
1

The feedback artificial tree (FAT) algorithm

Q. Q. Li
1
*, Z. C. He

2
, Eric Li

3*

1College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, 410114, Yuhua

District, Changsha City, Hunan Province, P. R. China
2State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082 P.

R. China
3School of Science, Engineering & Design, Teesside University, Middlesbrough, UK

Abstract

Inspired by the transport of organic matters and the update theories of branches, the artificial tree (AT) algorithm was

proposed recently. This work presents an improved version of AT algorithm that is called the feedback artificial tree

(FAT) algorithm. In FAT, besides the transfer of organic matters, the feedback mechanism of moistures is introduced.

Meanwhile, the self-propagating operator and dispersive propagation operator are also put forward. Some typical

benchmark problems are applied to test the performance of FAT. The experimental results have clearly demonstrated

the higher performance of FAT compared with AT over the tested set of problems. In addition, some well-known

heuristic algorithms and their improved algorithms are also applied to validate the performance of FAT, and the

computational results of FAT listed in this study are the best among these algorithms. In addition, sensitive analyses

on the specific parameters of FAT algorithm are carried out, and the performance of FAT is validated.

Key words: artificial tree algorithm; heuristic algorithms; feedback mechanism; self-propagating operator; dispersive

propagation operator.

* Corresponding author.

E-mail address: hdliqiqi@163.com (Q. Q. Li); ericsg2012@gmail.com (Eric Li)

1 Introduction

Heuristic algorithms (Fister Jr et al. 2013; Glibovets & Gulayeva 2013; Ming et al. 2014) are the common

optimization algorithms that have many advantages compared with traditional deterministic optimization theories.

For example, they do not require the continuity and differentiability of the optimization equation (Hamzaçebi 2008).

Therefore, heuristic algorithms have been applied to solve a large range of practical optimization problems

efficiently, such as design of metamaterials (Li et al. 2018; Li et al. 2019a), structural optimization (Duan et al.

2019a; Duan et al. 2019b; Li et al. 2019b), load identification (Xu et al. 2019), traffic forecast (Li et al. 2015) and

image processing (Malik et al. 2016; Zhong et al. 2016b). Various heuristic algorithms have been proposed and

studied, such as the genetic algorithm (GA) (Holland 1992) , the differential evolution (DE) algorithm (Storn &

Price 1997), the particle swarm optimization (PSO) algorithm (Kennedy & Eberhart 1997), the ant colony

mailto:hdliqiqi@163.com
mailto:ericsg2012@gmail.com
http://xueshu.baidu.com/s?wd=paperuri%3A%28164c7c7c28f1a8c21d7b75ffa0d6d3b1%29&filter=sc_long_sign&sc_ks_para=q%3DSoft%20computing%20in%20remote%20sensing%20image%20processing&sc_us=12729704520546027916&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
http://xueshu.baidu.com/s?wd=paperuri%3A%287f77c54c2f61d6c5d91b40fc924a2a22%29&filter=sc_long_sign&sc_ks_para=q%3DThe%20particle%20swarm%20optimization%20algorithm%3A%20convergence%20analysis%20and%20parameter%20selection&sc_us=7669435756396156415&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8

2

optimization (ACO) (Dorigo & Caro 1999), the artificial fish swarm algorithm (AFSA) (Li & Qian 2003) and the

artificial bee colony (ABC) algorithm (Karaboga & Basturk 2007). Heuristic algorithms are mainly inspired by the

biological and natural phenomena. For example, GA was proposed based on the Darwinian theory of survival of the

fittest (Holland 1992). PSO, ABC, ACO and AFSA are inspired by the foraging behaviors of bird flocks (Kennedy

& Eberhart 1997), honey bees (Karaboga & Basturk 2007), ant colonies (Dorigo & Caro 1999) and fish schooling

(Li & Qian 2003). Gravity search algorithm (GSA) and biogeography-based optimization (BBO) are inspired by

the gravity field (Rashedi et al. 2009) and the migration behavior of island species (Simon 2016).

Besides these standard heuristic algorithms, their improved versions (Zhong et al. 2016a; Lin et al. 2017; Yang

et al. 2017; Chen et al. 2018; Huang et al. 2019; Singh & Deep 2019; Zandevakili et al. 2019) are also widely

studied, such as the adaptive particle swarm optimization (APSO) algorithm (Zhang et al. 2014), the modified

artificial bee colony (MABC) algorithm (Gao & Liu 2012) and the self-adaptive differential evolution (SaDE)

(Coelho et al. 2013) algorithm. Compared with the standard algorithms, the improved versions enhance their

performances in some aspects. APSO (Zhang et al. 2014) has higher search efficiency than classical PSO. The

optimization process of APSO mainly consists of two parts. First, the evolutionary state of particles is evaluated in

real time through the evaluation of population distribution and particle fitness. It can adaptively control the

parameters of the algorithm to improve the search efficiency. Then, when the evolutionary state reaches the

convergence state, the elite learning strategy is implemented. This strategy helps particles to jump out of the local

optimum solution. Compared with the standard ABC, the improvement of the MABC (Gao & Liu 2012) mainly

includes three parts. The first one is to improve the search equation of ABC based on the DE algorithm. Then, the

selection probability P is introduced by the second part to balance the influence of the original search equation and

the new proposed search equation on the search of solutions. Finally, the chaotic systems and opposition-based

learning theories are applied to produce the initial population to enhance the global convergence. Compared with

DE, the enhancement of SaDE (Coelho et al. 2013) is mainly based on its adaptive process of parameters and

solutions. Through the learning of previous promising solutions, both the test vector generation strategies and the

values of control parameters are gradually self-adapted. Therefore, more appropriate solution generation strategy

and parameter setting process can be obtained adaptively according to different stages of the search process.

Inspired by the transport of organic matters and the update of branches, the artificial tree (AT) algorithm was

proposed by Li et al. (2017). Some well-known heuristic algorithms were applied to test the performance of AT

algorithm, and experimental results proved the high accuracy of AT. Obviously, the performance of AT algorithm

has a lot to do with the rationality of its bio-inspired model. For the normal grow of trees, the exchange of materials

3

of trees should both contain the transfer of organic matters from leaves to roots and the delivery of moistures from

roots to leaves. Therefore, the exchange process of materials is a feedback cycle. The delivery of moistures is the

feedback process of the transport of organic matters. Therefore, the bio-inspired model of the standard AT

algorithm is not complete since it only considers the transfer of organic matters. Due to this reason, the feedback

mechanism of moistures is introduced into AT to further enhance the performance of AT algorithm.

In this work, the improved version of AT algorithm, named the feedback artificial tree (FAT) algorithm, is

developed, and the performances of FAT are investigated through some typical test problems. The results of FAT

are first compared with AT, and FAT obtains the better solutions among these test functions with the same

parameter values and function evaluation number. Then, the results of FAT on ten high dimensional problems are

compared with some well-known heuristic algorithms (namely, PSO, DE and ABC) and their improved versions

(namely, APSO, SaDE and MABC). The performance of FAT is proved for it obtains more optimum solutions

compared with these six algorithms. Finally, the effects of the parameters which control the initial branch number

in the feedback process and the update number of branch population in the organic matter transport process, on the

performance of FAT are also studied.

This paper is organized as follows: the basic theory of AT algorithm is presented in Section 2. Section 3

illustrates the principle of FAT algorithm. The feedback mechanism of moistures, the self-propagating operator and

the dispersive propagation operator are studied in detail. Section 4 shows the computational results of FAT, AT and

other algorithms with some typical benchmark functions, and the sensitive analyses of FAT on parameters r and h

are also studied. Finally, Section 5 gives the conclusions of this work.

2 The basic theory of artificial tree algorithm

Figure 1 illustrates the bio-inspired model of a tree which consists of leaves and branches. In Fig. 1, the

branches themselves are the solutions. A thicker branch means a better solution, and the thickest tree trunk is the

best solution. The tiny branches connected to the leaves represent the initial branch population. The brackets

outside the branches represent the branch territories. Each branch has its own territory, which is the growth space of

the branch. A thicker branch tends to have a larger territory.

The transport process of organic matters and the update process of branches are also depicted in Fig. 1. The

organic matters are first produced in the leaves, and they spreads from top to bottom in all branches. The transfer

direction of organic matters is the same as the update direction of branches, and the transfer of organic matters

depends on the update of branches. Therefore, the update of branches determines the implementation of the AT

algorithm. In addition, as the branches are updated, the branches become thicker (better solutions). Three branch

update theories that are the self-evolution operator, the crossover operator and the random operator exist in AT

4

algorithm. The self-evolution and crossover operators are the main branch evolution operators, and the random

operator is a supplement operator to prevent the optimization from falling into local optimum. Figure 1 shows the

crossover operator and the self-evolution operator. The crossover operator combines two branches into a thicker

branch. The self-evolving operator makes the branches themselves thicker. The crossover of branches occurs within

the blue circle, and the self-evolution of branches occurs within the red square.

The way to update one branch depends on its territory and the number of other branches in this territory. As in

the upper right part of Fig. 1, when the branches in one branch territory are too many, the crossover operator is

suppressed and the self-evolution operator is adopted to update this branch. Otherwise, as in the upper left part of

Fig. 1, the crossover operator is applied. Because, when there are too many branches around a branch, it will affect

the growth of this branch. The self-evolution operator should be applied to make the branch jump out of the dense

area. Furthermore, AT algorithm requires the newly generated branch to be better (thicker) than the original one. If

the new branch is better than the original branch, the new branch replaces the original branch in the branch

population. If the new branch is not better than the original branch, the new branch is discarded and another new

branch is produced. If the newly generated branch is still worse than the original branch after many attempts, the

original operator (the crossover operator or the self-evolution operator) will be discarded, and the random operator

is enabled. A new branch is randomly produced in the design space by the random operator, and this new branch

replaces the original branch regardless of whether the new branch is better or not. Through these three branch

update operators, all branches in the population are updated and the branch population is also constantly updated

from generation to generation. The best branch (thickest branch) in each generation of branch population is

recorded.

Eventually, with the constant renewal of the branch population, the organic matters are delivered to the

thickest tree trunk, which means the transfer of organic matters ends, and the best solution is found. The

optimization process is over.

5

…

The transport of

organic matter

Branch

territories

Branch

(Solution)

Thicker branch

(Better solution)

Thickest branch

(Best solution)

Crossover

operator

Self-

evolution

operator

Crossover

operator

Self-evolution

operator

…
Branch

territory

ATBranches

(Solutions)

Fig. 1. The branches renewal process and the organic matters transfer process.

The whole optimization process can be summarized as follows: First, the branch population is randomly

produced in the design space. Then, these branches are updated based on these three operators, and the branch

population is also updated from generation to generation. The best solutions of all generation are obtained. Finally,

the maximum number of function evaluation is reached, and the global best solution is acquired. The concepts of

branch territory, crowd distance and branch update operators of AT are described in the next sections:

2.1 Branch territory

Each branch has one territory, and the range of the territory depends on the thickness of the branch. A thicker

branch trends to have a larger branch territory. The equation of the branch territory is written as Eq. (1).

(()) 2

2 (1 ())

i i

i

V L L fit

L fit

x

x
 (1)

where L is the territory parameter which is defined in advance to calculate the branch territory. The value of L is

recommended between 0 and 1. xi = (xi1, xi2 ,..., xiD) is the spatial position of branch i and D is the dimension of the

search space. fit(xi) is the fitness value of xi. Vi is the branch territory which is a number, and different branches can

have the same value of territory if their fitness values are the same. If fit(xi) = 0, the branch territory of xi is Vi = 2L.

In addition, the territory of branch i is a hypersphere with the branch position xi as the center of the sphere and the

6

radius of Vi. This work focuses on solving the minimization problem, and the equation of fit(xi) is only suitable for

the type of minimization problem, which is written as follows:

1 (() 1) () 0
()

0 () 0

i i

i

i

f if f
fit

if f

x x
x

x
 (2)

where f(xi) is the objective value of the solution xi, and the better solution xi tends to have the higher values of fit(xi)

and Vi. The fitness value of solution is only used to calculate the branch territory and the maximum search number

(Section 2.5). In AT, which branch is better is determined by directly comparing the solutions of different branches.

Therefore, if for all xi, f(xi) < 0 (the global optimum solution of the optimization problem is a negative value), the

fitness value of all solutions are the same, and the execution of AT algorithm is not affected.

2.2 Crowd distance

The crowd distance is applied to evaluate the spacing between the branches. The crowd distance between

branch i and branch j is calculated as follows:

2ij i jDis x x (3)

where xi and xj are the positions of branch i and branch j, respectively, and Disij is a number which is the spatial

distance between xi and xj. Based on the crowd distance and the branch territory, the concept of crowded tolerance

Tol is put forward. For one branch whose branch position and territory are xi and Vi, the crowd distance of branch i

and all other branches can be calculated by Disij (j=1, 2, …, Bn, j ≠ i). Bn is the number of branch in the branch

population. The other branches whose positions are in the territory of branch i can be calculated by the equation

Disij < Vi. Then, the number of branches in the territory of branch i is obtained and recorded as Nbi. Whether this

territory is crowded can be examined by comparing Nbi with Tol. For the current branch position xi, if Nbi ≤ Tol, it

implies that the branches in this territory are sparse. The crossover operator is implemented to update the branch. If

Nbi > Tol, which implies that the branches in current branch territory is crowded, the self-evolution operator is

executed.

2.3 Crossover operator

A branch is randomly generated in half of the branch territory (a hypersphere which center is the branch

position xi and the radius is 2 (1 ())i iV L fit x), and it combines with current branch by linear interpolation to

produce a new branch. The mathematical model of the crossover operator is presented as follows:

0 (1,1) (/ 2)

(1,1) (1 ())

j ij i

ij i

x x rand V

x rand L fit

 x
 (4)

7

new 0(0,1) (0,1) irand rand x x x (5)

where j=1, 2,…, D, (1,1)rand is a random number between -1 and 1, (0,1)rand is a random number between 0

and 1, x0 is the randomly generated branch position in the neighborhood of xi which radius is (1 ())iL fit x , and

xnew is the position of the new produced branch. This new branch will be compared with the original branch to

determine whether it can replace the original one (Section 2.5). By substituting Eq. (4) into Eq. (5), the crossover

operator can be simplified as below:

new, 1 2 1() (1,1) (1 ())j ij ix k k x k rand L fit x (6)

where k1= (0,1)rand and k2= (0,1)rand .

2.4 Self-evolution operator

The mathematical model of this operator can be written as

new best(0,1) ()i irand x x x x (7)

where xbest is the best branch position that has been found so far.

2.5 Random operator

The new branch produced by the crossover operator or the self-evolution operator is compared with the

original branch. If the new branch is better than the original one, the new branch replaces the old one. Otherwise,

the new branch is abandoned. Another new branch is generated, and a new comparison between this new branch

and the original branch is carried out. Repeat this process until a better branch is found. If the better branch isn’t

found within a predefined number of cycles, the random operator is enabled. A new branch is randomly produced in

the design space, and this new branch replaces the original branch. Obviously, the predetermined number of cycles

is a important parameter for AT, which is called the maximum search number Li. For different branches, their

maximum search number Li(xi) is different which can be calculated as follows:

() ()

(1+ ())

i i

i

Li N fit N

N fit

x x

x
 (8)

where N is the search parameter which is a constant, Li(xi) is the maximum search number of branch position xi that

is proportional to the fitness value fit(xi). If fit(xi) = 0, the maximum search number of xi is Li(xi) = N.

In order to fully study the AT algorithm, the following pseudocode is presented to illustrate the implementation

process of the whole algorithm.

The artificial tree algorithm

8

1: Initialize the parameters L, N, Tol, Bn and MEN (the maximum function evaluation number)

2: Initialize the branch population x = (x1,…, xBn)

3: Evaluate the initial population

4: repeat

5: Calculate the maximum search number of branch population x

6: for i=1 to Bn do

7: for j=1 to Li(xi) do

8: if the territory of branch i is not crowd

9 : Perform the crossover operator to generate a new branch

10: else

11: Perform the self-evolution operator to generate a new branch

12: end if

13: If the new branch is better than the branch i

14: Break out of the current For loop

15: end if

16: end for

17: if a better branch compared with branch i is not found

18: Perform the random operator to generate a new branch

19: end if

20: Update the branch i with the new branch

21: end for

22: Obtain the new branch population x of current generation

23: Update the best solution f(xbest) and the best variable xbest found so far

24: until (the function evaluation number reaches MEN)

3 The improved artificial tree algorithm

In nature, the transmission of organic matters from leaves to roots and the transport of moistures from roots to

leaves ensure the normal growth of trees. In addition, the delivery of moistures is the feedback process of the

transport of organic matters, and the branches which spread more organic matters get more moisture from the

feedback. In this section, the feedback mechanism of moistures is introduced in AT. Therefore, FAT contains two

processes: the transfer process of organic matters and the feedback process of moistures. The moistures are

absorbed from the soil through the roots and passed to the thickest tree trunk. Then, the moistures pass through the

thinner branches. Finally, they reach the leaves. Therefore, the moistures pass through all the branches, and the

whole process is efficient.

The same as the transport of organic matters, there are also three update operators for the transfer of moistures.

These operators are the self-propagating operator, the dispersive propagation operator and the random operator. In

addition, the concepts that are used in the organic transfer process are still applicable to the moisture transfer

process, such as branch territory, crowded tolerance, fitness value and maximum search number. The branch

9

territory is also used to judge which operator should be selected. If the branches are crowded in one branch territory,

the self-propagating operator takes place. Otherwise, the dispersive propagation operator is carried out. Differing

from the organic matter transfer process, a thinner branch in the moisture feedback process represents a better

solution. Therefore, in the organic matter transfer process, the thickest branch is the best solution, and in the

moisture feedback process, the thinnest branch means the best solution. Meanwhile, the tiny branches in the

bio-inspired model of a tree mean the local optimum solutions of the optimization problem. Regarding the

dispersive propagation operator, when the moistures reach the junction of one branch, the branch is divided into

two thinner branches. The moistures are then transferred from the thicker branch to the thinner branches. In this

operator, two new thinner branches are found in half of the territory of the original branch. If both of these two new

branches are thicker than the original one, these two new branches are abandoned, and another two new branches

are generated again. If both of these two new branches are thinner than the original one, these two new branches are

retained for the next optimization cycle, and the original branch is abandoned. If one of these two new branches is

thinner than the original branch, the thinner new branch replaces the original one. The next optimization cycle is

carried out with this new branch, and the original branch and another new generated branch are abandoned. If both

of these two new branches are always thicker than the original one and the try number reaches the maximum search

number, the random operator replaces the dispersive propagation operator. The second operator is the

self-propagating operator. The same as the dispersive propagation operator, if the new generated branch is thinner

than the original branch, the new branch substitutes the original one. Otherwise, the new branch is discarded. If a

thinner branch is not found after the attempt number reaches the maximum search number, the random operator

takes the place of the self-propagating operator.

In FAT, a parameter of maximum update number h of the branch population is defined for the organic matter

transfer process. The whole optimization process of FAT is summarized as follows: First, the transfer of organic

matters and the update of branches begin. When the update number of branch population reaches h, the organic

matters transfer process ends and the delivery of moistures begins. Then, some branches are randomly selected

from the branch population that is acquired from the organic matters transfer process to implement the feedback

operation. It should be noted that the initial branch number used in the feedback process of moistures is less than or

equal to the branch number Bn. In the feedback process, the branches found in previous cycle and current cycle

merge together to be the initial branch population of the next cycle. Therefore, the branch number in feedback

process increases with the increase of the cycle number. When the branches found in the feedback process exceeds

the branch number Bn, the feedback process ends. Then, the branches found by the feedback process and previous

10

organic matter transfer process are put together, and Bn better branches are selected as the initial branch population

for the next cycle of the organic matter transfer process. The organic matter transfer process and the moisture

feedback process are continuously performed until the maximum number of function evaluation is reached, and

these two processes form the entire FAT algorithm. The key operations of the feedback process of FAT are

summarized as follows:

3.1 Initialize the branch population of feedback process

When the feedback process begins, some branches are randomly selected from the branch population that is

acquired from the organic matter transfer process. The selection process is calculated by Eq. (9).

new (,)randchoose rx x (9)

where x is the branch population, xnew is the selected branch population and r is the ratio of the new selected

branches to the branch population.

3.2 Self-propagating operator

The concepts of branch territory, crowded tolerance, fitness value and maximum search number that are used

in the organic matters transfer process are also applied in the feedback process of moistures. For branch position xi,

if its branch territory is crowded (Nbi > Tol), the self-propagating operator is carried out to renew the branch. The

mathematical expression of the self-propagating operator is given as follows:

new best((0,1) (0,1))i irand rand c x x x x (10)

where c is a small constant. 0.382 is a relatively reasonable value, which comes from the golden section theory. In

this work, we recommend c as 0.382. Because, it can ensure the computational efficiency of the self-propagating

operator while taking into account the computational accuracy.

3.3 Dispersive propagation operator

If Nbi ≤ Tol, the dispersive propagation operator is carried out to achieve the evolution of branch i. One new

branch is produced randomly within its half territory, and the other branch is found based on the positions of the

original branch and the new branch. The mathematical models of this operator are shown as follows:

(1,1) (/ 2)oj ijx x rand Vi c (11)

(0,1)tj ij ojx x rand x (12)

where xoj and xtj are the j-th element of xo and xt, j=1, 2, …, D. xo and xt are the produced two branch positions.

The growth behavior of a tree is depicted in Fig. 2. Unlike Fig. 1, the feedback process of moistures is also

11

illustrated. In Fig. 2, the transport of organic matters is from the leaves to the roots and the feedback of moistures is

from the roots to the leaves. The transport of organic matters and moistures depends on the update of branches. The

update of branches in the organic matter transport process finds the thicker branches, while, the renewal of

branches in the moisture feedback process searches for the thinner branches. Therefore, the thickest branch and the

thinnest branch represent the best solution in the organic matter transfer process and the moisture feedback process,

respectively.

…

The transport of

organic matter

Branch

territories

Branch

(Solution)

Thicker branch

(Better solution)

Thickest branch

(Best solution in

the organic matter

transfer process)

Crossover

operator or

Dispersive

propagation

operator

Self-

evolution

operator or

Self-

propagating

operator

Self-evolution

operator or Self-

propagating

operator

…

Branch

territory

FAT

Crossover

operator or

Dispersive

propagation

operator

The feedback

of moisture

Branches

(Solutions)

Thinnest branch

(Best solution in

the moisture

feedback process)

Fig. 2. Materials exchange process of a tree.

The following pseudo-code shows the implementation process of the entire FAT algorithm.

The feedback artificial tree algorithm

1: Initialize the parameters L, N, Tol, Bn, c, r, h and MEN (maximum function evaluation number)

2: Initialize the branch population x = (x1,…, xBn)

3: Evaluate the initial population

4: cycle = 1

5: repeat

6: Count the number of branches in the branch population S

7: if S ≥ Bn

8: if cycle > 1

9: Combine current branch population x and branch population obtained by previous organic matter

12

transfer process into a new group of branches

10:
Consider Bn better branches among the new group of branches as the initial branch population x for

the organic matter transfer process

11: end if

12: for j = 1 to h do

13: for i=1 to Bn do

14: for k = 1 to Li(xi) do

15: if the territory of branch i is not crowd

16: Perform the crossover operator to generate a new branch

17: else

18: Perform the self-evolution operator to generate a new branch

19: end if

20: If the new branch is better than the branch i

21: Break out of the current For loop

22: end if

23: end for

24: if a better branch compared with branch i is not found

25: Perform the random operator to generate a new branch

26: end if

27: Update the branch i with the new branch

28: end for

29: Obtain the new branch population x of current generation

30: Update the best solution f(xbest) and the best variable xbest found so far

31: end for

32: Select the initial branch population for the feedback process x = randchoose(x, r)

33: else

34: for i=1 to S do

35: for k = 1 to Li(xi) do

36: if the territory of branch i is not crowd

37: Perform the dispersive propagation operator to generate a new branch

38: else

39: Perform the self-propagating operator to produce a new branch

40: end if

41: If the new branch is better than the branch i

42: Break out of the current For loop

43: end if

44: end for

45: if a better branch compared with branch i is not found

46: Perform the random operator to generate a new branch

47: end if

48: Update the branch i with the new branch

49: end for

50: Obtain the new branch population x of current generation

51: Update the best solution f(xbest) and the best variable xbest found so far

13

52:
Combine current branch population with previous branch population found by the feedback process into

a new branch population x

53: end if

54: cycle = cycle+1

55: until (the function evaluation number reaches MEN)

4 Numerical experiments

Experimental analyses are conducted with various problems, and results of FAT are compared with AT and

some other algorithms to fully study the performance of FAT. In addition, these experiments are calculated under

the professional version of the Win10 operating system, and the computer hardware used included 8 GB RAM and

an Intel (R) Core (TM) i5-6200U 2.40 GHz processor. Meanwhile, all the algorithms that appear in the work are

coded in Matlab.

4.1. Comparison between FAT and AT

The performance of FAT is first compared with AT. The branch population Bn, territory parameter L, crowded

tolerance Tol and search parameter N are set as 50, 0.5, 1 and 10 for both AT and FAT. Furthermore, regarding FAT,

the additional parameters of r and h are set as 0.2 and 20. The maximum number of function evaluation for AT and

FAT is set as 400,000. Thirty independent runs are carried out on all instances with different random seeds, and the

results of FAT and AT contain the standard deviations (SDs), means, medians and best of these test problems. It is

regarded as 0 when the computational result is less than 10
-20

. In addition, in order to avoid the familywise errors

and make a more complete comparison of AT and FAT, statistical tests (Derrac et al. 2011; Zhu et al. 2013; Guo et

al. 2014) are also applied.

4.1.1 Comparing the results of FAT and AT with low dimensional problems

Twenty typical low dimensional problems (Zhan et al. 2009) exhibited in Tab. A1 of the appendix are applied

to evaluate these two algorithms. The formulations, dimensions (D) of these problems, intervals of the design

variables and the global optimum solutions are also presented in Tab. A1.

Table 1. Experimental results of AT and FAT on the twenty low dimensional problems.

Michalewicz2 Michalewicz5

Best Mean SD Median Best Mean SD Median

AT -1.80130341 -1.80130341 4.44000E-16 -1.80130341 -4.645895368 -4.42938384 0.220501687 -4.49589321

FAT -1.80130341 -1.80130341 1.18424E-16 -1.80130341 -4.659528776 -4.523603835 0.041927844 -4.537655997

 Michalewicz10 Langerman2

AT -6.782176134 -5.96383290 0.283984 -5.88952323 -1.080938442 -1.08093844 1.98603E-16 -1.08093844

FAT -8.330611638 -6.92200258 0.161377093 -6.88893566 -1.080938442 -1.080938442 5.53877E-17 -1.080938442

Langerman5 Langerman10

14

AT -1.495166236 -1.21376744 0.321472145 -1.46582165 -0.797593898 -0.32610607 0.17603243 -0.35576874

FAT -1.499999223 -1.309658579 0.075966881 -1.499998025 -0.797693836 -0.407399426 0.067437089 -0.254625007

Hartman3 Hartman6

AT -3.862782033 -3.86242638 0.000240651 -3.86242172 -3.321988659 -3.27061395 0.072856518 -3.32192056

FAT -3.862782146 -3.862564323 6.2259E-05 -3.862646005 -3.321989121 -3.302893332 0.013459067 -3.32196861

 Shekel5 Shekel7

AT -10.15319968 -10.1027863 0.188625298 -10.1531997 -10.40294057 -10.4024158 0.001963436 -10.4029406

FAT -10.15319968 -10.15319968 4.59158E-05 -10.15319968 -10.40294057 -10.40294057 2.91338E-09 -10.40294057

Shekel10 Kowalik

AT -10.53640982 -10.5364063 1.30363E-05 -10.5364098 0.000307486 0.000315279 2.91E-05 0.000307487

FAT -10.53640982 -10.53640982 3.827321E-15 -10.53640982 0.000307486 0.000307546 3.18E-08 0.000307493

Foxholes Ackley

AT 0.998003838 0.998003838 2.547880E-16 0.998003838 2.75335E-14 6.89819E-14 4.58776E-14 6.30607E-14

FAT 0.998003838 0.998003838 4.186913E-17 0.998003838 2.66454E-15 3.99680E-15 4.58653E-16 2.66454E-15

 SixHumpCamelBack Penalized

AT -1.031628453 -1.031628453 0 -1.031628453 0.055872317 0.088094129 0.017111219 0.091456558

FAT -1.031628453 -1.031628453 0 -1.03162845 0.006871617 0.012386788 0.00135093 0.010688062

Penalized2 FletcherPowell2

AT 0.326510992 0.531771435 0.129141776 0.521481417 0 0 0 0

FAT 0.190594683 0.423777906 0.039149167 0.398159016 0 0 0 0

FletcherPowell5 FletcherPowell10

AT 1.935922879 67.2644496 85.1924839 33.1318967 430.1475651 3554.484661 2363.81321 3371.711309

FAT 0.010854798 4.886797808 3.996586195 4.32989828 55.22882953 1778.8479138 499.005175 822.7358134

Table 2. Comparison between AT and FAT based on t test and Wilcoxon rank sum test.

Function Michalewicz2 Michalewicz5 Michalewicz10 Langerman2 Langerman5 Langerman10 Hartman3

t test ≈ + + ≈ + + +

Wilcoxon ≈ ≈ + ≈ + ≈ +

Function Hartman6 Shekel5 Shekel7 Shekel10 Kowalik Foxholes Ackley

t test + + + + + ≈ +

Wilcoxon + + ≈ + + ≈ +

Function
SixHump

CamelBack
Penalized Penalized2 FletcherPowell2 FletcherPowell5 FletcherPowell10

 t test ≈ + + ≈ + +

Wilcoxon ≈ + + ≈ ≈ +

Note: “≈”, “-” and “+” mean the result of FAT is equal to, worse than and better than that of AT, respectively, based on t test and

Wilcoxon rank sum test at a significance level 0.05.

Table 3. Comparisonal results between AT and FAT.

 FAT better FAT worse FAT equal Success rate

Computational results 15 0 5 100.00%

t test 15 0 5 100.00%

15

Wilcoxon 11 0 9 100.00%

Note: “FAT equal”, “FAT worse” and “FAT better” are the number of results of FAT that are equal to, worse than and better than that of

AT, respectively. “Success rate” is the ratio of the sum of the numbers of "FAT better" and "FAT equal" to the total number of the test

functions.

Tables 1 and 3 show the computational results, and the better solutions of mean values in the Tab. 1 are mark

as bolded and gray. The convergence curves of these test functions calculated by AT and FAT are presented in Fig. 3.

From Tab. 1 and Fig. 3, the results of FAT are better than those of AT for functions Michalewicz5, Michalewicz10,

Langerman5, Langerman10, Hartman3, Hartman6, Shekel5, Shekel7, Shekel10, Kowalik, Ackley, Penalized,

Penalized2, FletcherPowell5 and FletcherPowell10. Regarding the problems Michalewicz2, Langerman2, Foxholes,

SixHumpCamelBack and FletcherPowell2, FAT and AT exhibit the same results. The results of FAT are better than

those of AT on fifteen functions, and the same results are achieved on five problems by FAT and AT. In addition,

when the overall performances of these two algorithms on functions Michalewicz2, Langerman2 and Foxholes are

considered, the results of FAT are also better than those of AT for its smaller value of SDs. In Fig. 3, we can see that

the convergence rates of FAT are significantly better than those of AT for problems Langerman5, Langerman10,

Michalewicz5, Michalewicz10, Penalized, Ackley, FletcherPowell2, FletcherPowell5 and FletcherPowell10,

slightly better than AT on functions Hartman6, Langerman2, and similar to AT on instances Hartman3,

Michalewicz2, Shekel5, Shekel7, Shekel10, Kowalik, Foxholes, SixHumpCamelBack and Penalized2. Therefore,

from the computational results of FAT and AT, it is clear that the performance of FAT is obviously better than AT

with the same control parameters for the considered set of problems.

In addition, t test and Wilcoxon rank sum test between AT and FAT at a significance level of 0.05 are

performed, and the symbolic results are shown in Tab. 3. Obviously, based on t test, the results of FAT are better

than those of AT on questions Michalewicz5, Michalewicz10, Langerman5, Langerman10, Hartman3, Hartman6,

Shekel5, Shekel7, Shekel10, Kowalik, Ackley, Penalized, Penalized2, FletcherPowell5 and FletcherPowell10.

Therefore, the results of FAT are significantly better than those of AT on fifteen problems. The results of FAT and

AT on functions Michalewicz2, Langerman2, Foxholes, SixHumpCamelBack and FletcherPowell2 are not

significant, which means the performance of FAT is similar as AT on these five questions. Based on the results of

Wilcoxon rank sum test, FAT performs better than AT on functions Michalewicz10, Langerman5, Hartman3,

Hartman6, Shekel5, Shekel10, Kowalik, Ackley, Penalized, Penalized2 and FletcherPowell10. The results between

FAT and AT are not significant on instances Michalewicz2, Michalewicz5, Langerman2, Langerman10, Shekel7,

Foxholes, SixHumpCamelBack, FletcherPowell2 and FletcherPowell5, which means the performances of FAT and

AT on these questions are similar. On the whole, FAT obtains eleven better and nine similar results compared with

javascript:;

16

AT. Based on the results of t test and Wilcoxon rank sum test, the better performance of FAT than that of AT is

proved for this set of problems.

0 1 2 3 4

x 10
5

-1.1

-1.08

-1.06

-1.04

-1.02

-1

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Langerman2

AT

FAT

0 1 2 3 4

x 10
5

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Langerman5

AT

FAT

0 1 2 3 4

x 10
5

-0.5

-0.4

-0.3

-0.2

-0.1

0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Langerman10

AT

FAT

0 1 2 3 4

x 10
5

-3.9

-3.8

-3.7

-3.6

-3.5

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Hartman3

AT

FAT

0 1 2 3 4

x 10
5

-3.5

-3

-2.5

-2

-1.5

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Hartman6

AT

FAT

0 1 2 3 4

x 10
5

-12

-10

-8

-6

-4

-2

0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Shekel5

AT

FAT

0 1 2 3 4

x 10
5

-12

-10

-8

-6

-4

-2

0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Shekel7

AT

FAT

0 1 2 3 4

x 10
5

-12

-10

-8

-6

-4

-2

0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Shekel10

AT

FAT

0 1 2 3 4

x 10
5

-2

-1.8

-1.6

-1.4

-1.2

-1

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Michalewicz2

AT

FAT

0 1 2 3 4

x 10
5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Michalewicz5

AT

FAT

0 1 2 3 4

x 10
5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Michalewicz10

AT

FAT

0 1 2 3 4

x 10
5

10
-4

10
-3

10
-2

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Kowalik

AT

FAT

0 1 2 3 4

x 10
5

10
0

10
1

10
2

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Foxholes

AT

FAT

0 1 2 3 4

x 10
5

10
-15

10
-10

10
-5

10
0

10
5

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Ackley

AT

FAT

0 1 2 3 4

x 10
5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

SixHumpCamelBack

AT

FAT

17

0 1 2 3 4

x 10
5

10
-2

10
0

10
2

10
4

10
6

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Penalized

AT

FAT

0 1 2 3 4

x 10
5

10
-1

10
0

10
1

10
2

10
3

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Penalized2

AT

FAT

0 0.5 1 1.5 2 2.5

x 10
5

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

FletcherPowell2

AT

FAT

0 1 2 3 4

x 10
5

10
0

10
1

10
2

10
3

10
4

10
5

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

FletcherPowell5

AT

FAT

0 1 2 3 4

x 10
5

10
3

10
4

10
5

10
6

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

FletcherPowell10

AT

FAT

Fig. 3. Convergence curves of AT and FAT on the twenty low dimensional functions.

4.1.2 Comparing the results of FAT and AT with high dimensional problems

Table A2 of the appendix shows ten high dimensional benchmark problems. The dimensions of these test

problems are taken as 30, 60, 90, 200, 500 and 1000, respectively.

Table 4. Experimental results of AT and FAT on functions Sphere, Rosenbrock, Dixon-Price, SumSquares and Matyas.

Function Algorithm
 D

 30 60 90 200 500 1000

Sphere

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 0

SD 0 0 0 0 0 0

Median 0 0 0 0 0 0

AT

Best 1.69267E-23 2.21553E-13 9.31514E-11 2.47352E-07 1.16405E-05 1.69555E-05

Mean 5.1805E-21 2.25748E-12 8.91419E-10 4.28442E-07 1.45254E-05 2.14519E-05

SD 1.38502E-20 7.86863E-13 2.23293E-10 1.23352E-07 2.37247E-06 2.77907E-06

Median 5.70929E-22 8.39064E-13 6.74929E-10 4.42591E-07 1.37283E-05 2.3168E-05

Significance
t-test + + + + + +

Wilcoxon + + + + + +

Rosenbrock

FAT

Best 27.15386414 58.047164098 87.92979069 197.0064526 495.4844460 994.6042921

Mean 27.32005766 58.12778137 87.98373192 197.0622829 495.6779665 994.9096085

SD 0.020920886 0.014897096 0.007859538 0.008688401 0.022698987 0.051108497

Median 27.33311413 58.12758456 87.98291386 197.0574128 495.6805542 994.8731007

AT

Best 28.39216926 58.24939911 88.02155187 197.3486341 496.8698456 996.6506896

Mean 28.40877175 58.26310797 88.03458021 197.373001 496.9035914 996.7370544

SD 0.011321872 0.002629604 0.00218016 0.016533911 0.020767969 0.057767069

Median 28.41046769 58.26360899 88.0352612 197.3751131 496.9175435 996.7473747

Significance t-test + + + + + +

18

Wilcoxon + + + + + +

Dixon-Price

FAT

Best 0.666715640 0.66830635 0.70457456 0.899926091 0.990270541 0.998356926

Mean 0.667026551 0.67604095 0.718262868 0.918625838 0.991815652 0.998557738

SD 9.00876E-05 0.001297306 0.001668671 0.002490562 0.000256784 2.85058E-05

Median 0.666864315 0.676067685 0.719408317 0.917704986 0.991898705 0.998555783

AT

Best 0.701327551 0.795843934 0.851678463 0.94733153 0.989152337 0.998826485

Mean 0.706219945 0.803562183 0.861727159 0.948617533 0.992657681 1.003501717

SD 0.003280477 0.00096478 0.001303788 0.000926207 0.00095663 0.002865744

Median 0.705717999 0.803078686 0.86081954 0.948571067 0.991048777 1.005661487

Significance
t-test + + + + + +

Wilcoxon + + + + ≈ +

SumSquares

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 0

SD 0 0 0 0 0 0

Median 0 0 0 0 0 0

AT

Best 4.24464E-10 8.0375E-07 9.13508E-07 0.000121316 0.000910345 0.002195447

Mean 1.24063E-07 6.0941E-06 2.07955E-05 0.000156299 0.001377147 0.00731237

SD 1.45204E-07 1.22844E-06 3.9354E-06 3.73299E-05 0.000285891 0.003329647

Median 5.95629E-08 4.92685E-06 1.50279E-05 0.000130556 0.001604237 0.002195447

Significance
t-test + + + + + +

Wilcoxon + + + + + +

Matyas

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 0

SD 0 0 0 0 0 0

Median 0 0 0 0 0 0

AT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 0

SD 0 0 0 0 0 0

Median 0 0 0 0 0 0

Significance
t-test ≈ ≈ ≈ ≈ ≈ ≈

Wilcoxon ≈ ≈ ≈ ≈ ≈ ≈

Note: “≈”, “-” and “+” mean the result of FAT is equal to, worse than and better than that of AT, respectively, based on t test and

Wilcoxon rank sum test at a significance level 0.05.

Table 5. Experimental results of AT and FAT on functions Schwefel2.2, Quartic, Schaffer, Griewank and Rastrigin.

Function Algorithm
 D

 30 60 90 200 500 1000

Schwefel2.2

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 0

SD 0 0 0 0 0 0

Median 0 0 0 0 0 0

AT

Best 0.003730566 0.004405071 0.005423725 0.024662852 0.070144873 0.075200133

Mean 0.018799917 0.021805605 0.025595841 0.029069422 0.077326457 0.113991097

SD 0.007982416 0.002586229 0.00294474 0.002826466 0.006621005 0.036725132

19

Median 0.015778937 0.021001448 0.026322344 0.030083408 0.073917673 0.133130476

Significance
t-test + + + + + +

Wilcoxon + + + + + +

Quartic

FAT

Best 0.000012464 0.000043197 0.00006612 0.00006967 0.000165681 0.000252689

Mean 0.000752416 0.00060042 0.000570353 0.00057419 0.001075424 0.001275274

SD 0.000153371 0.000101048 8.23611E-05 9.97686E-05 0.000208688 0.000204068

Median 0.000585214 0.000504282 0.000517597 0.0004223 0.000931744 0.0011872

AT

Best 8.22168E-05 9.43344E-05 3.49135E-05 0.000861139 0.00076448 0.001044042

Mean 0.000505072 0.001025834 0.000682715 0.001045561 0.001381573 0.002106071

SD 0.000336718 0.000155989 0.000159217 0.000798559 0.000644802 0.000656693

Median 0.000507457 0.000871769 0.000475345 0.002165275 0.002428995 0.002508386

Significance
t-test - + + + + +

Wilcoxon ≈ + ≈ + ≈ +

Schaffer

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 3.18044E-14 1.1531E-08

SD 0 0 0 0 2.81913E-14 9.12554E-09

Median 0 0 0 0 5.55112E-17 1.30407E-11

AT

Best 0 0 0 0 2.74957E-10 9.97541E-09

Mean 0 1.11126E-09 5.03301E-15 3.95672E-10 1.98626E-07 2.90710E-07

SD 0 1.15027E-09 4.84864E-15 3.99027E-10 2.37392E-07 2.86589E-07

Median 0 0 0 1.10190E-14 5.86249E-07 7.55357E-07

Significance
t-test ≈ + + + + +

Wilcoxon ≈ + + + + +

Griewank

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 6.93889E-18

SD 0 0 0 0 0 7.16646E-18

Median 0 0 0 0 0 0

 Best 5.55112E-16 7.39631E-13 1.32268E-09 1.96949E-08 1.37111E-07 1.44704E-07

AT

Mean 2.03541E-15 2.66742E-10 7.84176E-09 1.02537E-07 1.96081E-07 2.56865E-07

SD 8.55527E-16 4.52484E-11 1.09531E-09 5.85445E-08 6.80902E-08 7.224E-08

Median 1.88738E-15 2.13385E-10 7.55252E-09 1.85284E-07 1.43929E-07 2.8129E-07

Significance
t-test + + + + + +

Wilcoxon + + + + + +

Rastrigin

FAT

Best 0 0 0 0 0 0

Mean 0 0 0 0 0 0

SD 0 0 0 0 0 0

Median 0 0 0 0 0 0

AT

Best 1.77636E-15 4.01457E-13 7.70192E-09 1.55548E-05 0.001649997 0.003680249

Mean 1.12503E-14 7.91071E-12 3.03403E-08 3.68564E-05 0.001767723 0.004735443

SD 6.14126E-15 3.11178E-12 4.31611E-09 1.41236E-05 7.42357E-05 0.00065103

Median 1.06581E-14 3.02158E-12 2.42853E-08 3.98502E-05 0.001801541 0.00515077

Significance
t-test + + + + + +

Wilcoxon + + + + + +

Note: “≈”, “-” and “+” mean the result of FAT is equal to, worse than and better than that of AT, respectively, based on t test and

20

Wilcoxon rank sum test at a significance level 0.05.

Table 6. Comparison results of AT and FAT on the ten high dimensional problems.

 D FAT better FAT worse FAT equal Success rate

Results

30 7 1 2 90.00%

60 9 0 1 100.00%

90 9 0 1 100.00%

200 9 0 1 100.00%

500 9 0 1 100.00%

1000 9 0 1 100.00%

t test

30 7 1 2 90.00%

60 9 0 1 100.00%

90 9 0 1 100.00%

200 9 0 1 100.00%

500 9 0 1 100.00%

1000 9 0 1 100.00%

Wilcoxon

30 7 0 3 100.00%

60 9 0 1 100.00%

90 8 0 2 100.00%

200 9 0 1 100.00%

500 7 0 3 100.00%

1000 9 0 1 100.00%

Note: “FAT equal”, “FAT worse” and “FAT better” are the number of results of FAT that are equal to, worse than and better than that of

AT, respectively. “Success rate” is the ratio of the sum of the numbers of "FAT better" and "FAT equal" to the total number of the test

functions.

The comparison results between AT and FAT on the ten high dimensional problems are presented in Tabs. 4 -

and 6. In addition, the better solutions of mean values in the Tabs. 4 and 5 are mark as bolded and gray. From Tabs.

4 - 6, as the dimension of test problems increases, the results of FAT and AT deteriorate, and the worst results of

each problem are obtained at their 1000 dimensional states. Regarding the problems Sphere, Rosenbrock,

Dixon-Price, SumSquares, Schwefel2.2, Griewank and Rastrigin, no matter what the dimensions of these problems

are (30, 60, 90, 200, 500 or 1000), the results of FAT are better than those of AT. In addition, it is noticed that both

FAT and AT find the optimum solutions on 30 dimensional Schaffer, and FAT performs better than AT for its 60, 90,

200, 500 and 1000 dimensional conditions. For 30 dimensional Quartic, AT hits the better result compared with

FAT. However, FAT performs better than AT on the 60, 90, 200, 500 and 1000 dimensional Quartic. Regarding 30,

60, 90, 200, 500 and 1000 dimensional Matyas, both FAT and AT acquire the optimum solutions. Therefore, FAT

performs better than AT for seven problems with their 30, 60, 90, 200, 500 and 1000 dimensional conditions as well

as two functions with their 60, 90, 200, 500 and 1000 dimensional states. In addition, FAT obtains the similar

results as AT on one problem with its 30, 60, 90, 200, 500 and 1000 dimensional states and one problem with its 30

dimensional condition. Figure 4 shows the convergence curves of FAT and AT with different dimensions. The left

column of Fig. 4 exhibits the convergence curves of AT and FAT with 30, 60, and 90 dimensional functions, and the

21

right column is the results of 200, 500 and 1000 dimensional functions. From Fig. 4, it is obvious that the

convergence speed of FAT is better than that of AT on functions Schaffer, Sphere, Rosenbrock, SumSquares,

Schwefel2.2, Griewank and Rastrigin. Therefore, these experimental results and figures demonstrate that the

performance of FAT is obviously better than that of AT.

The t test and Wilcoxon rank sum test of each problem at a 0.05 significance are also performed, and the

results are also shown in Tabs. 4 and 5. According to the t test, the results of FAT are better than those of AT for

functions Sphere, Rosenbrock, Dixon-Price, SumSquares, Schwefel2.2, Griewank and Rastrigin with their 30, 60,

90, 200, 500 and 1000 dimensional states. Regarding functions Quartic and Schaffer, the performances of FAT are

better than those of AT on their 60, 90, 200, 500 and 1000 dimensional states. In addition, as the results of FAT and

AT on functions Matyas and 30 dimensional Schaffer are not significant, the performance of FAT is almost the

same as AT. In short, FAT gives better results compared with AT for seven problems with their all dimensional

conditions and two problems with their 60, 90, 200, 500 and 1000 dimensional statuses. In addition, the t test

results of FAT and AT are similar with each other for one function with its all dimensional conditions and one

function with its 30 dimensional status.

Based on the Wilcoxon rank sum test, FAT performs better than AT on instances Sphere, Rosenbrock,

Dixon-Price, SumSquares, Schwefel2.2, Griewank and Rastrigin with their 30, 60, 90, 200, 500 and 1000

dimensional states. Regarding problem Schaffer, the performances of FAT are better than those of AT on its 60, 90,

200, 500 and 1000 dimensional states. For Quartic, the results of FAT are better on its 60, 200 and 1000 states

compared with AT. In addition, the results of FAT and AT on functions Matyas, 30 dimensional Schaffer as well as

30, 90 and 500 dimensional Quartic are not significant, and the performances of FAT and AT are similar. It is clear

FAT obtains better results on seven problems with their all dimensional conditions, one function with its 60, 90, 200,

500 and 1000 dimensional statuses and one instance with its 90, 200 and 1000 dimensional states compared with

AT. In addition, the t-test results of FAT and AT are similar with each other for one problem with its all dimensional

conditions, one function with its 30 dimensional status and one instance with its 30, 60 and 500 dimensional states.

Therefore, based on the results of t test and Wilcoxon rank sum test, the performance of FAT is demonstrated.

22

0 1 2 3 4

x 10
5

10
-20

10
-15

10
-10

10
-5

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Schaffer

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-20

10
-15

10
-10

10
-5

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Schaffer

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 1 2 3 4

x 10
5

10
-40

10
-30

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

sphere

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-40

10
-30

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

sphere

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 1 2 3 4

x 10
5

10
-20

10
-10

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Griewank

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Griewank

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 1 2 3 4

x 10
5

10
-20

10
-10

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Rastrigin

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Rastrigin

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

23

0 1 2 3 4

x 10
5

10
0

10
2

10
4

10
6

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Rosenbrock

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
2

10
4

10
6

10
8

10
10

10
12

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Rosenbrock

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 1 2 3 4

x 10
5

10
0

10
1

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Dixon-Price

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-5

10
0

10
5

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Dixon-Price

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 1 2 3 4

x 10
5

10
-40

10
-30

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

SumSquares

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-40

10
-30

10
-20

10
-10

10
0

10
10

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

SumSquares

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 2 4 6 8

x 10
4

10
-40

10
-30

10
-20

10
-10

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Matyas

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 2 4 6 8

x 10
4

10
-30

10
-20

10
-10

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Matyas

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

24

0 1 2 3 4

x 10
5

10
-40

10
-20

10
0

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Schwefel2.2

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
0

10
50

10
100

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Schwefel2.2

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

0 1 2 3 4

x 10
5

10
-3

10
-2

10
-1

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Quartic

AT 30

FAT 30

AT 60

FAT 60

AT 90

FAT 90

0 1 2 3 4

x 10
5

10
-5

10
0

10
5

10
10

10
15

Evolution number

F
u
n
c
ti
o
n
 v

a
lu

e

Quartic

AT 200

FAT 200

AT 500

FAT 500

AT 1000

FAT 1000

Fig. 4. Convergence curves of AT and FAT on the ten high dimensional test functions.

4.2. Comparison between FAT and PSO, APSO, DE, SaDE, ABC, MABC

Besides AT, the results of FAT are compared with other well-known heuristic algorithms (PSO, APSO, DE,

SaDE, ABC and MABC) to fully evaluate the performance of FAT. The high dimensional problems listed in Tab.

A2 of the appendix are applied, and the dimensions of these test functions are all taken as 1000. Table 7 illustrates

the parameter values of algorithms PSO, APSO, DE, SaDE, ABC and MABC that are obtained from references

(Karaboga & Basturk 2008; Koombhongse et al. 2008; Karaboga & Akay 2009; Zhang et al. 2014; Ghambari &

Rahati 2018). The parameters of FAT are the same as those of Section 4.1. The results of all algorithms are obtained

by thirty independent runs for all instances, and the maximum function evaluation number for all functions is set as

400,000.

Table 7. The specific parameters of other algorithms.

PSO

APSO

DE

SaDE ABC MABC

 Pop 50 Pop 50 Pop 50 Pop 50 Pop 50 Pop 50

ω 0.6 ω 0.9 f 0.5 f 0.5 Limit Ne×D Limit Ne×D

Φ1 1.8 Φ1 2.0 Cr 0.9 Cr 0.3 ns 1 ns 1

Φ2 1.8 Φ2 2.0

 P 0.7

Pop, population size; ω, inertia weight; Φ1, Φ2,cognitive and social components; f, scaling factor; Cr, crossover operation rate for DE;

D , dimension of the problem; ns, scout number; Limit, maximum trial number; P, the selective probability; Ne, the number of employed

bees.

Table 8 shows the experimental results of these algorithms, and Tab. 9 is a summary of the computational

results of all functions. The better solutions of mean values in the Tab. 8 are mark as bolded and gray. From Tabs. 8

25

and 9, FAT performs better than PSO and MABC for all these test functions. Regarding problems Sphere,

Rosenbrock, Dixon-Price, SumSquares, Schwefel2.2, Quartic, Griewank and Rastrigin, FAT acquires the better

solutions compared with DE, SaDE and ABC. The results of FAT are the same as DE, SaDE and ABC on function

Matyas. Compared with APSO, FAT obtains the better and similar results for nine functions (Sphere, Rosenbrock,

Dixon-Price, SumSquares, Schwefel2.2, Quartic, Schaffer, Griewank and Rastrigin) and one problem (Matyas),

respectively. In summary, FAT performs better than PSO and MABC on all these ten questions, better than DE,

SaDE and ABC on eight instances and better than APSO on nine functions. Table 9 shows that the “Success rate” of

FAT are 100.00%, 100.00%, 90.00%, 90.00%, 90.00% and 100.00% compared with PSO, APSO, DE, SaDE, ABC

and MABC, respectively. The performance of FAT is demonstrated.

Table 8 also shows the symbol results of t test and Wilcoxon rank sum test at a significance level of 0.05.

There are six pairwise comparisons, which are FAT to PSO, FAT to APSO, FAT to DE, FAT to SaDE, FAT to ABC

and FAT to MABC. From Tabs. 8 and 9, it is obvious that the t test and Wilcoxon rank sum test results of FAT are

the best among these algorithms. The results of FAT are significantly better than those of PSO, APSO, DE, SaDE,

ABC and MABC on ten problems, nine problems (Sphere, Rosenbrock, Dixon-Price, SumSquares, Schwefel2.2,

Quartic, Schaffer, Griewank and Rastrigin), eight examples (Sphere, Rosenbrock, Dixon-Price, SumSquares,

Schwefel2.2, Quartic, Griewank and Rastrigin), eight questions (Sphere, Rosenbrock, Dixon-Price, SumSquares,

Schwefel2.2, Quartic, Griewank and Rastrigin), eight functions (Sphere, Rosenbrock, Dixon-Price, SumSquares,

Schwefel2.2, Quartic, Griewank and Rastrigin) and ten functions, respectively. In addition, t test and Wilcoxon rank

sum test of FAT to APSO, FAT to DE, FAT to SaDE and FAT to ABC are not significant for function Matyas, which

means the results of FAT and these algorithms are similar with each other. From Tab. 9, the “Success rate” of the t

test and Wilcoxon rank sum test of FAT algorithm are also very high, which are 100.00%, 100.00%, 90.00%,

90.00%, 90.00% and 100.00% compared with PSO, APSO, DE, SaDE, ABC and MABC, respectively. Therefore,

based on the results of t test and Wilcoxon rank sum test, the solutions obtained by FAT are obviously better than

those of other six algorithms, and the performance of FAT is validated again.

Figure 5 shows the convergence curves of PSO, APSO, DE, SaDE, ABC, MABC and FAT. From Fig. 5, it is

clear that the convergence speed of FAT is significantly better than that of the other six algorithms on functions

Sphere, Rosenbrock, Dixon-Price, SumSquares, Schwefel2.2, Quartic, Griewank and Rastrigin. For functions

Matyas and Schaffer, the convergence speed of FAT ranks fourth among all seven algorithms. Therefore, these

figures demonstrate the performance of FAT again.

In summary, the update operators of branches in the organic matter transport process, the renewal theories of

26

branches in the moisture feedback process, the branch territory strategy and the crowded strategy constitute the

whole FAT algorithm, and the combination of these processes ensure the efficiency of FAT in dealing with different

problems.

Table 8. Experimental results acquired by PSO, APSO, DE, SaDE, ABC, MABC and FAT.

 Function PSO APSO DE SaDE ABC MABC FAT

f21 Sphere

Best 221.47664 54968.90051 3062837.082 3295.165889 3032248.128 21778.30493 0

Mean 239.4501853 65351.12521 3123328.275 6195.286824 3118962.092 25948.20954 0

SD 2.631168517 1867.859664 9159.913594 460.3813976 15680.98395 426.0374151 0

Median 238.5354791 65157.84647 3122900.303 6195.286824 3134306.428 25948.20954 0

t-test + + + + + +

Wilcoxon + + + + + +

f22 Rosenbrock

Best 12059.67569 68356892.53 14313357183 334733.4673 13577846357 10080084.28 994.6042921

Mean 13152.15069 90593876.38 14749014006 549238.7175 14540928210 15767563.97 994.9096085

SD 184.7279319 2993473.32 69369952.92 79041.63114 90438963.86 755393.8642 0.051108497

Median 13276.90526 92002466.42 14732417652 549238.7175 14593356378 15767563.97 994.8731007

t-test + + + + + +

Wilcoxon + + + + + +

f23 Dixon-Price

Best 6744.857674 15765633.22 3376740387 82519.64587 3418215550 3206762.473 0.998356926

Mean 7860.158352 24485896.69 3590160818 134183.0329 3591643774 4617450.097 0.998557738

SD 159.5433303 1244418.318 25412358.26 10509.61614 24069559.77 233248.7893 2.85058E-05

Median 7916.190082 24716261.44 3610392361 134183.0329 3612102174 4617450.097 0.998555783

t-test + + + + + +

Wilcoxon + + + + + +

f24 SumSquares

Best 3793.336724 575391.4051 14985936.55 15861.05584 14543770.24 89353.75645 0

Mean 4149.492549 737624.086 15566352.08 22558.3103 15458269.49 119146.8379 0

SD 60.26508549 26098.2979 55472.62417 2392.666497 86021.74682 2708.461396 0

Median 4143.272579 710113.0631 15574204.19 22558.3103 15527780.24 119146.8379 0

t-test + + + + + +

Wilcoxon + + + + + +

f25 Matyas

Best 1.09463E-16 0 0 0 0 5.26301E-05 0

Mean 6.49662E-14 0 0 0 0 0.001813562 0

SD 2.48659E-14 0 0 0 0 0.001698123 0

Median 3.83175E-14 0 0 0 0 0.001813562 0

t-test + ≈ ≈ ≈ ≈ +

Wilcoxon + ≈ ≈ ≈ ≈ +

f26 Schwefel2.2

Best 364.3432933 774.109421 1.35733E+51 172.0988135 4.73741E+18 116.6980543 0

Mean 6853602887 822.0757371 4.70239E+81 204.8403274 1.67066E+31 440.4123106 0

SD 7094152431 13.88087198 2.7175E+81 3.983076016 1.71912E+31 273.3556939 0

Median 432.3634677 807.9105274 3.9235E+81 209.4081786 4.85831E+24 447.557332 0

t-test + + + + + +

Wilcoxon + + + + + +

f27 Quartic Best 35766.63948 867824283.8 5.34023E+11 4287905.742 5.3439E+11 185216882.3 0.000252689

27

Mean 44218.04121 1285157276 5.57238E+11 7383297.553 5.53645E+11 383151784.7 0.001275274

SD 1566.411322 60796016.87 3351256833 1028463.379 3522896918 22943661.02 0.000204068

Median 41893.53552 1292256273 5.58837E+11 7383297.553 5.5549E+11 383151784.7 0.0011872

t-test + + + + + +

Wilcoxon + + + + + +

f28 Schaffer

Best 4.04876E-12 0 0 0 0 0.009716089 0

Mean 0.002590909 0.005181819 0 0 0 0.012309449 1.1531E-08

SD 0.001188601 0.001340923 0 0 0 0.002676847 9.12554E-09

Median 1.84699E-10 0.00971591 0 0 0 0.012309449 1.30407E-11

t-test + + - - - +

Wilcoxon + + - - - +

f29 Griewank

Best 3.305865075 1688.936579 29384.22675 53.4664495 29050.1323 188.4502227 0

Mean 3.450565886 2023.915726 30269.08757 95.54509755 30171.33431 231.0115901 6.93889E-18

SD 0.031439839 38.34485886 108.4156336 9.659980223 122.9693254 5.143535122 7.16646E-18

Median 3.414996912 2020.663977 30421.86796 95.54509755 30222.09311 231.0115901 0

t-test + + + + + +

Wilcoxon + + + + + +

f30 Rastrigin

Best 594.7535566 4202.444066 17614.85921 751.8004632 17621.85114 2704.787513 0

Mean 749.2007909 4665.894185 17815.27639 957.7268294 17785.16852 2751.14135 0

SD 29.78765386 70.96685824 31.11438935 36.7572592 24.93619026 9.173110E+00 0

Median 732.109899 4687.945899 17822.43889 957.7268294 17781.13944 2751.14135 0

t-test + + + + + +

Wilcoxon + + + + + +

Note: “≈”, “-” and “+” mean the result of FAT is equal to, worse than and better than that of AT, respectively, based on t test and

Wilcoxon rank sum test at a significance level 0.05.

Table 9. Comparison between FAT and PSO, APSO, DE, SaDE, ABC, MABC based on the computational results.

 Function PSO APSO DE SaDE ABC MABC

Results

FAT better 10 9 8 8 8 10

FAT worse 0 0 1 1 1 0

FAT equal 0 1 1 1 1 0

Success rate 100.00% 100.00% 90.00% 90.00% 90.00% 100.00%

t test

FAT better 10 9 8 8 8 10

FAT worse 0 0 1 1 1 0

FAT equal 0 1 1 1 1 0

Success rate 100.00% 100.00% 90.00% 90.00% 90.00% 100.00%

Wilcoxon

FAT better 10 9 8 8 8 10

FAT worse 0 0 1 1 1 0

FAT equal 0 1 1 1 1 0

Success rate 100.00% 100.00% 90.00% 90.00% 90.00% 100.00%

Note: “FAT equal”, “FAT worse” and “FAT better” are the number of results of FAT that are equal to, worse than and better than that of

AT, respectively. “Success rate” is the ratio of the sum of the numbers of "FAT better" and "FAT equal" to the total number of the test

functions.

28

29

Fig. 5. Convergence curves of FAT and other six algorithms.

4.3. Sensitive analyses of FAT

The problems Sphere, Rosenbrock, Rastrigin and Griewank in Tab. A2 of the appendix are taken to study how

the change of parameters r and h affects the performance of FAT. The characters of these problems are different,

and the dimensions of these problems are taken as 30. The maximum evaluation number for all problems is set as

400,000. The branch population Bn, territory parameter L, crowded tolerance Tol and search parameter N are set as

50, 0.5, 1 and 10. The computational results of means, SDs and medians of 30 independent runs are illustrated.

4.3.1. Experimental analyses on parameter r

A larger r means a higher initial branch number in the feedback process. When the value of r increases, the

efficiency of each round of optimization in the feedback process improves. However, with the increases of r, the

update number of branch population in the feedback process decreases, which is not conducive to the search of the

optimum solution in the feedback process of moistures. Therefore, a proper r helps to enhance the performance of

FAT. In the experiments, the performance of FAT is tested on these four functions for different r (0.02, 0.1, 0.2, 0.4,

0.6, 0.8 and 1.0), and parameter h is taken as 20. The computational results are presented in Tab. 10. From Tab. 10,

it is obvious that the performance of FAT on these four problems increases first and then decreases with the

increase of r.

For Sphere, when the range is 0.1 ≤ r ≤ 0.8, FAT always hits the optimum results. Regarding Griewank, FAT

finds the optimum solutions within the interval of 0.1 ≤ r ≤ 0.4. In addition, when the value of r takes 0.6 or 0.8, the

results of FAT are very close to the optimum solution. On function Rastrigin, FAT obtains the optimum solutions

with r = 0.1 and r = 0.2, and the mean values, SDs and median values of Rastrigin are similar for the parameter

regions of 0.4 ≤ r ≤ 0.8. Regarding Rosenbrock, FAT hits the best result with r = 0.8, and the results are similar

within the parameter regions of 0.1 ≤ r ≤ 0.8. Furthermore, the worst results of these four functions are achieved

with r = 1. In addition, when r = 1, the results of FAT are significantly worse than that of r = 0.8 for all problems.

30

Table 10. The effects of parameter r on the performance of FAT.

r
Sphere Griewank

Mean SD Median Mean SD Median

0.02 2.17873E-17 6.38319E-18 1.32246E-17

2.93932E-14 8.14343E-15 2.12608E-14

0.1 0 0 0

0 0 0

0.2 0 0 0

0 0 0

0.4 0 0 0

0 0 0

0.6 0 0 0

6.93889E-18 7.16646E-18 0

0.8 0 0 0

1.38778E-17 9.79125E-18 0

1 7.51434E-15 3.5445E-15 3.83384E-15 3.42837E-13 1.26297E-13 1.11022E-13

r
Rastrigin Rosenbrock

Mean SD Median Mean SD Median

0.02 1.07692E-14 1.36541E-15 9.76996E-15

28.42564693 0.004345012 28.42809042

0.1 0 0 0

27.3097483 0.031495643 27.29439006

0.2 0 0 0

27.38142298 0.024850736 27.37586468

0.4 1.11022E-16 1.14663E-16 0

27.40619681 0.037701584 27.4127171

0.6 2.22045E-16 1.5666E-16 0

27.21202948 0.023803568 27.22741195

0.8 4.44089E-16 3.55271E-16 0

27.22774403 0.022537626 27.21656686

1 2.33147E-14 3.07845E-15 2.22045E-14 28.44895803 0.002592099 28.4444981

4.3.2. Experimental analyses on parameter h

The same four benchmark problems used in the above section are applied to evaluate the performance of FAT

with different h (5, 20, 50, 200, 500, 1500 and 8000), and parameter r is set as 0.2. A large h means that the

proportion of the transfer process of organic matter increases in the entire optimization process, which is in favor of

the search of the optimum solution in the delivery process of organic matter. However, the increase of h reduces the

contribution of the feedback process to FAT algorithm. If h takes a small value, the influence of the feedback

process on FAT is large, and the effect of the organic matter transfer process on the performance of FAT decreases.

Therefore, a reasonable h is crucial to control the performance of FAT. The computational results of mean, SDs and

median values of FAT with 30 independent runs are given in Tab. 11.

On functions Sphere, Griewank and Rastrigin, the results of FAT tend to deteriorate as h increases. However,

the condition of function Rosenbrock is different, and the results of FAT get better first and then get worse as h

increases. FAT achieves the optimum results when the value of h is between 5 and 50 for functions Sphere,

Griewank and Rastrigin, and the best solution is achieved with h = 50 for function Rosenbrock. Regarding the

mean values, the SDs and the median values, the worst results of Sphere, Griewank, Rastrigin and Rosenbrock are

achieved with h = 8000.

Table 11. The effects of parameter h on the performance of FAT.

h Sphere Griewank

31

Mean SD Median Mean SD Median

5 0 0 0

0 0 0

20 0 0 0

0 0 0

50 0 0 0

0 0 0

200 4.41524E-33 2.35006E-33 1.27599E-34

2.08167E-17 1.15556E-17 0

500 1.46958E-27 9.65205E-28 5.3063E-28

3.60822E-16 1.06489E-16 2.22045E-16

1500 1.21315E-26 3.28045E-27 6.29879E-27

5.41234E-16 6.77347E-17 4.996E-16

8000 1.39867E-22 6.0219E-23 3.30166E-23 6.245E-16 1.03555E-16 5.55112E-16

h
Rastrigin Rosenbrock

Mean SD Median Mean SD Median

5 0 0 0

28.0921001 0.054595542 28.12205391

20 0 0 0

27.32005766 0.020920886 27.33311413

50 0 0 0

27.0038504937 0.011920128 27.00272575

200 1.11022E-16 1.14663E-16 0

27.28362584 0.006668224 27.28372431

500 2.33147E-15 7.80497E-16 1.77636E-15

27.66098549 0.011134545 27.65862507

1500 5.995204E-15 1.19456E-15 5.32907E-15

28.1622884 0.00943242 28.15683474

8000 5.995204E-15 1.29592E-15 3.55271E-15 28.36322687 0.002455592 28.36539666

5 Conclusion

In this work, the improved version of artificial tree (AT) algorithm named the feedback artificial tree (FAT)

algorithm is proposed. Differing from the standard AT algorithm, the entire material exchange process in the tree

growth process is considered simultaneously, which means that both of the transfer of organic matters and the

feedback of moistures are taken into account. Meanwhile, with the moisture feedback mechanism, two new

branch update operators that are the self-propagating operator and the dispersive propagation operator are

proposed. Some typical test functions are used to assess the performance of FAT, and the results of FAT algorithm

are compared with AT algorithm first and then with other well-known algorithms. The results of these experiments

show that FAT performs better than AT, and FAT also has a competitive advantage compared with other algorithms.

Finally, sensitivity analyses are performed to assess the effects of specific parameters on the performance of FAT.

The computational results presented in this work have clearly demonstrated that the proposed FAT has a great

potential to solve a wide range of optimization problems efficiently.

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or animals performed by

any of the authors.

32

Appendix A

Table A1. Twenty low dimensional problems.

No. Function D Interval Min Formulation

f1 Michalewicz2 2 [0,]

Fmin=-1.8013
2m

n 2

i=1 i i() sin sin , 10f x ix m x

f2 Michalewicz5 5 [0,]

Fmin=-4.6877
2m

n 2

i=1 i i() sin sin , 10f x ix m x

f3 Michalewicz10 10 [0,]

Fmin=-9.6602
2m

n 2

i=1 i i() sin sin , 10f x ix m x

f4 Langerman2 2 [0,10] Fmin=-1.08

m n 2

i=1 i j=1 j ij

n 2

j=1 j ij

()
1

(exp((a))cos

((a)))

f c x

x

x

f5 Langerman5 5 [0,10] Fmin=-1.5

m n 2

i=1 i j=1 j ij

n 2

j=1 j ij

()
1

(exp((a))cos

((a)))

f c x

x

x

f6 Langerman10 10 [0,10] Fmin=-1.4

m n 2

i=1 i j=1 j ij

n 2

j=1 j ij

()
1

(exp((a))cos

((a)))

f c x

x

x

f7 Hartman3 3 [0,1] Fmin=-3.86
4 3 2

i=1 i j=1 ij j ij() exp[()]f c a x p x

f8 Hartman6 6 [0,1] Fmin=-3.32
4 6 2

i=1 i j=1 ij j ij() exp[()]f c a x p x

f9 Shekel5 4 [0,10] Fmin=-10.15
5 1

i=1 i i i() [()()]T
f x a x a c

 x

f10 Shekel7 4 [0,10] Fmin=-10.4
7 1

i=1 i i i() [()()]T
f x a x a c

 x

f11 Shekel10 4 [0,10] Fmin=-10.53
10 1

i=1 i i i() [()()]T
f x a x a c

 x

f12 Kowalik 4 [-5,5] Fmin=0.00031

2
11 21 i i 2

i=1 2

i i 3 4

()
()

()if
x b b x

a
b b x x

x

f13 Foxholes 2 [-65.536,65.536] Fmin=0.998

1

25

j=1 2 6

i=1 i ij

()
1 1

500 ()
f

j x a

x

f14 Ackley 30 [-32,32] Fmin=0 D 2

i=1 i

D

i=1 i

1
() 20 20 exp 0.2 exp

1
() (cos(2))f e

D
x

D
x x

f15
SixHumpCamelB

ack
2 [-5,5] Fmin=0

2 4 6 2 4

1 1 1 1 2 2 2()
1

4 2.1 4 4
3

f x x x x x x x x

f16 Penalized 30 [-50,50] Fmin=0

2 2

1 n

n-1 2 2

i=1 i i+1

n

ii=1

i i

m

i i

i i

m

i i

() {10sin (y) (y 1)

(y 1) [1 10sin (y)]}

(,10,100, 4)

1
y 1 (1)

4

(a) , a

(,a, k, m) 0, a a

(a) , a

f
n

u x

x

k x x

u x x

k x x

x

f17 Penalized2 30 [-50,50] Fmin=0

2 2 2

1 n n

n-1 2 2

i=1 i i+1

n

ii=1

() 0.1{sin () (1) [1 sin (2)]

(1) [1 sin (3)]}

(,5,100, 4)

f x x x

x x

u x

x

33

f18 FletcherPowell2 2 [,]

Fmin=0

2n

i=1 i i

n

i j=1 ij j ij j

n

i j=1 ij j ij j

()

sin cos

sin cos

f A B

A a b

B a x b x

x

f19 FletcherPowell5 5 [,]

Fmin=0

2n

i=1 i i

n

i j=1 ij j ij j

n

i j=1 ij j ij j

()

sin cos

sin cos

f A B

A a b

B a x b x

x

f20 FletcherPowell10 10 [,]

Fmin=0

2n

i=1 i i

n

i j=1 ij j ij j

n

i j=1 ij j ij j

()

sin cos

sin cos

f A B

A a b

B a x b x

x

From Tab. A1, parameters a, c, b, p and α in problems Langerman2, Langerman5, Langerman10, Hartman3,

Hartman6, Shekel5, Shekel7, Shekel10, Kowalik, FoxHoles, FletcherPowell2, FletcherPowell5 and

FletcherPowell10 are from Karaboga and Akay (2009).

Table A2. Ten high dimensional benchmark functions.

No. Function Interval Min Formulation

f21 Sphere [-100,100] Fmin=0
D 2

i=1 i()f xx

f22 Rosenbrock [-30,30] Fmin=0
D-1 2 2 2

i=1 i+1 i i() [100() (1)]f x x x x

f23 Dixon-Price [-10,10] Fmin=0
2 D 2 2

1 i=2 i i-1() ()1 (2)f x i x x x

f24 SumSquares [-10,10] Fmin=0
D 2

i=1 i()f ixx

f25 Matyas [-10,10] Fmin=0
2 2

1 2 1 2() 0.26() 0.48f x x x x x

f26 Schwefel2.2 [-10,10] Fmin=0
n n

i=1 i i=1 i()f x x x

f27 Quartic [-1.28,1.28] Fmin=0
D 4

i=1 i() [0,1)f ix random x

f28 Schaffer [-100,100] Fmin=0

2 D 2

i=1 i

D 2 2

i=1 i

() 0.5
sin () 0.5

(1 0.001())
f

x

x

x

f29 Griewank [-600,600] Fmin=0 D 2 D i
i=1 i i=1()

1
() (cos()) 1

4000
f

x
x

i
 x

f30 Rastrigin [-5.12,5.12] Fmin=0
D 2

i=1 i i() 10 cos(2)(10)f x x x

References

Chen K, Zhou F, Yin L et al. (2018) A hybrid particle swarm optimizer with sine cosine acceleration coefficients.

Information Sciences 422, 218-241.

Coelho LdS, Ayala HVH, Freire RZ (2013) Population's variance-based Adaptive Differential Evolution for real

parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation. pp. 1672-1677.

Derrac J, García S, Molina D et al. (2011) A practical tutorial on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation 1, 3-18.

Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on

Evolutionary Computation-CEC99 (Cat No 99TH8406). pp. 1470-1477 Vol. 1472.

Duan L, Jiang H, Cheng A et al. (2019a) Multi-objective reliability-based design optimization for the VRB-VCS FLB

under front-impact collision. Structural and Multidisciplinary Optimization 59, 1835-1851.

Duan L, Jiang H, Geng G et al. (2019b) Parametric modeling and multiobjective crashworthiness design optimization of

a new front longitudinal beam. Structural and Multidisciplinary Optimization 59, 1789-1812.

Fister Jr I, Yang X-S, Fister I et al. (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint

34

arXiv:13074186.

Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Computers & Operations Research 39, 687-697.

Ghambari S, Rahati A (2018) An improved artificial bee colony algorithm and its application to reliability optimization

problems. Applied Soft Computing 62, 736-767.

Glibovets NN, Gulayeva NM (2013) A Review of Niching Genetic Algorithms for Multimodal Function Optimization.

Cybernetics and Systems Analysis 49, 815-820.

Guo H, Li Y, Li J et al. (2014) Differential evolution improved with self-adaptive control parameters based on simulated

annealing. Swarm and Evolutionary Computation 19, 52-67.

Hamzaçebi C (2008) Improving genetic algorithms’ performance by local search for continuous function optimization.

Applied Mathematics & Computation 196, 309-317.

Holland JH (1992) Genetic Algorithms. Scientific American 267, 66-73.

Huang H, Lv L, Ye S et al. (2019) Particle swarm optimization with convergence speed controller for large-scale

numerical optimization. Soft Computing 23, 4421-4437.

Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and

Computation 214, 108-132.

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee

colony (ABC) algorithm. Journal of Global Optimization 39, 459-471.

Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8,

687-697.

Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International

conference on systems, man, and cybernetics Computational cybernetics and simulation. IEEE. pp. 4104-4108.

Koombhongse S, Eby R, Jones S et al. (2008) A colony optimization for continuous domains. European Journal of

Operational Research 185, 1155-1173.

Li MW, Han DF, Wang WL (2015) Vessel traffic flow forecasting by RSVR with chaotic cloud simulated annealing

genetic algorithm and KPCA. Neurocomputing 157, 243-255.

Li QQ, He ZC, Li E (2019a) Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision

energy absorption. Acta Mechanica 230, 2905-2935.

Li QQ, He ZC, Li E et al. (2018) Design and optimization of three-resonator locally resonant metamaterial for impact

force mitigation. Smart Materials and Structures 27, 095015.

Li QQ, He ZC, Li E et al. (2019b) Improved impact responses of a honeycomb sandwich panel structure with internal

resonators. Engineering Optimization, 1-22.

Li QQ, Song K, He ZC et al. (2017) The artificial tree (AT) algorithm. Engineering Applications of Artificial Intelligence

65, 99-110.

Li X, Qian J (2003) Studies on artificial fish swarm optimization algorithm based on decomposition and coordination

techniques. Journal of circuits and systems 1, 1-6.

Lin Q, Hu B, Tang Y et al. (2017) A local search enhanced differential evolutionary algorithm for sparse recovery.

Applied Soft Computing 57, 144-163.

Malik M, Ahsan F, Mohsin S (2016) Adaptive image denoising using cuckoo algorithm. Soft Computing 20, 925-938.

Ming N, Can W, Zhao X (2014) A review on applications of heuristic optimization algorithms for optimal power flow in

modern power systems. Journal of Modern Power Systems and Clean Energy 2, 289-297.

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A Gravitational Search Algorithm. Information Sciences 179,

2232-2248.

Simon D (2016) Biogeography-based optimization. In: International Conference on Mobile Computing and

NETWORKING. pp. 465-466.

35

Singh A, Deep K (2019) Artificial Bee Colony algorithm with improved search mechanism. Soft Computing, 1-24.

Storn R, Price K (1997) Differential Evolution – A Simple and Efficient Heuristic for global Optimization over

Continuous Spaces. Journal of Global Optimization 11, 341-359.

Xu H, Zhang L, Li Q (2019) A novel inverse procedure for load identification based on improved artificial tree algorithm.

Engineering with Computers.

Yang Q, Chen WN, Yu Z et al. (2017) Adaptive Multimodal Continuous Ant Colony Optimization. IEEE Transactions on

Evolutionary Computation 21, 191-205.

Zandevakili H, Rashedi E, Mahani A (2019) Gravitational search algorithm with both attractive and repulsive forces. Soft

Computing 23, 783-825.

Zhang Z, Jiang Y, Zhang S et al. (2014) An adaptive particle swarm optimization algorithm for reservoir operation

optimization. Applied Soft Computing Journal 18, 167-177.

Zhong F, Li H, Zhong S (2016a) A modified ABC algorithm based on improved-global-best-guided approach and

adaptive-limit strategy for global optimization. Applied Soft Computing 46, 469-486.

Zhong Y, Zhu Z, Ong YS (2016b) Soft computing in remote sensing image processing. Soft Computing 20, 4629-4630.

Zhu W, Tang Y, Fang J-a et al. (2013) Adaptive population tuning scheme for differential evolution. Information Sciences

223, 164-191.

