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Abstract

The leakage of privacy is one of the key factors to restrict the development of

smart grid. Currently, researches of protecting privacy in smart grid mainly

focused on two aspects: 1) data aggregation based on the mathematical model

and algorithm and 2) user anonymous authentication. However, data aggrega-

tion is at cost of obtaining fine-grained electricity consumption information to

protect privacy. While, anonymous authentication cannot identify the malicious

user in previous researches. Hence, in this work, we propose a group blind signa-

ture scheme in smart grid to accomplish conditional anonymity. Furthermore,

the integrity of consumption data can be verified by homomorphic encryption

(HE) which can decrease the communication overhead between control center

and smart meter remarkably. From the security analysis and experiment simu-

lation, the results show that our scheme is safety and efficient.
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1. Introduction

Since the American Electric Power Research Institute proposed the concept

of “Intelligrid” in 2001, the exploration of next-generation power grid has at-

tached many people’s attention. In 2003, the American Department of Energy

published a development plan called “Grid2030”, which defined the “smart grid”5

as a full automated electric transmission network that can supervise and control

each node [1, 2] [3]. The two-way flow of information and power in the whole

transmission and distribution process from power plant to end-user can be en-

sured. Recently, since the concept of industry 4.0 is proposed, the operation

and management of the smart grid can be optimized by connected all kinds of10

equipment and facilities. While, some concerns have arisen about the security of

smart grid in the industrial 4.0, just as shown in Fig. 1, the two-way communica-

tion is easy to be eavesdropped by attacker especially at user side. Attackers can

obtain different users’ power consumption for analysing their lifestyles [4, 5, 6].

So an efficient and safe data transmission scheme is a way to solve the problem.15

Recently, researches are seem to focus on the electricity privacy data ag-

gregation scheme [7, 8] [9, 10] [11].The principle is that user sends encrypted

electric consumption data to relay nodes which will decrypt them and aggregate

data into a multi-dimensional data set. The dataset allows control center to get

the sum or average of electricity consumption data, but cannot acquire the par-20

ticular user’s electricity usage data no matter what kind of data aggregation

schemes, including one dimensional data aggregation schemes [12, 13, 14] and

multi-dimensional data aggregation schemes [15, 16, 17]. These schemes are

at cost of acquiring fine-grained electricity usage data, in exchange of privacy-

preservation. To realize the multi-granularity electric management, the implicit25

anonymous authentication protocol is proposed by Tassos [18, 19] which can

achieve fine-grained analysis and management to data. However, the terminal

devices are needed to exchange information with control center directly which

is unrealistic in practice. In addition, there is a limitation for control center

to handle up the reporting request from terminal devices. For building IoT30
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Figure 1: Framework of Smart Grid

collection infrastructure, Chen [20] proposed a web-based monitoring system to

monitor household gas consumption, which greatly improved the communica-

tion efficiency among nodes. Meanwhile, in the aspect of IoT’s identification

and recognization, Hsia proposed these methods [21, 22, 23], which not only

reduce the system computation time, but also yield real-time requirement and35

achieve the high rate of recognition.

Hence, a scheme can achieve privacy-preserving is proposed by us which is

based on group blind signature [24, 25, 26, 27, 28]. Moreover, our scheme has

a good scalability when facing large-scale consumers.

1.1. Related work40

According to the aim of smart grid, a more reliable, efficient and control-

lable power service should be provided to residential and business customers.

However, many security and privacy problems are present in smart grid, for ex-

ample maliciously tampering the electric consumption data, eavesdropping user

privacy data. So an efficient scheme that can be applied to resource-constrained45

environment and privacy-preserving in smart grid needs to be put forward. The

related works are summarized as follow:

So far, many researches have focused on developing the data aggregation

technology by calculating sum of dimensional data, or using homomorphic op-

erators to masking the original data. In [29], authors successfully extend aggre-50

gation concepts from sensor networks into smart grid and use Paillier cryptosys-
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tem to aggregate consumption data, but the scheme cannot verify the integrity

of data. In [16], a data aggregation scheme that can convert multi-dimensional

data for several residential areas into aggregated-data cube. However, CC can

only acquire the sum of electricity consumption with coarse-grained data, but55

cannot restore the original data of single user. In general, these protocols can

protect the privacy at cost of sacrificing to acquire fine-grained data.

Hence, an escrow mechanism [30] is proposed by Efthymious that can au-

thenticate anonymous meter’s readings. However, it has to assume that the

escrow is fully trusted. The protocol [18] proposed by Tassos Dimitriou et al. is60

based on [19] that the allows utility provider to anonymously authenticate SM .

In addition, by using anonymous tokens to reward for users in exchange of their

fine-grained consumption details. However, both them have the same problem

that users are fully anonymity. If some special case happened, the CC cannot

get the any information of the user. It’s a concern that the user maliciously65

tampers the consumption but CC cannot revoke its anonymity. Meanwhile,

the interaction between users and CC is point-to-point, so that the processing

capacity is limited in their experiment.

Furthermore, a privacy-preserving scheme [31] was proposed by T.jeske et

al. in smart grid based on the group signature. It can not only preserve user’s70

privacy, but also prevent spamming and replay attacks. However, the scheme

cannot revoke anonymity of users in case of need. While, double discrete log-

arithm knowledge signature and discrete logarithm e root knowledge signature

is adopted in the protocol [32] which make the whole system in low efficiency.

Note that all the above protocols have been analysed and proofed security,75

but there are different problems in these papers, such as: the granularity of

consumption data, anonymity revoking, processing capacity, data integrity and

so on. Motivated by these various weaknesses, an efficient and privacy-friendly

scheme in smart grid should have these following features:

1. The fine-grained consumption data can be analysed without revealing80

user’s identify.

2. Anonymity of user can be revoked if in need, such as the consumption
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data has been tampered by maliciously user.

3. It’s necessary to introduce the middle model. If the participator has been

involved in the point-to-point transmission, the delay is inevitable in the process85

of transmission and will cause great time waste.

4. Data integrity can be verified by CC.

To the best of our knowledge, it’s our greatest contribution that apply group

blind signature to smart grid. Firstly, based on the features of the group blind

signature, the signature and message reveal neither the identity of data owner90

nor identity of the issuing signer. Then, the scheme is a conditional group

blind signature which can identity malicious user if necessary [33].At last, we

introduce the homomorphic tag mechanism [34, 35, 36, 37, 38] to verify the

integrity of data. We believe that our contributions can widen the application

scope of privacy-preserving in smart grid.95

1.2. Organization

The remainder of this paper is structured as follows: in section 2, our contri-

butions are elaborated in detail. In Section 3, we precisely present preliminaries

and the system model. The system model and security requirements are pre-

sented in section 4. In Section 5, we show how our scheme perform from user100

anonymous authorization to data reporting, which can be achieved by using

blind signature and homomorphic verifiable tag mechanism. In Section 6, we

analyse the security of all stages in our scheme. In Section 7, we present the

performance analysis and evaluation. At last, in Section 8, we conclude the

paper and propose the future work, respectively.105

2. Main Contributions

In this paper, a privacy-preserving scheme in smart grid based on group

blind signature is proposed by us, which enables CC to trace the potential

corrupted SS and SM conditional. Moreover, an efficient anonymous authen-

tication scheme and data integrity verification mechanism are provided in our110
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paper, which can satisfy the need of efficiency and stability in power system.

The main contributions of this paper are concluded as follows:

1. Innovatively applying the structure of group blind signature

to smart grid. In this paper, to meet the requirements of privacy-preserving,

anonymity and traceability, we propose a scheme based on group blind signa-115

ture. Moreover, to fit resource-constrained and high-efficiency environment, the

process of generating blind signature and tracing the malicious users are also

improved in terms of efficiency.

2.Anonymous authentication and conditional anonymity can be

realized in our scheme. We present an efficient anonymous authentication120

scheme based on the schnorr identification protocol, which signer only knows

it’s a legal user without revealing real identity. Once the fault happened, the

scheme will perform fault detection to locate the fault. If data has tampered

by user, CC will conditionally revoke the anonymity of user, which makes the

system more stable.125

3. Privacy data can be transmitted securely without being tam-

pered with in our scheme. In the process of data transmission, the ho-

momorphic verification method in the cloud auditing [39, 40] is employed in

our scheme. According to the bilinearity properties of the bilinear pairing, CC

can make sure that data has been modified as long as the data block has been130

tampered with.

The contributions mentioned above are applied to the privacy protection in

our scheme. In addition, from our simulation results, it’s clear that our scheme

is efficient when facing large-scale users.

3. Preliminaries135

3.1. RSA algorithm

RSA [41] was proposed in the 1977 which is considered as first and widely

used asymmetric-key cryptosystem. The security and reliability of RSA algo-

rithm is depend n the hardness of integer factorization problem. The RSA
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algorithm consists of four phases: key generation, key distribution, encryption140

and decryption.

• Key generation: The system computes N = pq and Euler’s totient func-

tion ϕ(N) = (p− 1)(q− 1), where p and q should be chosen randomly and

similar in magnitude but differ in length. Choosing an integer e satisfying

the condition that 1 < e < ϕ(N) and gcd(e, ϕ(N)) = 1. Computing d as145

the modular multiplicative inverse of e( mod ϕ(N)).

• Key distribution: Alice sends her public key (n, e) to Bob by a reliable,

but not necessarily secret channel. But Alice always keeps her private key

d secret.

• Encryption: Bob encrypts m by using Alice’s public key e: c = me
150

mod N

• Decryption: Alice decrypts c by using her private key d : cd = me∗d

mod N ,since e ∗ d ≡ 1 mod ϕ(N).

Although attacks may know the Alice’s public key(e,N), but there is a negligible

probability to get the p and q because of large integer factorization is a NP -hard155

problem.

Definition 1. Let g1 be a generator of group G1, and let g2 be a generator

of group G2. G1 and G2 are multiplicative cyclic group of prime order q with

a additional Group GT . In this paper, we set G1 = G2, but in general cases

G1 6= G2. ψ is a computable isomorphism from G2 to G1, with ψ(g2) = g1 . e is160

a bilinear map which is computable e : G1×G2 → GT with following properties

for points:

1. Bilinear: For any M ∈ G1, N ∈ G2, u, v ∈ Z, we have e(uM, vN ) =

e(M,N )uv.

2. Non-degenerate: e(g1, g2) 6= 1.165

3. commutative: For any M,N ∈ G2 , e(ψ(M),N ) = e(ψ(N ),M).

4. For any M1,M2 ∈ G1 and N ∈ G2, we have [42]
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e(M1M2,N ) = e(M1,N ) · e(M2,N )

3.2. Group Blind Signature

Group blind signature was firstly proposed by Lysyanskaya and Ramzan in

1998 FC conference [43], which adds the blind feature on the basis of group170

signature. Upon the signer finding signature, he only can ensure that the sig-

nature is signed by himself. The signer can neither confirm when he signed

the signature nor whom he signed the signature for. The scheme usually has

these entities including group manager, group member and external users and

consists of five steps:175

• Setup: Group manager firstly generates group public key y and group

private key x in an probability polynomial algorithm.

• Join: Group manager interacts with the new group member to generate

the new group member’s secret/public key pair and certificate.

• Sign: An probability polynomial algorithm that input message m and180

private key of the signer, then output the signature σ.

• Verify: Input (m,σ, y), a probability polynomial algorithm judges the

correctness of the signature.

• Open: A probability polynomial algorithm that output identify of the

signer by inputting the signature σ and group manger’s private key.185

3.3. Schnorr identification protocol

Schnorr identification protocol was proposed by Claus Schnorr in [44] and its

security is based on the discrete logarithm problem. We assume that Prover(P )

interactive with Verifier(V ) in three-rounds protocol to prove that he owns w

such that W = g−w mod q. The flowchart of Schnorr identification is following:190
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• First round: P randomly chooses number r ∈ Z∗q and calculates

R = gr mod q then sends R to V.

Prover
R=gr mod q−−−−−−−−−−−−−−−−→ Verifier

• Second round: V randomly picks e ∈ [0, 2t − 1], security of the

protocol is based on the parameter t, which means the protocol will

be more safer with the increase of t, and send e to P .

Verifier
e−−−−−−−−−−−−−−−→ Prover

• Third round: P calculates S = (r + w · e) mod p and sends it to V .

Prover
S=(r+w·e) mod p−−−−−−−−−−−−−−−−→ Verifier

V will verify whether the equation R = gs ·W e mod q is set up and

accept that P knows w only if the equation holds.

4. System Model and Adversary Model

4.1. System Model

The system model of our scheme is demonstrated in the Fig. 2, which involves

three entities’ working relationship. Control center(CC), which is responsible

for generating the system parameters, entity registration, data verification and195

tracing other entities conditional. Smart substation(SS), which can interactive

with the user directly, verify the identity of user and generate blind signature.

Smart meter(SM), which can record data in real time and send a whole period of

consumption data regularly, so there is a threat that the data being tampered.

In practice, the storage overhead and computing overhead of SM should be200

taken into consideration, because it’s a resource-constrained device.

Moreover, the structure of our scheme is based on the group blind signature.

When it comes to communication between three entities, they exchange message
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Figure 2: System model

in the tree topology structure which data flow bi-directional propagation in the

upper and lower levels. In our scheme, adversary can not only eavesdrop the205

channel between user and SS, but also attempt to tamper the data and disrupt

stability of system. In addition, since the property of traceability in our scheme,

CC can acquire the identity of signer or revoke the anonymity of user if failure

in signature verification or message verification, respectively.

4.2. Adversary Model210

The adversary model determines the capabilities and possible actions of the

attacker, adversary model is defined as follows:

1. Adversary can eavesdrop the channel between user and SS to obtain

users’ consumption information. In addition, spitefully forging and substituting

the original or intermediate value can destroy the stability and dependability of215

system that might result in the threaten to data integrity.

2.Users have two types, one is honest but curious which they want to get

other users’ consumption information but don’t want to change any data. The
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other one is trying to tamper with own consumption data.

3. CC is fully trusted and SS is semi-trusted which as long as SS correctly220

signs the signature, SS cannot trace to specific users.

5. OUR SCHEME

The scheme we proposed consists of five phases: 1. system initialization,

2. user anonymous authentication and data reporting, 3. message signing, 4.

verifying correctness of signature and integrity of data, 5. trace the singer or225

users. The framework is as shown in Fig. 3. In reality, the number of SS is much

less than the number of SM/User. So we plan to use SMi/Ui to distinguish the

different user and use the Si to indicate the number of SS. At last, we assume

that the number of SM is constant N , so i<N . In the phase of data reporting,

for simplicity, we only simulate the process of one user generating the tags.230

5.1. System Initialization

1) System parameter generation and releasing: The Fig. 4 shows the process

of generating the parameter.

• Step 1: CC chooses two big distinct prime p and q which satisfying p|q−1

and computes n = pq.235

• Step 2: CC calculates the RSA public key pair (e, d) which satisfies ed ≡ 1(

mod φ(n)), where φ(n) is Euler function. The group public key and group

private key are e and d respectively.

• Step 3: CC chooses a cyclic group G < g > which is subgroup of Z∗q .

While, CC randomly chooses the element x and calculates y = gx mod n.240

Hence, group manager’s public key and private key are y and x respec-

tively.

• Step 4: CC publicly chooses secure anti-collision hash functionH : {0, 1}∗ →

{0, 1}k.
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Figure 3: The framework of our scheme

• Step 5: CC releases the public parameter P = {n, e,G, g, y,H}.245

2)The phase of registering: The registering process is shown in Fig. 4.

• Step 1: If new group member (SS) wants to join the group, SS randomly

chooses the number xi ∈ Z∗q and sends it to the group manger (CC). CC

randomly chooses yi ∈ Z∗q and calculates C = yyixi mod n and C1 =

gyi mod n. Group manger returns PK = (C,C1) and group member ’s250

certificate xi to SS.

• Step 2: Useri opens an account in CC and gets infori = (IDi||address||timestack),

Useri will save the public value gi = (H(infori)
x) mod n. CC installs

smart meter at user’s home. SMi saves gi and randomly chooses zi to

calculate Ii = gzi mod n as his own id information and sends Ii to CC.255

5.2. User anonymous authentication and data reporting

1)user anonymous authentication: Each SM tries to convince SS that he

is valid user by using schnorr identification protocol and then transform the

encrypted message to SS. The detailed process is shown in the Fig. 5 .
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• Step 1: SMi random chooses ti ∈ Z∗q and calculates T = gti mod n and260

sends to SS.

• Step 2: SS calculates cb = H(T ||timestack) and sends cb to user.

• Step 3: User calculates Si = ti − cbzi and sends Si to SS.

• Step 4: SS verifies the cb = H(gSiIcbi ||timestack).

Figure 4: System Initialization

Figure 5: The implement of our scheme

2)data reporting: SS verifies correctness of the meter and receives user’s en-265

crypted data. For simplicity, we only simulate one userk to encrypt information

data and report data. userk encrypts its consumption data and generates tags

for every data block. Since every data block mi is l dimensions, so we generate

one data tag ti for each data block mi. Then CC acquires all tags with the whole

day’s electric consumption data T ||m and verifies these tags whether match to270

the corresponding data block. The reporting process is shown in Fig. 5.
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• Step 1: Due to the security reason, the consumption data components

should be restricted by security parameter λ. For example, if security

parameter λ is set to 24, SM should generate twenty-four data blocks in a

day. So the electric consumption data we collected is in one hour. While,275

the consumption data is m = (cons, timestamp), in which cons represents

l-dimensional user’s electricity consumption data {L1, L2, L3 . . . .Ll}.

• Step 2: SM generates another random number stk ∈ Z∗q as the secret

tag key. Then SM outputs the public tag key ptk = gstkSMk
mod n by

inputting the security parameter λ .280

• Step 3: SMk will generate l random values {x1, x2, x3 . . . .xl} and calcu-

late uj = g
xj
SMk

mod n for j ∈ [1, l]. For each data block mi, it computes

a data tag ti .SMk will generate tag for every data block(24/λ/day) by

calculating the ti =
(
H(MID||i) ·

∏l
j=1 u

mij
j

)stk
, in which MID is the

abstract of data and i is the block number of mi and it outputs the set of285

data tags T = {t1, t2, t3 . . . .ti} , i ∈ [1, 24/λ].

• Step 4: SM encrypts (m||T ) by using public key e. By doing so, we ensure

that no other entity can learn the consumption information, other than

group private key owner CC. Then SMk calculates M = (m||T )e and

H(m).290

• Step 5: SMk chooses an blind factor b to multiply H(m) and calculates

H(m)′ = bH(m) and β = gb mod n. Then SMk sends the pair(H(m)′, β)

to signer.

5.3. Blindly signature on the message

1)generate the signature :The process is shown in the Fig. 5.295

• Step 1: Signer randomly chooses a big prime k ∈ Z∗q and calculates k−1

which is the multiplicative inverse of k. Then computing the signature

σ∗ = (r, s∗, C, C1),where s∗ = k−1(H(m)′ − ryi) mod n, r = βk mod n ,

C1 = gyi , C = yyixi.
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• Step 2: SMk removes the blind factor b by using s = s∗b−1 = b−1k−1(H(m)′−300

ryi) mod n, then gets the signature σ = (r, s, C,C1) and sends σ to CC.

5.4. Verification and traceability

1)verify the signature’s correctness and the data’s integrity: The detailed

process is shown in the Fig. 5.

• Step 1: CC decrypts M by using group private key d and gets the con-305

sumption information (m||T ) and computes H(m) .

• Step 2: CC verifies the correctness of signature by judging whether or not

the equation (1) is established. If the signature is verified correctly, it is

proved that m is not tampered with during transmission.

βH(m) = Cr1r
s (1)

• Step 3: if signature is legal ,we verify the M by using the Tag T to test

whether data has been modified. CC acquires T , m and ui by decrypted

M . Hence, CC can compute following values:

TG = Π
24/λ
i=1 ti (2)

MGj =

24/λ∑
i=1

mij (3)

DG = Πl
j=1e(uj , ptk)MGj (4)

H = Π
24/λ
i=1 h(MID||i) (5)

• Step 4: Then CC verifies whether equation(6) is set up:310

DG · e(H, ptk) = e(TG, gSMk
) (6)
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• Step 5: If equation(6) is setting up, we can sure that the consumer’s

information has not been modified. If not, CC will revoke the anonymity

of user to check whether user or external adversary have changed the

consumer’s information.

2)trace the identify of signer and revoke the anonymity of user: The detailed315

process is shown in the Fig. 5.

• Step 1: If we find that there is controversy when verifying the signature

equation, CC can open the signature to verify signer’s identity xi and find

the information of SS by using the CC’s private key.

xi = C/Cx1

= yyixi/g
yix

• Step 2: If equation (6) isn’t established, we find that the integrity of m

has been destoryed, the anonymity of user will be revoked by CC to check

whether adversary or user have changed data. Due to different SM has

different gSM , when CC acquires m||T and corresponding gSM .

gSMi
= H(infori)

x mod n

= H(IDi||address||timestack)x mod n

CC calculates gSMi
by using infori in the database and compares to the320

original gSM , which can insure the identify of user.

6. Security Analysis

Due to our system model has been improved on the basis of Jan Camenisch

and Markus Stadler’s group blind signature, obviously our scheme is as secure
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as their’s. The security of our scheme is based on the several difficulty prob-325

lems assumption, which including discrete logarithm problem, integer factoriza-

tion problem, and Computational Diffie-Hellman(CDH) problem. In addition,

our scheme is based on the security of Schnorr’s identification protocol and

RSA encryption. In this section, we prove that our scheme has authenticatabil-

ity, privacy-preserving, traceability, unforgeability and anonymity. The specific330

analysis is following:

6.1. Authenticatability

Authenticatability means that only legal users can upload their consumption

information to SS. In our data reporting protocol, SS will verify the validity of

consumers’ identity. Only verifying successfully, SS can give a blind signature335

to data and send encrypted data with signature to CC. In the authenticated

process, we use schnorr identification protocol to authenticate the user’s identity.

Theorem 1. The Schnorr identification protocol is an interactive protocol that

has two parties, prover A and honest-verifier B. If A and B run the protocol

successfully, B is always convinced A′s identity.340

Proof.

cb = H(T ||timestack)

= H(gti ||timestack)

= H(gSi+cbzi ||timestack)

?
= H(gSiIcbi ||timestack)

SS can calculate gSiIcbi and compare it with T . Hence, as long as SS and SM

can follow the protocol, SS will accept SM ’s proof of identity.

Theorem 2. The Schnorr identification protocol based on discrete-log related

assumption is secure against impersonation under concurrent attack [44].
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Proof. Proof sketch: As the security proof show in the [45], the main idea is to345

use a “rewinding technique”:

1. Suppose there is probabilistic adversary A who interactive with V , so that

the probability of V acceptance is ε. Assuming that discrete logarithm can

be computed in a constant and positive odds by adversary A.

2. A as a prover interacts with an honest verifier V twice. The V chooses350

different random value cb1 and cb2 , then A calculate S1 = t − cb1z and

S2 = t− cb2z. A wins if both S1 and S2 accepted by V .

3. Output z = (S1 − S2)/(cb2 − cb1) when cb2 6= cb1 . In the first time, the

probability of V successfully accepting is ε, while the probability that V

accepts in the second time is also the polynomial probability of ε. Due to355

the discrete logarithm problem over being hard, so the authentication is

security against the impersonation attack.

6.2. Unforgeability

Unforgeability refer to the fact that external adversary can’t forge or tamper360

with the file. In our scheme of data reporting, the meter will set security param-

eter λ in advance to control the times of reporting. If the security parameter

is λ, the frequency of sending report is 24h/λ. At the same time, we introduce

the homomorphic tag mechanism to verify whether the original data has been

modified.365

Definition 2. The Computational Diffie-Hellman(CDH) problem is that, con-

sider a cyclic group G of order q, given G ∈ G and (G,Gx,Gy) for randomly

chosen unknown x and y . It’s infeasible to compute Gxy [46].

We define (ι− ε)− CDHconsumption as a ι-time algorithm A has an non-

negligible probability ε to resolve the CDH-problem.370

Pr[A(G,Gx,Gy) = Gxy] ≥ ε,
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The CDH assumption indicates that the probability of solving the CDH

problem in polynomial time algorithm is negligible, which means that this ad-

vantage ε is negligible.

Theorem 3. If our scheme has been correctly performed by all entities, the

equation will hold when the CC executes the verification.375

Proof. The correctness of our verification equation (6) is elaborated as follows:

DG · e(H, ptk) =Πl
j=1e(uj , ptk)MGj · e(H, ptk)

e(TG, gSMk
) =e(Π

24/λ
i=1 ti, gSMk

)

=e
((

Π
24/λ
i=1

(
H(MID||i) ·

l∏
j=1

u
mij
j

)stk
, gSMk

)
=e
(

Π
24/λ
i=1

(
H(MID||i)stk, gSMk

)
· e
( l∏
j=1

Π
24/λ
i=1 u

mijstk
j , gSMk

)

=e(H, gstkSMk
) · e
( l∏
j=1

u
∑24/λ
i=1 mij

j , gstkSMk

)

=e(H, gstkSMk
) · e
( l∏
j=1

uj , g
stk
SMk

)∑24/λ
i=1 mij

⇒ Πl
j=1e(uj , ptk)MGj = e

( l∏
j=1

u
∑24/λ
i=1 mij

j , gstkSMk

)
= Πl

j=1e
(
u
∑24/λ
i=1 mij

j , gstkSMk

)
= Πl

j=1e
(
uj , g

stk
SMk

)∑24/λ
i=1 mij

Hence , we ensure that the equation DG · e(H, ptk) = e(TG, gSMk
) will

establish through the formula if all participants follow as our scheme.

Theorem 4. The verification tag is unforgeable for the possibility of any ad-

versary A win the verification game is negligible ε in the polynomial time.

Proof. We assume that adversary A can forge the tag and construct a challenger380

C. When A queries C, C will respond A correctly. The game is illustrated below.
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• Setup: Define set B = {m1,m2, . . . ,m24/λ} is the challenged block mes-

sage. Challenger C performs Setup algorithm to generate system parame-

ter to adversary A, which includes P = {n, e,G, g, y, h}. Then C randomly

choose x ∈ Z∗q .385

• Hash queries: A sends the message’s ID mi to the challenger C. Only if

mi exists in set B, C can return the corresponding value h(MID||i)stk to

A .

• Extract queries: A queries the block’s private key by sending the ID of

block message mi. If mi is in the set B, C randomly chooses xj ∈ Z∗q and390

calculates uj = g
xj
SMk

.

• KeyGen queries: A queries meter’s secret tag key by sending sequence of

smart meter k. C returns ptk = gstk to A if the SM exist.

• Tag queries: A sends the data block mi to query the verification tag

from C. C calculates tag as following395

ti = H(MID||i)stk ·
l∏

j=1

u
mijstk
j

and returns to A.

• Outputs: A finally outputs ti∗ at data block mi∗ with the abstract of mi∗

MID∗. We can obtain following equation:

ti∗ =
(
H(MID∗||i∗)

)stk · l∏
j=1

u
mi∗jstk
j

= (H(MID∗||i∗))stk ·
l∏

j=1

g
xjmi∗jstk
SMk

It is easy to see the conclusions described in the following from this equa-
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tion.

l∏
j=1

gxjstk =
(
H(MID∗||i∗)−skt

)1/mi∗j
(7)

We can draw a conclusion that A solves the CDH − assumption in the

polynomial time algorithm with the non-negligible possibility, which con-400

tradicts with the hardness of CDH − assumption. Hence, the adversary

can’t forge the valid tag.

6.3. Privacy-Preserving

Theorem 5. Adversary cannot get the user’s consumption information in the405

initial and intermediate phrase.

Proof. In two phrases of data reporting and blind signature, adversary and SS

have ability to get the encrypted user’s consumption information M and can’t

get private key of CC directly. So the possible way is to divide the big prime

number into p and q. We assume that factorizing N into correct p and q is an410

non-negligible possibility ε in the polynomial time algorithm. However, there is

no efficient algorithm to resolve the problem of prime factorization. Hence, our

scheme can efficiently protect the privacy of users’ consumption information.

6.4. Anonymity415

The scheme is anonymity if m is leaked, but the Adversary cannot get the

identity of the information owner.

Theorem 6. Even if the adversary can crawl into the private database of CC

and steal the decrypted information m and T, A can’t infer the identity of the

user by analysing the consumption information m.420

Proof. If Adversary tries to infer the identify of data owner, the only way is to

get gSMk
from ti =

(
H(MID||i) ·

∏l
j=1 g

xj ·mij
SMi

)stk
and compare to H(infori)

x
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mod n. However, Adversary has no capacity for getting gSMk
because of solving

the discrete logarithm problem is hard.

For experiment Exp(b) is for giving gSM ,the adversary choose the correct425

corresponding infrobi from infrob0 and infrob1 for i = 0, 1.

Algorithm 1 Experiment ExpAnon−bGBS,A (b)

- Exp(b)← Afind(gSM )

- (infrobo , infrob1)← Exp(b)

- bi ← Aguess(gSM , infrobo , infrob1)

- return bi

More formally, we define that all PPT adversaries A have a negligible ad-

vantage AdvAnon−bGBS,A , where the advantage is defined as follows:

AdvAnonGBS,A = Pr|ExpAnon−0GBS,A (b0) = 1− ExpAnon−1GBS,A (b1) = 1|

= ε

Hence, we can draw a conclusion that the true probability of identifying the

correct user identity from the set {infroi} is 1/N + ε after the adversary steals

the user’s information. We define the probaility as following:

AdvIdenGBS,A = Pr|ExpIden−inforiGBS,A (binfori) = 1|

= 1/N + ε

,when the number of user N approaches a large integer, 1/N +ε will converge to430

a negligible probability. It is clear that such a game captures the requirement
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that adversary can’t link the m to identify of the user, so anonymity can be

guaranteed.

6.5. Traceability

Theorem 7. If the equation (1) is not established, the CC executes tracking435

operation to get the signer’s information by using xi = C/Cx1 . Next, CC will

revoke the anonymity of user, if the equation (6) isn’t established.

Proof. Correctness:

βH(m) ?
= Cr1r

s

= gyir · βks

= gyir · gbks

= gyir+bkb
−1k−1(H(m)′−ryi)

= gH(m)′

By verifying the correctness of equation (1), CC can check the signature issuing

from SS.

xi = C/Cx1

= yyixi/g
yix

= xi

CC can get identity of signer by using group private key x which only group

manager owns.

gSMi
= H(infori)

x mod n

= H(IDi||address||timestack)x mod n

Finally, by utilizing registration information in the database, CC can calculate

H(infori)
x one by one to match the result with corresponding gSMi

.
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Table 1: Features Comparison

Schemes Ours [18] [47] [48]

Fine-grained Data
√ √ √ √

Anonymous Authentication
√ √ √ √

Unforgeability
√

×
√ √

Data Integrity
√

× ×
√

Traceability
√

× × ×

Scalability
√

×
√

×

†
√

: Support the feature

† ×: Dot not support the feature

7. Performance Analysis and Evaluation440

In the section, the proposed scheme is analysed in the aspects of features,

computational cost and performance evaluation. From results of analysis and

comparison, our scheme not only has more functionality and features, but also

can be more practical in reality.

7.1. Features Comparison445

In this subsection, our scheme is compared with Dimitriou [18] and Zargar [47]

in terms of fine-gained data, anonymous authentication, unforgeability, data in-

tegrity, traceability and scalability. As shown in Table 1, [18] can get the

fine-grained usage data and achieve anonymous authentication, but it cannot

sure that the file is modified by the external adversary. In addition, both [18]450

and [47] cannot achieve data integrity in the transmission process and trace

malicious participants when signature or data are corrupted. Finally, although

[48] can efficiently protect the privacy of consumer, it cannot trace malicious

participants and use widely.

7.2. Computational cost455

In the subsection, we can divide it into three stages including System setup,

anonymous authentication, blind signature generating and verification. Note
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that we count modular multiplication operation M , modular exponentiation

operation E, Weil Pairing operation W and hash operation H for every phase.

In addition, these operations are positively related to the participants, hence,460

we assume that the number of SM is v and the number of SS is s. Compu-

tational cost comparison is demonstrated in Table 2 in terms of setup phase,

authentication phase, sigGen phase and proof phase.

In the setup phase, CC needs to calculate y, C, C1, gi, Ii and a hash

h(infori). Hence, M = s, E = s + 2v + 1, H = v. Then the identify of SM465

will be authenticated by SS in the second phase, T = gti will be obtained by

SM to compute v times of exponentiation operation. While, for providing au-

thentication service, SS will compute 2v times of exponentiation operation gsi

and Icb , 2v times of modular multiplication operation and v times of modular

multiplication operation. In the third phase, H(m), (m||T )e and β will be cal-470

culated by using 2v modular exponentiation and v hash function. To verify the

correctness of the equation(1), CC will compute Cr1r
s, βh(m) by using 4v modu-

lar exponentiation and v modular multiplication. In summary, M = v, E = 6v,

H = v. The experimental comparison results are shown in Fig. 6(a),6(b), time

cost increases linearly with the number of users and substations, but increases475

more slowly than [47, 31, 48].

Specially, in the report generating phase homomorphic tag mechanism has

been firstly used in smart grid to verify the integrity of data. Before reporting

consumption message, ptk, uj , and ti should be computed by SMk with 1 +

l + 24/λ(l+1) modular exponentiation, 24/λ modular multiplication and 24/λ480

hash in a day. When CC decrypts messages m, l Weil pairing operations and

24/λ Hash operations are needed for computing DG and H. At the same time,

e(H, ptk) and e(TG, gSMk
) are 2 Weil pairing operations. Hence, we totally

need M= 24/λ, E = 1 + l + 24/λ(l + 1), H= 24/λ, W = l + 2 in the report

generating and verifying phase in a day for one user and CC.485
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Table 2: Computational cost comparison

Protocol Setup Authentication SigGen Proof

Ours s(M + E)+v(2E)+vH v(M + 2E) v(E +H) v(6E + M +

H)

[47] sW + v(3M + 2E +H) v(3E +W ) v(2E +M) v(5E+5M+

2W )

[31] v(4M + 4E) v(3E + 5M) v(6E + 4M) v(5E + 5M)

[48] v(M + 4W ) v(2W + 3M) 3vM 10vM

† M,E,W,H: Operations of modular multiplication operation, modular exponentiation,

Weil Pairing and hash

† ×: v, s: The number of SM and SS

(a) Computational comparison under constant substations

(b) Computational comparison under constant users

Figure 6: The computational cost comparison
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7.3. Performance Evaluation

To simulate the efficient our scheme in reality, we perform on a desktop

installed Ubuntu16.04 with Intel Core i3-3120 CPU and 4GB memory. The

simulation experiment is carried out by C language, in which pairing-based

cryptography(PBC) library and GUN multiply precision arithmetic(GMP) li-490

brary are used. The experimental results are obtained from the terminal of the

Linux and calculated the average value of twenty times. At the same time, we

acquire the graph by using MATLAB 2017a.

The simulation is made up by four stage. In the first stage, setup time

overhead is presented by increasing of the number of smart meters and smart495

substations. It is clearly that time cost is linear with the two variables. When

the number of smart meters is up to 1000 and the number of smart substation is

up to 10, the time cost is 13.005s in Fig. 7(a). In Fig. 7(b), the simulation result

shows that the time cost will increase with the smart meters and decrease with

the number of smart substations. As shown in the Fig. 7(b), the time overhead500

is 0.202s when the number of SM and SS up to 1000 and 10, respectively. The

reason is that, load balance technology [49] will assign different SM authentica-

tion services to different SS to increase data processing capability. Ideally, with

the increase of SM and SS, time consumption will be stable within a certain

range. Just as shown in Fig. 7(c), the time consumption of blind signature also505

satisfies this rule. The time cost will decline rapidly with the increase of SS.

Specially in Fig. 7(d),we present the time consumption on the tag genera-

tion phase and tag verification phase. From the experimental result, it’s clear

that time consumption is positively related to the number of data blocks and

the dimensions of data. When the number of data dimension and data block510

are both up to 1000, the time cost of tag generation and tag verification are

0.071835s and 0.000009s respectively.

Through all above experiments, our scheme has proofed efficient and per-

formed well when facing large-scale users. Hence, the scheme not only can be

proved secure, but also has a good scalability.515
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(a) Setup time

(b) Time of anonymous authentication
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(c) Time of blind signature

(d) Time of tag generation and verification

Figure 7: Efficiency simulation for different phases.
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8. Conclusion

In the paper, we have proposed a practical group blind signature scheme

with anonymous authentication and privacy-preservation for smart grid. Four

phases are included into the proposed scheme: the phase-I, where, SMs, SSs

finish registration after CC generates system parameters. In phase-II, SMs520

anonymously authenticate with SS by employing the schnorr identification.

Subsequently, the homomorphic tags are generated by SMs for verifying the

integrity of data. Phase-III, where SS generates group blind signature for data

from authenticated SM . In Phase-IV, the correctness of signature and the

integrity of data are verified by CC. The experiment simulation shows that525

our scheme is scalable and efficient. In our future work, we plan to expand

our scheme to accomplish the anonymous rewarding when consumer’s power

consumption meets certain standards by using block chain.
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