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Abstract 

Machine learning can process data intelligently, perform learning tasks and predict possible 

outputs in time series. This paper presents the use of our proposed machine learning algorithm; 

an Adaptive Boosting (Adaboost) algorithm, in analyzing and forecasting financial 

nonstationary data, and demonstrating its feasibility in financial trading. The data of future 

contracts are used in our analysis. The future used to test the Adaboost algorithm is a contract 

chosen to study future IF1711, which is combined by "HS300 index and Rb", the deformed steel 

bar future in Chinese stock market. The predicted data is compared with real world data to 

calculate accuracy and efficiency.  The Adaboost algorithm is combined with an Average True 

Range-Relative Strength Index (ATR-RSI)   strategy, so that it can be applied in automatic trading 

and therefore demonstrate its practical application. We develop three additional algorithms to 

enable optimization, large sale simulations and comparing both the predicted and actual pricing values. 

We performed experiments and large scale simulations to justify our work. We have tested the accuracy 

and validity of our approach to improve its quality. In summary, our analysis and results show 

that our improved Adaboost algorithms may have useful and practical implications in 

nonstationary data analysis. 

 
Keywords: Nonstationary data, Nonstationary time series, machine learning, Back-Propagation 

Algorithm, Adaptive Boosting Algorithm, ATR-RSI strategy. 

 

1 Introduction 

Time series analysis has a number of applications, including business management and market 

potential prediction. Before performing forecasting and risk estimation, historical data is analyzed 

in order to discover internal patterns [16]. Research into stationary data is somewhat mature, thus 

there are mathematical tools and models used to analyze patterns of a stationary sequence. 

However, most data from the real world are nonstationary. To address the limitations of non-

stationarity research, scientists use the differential algorithm to find a stationary data sequence. By 

performing differentiation, we can locate patterns of the data on a deeper level [4]. But the process 

of differentiation may sacrifice the quality of analysis [31]. When the order of difference is higher, 
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the analysis and forecasting is less precise. In this paper, we will use a Machine Learning method to 

analyze and predict nonstationary financial sequences. Machine Learning (ML) involves 

interdisciplinary research and includes probability theory, statistics, approximation theory, 

algorithm complexity theory and convex analysis. It is central to artificial intelligence and is the 

most innovative way to solve practical problems in econometrics and forecasting with non-

stationary data analysis. The financial sequence in forecasting task can be performed as a 

classification task. The classification algorithm assigns a class to a future contract depending on 

the historical data of the futures. The comparison task will be reached and enhanced by machine 

learning. Adaptive Boosting Algorithm (Adaboost) is used in machine learning process and will 

be coupled to ATR-RSI strategy to test the forecasting results. The accuracy rate and the rate of 

return in the simulation will be compared.  

The motivation is as follows. We propose a new algorithm which is fast, efficient and easy to 

use in a number of contexts. Investors and researchers can use our algorithm to analyze their work 

and gain foundational understanding about our algorithm. In finance, new and better machine-

learning based algorithms are required to make investment and research more competitive and up-

to-date. In this paper, we aim to design a model which depends on the provided nonstationary    

financial data and predicts the future price using machine learning. 

Our research contributions are as follows: 

 We develop an improved version of Adaboost Algorithms to aim for a stable 

performance and predictive modeling. 

 We improve accuracy and efficiency of financial analysis supported by our 

performance evaluation. 

 We can measure systematic risk with consistency and good performance evaluation. 

  

The general strategy is as follows: Firstly, we collect nonstationary data; the futures of HS300 

and Rb. Secondly, we use eighty percent of this data to train our Adaptive Boosting Algorithm 

and use twenty percent to test the auto-trading strategy called ATR- RSI. In this process, the 

Adaptive Boosting Algorithm will calculate 7 average prices of different time segments of 

historical data as 7 features of the nonstationary data. Finally, we analyze the results shown by the 

model. We use the same trading strategy ATR-RSI on both data predicted by Adaboost and real 

data to determine the winning rate. The results show that without different process for 

nonstationary data, Adaboost can predict financial sequences in a reasonable range. 

 
2 Background 

This section describes literature and related works for Adaboost and non-Adaboost methods for 

nonstationary analysis. The understanding of the non-stationarity begins with the stationary 

process. In order to analyze financial markets and study the Brownian movement, people began 

to study stochastic processes in the late 19th century. In 1900, Louis Bachelier’s doctoral thesis 

"Speculation Theory" proposed a stochastic analysis of the stock and options markets [2]. With the 

Brownian movement, the price model can be described using advanced mathematical tools. 

However, the Brownian motion is a Wiener process; meaning that features such as zero 

expectation do not fit the price process in the real financial world. In this case, some modified 

models like the Brownian motion with drift are created. The most well-known is the geometric 

Brownian motion (GBM), which has been used to mimic stock prices in the Black-Scholes pricing 
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model. According to Hull, the expectation of geometric Brownian motion is independent of the 

price of the stochastic process (stock price), which is consistent with our expectations of the real 

market [20]. Hull also stated that the geometric Brownian motion process presents the same 

"roughness" as the price process we observe in the stock market [20]. In B-S model, there is a strict 

assumption that the yield (drift rate) and the volatility of asset price are constant over time. The 

GBM under such an assumption is easy to calculate so it has become the most popular model in 

mathematical finance.

 

In classical econometrics, there are two important assumptions for time series: stationarity and 

constant volatility. The Autoregressive conditional heteroscedasticity (ARCH) model solves the 

problem caused by the constant volatility assumption. The ARCH model can accurately simulate 

the volatility of time series variables. It is widely used in empirical research of financial 

engineering. Obviously, most time series are nonstationary in practice. Although different time 

series are non-stationary, combinations might be stationary.  Based on this, in dealing with the 

nonstationary data, a common method is differentiating the time series. The difficulties are in 

determining the difference order. Once the series is stationary, difference will not proceed. The 

stationarity can be judged by calculating the autocorrelation and partial correlation parameters. 

Therefore, the traditional time series process is sophisticated and full of uncertainty. 

Predicting financial markets in nonstationary series is a significant theme of research and an 

intricate work, since the prices in financial markets can move in a random process. There are vast 

factors due to this stochastic behavior and most of them are sophisticated and hard to be 

forecasted [19] [17]. However, this model should contain factors can represent the features of 

human behavior and reaction to the financial activity. The subject that studies and explains the 

factors of human behaviors and psychology in finance is called behavioral finance. The classical 

behavioral financial model is DSSW, BSV, DHS, HS and BHS which may not be described detail 

fully in this paper since these are less related to this research. However, behavioral finance shows 

that humans sometimes are not rational when they make investments. Therefore, human beings 

have tried to invent systems to help them make investments without the effect of subjective 

judgement. Suitable transmutation of historical samples will produce samples of the random 

movement of price. We collect data and input it to the learning algorithm. IF1711 with HS300 and 

Rb are chosen for the analysis by the algorithm. 

The reason we introduce a method based on the machine learning is to avoid those dis- 

advantages of losing information and getting low-accuracy in differential algorithm. Machine 

learning stimulates people to learn new skills and knowledge. It is also able to reorganize existing 

knowledge structures and improve their performance [5]. Its application has covered all branches 

of artificial intelligence, such as expert systems, automatic reasoning, natural language 

understanding, pattern recognition, computer vision, intelligent robots and other fields. Machine 

learning is a way to train systems to model neural networks. The aim is to enable systems to work 

automatically and intelligently based on a large number of data such as voice and image 

recognition. Similarly, it can be used in the financial field. For example, historical stock data can 

be used to train financial systems, in order to forecast the rise and fall of the selected stocks. 

Machine learning uses sophisticated algorithms and models which can enable computer 

applications to predict unknown data [18]. The artificial intelligent system in this paper will be 

constructed with neural networks. Neural networks can provide the basic framework of machine 
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learning and DL (deep learning). It has been investigated over a number of years to forecast trends 

in financial markets and enable automatic computer trading [19]. 

 
Adaboost shows a good performance in forecasting nonstationary data in this experiment. 

Researchers find that Adaboost had the ability to measure the effect of mutual governance 

variables. Additionally, Adaboost can be effectively used with random forest to enhance the 

computational performance [15]. This is the reason that the Adaboost will be used in this 

experiment in this paper. The suggestions of automatic trading are demonstrated by Creamer, 

who uses boosting for automated planning and trading system [10]. Adaboost is a method presented 

in this paper. Creamer establishes an efficient automated trading system and tests different 

parameters. He finally gets positive results that show excellent predictions on selected S&P 500 

stocks. 

 
Some nonstationary literature inspires our research direction and shows possibilities for further 

improvement. A parallelized NLI method with general-purpose computing on the graphics 

processing unit (G-NLI) is a powerful tool in nonlinear Interdependence (NLI) analysis. As it has 

high performance in runtime, it is promising to use it in further financial nonstationary analysis, 

especially in real-time computing and trading [8]. A hierarchical parallel processing framework 

over a GPU cluster (H-PARAFAC) has unmatched advantages on multidimensional data 

computing [7]. Its potential value can offer a more precise financial forecasting method since more 

variables are used in the form of tensors. More different terms and conditions can be considered 

and added with low feature-loss. A Bayesian tensor factorization (BTF) model supplies the tensors 

non- stationary analysis [25]. To efficiently deal with the long-time nonstationary financial 

sequence, high performance dictionary learning methods will be considered and used in our 

algorithm de- sign [26] [28]. In the progress of the financial nonstationary computing improvement 

and practice, the nonstationary data would be pretreated using the Bregman method for better 

and more precise result in optimization problem [27]. In future, our work will explore the 

possibility of combination of the parallel factor analysis (PARAFAC) methods and the cloud-

centered computing platform to increase the real-time nonstationary computing ability and 

improve the sustainment for complicated analytics [9] [21]. 

The next section will describe the theory of artificial neural networks. It will start with single 

layer neural networks and introduce multilayer neural networks which are the basic part of 

machine learning. 

 
3 Training Methods for nonstationary data analysis 

This section describes the methods and theory of training with nonstationary data. The first 

algorithm is the back-propagation algorithm. The second algorithm is adaptive boosting.  This will 

be used in the experiment to predict financial data and will be used for automatic trading on 

HS300. Neural networks have been used for algorithm development for machine learning. These 

include CNN and RNN, as they can produce iterative calculations and predictions for 

computational analysis [22] with no exceptions for finance. However, the long short term memory 

(LSTM) is a neural-network based algorithm that has the improvement over CNN and RNN. In 

our previous work, we demonstrated the usefulness and effectiveness of using LSTM for 

analyzing and predicting selected Chinese stocks. As shown in Fig 1, our work uses multiple encoder 
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dimensionality reduction, and then creates output to the LSTM extraction. This is similar to 

deploying the “ReduceMap” method, the opposite of MapReduce as follows [22]. First, all similar 

characteristics of the dataset congregate into a single or fewer common characteristics. Second, 

further process and analyze on particular points or instances. This allows better accuracy to 

be achieved. 

Referring to Figure 1, we have applied this principle to the development of our algorithm and also 

the workflow of the data process, the latter of which will be shown in Figure 3. By applying this 

principle, it allows us to carefully process and analyze data. We can therefore make more 

meaningful predictions. 

 

 
Figure 1:  The LSTM 

 
3.1 Back-Propagation Algorithm 

Back-Propagation Algorithm (BP) is a way to compute error results from each neuron after   a 

batch of data is processed. In the context of learning, the common method used in back- 

propagation algorithm to update the weights in neural network theory by computing the gradient of 

the loss function is gradient descent method. Gradient descent is a first-order repeated optimization 

algorithm for finding the minimum of a function. In order to use gradient descent to get the local 

minimum of a function, a step is inversely proportional to the gradient (or approximate gradient) of 

the function at the present point. In contrast, if a step is relative to the positive proportion of the 

gradient, the function is close to a local maximum of the function, which is called the gradient 

ascent. By the way, steepest descent is a special kind of gradient descent. They are similar but 

differences can still be observed. The Steepest Descent method is used to update the weights [17]. 

 
3.1.1 Steepest Descent 

The way of steepest descent is extended by Laplace’s method for the approximation of an integral. 

It can update the weight in the orientation contrary to the gradient vector ∇µ(w).  In this vector, 

𝜇 =
1

2
𝑒𝑖
2(𝑛) where 𝑒𝑖(𝑛) means the error between output ℎ𝑖(𝑛) in the network and the desired 
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response di(n). It can be shown as ei(n) = di(n) − hi(n). The following equation is the form of 

the steepest descent algorithm: 
 

w(n) − η ∇µ(w) = w(n + 1). 

In the equation, η is learning-rate defined before. The correction between time step n and n + 1 

is 
 

∆w(n) = w(n + 1) − w(n) = −η ∇µ(w) 

The equation is useful in approximating µ(w(n + 1)) with the first order Taylor series expansion: 
 

µ(w(n + 1)) ≈ µ(w(n)) + ∇µT (n)∆w(n). 

Haykin has proven that the rule satisfies the condition of repeated decent [17]. Iterative decent 

states the next proposition: 

 

Proposition: Beginning at w(0) and then go on a sequence of weight vectors w(1), w(2), w(3), · 

· · 

so that the cost function can be decreased at every repeat: 

 
µ(w(n)) > µ(w(n + 1)), 

 
w(n) is the past value of the weight vector and w(n+1) is the value which is updated in the 
equation. 

 
The input signal which is hi(n) is collected by neuron i and then produces the output vi(n) 

which can be written in the following equation: 
 

vi(n) =∑ 𝜔𝑖𝑗(𝑛)ℎ𝑖(𝑛).
𝑚
𝑗=0  (3.1) 

When h0 = 1, it identifies the bias with weight wi0 = bi in the model. The activation function 

affords the stimulus from the neuron whose output passing through it. This can be written as: 

 

hi(n) = gi(vi(n)). 

 
Then making the gradient and using the chain rule to do differential which is 

𝜕𝜇(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
=

𝜕𝜇(𝑛)

𝜕𝑒𝑖𝑗(𝑛)

𝜕𝑒𝑖(𝑛)

𝜕ℎ𝑖𝑗(𝑛)

𝜕ℎ(𝑛)

𝜕𝑣𝑖(𝑛)

𝜕𝑣𝑖(𝑛)

𝜕𝜔𝑖𝑗(𝑛)
= −𝑒𝑖(𝑛)𝑔𝑖

′(𝑣𝑖(𝑛))ℎ𝑖(𝑛)                                              (3.2) 

where ei(n) = di(n) − hi(n) is the derivatives of the error signal, 𝜇(𝑛) =
1

2
𝑒𝑖
2(𝑛) is the error energy,   

hi(n) is the function signal from neuron i and vi(n) is the local field. 

 

3.1.2 The Delta Rule 

In machine learning, the delta rule is used to update the weights of inputs. It is a modification 

∆wij(n) lending itself to wij(n) and can be expressed as: 
 

∂µ(n) 
∆wij(n) = −η 

∂w
 . (3.3) 

(n) ij 
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In the following equation, η is the parameter of learning as usual and the negative sign results in 

gradient descent in weight space. It can also be expressed as: 

∆wij(n) = ηδi(n)hj(n) (3.4) 
 

where there is the local gradient δi(n) = ei(n)gi
l(vi(n)).  In the delta rule, there are two different 

cases that should be considered. One case depends neuron i producing an output signal in a 
hidden layer. The other case is dependent on neuron i producing the signal in the output layer. 

  

 Case I: Output Layer 

The local gradient can be computed by ∆wij(n) = ηδi(n)hj(n) where ei(n) = di(n) − hi(n) 

when neuron i is in the output layer. 

 
Case II: Hidden Layer 

When neuron i is part of a hidden layer, the local gradient can be written as: 

𝛿𝑖(𝑛) = −
𝜕𝜇𝑖(𝑛)

𝜕ℎ𝑖𝑗(𝑛)

𝜕ℎ𝑖(𝑛)

𝜕𝑣𝑖𝑗(𝑛)
= −

𝜕𝜇(𝑛)

𝜕ℎ𝑖𝑗(𝑛)
𝑔𝑖
′(𝑣𝑖(𝑛)).                                                                                 (3.5) 

 

Haykin wrote that the cost function 𝜇(𝑛) =
1

2
∑ 𝑒𝑘(𝑛)

2
𝑘∈𝐶   when neuron k is the output neuron. 

Therefore, the gradient of the cost function is [17]: 

𝜕𝜇(𝑛)

𝜕ℎ𝑖(𝑛)
= ∑ 𝑒𝑘

𝜕𝑒𝑘(𝑛)

𝜕ℎ𝑖(𝑛)
𝑘  .                                                                                                                   (3.6) 

 

where the error is ek(n) = dk(n) − hk(n) = dk(n) − gk(vk(n)) which gives: 

𝜕𝑒𝑘(𝑛)

𝜕𝑣𝑘(𝑛)
= −𝑔𝑘

′ (𝑣𝑘(𝑛)).                                                                                                                    (3.7)
 

 

 

In the end, the gradient of the cost function is: 

𝜕𝜇(𝑛)

𝜕ℎ𝑖(𝑛)
= −∑ 𝑒𝑘(𝑛)𝑔𝑘

′ (𝑣𝑘(𝑛))𝑤𝑘𝑖(𝑛) = −
𝜕𝜇(𝑛)

𝜕ℎ𝑖(𝑛)
= ∑ 𝛿𝑘𝜔𝑘𝑖(𝑛)𝑘𝑘                                                                                    (3.8) 

where 
𝜕𝑣(𝑛)

𝜕ℎ𝑖(𝑛)
= 𝜔𝑘𝑖(𝑛)  and 𝑣𝑘 = ∑ 𝜔𝑘ℎ𝑖(𝑛).𝑘  So the local gradient for hidden neuron 𝑖 is  

𝛿𝑖(𝑛) = 𝑔𝑖
′(𝑣𝑖(𝑛))∑ 𝛿𝑘𝜔𝑘𝑖(𝑛)𝑘                                                                                                               (3.9) 

 

In summary, the following is the rule for updating the parameters in the network: 

 
 

1. Using the delta rule to update the parameters: 
 

∆wij(n) = ηδi(n)hj(n) 

 
2. Using the way of case I when neuron i is an output node. 

3. Using the way of case II when neuron i is a hidden node and δS is needed from the following 

hidden or output layer in the hidden layer before. 

The back propagation algorithm works by going through the data in a backward phase and a 

forward phase to update the weights.  In the following section, the backward and forward phases 

will be explained. 
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3.1.3 Backward phase and Forward Phase 

Forward Phase 

The input data goes through the synaptic weight between layers and does not stop until it finally 

leaves in the output neurons. The signal satisfies the function: 

 

ℎ𝑖(𝑛) = 𝑔(∑ 𝜔𝑖𝑗(𝑛)ℎ𝑗(𝑛)
𝑚=0
𝑗=0 ).                                                                             (3.10)  

In the equation, g is the activation function, m is the amount in total of inputs except bias, wji(n) 

is the synaptic weight which makes connection between neuron j and neuron i and hj(n) is the 

signal of input of neuron i and the output of neuron j simultaneously. When the neuron i exists 

in the first hidden layer: 

hj(n) = xj(n). (3.11) 

In the equation, xj(n) means the jth input data factor. If the neuron i exists in the output layer: 
 

hi(n) = oi(n) (3.12) 
 

In the equation, oi(n) means the ith the output vector factor which is compared to the situation 

resulting in the error ei(n) from the desired response di(n). 

 

 
Backward Phase 

The starting address of a backward phase is the output nodes. The total layers are passed through 

in the network, where δ is gradient recursively for every neuron in each layer. According to the 

delta rule, the synaptic weights are updated in this way. The δ is found from multiplying the 

calculation of the error and the first derivative of its activation function in the output layer. The 

variation of the weights for the total connections oriented to the output layer can be computed 

according to (3.4) and (3.9) can be used to compute the δS for the layers which arise before the 

output layer when the δ is acquired for the output layer. The computation is recursive and uses 

the way of transmitting the changes to all the synaptic weights to be sustained layer by layer. 

 
 

3.1.4 Computing δ for Known Activation Functions 

This section shows the computation of the hyperbolic tangent function given by 

a · b cosh−2(bvi(n)) and δ for the logistic (sigmoid) function. Their derivatives are: 

l a · e−avi(n) 

gi(vi(n)) =  
(1 + e−avi(n))2 

, (3.13) 

gi
l(vi(n)) = a · b cosh−2(bvi(n)),

 (3.14)

Noting that hi(n) = gi(vi(n)) can be used in the formulas of the derivatives. Below are two formulae 

of δ depending on whether there exist neurons in a output or hidden layer. 

1. The neurons exist in a hidden layer. 

The expression in the example of a hidden layer is: 
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𝛿𝑖(𝑛)

{
 
 

 
 𝑎 ∙ ℎ𝑖(𝑛)[1 − ℎ𝑖(𝑛)]∑𝛿𝑘(𝑛)𝜔𝑘𝑖(𝑛),

𝑘

  𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑏

𝑎
) [𝑎 − ℎ𝑖(𝑛)][𝑎 + ℎ𝑖(𝑛)]∑𝛿𝑘(𝑛)𝜔𝑘𝑖(𝑛),   ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 

𝑘

 

2. The neurons exist in a output layer. 

since hi(n) = oi(n) means the signal of function at the output of neuron i. The formula is: 

𝜹𝒊(𝒏) {

𝒂[𝒅𝒊(𝒏) − 𝒐𝒊(𝒏)]𝒐𝒊(𝒏)[𝟏 − 𝒐𝒊(𝒏)], 𝒔𝒊𝒈𝒎𝒐𝒊𝒅

(
𝒃

𝒂
) [𝒅𝒊(𝒏) − 𝒐𝒊(𝒏)][𝒂 − 𝒐𝒊(𝒏)][𝒂+ 𝒐𝒊(𝒏)], 𝒉𝒚𝒑𝒆𝒓𝒃𝒐𝒍𝒊𝒄 𝒕𝒂𝒏𝒈𝒆𝒏𝒕

 

Where 𝒅𝒊(𝒏) is the desired response. 

3.1.5 The Way to Choose Learning Rate 
 

A low value chosen as the learning rate can result in a mutual effect in weights space glabrous at 

the expense of longer learning rate. A high value chosen for a learning rate can result in a large 

adjustment. This can lead to the network becoming unstable. In order to accelerate the 

calculations while maintaining the stability of the network, a momentum term would be 

integrated and the delta rule defined as follows: 

∆wij(n) = α∆wij(n − 1) + ηδi(n)hi(n), (3.15) 

where α is the momentum constant which is a positive invariable. The delta rule is named the 

generalized delta rule in this form. If index t moves from 0 to the present time n, it can be 

projected to a time series. The solution of the equation for ∆wij(n) can result in 

Δ𝑖𝑗(𝑛) = −𝜂 ∑ 𝛼𝑛−𝑡𝛿𝑖(𝑡)ℎ𝑖(𝑡)𝑡 . 

Hence, the earlier equations can be used to express the following equation:

 

Δ𝑖𝑗(𝑛) = −𝜂 ∑ 𝛼𝑛−𝑡
𝜕𝜇(𝑡)

𝜕𝜔𝑖𝑗(𝑡)
𝑡 . 
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3.1.6 Stopping Criteria 

Firstly, setting the W ∗ is the minimum, global or local weight vector. Then taking the gradient of 

the error to find that it appears in regard to W where it is surely 0 for W = W ∗. The convergence 

criteria for the BP algorithm is as follows [17]: 

If the Euclidean norm of a gradient vector gets the enough little gradient threshold, the BP 

algorithm is thought to be converged. 

It is necessary to calculate the gradient. Haykin suggests that µav(W ) is settled at W = W ∗ to 

improve the stated criteria is following [17]: 

If the absolute rate of changes in the average squared error of each epoch is adequately small, then 

the BP algorithm is convergent. 

If the rate of changes is between 0 and 1 percent per epoch, it is expected to be small. 

 
Early-Stopping 

Firstly, the training data is separated into two sets; the data of validation and estimation. The 

network trains with the data of estimation while the data of validation is applied to test 

generalization capacity. Training is stopped regularly and testing the network on subsets of 

validation data occurs after every training period. The procedure is as follows: 

 

1. Bias of the MLP and the synaptic weights are fixed after a period of training. The network is 

to run in its forward mode. The error of validation is estimated for every sample in the subset 

of the set of validation. 

2. Training is restarted for another period and the procedure is iterative when validation is 
completed. 

 
 

We will mainly use Adaboost, which is better and more efficient than Back-Propagation 

Algorithm to train and forecast the financial data. 

 

4 Adaptive Boosting for nonstationary data 
 

4.1 Introduction of Adaptive Boosting 

Adaptive boosting (Adaboost) is a machine learning method developed by Freund and Schapire 

in 1995 [14]. It has been shown to be an accurate learning procedure [5][23]. Adaboost combines 

all weak classifiers together to create a strong classifier. It can be applied in combination with 

multiple other learning algorithms to improve performance. The outputs of weak learners are 

coupled with a weighted accumulation that stands for the eventual results of the weighted 

classifier. Adaboost is adaptive since later weak learners are tuned to favor instances that were 

mistakenly classified by fore classifiers. Adaboost is impressible to noise outliers and data. In 

several questions, it may be less prone to over-fitting, than other approaches. The single one 

Adaboost learner may be not strong enough, whereas as long as the performance of each learner 

overwhelm a little than random guesswork, the final model can prove to be a formidable learner. 

The combination of several learners is different with neural networks. When the Adaboost is in 

training process, it chooses optimal functions to increase the performance of prediction of the 
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model, reduce the dimension, and possibly shorten the execution time since there is no need to 

calculate irrelevant features. The figure 2 shows how the Adaboost works. The result is the 

combination of the four weak classifiers and will provide a great classification. "Weak Learner" is 

any machine learning algorithm that shows slightly better accuracy than random guesswork. For 

example, considering the binary classification problem that belongs to about 50% of the samples 

for each category. Random guess in this case will produce about 50% accuracy. Each weak learner 

will raise the classification score slightly.  In general, it is trivial that weak learners are very simple. 

The job of weak learners is to get a weak hypothesis which is ht: X → {−1, 1} adequate for the Dt 

distribution. Its error then measures the goodness of the weak hypotheses which can be written 

as: 
 

𝜖 = 𝑃𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖] = ∑ 𝐷𝑡(𝑖)𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖
                                    (4.1) 

Note that the error is based on the Dt of weak learner training. In fact, a weak learner could be an 

algorithm that can make use of the weight Dt on examples of training. Instead, a subset of training 

examples can be essayed from Dt and the (unweighted) resampling samples can be utilized for 

training weak learners when this is not possible. See Figure 2 for details. 

 

 
 

Figure 2: The Adaboost is a strong learner combined by several weak learners 
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Zt 

4.2 Adaboost Algorithm 

The following algorithm is the Adaptive Boosting Algorithm. Adaboost regulates the errors of 

the weak hypotheses adaptively. It inputs a set of training(x1, y1), · · · , (xm, ym) where xi is in 

space X and label yi is in label set Y . Assuming Y = −1.1 , we use an example to explain the 

algorithm. If a gambler wants to get maximum value of his/her winnings, he or she makes a 

decision to design a program which can forecast accurately which horse will win according to the 

usual data (betting odds for each horse, number of races recently won by each horse, etc.). He or 

she collects rules of thumb from expert gamblers and use them to his/her advantage. Here the 

instance xi can be taken as horse races and the labels yi give the outcomes of each race. 
 

Algorithm 1 Framework of Adaboost Algorithm for our system. 

Given T ,suppose t = 1, Xi ∈ X, yi ∈ Y = {−1, +1}. The distribution of weak learner satisfies 

D1(i) = 1/M. 

Define the error as: 

𝜖 = 𝑃𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑥𝑖)≠𝑦𝑖]. 

where the ht is the weak hypothesis in {−1, 1}. 

while t ≤ T do 

𝛼𝑡 =
1

2
𝑙𝑛(
1 − 𝜖𝑡
𝜖𝑡

) 

 
 

Dt+1(i) =  Dt(i) exp(−αtyiht(xi)) , where Zt is a normalization factor. 
end while  

Output: 

𝐇(𝐱) = 𝐬𝐢𝐠𝐧(∑𝜶𝒕𝒉𝒕(𝒙)

𝑻

𝒕=𝟏

). 

 

The weak hypotheses can be seen as the rules of thumb where examined subsets are selected 

based on the distribution Dt. Each time the weak hypotheses ht is examined, a parameter αt is 

chosen by Adaboost. αt estimates the importance which is assigned to hi. Notice that αt ≥ 0 if 𝜖 ≤
1

2
 and 𝛼𝑡 becomes larger with 𝜖𝑡 becoming smaller. 

 

The next step is to apply the rule demonstrated in the algorithm 1 above, with the aim to update 

the distribution Dt. The rule results in an increase in the weight of misclassified samples ht, and 

a decreasing weight of properly classified samples.  

The final hypotheses H is a weighted vote of plurality of the T weak hypothesis where αt is the 

weight portioned to ht. 

Analysis using Adaboost can handle weak hypotheses, such as confidence-rated predictions 

[24]. It means that the weak hypothesis ht exports a forecasting ht(x) ∈ R whose magnitude |ht 

(x)| offers a measure of “confidence” in the prediction and whose sign is the label of prediction 

(-1 or 1) for each instance x. Our algorithm can detect errors, report and correct errors (within 

the acceptable limit). 

 

Algorithm 2 Identify the types of data and adjust strategies 

Given T ,suppose t = 1, Xi ∈ X, yi ∈ Y = {−1, +1}. The distribution of weak learner satisfies 
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Zt 

D1(i) = 1/M. 

Define the error as: 

𝜖 = 𝑃𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑥𝑖)≠𝑦𝑖]. 

where the ht is the weak hypothesis in {−1, 1}. 

while t ≤ T do 

𝛼𝑡 =
1

2
𝑙𝑛(
1 − 𝜖𝑡
𝜖𝑡

) 

 
 

Dt+1(i) =  Dt(i) exp(−αtyiht(xi)) , where Zt is a normalization factor. 
 

end while  

Output: 

𝐇(𝐱) = 𝐬𝐢𝐠𝐧(∑𝜶𝒕𝒉𝒕(𝒙)

𝑻

𝒕=𝟏

). 

 

 

 
4.3 Analysis of training errors 

The ability of Adaboost to reduce training errors is its most basic theoretical property. Setting the 

error Et of ht is 1
2
− 𝛾𝑡 . Since the hypothesis that expects each class of instance at random has a rate 

of error of 1 (on binary questions), γt estimates how much better than random are forecasting of 

ht. Schapire and Freund  have shown that the error of training of the final hypotheses can be written 

[14]:  

∏ [2√𝜖(1 − 𝜖𝑡)]  = ∏ √1 − 4𝛾𝑡
2 ≤ 𝑒−2∑ 𝛾𝑡

2
𝑡 .𝑡  𝑡                                   (4.2) 

 

 

Therefore, the training error declines at exponential speed if every weak hypotheses is a little 

higher than random such that γt ≥ γ for some γ > 0. In practice, it is difficult to understand such 

boundaries. Despite this, Adaboost is adaptive and adjusts to the error rates of single weak 
hypotheses. 

The bound given in (4.2) which coupled with the bounds on generalization error explained show 

that Adaboost is equivalent to an optimizing algorithm since it can effectively strengthen and 

improve a weak learning algorithm several times. By doing so, this enhances the possibilities to 

become a strong learning algorithm. 

 
4.4 Generalization of errors 

Schapire and Freund prove the way to make bounds for the generalization error of the final 

hypothesis according to its training error, the VC-dimension d which is a normal measure of the 

“complexity” space of hypotheses for the weak hypothesis space, the sample size m and the number 

of boosting rounds T [14]. The generalization error is defined as follows with high probability [3]: 

�̂�𝑟[𝐻(𝑥) ≠ 𝑦] + �̃� (√
𝑇𝑑

𝑚
). 
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In the above equation, P̂ r[·] means empiric probability on the training sample.  The bounds implies 

that boosting will result in overfitting when it runs for a high number of rounds or if T becomes 

too large. However, former research output stated overfitting did not happen during operations 

over a thousand rounds. Furthermore, Adaboost would run on reducing the error, even when the 

error of training starts to disappear. This contradicts the spirit of the bound above clearly [5] [13] 

[23]. 

In order to research empirical discoveries, Schapire got an alternative approach according to the 

margins of the examples of training [24]. The definition of margins of the sample (x, y) can be 

written as: 

𝑦∑ 𝛼𝑡ℎ𝑡(𝑥)𝑡

∑ 𝛼𝑡𝑡
.                                                                        (4.3) 

  

The margin of training sample is between −1 to 1. It becomes positive if and only if H exactly classifies 

the samples. Furthermore, the dimensions of the margin can be construed as a measurement in 

the process of forecasting. Schapire found that there are larger margins on the set of training 

transforming to a superior upper bound on the generalization error [24]. The generalization error 

is no more than: 

�̂�𝑟[𝑚𝑎𝑟𝑔𝑖𝑛(𝑥, 𝑦) ≤ 𝜃] + �̃� (√
𝑑

𝑚𝜃2
),  for any 𝜃 > 0 with high probability.                              (4.4) 

Notice that the bound does not rely on time entirely. Schapire showed boosting is invasive at 

decreasing the margin in particular, since it focuses on the samples with the smallest margins [24]. 

The behaviors of Adaboost can be understood in a game theoretical environment.  They are 

explored by Freund and Schapire [1]. They found that boosting can be seen as an iterative play for 

some games. Adaboost can be explained to be a particular sample of a more normal algorithm to 

play iterated games and for approximately finishing a game. This means that boosting has a close 

relationship with online learning and linear programming. 

 
4.5 Multiclass Classification 

There are only binary classification questions in the previous sections and their objects are to 

distinguish between only two possible classes. In practice, there are more than 2 possible classes 

of learning questions. They are thus defined as multi-classed. Adaboost can process and simulate 

this type of sample.   

The simplest generalization, named Adaboost.M1 is competent if it is strong enough for the weak 

learner to acquire reasonable high accuracy [14] on the hard distributions created by Adaboost. 

Nevertheless, if the weak learner is not able to acquire a rate of more than 50% accuracy operating 

on these hard distributions, the method is considered as a failure. Some more complicated 

methods have been developed for the latter case. The algorithm Adaboost.MH designed by 

Schapire and Singer constructs a set of binary problems for every sample x and possible label y 

[24]. Freund and Schapire designed the algorithm Adaboost.M2 to replace creating binary 

questions for every sample x with exact label y and every incorrect label yl [14]. 

The methods exact extra efforts to design weak learning algorithms. A diverse technique [24], 

which incorporates method of error-correcting output codes from Dietterich and Bakiri [12], finds 

similar certifiable bounds to those of Adaboost.MH and M2 are able to be applied with any weak 
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learners to deal with binary labeled data.  

 

4.6 Sophisticated way to process and analyze data 

In this section, we describe the experiment that using Adaboost to train data and forecast future 

financial data. Python 3.6.4 software with vn.py was the run-time environment for all the 

computational analysis. Two packages were required: numpy and talib. The data was provided by 

cooperating financial institutions. We uploaded and shared the CSV files to the following link: 

https://bit.ly/2NeLe6Y.  IF1711 data were gathered from 16th April 2010 to 20th March 2017. Rb 

data were gathered between 3rd June 2014 and 4th May 2017.  

The data were divided thus: 80% of the data was applied for training and 20% was applied for 

testing. It is trivial that all of data are nonstationary. The process of the experiment is shown in 

the following and the results are presented. The data used in the experiment was from IF1711 and 

was gathered for the period 16th April 2010 to 20th March 2017. All the data are downloaded 

from Yahoo Finance. The training data is divided into a training set and a test set which includes 

444750 examples. It offers an input matrix of 444750 × 7 dimension and a vector with 444750 

labels. For the prediction experiment, we also use Rb data (deformed steel bar) to compare with 

IF1711. The Rb data is from 3th June 2014 to 4th May 2017. 

The training data was divided as follows: 
 

1. 80% of the data is training data 
 

2. 20% of the data is testing data 
 
 

 

Figure 3: The workflow of the data process 

 
Figure 3 shows the workflow of the data process involved with four steps in a sequential way.  If 

any errors are spotted, we return to the previous step to double check. By following this workflow 

closely, we can ensure the quality of data and therefore our scientific analysis. In the experiment, 

we back-tested the HS1711 data from 1st May 2016 to 1st March 2017 in python and used it for 
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automatic trades. We combined Adaboost with ATR-RSI trading strategy. This can be explained 

as follows.  

ATR means average true range. It is a technical analysis volatility indicator originally developed 

by J. Welles Wilder, Jr. for commodities [29]. Since subtracting the price can calculate the true 

range and the ATR, the historical volatility is not influenced when the historical price is reversed 

by subtracting or increasing a constant for each price. Reverse adjustments are often used if 

short term contracts are stitched together to form a long-term contract. However, the standard 

procedure used to calculate stock price volatility is not invariant. As a result, analysts and futures 

traders typically utilize ATR to calculate volatility, whereas stock traders and analysts often use 

standard deviation of logarithm price ratios. ATR can be calculated thus: 

T = max[(high − low), |high − closeprev|, |low − closeprev|] 

𝐴𝑡 =
𝐴𝑡−1 × (𝑛 − 1) + 𝑇𝑡

𝑛
 

𝐴 =
1

𝑛
∑𝑇𝑖

𝑛

𝑖=1

 

 

In this equation, A presents ATR, T is the true range and it extends the range of a day’s trading to 

yesterday’s closing price if it was outside of today’s range. The main idea of ranges is that they 

show the commitment or enthusiasm of traders. RSI is the relative strength index, which is a 

technical indicator applied in analyzing financial markets and was developed by Wilder [29]. It 

intends to plot the strength in the real world of an asset based on the closing price of the last 

trading session. Wilder believed that when prices rise quickly, at some point they were thought 

to be overbought [29]. Similarly, when prices fall very quickly, at several points it is thought they 

are oversold. In either case, Wilder suggests that it a response or forth coming counter turn [29]. 

The RSI measures the asset’s recent trading ability. The gradient of the RSI is linear relative to the 

rate at which the trend changes.  The moving distance of an RSI is proportional to the size of the 

movement. Wilder stated that when the RSI exceeds 70 or below 30, the top and bottom will be 

displayed. Traditionally, an RSI above 70 is considered overbought, and an RSI below 30 is 

considered oversold. Levels between 30 and 70 are considered neutral and level 50 means no 

tendency. The calculation can be written as: 

SM M A(U, n) 
RS =  

 

SM M A(D, n) 
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𝑅𝑆𝐼 = 100 −
100

1 + 𝑅𝑆
 

In the equation, U means an upward change, D means downward change and SMMA is an n-period 

modified or smoothed moving average which is an exponentially smoothed Moving Average with 

σ = 1/period. If the close which is being higher than the previous close characterizes up periods, 

then: 

U = cnow  − cprevious 

D = 0 
 

If the close which is lower than the previous close characterizes a down period, then: 

 
U = 0 

 

D = cprevious − cnow 

where c means the close. We combine ATR with RSI as the signal of buying or selling in the 

strategy of automatic trading and then show the results. 

 

4.7 Sophisticated way to process and analyze data 

This section aims to describe the algorithm to perform simulation. Optimization is required to 

simulate large amounts of data. We develop Python-based function to process and simulate. 

Optimization provides important step to compute large scale simulations quicker. Before this, 

any errors or unprocessed data, can be processed and analyzed along the way. It is essential to 

allow processing of data with a better performance. Adam is a stochastic gradient-based 

optimization method introduced by [21], who mainly use it as a deep learning algorithm. We re-

improve it for financial analysis and use it for our optimization, with the explanations as follows. 

First, data can be loaded for processing and synthesis in a central array in our financial 

computation called FC. Second, the algorithm check and rank all the data and store them safely 

in the central array. After saving the data, it is also important to streamline all the data make 

analysis smoothly. This is enabled by a process called streamline( ). Additionally, the function 

qualityofservice( ) aims to compute quality of service over a period of time during processing, 

optimization and refinement. The function optimized means the analysis can be accelerated. The 

function refine means the analysis can get be further synthesized for a better quality. The process 

present can be used to enable optimized and refined functions respectively. Both functions are 

required to ensure analysis is accurate and up-to-date. Experiments will be discussed in Section 

5.  

 

Algorithm 3 Performance optimization 

  Load model parameters from database. 

 Initialize i = 1, MinSmp = 10, FC = [ ]  

 while(true) do 

  j = Acquire input signals  

  v = Encode signals j into SDR 

  f = Map v into feature space 

  s = Extract state identifier for f 
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  FC[i] = s    FC = list of previous states 

                     check(); 

                     rank( ); 

                     store( ); 

                     streamline( ); 

  if(i<= MinSmp) then  MinSmp = min. samples for inference 

   continue 

  else    

   p1 = Get state computed index based on FC1[1:i-1]  

   p2 = Get state computed index based on FC2[1:i-1]  

   g1 = Get refined prediction for the state p1 

                                    g2 = Get refined prediction for the state p2 

                                    optimized = (p1+p2)/2 – f                          optimized = optimization achieved 

   refined = (g1+g2)/2 – f   refined = refined prediction 

   good_noGood = Classify res 

   if(good_noGood == True) then 

    return NoFault 

   else 

    return Fault 

   end if 

  end if 

                    qualityofservice( ); 

                    present(optimized); 

                    present(refined); 

 end while 
 

 

4.8 Sophisticated way to process and analyze data 

We also develop functions and processes to allow large scale simulations, so that we can identify 

the true performance evaluation. The function “1000simulation” allows 1,000 simulations to be 

conducted each time, and execution time to be measured during the experiments. The syntax is 

shorter and cleaner than algorithm 3, since all analysis can be up-to-date and ready for large scale 

simulations. The function 1000simulation can run 10 times until the end of the statement, in other 

words, 10,000 simulations. Execution time for each 10,000 simulations can then be recorded. The 

process can then continue and time to be recorded for the update.   

 

Algorithm 4 Large scale simulations 

  Load model parameters from database. 

 Initialize i = 1, MinSmp = 10, FC = [ ]  

 while(true) do 

  j = Acquire input signals  
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  v = Encode signals j into SDR 

  f = Map v into feature space 

  s = Extract state identifier for f 

  FC[i] = s    FC = list of previous states 

                     streamline( ); 

  optimize( ); 

                     if(i<= MinSmp) then  MinSmp = min. samples for inference 

                         1000simulation ( ); 

                         time ( ); 

                         i++; 

                    else 

                         continue( ); 

                    time( ); 

                    update( ); 

 end while 
 

 

4.9 Sophisticated way to process and analyze data 

We also develop functions and processes to measure the predicted and actual financial values, 

with 3%, 5% and 10% confidence interval and range of uncertainties allowed. They are 

represented by functions of “3percent, 5 percent, and 10percent” respectively. We then compare 

the actual and predicted values between the actual and predicted values with 3%, 5% and 10% 

differences. We then compare the differences and also measure execution time. We aim to keep 

the accuracy high with an excellent performance.  

Beta is defined the measurement of the system risk and it has been commonly used in financial 

market to determine the extent of risk. It can be presented by the function beta( ). Values of beta 

and the execution time can be measured while performing large scale simulations. Their 

algorithm is as follows.    

 

Algorithm 5 Compare the predicted and actual values and measurement of beta 

  Load model parameters from database. 

 Initialize i = 1, MinSmp = 10, FC = [ ]  

 while(true) do 

  j = Acquire input signals  

  v = Encode signals j into SDR 

  f = Map v into feature space 

  s = Extract state identifier for f 

  FC[i] = s    FC = list of previous states 

                     streamline( ); 

  optimize( ); 

                     if(i<= MinSmp) then  MinSmp = min. samples for inference 
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                         3percent ( ); 

                         5percent( ); 

                         10percent( ); 

                         beta( ); 

                         time ( ); 

                         i++; 

                    else 

                          beta( ); 

                          continue( ); 

                    time( ); 

                    update( ); 

 end while 
 

 

5 Experiments and Results 

The computer infrastructure setup included the use of a cluster of 100 virtual machines (VMs). 

Each cluster managed 10 VMs. Each virtual machine had the following hardware platform: 

Intel(R) Core(TM) i5-2467M CPU 1.6GHz, Intel HD Graphics 3000 384MB, 4 GB 1333 MHz DDR3 

memory and 121GB hard disk. During the experiments, the workload could be shared 

equally to each VM, so that computational analysis could be p erformed. 

5.1 The Experiments 

Our experiment was conducted in the following way. The main idea is similar to Creamer and 

Freund’s use of boosting to predict financial performance [11]. The first process is to input all the 

data to Adaboost to find the 7 features of the training data. Here we choose 7 features that have 

different range of moving average of HF1711 since long and short moving averages are able to 

measure price trends. Since the data is a type of per minute data, we define it as a 5-minute data. 

This enables convenient calculation. Three major experiments were conducted. First, the 

performance evaluation with and without optimization over a long period of time were 

conducted as in Section 4.7. The quality of service, optimized and refined status would have their 

execution time record. Second, we then performed the large scale simulations, between 1,000 and 

10,000, with execution time taken as described in Section 4.8. The aim was to test robustness of 

our proposed solution. Third, the actual and predicted results were computed and compared. If 

the difference was within 3%, 5% and 10%, then the outputs would be considered as “accurate”. 

The outputs of our accuracy tests and execution time within 3%, 5% and 10% tolerance were 

recorded. Fourth, the systematic risk, beta, was also computed for all data analysis. The execution 

time was also recorded.  

5.2 Experiments QoS and execution time with/without optimization 

Fig 4 shows the results with/without optimization. The first one is on quality of service (QoS). 

Results with optimization has better performances. It degrades slightly lower than the one 

without optimization and keeps within 1-3% better after running 300 simulations. QoS also 

indicates how our algorithm 1 and 2 can handle with detection and improvement of erroneous 
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data. The second test is on the performance evaluation. The execution time with optimization 

keeps between 3% and 10% better than the one without optimization. Since the execution time is 

short, it is not easy to identify the differences until the use of large scale simulations for a better 

justification. Experimental results show that it is worth for all data to be optimized and get refined 

status, since it can guarantee a better QoS and a shorter execution time while running more 

simulations.   

 

  
4a: QoS with/without optimization comparison                4b: Execution time with/without optimization 

Fig. 4: Experiments of QoS and execution time with/without optimization 

 
5.3 Experiments with large scale simulations  

This section shows the experimental results with large scale simulations between 1,000 and 10,000 

simulations. The aim was to identify if our proposed work could be resilient enough and allowed 

the large scale financial analysis to be functioned smoothly. Similarly, QoS and execution time 

were measured for with and without optimization.  

  

 5a: QoS with/without optimization comparison        5b: Execution time with/without optimization 

Fig. 5: Experiments of QoS and execution time for large scale simulations with/without 

optimization 

Fig. 5 shows experimntal results of QoS and execution time for large scale simulations 

with/without optimization. QoS would degrade when the simulations increased. In other words, 

our algorithms to detect and correct errors would decrease its performance with the increased 
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simulations. Experiments with optimization had up to 10% better QoS than experiments without 

optimization. For experiments with execution time, the ones with optimization had between 3% 

and 12% shorter execution time than the ones without optimization. The difference became more 

noticeable when number of simulations became 70,000 simulations and above. 

 

5.4 Accuracy tests with 3%, 5% and 10% range of uncertainties accepted  

We used our algorithms to calculate predicted pricing values, and compared with the actual 

values. We set the range of uncertainties with 3%, 5% and 10%. In other words, if our predicted 

values could fall under the upper and lower limits of the actual values, it would then be 

considered as accurate. If not, then it would not be considered as accurate. They would then be 

recorded under the percentage of accuracy. The strict tests would be on 3%, since the differences 

between the predicted and actual pricing values had to be within 3%. Experiments were 

conducted between 100 and 1,000 simulations since longer execution time would not be suitable 

for the market trading, and also 1,000 simulations could provide sufficient levels of accuracy. The 

results were taken based on the average of three records.  

Fig. 6 show the experimntal results for accuracy percentages with 3%, 5% and 10% allowed for 

the range of uncertainties. It was noted when the range was 10%, the predicted and actual pricing 

values were highly accurate and could stay to 98% when the simulations increased to 1,000. For 

3% and 5%, they had similar behaviors. In the 5% difference experiments, accuracy started from 

99.5% and declined to 87.1%. In the 3% difference experiments, accuracy started from 99% and 

declined to 82.1%.  

 

Fig. 6: Accuracy percentages with 3%, 5% and 10% allowed for range of uncertainties.  

It is also important to test the accuracy and validity of our approach. This can be achieved by 

using recall, precision, F-measure, or accuracy, in which we have adopted for the verification 

process. In the dataset we have, 3%, 5% and 10% differences are used. In other words, the 

differences between predicted and actual values are within 3%, 5% and 10% respectively. 
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The TP rate is defined as the percentage of actual values predicted. The FP rate is defined as the 

percentage of the actual values not predicted, or predicted but outside 10% of range. The FN rate 

is defined as the percentage not predicted at all. In our case, TN is defined as the percentage of 

actual values not predicted and computed. But in our case, it is zero percentage which does not 

happen. The formulae can be written as [6]: 

Precision = T P/(T P + F P ) and Recall = T P/(T P + F N ); 
 

Accuracy (test) = T P/(T P + F P + F N ). 

A maximum of 10% difference between the actual and predicted value is allowed in our analysis. 

We use the precision, recall and accuracy (test) to demonstrate the validity and robustness of our 

approach for these three groups. They are presented in Table 1: 
 

Table 1: Results of the validity and robustness tests. 
Accuracy 

verification 
TP rate FP rate FN rate Precision Recall Accuracy(test) 

3% 0.83 0.10 0.05 0.892 0.943 0.847 

5% 0.86 0.10 0.04 0.896 0.956 0.86 

10% 0.95 0.03 0.02 0.969 0.979 0.95 

 
 

Results show that the accuracy rate of analyzing our financial data is 84.7%, 86% and 95% for 

3%, 5% and 10% differences between the actual and predicted values respectively. Adaboost can 

perform well in processing and analyzing our financial data, with low execution time for large 

scale simulations. This is also known as ATR-RS strategy discussed in the introduction to manage 

both performance and accuracy to an acceptable level during trading and financial analysis. The 10% 

difference is considered high with accuracy, however, the challenge is to improve accuracy rate when 

the differences between the actual and predicted values become smaller. 

 

5.5 The beta test 
 

Beta is considered as the systematic risk in the market and is often measured through regression 

and large scale data analysis from the financial market. We adopted the same approaches as in 

the previous sections, and performed large scale simulations. Fig. 7 shows the results for 

measuring beta between 100 and 1,000 simulations. Values of beta vary between 0.731 and 0.734 

regardless of the number of simulations. It means the systematic risk stays close and consistent. 

Often systematic risk above 0.7 may indicate the market is more volatile than more markets, or 

the company’s recent performance is more volatile. The execution time for performing those 

experiments was the same as Fig 4(b) with optimization. In other words, all simulations could be 

completed within 45 seconds. 

 

 

 

 

 



24 

Journal of Parallel and Distributed Computing  

 

 

Fig. 7: Values of beta in the large scale simulations 

 

 

6 Discussion 

The methods we developed may benefit the improvement of next-generation computing plat- 

form for nonstationary scientific data. This can be considered as a meaningful step for analysis of 

nonstationary data analysis. Moreover, Adaboost shows positive results in forecasting 

nonstationary financial data but poor performance on automatic trading with strategy. Therefore, 

our research can focus on improving the practical implementations of machine learning on 

financial trading. We already could achieve better performances with low execution time in large 

scale simulations, such as 1,000 simulations under 45 seconds with optimization. QoS can also be 

maintained high, staying above 97% for 1,000 simulations. A challenge is to maintain high QoS 

for large scale simulations of up to 10,000 simulations. QoS with optimization can stay above 80%. 

However, this may not be considered well enough for high volume and high speed trading. In 

the current Adaboost strategy, the most suitable option is to break down financial investment and 

analysis into smaller sections, and then process and analyze the financial data, and compare the 

differences between the predicted and actual values. Our accuracy tests show the best outcomes 

for 10% differences between predicted and actual values, but there are rooms of improvement 

when the range becomes smaller. Another alternative is to develop pioneering algorithms that 

can enable accuracy and performance through the big data time series approaches with blind 

factor approximation [32]. 

It is important to improve the winning rate of the strategy and allow machine learning to cooperate 

better with automatic trading. Areas that Adaboost could be applied include firm arbitrage. We 

will focus on improving the winning rate and will add more real-world parameters such as the 

knowledge of behavioral finance to add maturity to the model and to continue research of 

secondary markets. 

 

We have used the live data. The reason for not using k-cross validation technique is as follows. First, 
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speculative movements are likely to happen. We would like to understand the behavioral patterns 

first by undergoing training data. Upon improvements of our algorithm, we then use the test data 

to see the extent of our improvement. Second, some Chinese stocks have more unpredictable 

behaviors. It is useful to divide these stocks into two stages at least; training data and test data, and 

sometimes in the reversed order, to match predicted outputs and the actual outputs better. Our 

research direction may use pioneering methods to combine training and testing data and compute 

both actual and predicted values for two data simultaneously, so that we can improve the quality 

of our algorithm. 

There are two major directions for future research: First, we will improve and perfect our 

current research in financial area. In particular, we will improve the computational algorithms for 

nonstationary data incrementally. The newest and most innovative methods such as deep 

learning will be used to increase the speed, accuracy and robustness of forecasting. Second, we 

will improve the rates of accuracy. This is an important research area. Our algorithms can be 

transferrable for other fields. We can apply our existing methods and algorithms to other fields, 

such as medicine, weather forecasting, and biology in which nonstationary analysis can be used. 

 

 

  7. Conclusion and Future Work 

This research focused on machine learning methods to the nonstationary time series. The results 

showed that we could use our improved Adaboost algorithms to learn and simulate the 

nonstationary financial sequence well and profit from the process. The main idea of using 

Adaboost was to divide the training data into several weak classifiers and then combine them as a 

strong classifier. We tested different nonstationary samples with the same Adaboost and the same 

strategy. Since the main direction of our research was the futures market, the data we tested was 

IF1711 which is HS300 and Rb; deformed steel bar. The data was divided as follows: 80% of the 

data was applied for training and 20% was applied for testing. It was required since a greater 

presence of training data could help maintain tail of the test error.  

 

In practice, our research outputs could contribute to investment and fund companies to help them 

manage assets with stable profits and to manage risk. It showed the possibility of using machine 

learning methods to solve the nonstationary problem. In the process, this might lessen time spent 

on trading and observing objects. Companies would be able to save costs since they do not need 

to employ a large number of asset managers. It could also aid low-risk safe investment for 

investors with low financial knowledge. It could also offer a new perspective of financial data 

forecasting to help the society gain a more stable financial risk management. 

 

We completed a research study on nonstationary data analysis and applied it for finance. In 

summary, our paper demonstrated that Adaboost was a suitable method of machine learning, 

since it was able to make predictions on winning rates, as well as identify points to perform 

hedging and forecasting. It worked as a predictive method to forecast the future trend of financial 

markets according to the historical data and trends, and the movement of the current trends. 

Adaboost results confirmed its excellent performance on predictions, if there was a greater 

presence of stable and gradual data. Furthermore, it could combine several different decision 

trees together in a nonrandom way so that it performs better.  
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This paper demonstrated Adaboost as a machine learning method combined with a trading 

strategy, with the aim to analyze and forecast a nonstationary financial series. Our proposed 

work could be applied to different types of classifiers with different trading strategies to fit variety 

types of markets and investors. Moreover, other than financial area, our proposed work could be 

used for nonstationary-based simulations and research analysis such weather forecasting with a better 

performance. We also justified our three major contributions fully. Additionally, 

Adaboost can also be used for the development of Industry 4.0/5.0, where 

intelligent algorithms have to process a lot of data with performance, accuracy and 

efficiency achieved all the times.
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