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Introduction
The aim of this paper is to propose a framework for the 

creation of a BIM model using the collected 3D point-cloud and a 
series of related datasets in the form of Linked Data [1]. This aim 
will be achieved by employing data mining and machine learning 
methods [2-4] for extracting the relevant information in creating 
meaningful features for recognition of building elements and 
semantic annotation. These identified components will be loaded 
as BIM entities. Diverse and extensive data can be obtained from 
data sets with seemingly low richness. The aim is to create a 
mechanism for producing and extending Linked Open Data (LOD) 
sets through machine- guided processing and where appropriate, 
self-propagation. The challenge is identifying which data can link 
otherwise foreign data sets and then identifying and extending 
previously traversed data. There are three essential steps

1) Collating appropriate and verified data sets whether 
strictly or implicitly assured.

2) Standardizing and aggregating data into a common 
schema. 

3) Iteratively enriching existing data as new linking features 
are identified.

A key ambition reliant on these steps is the classification and 
translation of 3D point clouds from Unmanned Aerial Vehicles 
(UAVs). The classification potential for these is vast however, their 
density is prohibiting and the translation process challenging. 
There are four keys steps in initiating the processes.

1) Clustering points of the same entity into individual 
profiles. 

2) Segmenting the components of the identified entities. 

3) Identifying entity relationships. 

4) Reduction of properties into the common schema and 
where spatial data is relevant, into a discrete parametric model. 

These define both the foundational datasets and aid 
identification of a target location’s probable solution space. For 
example, knowledge of spatial and material properties, and 
historically observed proximal entities enable mixed-method 
virtual reconstruction and verification of low-confidence 
classifications. Even higher-level properties such as architectural 
styles have profound implications for reducing the complexity of a 
classification problem.

This work is licensed under Creative Commons Attribution 4.0 License  CTCSE.MS.ID.000599.

Abstract 
The classification and translation of 3D point-clouds into virtual environments is a time consuming and often tedious process. While there are 

large crowdsourcing projects for segmenting general environments, there are no such projects with a focus on AEC industries. The nature of these 
industries makes industry-specific projects too esoteric for conventional approaches to data collation. However, in contrast to other projects, the 
built environment has a rich data set of BIM and other 3D models with mutable properties and implicitly embedded relationships which are ripe for 
exploitation. In this article, the readers will find discussion on contemporary applications of image processing, photogrammetry, BIM and artificial 
intelligence. They will also find discussions on the applications of artificial intelligence, photogrammetry in BIM and image processing that will likely 
be at the forefront of related research in the coming years.
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Technical details

Bridging the gap between real and virtual worlds is no longer a 
matter of technological barriers but rather resource management. 
The tools necessary to link, translate and fuse mixed reality data 
exist in isolation, it is down to development teams to figure out 
how they may be combined to produce a practical utility under the 
constraints of funding and team capacity. Drone LiDAR scanning is 
long established for producing a discrete spatial mapping of the real 
world, which can be translated into virtual components. To a lesser 
extent, some tools such as Tango-enabled mobiles can produce and 
translate point-clouds to colored 3D meshes in near real-time. Pour 
Rahimian et al. [5] demonstrated translation between vector and 
discrete virtual environments and linking Cartesian and Barycentric 
coordinate systems. In a related project, [6] extended bidirectional 
linking between discrete and vector worlds to incorporate raster 
representations, ultimately developing a virtual photogrammetry 
tool for mixed reality. There are many flexible deep learning utilities 
designed for image classification, object identification and semantic 
segmentation [7-12]. Of course, ML and deep learning tool aren’t 
without flaw, but through progressive interactive training with 
reinforcement, transfer learning [13] and input homogenization, 
they can be convinced to perform well beyond expectations. Linking 
virtual and real worlds, however, requires testing, tweaking and 
reinforcement which under normal circumstance would require 
significant team involvement which cannot always be consumed in 
parallel and must be carefully managed.

Rapid prototyping through converging realities

The process of developing and proving solutions for research 
objectives similar to this do not need to rely on the real world 
initially. Through abstracting the process, there is no reason why 
individual components from virtual and real-world utilities or 
data sources can’t be interchangeable. For example, the virtual 
photogrammetry (VP) module introduced by for the Unity game 
engine [14] and LiDAR scanning [15] produce data which differs 
only by imperfections in the that surfaces they scanned. Although 
virtual models do produce ideal surface maps, there is a little 
challenge in introducing imperfections. The premise of converging 
realities [6] is that tasks which are constrained by serial time, 
equipment allocation and team capacity in the real world aren’t 
subject to the same constraints in the virtual world. If you have one 
drone in the real world, you can generate data specific to the target 
buildings at the rate which the camera is capable of capturing UV and 
point-cloud data. The properties of the building and environment 
are immutable, the weather and lighting are situational, and the 
rendering is not controllable by the pilot.

In contrast, virtual worlds are constrained only by the 
amount of processing time and devices that can be afforded to the 
project, data collection can be automatic and in parallel, and the 
environmental and target features are mutable. The virtual world 
can be spawned randomly with rendering material types, resolution 
and imperfections unique to a given instance; even the target can 
be sampled from a repository of buildings. Drones in the virtual 

world don’t need pilots, nor do they have physical representations 
meaning more than one can collect data during a single collection. 
Unity can be compiled for Linux machines which enable next-to-
nothing cost parallel processing. In short, by the time the real-
world pilot has travelled to the site and generated data for a single 
target, the virtual world can produce thousands of fully segmented 
data sets from any number of targets with a flexible selection of the 
characteristics that are otherwise immutable in the real world. This 
process is by no means perfect and not implicitly transferable to 
the real world, but it lays the foundation of progression towards a 
commercially viable tool.

Image homogenization and a recurrent approach to 
committee ensemble creation

The aim of attempting to converge realities is to take actions 
which are applicable to virtual world data applicable to data from 
the real world by gradually blurring the lines between the two. The 
real and virtual world renderings are never going to be identical, 
and therefore, training models on purely virtual data alone would 
likely be unfruitful. However, between readily available rendering 
material images and fast style transfer (FST) CNNs, creating a 
progressive interactive training ensemble can be made easier. FSTs 
learn the common characteristics of a given training image’s artistic 
style by comparing it with thousands of images with distinct artistic 
styles including works from historically famous artists. Once a 
model has been trained, an image can be converted from its raw 
state to a style-transferred equivalent (Figure 1).

The application of FSTs in this framework is not to translate 
images into interpretations based on famous works of art but rather 
to standardize the mixed-source classification and segmentation 
images which are used for training. By generating a collection of 
FSTs each classifiable object’s optimal style for classification may 
be identified. For example, sake using (Figure 1) styles: identifying 
brickwork envelopes may favour Hokusai when constant air volume 
units on the roof may favour Picabia. In the proceeding sections, 
observations from Seyedzadeh et al. [17] and Progressive Interactive 
Training ensembles are discussed in greater detail, however, for the 
moment they can be considered another parallel training exercise 
to loosely produce classifiers for a Bayesian Committee. Committees 
are a novel approach to combining multiple estimates to increase 
estimation accuracy. However, the initial envisaged model is 
simpler than a true committee in the sense that it is a mixture of 
educated guesses via simplified classifiers recurrently delegating 
images to self-propagating specialists and outright recurrent brute 
force. A simple example of a static type of committee could be 
solving a linear regression problem with multiple estimators using 
unsupervised learning to create a clustering model for identifying 
homogenous datasets. For example, k-means clustering may be 
elbowed such that an optimal number of clusters for the training 
data are identified. Using the clustered data an estimator for each 
can be created which should have a bias towards data k-means fits 
within those clusters. This will not guarantee precise predictions 
but reduces mean squared error over all estimators.
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Figure 1: Lengstrom Fast style transfer examples: Left Katsushika Hokusai’s The Great Wave, Right Francis Picabia’s Udnie [16].

Transfer learning / reinforcement

Mentioned previously is the marginal value of human resource 
where opportunity costs are effectively doubled for failure. If a team 
member works on one project in favor of another and it is a success, 
there is some form of return, if they fail then ostensibly two projects 
have failed. This does not necessarily apply to computer processes. 
Putting aside perhaps being instantiated as a first-order interest, 
computers only have the second-order interest of keeping the user 
happy. Additionally, computers aren’t opportunistic job candidates, 
they don’t care what job they take regardless of process intensity or 
their qualification to do it. Finally, they have no external interests and 
as such, their work time may be perpetual. Therefore, opportunity 
cost is not particularly sensitive to time or capacity, only available 
finance. These characteristics lend themselves to recurrent and on-
the-fly training methods such as reinforcement [18] and transfer 
learning [19], or bespoke model creation. Considering the Fast Style 
Transfer (FST) style committee approach mentioned previously, 
an FST training on a high-performance graphics processing unit 
should complete 1,000 iterations in 8 to 10 hours. Given the average 
response time for data requests in the construction industry is ten 
days, this time is negligible even for serial training. Seyedzadeh, et 
al. [3,17] researching integration of multi-objective optimization 
with gradient boosting regressors for energy performance analysis 
considered a pessimistic reinforcement learning model. They 
observed potential for a 500% improvement in mean square error 
using a significantly smaller training data set by generating target-
specific emulators. This did require generating real model outputs 
for a sample of scenarios for each target however, the time is not 
significant when considering the high costs associated with retrofit 
decision-making. This does not fall directly under the category of 
reinforcement, but the principle of clustering discussed previously 

and opportunity for semi-supervised model aptness assessment 
lend themselves to the reinforcement principle. The takeaway from 
here is model accuracy improved to meet the needs of the project 
without attempting to produce a universal model.

Progressive interactive training hierarchal ensemble

Progressive interactive training (PIT) is a model for managing 
ensembles such that only the components which are not 
performing as expected are refined as new data becomes available. 
For example, if the CAV identifier is performing well but the 
envelope identifier is not then only the envelope identifier need be 
retrained. A more concrete example of this might be a network for 
identifying envelope renderings. If a roughcast identifier is working 
well but not a brickwork model, then retrain the brickwork 
identifier. In broader terms, the proposed classification model 
is a hierarchal and recurrent PIT. Before attempting to classify 
specific materials, it would make sense to first attempt to classify 
different characteristics such as whether an envelope is opaque or 
transparent. Once this has been identified the ensemble can delegate 
prediction to a specialized identifier. In the case of glazing, this may 
be the general identifier of the glazing type or perhaps exclusively a 
frame material identifier. In the case of the latter, the ensemble may 
then delegate to specialists for the identified material type. This is 
where reinforcement can be useful for recurrently training parent 
models. Once a specialist has identified a certain feature it can feed 
the data back to parent for reinforcement. Transfer learning for 
this framework is a solution to blurring the lines between the real 
and virtual datasets. Primarily used with targets with existing BIM 
models and capacity for data collection, the existence of elements 
can be inferred reasonably by localizing the camera in the virtual 
model relative to the real-world camera and comparing spatial data 
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for known elements in the virtual environment. For example, if a 
CAV system is known to be present on the roof of a building from 
the virtual model and it is inferred from the comparing virtual and 
real-world spatial data that it is likely the CAV is present on the roof 
then the segmentation or classification models’ prediction can be 
supervised with reasonable confidence. If the CAV is not identified, 
the image and samples of images targeting the same object can be 
used to reinforce the model. If the CAV is identified, then the image 
can be tagged as correct and fed back to the trainer. This can reduce 
noise in the training data without introducing bias. Amongst normal 
benefits expected form reinforcement and transfer learning, this 
may reduce the hierarchal ensemble model or alternatively indicate 
that a sub-network of specialists is required for identifying certain 
objects. For example, CAV model-specific classifiers.

In summary. The model suggested for this framework is a 
hierarchal progressive interactive training ensemble. Ostensibly a 
simple form of Bayesian network relying on characteristic-specific 
classifiers to delegate images to specialists who can attempt to 
classify objects or pass them further down the hierarchy. This 
process is reinforced by producing more biased “specialist” 
classifiers which upon correctly classifying object propagate back 

up the hierarchy to reduce noise from training datasets and simplify 
the ensemble. Progressive interactive training reduces the number 
of training exercises required and the positions in the hierarchy 
that require retraining.

Virtual photogrammetry

The Image Processing library from Pour Rahimian et al. [5] 
contains the virtual photogrammetry component. It is a game 
engine embedded LiDAR type scanner emulator. For a given 
camera it uses ray casting to iteratively produce a point-cloud as 
the camera moves through the environment. Each point in the 
cloud can be linked via StrathIFC IFC to Unity linking library to 
its constituent IFC object, game engine object, relative Cartesian 
and Barycentric coordinate systems and pixel in any given image 
the point is associated with. In line with the Unity game engine’s 
discrete geometry system, the library supports scalable voxel 
reconstruction of the point-cloud with primitive objects. The latter 
is was initially intended as a novel feature for training a recurrent 
reconstruction neural network though not envisaged to be used in 
this project. Its secondary function is to provide an interface for 
splicing the information layers to create composite 2D images and 
voxel models of the generated data (Figure 2).

Figure 2: Voxel reconstruction with heat map of Unity-IFC data. IFC classified 2D composite image.

Summary
The proposed approach for as-built BIM model is to create a 

hierarchal progressive interactive training ensemble for object 
identification and semantic segmentation. To reduce risk and 
expedite the development process, the proposal incorporates a 
concept informally labelled as converging realities. The process 
is an attempt to gradually blur the lines between virtual and real 
worlds such that time- intensive and costly real-world processes 
can be delegated to virtual worlds. Reinforcement and transfer 
learning combined with a fusion of existing BIM models will 
expedite and facilitate gradual integration of the real world to 
the learning process. Parallel computing processing is to be used 
such that opportunity cost need only be measured meaningfully in 
money, removing expertise, capacity or time.
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