate 

gain and oscillation period were recorded and are shown in Table 9.27 along with OETC 

controller parameters. 
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Figure 9.92: PDO-OETC model with PDO (using Area Control Error) & OETC (using grid 

frequency) PID AGC controller. 

9.8.7.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.27 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate 

gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative time 

constant) 

PDO 2.688 1.887 1.6128 0.9435 0.235875 

OETC 3.689 1.265 2.2134 0.6325 0.158125 

Table 9.27: PDO (using Area Control Error) & OETC (using grid frequency) PID AGC 

controller parameters 

9.8.7.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.93 to 9.98 in Appendix 4. 

Table 9.28 shows a summary of the controller performance in terms of grid frequency and 

tie line power.  
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 16.1 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 10.6 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.28: PDO (using Area Control Error) & OETC (using grid frequency) PID AGC 

controller performance summary   

 

9.8.7.3. Results discussion 

The simulation results with the PDO (using Area Control Error) & OETC (using grid 

frequency) PID AGC controller show clear improvements in terms of offset in comparison 

with the base case results. The response is oscillatory and the settling time is slightly 

longer than in the base case. The settling time and oscillations can be improved by using 

advanced control techniques. From Figure 9.93 to Figure 9.98 in Appendix 4 and Table 

9.28, one can see the following: 

• The frequency offset is eliminated whenever a step load disturbance is applied to 

PDO or OETC. It has satisfied a fundamental requirement of AGC.   

• The tie line power steady state offset is brought to zero following disturbances at 

PDO or OETC. It satisfies another requirement of AGC. The tie line signal suffers 

inter area oscillations and it has been used in calculating the Area Control Error of 

PDO, hence causing the oscillatory response with slightly longer settling time than 

in the base case.   

• The original generation dispatch is restored whenever the disturbance is outside the 

control area, another requirement of AGC. Figure 9.5 shows that PDO generation 

takes the entire steady state load mismatch following load disturbance at PDO. On 

the other hand OETC generation takes the entire steady state load mismatch when 

the load disturbance is applied at OETC side as can be seen from Figure 9.98. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC. Therefore this control topology is feasible for practical application.  
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9.8.7.4. Summary 

The PDO (using Area Control Error) & OETC (using grid frequency) PID AGC controller 

was designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied all of the key aspects of AGC which are eliminating frequency 

offset, eliminating the tie line offset and restoring the original generation dispatch for 

outside control area load disturbances. The controller performance is good in terms of 

settling time and oscillations which can be further improved by using a different control 

technique or a different tuning method. 

This concludes that this control topology has a good performance and can be considered 

for practical application.  

 

9.8.8. AGC of PDO (using Area Control Error) and OETC (using tie line 

power) 

PDO's Area Control Error (ACE) is used as the feedback signal to PDO controller and the 

tie line power deviation is used as the feedback signal to OETC controller. The PDO-

OETC model with the controllers is shown in Figure 9.99 and the used PID controllers are 

the same as the one shown earlier in Figure 9.8. OETC controller is tuned first and 

therefore the PID parameters are the same as shown earlier in section 9.7.2.1. The OETC 

PID controller parameters were fed into the model and then PDO controller tuning started. 

The PDO controller closed loop gain was increased gradually until the ultimate gain has 

been reached which has produced the stable oscillatory response. The ultimate gain and 

oscillation period were recorded and are shown in Table 9.29 along with OETC controller 

parameters. 
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Figure 9.99: PDO-OETC model with PDO (using Area Control Error) & OETC (using tie 

line power) PID AGC controller. 

9.8.8.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2.  

Table 9.29 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate 

gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative time 

constant) 

PDO 0.6 1.888 0.36 0.944 0.236 

OETC 1.348 1.996 0.8088 0.998 0.2495 

Table 9.29: PDO (using Area Control Error) & OETC (using tie line power) PID AGC 

controller parameters 

9.8.8.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.100 to 9.105 in Appendix 4. 

Table 9.30 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 



 

-167- 

 

  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 71.3 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 49.6 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.30: PDO (using Area Control Error) & OETC (using tie line power) PID AGC 

controller performance summary   

9.8.8.3. Results discussion 

The simulation results with the PDO (using Area Control Error) & OETC (using tie line 

power) PID AGC controller show clear improvements in terms of offset in comparison 

with the base case results. The response is oscillatory and the settling time is longer than in 

the base case. The settling time and oscillations can be further improved by using advanced 

control techniques. From Figure 9.100 to Figure 9.105 in Appendix 4 and Table 9.30, one 

can see the following: 

• The frequency offset is eliminated whenever a step load disturbance is applied at 

PDO or OETC. It has satisfied a fundamental requirement of AGC. The response is 

oscillatory and the settling time is longer than in the base case.   

• The tie line power steady state offset is brought to zero following load disturbances 

at PDO or OETC. It satisfies another requirement of AGC. The tie line signal 

suffers inter area oscillations and It is used in calculating the Area Control Error of 

PDO and also is used as a feedback signal to OETC controller and therefore causes 

the oscillatory response with the high settling time.   

• The original generation dispatch is restored whenever the load disturbance is 

outside the control area. Figure 9.102 shows that PDO generation takes the entire 

steady state load mismatch following load disturbance at PDO. The same scenario 

is applicable to OETC generators when the load disturbance is applied at OETC 

side as can be seen from Figure 9.105. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC. A different control technique or tuning method will be able to improve the 

settling time and oscillations. There are visible advantages of practically applying 
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this control topology if the response oscillations can be improved by a better 

control technique 

9.8.8.4. Summary 

The PDO (using Area Control Error) & OETC (using tie line power) PID AGC controller 

was designed and tuned using the Ultimate Sensitivity Method. The control topology 

performance has satisfied all of the key aspects of AGC which are eliminating frequency 

offset, eliminating the tie line offset and restoring the original generation dispatch for 

outside control area load disturbances. The controller performance is poor in terms of 

settling time and oscillations which can be improved by using a different control technique 

or a different tuning method. 

This concludes that this control topology has a reasonable performance and can be 

considered for practical application especially if the response oscillations are reduced by 

using advanced control techniques. 

 

9.8.9. AGC of PDO (using Area Control Error) and OETC (using Area 

Control Error) 

PDO's Area Control Error (ACE) is used as the feedback signal to PDO controller and 

OETC's Area Control Error is used as the feedback signal to OETC controller. This control 

topology is widely used and applied by researchers in designing AGC controllers. 

The calculation of the frequency-response characteristic factor  of each area is less 

sensitive to errors for this particular control topology. This is because each control area has 

its own AGC controller dealing with internal load disturbances and there is no need for 

steady state support from neighbouring control areas. However, as the factor  value 

changes, the dynamic interaction between the two control areas will change affecting the 

overall system dynamic response.  

The PDO-OETC model with the controllers is shown in Figure 9.106 and the used PID 

controllers are the same as the one shown earlier in Figure 9.8. OETC controller is tuned 

first and therefore the PID parameters are the same as shown earlier in section 9.7.3.1. The 

OETC PID controller parameters were fed into the model and then PDO controller tuning 

has started. The PDO controller closed loop gain was increased gradually until the ultimate 

gain has been reached which has produced the stable oscillatory response. The ultimate 

gain and oscillation period were recorded and are shown in Table 9.31 along with OETC 

controller parameters.  
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Figure 9.106: PDO-OETC model with PDO (using Area Control Error) & OETC (using 

Area Control Error) PID AGC controller. 

9.8.9.1 Calculation of the PID controller parameters 

Once the ultimate gain (Ku) and period (Pu) are known, the PID controller parameters can 

be calculated using the look up table developed by Ziegler Nichols shown earlier in Table 

9.2. Table 9.31 summarises the PID controller parameters used in this part of the study: 

Ku  

(ultimate 

gain) 

Pu  

(ultimate 

period) 

Kc  

(PID Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative time 

constant) 

PDO 1.375 1.73 0.825 0.865 0.21625 

OETC 1.468 1.755 0.8808 0.8775 0.219375 

Table 9.31: PDO (using Area Control Error) & OETC (using Area Control Error) PID 

AGC controller parameters 

9.8.9.2. Simulation results 

Totally six Figures have been produced to cover the five main aspects mentioned earlier 

(section 9.5) for each test. The results are shown in Figures 9.107 to 9.112 in Appendix 4. 

Table 9.32 shows a summary of the controller performance in terms of grid frequency and 

tie line power. 
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  Base case 

response 

Controlled 

response 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 10.9 34 

100MW load 

disturbance 

at PDO side Tie line power deviation (p.u.) -0.0379 0 

Frequency deviation (Hz) -0.05 0 

Settling time (s) 7.74 25.3 

100MW load 

disturbance 

at OETC side Tie line power deviation (p.u.) 0.0121 0 

Table 9.32: PDO (using Area Control Error) & OETC (using Area Control Error) PID 

AGC controller performance summary   

9.8.9.3. Results discussion 

The simulation results with the PDO (using Area Control Error) and OETC (using Area 

Control Error) PID AGC controller show clear improvements in terms of steady state 

offset in comparison with the base case results. The response is oscillatory and the settling 

time is longer than in the base case. The settling time and oscillations can be further 

improved by using advanced control techniques. From Figure 9.107 to Figure 9.112 in 

Appendix 4 and Table 9.32, one can see the following: 

• The frequency steady state offset is eliminated whenever a step load disturbance is 

applied at PDO or OETC. It has satisfied a fundamental requirement of AGC. The 

response is oscillatory and the settling time is longer than in the base case.   

• The tie line power steady state offset is brought to zero following load disturbances 

at PDO or OETC. It satisfies another requirement of AGC. The tie line signal 

suffers inter area oscillations and it is used in calculating the Area Control Error of 

both PDO and OETC, therefore causes the oscillatory response with the long 

settling time.   

• The original generation dispatch is restored whenever the load disturbance is 

outside the control area. Figure 9.109 shows that PDO generation takes the entire 

steady state load mismatch following load disturbance at PDO. The same scenario 

is applicable to OETC generators when the load disturbance is applied at OETC 

side as can be seen from Figure 9.112. 

• In general, this control topology has satisfied all the fundamental requirements of 

AGC. A different control technique or tuning method will be able to improve the 

settling time and oscillations. There are visible advantages of practically applying 
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this control topology. In fact this control topology is very famous and has been 

widely used by the researchers to design AGC controller.  

9.8.9.4. Summary 

The PDO (using Area Control Error) & OETC (using Area Control Error) PID AGC 

controller was designed and tuned using the Ultimate Sensitivity Method. The control 

topology performance has satisfied all of the key aspects of AGC which are eliminating 

frequency offset, eliminating the tie line offset and restoring the original generation 

dispatch for outside control area load disturbances. The controller performance is 

acceptable in terms of settling time and oscillations which can be further improved by 

using a different control technique or a different tuning method. 

This concludes that this control topology has a good performance and can be considered 

for practical application. 

 

9.9 AGC control topologies assessment summary 

AGC can take different shapes depending on the type of feedback signals used. The term 

"control topology" refers to both PDO and OETC are interconnected together and are being 

controlled by independent AGC controllers using different feedback signals. The control 

topology can also be by applying the AGC to one control area only, PDO or OETC.  

The control topologies assessment task has been completed using the ultimate sensitivity 

method in tuning the PID controller. A total number of fifteen control topologies have been 

assessed. The assessment criterion is based on satisfaction of the main requirements of 

AGC which are: 

• Zero steady state frequency deviation following load disturbance 

• Zero steady state tie line power deviation following load disturbance 

• Load disturbance is compensated locally at the disturbed control area and 

restoration of the nominal generation dispatch of none disturbed control area in the 

steady state condition 

Based on the above criterion and the control topology performance a recommendation is 

given for each control topology has been assessed. The performance settling time and 

oscillations are given less importance because they can be improved by using other 

sophisticated control technologies or tuning methods. However where applicable, it is 

indicated that some control topologies require sophisticated control techniques to improve 

oscillations and settling time.  
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Table 9.33 summarises all the control topologies performance in comparison to the base 

case performance. A traffic light table has been attempted to summarise and compare the 

recommendation for each control topology. It is shown in Table 9.34. In Table 9.34 the 

following different colours are used to indicate the goodness of the control topology 

performance: 

 Indicates bad performance and has jeopardised the system 

stability or does not satisfy the AGC requirements. Cannot be 

applied. 

 Indicates moderate performance and satisfied some of AGC 

requirements or requires sophisticated control technique to 

improve the oscillatory response. Can be applied with cautious.  

 Indicates good performance and has satisfied all the AGC 

requirements.  

Recommended for application. 
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  100MW load disturbance at PDO 100MW load disturbance at OETC 

Case 
Feedback 

signal 

Frequency 

deviation 

Settling 

time 

Tie line 

power 

deviation 

Frequency 

deviation 

Settling 

time 

Tie line 

power 

deviation 

Base 
None 

 
-0.05 10.9 -0.0379 -0.05 7.74 0.0121 

F 

 
0 5.6 0 0 4.9 0.05 

P 

 
0 38.61 0 -0.066 29.8 0 

AGC 

applied 

to PDO 

alone ACE 

 
0 22.6 0 -0.05 15.34 0.0121 

F 

 
0 10.5 -0.05 0 5.84 0 

P 

 
-0.206 41.6 0 0 25.1 0 

AGC 

applied 

to 

OETC 

alone 
ACE 

 
-0.05 14 -0.0379 0 10.4 0 

PDO (F) & 

OETC (F) 
0 4.65 -0.0155 0 4.16 0.0053 

PDO (F) & 

OETC (P) 
0 8.35 0 0 8.175 0 

PDO (F) & 

OETC (ACE) 
0 5.76 0 0 4.52 0 

PDO (P) & 

OETC (F) 
0 31.8 0 0 18.8 0 

PDO (P) & 

OETC (P) 
-0.154 133 0 -0.017 102 0 

PDO (P) & 

OETC (ACE) 
0 58.8 0 0 44.6 0 

PDO (ACE) 

& OETC (F) 
0 16.1 0 0 10.6 0 

PDO (ACE) 

& OETC (P) 
0 71.3 0 0 49.6 0 

AGC 

applied 

to both 

PDO & 

OETC 

PDO (ACE) 

& OETC 

(ACE) 

0 34 0 0 25.3 0 

F= grid frequency deviation 

P= tie line power deviation 

ACE= Area Control Error 

 

 

Table 9.33: Summary of all assessed control topologies performance in comparison to the 

base case performance
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OETC 
 

None Frequency Power ACE 

None Base case    

Frequency     

Power     
PDO 

ACE     

Table 9.34: Traffic lights application recommendation summary of all assessed control 

topologies 

From table 9.34 one can see that only ACE signal can be used when applying AGC to PDO 

or OETC independently. Five control topologies are recommended when applying AGC to 

both PDO and OETC. A total number of five control topologies should be avoided and 

three can be applied with cautious.  

AGC software has been around for long time and vendors are supplying a standard 

package to power system operators. The standard packages contain all three feedback 

signals for the operator to select from. However as indicated above, the operator should not 

freely select the feedback signal to the AGC controller when the power system is 

interconnected with a neighbouring one. Therefore PDO and OETC should apply an 

interlocking scheme which prevents operating in the prohibited control topologies. The 

interlocking scheme can be implemented either electrically through SCADA control 

telemetry or through normal paper work. 

The following list summarises the recommended AGC control topologies for the 

interconnected operation of PDO and OETC: 

When AGC is applied at PDO side only: 

1. AGC is using ACE as a feedback signal 

 

When AGC is applied at OETC side only: 

1. AGC is using ACE as a feedback signal 

    

When AGC is applied at both PDO & OETC sides: 

1. PDO uses grid frequency as feedback signal & OETC uses tie line power as a 

feedback signal 

2. PDO uses grid frequency as feedback signal & OETC uses Area Control Error 

(ACE) as a feedback signal 
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3. PDO uses tie line power as feedback signal & OETC uses grid frequency as a 

feedback signal 

4. PDO uses Area Control Error (ACE) as feedback signal & OETC uses grid 

frequency as a feedback signal 

5. PDO uses Area Control Error (ACE) as feedback signal & OETC uses Area 

Control Error (ACE) as a feedback signal 

 

A selected number of the above recommended control topologies will be further analysed 

in the following parts of this study. 
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Chapter 10: Design of Automatic Generation Control 

using Linear Quadratic Regulator 

10.1. Introduction 

In the previous chapter, PDO-OETC AGC was designed and tuned using a basic control 

technique. In this part, a Linear Quadratic Regulator (LQR) technique will be considered to 

design an AGC controller of PDO-OETC power systems. The aim is to realise the 

difference in response the LQR technique can make in comparison to the classical 

approaches. Linear Quadratic Regulator (LQR) is known of its robustness to dynamic 

systems non-linearity and parameters variations.  

The Linear Quadratic Regulator is an optimal controller which can have different 

parameters for the same control topology depending on the design requirements. LQR can 

take the very basic format whereby all the system parameters are equally important. On the 

other hand, the designer can be selective and modify the basic LQR design so that he cares 

mostly of a selected number of system parameters. 

For the sake of completeness, both the basic design of LQR AGC and the modified design 

of LQR AGC will be considered.   

10.2. Basic Design of LQR AGC 

10.2.1. Introduction 

In the previous chapter of this report a total number of fifteen control topologies were 

tested from which seven control topologies are recommended for practical applications. In 

order to minimise the unnecessary prolonged discussion, in this part we will consider only 

one control topology for PDO alone, one control topology for OETC alone and one control 

topology when AGC is applied for both PDO & OETC. When considering AGC is applied 

to PDO alone, the only recommended topology is using ACE as a feedback signal. The 

same is applicable when considering AGC for OETC alone. On the other hand there are 

five control topologies recommended when AGC is applied at both PDO and OETC power 

systems. However the most widely practically applied topology is using ACE feedback 

signal, therefore it is considered here.    

From above discussion, three control topologies will only be considered in this part of the 

study. Therefore the LQR will be applied to the following three control topologies: 

• AGC applied to PDO alone using ACE as a feedback signal 
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• AGC applied to OETC alone using ACE as a feedback signal 

• AGC applied to both PDO and OETC using ACE as a feedback signal 

 

At the end, the performance of the Linear Quadratic control technique will be compared 

with the classical PID controller performance. 

10.2.2. Theoretical background 

Linear Quadratic Regulators are considered as one branch of modern optimal control 

theory which has enabled control engineers to handle large multivariable control problems 

with ease. Here, LQR will be used to design an AGC controller for PDO-OETC power 

system. The PDO-OETC power system has to be in the state variable form and the desired 

performance has to be mathematically represented in terms of a cost function to be 

minimised. The PDO-OETC power system state variable form was already constructed in 

chapter 8. However, the developed state variable form will be revisited to include the AGC 

controllers' error states depending on the considered control topology.  

Given PDO-OETC power system represented by the state variable differential equation 

(OGATA, 2008, p. 897): 

BuAxx +=
•

 ……………………………………………………….(10.1) 

Where: 

x  : n x 1 state vector 

u   : m x 1 control vector 

A  : n x n  state distribution matrix 

B  : n x m control distribution matrix 

And the dot indicates the time derivative d/dt. 

The main job of LQR is to find the matrix K of the optimal control vector (OGATA, 2008, 

p 897):  

)()( tKxtu −= ………………………………………………………(10.2) 

which minimises the cost function (OGATA, 2008, p 897): 

( )
∞

+=
0

dtRuuQxxC TT   ………………………………………………(10.3) 

where: 

Q  : n x n positive semidefinite symmetric state cost weighting matrix. 

R  : m x m  positive definite symmetric control cost weighting matrix. 

T   : transpose. 
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10.2.2.1. Controllability and Observability 

Consider the system described in state variable form given by equation 10.1. The system is 

said to be controllable if it is possible to transfer the system from any initial state x(t0) to 

any other state in a finite interval of time (OGATA, 2008, p. 779).  

On the other hand, the system is said to be observable if it is possible to reconstruct the 

initial state x(t0) from the observation of the output over a finite interval of time (OGATA, 

2008, p. 779).  

Controllability and Observability are primarily conditions for the system optimal controller 

existence (OGATA, 2008, p. 779).     

10.2.2.2. Cost function 

The performance of the system is specified in terms of a cost function to be minimised by 

the optimal controller. The cost function can be formulated from the set of control 

standards which PDO and OETC are following for the power system operations. It may 

include but not limited to the frequency values and power exchange values. The 

components of Q and R matrices are ours to choose to mathematically specify the way we 

wish the system to perform. For example, if we let R=0 but require Q to be non-zero, we 

are saying in effect that there is no charge for the control effort used; but we penalise the 

state for being non-zero. Hence the best control strategy would be in the form of infinite 

impulses. This control will drive the state to zero in the shortest possible time with the 

greatest effort. 

If we let Q=0 for non-zero R, then we penalise for control effort but we don't charge for the 

trajectory the state x  follows. In this case the best control strategy to be used is u=0; i.e. 

not to provide any control effort at all (Elgerd and Fosha 
(2)

, 1970). 

 

In this part we are mainly concerned with the basic design of LQR AGC controller. The 

aim is to compare the LQR controller performance with the classical PID controller. Hence 

the Q and R matrices will be considered as a diagonal matrix Q=R=[1] of a suitable size. It 

will ensure that we are equally penalizing both the control effort and states values.  

The Q and R matrices will be different in size depending on the considered control 

topology.  
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10.2.2.3. The feedback gain matrix 

Upon defining the state space matrices A and B, and the cost function matrices Q and R, 

the feedback gain matrix can be calculated provided that the system is controllable and 

observable. OGATA (2008, pp. 897-899) demonstrates the mathematical equations 

approach of calculating the feedback gain matrix. There is no added value going through 

the mathematical manipulation again. MATLAB has a single command which will 

calculate the feedback gain matrix. The command "lqr(A,B,Q,R)" will return the matrix K 

for the described system. This command will be used in all subsequent analysis. As an 

example, for a system with "n" number of states and two control inputs, the feedback gain 

matrix K will be in the form: 









=

n

n

kkkkkkkkkk

kkkkkkkkkk
K

,29,28,27,26,25,24,23,22,21,2

,19,18,17,16,15,14,13,12,11,1

....

....
…(10.4)                        

             

Knowing the fact that: 

Kxu −= ……………………..(10.7) 

Each controller is a function of states of the whole system: 

[ ] xkkkkkkkkkku n ⋅−=∴ ,19,18,17,16,15,14,13,12,11,11 .... …….(10.5) 

[ ] xkkkkkkkkkku n ⋅−=∴ ,29,28,27,26,25,24,23,22,21,22 .... ......(10.6) 

 

Assume we have a system with a number of 11 states; we will end up with the following 

equations for controllers 1 and 2: 

1111,11010,199,188,1

77,166,155,144,133,122,111,11

xkxkxkxk

xkxkxkxkxkxkxku

−−−−

−−−−−−−=
…….(10.7) 

1111,21010,299,288,2

77,266,255,244,233,222,211,22

xkxkxkxk

xkxkxkxkxkxkxku

−−−−

−−−−−−−=
……..(10.8) 

 

For PDO-OETC power system, a MATLAB "Mfile" will be written for each subsequent 

test which will calculate the K matrix, assign the feedback gain for each state in the model 

and simulate the model with the controller. The "Mfile" will also plot the required graphs.   

10.2.2.4. Reduced PDO-OETC model 

The PDO-OETC model has been reduced to eleven states in the state variable form as 

detailed earlier in section 8.2. We can reconstruct the SIMULINK block diagram from the 

reduced variable state form which will result in a much simpler form of the complete 
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model. The SIMULINK model was rebuilt and is shown in Figure 10.1. It will be used to 

simulate the performance of the LQR AGC controllers. The reduced model has exactly the 

same response as the complete model as proved earlier in chapter 8.  

 

Figure 10.1: Reduced PDO-OETC model 

10.2.3. LQR of PDO alone AGC using ACE as a feedback signal 

The controller structure is such that the PDO ACE is fed to an integral and the integral 

output is summated with the feedbacks of the states. The gains of the integral output and 

the feedbacks of the states are calculated by the LQR technique. The overall controller 

layout is clear from Figure 10.2.  

10.2.3.1. Calculation of the gain matrix 

When the AGC is applied at PDO alone and the controller is using the ACE as the 

feedback signal, the new state variable form will include one more state, namely the 

Integral of PDO ACE. The new state is represented in the differential equation form as 

below: 

 ∆−∆−= pdoPdotiepdo fBPdtACE
dt

d
. ……………………………(10.9)   

Where: 
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pdoB : is PDO frequency bias factor 

Adding up the above new state to the earlier developed state space model in chapter 8, the 

new A matrix will be 12x12 size as shown below: 
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Accordingly, the new B matrix will be changed to 12x1 size which will only include PDO 

control signal. The new B matrix is shown below: 













































=

0

0

0

0

0

0

0

1
0

0

0

0

Tgg

B ……………………………………(10.11) 

Similarly, the state cost weighting matrix Q is a diagonal matrix of the size 12x12 as 

shown below: 
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Q ……………….(10.12) 

The control effort weighting matrix R is also formulated to represent PDO AGC controller 

only and is shown below: 

[ ]1=R …………………………………..(10.13) 

The resultant feedback gain matrix K will be of the size 1x12. The matrix is calculated 

using a MATLAB "Mfile" code written for this purpose and is shown in Appendix 5 code 

1.    

The calculated feedback gain matrix K is shown below: 

[ ]1.000-0.0036-0.0007-0.0007-0.0001-0.00790.13560.59920.27870.79240.42051.1206-=K

…………………..(10.14) 

The reduced PDO-OETC power system model with the PDO LQR AGC controller is 

shown in Figure 10.2.  
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Figure 10.2: Reduced PDO-OETC power system with LQR AGC applied to PDO only 

10.2.3.2. Simulation results 

Using the "Mfile" and the PDO-OETC power system model developed for this part of the 

study, a load disturbance of 100MW is simulated once at PDO side and once at OETC 

side. PDO frequency, OETC frequency and tie line power are the key performance indices 

to be monitored. Figures 10.3-10.6 show PDO and OETC frequencies in one figure and the 

tie line power in a separate figure for both tests respectively. The important features to 

consider in the response figures are the settling time, the oscillatory nature of the response 

and the steady state deviation.  

A summary of the performance values was attempted and is shown in Table 10.1. The 

summary also compares the results of the base case, classical PID AGC controller and the 

LQR AGC controller performance. 
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Figure 10.3: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the LQR AGC applied at PDO only 
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Figure 10.4: Tie line power deviation following a 100MW load disturbance at PDO side 

with the LQR AGC applied at PDO only.   
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Figure 10.5: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the LQR AGC applied at PDO only 
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Figure 10.6: Tie line power deviation following a 100MW load disturbance at OETC side 

with the LQR AGC applied at PDO only.  
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  Base case 

response 

PID controlled 

response 

LQR controlled 

response 

Frequency deviation (Hz) -0.05 0 0 

Settling time (s) 10.9 22.6 12.3 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 0 0 

Frequency deviation (Hz) -0.05 -0.05 -0.05 

Settling time (s) 7.74 15.34 5.3 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0.0121 0.0121 

Table 10.1: PDO alone LQR AGC controller performance in comparison to the base case 

and the classical PID controller.  

 

10.2.3.3. Results discussion 

From Figures 10.3-10.6 and Table 10.1, one can see that the LQR control technique has 

obvious merits over the classical PID control technique while it is maintaining the same 

control topology features. The following points summarise the impression about the 

results: 

• The AGC controller has dealt with load disturbances within PDO control area only 

whereas load disturbances outside PDO are compensated by the droop control only. 

It has resulted in a zero steady state deviation in system frequency and tie line 

power when the load disturbance is applied at PDO and non zero values when the 

load disturbance is applied at OETC side. 

• The response oscillations are very well damped if we compare the results obtained 

in Figures 10.3-10.6 with the same results obtained using the classical PID 

controller shown earlier in Figures 9.23-9.28. The settling time with the LQR 

controller is also much better than in the case of the classical PID controller.   

10.2.3.4. Summary 

The PDO alone LQR AGC controller has maintained the same control topology features 

observed when using the classical PID controller. However the system response 

oscillations and settling time have been remarkably improved.   

10.2.4. LQR of OETC alone AGC using ACE as a feedback signal 

The controller structure is such that the OETC ACE is fed to an integral and the integral 

output is summated with the negative feedbacks of the states. The gains of the integral 
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output and the feedbacks of the states are calculated by the LQR technique. The overall 

controller layout is clear from Figure 10.7.  

10.2.4.1. Calculation of the gain matrix 

When the AGC is applied at OETC alone and the controller is using the ACE as the 

feedback signal, the new state variable form will include one more state, namely the 

Integral of OETC ACE. The new state is represented in the differential equation form as 

below: 

 ∆−∆−= oetcoetctieoetc fBPadtACE
dt

d
12. ………………………..(10.15) 

Where: 

oetcB : is OETC frequency bias factor 

12a : is sign reversing constant (-1) 

Adding up the above new state to the earlier developed state space model in chapter 8, the 

new A matrix will be 12x12 size as shown below: 
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Accordingly, the new B matrix will be changed to 12x1 size which will only include 

OETC control signal. The new B matrix is shown below: 
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Similarly, the state cost weighting matrix Q is a diagonal matrix of the size 12x12 as 

shown below: 
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The control effort weighting matrix R is also formulated to represent OETC AGC 

controller only and is shown below: 

[ ]1=R …………………………………..(10.19) 

The resultant feedback gain matrix K will be of the size 1x12. The matrix is calculated 

using a MATLAB "Mfile" code written for this purpose and is shown in Appendix 5 code 

2.    

    

The calculated feedback gain matrix K is shown below: 

[ ]1.0000-0.38030.34770.60280.32431.31441.60770.0030-0.0060-0.0678-0.1892-0.1742=K

…………………..(10.20) 
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The reduced PDO-OETC power system model with the OETC LQR AGC controller is 

shown in Figure 10.7.  

 

Figure 10.7: Reduced PDO-OETC power system with LQR AGC applied to OETC only 

10.2.4.2. Simulation results 

Using the "Mfile" and the PDO-OETC power system model developed for this part of the 

study, a load disturbance of 100MW was simulated once at PDO side and once at OETC 

side. PDO frequency, OETC frequency and tie line power are the key performance indices 

to be monitored. Figures 10.8-10.11 show PDO and OETC frequencies in one figure and 

the tie line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 10.2. The 

summary also compares the results of the base case, classical PID AGC controller and the 

LQR AGC controller performance. 
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Figure 10.8: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the LQR AGC applied at OETC only 
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Figure 10.9: Tie line power deviation following a 100MW load disturbance at PDO side 

with the LQR AGC applied at OETC only.   
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Figure 10.10: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the LQR AGC applied at OETC only 
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Figure 10.11: Tie line power deviation following a 100MW load disturbance at OETC side 

with the LQR AGC applied at OETC only.  
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 Table 10.2: OETC alone LQR AGC controller performance in comparison to the base case 

and the classical PID controller.  

 

10.2.4.3. Results discussion 

From Figures 10.8-10.11 and Table 10.2, one can see that the LQR control technique has 

improved the system response when compared with the classical PID technique while it is 

maintaining the same control topology features. The following points summarise the 

overall performance: 

• The AGC controller has dealt with load disturbances within OETC control area 

whereas load disturbances outside OETC are compensated by the droop control 

only. It has resulted in a zero steady state deviation in system frequency and tie line 

power when the load disturbance is applied at OETC and non zero values when the 

load disturbance is applied at PDO side.   

• The response oscillations are slightly improved if we compare the results obtained 

in Figures 10.3-10.6 with the same results obtained using the classical PID 

controller shown earlier in Figures 9.44-9.49. The settling time with the LQR 

controller is also better than in the case of the classical PID controller.   

10.2.4.4. Summary 

The OETC alone LQR AGC controller has maintained the same control topology features 

observed when using the classical PID controller although the system response oscillations 

and settling time have been improved.  

 

  Base case 

response 

PID 

controlled 

response 

LQR 

controlled 

response 

Frequency deviation (Hz) -0.05 -0.05 -0.05 

Settling time (s) 10.9 14 8.92 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 -0.0379 -0.0379 

Frequency deviation (Hz) -0.05 0 0 

Settling time (s) 7.74 10.4 8.16 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0 0 
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10.2.5. LQR of PDO-OETC AGC using ACE as a feedback signal 

The controller structure is such that for PDO, the PDO ACE is fed to an integral and the 

integral output is summated with the negative feedbacks of the states. For OETC, the 

OETC ACE is also fed to an integral and the integral output is summated with the negative 

feedback of the states. The gains of the integral output and the negative feedback of the 

states are calculated by the LQR technique. The overall controller layout is shown in 

Figure 10.12.  

10.2.6.1. Calculation of the gain matrix 

Consider the control topology where AGC is applied at both PDO and OETC and the 

controllers are using the areas' ACE as the feedback signals. The new state variable form 

will include two more states, namely the Integral of PDO ACE and the Integral of OETC 

ACE. The two states are represented in the differential equation form as shown earlier in 

equations 10.9 and 10.15. 

Adding up those two states to the earlier developed state space model in chapter 8, the new 

A matrix will of the size of 13x13 as shown below: 
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…….(10.21) 

Accordingly, the new B matrix will be changed to the size of 13x2 which will include both 

PDO and OETC control signal. The new B matrix is shown below: 
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Similarly, the state cost weighting matrix Q is a diagonal matrix of the size 13x13 as 

shown below: 
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The control effort weighting matrix R will be 2x2 matrix and is shown below: 









=

10

01
R …………………………………..(10.24) 

The resultant feedback gain matrix K will be of the size of 2x13. The matrix is calculated 

using a MATLAB "Mfile" code written for this purpose and is shown in Appendix 5 code 

3.     

The calculated feedback gain matrix K is shown below: 
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=

1.0000-0.0065-0.37810.33660.59950.31871.25981.50610.0002-0.0010-0.0169-0.0715-0.1256

0.00651.0000-0.0028-0.00180.00050.00100.01710.15570.59850.27760.78270.40921.0993-
K

…………………..(10.25) 

The reduced PDO-OETC power system model with the PDO and OETC LQR AGC 

controller is shown in Figure 10.12.  

 

Figure 10.12: Reduced PDO-OETC power system with LQR AGC applied to both PDO 

and OETC 

10.2.5.2. Simulation results 

Using the "Mfile" and the PDO-OETC power system model developed for this part of the 

study, a load disturbance of 100MW was simulated once at PDO side and once at OETC 

side. PDO frequency, OETC frequency and tie line power are monitored. Figures 10.13-

10.16 show PDO and OETC frequencies in one figure and the tie line power in a separate 

figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 10.3. The 

summary also compares the results of the base case, classical PID AGC controller and the 

LQR AGC controller performance. 
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Figure 10.13: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the LQR AGC applied at both PDO and OETC 
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Figure 10.14: Tie line power deviation following a 100MW load disturbance at PDO side 

with the LQR AGC applied at both PDO and OETC   
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Figure 10.15: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the LQR AGC applied at both PDO and OETC 
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Figure 10.16: Tie line power deviation following a 100MW load disturbance at OETC side 

with the LQR AGC applied at both PDO and OETC  
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  Base case 

response 

PID controlled 

response 

LQR controlled 

response 

Frequency deviation (Hz) -0.05 0 0 

Settling time (s) 10.9 34 11.3 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 0 0 

Frequency deviation (Hz) -0.05 0 0 

Settling time (s) 7.74 25.3 8.59 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0 0 

Table 10.3: PDO and OETC LQR AGC controllers' performance in comparison to the base 

case and the classical PID controllers.  

 

10.2.5.3. Results discussion 

From Figures 10.13-10.16 and Table 10.3, it is clear that the LQR control technique has 

improved the system response when compared with the classical PID technique. The 

following points summarise the overall performance: 

• Applying AGC to both PDO and OETC leads to the AGC is dealing with all load 

disturbances in both control areas, PDO and OETC. This has resulted in a zero 

steady state deviation in the system frequency and tie line following any load 

disturbance at PDO or OETC. It concludes that the LQR has maintained the same 

control topology features concluded earlier in chapter 9.   

• The response oscillations are dramatically improved if we compare the results 

obtained in Figures 10.13-10.16 with the same results obtained using the classical 

PID controller shown earlier in Figures 9.107-9.112. The settling time with the 

LQR controller is also much better than in the case of the classical PID controller.   

• The LQR performance can be further improved by optimising the values of the Q 

and R matrices.  

10.2.5.4. Summary 

The PDO and OETC LQR AGC controller has maintained the same control topology 

features observed when using the classical PID controller although the system response 

oscillations and settling time have been significantly improved.  
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10.2.6. Summary 

Overall, the LQR AGC controller has performed much better than the classical PID 

controller. The same control topologies features explored earlier in chapter 9 are 

maintained. There is always improvement in the response oscillations and settling time. 

The LQR performance can be further improved by fine tuning the state cost and control 

effort weighting matrices.    

 

10.3. Modified Design of LQR AGC 

10.3.1. Introduction 

In this part, the LQR AGC controllers will be modified by changing the Q matrix 

according to specific control performance requirements. Then the modified LQR AGC 

controllers will be fine tuned. There are two ways to fine tune the LQR performance. The 

first one is to change the weighting of the Q matrix elements with respect to each other 

without changing the relative weight of Q matrix with respect to R matrix. This is achieved 

by multiplying the Q matrix elements with different weighting factors in order to penalise 

one state more or less than the others.  

The second way is to change the weight of the Q matrix with respect to the R matrix. This 

is achieved by multiplying the Q matrix by a weighting factor. Multiplying the Q matrix by 

a factor of 10 means we are penalising the states ten times more than the control effort 

which will usually results in faster settling time, more fuel consumption and more 

maintenance requirements. Multiplying the R matrix by a factor of 10 means we are 

penalising the control effort ten times more than the states and therefore there will be a 

mild control action resulting in longer settling time, less fuel consumption and less 

maintenance requirements.  

The above two methods are used to fine tune the modified LQR AGC performance. PDO-

OETC LQR AGC topology based on ACE feedback signals is used here due to its good 

performance.  

A set of AGC control guidelines has been developed in the subsequent section to be used 

for the modification of the AGC controller performance.  

10.3.2. PDO-OETC AGC control guidelines 

In this part, the PDO-OETC AGC controller's performance requirements are defined based 

on the operation philosophy of both power systems, PDO and OETC. At this point of the 
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time, there are no national AGC controller performance indices stipulated in the grid code 

(Oman Electricity Transmission Company SAOC, 2005). Instead, a general frequency 

control requirements are stipulated in the grid code (Oman Electricity Transmission 

Company SAOC, 2005) in clause CC.6 and below is an extract from the grid code (Oman 

Electricity Transmission Company SAOC, 2005): 

"CC.6.1.1 Frequency deviations 
During normal operating conditions, the nominal System Frequency of the Transmission 
System shall be 50.00 Hz and will be controlled normally between 49.95Hz and 50.05Hz. 
During exceptional steady state conditions, Frequency deviations will not exceed 49.90Hz 
to 50.1Hz unless Disturbed circumstances prevail. 
Under Disturbed conditions, System Frequency could rise transiently to 51.50 Hz or fall to 
48.00 Hz." 
 

Moreover, the Service Level Agreement between PDO and OETC demanded for the tie 

line power exchange to be within ±10MW during normal operating conditions. Any excess 

power exchange has to be communicated and agreed in advance.  

The above grid code and Service Level Agreement requirements can be summarised into 

three important control requirements: 

1. Steady state frequency shall be within ±0.05Hz of nominal frequency 50Hz 

2. Transient frequency shall not rise above 51.50Hz and shall not go below 48Hz 

3. Steady state tie line power deviation shall not exceed ±10MW 

 

The above three requirements are not meant to be as an AGC performance requirements 

and therefore they cannot be treated so.  

The North American Electric Reliability Corporation (NERC) in its Reliability Standards 

for the Bulk Electric Systems of North America (North American Electric Reliability 

Corporation (NERC), 2009) demanded for some AGC control performance standards, 

CPS1 and CPS2. The CPS1 assesses the impact of ACE on frequency over a 12-month 

window (Feliachia and Rerkpreedapongb, 2005). The CPS2 limits the magnitude of short-

term ACE values (Feliachia and Rerkpreedapongb, 2005). For any utility providing the 

AGC ancillary service to comply with NERC standards, it has to achieve CPS1 100% and 

CPS290%. The CPS1 and CPS2 are practical performance standards which are used to 

measure the performance of AGC over a calendar year. Therefore, it is not practical to 

estimate the compliance of a certain AGC controller to NERC CPS1 and CPS2 standards 

through simulation approach. A one year load disturbance profile would probably be 

required in order to estimate the AGC compliance through model simulation. On the other 

hand some researchers (Feliachia and Rerkpreedapongb, 2005; Hosseini and Etemadi, 



 

201 

2008) have presented AGC controller design which complies to NERC CPS1 and CPS2 

performance standards but they didn’t provide the calculation basis for that.   

Alternatively, since CPS1 and CPS2 are dependant on ACE and frequency deviation, an 

AGC controller minimizing ACE and frequency deviation will implicitly comply with 

CPS1 and CPS2 performance standards. 

For PDO and OETC, the following guidelines are suggested to be used for optimizing the 

AGC controller performance: 

1. The static frequency deviation following a step-load change must be zero. 

2. The static change in tie-line power following a step-load change must be zero. 

3. Minimise time error represented by the integral of frequency deviation 

4. Minimise the wear and tear on governor and turbine equipments 

5. Minimise the CO2 emissions by reducing the amount of burnt fuel 

 

10.3.3. Modified design of LQR AGC 

10.3.3.1. The LQR cost function based on AGC requirements 

Looking back at the above five AGC requirements, one can summarize the following: 

• First requirement is achieved by minimizing the square of pdof∆  and oetcf∆  which 

are represented by states X2 and X6 respectively in the state space model 

• Second requirement can be achieved by minimizing the square of tieP∆  which is 

represented by state X1 in the state space model 

• Third requirement can be achieved by minimizing the square of pdoACE  and 

oetcACE  which are represented by states X12 and X13 respectively in the state 

space model.  

• Fourth requirement can be achieved by minimizing the square of pdoXgg∆ , 

oetcXgg∆  and oetcXsg∆  which are represented by states X5, X9 and X11 

respectively in the state space model. 

• Fifth requirement can be achieved by minimizing the square of pdoPgg∆ , oetcPgg∆  

and oetcPsg∆  which are represented by states X3, X7 and X10 respectively in the 

state space model. 

Recall the LQR cost function presented earlier in equation 10.3: 
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For the optimum solution to be calculated considering the AGC requirements stated above, 

the term x'Qx in the above cost function must equal to the sum of the square of pdof∆ , 

oetcf∆ , tieP∆ , pdoACE , oetcACE , pdoXgg∆ , oetcXgg∆ , oetcXsg∆ , pdoPgg∆ , oetcPgg∆  and 

oetcPsg∆ . 

Therefore: 
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For the equilibrium stated in equation 10.26 to be achieved, the Q matrix shall look as 

shown below: 
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The matrix R is similar to what has been presented in equation 10.24. 

10.3.3.1. Simulation Results 

In a similar way as shown earlier in section 10.2.6.1, the gain matrix K is calculated and 

produced to be: 









=

0.9999-0.01150.39160.33230.49200.14541.20091.44960.0011-0.0026-0.0308-0.0872-0.0863

0.0115-0.9999-0.0029-0.00000.0004-0.0004-0.00660.13610.48350.10040.80290.46501.0703-
K

…………………….(10.28) 

Using the "Mfile" and the PDO-OETC power system used in section 10.2.5, a load 

disturbance of 100MW was simulated once at PDO side and once at OETC side. PDO 

frequency, OETC frequency and tie line power are monitored. Figures 10.17-10.20 show 

PDO and OETC frequencies in one figure and the tie line power in a separate figure for 
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both tests respectively. The figures also compare the results with the results obtained 

earlier using the basic LQR.  

A summary of the performance values was attempted and is shown in Table 10.4. The 

summary also compares the results of the base case, classical PID AGC controller, basic 

LQR AGC with the modified LQR AGC controller performance. 
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Figure 10.17: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the modified LQR AGC applied at both PDO and OETC 
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Figure 10.18: Tie line power deviation following a 100MW load disturbance at PDO side 

with the modified LQR AGC applied at both PDO and OETC   
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Figure 10.19: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the modified LQR AGC applied at both PDO and OETC 
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Figure 10.20: Tie line power deviation following a 100MW load disturbance at OETC side 

with the modified LQR AGC applied at both PDO and OETC  
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  Base case 

response 

PID 

controlled 

response 

LQR 

controlled 

response 

Modified 

LQR 

controlled 

response 

Frequency deviation (Hz) -0.05 0 0 0 

Settling time (s) 10.9 34 11.3 10.1 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 0 0 0 

Frequency deviation (Hz) -0.05 0 0 0 

Settling time (s) 7.74 25.3 8.59 8.39 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0 0 0 

Table 10.4: PDO and OETC Modified LQR AGC controllers' performance in comparison 

to the base case, the classical PID and the LQR controllers.  

10.3.3.2. Discussion 

From Figures 10.17-10.20 and table 10.4, it is clear that the modified LQR AGC has 

maintained the same control topology features as of the basic LQR AGC. The modified 

LQR AGC has slightly improved the system response to load disturbances in terms of 

oscillations and settling time if compared with the basic LQR AGC.   

10.3.3.3. Summary 

The LQR AGC design can be customized based on the control performance requirements. 

A change in the Q matrix elements can improve the LQR AGC controller performance. 

The modified LQR AGC has slightly improved the system response to load disturbances 

when compared with the basic LQR AGC.  

10.3.4. Fine tuning the modified design of LQR AGC 

10.3.4.1. Methodology 

Four scenarios are investigated in this part: 

Scenario 1: the first scenario is to multiply the Q matrix elements which affect the AGC 

requirements 1, 2 and 3 by a factor of 10.  

Scenario 2: the second scenario is to multiply the Q matrix elements which affect the AGC 

requirements 4 and 5 by a factor of 10.  

Scenario 3: the third scenario is to multiply the Q matrix by a factor of 10 

Scenario 4: the fourth scenario is to multiply the R matrix by a factor of 10 
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For scenario one, the R matrix remains the same as in section 10.3.3 and the Q matrix is 

shown in equation 10.29 below: 
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Q …..(10.29) 

For scenario two, the R matrix remains the same as in section 10.3.3 and the Q matrix is 

shown in equation 10.30 below: 
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Q …..(10.30) 

For scenario three, the Q and R matrices remain the same as in section 10.3.3 but the Q 

matrix is multiplied by a factor of 10.  

For scenario four, the Q and R matrices remain the same as in section 10.3.3 but the R 

matrix is multiplied by a factor of 10.  

10.3.4.2. Simulation results 

The K matrix has been calculated for all above four scenarios and the model has been 

simulated for each scenario with a 100MW load disturbance is applied once at PDO and 
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once at OETC. The results are shown in Figures 10.21-10.26. The Figures compare the 

results obtained for all four scenarios with the results obtained earlier using the modified 

LQR AGC. 
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Figure 10.21: PDO frequency following a 100MW load disturbance at PDO side with the 

tuned LQR AGC applied at both PDO and OETC 
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Figure 10.22: OETC frequency following a 100MW load disturbance at PDO side with the 

tuned LQR AGC applied at both PDO and OETC 
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Figure 10.23: Tie line power deviation following a 100MW load disturbance at PDO side 

with the tuned LQR AGC applied at both PDO and OETC   
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Figure 10.24: PDO frequency following a 100MW load disturbance at OETC side with the 

LQR AGC applied at both PDO and OETC 
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Figure 10.25: OETC frequency following a 100MW load disturbance at OETC side with 

the tuned LQR AGC applied at both PDO and OETC 
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Figure 10.20: Tie line power deviation following a 100MW load disturbance at OETC side 

with the tuned LQR AGC applied at both PDO and OETC  

10.3.4.3. Discussion  

Looking at the results shown in Figures 10.21-10.26 with specific emphasis on the 

maximum deviation, settling time and the oscillations damping one can see that scenario 1 
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has the best response and scenario 2 has the worst response. From scenario 1 and 2, it is 

clear that changing the weighting of the individual elements within the Q matrix can cause 

dramatic change in the LQR AGC performance. In scenario one, the elements which are 

directly linked to frequency and tie line power deviation have been given extra weight 

when compared with the turbines states which are directly linked with fuel and 

maintenance requirements. This has resulted in stiff controller action which will incur extra 

maintenance and fuel costs. On the other hand, scenario 2 gives more priority to saving 

fuel and maintenance costs by giving extra weight to the elements which are directly linked 

to the fuel and maintenance requirements. It has resulted in mild control action allowing 

more dynamic deviation, oscillatory response and longer settling time.  

Scenario 3 has slightly better controller performance than the modified LQR performance. 

This is due to giving the Q matrix more weight than the control effort matrix R. It will 

result in more fuel consumption in comparison to the slight improvement in the overall 

controller response. 

Scenario 4 has more oscillatory response than the modified LQR. In scenario 4 the 

controller effort has been given more weight so that fuel and maintenance cost can be 

saved regardless of the trajectory the individual states will follow. Consequently it has 

resulted in more oscillatory response with longer settling time. 

All in all, it is clear form Figures 10.21-10.26 that the modified LQR has an average 

performance in comparison of the other scenarios and therefore is considered as the best 

performance taking care of all the AGC control requirements.          

10.3.4.4. Summary 

Four scenarios of fine tuning the modified LQR AGC controller performance have been 

investigated. The four scenarios have produced different responses to load disturbances 

some of which are better than the modified LQR response. However, the modified LQR 

AGC performance is still considered to be the best LQR controller because it balances 

between all the AGC controller performance requirements whilst having an average 

controller performance when compared with the other four scenarios.    

10.4. Overall Summary 

Linear Quadratic Regulator is an optimal controller which can easily be customized to suit 

certain controller design requirements. The LQR has been used to design AGC controller 

for PDO-OETC interconnected power system. The results proved that LQR can produce 

much better performance than the classical PID controller. The PDO-OETC LQR AGC 
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controller has been modified to suit certain AGC control guidelines. The modified LQR 

AGC controller has produced better performance. The modified LQR AGC went through a 

fine tuning exercise which proved that the modified LQR AGC has a reasonable 

performance catering for all AGC control requirements.  

Although the LQR AGC controller is very flexible to design and optimize, it is practically 

difficult and costly to implement. This is because LQR requires states feedback of all the 

states in the field which will demand a huge telecommunication infrastructure. 

Alternatively, the states feedback can be received from an observer model which is also 

difficult to maintain due to the growing nature of electrical power systems. 

 Therefore the next chapter will investigate the utilization of non linear controllers which 

can accommodate field changes and uncertainties with minimal feedback signals from the 

field.   
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Chapter 11: Design of Automatic Generation Control 

using Fuzzy Logic 

11.1. Introduction 

In this part of the study the Fuzzy Logic (FL) technique is considered to design an AGC 

controller of PDO-OETC power systems. The study aims to realise the difference in 

response the Fuzzy Logic technique can make in comparison to the classical approaches. 

Fuzzy Logic theory is known of its flexibility and ability to deal with non linear systems.  

Same as the previous chapter, three control topologies will only be considered. Therefore 

the Fuzzy Logic will be applied to the following three control topologies: 

• AGC applied to PDO alone using ACE as a feedback signal 

• AGC applied to OETC alone using ACE as a feedback signal 

• AGC applied to both PDO and OETC using ACE as a feedback signal 

 

All in all, the performance of the Fuzzy Logic control technique will be compared with the 

previously adopted techniques performance, the classical PID and the LQR. 

11.2. Theoretical background 

Nowadays, fuzzy logic has been used in almost all sectors of industries including power 

systems control. Shayeghi et al 
(4) 

(2009) surveyed the most recent applications of FL to the 

AGC problem. The fuzzy logic fundamental structure for all controller design is 

summarised in Figure 11.1 (Demiroren and Yesil, 2004).  

 

Figure 11.1: components of a fuzzy system 

The fuzzy logic theory is very well established and is available for readers in almost all 

recent control engineering text books (Nagrath and Gopal, 2008, pp.783-800; Ghosh, 2007, 

pp. 585-591; Ross, 2007). There are four main parts in a Fuzzy Logic system (Demiroren 

and Yesil, 2004): 

1. The Fuzzifier: this structure is meant to transform the numeric values into fuzzy 

sets. It measures the values of input variables then performs a scale transformation 
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which maps the physical values of the process state variables into a normalised 

universe of discourse (Nagrath and Gopal, 2008, p. 790). The measured crisp value 

will eventually be converted to a fuzzy set. The so called Membership Functions 

(MF) are spread over the universe of discourse where any input crisp value will 

have a membership in one or more of MFs. There are many shapes for the MFs but 

the most popular one is the triangular one. The MFs can overlap in the universe of 

discourse depending on the design requirements.  

2. The Inference Engine: it is the engine that performs all logic manipulations in a 

fuzzy system. The result of the inference process is an output represented by a 

fuzzy set.  

3. The Rule Base: the Rule Base basic function is representing the control policy of 

an experienced process operator and/or control engineer in a structured way as a 

set of production rules e.g. If (process state)-Then (control output). 

4. The Defuzzifier: transforms the output fuzzy set into a numeric value suitable to be 

fed to the process.     

 

In addition, input and out scaling factors are used to tune the fuzzy controller to obtain the 

desired dynamic properties of the process controller closed loop (Demiroren and Yesil, 

2004).  

 

11.3. Proposed controllers topologies 

In general, conventional Fuzzy Logic controllers are not suitable for controlling dynamic 

systems because they do not produce reliable transient response and are unable to eliminate 

steady state error (Kocaarslan and Çam, 2005). However combining Fuzzy logic technique 

with other techniques underwent an extensive research and has produced wonderful results 

(Shayeghi, et al 
(2)

, 2006; Shayeghi, et al 
(1)

, 2007; Yesil et al, 2004; Çam, 2007; Çam and 

Kocaarslan 
(1)

, 2005; Demiroren and Yesil, 2004; Feliachi and Rerkpreedapong, 2005; 

Kocaarslan and Çam 
(3)

, 2005; Çam and Kocaarslan 
(2)

, 2005; Chang and Fu, 1997).  

In this part, the Fuzzy Logic PID control technique will be implemented to design an AGC 

of PDO-OETC interconnected power system. In the literature, two models of fuzzy PID 

AGC controller have been considered. Few researchers (Yesil et al, 2004; Demiroren and 

Yesil, 2004) have introduced the Fuzzy PID AGC controller shown in Figure 11.2. 

Shayeghi et al 
(2)

 (2006) has mentioned another topology of Fuzzy PID AGC controller and 
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is shown in Figure 11.3. Both Fuzzy PID AGC topologies shown in Figure 11.2 and Figure 

11.3 will be implemented to PDO-OETC interconnected power system.   

 

 Figure 11.2: Fuzzy PID controller architecture 1 (Yesil et al, 2004) 

 

 

Figure 11.3: Fuzzy PID controller architecture 2 (Shayeghi et al 
(2)

, 2006) 

 

 

 

From Figure 11.2 and Figure 11.3, it is clear that there are two distinctive parts in the 

controller architecture, the fuzzy and the PI or PID parts. Also one can see that there are 

two inputs to the fuzzy controller, the ACE and the derivative of the ACE. This is because 

human being can actually monitor and feel the errors and the rate of change of errors. This 

fact is important for the design of a fuzzy controller since it is intended to translate the 

human being experience into a control system. The error integrator cannot be part of the 

inputs to the fuzzy controller, simply because the operator or the control engineer cannot 

realise it. From Figure 11.2, adding a PI controller after the fuzzy controller actually has 

implicitly satisfied all the conditions required to form a PID controller. The error and the 

derivative of the error go into a traditional PI and the total output will contain the 

proportional, integral and derivative components. Therefore, the architecture shown in 

Figure 11.2 is named as Fuzzy PID controller (FPID).   

On the other hand the controller shown in Figure 11.3 has explicit traditional PID 

controller after the fuzzy logic part. This topology ensures the derivative action is 

explicitly available after the fuzzy inference.     

In the following sections, both FLPID controller architecture shown in Figure 11.2 (FLPID 

topology 1) and Figure 11.3 (FLPID topology 2) will be implemented to design an AGC 

controller for PDO-OETC interconnected power system and a detailed design and tuning 
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approach will be attempted for each control topology. Since it is common for both 

topologies, the fuzzy logic part will be designed only once as in the next section.  

11.4. Fuzzy logic part design of PDO-OETC AGC controller 

There are many options and alternatives which can compose a fuzzy logic control system. 

It must be noted that only one set of options compose the optimum fuzzy logic architecture 

for a given system. Also, it must be known that even if we managed to setup the optimum 

fuzzy logic architecture, we may not be successful to optimally tune the parameters to 

produce the optimum response for a set of control indices. Hence, from its name there is 

always fuzziness in the design process of a fuzzy logic control system which calls for a 

wide range of trials and errors to achieve an acceptable performance.  

There are many Fuzzy logic design options which are briefly mentioned below but it may 

not be limited to: 

• Mamdani method 

• Sugeno method 

• Shape of membership functions (MF) 

• Number of inputs 

• Number of membership functions 

• Range of universe of discourse  

• Values of input scaling factors 

• Value of output scaling factor 

 

There is no rule of thump which tells us which of the above options are most suitable 

for our case but trial and error method helps deciding some of the options. In our case, 

many trials and errors proved the below are the most suitable options: 

• Mamdani method 

• Triangular MF 

• Seven MF for each input and output 

 

As in Figures 11.2 and 11.3, two inputs to the fuzzy logic system have been used, the ACE 

and the rate of change of ACE. The input and output scaling factors are assumed to be 

unity.  

The range of the universe of discourse was calculated empirically using the developed 

model. The model was subjected to the largest normal load disturbance (200MW) the AGC 

controller is intended to deal with and then the maximum ACE and rate of change of ACE 
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was recorded. The disturbance was applied once at PDO and another at OETC. From this 

test, the universe of discourse of both input MFs was decided as in Table 11.1. Moreover, 

the output MFs universe of discourse was assumed to be the same as the ACE input MFs 

because traditionally the control signal is biased by the error; it is also shown in Table 

11.1.    

 MFs universe of discourse  

ACE input ACE input Output 

PDO -0.21 to +0.21  -0.36 to +0.36 -0.21 to +0.21 

OETC -0.12 to +0.12 -0.15 to +0.15 -0.12 to +0.12 

Table 11.1: universe of discourse ranges of inputs and output membership functions 

There are seven MFs evenly distributed in the universe of discourse of the two inputs and 

the output and are namely summarised as below: 

LN: large negative 

MN: medium negative 

SN: small negative 

Z: zero 

SP: small positive 

MP: medium positive 

LP: large positive 

The seven MFs ranges for the ACE, ACE and the output of PDO are shown in Figure 

11.4, Figure 11.5 and Figure 11.6 respectively.      

The seven MFs ranges for the ACE, ACE and the output of OETC are shown in Figure 

11.7, Figure 11.8 and Figure 11.9 respectively.      

 

Figure 11.4: PDO fuzzy logic controller ACE input MFs 
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Figure 11.5: PDO fuzzy logic controller ACE input MFs 

 

 

 

Figure 11.6: PDO fuzzy logic controller output MFs 

 

 

 

Figure 11.7: OETC fuzzy logic controller ACE input MFs 

 

 

Figure 11.8: OETC fuzzy logic controller ACE input MFs 
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Figure 11.9: OETC fuzzy logic controller output MFs 

 

 

The fuzzy inference rules are set in the form: 

If ACE is Ai and ACE is Bi THEN u is Ci, , where: 

i: 1,2,3,…,n 

A, B, C: are fuzzy sets 

u: is the output   

A total number of 49 inference rules are used in both PDO and OETC fuzzy logic 

controllers which are based on the power system operator experience. They are 

summarised in Table 11.2.  

Imagine a power system operator monitoring the system frequency and the tie line power. 

Two main factors will influence his reaction to sudden changes in the system frequency 

and tie line power, how much deviation is there and the rate of change of deviation. For 

example following large sudden load increase at PDO side, the operator will notice the 

frequency is dropping quickly and the tie line power import is increasing quickly. The 

operator will then realise that he has to act harshly to balance the generation with the new 

load, therefore he will harshly increase generators output. In other words, if the ACE is 

large negative and the rate of change of ACE is large negative, the natural response of the 

operator is large positive increase of power generation. Another example is when the ACE 

is large positive and there is a large negative rate of change of ACE, eventually things will 

be balanced out and the operator doesn’t need to do any action i.e. zero action. So on and 

so forth, from the operator common sense and experience, Table 11.2 is constructed. The 

out put states, LP, MP, SP, Z, SN, MN and LN are solely decided by the operator 

experience and can be always further optimised.  
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ACE  

LN MN SN Z SP MP LP 

LN LP LP LP LP MP SP Z 

MN LP LP LP MP SP Z SN 

SN LP LP MP SP Z SN MN 

Z LP MP SP Z SN MN LN 

SP MP SP Z SN MN LN LN 

MP SP Z SN MN LN LN LN 


A

C
E

 

LP Z SN MN LN LN LN LN 

Table 11.2: Fuzzy inference rules of PDO and OETC fuzzy logic controller 

Using MATLAB fuzzy logic toolbox, the PDO and OETC fuzzy logic control systems 

were designed based on the above details. The generated rules surfaces for both PDO and 

OETC are shown in Figure 11.10 and 11.11 respectively.  

Consider the rules surface in Figures 11.10 and 11.11 and knowing that the Fuzzy logic 

part will be followed by the integral action of PID part, it is clear that the overall Fuzzy 

Logic PID controller will have a mild action around the nominal operating points. It will 

also have a stiff action for large load disturbances since the rules surface saturates at large 

positive or large negative depending on the sign of the load disturbance.  

This is in line with the control engineer requirements. During small disturbances where the 

frequency and tie line power deviations are within the normal operating envelop, there will 

be a mild control action from the control engineer. However, during heavy load 

disturbances, the control engineer will put maximum control effort to restore the frequency 

and tie line power exchange nominal values in order to stop the system from drifting to 

unstable condition.     

Overall, the controller action is mild around the nominal operating points and stiff off the 

nominal operating points so that the system will not drift to the uncontrollable conditions.     

 

The developed Fuzzy logic control system of both PDO and OETC will be used in the 

proposed control topologies suggested in section 11.3.  
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Figure 11.10: PDO fuzzy logic controller inference rules surface 

 

 

 

Figure 11.11: OETC fuzzy logic controller inference rules surface 
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11.5. Fuzzy Logic PID topology 1 

11.5.1. Fuzzy Logic PID topology 1 applied to PDO alone AGC 

controller 

11.5.1.1. Design approach 

This part of the study demonstrates the performance of the controller structure shown in 

Figure 11.2. The design of the PDO AGC controller using this controller structure is 

completed in stages. The following approach is followed: 

1. Design the Fuzzy logic control system part as shown earlier in section 11.4 

2. Design a PI AGC controller for PDO power systems using the closed loop 

Ultimate Sensitivity Method. During the design and tuning of the PI controller, the 

uncontrolled complete PDO-OETC model is used without consideration of the 

fuzzy logic part.  

3. Merge the developed Fuzzy logic parts with the respective tuned PI controller so 

that the controller structure shown in Figure 11.2 is formed.  

Using MATLAB Simulink, the Fuzzy Logic PID 1 controller is designed as shown in 

Figure 11.12. 

1

Out1

1/Ti

k2

Kc

k

1

s

Integrator

Fuzzy Logic 

Controller

du/dt

Derivative1

1

In1

 

Figure 11.12: Fuzzy Logic PID 1 controller design 

The complete PDO-OETC power system model with PDO alone Fuzzy PID 1 AGC is the 

same as shown earlier in Figure 9.22. 

11.5.1.2. Controller tuning 

The fuzzy logic part parameters will remain the same as developed earlier in section 11.4. 

The PI part was tuned using Ziegler Nichols (Ultimate sensitivity) method. The look up 

table shown earlier in Table 9.2 was used to calculate the PI controller parameters. The PI 

parameters for PDO are shown in Table 11.3. 
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Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PI Controller 

gain) 

Ti  

(Integral time 

constant) 

1.69 1.842 0.7605 1.535 

Table11.3: PDO alone PI controller parameters 

11.5.1.3. Simulation results 

The complete developed model of PDO-OETC interconnected power system was 

simulated with the Fuzzy Logic PID 1 applied to PDO input control signal only. A load 

disturbance of 100MW was simulated once at PDO side and once at OETC side. PDO 

frequency, OETC frequency and tie line power are the key performance indices to be 

monitored. Figures 11.13-11.16 show PDO and OETC frequencies in one figure and the tie 

line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 11.4. The 

summary also compares the results of the base case, classical PID AGC controller, the 

LQR AGC controller and the Fuzzy PID1 controller performance. 
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Figure 11.13: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the Fuzzy PID 1 AGC applied at PDO only 
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Figure 11.14: Tie line power deviation following a 100MW load disturbance at PDO side 

with the Fuzzy PID 1 AGC applied at PDO only.   
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Figure 11.15: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the Fuzzy PID 1 AGC applied at PDO only 
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Figure 11.16: Tie line power deviation following a 100MW load disturbance at OETC side 

with the Fuzzy PID 1 AGC applied at PDO only.  

 

  Base case 

response 

PID controlled 

response 

LQR 

controlled 

response 

Fuzzy PID 1 

controller 

response 

Frequency deviation (Hz) -0.05 0 0 0 

Settling time (s) 10.9 22.6 12.3 15.4 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 0 0 0 

Frequency deviation (Hz) -0.05 -0.05 -0.05 -0.05 

Settling time (s) 7.74 15.34 5.3 5.68 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0.0121 0.0121 0.0121 

Table 11.4: PDO alone Fuzzy PID 1 AGC controller performance in comparison to the 

base case, the classical PID controller and LQR controller. 

 

11.5.1.4. Results discussion 

From Figures 11.13-11.16 and Table 11.4, one can see that the Fuzzy PID 1 control 

technique has obvious merits when compared with the classical PID control technique. 

However when compared with the LQR, they are almost having the same performance. 

The following points summarises the impression about the results: 

• The Fuzzy PID 1 AGC controller maintained the same control topology 

characteristics as when using the PID and the LQR controllers. It has dealt with 

load disturbances within PDO control area only whereas load disturbances outside 

PDO were compensated by the droop control only. This has resulted in a zero 
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steady state deviation in system frequency and tie line power when the load 

disturbance was applied at PDO and non zero values when the load disturbance was 

applied at OETC side.   

• The response oscillations were very well damped if we compare the results 

obtained in Figures 11.13-11.16 with the same results obtained using the classical 

PID controller shown earlier in Figures 9.23-9.28. The settling time with the Fuzzy 

PID 1 AGC controller was also much better than in the case of the classical PID 

controller. When comparing the Fuzzy Logic PID1 controller performance with the 

LQR controller performance shown in Figures 10.3-10.6, they almost have the 

same performance in terms of oscillations and settling time.  

11.5.1.5. Summary 

The PDO alone Fuzzy PID 1 AGC controller has maintained the same control topology 

features observed when using the classical PID and LQR controllers. The system response 

oscillations and settling time were remarkably improved when compared with the PID 

controller, and are more or less the same when compared with the LQR.   

  

11.5.2. Fuzzy Logic PID 1 applied to OETC alone AGC controller 

11.5.2.1. Design approach 

The design of the OETC AGC controller using the FLPID1 controller structure is 

completed in stages. The following approach is followed: 

1. Design the Fuzzy logic control system part as shown earlier in section 11.4 

2. Design a PI AGC controller for OETC power systems using the closed loop 

Ultimate Sensitivity Method. During the design and tuning of the PI controller, the 

uncontrolled complete PDO-OETC model is used without consideration of the 

fuzzy logic part.  

3. Merge the developed Fuzzy logic parts with the respective tuned PI controller so 

that the controller structure shown in Figure 11.2 is formed.  

Using MATLAB Simulink, the Fuzzy Logic PID 1 controller is designed as shown in 

Figure 11.12. 

The complete PDO-OETC power system model with OETC alone Fuzzy PID 1 AGC is the 

same as shown earlier in Figure 9.43. 
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11.5.2.2. Controller tuning 

The fuzzy logic part parameters will remain the same as developed earlier in section 11.4. 

The PI part was tuned using Ziegler Nichols (Ultimate sensitivity) method. The look up 

table shown earlier in Table 9.2 was used to calculate the PI controller parameters. The PI 

parameters for OETC are shown in Table 11.5.  

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PI Controller 

gain) 

Ti  

(Integral time 

constant) 

1.468 1.755 0.6606 1.4625 

Table11.5: OETC alone PI controller parameters 

11.5.2.3. Simulation results 

The complete developed model of PDO-OETC interconnected power system was 

simulated with the Fuzzy Logic PID 1 applied to OETC input control signal only. A load 

disturbance of 100MW was simulated once at PDO side and once at OETC side. PDO 

frequency, OETC frequency and tie line power are the key performance indices to be 

monitored. Figures 11.17-11.20 show PDO and OETC frequencies in one figure and the tie 

line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 11.6. The 

summary also compares the results of the base case, classical PID AGC controller, the 

LQR AGC controller and the Fuzzy PID1 controller performance. 
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Figure 11.17: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the Fuzzy PID 1 AGC applied at OETC only 
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Figure 11.18: Tie line power deviation following a 100MW load disturbance at PDO side 

with the Fuzzy PID 1 AGC applied at OETC only.   
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Figure 11.19: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the Fuzzy PID 1 AGC applied at OETC only 
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Figure 11.20: Tie line power deviation following a 100MW load disturbance at OETC side 

with the Fuzzy PID 1 AGC applied at OETC only.  

  Base case 

response 

PID controlled 

response 

LQR 

controlled 

response 

Fuzzy PID 1 

controller 

response 

Frequency deviation (Hz) -0.05 -0.05 -0.05 -0.05 

Settling time (s) 10.9 14 8.92 3.75 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 -0.0379 -0.0379 -0.0379 

Frequency deviation (Hz) -0.05 0 0 0 

Settling time (s) 7.74 10.4 8.16 8.2 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0 0 0 

Table 11.6: OETC alone Fuzzy PID 1 AGC controller performance in comparison to the 

base case, the classical PID controller and LQR controller. 

11.5.2.4. Results discussion 

From Figures 11.17-11.20 and Table 11.6, one can see that the Fuzzy PID 1 control 

technique has better performance when it is compared with the classical PID control 

technique and the LQR. The following points summarise the impression about the results: 

• The Fuzzy PID 1 AGC controller has maintained the same control topology 

characteristics as when using the PID and the LQR controllers. It has dealt with 

load disturbances within OETC control area only whereas load disturbances outside 

OETC are compensated by the droop control only. It has resulted in a zero steady 

state deviation in system frequency and tie line power when the load disturbance is 

applied at OETC and non zero values when the load disturbance is applied at PDO 

side.   
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• The response oscillations are very well damped if we compare the results obtained 

in Figures 11.17-11.20 with the same results obtained using the classical PID 

controller shown earlier in Figures 9.44-9.49. The settling time with the Fuzzy PID 

1 AGC controller is also better than in the case of the classical PID controller. 

Moreover when it is compared with the LQR controller response shown in Figures 

10.8-10.11, the Fuzzy PID 1 has slightly better performance in terms of oscillations 

and settling time.  

11.5.2.5. Summary 

The OETC alone Fuzzy PID 1 AGC controller has maintained the same control topology 

features observed when using the classical PID and LQR controllers. The system response 

oscillations and settling time are remarkably improved when compared with the PID 

controller, and are slightly better when compared with the LQR.   

 

11.5.3. Fuzzy Logic topology 1 applied to both PDO and OETC AGC 

controllers 

11.5.3.1. Design approach 

The design of the PDO-OETC AGC controller using the FLPID1 controller structure is 

completed in stages. The following approach is followed: 

1. Design the Fuzzy logic control system part as shown earlier in section 11.4 

2. Design a PI AGC controller for both PDO and OETC power systems using the 

closed loop Ultimate Sensitivity Method. OETC PI controller is tuned firstly and 

then PDO PI is tuned while OETC PI is active. During the design and tuning of 

the PI controller, the uncontrolled complete PDO-OETC model is used without 

consideration of the fuzzy logic part.   

3. Merge the developed Fuzzy logic parts with the respective tuned PI controller so 

that the controller structure shown in Figure 11.2 is formed.  

 

Using MATLAB Simulink, the Fuzzy Logic PID 1 controller is designed as shown in 

Figure 11.12. 

The complete PDO-OETC power system model with PDO and OETC Fuzzy PID 1 AGC is 

the same as shown earlier in Figure 9.106. 
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11.5.3.2. Controller tuning 

The fuzzy logic part parameters remain the same as developed earlier in section 11.4. The 

PI part was tuned using Ziegler Nichols (Ultimate sensitivity) method. The look up table 

shown earlier in Table 9.2 was used to calculate the PI controller parameters. The PI 

parameters for both PDO and OETC are shown in Table 11.7.  

 

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PI Controller 

gain) 

Ti  

(Integral time 

constant) 

PDO 0.861 1.874 0.38745 1.5617 

OETC 1.468 1.755 0.6606 1.4625 

Table11.7: PDO and OETC PI controller parameters 

11.5.3.3. Simulation results 

The complete developed model of PDO-OETC interconnected power system was 

simulated with the Fuzzy Logic PID 1 applied to both PDO and OETC input control 

signals. A load disturbance of 100MW was simulated once at PDO side and once at OETC 

side. PDO frequency, OETC frequency and tie line power are the key performance indices 

to be monitored. Figures 11.21-11.24 show PDO and OETC frequencies in one figure and 

the tie line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 11.8. The 

summary also compares the results of the base case, classical PID AGC controller, the 

LQR AGC controller and the Fuzzy PID1 controller performance. 
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Figure 11.21: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the Fuzzy PID 1 AGC applied at both PDO and OETC 
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Figure 11.22: Tie line power deviation following a 100MW load disturbance at PDO side 

with the Fuzzy PID 1 AGC applied at both PDO and OETC.   
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Figure 11.23: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the Fuzzy PID 1 AGC applied at both PDO and OETC. 
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Figure 11.24: Tie line power deviation following a 100MW load disturbance at OETC side 

with the Fuzzy PID 1 AGC applied at both PDO and OETC.  

  Base case 

response 

PID controlled 

response 

LQR 

controlled 

response 

Fuzzy PID 1 

controller 

response 

Frequency deviation (Hz) -0.05 0 0 0 

Settling time (s) 10.9 34 11.3 28.1 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 0 0 0 

Frequency deviation (Hz) -0.05 0 0 0 

Settling time (s) 7.74 25.3 8.59 8.18 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0 0 0 

Table 11.8: PDO and OETC Fuzzy PID 1 AGC controllers' performance in comparison to 

the base case, the classical PID controller and LQR controller. 
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11.5.3.4. Results discussion 

From Figures 11.21-11.24 and Table 11.8, one can see that the Fuzzy PID 1 control 

technique is better able to damp the system response oscillations than the classical PID 

control technique. In this case the LQR controller response is better than the Fuzzy PID1. 

The following points summarise the impression about the results: 

• The Fuzzy PID 1 AGC controller has maintained the same control topology 

characteristics as when using the PID and the LQR controllers. It has dealt with the 

disturbances within both PDO and OETC control areas. It has resulted in a zero 

steady state deviation in the system frequency and the tie line power no matter 

whether the load disturbance is applied at PDO or at OETC.   

• The response oscillations are better damped if we compare the results obtained in 

Figures 11.21-11.24 with the same results obtained using the classical PID 

controller shown earlier in Figures 9.107-9.112. Therefore the settling time with the 

Fuzzy PID 1 AGC controller is shorter than in the case of the classical PID 

controller. However, when it is compared with the LQR controller response shown 

in Figures 10.13-10.16, the LQR has a better performance in terms of oscillations 

and settling time.  

 

11.5.3.5. Summary 

The PDO and OETC Fuzzy PID 1 AGC controllers has maintained the same control 

topology features observed when using the classical PID and LQR controllers. The LQR 

system response oscillations and settling time are seen to be better when compared with the 

Fuzzy PID 1 controller.  
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11.6. Fuzzy logic PID 2 

11.6.1. Fuzzy Logic PID topology 2 applied to PDO alone AGC 

controller 

11.6.1.1. Design approach 

This part demonstrates the performance of the controller structure shown in Figure 11.3. 

The design of the PDO AGC controller using this controller structure is completed in 

stages. The following approach is followed: 

1. Design the Fuzzy logic control system part as shown earlier in section 11.4 

2. Design a PID AGC controller for PDO power systems using the closed loop 

Ultimate Sensitivity Method. During the design and tuning of the PID controller, 

the uncontrolled complete PDO-OETC model is used without consideration of the 

fuzzy logic part.  

3. Merge the developed Fuzzy logic parts with the respective tuned PID controller so 

that the controller structure shown in Figure 11.3 is formed.  

Using MATLAB Simulink, the Fuzzy Logic PID 2 controller is designed as shown in 

Figure 11.25. 
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Figure 11.25: Fuzzy Logic PID 2 controller design 

The complete PDO-OETC power system model with PDO alone Fuzzy PID 2 AGC will 

look the same as shown earlier in Figure 9.22. 

11.6.1.2. Controller tuning 

The fuzzy logic part parameters remain the same as developed earlier in section 11.4. The 

PID part was tuned using Ziegler Nichols (Ultimate sensitivity) method. The look up table 

shown earlier in Table 9.2 was used to calculate the PID controller parameters. The PID 

parameters for PDO are shown in Table 11.9.  
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Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

1.69 1.842 1.014 0.921 0.23025 

Table11.9: PDO alone PID controller parameters 

11.6.1.3. Simulation results 

The complete developed model of PDO-OETC interconnected power system was 

simulated with the Fuzzy Logic PID 2 applied to PDO input control signal only. A load 

disturbance of 100MW was simulated once at PDO side and once at OETC side. PDO 

frequency, OETC frequency and tie line power are the key performance indices to be 

monitored. Figures 11.26-11.29 show PDO and OETC frequencies in one figure and the tie 

line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 11.10. The 

summary also compares the results of the base case, classical PID AGC controller, the 

LQR AGC controller, Fuzzy PID 1 controller with the Fuzzy PID 2 controller 

performance. 
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Figure 11.26: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the Fuzzy PID 2 AGC applied at PDO only 
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Figure 11.27: Tie line power deviation following a 100MW load disturbance at PDO side 

with the Fuzzy PID 2 AGC applied at PDO only.   
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Figure 11.28: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the Fuzzy PID 2 AGC applied at PDO only 
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Figure 11.29: Tie line power deviation following a 100MW load disturbance at OETC side 

with the Fuzzy PID 2 AGC applied at PDO only.  

  Base case 

response 

PID controlled 

response 

LQR controlled 

response 

Fuzzy PID 1 

controlled 

response 

Fuzzy PID 2 

controlled 

response 

Frequency deviation (Hz) -0.05 0 0 0 0 

Settling time (s) 10.9 22.6 12.3 15.4 7.36 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 0 0 0 0 

Frequency deviation (Hz) -0.05 -0.05 -0.05 -0.05 -0.05 

Settling time (s) 7.74 15.34 5.3 5.68 2.33 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0.0121 0.0121 0.0121 0.0121 

Table 11.10: PDO alone Fuzzy PID 2 AGC controller performance in comparison to the 

base case, the classical PID controller, LQR controller and Fuzzy PID 1 controller.  

11.6.1.4. Results discussion 

From Figures 11.26-11.29 and Table 11.10, one can see that the Fuzzy PID 2 control 

technique has remarkably improved the system response to load disturbances when 

compared with the base case, PID controller case, LQR controller case and Fuzzy PID 1 

controller case.  The following points summarises the impression about the results: 

• The Fuzzy PID 2 AGC controller has maintained the same control topology 

characteristics as when using the PID, the LQR and the Fuzzy PID 1 controllers. It 

has dealt with load disturbances within PDO control area whereas load disturbances 

outside PDO are compensated by the droop control only. It has resulted in a zero 

steady state deviation in system frequency and tie line power when the load 

disturbance is applied at PDO and non zero values when the load disturbance is 

applied at OETC side.   
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• The response oscillations are very well damped if we compare the results obtained 

in Figures 11.26-11.29 with the same results obtained using the classical PID 

controller (Figures 9.23-9.28), the LQR controller (Figures 10.3-10.6) and the 

Fuzzy PID 1 (Figures 11.13-11.16). As a result the settling time and maximum 

transient errors are reduced. 

11.6.1.5. Summary 

The PDO alone Fuzzy PID 2 AGC controller has maintained the same control topology 

features observed when using the classical PID, LQR and Fuzzy PID 1 controllers. 

However the Fuzzy PID 2 has remarkably improved the system response to load 

disturbances in terms of oscillations, settling time and maximum transient errors. 

Considering the design flexibility and the quality of performance, the Fuzzy PID 2 is a 

promising option for AGC application.      

  

11.6.2. Fuzzy Logic PID 2 applied to OETC alone AGC controller 

11.6.2.1. Design approach 

The design of the OETC AGC controller using this controller structure is completed in 

stages. The following approach is followed: 

1. Design the Fuzzy logic control system part as shown earlier in section 11.4 

2. Design a PID AGC controller for OETC power system using the closed loop 

Ultimate Sensitivity Method. During the design and tuning of the PID controller, 

the uncontrolled complete PDO-OETC model is used without consideration of the 

fuzzy logic part. 

3. Merge the developed Fuzzy logic parts with the respective tuned PID controller so 

that the controller structure shown in Figure 11.3 is formed.  

Using MATLAB Simulink, the Fuzzy Logic PID 2 controller is designed as shown in 

Figure 11.25. 

The complete PDO-OETC power system model with OETC alone Fuzzy PID 2 AGC will 

look the same as shown earlier in Figure 9.43. 

11.6.2.2. Controller tuning 

The fuzzy logic part parameters remain the same as developed earlier in section 11.4. The 

PI part was tuned using Ziegler Nichols (Ultimate sensitivity) method. The look up table 
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shown earlier in Table 9.2 was used to calculate the PID controller parameters. The PID 

parameters for OETC are shown in Table 11.11.  

Ku  

(ultimate gain) 

Pu  

(ultimate 

period) 

Kc  

(PID 

Controller 

gain) 

Ti  

(Integral time 

constant) 

Td  

(derivative 

time constant) 

1.468 1.755 0.8808 0.8775 0.219375 

Table11.11: OETC alone PID controller parameters 

11.6.2.3. Simulation results 

The complete developed model of PDO-OETC interconnected power system was 

simulated with the Fuzzy Logic PID 2 applied to OETC input control signal only. A load 

disturbance of 100MW was simulated once at PDO side and once at OETC side. PDO 

frequency, OETC frequency and tie line power are the key performance indices to be 

monitored. Figures 11.30-11.33 show PDO and OETC frequencies in one figure and the tie 

line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 11.12. The 

summary also compares the results of the base case, classical PID AGC controller, the 

LQR AGC controller, the Fuzzy PID 1 AGC controller with the Fuzzy PID2 controller 

performance. 
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Figure 11.30: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the Fuzzy PID 2 AGC applied at OETC only 
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Figure 11.31: Tie line power deviation following a 100MW load disturbance at PDO side 

with the Fuzzy PID 2 AGC applied at OETC only.   
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Figure 11.32: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the Fuzzy PID 2 AGC applied at OETC only 
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Figure 11.33: Tie line power deviation following a 100MW load disturbance at OETC side 

with the Fuzzy PID 2 AGC applied at OETC only.  

  Base case 

response 

PID controlled 

response 

LQR controlled 

response 

Fuzzy PID 1 

controlled 

response 

Fuzzy PID 2 

controlled 

response 

Frequency deviation (Hz) -0.05 -0.05 -0.05 -0.05 -0.05 

Settling time (s) 10.9 14 8.92 3.75 5.07 

100MW load 

disturbance at 

PDO side Tie line power deviation (p.u.) -0.0379 -0.0379 -0.0379 -0.0379 -0.0379 

Frequency deviation (Hz) -0.05 0 0 0 0 

Settling time (s) 7.74 10.4 8.16 8.2 4.08 

100MW load 

disturbance at 

OETC side Tie line power deviation (p.u.) 0.0121 0 0 0 0 

Table 11.12: OETC alone Fuzzy PID 1 AGC controller performance in comparison to the 

base case, the classical PID controller and LQR controller. 

11.6.2.4. Results discussion 

From Figures 11.30-11.33 and Table 11.12, one can see that the Fuzzy PID 2 control 

technique has generally improved the system response to load disturbances when it is 

compared with the base case, PID controller case, LQR controller case and Fuzzy PID 1 

controller case.  The following points summarise the impression about the results: 

• The Fuzzy PID 2 AGC controller has maintained the same control topology 

characteristics as when using the PID, the LQR and the Fuzzy PID 1 controllers. It 

has dealt with load disturbances within OETC control area whereas load 

disturbances outside OETC are compensated by the droop control only. It has 

resulted in a zero steady state deviation in system frequency and tie line power 

when the load disturbance is applied at OETC and non zero values when the load 

disturbance is applied at PDO side.   

• The response oscillations are very well damped if we compare the results obtained 

in Figures 11.30-11.33 with the same results obtained using the classical PID 
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controller (Figures 9.44-9.49) and the LQR controller (Figures 10.8-10.11). As a 

result the settling time and maximum transient errors are also reduced. However, 

when comparing the results with the ones obtained using Fuzzy PID 1 (Figures 

11.17-11.20), the response of Fuzzy PID 2 is generally better except in the case 

when the load disturbances is applied at PDO where longer settling time is noticed. 

Overall, the performance of the Fuzzy PID 2 controller can still be considered 

better than the performance of the Fuzzy PID1 controller.  

11.6.2.5. Summary 

The OETC alone Fuzzy PID 2 AGC controller has maintained the same control topology 

features observed when using the classical PID, LQR and Fuzzy PID 1 controllers. The 

Fuzzy PID 2 has generally improved the system response to load disturbances.   

11.6.3. Fuzzy Logic topology 2 applied to both PDO and OETC AGC 

controllers 

11.6.3.1. Design approach 

The design of the PDO-OETC AGC controller using this controller structure is completed 

in stages. The following approach is followed: 

1. Design the Fuzzy logic control system part as shown earlier in section 11.4 

2. Design a PID AGC controller for both PDO and OETC power systems using the 

closed loop Ultimate Sensitivity Method. OETC PID controller is tuned firstly and 

then PDO PID is tuned while OETC PID is active. During the design and tuning 

of the PID controller, the uncontrolled complete PDO-OETC model is used 

without consideration of the fuzzy logic part.  

3. Merge the developed Fuzzy logic parts with the respective tuned PID controller so 

that the controller structure shown in Figure 11.3 is formed.  

Using MATLAB Simulink, the Fuzzy Logic PID 2 controller is designed as shown in 

Figure 11.25. 

The complete PDO-OETC power system model with OETC alone Fuzzy PID 1 AGC will 

look like the one shown earlier in Figure 9.106. 

11.6.3.2. Controller tuning 

The fuzzy logic part parameters will remain the same as developed earlier in section 11.4. 

The PID part was tuned using Ziegler Nichols (Ultimate sensitivity) method. The look up 
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table shown earlier in Table 9.2 was used to calculate the PID controller parameters. The 

PID parameters for both PDO and OETC are shown in Table 11.13.  

Ku 

(ultimate gain) 

Pu 

(ultimate 

period) 

Kc 

(PID Controller 

gain) 

Ti 

(Integral time 

constant) 

Td 

(derivative time 

constant) 

PDO 1.375 1.73 0.825 0.865 0.21625 

OETC 1.468 1.755 0.8808 0.8775 0.219375 

Table11.13: PDO and OETC PID controller parameters 

11.6.3.3. Simulation results 

The complete developed model of PDO-OETC interconnected power system was 

simulated with this Fuzzy Logic PID 2 applied to both PDO and OETC input control 

signals. A load disturbance of 100MW was simulated once at PDO side and once at OETC 

side. PDO frequency, OETC frequency and tie line power are the key performance indices 

to be monitored. Figures 11.34-11.37 show PDO and OETC frequencies in one figure and 

the tie line power in a separate figure for both tests respectively. 

A summary of the performance values was attempted and is shown in Table 11.14. The 

summary also compares the results of the base case, classical PID AGC controller, the 

LQR AGC controller, the Fuzzy PID1 AGC controller with the Fuzzy PID 2 AGC 

controller performance. 
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Figure 11.34: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the Fuzzy PID 2 AGC applied at both PDO and OETC 
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Figure 11.35: Tie line power deviation following a 100MW load disturbance at PDO side 

with the Fuzzy PID 2 AGC applied at both PDO and OETC.   
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Figure 11.36: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the Fuzzy PID 2 AGC applied at both PDO and OETC. 
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Figure 11.37: Tie line power deviation following a 100MW load disturbance at OETC side 

with the Fuzzy PID 2 AGC applied at both PDO and OETC.  

 

  Base case 

response 

PID controlled 

response 

LQR controlled 

response 

Fuzzy PID 1 

controlled 

response 

Fuzzy PID 2 

controlled 

response 

Frequency deviation (Hz) -0.05 0 0 0 0 

Settling time (s) 10.9 34 11.3 28.1 8.17 

100MW load 

disturbance at 

PDO side 
Tie line power deviation (p.u.) -0.0379 0 0 0 0 

Frequency deviation (Hz) -0.05 0 0 0 0 

Settling time (s) 7.74 25.3 8.59 8.18 3.92 

100MW load 

disturbance at 

OETC side 
Tie line power deviation (p.u.) 0.0121 0 0 0 0 

Table 11.14: PDO and OETC Fuzzy PID 2 AGC controllers' performance in comparison to 

the base case, the classical PID controller, LQR controller and the Fuzzy PID1 controller. 

 

11.6.3.4. Results discussion 

From Figures 11.34-11.37 and Table 11.14, one can see that the Fuzzy PID 2 controller 

technique is better able to damp the system response oscillations than the classical PID 

controller, the LQR controller and the Fuzzy PID 1 controller. The settling time and the 

maximum transient error are remarkably reduced. The following points summarise the 

impression about the results: 

• The Fuzzy PID 2 AGC controller has maintained the same control topology 

characteristics as when using the PID, the LQR and the Fuzzy PID 1 controllers. It 

has dealt with load disturbances within both PDO and OETC control areas. It has 
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resulted in a zero steady state deviation in system frequency and tie line power no 

matter whether the load disturbance is applied at PDO or OETC areas.   

• The response oscillations are better damped if we compare the results obtained in 

Figures 11.34-11.37 with the same results obtained using the classical PID 

controller (Figures 9.107-9.112), the LQR controller (Figures 10.13-10.16) and the 

Fuzzy PID 1 (Figures 11.21-11.24). As a result, the settling time and maximum 

transient error are reduced.   

11.6.3.5. Summary 

The PDO and OETC Fuzzy PID 2 AGC controllers has maintained the same control 

topology features observed when using the classical PID, LQR and the Fuzzy PID1 

controllers. Considering the good performance of this controller, it can be considered as a 

potential candidate for practical AGC application.    

11.7. Overall discussion 

Fuzzy logic controllers alone or hybrid with other control techniques have emerged in 

almost all kinds of industrial applications. In this part of the study, the Fuzzy PID 

controllers were applied for the AGC of PDO-OETC interconnected power systems. A 

basic unique design approach was followed to accomplish the Fuzzy PID controller 

structure. Without further tuning, the Fuzzy PID controllers are able to perform very well 

in comparison with the classical PID and the LQR controllers. Further tuning can be 

attempted to obtain the optimum goals of the individual costumer.   

11.8. Summary 

Two Fuzzy PID AGC controllers were tried for the PDO-OETC AGC application. The 

second proposed Fuzzy PID (section 11.5) proves to be more effective than the first 

proposed Fuzzy PID (section 11.4). However both controllers have produced competing 

results in comparison with classical PID and Basic LQR controllers. This concludes that 

the Fuzzy PID controllers are one of the potential options for the AGC applications.   
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Chapter 12: PDO-OETC AGC controller optimisation 

12.1. Introduction 

PDO-OETC AGC controller optimisation is about getting the best performance of the 

controller without changing the controller structure. It is achieved by optimising the 

controller parameters to achieve certain control performance requirements stipulated by the 

customer.  

In chapter 10, Linear Quadratic Regulator AGC has been proved to be costly for practical 

application due to the significant number of states feedback requirement. Alternatively, a 

hybrid Fuzzy Logic PID AGC has been proposed in chapter 11 and proved to be very 

efficient. The hybrid FLPID2 has performed better than the hybrid FLPID1 therefore the 

FLPID2 is selected for further optimisation in this chapter. 

The FLPID2 AGC controllers parameters will be optimised based the set of AGC control 

requirements stipulated in section 10.3.2. Recalling those AGC control requirements, they 

are as follows: 

1. The static frequency deviation following a step-load change must be zero. 

2. The static change in tie-line power following a step-load change must be zero. 

3. Minimise time error represented by the integral of frequency deviation 

4. Minimise the wear and tear on governor and turbine equipments 

5. Minimise the CO2 emissions by reducing the amount of burnt fuel 

 

A range of optimisation techniques has been evaluated for optimizing PDO-OETC FLPID2 

AGC controller. Multidimensional unconstrained nonlinear minimization (fminsearch) 

function, Genetic Algorithm and Particle Swarm optimisation techniques have been 

evaluated. The selection criterion is to consider a basic optimisation technique and an 

advanced optimisation technique. Therefore Multidimensional unconstrained nonlinear 

minimization (fminsearch) function is selected as the basic optimisation technique. 

Shayeghi et al 
(4)

 (2009) reported that Particle Swarm Optimisation is much faster than 

Genetic Algorithm. Therefore Particle Swarm Optimisation has been considered as the 

advanced technique.  

The Multidimensional unconstrained nonlinear minimization (fminsearch) function and the 

Particle Swarm optimisation techniques will be used to optimize the FLPID2 parameters 

based on the set of the AGC control requirements mentioned earlier. For simplicity, only 
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one control topology will be studied which is when both PDO and OETC are using Area 

Control Error (ACE) as AGC feedback signal.  

The system response with the optimized controllers will be compared and discussed at the 

end of this chapter. The comparison will focus on the performance of the controllers in 

light of the above five AGC control requirements. It will include the steady state deviation, 

settling time and the integral of controller effort. The integral of controller effort is new in 

the comparison if it is compared with the previous chapters of this report. The integral of 

controller effort measures the relative energy used over a finite period of time and is a 

trade off between faster settling time and higher fuel consumption and maintenance cost. 

The integral of controller effort is calculated by integrating the AGC controller output over 

certain period of time. For fair comparison between the different optimized Integral of 

controllers' efforts, the time taken by the frequency to settle is used for calculating the 

Integral of controller effort.      

A common cost function is developed and used for both fminsearch and Particle Swarm 

Optimisation techniques. 

      

 

12.2. Optimization of PDO-OETC AGC controller using 

Multidimensional unconstrained nonlinear minimization 

(fminsearch) function 

12.2.1. Introduction 

In a very similar way as in section 7.6 of this report, the MATLAB built in fminsearch 

minimization technique will be used to optimize the Fuzzy logic PID 2 controller 

parameters. The fminsearch will be tasked to minimise a certain cost function which 

comprise selected model outputs by changing a pre-defined controller parameters. The 

fminsearch will start with initial parameters values and will return the final parameters 

values which have produced the minimum cost function value. Three different scenarios of 

initial parameters have been used in order to test the effectiveness of fminsearch technique 

and to see if it can be trapped in a local minimal. The best result out of three scenarios will 

be compared with the Particle swarm optimized controller  

Revisiting the assumption made in section 11.4 which states that the input scaling factors 

to the fuzzy logic part are assumed to be unity. In this part, the Fuzzy logic input scaling 

factors will be optimized as well as the PID part parameters. 
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Two of the initial parameters scenarios are selected randomly and the third scenario is 

based on the FLPID2 parameters developed earlier in the last chapter. All three scenarios 

are listed below: 

1. All FLPID2 input scaling factors and PID parameters for both PDO and OETC 

AGC controllers equal to 0.5 

2. All FLPID2 input scaling factors and PID parameters for both PDO and OETC 

AGC controllers equal to 1 

3. The initial parameters values will be the same as developed earlier in section 11.6.3 

which are as shown below: 

     PDO AGC controller: 

 ACE input scaling factor (k1) = 1 

 Rate of Change of ACE input scaling factor (k2) = 1 

 PID gain (Kcpdo) = 0.825 

 PID integral time constant (Tipdo) = 0.865 

 PID differential time constant (Tdpdo) =0.21625 

 OETC AGC controller: 

 ACE input scaling factor (k3) = 1 

 Rate of Change of ACE input scaling factor (k4) = 1 

 PID gain (Kcoetc) =0.8808  

 PID integral time constant (Tioetc) = 0.8775  

 PID differential time constant (Tdoetc) = 0.219375 

 

In this controller performance optimisation process, the five AGC guidelines mentioned 

earlier will be followed. Minimising the following values will ensure the optimum 

controller performance: 

• Minimise the Integral of the Absolute Error multiplied by Time (IAET) and the 

Absolute Error multiplied by Time (AET) of PDO frequency. It will satisfy 

guideline 1 & 3.  

• Minimise the Integral of the Absolute Error multiplied by Time (IAET) and the 

Absolute Error multiplied by Time (AET) of OETC frequency. It will satisfy 

guideline 1 & 3.   

• Minimise the Integral of the Absolute Error multiplied by Time (IAET) and the 

Absolute Error multiplied by Time (AET) of the tie line power. It will satisfy 

guideline 2.  
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• Minimise the Integral of the Absolute Error multiplied by Time (IAET) and the 

Absolute Error multiplied by Time (AET) of PDO AGC controller output. It will 

satisfy guideline 4 & 5.  

• Minimise the Integral of the Absolute Error multiplied by Time (IAET) and the 

Absolute Error multiplied by Time (AET) of OETC AGC controller output. It will 

satisfy guideline 4 & 5.  

 

Accordingly the cost function will comprise the above listed elements and is shown in 

Equation 12.1. 

  







∆+∆+∆+∆+∆+∆+∆+∆+∆+∆=

∞∞∞∞∞

oetcoetcpdopdootietieoetcoetcpdopdo AGCtdtAGCtAGCtdtAGCtPtdtPtftdtftftdtftt .....cos
00000

…………………………………….(12.1)  

Figure 12.1 shows PDO-OETC power system model with the AGC controllers and the 

inputs to the cost function.  

 

Figure 12.1: PDO-OETC model with the AGC controllers and the inputs to the controllers' 

optimisation cost functions. 

The PDO and OETC FLPID2 AGC controllers are shown in Figures 12.2 and 12.3 

respectively. 
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Figure 12.2: PDO FLPID2 AGC controller 
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Figure 12.3: OETC FLPID2 AGC controller 

12.2.2. MATLAB Mfile 

In a similar fashion as in section 7.6.1, two Mfile programs were written to execute the 

task. The first one is called the "PdoOetcAGC_Opt" and the second one is the "Simulator". 

The second Mfile will call upon the first programme as part of the simulation process. The 

overall aim is simulating the model while changing the AGC controllers' parameters in 

order to minimise the cost function. Trial and error experience proves that best results are 

achieved when both PDO and OETC controllers' parameters are optimised simultaneously. 

Therefore, a 100MW load disturbance is applied at both PDO and OETC power systems 

while the simulation is running. It will ensure both PDO and OETC AGC controllers are 

optimised simultaneously while considering load disturbance within its own control area. 

The simulation will be aborted automatically when the cost functions settled at the least 

possible minimum value. Both Mfile programmes are shown in Appendix 6. 

12.2.3. Optimisation results 

The optimisation has been carried out using the above two Mfile programs and the PDO-

OETC power system refined model for all three scenarios. The simulation has returned the 

optimum AGC controllers parameters when the least minimum cost function value has 

been reached. Table 12.1 shows the optimum AGC controllers' parameters. 
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Scenario Controller ACE input 

gain 

Rate of 

Change of 

ACE input 

gain 

PID 

controller 

gain 

PID 

controller 

Integral 

time 

constant 

PID 

controller 

derivative 

time 

constant 

PDO 0.3594 0.5213 0.6091 0.6124 0.4303 Scenario 1 

OETC 0.6248 0.6324 0.7163 0.0601 0.5108 

PDO 1.0035 0.9909 1.0142 1.0128 1.0397 Scenario 2 

OETC 1.0075 1.0001 0.9955 0.9943 0.9870 

PDO 1.001 1.0017 0.8261 0.8664 0.2155 Scenario 3 

OETC 0.9987 1.0013 0.8854 0.9002 0.2226 

Table 12.1: Optimum FLPID2  AGC controllers' parameters using fminsearch function 

 

From the above table it is clear that fminsearch has produced different optimum results 

using the same cost function depending on the initial parameters values. It is clear that 

fminsearch can be trapped by local minimal.  

Scenario 1 controllers have produced highly oscillatory response whether the load 

disturbance has been applied at PDO or OETC. Scenario 2 controllers have produced 

oscillatory response when the load disturbance is applied at OETC. Scenario 3 controllers 

have produced the best response among the three scenarios whether the load has been 

applied at PDO or OETC. Scenario 3 controllers optimized parameters are selected for 

further analysis and the detailed simulation results are shown in the following section.   

12.2.4. Simulation results 

The PDO-OETC power system refined model with the FLPID 2 AGC controllers using the 

optimum controllers' parameters of scenario 3 shown in Table 12.1 was simulated while 

100MW load disturbance is applied once at PDO side and once at OETC side. PDO 

frequency, OETC frequency, tie line power, PDO Integral of controller effort and OETC 

Integral of controller effort were monitored. Figures 12.4 -12.9 show PDO and OETC 

frequencies in one figure, the tie line power in a separate figure and PDO and OETC 

Integral of controllers efforts in one figure for both tests respectively. 

Table 12.2 shows a summary of the performance values. The summary also compares the 

results of the base case, classical PID AGC controller, the LQR AGC controller, the Fuzzy 

PID 1 AGC controller, the fuzzy PID 2 AGC controller, the modified LQR AGC controller 

with the fminsearch optimised FLPID 2 AGC controller performance. 
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Figure 12.4: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the fminsearch optimised FLPID 2 AGC controller 
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Figure 12.5: Tie line power deviation following a 100MW load disturbance at PDO side 

with the fminsearch optimised FLPID 2 AGC controller   
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Figure 12.6: PDO and OETC fminsearch optimised FLPID 2 AGC Integral of controllers' 

efforts following a 100MW load disturbance at PDO side  
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Figure 12.7: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the fminsearch optimised FLPID2 AGC controller 
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Figure 12.8: Tie line power deviation following a 100MW load disturbance at OETC side 

with the fminsearch optimised FLPID 2 AGC controller   
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Figure 12.10: PDO and OETC fminsearch optimised FLPID 2 AGC Integral of controllers' 

efforts following a 100MW load disturbance at OETC side 

 

 

 

 

 

 



 

256 

 

  Base case 

response 

PID 

controlled 

response 

LQR 

controlled 

response 

Fuzzy 

PID 1 

controlled 

response 

Fuzzy 

PID 2 

controlled 

response 

Modified 

LQR 

controlled 

response 

Fminsearch 

optimised 

FLPID 2 

controlled 

response 

Frequency 

deviation (Hz) 

-0.05 0 0 0 0 0 0 

Settling time (s) 10.9 34 11.3 28.1 8.17 10.1 7.79 

100MW 

load 

disturbance 

at PDO side Tie line power 

deviation (p.u.) 

-0.0379 0 0 0 0 0 0 

Frequency 

deviation (Hz) 

-0.05 0 0 0 0 0 0 

Settling time (s) 7.74 25.3 8.59 8.18 3.92 8.39 3.69 

100MW 

load 

disturbance 

at OETC 

side 

Tie line power 

deviation (p.u.) 

0.0121 0 0 0 0 0 0 

Table 12.2: PDO and OETC optimised FLPID 2 AGC controllers' performance in 

comparison to the base case, the classical PID controller, the LQR controller, the Fuzzy 

PID1 controller, the Fuzzy PID2 controller and the modified LQR controller. 

12.2.5. Results discussion 

From Figure 12.4 to 12.09 one can see that the fminsearch optimized FLPID 2 AGC 

controller has satisfied the basic AGC requirements and the dynamic response is very 

good. Table 12.2 also shows that the fminsearch optimized FLPID2 is superior to all 

previously adopted control techniques in terms of settling time. The steady state frequency 

and tie line power deviations have settled at zero, similar to other control techniques. 

The fminsearch optimized FLPID 2 AGC has performed better than the basic FLPID 2 

AGC controller. It proves that optimisation can improve the controller response while 

satisfying other economic and environmental requirements.      

From figures 12.06 and 12.09, one can see that PDO AGC controller takes the whole 

control burden when the load disturbance is applied at PDO side and OETC AGC 

controller takes the whole control burden when the load disturbance is applied at OETC 

side. When the load disturbance is applied at PDO side, over a 7.79 seconds period of time 

(the time taken for the frequency to settle), PDO and OETC Integral of controllers' efforts 

are 0.68p.u. and 0 p.u. respectively. On the other hand, when the load disturbance is 

applied at OETC side, over a time period of 3.69 s (the time taken for the frequency to 

settle), PDO and OETC Integral of controllers' efforts are 0 p.u. and 0.12 p.u. respectively. 

From these results, minimal support is given by PDO and OETC AGC controllers when 

the load disturbance is applied outside its own control area. 

Overall the fminsearch optimisation technique can produce good results depending on the 

initial controller parameters values. It is noticed that fminsearch has produced different 
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solutions depending on the initial controller parameters values. It means that the 

fminsearch can easily be trapped by local minimum making it non attractive optimisation 

method.   

12.2.6. Summary 

The fminsearch optimized FLPID 2 AGC controller has improved the system response to 

load disturbances and has satisfied the AGC requirements. The fminsearch optimized 

FLPID 2 AGC has performed better than the basic FLPID 2 AGC controller. The 

fminsearch optimisation method can produce sub-optimum solutions depending on the 

initial controller parameters.  

 

 

 

 

12.3. Optimization of PDO-OETC AGC controller using Particle 

Swarm Optimisation method 

12.3.1. Introduction 

The particle swarm is an optimisation algorithm for finding the optimum regions in a 

complex search spaces through the interaction of individuals in a population of particles 

(Al-Omairi, 2007, p. 31). Particle Swarm Optimisation (PSO) is based on swarm of birds 

in the free space and is developed through simulation of a bird flocking in multi-

dimensional space (Al-Omairi, 2007, p. 31). Each particle or agent is represented by 

position vector X(t) and associated with velocity V(t). The agent is modified based on 

position and velocity information. The Particle swarm Optimisation (PSO) is iterative and 

in each iteration the agent is evaluated via objective function so that it knows its best value 

(pbest) as well as its position (Al-Omairi, 2007, p. 31). Moreover, each agent knows the 

best value so far in the group (gbest) among pbest of all agents (Al-Omairi, 2007, p. 31). 

Figure 12.10 summarises the basic concept of Particle swarm Optimisation. The concept is 

that each particle tries to modify its current position and velocity according to the distance 

between its current position and pbest, and the distance between its current position and 

gbest (Al-Omairi, 2007, p. 32). 
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Figure 12.10: Concept of updating individual position in Particle Swarm Optimisation (Al-

Omairi, 2007, p. 32) 

 

 

 

The particle Swarm Optimisation (PSO) can be summarised by the following seven steps: 

1. Initialisation step: starts by generating initial population randomly within the 

specified rang. Then, for each generated position an associated velocity is 

generated randomly within a calculated range based on position rang. 

[ ])0(...)0()0( ,1, mjjj xxX =  within the range [ ]maxmin , kk xx …..(12.2) 

[ ])0(...)0()0( ,1, mjjj vvV =  within the range [ ]maxmax , kk vv− …..(12.3) 

N

xx
v kk

k

minmax
max −

=   …………………………….(12.4) 

Where: 

n: the number of randomly generated position and velocity. 

m: number of variables. 

N: is a chosen number of intervals in the k
th

 dimension. 

2. Evaluation step: the initial searching point is set to pbest for each agent. Then, 

each agent is evaluated via objective function. The best-evaluated value of pbest is 

set to gbest. The evaluation step follows the following sequence: 

 1. Population is evaluated using objective function, J 

 2. Set )0()0(*

jj XX =  and jj JJ =*   

Vi(k+1) 

Vi(k) 

Xi(k) 

Vgbest 

Vpbest 

Xi(k+1) 
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 3. Find the best value of objective function and set it to Jbest 

 4. Set the particle associated with Jbest as the global X
**

(0) 

3. Velocity updating step: the velocity of each agent is modified by the following 

equation: 

( ) ( )[ ]

4,:

42

2

)1()1()1()1()1()(

21

2

,

**

,22,

*

,11,,

>+=

−−−
=

−−−+−−−+−=

ϕϕ

ϕϕϕ

ccwhere

K

txtxrctxtxrctvKtv kjkjkjkjkjkj

 

………………………………..(12.5) 

Where: 

c1 & c2 are specific weighting factors 

r1 & r2 are randomly generated numbers 

The random weighting of the control parameters in the algorithm results in a kind 

of explosion as particles' velocities and positional coordinates go towards infinity. 

The explosion has traditionally been contained through implementation of a 

parameter Vmax, which limits step size or velocity (Al-Omairi, 2007, p. 34). In other 

words, this parameter acts towards convergence of PSO.  

4. Position updating step: based on the updated velocities each particle changes its 

position according to the following equation: 

)1()( ,,, −+= txvtx kjkjkj     …………………………………….(12.6) 

From physics perspective, it can be noted from this equation that the velocity is 

added with displacement because the time increment is always one unit (Al-Omairi, 

2007, p. 34).  

5. Individual best updating step: each particle is evaluated according to the updated 

position. If Jj <J
*

j then the updated individual best as X
*

j(t)= Xj(t) and  J
*

j= Jj. 

6. Global best updating step: searches for the minimum value Jmin among J
*

j . If 

Jmin<J
**

 then the updated individual best is X
**

 = Xmin(t) and J
**

=Jmin. 

7. Stopping criteria step: In this project, the search will stop if one of the following 

criteria is satisfied: 

 1. The number of iterations reaches the maximum allowable number. 

 2. The number of iterations since the last change of the best solution is      

greater than or equal to a pre-specified number.       

 

Figure 12.11 shows a flow chart summarizing all above seven steps. 
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Figure 12.11: Particle Swarm Optimisation Algorithms (Al-Omairi, 2007, p. 35) 
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12.3.2. Optimisation of FLPID 2 AGC controller parameters using 

Particle Swarm Optimisation  

The Particle Swarm Optimisation (PSO) algorithm is used in this part of the study to 

optimize the performance of the earlier developed Fuzzy Logic PID 2 AGC controllers of 

both PDO and OETC. In this controller performance optimisation process, the five AGC 

guidelines mentioned earlier will be followed. The same cost function shown earlier in 

section 12.2.1 presented in Equation 12.1 will be used in this optimisation process. 

Therefore the overall PDO-OETC power system model will remain the same as shown 

earlier in Figure 12.1.  

In this optimisation process, the PSO will optimize both PDO and OETC FLPID2 AGC 

controllers' parameters simultaneously. There are ten parameters to be optimized, five of 

them are PDO AGC Fuzzy logic input scaling factors and the PID parameters. The other 

five are OETC AGC Fuzzy logic input scaling factors and the PID parameters. Unlike the 

fminsearch optimisation technique, the PSO does not require to start with initial values but 

it randomly generates the initial values. However, a specific range of parameters is 

required to limit the PSO search space. Limiting the search space will require less 

population number and hence less computation time. However limiting the search space 

might lead the PSO falling into local minima. To ensure the optimum solution is achieved, 

a careful guess of the parameters must be made. The personal experience and the trial and 

error are the only ways of determining the parameters range. Using trial and error 

approach, the following parameters ranges were found appropriate and are used for this 

optimisation process: 

PDO AGC controller: 

ACE input scaling factor (k1) = 0.51.5 

Rate of Change of ACE input scaling factor (k2) = 0.51.5 

PID gain (Kcpdo) = 0.51.5 

PID integral time constant (Tipdo)= 0.51 

PID differential time constant (Tdpdo) =0.250.75 

OETC AGC controller: 

ACE input scaling factor (k3) = 0.51.5 

Rate of Change of ACE input scaling factor (k4) = 0.51.5 

PID gain (Kcoetc) =0.51.5 

PID integral time constant (Tioetc) = 0.51 

PID differential time constant (Tdoetc) = 0.250.75 
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The population number is chosen to be 75 and the maximum number of iterations is chosen 

as 100. The number of iterations of unchanged solution is chosen to be 5.  

The PSO algorithm shown in Figure 12.11 was interpreted into MATLAB Mfile code and 

is named "PSOmin". Another Mfile was written to coordinate the optimisation exercise 

and is called "corPSO". The coordination Mfile "corPSO" will specify the parameters 

ranges, the population number, the maximum iteration number and the number of the 

unchanged solution iteration number. It will then call upon another Mfile which is called 

"simulator" which will load the rest of the model parameters values to the MATLAB 

workspace. Then the coordinator "corPSO" will specify another Mfile called "objective" 

which will be used to simulate the model and evaluate the cost function. The coordinator 

Mfile "corPSO" will then run PSO optimisation based on the given information. The 

"PSOmin" Mfile will run all the iterations and will return the answer as a set of optimised 

parameters. The process takes long time and sometime as long as 12 hrs depending on the 

computation speed, the parameters ranges, the population number and the maximum 

iteration number. All the used four Mfile codes are shown in Appendix 7.  

The optimisation process was run and returned the optimal FLPID2 AGC controllers 

parameters as shown in Table 12.3. 

 ACE input 

gain 

Rate of 

Change of 

ACE input 

gain 

PID 

controller 

gain 

PID 

controller 

Integral 

time 

constant 

PID 

controller 

derivative 

time 

constant 

PDO 1.1497 0.9267 0.9574 0.5274 0.3814 

OETC 1.3478 0.7249 1.4312 0.8123 0.2889 

Table 12.3: Optimum FLPID2 AGC controllers' parameters using Particle Swarm 

Optimisation method 

12.3.3. Simulation results 

The PDO-OETC power system refined model with the FLPID 2 AGC controllers using the 

optimum controllers' parameters shown in Table 12.3 was simulated when 100MW load 

disturbance is applied once at PDO side and once at OETC side. PDO frequency, OETC 

frequency, tie line power, PDO Integral of controller effort and OETC Integral of 

controller effort were monitored. Figures 12.12 -12.17 show PDO and OETC frequencies 

in one figure, the tie line power in a separate figure and PDO and OETC Integral of 

controllers efforts in one figure for both tests respectively. 
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Table 12.4 shows a summary of the performance values. The summary also compares the 

results of the base case, classical PID AGC controller, the LQR AGC controller, the Fuzzy 

PID 1 AGC controller, the fuzzy PID 2 AGC controller, the modified LQR AGC controller 

and the fminsearch optimised FLPID 2 AGC controller with the PSO optimised FLPID 2 

AGC controller performance. 
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Figure 12.12: PDO and OETC frequencies following a 100MW load disturbance at PDO 

side with the PSO optimised FLPID 2 AGC controller 
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Figure 12.13: Tie line power deviation following a 100MW load disturbance at PDO side 

with the PSO optimised FLPID 2 AGC controller   
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Figure 12.14: PDO and OETC PSO optimised FLPID 2 AGC Integral of controllers' 

efforts following a 100MW load disturbance at PDO side  
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Figure 12.15: PDO and OETC frequencies following a 100MW load disturbance at OETC 

side with the PSO optimised FLPID2 AGC controller 
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Figure 12.16: Tie line power deviation following a 100MW load disturbance at OETC side 

with the PSO optimised FLPID 2 AGC controller   
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Figure 12.17: PDO and OETC PSO optimised FLPID 2 AGC Integral of controllers' 

efforts following a 100MW load disturbance at OETC side 
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  Base case 

response 

PID 

controlled 

response 

LQR 

controlled 

response 

Fuzzy 

PID 1 

controlled 

response 

Fuzzy 

PID 2 

controlled 

response 

Modified 

LQR 

controlled 

response 

Fminsearch 

optimised 

FLPID 2 

controlled 

response 

PSO 

optimised 

FLPID 2 

controlled 

response 

Frequency 

deviation (Hz) 

-0.05 0 0 0 0 0 0 0 

Settling time (s) 10.9 34 11.3 28.1 8.17 10.1 7.79 3.18 

100MW 

load 

disturbance 

at PDO side Tie line power 

deviation (p.u.) 

-0.0379 0 0 0 0 0 0 0 

Frequency 

deviation (Hz) 

-0.05 0 0 0 0 0 0 0 

Settling time (s) 7.74 25.3 8.59 8.18 3.92 8.39 3.69 3.1 

100MW 

load 

disturbance 

at OETC 

side 

Tie line power 

deviation (p.u.) 

0.0121 0 0 0 0 0 0 0 

Table 12.4: PDO and OETC PSO optimised FLPID 2 AGC controllers' performance in 

comparison to the base case, the classical PID controller, the LQR controller, the Fuzzy 

PID1 controller, the Fuzzy PID2 controller, the modified LQR controller and the 

fminsearch optimised FLPID 2 controller. 

 12.3.4. Results Discussion  

From Figure 12.12 to 12.17 one can see that the Particle Swarm optimized FLPID 2 AGC 

controller has satisfied the basic AGC requirements and the dynamic response is very 

good. Table 12.4 also shows that the Particle Swarm optimized FLPID2 is superior to all 

previously adopted control techniques in terms of settling time. The steady state frequency 

and tie line power deviations settled at zero, similar to other control techniques. 

Generally, the Particle Swarm optimized FLPID 2 AGC has performed better than the 

fminsearch optimized FLPID 2 AGC controller if we compare the settling time and 

dynamic oscillations. It suggests that the PSO will not be trapped in a local minimum and 

can search for the optimum solution in a wider space than fminsearch. 

Similar to other control techniques and from figures 12.14 and 12.17, one can see that PDO 

AGC controller takes the whole control burden when the load disturbance is applied at 

PDO side and OETC AGC controller takes the whole control burden when the load 

disturbance is applied at OETC side. When the load disturbance is applied at PDO side, 

over a 3.18 seconds period of time (the time taken for the frequency to settle), PDO and 

OETC Integral of controllers' efforts are 0.2866p.u. and 0 p.u. respectively. On the other 

hand, when the load disturbance is applied at OETC side, over a time period of 3.1 s (the 

time taken for the frequency to settle), PDO and OETC Integral of controllers' efforts are 0 

p.u. and 0.1119 p.u. respectively. From these results, minimal support has been given by 

PDO and OETC AGC controllers when the load disturbance is applied outside its own 

control area. Comparing the integral of control effort of the PSO optimized FLPID2 AGC 
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controller with the previously reported result using the fminsearch optimized FLPID 2 

AGC controller, the Particle Swarm optimized FLPID 2 AGC controller has devoted less 

control effort and energy to get better dynamic response than the fminsearch optimized 

FLPID2 AGC controller.   

12.3.5. Summary 

The Particle Swarm optimized FLPID 2 AGC controller performance has been proved to 

be more superior in comparison to all previously adopted control techniques in this study. 

The Particle Swarm optimized FLPID 2 AGC controller has even devoted less Integral of 

control effort and produced better response in comparison to the fminsearch optimized 

FLPID 2 AGC controller. It suggests that PSO is better able to find the optimum solution 

than fminsearch.  

12.4. Overall discussion 

Two different optimisation techniques have been adopted to optimize PDO-OETC AGC 

controllers' performance using a set of AGC performance guidelines. The fminsearch 

technique has been adopted to optimize the FLPID 2 AGC controllers using a cost function 

which was built to satisfy all the AGC controller guidelines. Then the Particle Swarm 

Optimisation method is used to optimize the FLPID 2 AGC controllers using the same cost 

function which has been used in the fminsearch optimisation technique. The performance 

of both optimisation techniques is demonstrated through the performance of the associated 

AGC controllers and is summarised in Table 12.5.  

  Fminsearch optimised FLPID 

2 controlled response 

PSO optimised FLPID 2 

controlled response 

Steady state Frequency deviation (Hz) 0 0 

Dynamic maximum frequency deviation -0.075 -0.094 

Settling time (s) 7.79 3.18 

Steady state Tie line power deviation (p.u.) 0 0 

PDO AGC Integral of controller effort (p.u.) 0.68 0.2866 

100MW 

load 

disturbance 

at PDO 

side 

OETC AGC Integral of controller effort (p.u.) 0 0 

Steady state Frequency deviation (Hz) 0 0 

Dynamic maximum frequency deviation -0.026 -0.019 

Settling time (s) 3.69 3.1 

Steady state Tie line power deviation (p.u.) 0 0 

PDO AGC Integral of controller effort (p.u.) 0 0 

100MW 

load 

disturbance 

at OETC 

side 

OETC AGC Integral of controller effort (p.u.) 0.12 0.1119 

Table 12.5: Summary of the optimized AGC controllers' performance 

 

Furthermore the dynamic responses of both controllers are compared with each other 

through responses shown in Figures 12.18 to 12.23. The figures show PDO frequency 
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deviation, OETC frequency deviation and Tie line power deviation following a 100MW 

load disturbance at PDO and at OETC respectively.  
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Figure 12.18: PDO frequency following 100MW load disturbance at PDO side using 

fminsearch and PSO optimized PDO-OETC AGC controllers 
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Figure 12.19: OETC frequency following 100MW load disturbance at PDO side using 

fminsearch and PSO optimized PDO-OETC AGC controllers 
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Figure 12.20: Tie line power deviation following 100MW load disturbance at PDO side 

fminsearch and PSO optimized PDO-OETC AGC controllers 
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Figure 12.21: PDO frequency following 100MW load disturbance at OETC side using 

fminsearch and PSO optimized PDO-OETC AGC controllers 
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Figure 12.22: OETC frequency following 100MW load disturbance at OETC side using 

fminsearch and PSO optimized PDO-OETC AGC controllers 
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Figure 12.23: Tie line power deviation following 100MW load disturbance at OETC side 

using fminsearch and PSO optimized PDO-OETC AGC controllers 

From Table 12.5, it can be noted that both controllers have satisfied the zero steady state 

condition of frequency deviation and tie line power deviation. When the disturbance is 

applied at PDO side and considering the maximum dynamic deviation, the fminsearch has 
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performed better than the PSO. The PSO settling time is superb and far better than the 

fminsearch. The PSO Integral of controller effort is also much better than the fminsearch.    

When the disturbance is applied at OETC side, the PSO controller has performed better in 

terms of maximum dynamic deviation and settling time though the Integral of controllers' 

efforts are in the same range.  

From Figures 12.18 to 12.23, one can see that the PSO optimized AGC controllers 

dynamic response is generally better than the fminsearch AGC controllers.  

Moreover, the fminsearch optimum results depend very much on the initial values of the 

controller parameters. It means that fminsearch is more vulnerable to be trapped in local 

minimum.  

12.5. Summary  

Using general guidelines for the optimum AGC controller performance, two different 

optimisation techniques were used to optimize the PDO-OETC FLPID2 AGC controllers' 

performance. The Particle Swarm optimized AGC controller has produced better dynamic 

response than the fminsearch optimized AGC controller. It was also evident that 

fminsearch optimisation method can easily be trapped in local minimum and therefore 

producing sub-optimum solution.     
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Chapter 13: PDO-OETC AGC controllers robustness test 

13.1. Introduction 

In this part, the robustness of the optimised PDO-OETC AGC controllers will be assessed. 

The robustness assessment approach exposes the optimised AGC controllers to uncertain 

model whereby the model parameters are changed in a certain range. The robustness 

assessment is intended to show how robust is the optimised AGC controllers performance 

to model uncertainties and changing operating points. 

In real life, the power system configuration and operating points change continuously 

resulting in key model parameters changes. For example, the number of synchronised 

generating units will affect the total inertia value and hence the system response to load 

disturbances. Moreover, modelling errors are inherited with any modelling process due to 

many factors like incomplete knowledge of the system and optimistic assumptions. 

Furthermore, the seasonal variation in the ambient temperature affects the droop control 

capability of the power system as identified earlier in the model validation chapter. 

Certain model parameters have been identified contributing significantly to the overall 

PDO-OETC model response. Those particular parameters are used to accomplish this task.     

13.2. Methodology 

From the parameters sensitivity tests conducted earlier in section 5.4, the system inertia 

and synchronising torque coefficient were seen to have the most significant influence on 

the system response. In real life, the system inertia does change in line with the number of 

synchronised units to the grid. It also changes due to the natural growth of the power 

system and the addition of new generating units. The synchronising torque coefficient is a 

function of the torque angles and the system voltages; therefore it changes on daily basis 

due to the changing operating points. Add to that, increasing the interconnection capacity 

will have significant impact on the sysnchronising torque coefficient.  

It is very well known that different droop control settings will significantly change the 

power system response to load disturbances. When some generating units loading is fixed 

due to preselect load control mode or some generating units reached their base load during 

the hot summer, the overall system droop capability is jeopardised and is seen as a change 

in the droop setting. Moreover, it could be the preference of some operators to operate the 

generating units on 3% or 5% droop setting rather than the nominal 4% droop setting.  
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As discussed in sections 9.6.3.1 and 9.8.9, the frequency-response characteristic factor  

used for calculating Area Control Error (ACE) will have an impact on the system response 

to load disturbances. When the AGC is applied to both PDO and OETC control areas, 

errors in calculating the factor  will impact the dynamic system response to load 

disturbances.  

Based on above discussion, the following four parameters are used to carry out the 

optimised AGC controllers' robustness test: 

• System inertia (PDO and OETC) 

• Synchronising torque coefficient 

• Droop control setting (PDO and OETC) 

• Frequency-response characteristic factor  

The following parameters ranges are assumed to be adequate for this task: 

• PDO area inertia Hpdo (tuned value is 4.8417 s): 4 seconds to 5 seconds in steps of 

0.25 seconds (allowing for a positive error equivalent to adding a new F6B 

generating unit and a negative error equivalent to taking  one F9E, one F6A and 

F6B on standby mode or for maintenance during winter) 

• OETC area inertia Hoetc (tuned value is 15.5023 s): 14 seconds to 16 seconds in 

steps of 0.5 seconds (allowing for a positive error equivalent to adding a new F9E 

generating unit and a negative error equivalent to taking  three F9E, and F6B on 

standby mode or for maintenance during winter) 

• Synchronising torque coefficient Tiv (tuned value is 0.7220 p.u.MW/Hz) :0.7 

p.u.MW/Hz to 1 p.u.MW/Hz in steps of 0.1 p.u.MW/Hz (allowing for wide 

positive error equivalent to doubling the interconnection capacity in future and a 

narrower negative error for changing operating points) 

• PDO droop control setting Rpdo (nominal value is 4%): 3% to 5% in steps of 1% 

(allowing for da change in droop settings, preselect load on some units or seasonal 

variations in ambient temperatures)  

• OETC droop control setting Roetc (nominal value is 4%): 3% to 5% in steps of 1% 

(allowing for da change in droop settings, preselect load on some units or seasonal 

variations in ambient temperatures)   

• PDO frequency-response characteristic factor Bpdo (nominal value is 0.24215 

p.u.MW/Hz): 0.21794 to 0.26636 in steps of 0.02421 (to allow for ±10% 

calculation error) 
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• OETC frequency-response characteristic factor Boetc (nominal value is 0.76151 

p.u.MW/Hz): 0.68536 to 0.83766 in steps of 0.07615 (to allow for ±10% 

calculation error) 

A MATLAB Mfile code has been written to simulate the PDO-OETC refined model while 

changing the above parameters within the specified ranges. The code will eventually 

produce the model response envelop with all the simulated conditions. Four cases has been 

simulated which are,  

1. The PDO-OETC power system refined model without AGC controllers 

2.  The PDO-OETC power system refined model with the modified LQR 

controller 

3. The PDO-OETC power system refined model with the fminsearch 

optimised FLPID2 controller 

4. The PDO-OETC power system refined model with the PSO optimised 

FLPID2 controller. 

For simplicity, 100MW load disturbance is applied at PDO only and PDO frequency is the 

only monitored response. The MATLAB Mfile code is shown in Appendix 8. 

13.3. Simulation results 

The PDO-OETC power system model has been simulated as specified above in section 

13.2 and the results are shown in shown in Figures 13.1 to 13.4. The controller robustness 

indicators which can be deduced from the envelop figures are the steady state values 

envelop, the dominant settling time and whether all response lines are following the same 

dynamic pattern or not.   
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Figure 13.1: PDO frequency response envelop following 100MW load disturbance at PDO 

side without AGC controller 
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Figure 13.2: PDO frequency response envelop following 100MW load disturbance at PDO 

side with the modified LQR AGC controller 
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Figure 13.3: PDO frequency response envelop following 100MW load disturbance at PDO 

side with the fminsearch optimised FLPID2 AGC controller 
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Figure 13.4: PDO frequency response envelop following 100MW load disturbance at PDO 

side with the PSO optimised FLPID2 AGC controller 
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13.4. Results discussion 

From Figure 13.1, it can be seen that the PDO-OETC power system dynamic behaviour 

can change over time when the system operating points change. It is also evident that 

overall model dynamic response is sensitive to modelling errors and uncertainties. When 

considering the uncontrolled model, the response envelop is very wide especially towards 

the steady state value. The steady state deviation value is predominantly affected by the 

droop control settings. The frequency-response characteristic factor values, inertia values 

and the synchronising torque coefficient mainly affect the oscillations and settling time.  

From Figures 13.2 to 13.4 one can see that the modified LQR AGC controlled response 

lines follow the same pattern whereas the fminsearch optimised FLPID2 AGC and the PSO 

optimised FLPID2 AGC controlled responses lines do not strictly follow the same pattern. 

The result suggests that the modified LQR AGC controller is more robust to power system 

operating points changes and modelling errors than the fminsearch optimised FLPID2 

AGC and the PSO optimised FLPID2 AGC controllers. However the PSO optimised 

FLPID2 AGC and the fminsearch optimised FLPID2 AGC controllers have maintained the 

good performance in terms of settling time while the modified LQR AGC controllers has 

extended the settling time for different operating points. 

In general, all the above three controllers show acceptable robustness to the model 

parameters changes which suggests that any of those three controllers will be suitable for 

practical application. It is also evident that there is a trade off between the controller 

performance in terms of settling time and the controller robustness.     

13.5. Summary 

The robustness of modified LQR, fminsearch optimised FLPID2 and the PSO optimised 

FLPID2 AGC controllers was tested. The modified LQR AGC controller shows better 

robustness to model parameters changes when it is compared with the fminsearch 

optimised FLPID2 and the PSO optimised FLPID2 AGC controllers. However, the 

fminsearch optimised FLPID2 and the PSO optimised FLPID2 AGC controllers have 

preserved the good settling time although their dynamic response does not strictly follow 

the same pattern for different model parameters. Overall all three controllers have shown 

acceptable robustness towards modelling errors and changes in the operating points of the 

PDO-OETC power system. Therefore, from robustness point of view, all three controllers 

can be recommended for practical application.    
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Chapter 14: Assessment of GCC interconnection impact 

on PDO-OETC power system AGC controllers 

performance 

14.1. Introduction 

The Gulf Cooperation Council (GCC) is a regional organization established in May 1981 

by Sultanate of Oman, Bahrain, Kuwait, Qatar, Saudi Arabia and United Arab Emirates 

(Konstantinos et al, 2007). The main objective of the GCC is developing and solidifying 

the political, economical, and social ties among the member states (Al-Asaad, 2009). 

Together with the high population growth rate and the economic growth of about 6% 

annually, the GCC has been encountering exponential growth in electricity demand 

approaching 10 percent annually in many of member states (Al-Asaad, 2009). As one of 

the cooperation initiatives amongst the GCC states, and following extensive feasibility 

studies, the GCC Electrical Interconnection Authority was established in July 2001 by 

Royal Decree with its headquarter located in Dammam, and control center in Ghunan, 

Saudi Arabia. Since then the individual states has been investing in their respective 

transmission network looking forward towards fully integrated GCC network. The GCC 

electrical interconnection capacity was firmed as in Table 14.1 and the capital cost sharing 

was allocated accordingly. All the GCC states operate with a power supply of 50Hz 

frequency except Saudi Arabia operating at a power supply of 60Hz frequency which 

necessitates the introduction of HVDC link as shown in Figure 14.1. The overall GCC 

electrical interconnection route is shown in Figure 14.2.  

System Size (MW) 

Kuwait 1200 

Saudi Arabia 1200 

Bahrain 600 

Qatar 750 

UAE 900 

Oman 400 

Table 14.1: Size of interconnection to each GCC state 
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Figure 14.1: Conceptual diagram of the GCC interconnection system 

 

Figure 14.2: Approximate route and layout of GCC interconnection 
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The GCC interconnection has an immediate benefit in terms of sharing spinning reserve. 

Sharing spinning reserve can be translated into less installed generation capacity 

requirement, lower fuel consumption and enhanced security of supply.  

The GCC interconnection was planned to be completed in phases. Phase I is to 

interconnect Kuwait, Saudi Arabia, Bahrain and Qatar and the project was formally 

inaugurated on 14
th

 of December 2009 and is called the GCC North grid. Phase II of the 

project is the interconnection of the independent systems in the UAE as well as Sultanate 

of Oman which is ongoing and is called the GCC South grid. Phase III of the project is to 

interconnect the GCC North grid with GCC South grid which is still pending.  Upon 

completion of Phase II and Phase III of the project, all the six GCC states will be 

electrically interconnected.     

14.2. Methodology 

The main objectives of this part of the study are to study the impact of GCC 

interconnection on both PDO and OETC power systems and to assess the performance of 

PDO-OETC AGC in light of the GCC interconnection. The GCC interconnection Phase I 

is already in operation comprising the four states: Saudi Arabia, Kuwait, Bahrain and 

Qatar. Since Saudi Arabia is connected to the GCC grid through HVDC link, there will be 

minimal dynamic interaction between the GCC 50Hz frequency and the Saudi Arabia 

60Hz frequency. Essentially, the power exchange between Saudi Arabia and the rest of 

GCC grid will act as a load disturbance at GCC grid. Hence Saudi Arabia power system 

will not be considered as a stand alone control area. Since Kuwait, Bahrain and Qatar are 

interconnected with a 400kV lines, they are electrically close to each other. Therefore they 

can be considered as one control area. Phase II of the GCC interconnection project is to 

interconnect Sultanate of Oman grid (OETC) to UAE grid, hence UAE power system can 

be assumed as a stand alone control area. Based on those two assumptions, there will be a 

total of 4 control areas upon completion of phase III of the GCC interconnection project:  

1. PDO 

2. OETC 

3. UAE 

4. GCC North (Kuwait, Bahrain and Qatar) 

The above statement is good enough for qualitative frequency dynamics assessment but 

may not be true for sophisticated dynamic analysis. Since the focus of this part of the study 

is to assess the high level impact of GCC interconnection, the above assumptions are 

acceptable. The UAE control area and Kuwait, Qatar and Bahrain control area will be 
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modelled based on correlation with OETC control area in terms of inertia values, load 

damping torque and generators damper windings torque. The correlation will be based on 

the total installed capacity in each of UAE, Kuwait, Bahrain and Qatar. The turbines 

parameters will be assumed common for all control areas. All these assumptions are 

necessary to avoid the non-feasible amount of work required to accurately model each and 

every state power system based on the as built data.  

In summary there are four cases during which the frequency dynamic and steady state 

response following load disturbances will be assessed: 

1. PDO, OETC and UAE control areas interconnected and no AGC applied at PDO 

or OETC 

2. PDO, OETC and UAE control areas interconnected with AGC applied at PDO and 

OETC 

3. PDO, OETC, UAE and GCC North control areas interconnected and no AGC 

applied at PDO or OETC 

4. PDO, OETC, UAE and GCC North control areas interconnected with AGC applied 

at PDO and OETC 

 

14.3. Modelling 

14.3.1. Overall GCC power system model 

PDO and OETC control areas remain the same as per the base case used earlier in section 

9.5. During cases 2 and 4 above, the PSO optimised FLPID2 PDO-OETC AGC controller 

will be used. However, the reference grid frequency of the generators damper windings 

torque will change. The following discussion demonstrates the reference grid frequency for 

the generators in each control area: 

• Since PDO is interconnected with OETC only, the obvious reference grid 

frequency is OETC frequency. 

• OETC is interconnected with both PDO and UAE. However OETC is 

interconnected with UAE using 220kV lines versus 132kv lines with PDO making 

it electrically closer to UAE. Therefore the reference grid frequency for OETC is 

UAE frequency.   

• UAE is interconnected to both OETC and GCC North. Since UAE is 

interconnected with GCC North using 400kV lines versus 220kv lines with OETC, 

hence it is electrically closer to GCC North. Therefore the reference grid frequency 
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for UAE is GCC North frequency. However for the case when UAE is not yet 

interconnected with GCC North as of Phase II of the project, the obvious reference 

grid frequency is OETC frequency.  

• Since GCC North is interconnected with UAE only, the obvious reference grid 

frequency is UAE frequency. 

 

Based on the above discussion and the requirement of simulating the four cases mentioned 

in section 14.2 the overall GCC power system models adopted for this study comprises 

three control areas model and four control areas model which are shown in Figures 14.3 

and 14.4 respectively. .  

The third control area (UAE power system) and the fourth control area (GCC North grid) 

will be modelled in the following sections.    
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Figure 14.3: three control areas GCC interconnected power system model used for AGC 

study 
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Figure 14.4: four control areas GCC interconnected power system model used for AGC 

study 
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14.3.2. Third GCC control area (UAE power system) model 

14.3.2.1. Prime movers model 

In this part, the gas turbines and the steam turbines parameters are assumed to be the same 

as in OETC and PDO. The droop control setting is assumed to be similar to PDO and 

OETC of 4% and therefore the UAE droop control constant (Ruae) is 2Hz.  

14.3.2.2. Tie line model 

Similar to the PDO-OETC synchronising torque calculation carried in section 4.7.1, the 

OETC-UAE synchronising torque coefficient can be calculated given the following 

information: 

• Short circuit level at OETC AlWasit substation is 3239MVA (based on 

consultation with experts) 

• Short circuit level at UAE AlOuhah substation is 3811MVA (based on consultation 

with experts) 

• Typical 220kV overhead transmission line impedance is 0.3213 ohm per km (based 

on consultation with experts) 

• There are three 52km of 220kV OHTL circuits between OETC and UAE 

Following the same approach given in section 4.7.1, the synchronising torque coefficient 

of the interconnection between OETC and UAE is calculated to be 4.586 p.u. MW/Hz.  

14.3.2.3. Control area model 

Since there are no published actual data about generation and load of other GCC countries, 

forecasted figures have to be used. Al-Alawi (1999) has forecasted OETC load and 

Generation to be 2468MW and 3077MW respectively for the year 2010. Comparing these 

figures with the actual ones adopted for the base case in section 4.7.1 which are 2400MW 

for the load and 2927MW for the generation, we can see they are closely matching. 

Knowing that the base case figures in section 4.7.1 are based on 2007 actual data, we can 

assume that the annual growth assumed by Al-Alawi (1999) is less than the actual growth 

and therefore all the figures he forecasted for 2010 are actually suitable for the 2007 base 

case. Since Al-Alawi (1999) has forecasted that UAE generation capacity by the year 2010 

is 7275MW and the load is 5971MW, these figures will be used for the 2007 base case. For 

modelling the UAE control area, a direct correlation with OETC control area is assumed 

reasonable. Since OETC generation is 2927MW and the calculated OETC inertia in section 

4.7.1 is 14.03546 (s), the UAE system inertia is calculated as below: 

UAE control area inertia constant H= (UAE generation/OETC generation) x OETC 

inertia= (7275/2927) x 14.03546 = 34.8849 s 
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Same calculation as in section 4.7.1 is followed to calculate the load frequency damping 

factor. Given that UAE load is 5971MW and assuming 30% of the load is industrial and 

70% residential, the load frequency damping factor is calculated to be 84.2X10
-3

 

p.u.MW/Hz. 

The UAE generation damper winding coefficient can be calculated in a similar fashion as 

in section 7.3.2: 

HzMWupUAEK /..105.1457275
502000

2
)( 3−×=×

×
=  

Since almost all the GCC states have the same requirements for water desalination and 

therefore the existence of steam turbines, it is fair to assume that they have the same 

percentage contribution from steam turbines in opposition to gas turbines as in OETC. 

Therefore UAE steam turbines and gas turbines contribution to the overall generation is 

calculated in correlation with OETC steam turbines and gas turbines contribution. The 

overall UAE p.u. generation based on 2000MVA base is 3.6375 p.u. MW. The steam 

turbines and gas turbines contribution is then calculated in correlation with OETC control 

area and is found to be: 

• Steam turbines contribution = 0.73322p.u.MW 

• Gas turbine contribution = 2.90428 p.u. MW 

 

14.3.2.4. Overall UAE control area reduced model 

The overall UAE control area reduced model is shown in Figure 14.5 and the model 

parameters are summarised in Table 14.2. 
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Figure 14.5: UAE control area reduced model 
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Tgg 

(s) 

Tgc 

(s) 

Tgch 

(s) 

Tsg 

(s) 

Tsch 

(s) 

Kguae 

(p.u.MW) 

Ksuae 

(p.u.MW) 

Ruae 

(Hz) 

Huae 

(s) 

Kduae 

(p.u.MW/Hz) 

Duae 

(p.u.MW/Hz) 

0.05 0.05 0.4 0.2 0.3 2.90428 0.73322 2 34.8849 145.5X10-3 84.2X10-3 

Table14.2: UAE control area reduced model parameters. 

14.3.3. Fourth GCC control area (Kuwait, Bahrain, Qatar) model 

14.3.3.1. Prime movers model 

Same as in section 13.4.2.1, steam turbines and gas turbines models parameters are 

assumed to be the same as in OETC and PDO power system model. The droop control 

settings will also be assumed to be 4% as it is very common in the power system utilities. 

Therefore the GCC North grid control area droop control constant (Rgcc) will be 2Hz.  

14.3.3.2. Tie line model 

Similar to the PDO-OETC synchronising torque calculation carried in section 4.7.1, the 

UAE-North GCC system synchronising torque coefficient can be calculated given the 

following information: 

• Short circuit level at UAE Shuwaihat substation is assumed to be 5000MVA (based 

on consultation with experts) 

• Short circuit level at Qatar Salwa substation is assumed to be 5000MVA (based on 

consultation with experts) 

• Typical 400kV overhead transmission line impedance is 0.310 ohm per km (based 

on consultation with experts) 

• There are two 150km of 400kV OHTL circuits between UAE and GCC North grid 

Following the same approach given in section 4.7.1, the synchronising torque coefficient 

of the interconnection between OETC and UAE is calculated to be 5.761 p.u. MW/Hz.  

14.3.3.3. Control area model 

Al-Alawi (1999) has forecasted that the total generation capacity of Kuwait, Bahrain and 

Qatar by the year 2010 is 20663MW and the total load is 16294MW. The same discussion 

as in section 14.3.2.3 is applicable here and therefore all the figures forecasted for 2010 are 

actually suitable for the 2007 base case. For modelling the GCC North grid control area, a 

direct correlation with OETC control area is assumed reasonable. Therefore since OETC 

generation is 2927MW and the calculated OETC inertia in section 4.7.1 is 14.03546 (s), 

the GCC North grid system inertia is calculated as below: 

GCC North grid control area inertia constant H= (GCC North grid generation/OETC 

generation) x OETC inertia= (20663/2927) x 14.03546 = 99.0826 s 
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Same calculation as in section 4.7.1 is followed to calculate the load frequency damping 

factor. Given GCC North grid total load is 16294MW (Al-Alawi, 1999) and assuming 30% 

of the load is industrial and 70% residential, the load frequency damping factor is 

calculated to be 187.381X10
-3

 p.u.MW/Hz. 

The GCC North generation damper winding coefficient can be calculated in a similar 

fashion as in section 7.3.2: 

HzMWupGCCnorthK /..1026.41320663
502000

2
)( 3−×=×

×
=  

Same as in section 14.3.2.3, the GCC North grid system steam turbines and gas turbines 

contribution to the overall generation is calculated in correlation with OETC steam 

turbines and gas turbines contribution. The overall GCC North grid p.u. generation based 

on 2000MVA base is 10.3315 p.u. MW. The steam turbines and gas turbines contribution 

is then calculated in correlation with OETC control area and it is found to be: 

• Steam turbines contribution = 2.0825p.u.MW 

• Gas turbine contribution = 8.249 p.u. MW 

 

14.3.3.4. Overall GCC North grid control area reduced model 

The overall GCC North grid control area reduced model is shown in Figure 14.6 and the 

model parameters are summarised in Table 14.3. 
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Figure 14.6: GCC North grid control area reduced model 

 

Tgg 

(s) 

Tgc 

(s) 

Tgch 
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Tsg 
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(s) 

Kggccnorth 
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(Hz) 

Hgccnorth 

(s) 

Kdgccnorth 

(p.u.MW/Hz) 

Dgccnorth 

(p.u.MW/Hz) 

0.05 0.05 0.4 0.2 0.3 8.249 2.0825 2 99.0826 413.26x10-3 187.381X10-3 

Table14.3: GCC North grid control area reduced model parameters. 
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14.4. Simulation results 

The three control areas model (PDO, OETC and UAE) shown in figure 14.3 has been used 

to simulate the following six scenarios:  

1. 100MW load disturbance applied at PDO with NO AGC on PDO or OETC 

2. 100MW load disturbance applied at OETC with NO AGC on PDO or OETC 

3. 100MW load disturbance applied at UAE with NO AGC on PDO or OETC 

4. 100MW load disturbance applied at PDO with AGC on PDO and OETC 

5. 100MW load disturbance applied at OETC with AGC on PDO and OETC 

6. 100MW load disturbance applied at UAE with AGC on PDO and OETC 

The four control areas model shown in Figure 14.4 has been used to simulate the following 

eight scenarios: 

1. 100MW load disturbance applied at PDO with NO AGC on PDO or OETC 

2. 100MW load disturbance applied at OETC with NO AGC on PDO or OETC 

3. 100MW load disturbance applied at UAE with NO AGC on PDO or OETC 

4. 100MW load disturbance applied at GCC North grid with NO AGC on PDO or 

OETC 

5. 100MW load disturbance applied at PDO with AGC on PDO and OETC 

6. 100MW load disturbance applied at OETC with AGC on PDO and OETC 

7. 100MW load disturbance applied at UAE with AGC on PDO and OETC 

8. 100MW load disturbance applied at GCC North grid with AGC on PDO and OETC 

The PSO optimised FLPID2 controller has been used whenever AGC is applied to PDO 

and OETC control areas in all above scenarios.  

The size of load disturbance has been maintained as 100MW through all tests although it 

looks small for such a big interconnected power system. The reasons behind it are a) the 

system response characteristics are similar for different load disturbances values as 

discussed in section 5.3 and b) for ease of comparison with the previously obtained results.     

For each scenario, two figures have been produced to show all control areas frequency in 

one figure and all tie line power exchanges in another figure. Accordingly for a total of 

fourteen scenarios, twenty eight graphs have been produced and are shown in Figures 14.7 

to 14.34 in Appendix 9.  

A summary table of all the frequency deviation, tie line power exchange and settling time 

of all control areas for all scenarios was produced and is shown in Table 14.4. The table 

also includes the frequency deviation, tie line deviation and settling times of the base case 

of PDO and OETC interconnected power system without AGC and with PSO optimised 
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FLPID 2 AGC controller for comparison purpose. All the settling times are taken as the 

time taken for PDO frequency to settle down to the nearest ±0.001Hz.  

 Load disturbance Steady 

state 

frequency 

deviation 

(Hz) 

Settling 

time (s) 

PDO-

OETC tie 

line power 

deviation 

(p.u.) 

OETC-

UAE tie 

line 

power 

deviation 

(p.u.) 

UAE-GCC 

North tie 

line power 

deviation 

(p.u.) 

100MW load disturbance at PDO -0.05 10.9 -0.0379 NA NA PDO & 

OETC only 

with No 

AGC 

100MW load disturbance at 

OETC 

-0.05 7.74 0.0121 NA NA 

100MW load disturbance at PDO 0 3.18 0 NA NA PDO & 

OETC only 

with AGC 

100MW load disturbance at 

OETC 

0 3.1 0 NA NA 

100MW load disturbance at PDO -0.017 12.7 -0.0458 -0.0327 NA 

100MW load disturbance at 

OETC 

-0.017 10.6 0.0042 -0.0327 NA 

PDO, 

OETC and 

UAE with 

No AGC 100MW load disturbance at UAE -0.017 6.9 0.0042 0.0173 NA 

100MW load disturbance at PDO 0 5.52 0 0 NA 

100MW load disturbance at 

OETC 

0 1.37 0 0 NA 

PDO, 

OETC and 

UAE with 

AGC 

applied at 

PDO and 

OETC only 

100MW load disturbance at UAE -0.017 2.29 0.0042 0.0173 NA 

100MW load disturbance at PDO -0.006 11.3 -0.0485 -0.044 -0.0324 

100MW load disturbance at 

OETC 

-0.006 11 0.0015 -0.044 -0.0324 

100MW load disturbance at UAE -0.006 8.15 0.0015 0.0061 -0.0324 

PDO, 

OETC, 

UAE and 

GCC North 

with No 

AGC 

100MW load disturbance at GCC 

North 

-0.006 5.14 0.0015 0.0061 0.0176 

100MW load disturbance at PDO 0 6.39 0 0 0 

100MW load disturbance at 

OETC 

0 3.73 0 0 0 

100MW load disturbance at UAE -0.006 3.66 0.0015 0.0061 -0.0324 

PDO, 

OETC, 

UAE and 

GCC North 

with AGC 

applied at 

PDO and 

OETC only 

100MW load disturbance at GCC 

North 

-0.006 2.55 0.0015 0.0061 0.0176 

Table 14.4: Summary of GCC interconnection impact assessment results 
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14.5. Results discussion 

From Figures 14.7 to 14.34 in Appendix 9, it is clear that the system frequency is stabilised 

following 100MW load disturbance at any particular control area considering all fourteen 

scenarios. In fact, the more interconnected generators are, the heavier is the system inertia 

and therefore the stiffer is the system frequency and the lesser is the steady state frequency 

deviation for a given load disturbance size. This is clearly demonstrated and can be seen 

from Table 14.4 by comparing the steady state frequency deviation following same load 

disturbances when PDO and OETC power systems are alone (-0.05Hz), when they are 

interconnected with UAE only (-0.017 Hz) and when they are interconnected with both 

UAE and GCC North control areas (-0.006Hz). 

Consider the scenarios where PDO and OETC are interconnected with UAE with no AGC; 

it is clear from Figures 14.7 to 14.12 in Appendix 9 that the system frequency is highly 

oscillatory when the load disturbance is applied at the middle control area which is OETC 

in this particular case. This is caused by inter-area oscillations. The inter area oscillations 

exist because of the power flow in the tie lines between control areas is not in the same 

direction and will result on either ends control areas oscillating against each other. The 

system frequency oscillation has been significantly improved when the AGC is applied at 

PDO and OETC for the three control areas system which can be clearly seen from Figures 

14.13-14.18 in Appendix 9.  

Similarly for the four control areas interconnected system, from Figures 14.19 to 14.26 in 

Appendix 9, there is clear indication of serious inter area oscillations when the load 

disturbance is applied at the middle control areas OETC or UAE while AGC is not applied 

at PDO and OETC. This is again due to the cross flow of power in the tie lines between the 

control areas resulting in either ends control areas oscillating against each other. When the 

AGC is applied at PDO and OETC, the scenario has improved and the oscillations have 

been remarkably damped as can be seen from Figures 14.27 to 14.34 in Appendix 9.  

From Table 14.4, considering the tie lines power exchange when AGC is not applied, one 

can deduce that individual control areas contributes with the same amount of power 

following load disturbance regardless of the disturbance location. For example, PDO 

contribution to outside 100MW load disturbances considering the three control areas 

system is 0.0042p.u. MW regardless of the disturbance location whether it has been at 

OETC or at UAE.   Similarly for the four control areas system, when a 100MW load 

disturbance is applied at either OETC or UAE or GCC North, PDO contribution is 

0.0015p.u. MW through the tie line power. From Table 14.4, it is also clear that control 

areas with AGC do not need steady state power support following internal load 
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disturbance. It is an important advantage of using AGC especially in a complicated 

interconnected power system.   

Consider when all the four control areas PDO, OETC, UAE and GCC North are 

interconnected and AGC is not applied to any of those four control areas. When the 

disturbance of 100MW is applied at PDO, most of the power mismatch will be 

compensated by the other control areas as can be clearly seen from Figure 14.20 in 

Appendix 9 and Table 14.4. The power flow in the PDO-OETC tie line is 0.0485 p.u. MW 

towards PDO which equals to 97MW. There are two issues associated with the enormous 

support from the neighbouring control areas to PDO. The first one is that even if PDO is 

maintaining its own spinning reserve, it will not need it and PDO generators will not have 

the chance to convert the spinning reserve to MW. This is due to the very high 

accumulated generators inertia in the neighbouring control areas. Hence, it may not be 

economical for PDO to maintain its own spinning reserve. Therefore it is worth 

considering sharing spinning reserve with neighbouring control areas through formal 

agreement.  

The second issue is the limitation in PDO-OETC tie line capacity. Knowing that the 

existing PDO-OETC tie line over-current protection is set to 100MVA for 1.5 seconds, 

there will be a great chance that the tie line over-current protection will capture the power 

swing shown in Figure 14.20 in Appendix 9 or even the steady state flow and trip the line 

creating a very difficult scenario at PDO. Therefore PDO and OETC will have to revise 

their interconnector over-current protection settings to avoid the unnecessary outage of the 

tie line during a 100MW load disturbance at PDO side. Increasing the setting is 

permissible since the thermal capacity of the line is 180MVA. However when AGC is 

applied at PDO, the PDO-OETC tie line power flow will not trigger the existing over-

current protection as can be seen from Figure 14.28 in Appendix 9 and Table 14.4. 

Therefore AGC is advantageous in stabilising the power system and alleviating the need 

for upgrading the interconnector capacity or raising the protection settings. 

14.6. Summary 

PDO and OETC control areas will enjoy the stiff system frequency when interconnected 

with other GCC control areas. There will be an enormous power support following load 

disturbances when AGC is not considered to the extent that PDO and OETC need to revise 

the over-current protection settings of their tie line or increase the interconnection capacity 

before the GCC interconnection project is fully commissioned. However, the AGC will 

improve the dynamics and will help damping the inter-area oscillations if implemented. 
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Therefore the AGC will alleviate the need of revising the PDO-OETC interconnector 

protection settings or upgrading the interconnector capacity. PDO will not require 

maintaining its own spinning reserve hence it is recommended to share spinning reserve 

with the neighbouring control areas. Overall, the GCC interconnection project will have 

direct benefits to PDO and OETC.    
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Chapter 15: Conclusion 

This research has presented a coherent case study of applying Automatic Generation 

Control to PDO-OETC interconnected power system. The study has started with traditional 

power system modelling for Automatic Generation Control analysis. The developed model 

has then been through extensive testing to explore its basic characteristics. The developed 

model has then been validated against real data recorded from the field during major 

occurrences at PDO-OETC interconnected power system. The validation process has 

proved that the developed model still needs further improvement.  

Traditional and novel approaches have then been followed to refine the developed model 

aiming to match the developed model response with the real life recorded data. The 

refining process has achieved its milestone and the refined model response is very close to 

the reality. Accordingly the refined model has been declared suitable for further analysis. 

The refined model has also been suitably converted to state space representation ready for 

further use. 

The refined PDO-OETC model has then been used as basis to study the performance 

characteristics of fifteen different AGC topologies. Traditional Zeigler Nichols PID 

controller has been used for this purpose. Although the traditional Zeigler Nichols PID 

controller is a very basic controller but it is very easy to design and fit for the purpose of 

investigating the general characteristics of each AGC control topology.      

A total number of five control topologies out of the fifteen are found not suitable for AGC 

control practical application. A total number of seven control topologies are recommended 

for AGC practical application and another three control topologies can be applied but with 

cautious. 

The AGC control topologies assessment has been followed by detailed design of AGC 

controller using different control techniques namely Linear Quadratic Regulator (LQR) 

and Fuzzy Logic theory. Both control techniques have been applied to PDO-OETC AGC 

control. A combination of Fuzzy logic and traditional PID AGC controller proved to be 

very efficient and has produced fantastic results. The LQR AGC controller has also 

produced comparable results as with the Fuzzy PID AGC controller.      

The Fuzzy Logic PID AGC controllers' performance has then been further optimised using 

some control guidelines in order to produce better dynamic and steady state response, 

reduce wear and tear in the power system generation units and reduce the environmental 

impact by reducing fuel consumption. A set of control guidelines are stipulated for the 

optimisation process extracted from the Grid code and PDO-OETC service level 
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agreement. Different optimisation methods have been utilised like multidimensional 

unconstrained nonlinear minimization (fminsearch) function and Particle Swarm 

Optimisation (PSO) method. The optimized Fuzzy Logic PID AGC controllers have 

produced better results than the unconstrained Fuzzy Logic PID controllers.   

The robustness of the developed AGC controllers using different techniques has then been 

tested. The LQR AGC controller has been proved to be more robust than the Fuzzy Logic 

PID AGC controllers. On the other hand, the Fuzzy Logic PID controller robustness is not 

bad considering its design flexibility and the less number of states feedback when it is 

compared with the LQR AGC controller. 

Finally, a qualitative study of the impact of GCC electrical interconnection on the dynamic 

and steady state frequency of PDO-OETC power system is considered. The modelling of 

the neighboring GCC states control areas was very crude but rather useful to get the high 

level impression. Some reasonable assumptions have been made to formulate the overall 

GCC electrical interconnection model. The results of the assessment have proved that PDO 

and OETC will enjoy a very stiff system frequency. An enormous support from the 

neighboring states will be naturally available following load disturbances at PDO or 

OETC. PDO will not need to maintain its own spinning reserve and therefore it is 

recommended to share spinning reserve with its neighboring control areas.   

However serious inter area oscillations have been noticed from the frequency response 

following load disturbances. These oscillations can actually trip the interconnection tie 

lines. The application of AGC at PDO and OETC control areas will help in damping out 

these oscillations and stabilizing the grid frequency. Furthermore, the existing 

interconnection capacity between PDO and OETC has been identified as a bottleneck and 

therefore needs to be reinforced before commissioning the final phase of GCC 

interconnection project. The application of AGC at PDO and OETC control areas will help 

alleviating such requirement. 

As a continuation of this research effort, the following elements can be considered for 

further work: 

• Design Automatic Generation Control for all GCC interconnection control 

areas using as build data of all GCC states power systems. The AGC design 

need to adopt a single performance index/cost function based upon the criteria 

used in this report or different criteria that suits all involved parties.  

• Look into multivariable control structures as a potential control technique 
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Appendices 

Appendix 1: Published papers 

This research so far has been presented with two papers at two international conferences. 

Each paper is given with its abstract and reference:  

1. Modelling of Petroleum Development Oman (PDO) and Oman Electricity 

Transmission Company (OETC) power systems for Automatic Generation Control 

studies 

Abstract: Petroleum Development Oman (PDO) and Oman Electricity Transmission 

Company (OETC) are running the main 132kV power transmission grids in the Sultanate 

of Oman. In the year 2001, PDO and OETC grids got interconnected with a 132kV Over 

head transmission line linking Nahada 132kV substation at PDO's side to Nizwa 132kV 

sub-station at OETC's side. Since then the power exchange between PDO and OETC is 

driven by the natural impedances of the system. The only frequency and power exchange 

control mean available for the operators of the interconnected grids is re-dispatching their 

generators. It is a great challenge for PDO and OETC grids operators to maintain the 

existing philosophy of controlling the frequency and power exchange in light of the daily 

load profile and the forecasted Gulf Council Countries (GCC) interconnection. The 

objective of this research is to adopt the Automatic Generation Control technology to 

control the grid frequency as well as the power exchange between PDO and OETC grid. 

The first part of the research was to model and validate the model of the interconnected 

grids of PDO and OETC. This paper shows how the model has been developed and 

validated against the real data obtained from the field. For such a large scale power system 

a certain margin of modelling errors and uncertainties is anticipated and considered 

acceptable. 

Reference: Adil Al-Busaidi & Ian. French “Modelling of Petroleum Development Oman 

(PDO) and Oman Electricity Transmission Company (OETC) power systems for 

Automatic Generation Control studies”, International Conference on Communication, 

Computer and Power (ICCCP'09), Muscat, February 15-18, 2009 

2. Automatic Generation Control of PDO-OETC interconnected power system using 

LQR and FLPID with the novel approach of considering generators damper 

windings torque. 

Abstract: Petroleum Development Oman (PDO) and Oman Electricity Transmission 

Company (OETC) are running the main 132kV power transmission grids in the Sultanate 
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of Oman. In the year 2001, PDO and OETC grids got interconnected with a 132kV over 

head transmission line. Since then, the power exchange between PDO and OETC is driven 

by the natural impedances of the system. The only frequency and power exchange control 

mean available for the operators of the interconnected grids is re-dispatching their 

generators. It is a great challenge for PDO and OETC grids operators to maintain the 

existing philosophy of controlling the frequency and power exchange in light of the daily 

load profile and the Gulf Cooperation Council (GCC) electrical interconnection. This paper 

presents the modelling process of PDO-OETC interconnected power system using 

traditional and novel approaches. It then shows the design of PDO-OETC Automatic 

Generation Control using different techniques namely Linear Quadratic Regulator (LQR) 

and Fuzzy Logic PID. The paper will also compare the performance of the different control 

techniques 

Reference: Adil. Al-Busaidi & Ian. French “Automatic Generation Control of PDO-OETC 

interconnected power system using LQR and FLPID with the novel approach of 

considering generators damper windings torque”, International Conference on Power 

Systems Engineering (ICPSE 2011), Bangkok, December 25-26, 2011 

 

Both of the mentioned papers are attached herein:  
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Appendix 2: MATLAB "Mfile" codes used for fine tuning of PDO-

OETC power systems refined model 

PdoOetc_Opt   

 function f = model(k) 
global Hoetc Hpdo Tiv treal freal tout Fpdo cost 
Hoetc = k(1); 
Hpdo = k(2); 
Tiv = k(3); 
sim('PdoOetcMrunRefinednew',[0 16]) 
f = cost(160) 
plot(tout,Fpdo,treal,freal); %treal and freal are the real life scenario 
data, the time and frequency  
pause(0.01) 

 

Simulator 

global Hoetc Hpdo Tiv treal freal tout Fpdo cost 
load sum2  %loading the real life scenario data 
fic = freal(1); 
f=50            %system frquency 
Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %staem turbine steam charging time constant 
%Hpdo=4.45098   %PDO power system accumulated inertia 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings tourque coeffecient 
Rpdo=2          %PDO droop setting 
Ldpdo=0     %PDO disturbance 
%Hoetc=14.03546  %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings tourque coeffecient 
Roetc=2         %OETC droop setting 
Ldoetc=0.07        %OETC disturbance 
%Tiv=0.94        %synchronising torque coeffecient  
p=0             %Some units from PDO system are in preselect load control 

"p=0" 
b=0             %Some units from PDO and OETC systems are at base load 

"b=0" 
th = fminsearch('PdoOetc_Opt',[14.03546 4.45098 0.94]); 
sim('PdoOetcMrunRefinednew',[0 16]) %PDO-OETC refined model 
plot(tout,Fpdo,tout,Foetc,treal,freal);grid 

 

 



 

317 

Appendix 3: MATLAB "Mfile" code used to calculate the state 

space matrices of PDO-OETC power systems model 

f=50             %system frequency 
Tgg=0.05         %gas turbine governor time constant 
Tgc=0.05         %gas turbine control valve time constant 
Tgch=0.4         %gas turbine fuel charging time constant 
Tsg=0.2          %steam turbine governor time constant 
Tsch=0.3         %steam turbine steam charging time constant 
Hpdo=4.8417    %PDO power system accumulated inertia 
Dpdo=13.6*10^-3  %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings torque coefficient 
Rpdo=2           %PDO droop setting 
Hoetc=15.5023   %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings torque coefficient 
Roetc=2          %OETC droop setting 
Tiv=0.722         %synchronising torque coefficient 
a12=-1  %sign reversing coefficient 
Kgpdo=914.2/2000  %weighted PDO generation 
Kgoetc=2337/2000  %weighted OETC generation from gas turbines 
Ksoetc=590/2000   %weighted OETC generation from steam turbines 

 
A=[0 Tiv 0 0 0 -Tiv 0 0 0 0 0 
   -(f/(2*Hpdo)) -(f/(2*Hpdo))*(Dpdo+Kdwpdo) (f/(2*Hpdo))*Kgpdo 0 0 

(f/(2*Hpdo))*Kdwpdo 0 0 0 0 0 
   0 0 -1/Tgch 1/Tgch 0 0 0 0 0 0 0 
   0 0 0 -1/Tgc 1/Tgc 0 0 0 0 0 0 
   0 -1/(Tgg*Rpdo) 0 0 -1/Tgg 0 0 0 0 0 0 
   (-(f/(2*Hoetc))*a12) (-(f/(2*Hoetc))*a12*Kdwoetc) 0 0 0 

((f/(2*Hoetc))*(a12*Kdwoetc-Doetc)) ((f/(2*Hoetc))*Kgoetc) 0 0 

((f/(2*Hoetc))*Ksoetc) 0 
   0 0 0 0 0 0 -1/Tgch 1/Tgch 0 0 0 
   0 0 0 0 0 0 0 -1/Tgc 1/Tgc 0 0 
   0 0 0 0 0 -1/(Tgg*Roetc) 0 0 -1/Tgg 0 0 
   0 0 0 0 0 0 0 0 0 -1/Tsch 1/Tsch 
   0 0 0 0 0 -1/(Tsg*Roetc) 0 0 0 0 -1/Tsg] 

 
B=[0 0 
   0 0 
   0 0 
   0 0 
   1/Tgg 0 
   0 0 
   0 0 
   0 0 
   0 1/Tgg 
   0 0 
   0 1/Tsg] 

 
C=[0 1 0 0 0 0 0 0 0 0 0 
   0 0 0 0 0 1 0 0 0 0 0 
   1 0 0 0 0 0 0 0 0 0 0] 

 
D=[0 0 
   0 0 
   0 0] 

 
PDO_OETC=ss(A,B,C,D) 
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Appendix 4: AGC control topologies simulations results 
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Figure 9.9: Grid frequency following 100MW load disturbance at PDO side with the PDO 

alone PID frequency controller 
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Figure 9.10: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO alone PID frequency controller 
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Figure 9.11: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO alone PID frequency controller 
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Figure 9.12: Grid frequency following 100MW load disturbance at OETC side with the 

PDO alone PID frequency controller 
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Figure 9.13: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO alone PID frequency controller 
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Figure 9.14: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO alone PID frequency controller 
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Figure 9.16: Grid frequency following 100MW load disturbance at PDO side with the PDO 

alone PID tie line power controller 
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Figure 9.17: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO alone PID tie line power controller 
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Figure 9.18: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO alone PID tie line power controller 
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Figure 9.19: Grid frequency following 100MW load disturbance at OETC side with the 

PDO alone PID tie line power controller 
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Figure 9.20: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO alone PID tie line power controller 
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Figure 9.21: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO alone PID tie line power controller 
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Figure 9.23: Grid frequency following 100MW load disturbance at PDO side with the PDO 

alone PID frequency and tie line power controller 
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Figure 9.24: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO alone PID frequency and tie line power controller 
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Figure 9.25: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO alone PID frequency and tie line power controller 
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Figure 9.26: Grid frequency following 100MW load disturbance at OETC side with the 

PDO alone PID frequency and tie line power controller 
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Figure 9.27: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO alone PID frequency and tie line power controller 
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Figure 9.28: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO alone PID frequency and tie line power controller 
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Figure 9.30: Grid frequency following 100MW load disturbance at PDO side with the 

OETC alone PID frequency controller 
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Figure 9.31: Tie line power deviation following 100MW load disturbance at PDO side with 

the OETC alone PID frequency controller 
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Figure 9.32: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the OETC alone PID frequency controller 
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Figure 9.33: Grid frequency following 100MW load disturbance at OETC side with the 

OETC alone PID frequency controller 
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Figure 9.34: Tie line power deviation following 100MW load disturbance at OETC side 

with the OETC alone PID frequency controller 
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Figure 9.35: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the OETC alone PID frequency controller 
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Figure 9.37: Grid frequency following 100MW load disturbance at PDO side with the 

OETC alone PID tie line power controller 
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Figure 9.38: Tie line power deviation following 100MW load disturbance at PDO side with 

the OETC alone PID tie line power controller 
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Figure 9.39: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the OETC alone PID tie line power controller 
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Figure 9.40: Grid frequency following 100MW load disturbance at OETC side with the 

OETC alone PID tie line power controller 
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Figure 9.41: Tie line power deviation following 100MW load disturbance at OETC side 

with the OETC alone PID tie line power controller 
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Figure 9.42: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the OETC alone PID tie line power controller 
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Figure 9.44: Grid frequency following 100MW load disturbance at PDO side with the 

OETC alone PID frequency and tie line power controller 
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Figure 9.45: Tie line power deviation following 100MW load disturbance at PDO side with 

the OETC alone PID frequency and tie line power controller 
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Figure 9.46: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the OETC alone PID frequency and tie line power controller 
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Figure 9.47: Grid frequency following 100MW load disturbance at OETC side with the 

OETC alone PID frequency and tie line power controller 
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Figure 9.48: Tie line power deviation following 100MW load disturbance at OETC side 

with the OETC alone PID frequency and tie line power controller 
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Figure 9.49: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the OETC alone PID frequency and tie line power 

controller 
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Figure 9.51: Grid frequency following 100MW load disturbance at PDO side with the PDO 

& OETC PID frequency based AGC controller 
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Figure 9.52: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO & OETC PID frequency based AGC controller 
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Figure 9.53: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO & OETC PID frequency based AGC controller 
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Figure 9.54: Grid frequency following 100MW load disturbance at OETC side with the 

PDO & OETC PID frequency based AGC controller 
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Figure 9.55: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO & OETC PID frequency based AGC controller 
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Figure 9.56: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO & OETC PID frequency based AGC controller 
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Figure 9.58: Grid frequency following 100MW load disturbance at PDO side with the PDO 

(using grid frequency) & OETC (using tie line power) PID AGC controller 
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Figure 9.59: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO (using grid frequency) & OETC (using tie line power) PID AGC controller 
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Figure 9.60: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using grid frequency) & OETC (using tie line 

power) PID AGC controller 
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Figure 9.61: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using grid frequency) & OETC (using tie line power) PID AGC controller 
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Figure 9.62: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using grid frequency) & OETC (using tie line power) PID AGC controller 
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Figure 9.63: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using grid frequency) & OETC (using tie line 

power) PID AGC controller 
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Figure 9.65: Grid frequency following 100MW load disturbance at PDO side with the PDO 

(using grid frequency) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.66: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO (using grid frequency) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.67: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using grid frequency) & OETC (using Area 

Control Error) PID AGC controller 
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Figure 9.68: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using grid frequency) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.69: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using grid frequency) & OETC (using Area Control Error) PID AGC 

controller 
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Figure 9.70: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using grid frequency) & OETC (using Area 

Control Error) PID AGC controller 
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Figure 9.72: Grid frequency following 100MW load disturbance at PDO side with the PDO 

(using tie line power) & OETC (using grid frequency) PID AGC controller 
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Figure 9.73: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO (using tie line power) & OETC (using grid frequency) PID AGC controller 
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Figure 9.74: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using tie line power) & OETC (using grid 

frequency) PID AGC controller 
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Figure 9.75: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using tie line power) & OETC (using grid frequency) PID AGC controller 
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Figure 9.76: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using tie line power) & OETC (using grid frequency) PID AGC controller 
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Figure 9.77: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using tie line power) & OETC (using grid 

frequency) PID AGC controller 
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Figure 9.79: Grid frequency following 100MW load disturbance at PDO side with the PDO 

(using tie line power) & OETC (using tie line power) PID AGC controller 

0 20 40 60 80 100 120 140 160 180 200
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

P
o
w

e
r 

(p
.u

.)

Tie line power following 100MW load disturbance at PDO side

 

Figure 9.80: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO (using tie line power) & OETC (using tie line power) PID AGC controller 
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Figure 9.81: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using tie line power) & OETC (using tie line 

power) PID AGC controller 
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Figure 9.82: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using tie line power) & OETC (using tie line power) PID AGC controller 
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Figure 9.83: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using tie line power) & OETC (using tie line power) PID AGC controller 
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Figure 9.84: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using tie line power) & OETC (using tie line 

power) PID AGC controller 
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Figure 9.86: Grid frequency following 100MW load disturbance at PDO side with the PDO 

(using tie line power) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.87: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO (using tie line power) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.88: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using tie line power) & OETC (using Area Control 

Error) PID AGC controller 
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Figure 9.89: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using tie line power) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.90: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using tie line power) & OETC (using Area Control Error) PID AGC 

controller 

 

0 20 40 60 80 100 120
-2

-1

0

1

2

3

4

5

6

7

8
x 10

-4

Time (s)

P
o
w

e
r 

(p
.u

.)

Change in Mechanical power of F6B gas turbines following 100MW load disturbance at OETC side

 

 

PDO F6B turbines

OETC F6B turbines

 

Figure 9.91: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using tie line power) & OETC (using Area 

Control Error) PID AGC controller 
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Figure 9.93: Grid frequency following 100MW load disturbance at PDO side with the PDO 

(using Area Control Error) & OETC (using grid frequency) PID AGC controller 
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Figure 9.94: Tie line power deviation following 100MW load disturbance at PDO side with 

the PDO (using Area Control Error) & OETC (using grid frequency) PID AGC controller 



 

355 

0 5 10 15 20 25 30 35

0

5

10

15

20
x 10

-4

Time (s)

P
o
w

e
r 

(p
.u

.)

Change in Mechanical power of F6B gas turbines following 100MW load disturbance at PDO side

 

 

PDO F6B turbines

OETC F6B turbines

 

Figure 9.95: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using Area Control Error) & OETC (using grid 

frequency) PID AGC controller 
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Figure 9.96: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using Area Control Error) & OETC (using grid frequency) PID AGC controller 
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Figure 9.97: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using Area Control Error) & OETC (using grid frequency) PID AGC 

controller 
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Figure 9.98: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using Area Control Error) & OETC (using grid 

frequency) PID AGC controller 
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Figure 9.100: Grid frequency following 100MW load disturbance at PDO side with the 

PDO (using Area Control Error) & OETC (using tie line power) PID AGC controller 
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Figure 9.101: Tie line power deviation following 100MW load disturbance at PDO side 

with the PDO (using Area Control Error) & OETC (using tie line power) PID AGC 

controller 
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Figure 9.102: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using Area Control Error) & OETC (using tie line 

power) PID AGC controller 
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Figure 9.103: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using Area Control Error) & OETC (using tie line power) PID AGC controller 
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Figure 9.104: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using Area Control Error) & OETC (using tie line power) PID AGC 

controller 
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Figure 9.105: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using Area Control Error) & OETC (using tie 

line power) PID AGC controller 
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Figure 9.107: Grid frequency following 100MW load disturbance at PDO side with the 

PDO (using Area Control Error) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.108: Tie line power deviation following 100MW load disturbance at PDO side 

with the PDO (using Area Control Error) & OETC (using Area Control Error) PID AGC 

controller 
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Figure 9.109: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at PDO side with the PDO (using Area Control Error) & OETC (using Area 

Control Error) PID AGC controller 
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Figure 9.110: Grid frequency following 100MW load disturbance at OETC side with the 

PDO (using Area Control Error) & OETC (using Area Control Error) PID AGC controller 
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Figure 9.111: Tie line power deviation following 100MW load disturbance at OETC side 

with the PDO (using Area Control Error) & OETC (using Area Control Error) PID AGC 

controller 

 

0 10 20 30 40 50 60 70 80
-2

-1

0

1

2

3

4

5

6

7

8
x 10

-4

Time (s)

P
o
w

e
r 

(p
.u

.)

Change in Mechanical power of F6B gas turbines following 100MW load disturbance at OETC side

 

 

PDO F6B turbines

OETC F6B turbines

 

Figure 9.112: Change in Mechanical power of F6B gas turbines following 100MW load 

disturbance at OETC side with the PDO (using Area Control Error) & OETC (using Area 

Control Error) PID AGC controller 
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Appendix 5: MATLAB "Mfile" codes used for calculation of 

feedback gain matrices of the LQR AGC controllers 

Code 1: 

f=50            %system frequency 
Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %staem turbine steam charging time constant 
Hpdo=4.8417   %PDO power system accumulated inertia 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings torque coefficient 
Rpdo=2          %PDO droop setting 
Hoetc=15.5023  %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings torque coefficient 
Roetc=2         %OETC droop setting 
Tiv=0.722        %synchronising torque coefficient 
a12=-1          %sign reversing factor 

Bpdo=0.24215    %PDO frequency bias factor 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Kgpdo=0.4571    %PDO weighted generation from gas turbines 
Kgoetc=1.1685   %OETC weighted generation from gas turbines 
Ksoetc=0.295    %OETC weighted generation from steam turbines 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=[0 Tiv 0 0 0 -Tiv 0 0 0 0 0 0 
   -(f/(2*Hpdo)) -(f/(2*Hpdo))*(Dpdo+Kdwpdo) (f/(2*Hpdo))*Kgpdo 0 0 

(f/(2*Hpdo))*Kdwpdo 0 0 0 0 0 0 
   0 0 -1/Tgch 1/Tgch 0 0 0 0 0 0 0 0 
   0 0 0 -1/Tgc 1/Tgc 0 0 0 0 0 0 0 
   0 -1/(Tgg*Rpdo) 0 0 -1/Tgg 0 0 0 0 0 0 0 
   (-(f/(2*Hoetc))*a12) (-(f/(2*Hoetc))*a12*Kdwoetc) 0 0 0 

((f/(2*Hoetc))*(a12*Kdwoetc-Doetc)) ((f/(2*Hoetc))*Kgoetc) 0 0 

((f/(2*Hoetc))*Ksoetc) 0 0 
   0 0 0 0 0 0 -1/Tgch 1/Tgch 0 0 0 0 
   0 0 0 0 0 0 0 -1/Tgc 1/Tgc 0 0 0 
   0 0 0 0 0 -1/(Tgg*Roetc) 0 0 -1/Tgg 0 0 0 
   0 0 0 0 0 0 0 0 0 -1/Tsch 1/Tsch 0 
   0 0 0 0 0 -1/(Tsg*Roetc) 0 0 0 0 -1/Tsg 0 

   -1 –Bpdo 0 0 0 0 0 0 0 0 0 0] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
B=[0 
   0 
   0 
   0 
   1/Tgg 
   0  
   0  
   0  
   0  
   0  
   0 

   0] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Q=[1 0 0 0 0 0 0 0 0 0 0 0 
   0 1 0 0 0 0 0 0 0 0 0 0 
   0 0 1 0 0 0 0 0 0 0 0 0 
   0 0 0 1 0 0 0 0 0 0 0 0 
   0 0 0 0 1 0 0 0 0 0 0 0 
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   0 0 0 0 0 1 0 0 0 0 0 0 
   0 0 0 0 0 0 1 0 0 0 0 0 
   0 0 0 0 0 0 0 1 0 0 0 0 
   0 0 0 0 0 0 0 0 1 0 0 0 
   0 0 0 0 0 0 0 0 0 1 0 0 
   0 0 0 0 0 0 0 0 0 0 1 0 

   0 0 0 0 0 0 0 0 0 0 0 1] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
R=[1] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k=LQR(A,B,Q,R) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k11=k(1,1); 
k12=k(1,2); 
k13=k(1,3); 
k14=k(1,4); 
k15=k(1,5); 
k16=k(1,6); 
k17=k(1,7); 
k18=k(1,8); 
k19=k(1,9); 
k110=k(1,10); 
k111=k(1,11); 
k112=k(1,12); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ldpdo=0    %PDO disturbance 
Ldoetc=0   %OETC disturbance 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sim('PdoOetcMrunReduced',[0 60]) 
plot(tout,Fpdo,tout,Foetc);grid 

 

Code 2: 

f=50            %system frequency 
Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %staem turbine steam charging time constant 
Hpdo=4.8417   %PDO power system accumulated inertia 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings torque coefficient 
Rpdo=2          %PDO droop setting 
Hoetc=15.5023  %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings torque coefficient 
Roetc=2         %OETC droop setting 
Tiv=0.722        %synchronising torque coefficient 
a12=-1          %sign reversing factor 

Boetc=0.76151    %PDO frequency bias factor 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Kgpdo=0.4571    %PDO weighted generation from gas turbines 
Kgoetc=1.1685   %OETC weighted generation from gas turbines 
Ksoetc=0.295    %OETC weighted generation from steam turbines 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=[0 Tiv 0 0 0 -Tiv 0 0 0 0 0 0 
   -(f/(2*Hpdo)) -(f/(2*Hpdo))*(Dpdo+Kdwpdo) (f/(2*Hpdo))*Kgpdo 0 0 

(f/(2*Hpdo))*Kdwpdo 0 0 0 0 0 0 
   0 0 -1/Tgch 1/Tgch 0 0 0 0 0 0 0 0 
   0 0 0 -1/Tgc 1/Tgc 0 0 0 0 0 0 0 
   0 -1/(Tgg*Rpdo) 0 0 -1/Tgg 0 0 0 0 0 0 0 
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   (-(f/(2*Hoetc))*a12) (-(f/(2*Hoetc))*a12*Kdwoetc) 0 0 0 

((f/(2*Hoetc))*(a12*Kdwoetc-Doetc)) ((f/(2*Hoetc))*Kgoetc) 0 0 

((f/(2*Hoetc))*Ksoetc) 0 0 
   0 0 0 0 0 0 -1/Tgch 1/Tgch 0 0 0 0 
   0 0 0 0 0 0 0 -1/Tgc 1/Tgc 0 0 0 
   0 0 0 0 0 -1/(Tgg*Roetc) 0 0 -1/Tgg 0 0 0 
   0 0 0 0 0 0 0 0 0 -1/Tsch 1/Tsch 0 
   0 0 0 0 0 -1/(Tsg*Roetc) 0 0 0 0 -1/Tsg 0 

   -a12 0 0 0 0 -Boetc 0 0 0 0 0 0] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
B=[0 
   0 
   0 
   0 
   0 
   0  
   0  
   0  
   1/Tgg  
   0  
   1/Tsg 

   0] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Q=[1 0 0 0 0 0 0 0 0 0 0 0 
   0 1 0 0 0 0 0 0 0 0 0 0 
   0 0 1 0 0 0 0 0 0 0 0 0 
   0 0 0 1 0 0 0 0 0 0 0 0 
   0 0 0 0 1 0 0 0 0 0 0 0 
   0 0 0 0 0 1 0 0 0 0 0 0 
   0 0 0 0 0 0 1 0 0 0 0 0 
   0 0 0 0 0 0 0 1 0 0 0 0 
   0 0 0 0 0 0 0 0 1 0 0 0 
   0 0 0 0 0 0 0 0 0 1 0 0 
   0 0 0 0 0 0 0 0 0 0 1 0 

   0 0 0 0 0 0 0 0 0 0 0 1] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
R=[1] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k=LQR(A,B,Q,R) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k21=k(1,1); 
k22=k(1,2); 
k23=k(1,3); 
k24=k(1,4); 
k25=k(1,5); 
k26=k(1,6); 
k27=k(1,7); 
k28=k(1,8); 
k29=k(1,9); 
k210=k(1,10); 
k211=k(1,11); 
k212=k(1,12); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ldpdo=0    %PDO disturbance 
Ldoetc=0   %OETC disturbance 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sim('PdoOetcMrunReduced',[0 60]) 
plot(tout,Fpdo,tout,Foetc);grid 

Code 3: 

 
f=50            %system frquency 
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Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %staem turbine steam charging time constant 
Hpdo=4.8417     %PDO power system accumulated inertia 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings torque coefficient 
Rpdo=2          %PDO droop setting 
Hoetc=15.5023   %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings torque coefficient 
Roetc=2         %OETC droop setting 
Tiv=0.94        %synchronising torque coefficient 

a12=-1          %sign reversing constant 
Bpdo=0.24215    %PDO frequency bias factor 

Boetc=0.76151   %OETC frequency bias factor 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Kgpdo=0.4571    %PDO weighted generation from gas turbines 
Kgoetc=1.1685   %OETC weighted generation from gas turbines 
Ksoetc=0.295    %OETC weighted generation from steam turbines 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=[0 Tiv 0 0 0 -Tiv 0 0 0 0 0 0 0 
   -(f/(2*Hpdo)) -(f/(2*Hpdo))*(Dpdo+Kdwpdo) (f/(2*Hpdo))*Kgpdo 0 0 

(f/(2*Hpdo))*Kdwpdo 0 0 0 0 0 0 0 
   0 0 -1/Tgch 1/Tgch 0 0 0 0 0 0 0 0 0 
   0 0 0 -1/Tgc 1/Tgc 0 0 0 0 0 0 0 0 
   0 -1/(Tgg*Rpdo) 0 0 -1/Tgg 0 0 0 0 0 0 0 0 
   (-(f/(2*Hoetc))*a12) (-(f/(2*Hoetc))*a12*Kdwoetc) 0 0 0 

((f/(2*Hoetc))*(a12*Kdwoetc-Doetc)) ((f/(2*Hoetc))*Kgoetc) 0 0 

((f/(2*Hoetc))*Ksoetc) 0 0 0 
   0 0 0 0 0 0 -1/Tgch 1/Tgch 0 0 0 0 0 
   0 0 0 0 0 0 0 -1/Tgc 1/Tgc 0 0 0 0 
   0 0 0 0 0 -1/(Tgg*Roetc) 0 0 -1/Tgg 0 0 0 0 
   0 0 0 0 0 0 0 0 0 -1/Tsch 1/Tsch 0 0 
   0 0 0 0 0 -1/(Tsg*Roetc) 0 0 0 0 -1/Tsg 0 0 
   -1 -Bpdo 0 0 0 0 0 0 0 0 0 0 0 
   -a12 0 0 0 0 -Boetc 0 0 0 0 0 0 0] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
B=[0 0 
   0 0 
   0 0 
   0 0 
   1/Tgg 0 
   0 0 
   0 0 
   0 0 
   0 1/Tgg 
   0 0 
   0 1/Tsg 
   0 0 
   0 0] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Q=[1 0 0 0 0 0 0 0 0 0 0 0 0 
   0 1 0 0 0 0 0 0 0 0 0 0 0 
   0 0 1 0 0 0 0 0 0 0 0 0 0 
   0 0 0 1 0 0 0 0 0 0 0 0 0 
   0 0 0 0 1 0 0 0 0 0 0 0 0 
   0 0 0 0 0 1 0 0 0 0 0 0 0 
   0 0 0 0 0 0 1 0 0 0 0 0 0 
   0 0 0 0 0 0 0 1 0 0 0 0 0 
   0 0 0 0 0 0 0 0 1 0 0 0 0 
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   0 0 0 0 0 0 0 0 0 1 0 0 0 
   0 0 0 0 0 0 0 0 0 0 1 0 0 
   0 0 0 0 0 0 0 0 0 0 0 1 0 
   0 0 0 0 0 0 0 0 0 0 0 0 1] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
R=[1 0 

   0 1] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k=LQR(A,B,Q,R) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
k11=k(1,1); 
k12=k(1,2); 
k13=k(1,3); 
k14=k(1,4); 
k15=k(1,5); 
k16=k(1,6); 
k17=k(1,7); 
k18=k(1,8); 
k19=k(1,9); 
k110=k(1,10); 
k111=k(1,11); 
k112=k(1,12); 
k113=k(1,13); 
k21=k(2,1); 
k22=k(2,2); 
k23=k(2,3); 
k24=k(2,4); 
k25=k(2,5); 
k26=k(2,6); 
k27=k(2,7); 
k28=k(2,8); 
k29=k(2,9); 
k210=k(2,10); 
k211=k(2,11); 
k212=k(2,12); 
k213=k(2,13); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ldpdo=0    %PDO disturbance 
Ldoetc=0   %OETC disturbance 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sim('PdoOetcMrunReduced',[0 60]) 
plot(tout,Fpdo,tout,Foetc);grid 
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Appendix 6: MATLAB "Mfile" codes used for optimization of PDO-

OETC AGC controller using Multidimensional unconstrained 

nonlinear minimization (fminsearch) function 

PdoOetcAGC_Opt 

function f = model(k) 
global Kcpdo Tipdo Tdpdo Kcoetc Tioetc Tdoetc k1 k2 k3 k4 tout Fpdo cost 
Kcpdo = k(1); 
Tipdo = k(2); 
Tdpdo = k(3); 
Kcoetc = k(4); 
Tioetc = k(5); 
Tdoetc = k(6); 
k1 = k(7); 
k2 = k(8); 
k3 = k(9); 

k4 = k(10); 
sim('PdoOetcMrunRefined_FLbPIDD',[0 30]) 
f = sum(cost) 
plot(tout,dFpdo); 
%pause(0.01) 

 

Simulator 

global Kcpdo Tipdo Tdpdo Kcoetc Tioetc Tdoetc k1 k2 k3 k4 tout Fpdo cost 
f=50            %system frquency 
Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %staem turbine steam charging time constant 
Hpdo=4.8417   %PDO power system accumulated inertia 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings tourque coeffecient 
Rpdo=2          %PDO droop setting 
Ldpdo=0.05     %PDO disturbance 
Hoetc=15.5023  %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings tourque coeffecient 
Roetc=2         %OETC droop setting 
Ldoetc=0.05        %OETC disturbance 
Tiv=0.722        %synchronising torque coeffecient  
p=1             %Some units from PDO system are in preselect load  

b=1            %Some units from PDO and OETC systems are at base load  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
th = fminsearch('PdoOetcAGC_Opt',[0.825 0.865 0.21625 0.8808 0.8775 

0.219375 1 1 1 1]); 
sim('PdoOetcMrunRefined_FLbPIDD',[0 16]) 
plot(tout,Fpdo,tout,Foetc);grid 
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Appendix 7: MATLAB "Mfile" codes used for optimization of PDO-

OETC AGC controller using Particle Swarm Optimisation method 

corPSO 

global Kcpdo Tipdo Tdpdo Kcoetc Tioetc Tdoetc K1 K2 K3 K4 
c1=2.0;c2=2.01; 
n=75;M=5;tmax=100; % n(popullation), M(iterations with constant 

solution), tmax(maximum number of iterations) 
bounds =[   0.5  1.5;  
            0.5  1; 
            0.25  0.75; 
            0.5  1.5;  
            0.5  1; 
            0.25  0.75; 
            0.5  1.5; 
            0.5  1.5; 
            0.5  1.5; 
            0.5  1.5]; % Parameters max and min intervals 
simulator 
evalFN = 'objectives'; 
[Jss,xss,Jsss,t] = psomin(bounds,evalFN,tmax,c1,c2,n,M); 

simulator 

f=50            %system frquency 
Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %staem turbine steam charging time constant 
Hpdo=4.8417     %PDO power system accumulated inertia 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings tourque coeffecient 
Rpdo=2          %PDO droop setting 
Ldpdo=0.05      %PDO disturbance 
Hoetc=15.5023   %OETC power system accumulative inertia 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings tourque coeffecient 
Roetc=2         %OETC droop setting 
Ldoetc=0.05        %OETC disturbance 
Tiv=0.94        %synchronising torque coeffecient  
p=1             %Some units from PDO system are in preselect load control 

"p=0" 
b=1             %Some units from PDO and OETC systems are at base load 

"b=0" 
Sevenpdo=readfis('Sevenpdo'); %loads PDO Fuzzy logic inference system 
Sevenoetc=readfis('Sevenoetc');%loads OETC Fuzzy logic inference system 

Objective 

function [val] = objectives(sol) 
global Kcpdo Tipdo Tdpdo Kcoetc Tioetc Tdoetc K1 K2 K3 K4 
Kcpdo=sol(1) 
Tipdo=sol(2) 
Tdpdo=sol(3) 
Kcoetc=sol(4) 
Tioetc=sol(5) 
Tdoetc=sol(6) 
K1=sol(7) 
K2=sol(8) 
K3=sol(9) 
K4=sol(10) 
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sim('PdoOetcMrunRefined',[0 15]) %Simulates PDO-OETC model 
% FUNCTION TO MINIMISE 
   val = sum(cost); 

PSOmin 

function [Jss,xss,Jsss,t] = psomin(bounds,evalFN,tmax,c1,c2,n,M) 
% PSOmin run a Partical Swarm Optimization to minimize the objective 

function. 
% function [x,endPop,bPop,traceInfo]=psomin(bounds,evalFN,tmax,c1,c2,n,M)                        

% Output Arguments: 
%   Jss          - the best solution found during the course of the run. 
%   xss          - the final population.  
%   Jsss         - a trace of the best population. 
%   t            - number of iteration. 
% 
% Input Arguments: 
%   bounds       - a matrix of upper and lower bounds on the variables. 
%   evalFN       - the name of the evaluation .m function. 
%   tmax         - maximum number of iteration. 
%   c1           - weighting factor. 
%   c2           - weighting factor. 
%   n            - number of popualtion. 
%   M            - maximum number of iteration of unchanged soltion.  
%%%%%%%%%%%%%%%%%%%%%%%%% 
x_int= bounds; 
t=1;                    % 1st iteration. 
%%%%%%%%%%%%%%%%%%%%%%%%% 
phi=c1+c2; 
K=2/(abs(2-phi-sqrt(phi^2-4*phi))); 
[row1,col1]=size(x_int); 
for i=1:row1 
    x(i,:)=x_int(i,1)+(x_int(i,2)-x_int(i,1))*rand(1,n); 
end 
for i=1:row1 
    Vmax(i)=max(x(i,:));Vmin(i)=min(x(i,:)); 
    vk(i)=(Vmax(i)-Vmin(i))/n; 
    V(i,:)=-vk(i)+(vk(i)+vk(i))*rand(1,n); 
end 
vmax=vk;vmin=-vk; 
size_V=size(V); 
xs=x; 
for i=1:size_V(2) 
    xc=x(:,i); 
    e1str=['jc=' evalFN '(xc);']; 
    eval(e1str);  
    J(i)=jc; 
end 
Js=J; 
Jss=min(Js);xss=x(:,find(Jss==Js)); 
Jsss(t)=Jss; 
m=0; 
while t<tmax 
    if m > M 
        break 
    end 
    t=t+1; 
    r1=rand(1);r2=rand(1); 
    for i=1:size_V(1) 
        for k=1:size_V(2) 
            v_cal=K*(V(i,k)+c1*r1*(xs(i,k)-x(i,k))+c2*r2*(xss(i)-

x(i,k))); 
            if (v_cal>=vmin(i) & v_cal<=vmax(i)) 
                V(i,k)=v_cal; 
            else 
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            end 
        end 
    end 
    for i=1:size_V(1) 
        for k=1:size_V(2) 
            x_cal=V(i,k)+x(i,k); 
            if (x_cal>=x_int(i,1) & x_cal<=x_int(i,2)) 
                x(i,k)=x_cal; 
            else 
            end 
        end 
    end 
    for i=1:size_V(2) 
        xc=x(:,i); 
        e1str=['jc=' evalFN '(xc);'];eval(e1str); 
        J(i)=jc; 
    end 
    for i=1:size_V(2) 
        if J(i)<Js(i) 
            Js(i)=J(i); 
            xs(:,i)=x(:,i); 
        else 
        end 
    end 
    Jmin=min(Js); 
    if Jmin<Jss 
        m=0; 
        Jss=Jmin; 
        xss=xs(:,find(Jss==Js));xss=xss(:,1); 
    else 
        m=m+1; 
    end 
    Jsss(t)=Jss; 
end 
return 
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Appendix 8: MATLAB "Mfile" code used for PDO-OETC AGC 

controllers robustness test 

f=50          %Nominal system frequency 
Ldpdo=0.05     %PDO load disturbance 
Ldoetc=0    %OETC load disturbance  
Tgg=0.05        %gas turbine governor time constant 
Tgc=0.05        %gas turbine control valve time constant 
Tgch=0.4        %gas turbine fuel charging time constant 
Tsg=0.2         %steam turbine governor time constant 
Tsch=0.3        %steam turbine steam charging time constant 
Dpdo=13.6*10^-3 %PDO power system load damping factor 
Kdwpdo=23.88*10^-3 %damper windings torque coefficient 
Doetc=29.76*10^-3 %OETC power system load damping factor  
Kdwoetc=74.09*10^-3 %damper windings torque coefficient 
p=1             %Some units from PDO system are in preselect load control 

"p=0" 
b=1             %Some units from PDO and OETC systems are at base load 

"b=0" 
Kdwpdo=23.88*10^-3 %damper windings torque coefficient 
Kdwoetc=74.09*10^-3 %damper windings torque coefficient 
f1sav=[]; 
for Hpdo=4:0.25:5 
    for Hoetc=14:0.5:16 
        for Tiv=0.7:0.1:1 
            for Rpdo=1.5:0.5:2.5 
                for Roetc=1.5:0.5:2.5 
     for Bpdo=0.21794:0.02421:0.26636 
                        for Boetc=0.68536:0.07615:0.83766 
                            sim('PdoOetcMrunRefined',[0 15]) 
                            f1sav = [f1sav Fpdo]; 

    end 
               end 
                end 
            end 
        end 
    end 
end 
plot (f1sav);grid 
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Appendix 9: GCC interconnection impact assessment simulations 

results 
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Figure 14.7: PDO, OETC and UAE control areas frequencies following 100MW load 

disturbance at PDO side with NO AGC 
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Figure 14.8: PDO-OETC and OETC-UAE tie lines power deviation following 100MW 

load disturbance at PDO side with NO AGC 
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Figure 14.9: PDO, OETC and UAE control areas frequencies following 100MW load 

disturbance at OETC side with NO AGC 
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Figure 14.10: PDO-OETC and OETC-UAE tie lines power deviation following 100MW 

load disturbance at OETC side with NO AGC 
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Figure 14.11: PDO, OETC and UAE control areas frequencies following 100MW load 

disturbance at UAE side with NO AGC 
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Figure 14.12: PDO-OETC and OETC-UAE tie lines power deviation following 100MW 

load disturbance at UAE side with NO AGC 
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Figure 14.13: PDO, OETC and UAE control areas frequencies following 100MW load 

disturbance at PDO side with AGC applied at PDO and OETC 
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Figure 14.14: PDO-OETC and OETC-UAE tie lines power deviation following 100MW 

load disturbance at PDO side with AGC applied at PDO and OETC 
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Figure 14.15: PDO, OETC and UAE control areas frequencies following 100MW load 

disturbance at OETC side with AGC applied at PDO and OETC 
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Figure 14.16: PDO-OETC and OETC-UAE tie lines power deviation following 100MW 

load disturbance at OETC side with AGC applied at PDO and OETC 
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Figure 14.17: PDO, OETC and UAE control areas frequencies following 100MW load 

disturbance at UAE side with AGC applied at PDO and OETC 
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Figure 14.18: PDO-OETC and OETC-UAE tie lines power deviation following 100MW 

load disturbance at UAE side with AGC applied at PDO and OETC 
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Figure 14.19: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at PDO side with NO AGC 
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Figure 14.20: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at PDO side with NO AGC 
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Figure 14.21: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at OETC side with NO AGC 
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Figure 14.22: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at OETC side with NO AGC 
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Figure 14.23: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at UAE side with NO AGC 
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Figure 14.24: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at UAE side with NO AGC 
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Figure 14.25: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at GCC North side with NO AGC 
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Figure 14.26: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at GCC North side with NO AGC 
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Figure 14.27: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at PDO side with AGC applied at PDO and OETC 
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Figure 14.28: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at PDO side with AGC applied at PDO and OETC 
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Figure 14.29: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at OETC side with AGC applied at PDO and OETC 
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Figure 14.30: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at OETC side with AGC applied at PDO and OETC 
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Figure 14.31: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at UAE side with AGC applied at PDO and OETC 
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Figure 14.32: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at UAE side with AGC applied at PDO and OETC 
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Figure 14.33: PDO, OETC, UAE and GCC North control areas frequencies following 

100MW load disturbance at GCC North side with AGC applied at PDO and OETC 
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Figure 14.34: PDO-OETC, OETC-UAE and UAE-GCC North tie lines power deviation 

following 100MW load disturbance at GCC North side with AGC applied at PDO and 

OETC 
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