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26 Summary

27 1. Fresh waters are among the most globally threatened habitats and their biodiversity is 

28 declining at an unparalleled rate. In an attempt to slow this decline, multiple 

29 approaches have been used to conserve, restore or enhance waterbodies. However, 

30 evaluating their effectiveness is time-consuming and expensive. Identifying species or 

31 assemblages across a range of ecological conditions that can provide a surrogate for 

32 wider freshwater biodiversity is therefore of significant value for conservation 

33 management and planning.  

34 2. For lakes and ponds in three contrasting landscapes of Britain (lowland agricultural, 

35 eastern England; upland, north-west England; urban, central Scotland) we examined 

36 the link between macrophyte species, macrophyte morpho-group diversity (an 

37 indicator of structural diversity) and the richness of three widespread aquatic 

38 macroinvertebrate groups (molluscs, beetles and odonates) using structural equation 

39 modelling. We hypothesised that increased macrophyte richness and, hence, increased 

40 vegetation structural complexity, would increase macroinvertebrate richness after 

41 accounting for local and landscape conditions. 

42 3. We found that macrophyte richness, via macrophyte morpho-group diversity, were an 

43 effective surrogate for mollusc, beetle and odonate richness in ponds after accounting 

44 for variation caused by physical variables, water chemistry and surrounding land use. 

45 However, only mollusc richness could be predicted by macrophyte morpho-group 

46 diversity in lakes, with no significant predicted effect on beetles or odonates. 

47 4. Our results indicate that macrophyte morpho-group diversity can be viewed as a 

48 suitable surrogate of macroinvertebrate biodiversity across diverse landscapes, 

49 particularly in ponds and to a lesser extent in lakes. This has important implications 

50 for the restoration, conservation and creation of standing water habitats and for 
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51 assessing their effectiveness in addressing the decline of global freshwater 

52 biodiversity. Management actions prioritising the development of species-rich and 

53 structurally diverse macrophyte assemblages will likely benefit wider freshwater 

54 biodiversity. 
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55 Introduction

56 A biological surrogate, indicator or proxy is an individual or group of organisms that 

57 can be used to identify a healthy, biodiverse or functional ecosystem, or to infer 

58 environmental conditions existing now or in the past. Such surrogates are commonly used in 

59 conservation decision making and offer a means of choosing and tracking the effectiveness of 

60 management approaches, with the premise that, if the surrogate is protected and conserved, 

61 there will be wider biodiversity and ecosystem benefits (Caro, 2010). A further advantage of 

62 surrogates is reduced reliance on large-scale, multi-taxon surveys which are time-consuming, 

63 expensive and often require specialist knowledge. Quantifying the link between surrogates 

64 and wider biodiversity or functioning of an ecosystem is crucial for validation, yet numerous 

65 studies conducted across several ecosystems and species have failed to identify consistent, 

66 reliable surrogates of either biodiversity, ecosystem function or phylogenetic diversity 

67 (Heino, 2015; Rapacciuolo et al., 2018). Despite this, improved ecological knowledge and 

68 data accessibility, alongside advancing analytical tools, offer renewed promise in the search 

69 for surrogates. This is particularly relevant in freshwater ecosystems as they are one of the 

70 most globally threatened habitats due to the scale of humans impacts (Reid et al., 2018; 

71 WWF, 2018). 

72  Numerous studies have sought to evaluate surrogacy in freshwaters, with 

73 macroinvertebrates receiving most attention. For ponds and rivers there is broad consensus 

74 that a few species-rich invertebrate groups (e.g. Coleoptera, Odonata, Mollusca and 

75 Trichoptera) are broadly representative of wider macroinvertebrate assemblages (Briers & 

76 Biggs, 2003; Bilton et al., 2006; Sánchez-Fernández et al., 2006; Ruhí & Batzer, 2014; Guan 

77 et al., 2018). However, where surrogacy across different taxonomic groups has been studied 

78 e.g. plants or amphibians to macroinvertebrates, the results have been inconsistent, with 

79 relationships variously non-existent (Santi et al., 2010; Guareschi et al., 2015), weak (Heino, 
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80 2010; Kirkman et al., 2012; Rooney & Bayley, 2012; Ilg & Oertli, 2017), moderate (Santi et 

81 al., 2010; Gioria et al., 2010) or strong (Janssen et al., 2018). Most previous research has 

82 concentrated on one or two taxonomic groups, focussing on a single habitat type, distributed 

83 over a small geographical range. Therefore, even at small-scales, there is limited evidence of 

84 effective surrogates for wider freshwater biodiversity.

85 Aquatic plants (macrophytes), encompassing bryophytes, macroalgae and vascular 

86 plants, are a fundamental component of aquatic food webs and play a central role in nutrient 

87 flux within freshwater habitats, linking atmosphere, soil and water. They influence the quality 

88 of the surrounding aquatic environment by creating structurally-complex habitats comprised 

89 of submerged, floating and emergent vegetation, where differences in leaf and stem 

90 architecture (e.g. floating vs. simple linear vs. dendritic leaves) between species, diversifies 

91 habitat complexity where it might otherwise be low (Jeppesen et al., 1998). Furthermore, as 

92 primary producers, macrophytes influence water chemistry, provide food for grazers, habitats 

93 for egg-laying, whilst also mediating predator-prey interactions through provision of refugia 

94 for prey and concealment for predators (Diehl & Kornijow, 1998; Jeppesen et al., 1998). A 

95 shared response to environmental conditions is often believed to be a key driver of species 

96 surrogacy (Gioria, Bacaro & Feehan, 2011; Rooney & Bayley, 2012), but, given the key 

97 structuring role of macrophytes, and their potential to operate as ecosystem engineers 

98 (Gurnell et al., 2013), it seems highly likely that their presence and richness will directly or 

99 indirectly govern the availability of resources to, and environmental suitability for, other 

100 species. Since they are taxonomically and ecologically well understood and occur in almost 

101 all freshwater habitat types globally, macrophytes may thus be an ideal surrogate for wider 

102 freshwater biodiversity. 

103 To our knowledge, the influence of macrophyte richness on multiple aquatic biota, 

104 across different freshwater habitats and covering environmentally diverse conditions has not 
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105 previously been examined. Therefore, current understanding of the potential value of 

106 macrophytes as a surrogate is constrained. In this study, aquatic molluscs, aquatic beetles and 

107 odonates were selected as focal biota due to their high taxonomic diversity, widespread 

108 distribution in standing fresh waters and because all three groups include species of 

109 conservation concern. Our primary objective was to test whether macrophytes act as 

110 surrogates for wider freshwater biodiversity across three contrasting (agricultural, upland and 

111 urban), but typical aquatic landscapes (so-called ‘hydroscapes’). We did this by assessing the 

112 strength of chemical and physical drivers and surrounding land use in explaining waterbody-

113 scale richness of the biota. At the same time, we additionally tested if macrophyte species 

114 richness, mediated through morpho-group diversity, could further explain macroinvertebrate 

115 richness. We hypothesised that waterbodies with higher macrophyte richness, and, hence, 

116 greater macrophyte morpho-group diversity (an indicator of structural diversity), would have 

117 greater macroinvertebrate richness, with the former being a stronger predictor than chemical, 

118 physical and surrounding land use. However, further macroinvertebrate assemblage-specific 

119 effects are expected, reflecting either differences in the degree of dependence on macrophytes 

120 for habitat support, or habitat type-specific (pond or lake) differences in the importance of 

121 macrophytes as a component of habitat diversity.

122

123 Methods

124 Study areas and data collection

125 Three contrasting landscapes were chosen within Britain to account for different 

126 combinations of stressors associated with different land use types; lowland agricultural 

127 (north-east Norfolk, eastern England), upland (Cumbria, north-west England) and urban 

128 (Greater Glasgow, central Scotland). Within each of these hydroscapes, 22-29 replicates of 

129 both lakes and ponds were sampled. In this study, lakes were defined as waterbodies with 
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130 surface area > 1 ha, while ponds were < 1 ha in area and generally shallow (< 2 m max. 

131 depth). Both categories included man-made and natural waterbodies. Within each of these 

132 waterbodies four taxonomic groups were selected to cover a range of habitat requirements, 

133 pollutant sensitivities and dispersal abilities, namely macrophytes (as surrogates), aquatic 

134 molluscs, aquatic beetles (hereafter referred to as molluscs and beetles) and odonates (dragon 

135 and damselflies). Extensive data on these taxonomic groups were obtained via national 

136 recorders (i.e. Aquatic Coleoptera Conservation Trust, British Conchological Society and 

137 British Dragonfly Society), while water chemistry, where available, and data on macrophytes 

138 from commissioned surveys, was provided by UK environmental agencies or the Joint Nature 

139 Conservation Committee (JNCC). All data were closely scrutinised to ensure inter-

140 compatibility, with multi-visit, full inventory surveys prioritised. Only records from the last 

141 decade were retained. The availability of multiple recent records of adult odonates influenced 

142 site selection because favourable weather conditions for surveying these could not be 

143 guaranteed during field campaigns conducted for this study. Where gaps in the data existed or 

144 when a greater number of replicate waterbodies were needed, new data were collected during 

145 June to August of 2016-17. Several sites had data collected for all species assemblages and 

146 88% of the sites used in the study were visited by the authors to gather additional data for at 

147 least one species assemblage or to collect water samples for water chemistry analysis (Table 

148 S1).

149 For each waterbody, the following physical variables were derived from the UK 

150 Lakes Portal (https://eip.ceh.ac.uk/apps/lakes/index.html); altitude, area, catchment size, 

151 perimeter, ratio of waterbody to catchment area and shoreline development index (indicating 

152 shape complexity of the shoreline). For water chemistry data provided by UK environmental 

153 agencies, a mean value was taken for each variable based on samples collected in summer 

154 (June-September). In all other cases we collected a water sample from the middle of each site 
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155 and measured conductivity, dissolved oxygen, oxygen saturation, pH and temperature in the 

156 field using a HACH HQ30d meter. Alkalinity was also measured in the field by titration 

157 using sulphuric acid with a HACH AL-DT kit. A 500 ml subsample was filtered (47 mm 

158 glass microfiber, 1.2 μm pore Whatman GF/C filters) within 12 hours of collection and 

159 analysed for major nutrients and metals (see Table S2 for a list of determinands). Chlorophyll 

160 a was determined by extraction by soaking filters in 90% methanol overnight and 

161 quantification by spectrophotometry. 

162 For surveys of biota, exhaustive inventory sampling was conducted for each taxon 

163 group covering the complete margin of each waterbody. Macrophytes were recorded from the 

164 marginal zone to the maximum growing depth, assisted by use of a double-headed rake 

165 and/or a bathyscope for deeper water or where visibility was poor. For ponds, the entire water 

166 area was surveyed. For lakes, three or four sectors, each covering 100 m of shoreline, were 

167 surveyed to account for variation in exposure, shading, water depth and littoral substrate, 

168 following the JNCC survey methodology (Interagency Freshwater Group 2015). Within each 

169 sector, five transects were established perpendicular to the shore and four replicate quadrats 

170 were sampled per transect at depths of 0.25 m, 0.50 m, 0.75 m and >0.75 m, respectively, 

171 giving a total of 60 to 80 quadrats per lake. A boat was used to survey areas that were too 

172 deep for survey by wading (>75 cm). 

173 Molluscs, beetles and larval odonates were sampled using a 1 mm mesh pond net. For 

174 each waterbody, the number of mesohabitats (e.g. rocky substrate, floating leaved, short/tall 

175 emergent, or submerged vegetation) was visually assessed and all were then sampled by 

176 sweeping the pond net through the water column and any vegetation present. This was 

177 repeated in each mesohabitat until no more new species could easily be found. The sample 

178 was live sorted and individuals were identified to species level in the field and released. 

179 When individuals could not be identified in the field they were preserved in 70% industrial 
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180 methylated spirits (IMS) and identified to species-level, wherever possible. Adult odonates 

181 were identified visually in the field, assisted by use of binoculars. Where individuals within a 

182 taxonomic group were identified to mixed resolution, only the highest resolution records 

183 were used. 

184

185 Land cover and connectivity

186 Land Cover Maps (Rowland et al., 2017) were used to assess land use within the 

187 upstream catchment of each waterbody (representing hydrological connectivity), and within 

188 buffers of 50 m, 100 m, 500 m and 1 km surrounding each waterbody (representing riparian 

189 and aerial connectivity). To reduce the number of interrelated land cover categories, a series 

190 of composites were created; agricultural (arable and horticulture + improved grassland); 

191 urban (suburban + urban) and wetland (fen, marsh and swamp + bog). Within each 

192 waterbody buffer or catchment, land cover classes were expressed as a percentage of the total 

193 buffer or catchment area (minus the area occupied by the focal waterbody). Since freshwater 

194 and wetland land cover classes exhibited a high number of zero or low values these classes 

195 were transformed to absence (-1) and presence (1) to make their effect sizes directly 

196 comparable with those of continuous predictors. 

197

198 Variable selection and statistical analyses

199 Species richness was defined as the number of macrophyte or macroinvertebrate 

200 species per waterbody (or highest taxonomic resolution). Macrophyte morpho-group 

201 diversity was derived by assigning each species to one of 26 morpho-groups based on a 

202 library of morphological and regenerative traits (Willby, Abernethy & Demars, 2000), but 

203 expanded to incorporate bryophytes, macroalgae and a wide range of emergent species (Table 

204 S3). To determine if a sufficient number of waterbodies were surveyed per hydroscape for the 

Page 9 of 62 Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

10

205 four taxonomic groups, sample coverage was calculated based on incidence data per 

206 waterbody using the iNEXT library (Hsieh, Ma & Chao, 2016). Prior to statistical analyses 

207 all continuous explanatory variables (excluding pH) were log transformed, mean centred and 

208 scaled by 1 SD, to improve comparability between variables and to reduce the effect of 

209 outliers (full set of continuous variables given in Figure S1). 64% of ponds sampled 

210 (especially those <0.1 ha) did not have definable catchments, so a binary ‘catchment present’ 

211 category was created for all ponds. Binary explanatory variables (e.g. catchment present for 

212 ponds, outflow and inflow) were transformed to have values of –1 (absent) and 1 (present). 

213 To reduce model complexity principal components analysis (PCA) was applied to 

214 separate sets of water chemistry, physical and land use variables to identify those variables 

215 that maximised variation amongst sites (Figure S1). All continuous explanatory variables 

216 (excluding pH) were log transformed, mean centred and scaled by 1 SD, to improve 

217 comparability between variables and to reduce the effect of outliers. Correlations between 

218 predictor variables were then assessed in a correlation matrix (Figure S1) and checked for 

219 variance inflation (VIF). Where variables were highly correlative (VIF > 20) they were 

220 removed. The remaining variables were then used as explanatory variables for macrophyte 

221 species richness in a linear model (LM) with model-averaging then implemented (Burnham 

222 & Anderson, 2002). Variables that significantly explained macrophyte richness, based on the 

223 sums of Akaike weights (Figure S1), were then retained. 

224 A conceptual model was developed to incorporate expected relationships between 

225 species richness and explanatory variables (Fig. 1). This model was based on the simple 

226 hypothesis that connectivity, land use and waterbody physical and water chemistry variables 

227 influence macrophyte species richness to a greater extent than macrophyte morpho-group 

228 diversity or richness of the macroinvertebrate groups, and that it is predominantly via 

229 macrophytes that these environmental effects are transmitted to macroinvertebrates. We also 
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230 hypothesised that macrophyte morpho-group diversity would be a more important 

231 determinant of macroinvertebrate richness than macrophyte taxonomic richness due to the 

232 increased structural complexity that a high richness of macrophyte morpho-groups provides. 

233 We used structural equation modelling (SEM) to quantify the direct and indirect effects of 

234 these explanatory variables on macrophyte richness, macrophyte morpho-group diversity and 

235 macroinvertebrate richness. SEMs are a multivariate technique based on constituent LMs that 

236 allow standardised comparisons of direct and indirect relationships. Constituent LMs were 

237 created and residuals assessed to determine if they met linear model assumptions and 

238 examined for spatial autocorrelation using Moran’s I statistic. All constituent LMs met linear 

239 model assumptions and no significant patterns in spatial autocorrelation were detected (P > 

240 0.05). Bivariate relationships between each response and explanatory variable were explored 

241 graphically to identify potential non-linear relationships. Where non-linear relationships were 

242 found, the explanatory variable was converted to second degree orthogonal polynomials. No 

243 multicollinearity was detected in constituent LMs with a VIF threshold of < 5. During SEM 

244 model evaluation, missing pathways (i.e. previously unconsidered significant relationships) 

245 were identified and incorporated into the final SEM. Model fit was assessed using Fisher’s C, 

246 where values of P > 0.05 indicated that the model was supported by the observed data. The 

247 term hydroscape (‘Agricultural’, ‘Upland’ and ‘Urban’) was added to each constituent LM, 

248 but was never significant and often increased the VIF due to correlations with land use. 

249 Hydroscape was then added as a random effect to each constituent LM, but did not improve 

250 the AIC. Therefore, the term hydroscape was not included in the final SEMs. 

251 All statistical analysis was conducted using RStudio (R Core Team, 2018) with the 

252 libraries: piecewiseSEM (Lefcheck, 2016), sp (Bivand, Pebesma & Gomez-Rubio, 2013), 

253 sjPlot (Lüdecke, 2018), MuMIn (Bartoń, 2018), ggbiplot (Vu, 2011), factoextra (Kassambara 
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254 & Mundt, 2017), FactoMineR (Le, Josse & Husson, 2008), iNEXT (Hsieh et al., 2016) and 

255 spdep (Bivand, Hauke & Kossowski, 2015). 

256
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257 Results

258 The a priori designation of the three hydroscapes as upland, urban or agricultural was 

259 confirmed by analysis of the catchment characteristics of their constituent waterbodies (Table 

260 1).

261 In total 176, 52, 249 and 35 species of macrophyte, mollusc, beetle and odonates 

262 respectively were recorded across the 158 waterbodies, studied via a combination of our 

263 surveys and archived data. Estimated sample coverage was generally high (mean = 94%) 

264 indicating effective sampling of each taxonomic group per waterbody type per hydroscape 

265 (Table 2). Further details of the sampling efficiency and completeness can be found in Figure 

266 S2 in the supporting information. 

267 For both lakes and ponds, correlations in raw species richness was compared amongst 

268 the taxonomic groups (Figure S3), but none were found to be significant. Therefore, 

269 environment variables have to be considered in order to deduce true correlative relationships 

270 between the taxonomic groups. 

271 Our conceptual model (Fig. 1) was poorly supported for both lakes and ponds, with 

272 multiple missing significant pathways being identified. However, with the addition of these 

273 pathways to the SEM (Table S4) the goodness-of-fit for both models reproduced the data 

274 well (lakes: Fisher’s C = 162.3, df = 164, P = 0.523; ponds: Fisher’s C = 121.2, df = 124, P = 

275 0.554). Unstandardised and standardised effect sizes of all explanatory variables for lakes and 

276 ponds are provided in Table S5. 

277 In lakes, macrophyte richness was explained principally by water chemistry and to a 

278 lesser extent by nearby land use (R2 = 0.64) (Fig. 2). Variables indicative of nutrient-

279 enrichment or poor water quality (nitrate, total phosphorus and water colour) negatively 

280 affected macrophyte richness, with nearby agricultural land positively influencing 

281 macrophyte richness. Macrophyte morpho-group diversity was, as expected, strongly related 
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282 to macrophyte richness. However, the subsequent effect on macroinvertebrates was varied; 

283 macrophyte morpho-group diversity positively influenced mollusc richness, but had no effect 

284 on beetle and odonate richness. For the latter groups, environmental conditions (i.e. land use 

285 and waterbody physical variables) were more influential. Increasing altitude was a strong, 

286 negative determinant of both mollusc and odonate richness, with reasonable variance 

287 explained for both assemblages (R2 = 0.76 and 0.36). The explained variance in beetle 

288 richness was the lowest of all the taxonomic groups (R2 = 0.29) with only wetlands in the 

289 catchment and nearby agricultural land positively affecting richness and, to a lesser extent, 

290 lakes with relatively large catchments having a negative effect.

291 For ponds, nearby surrounding land use had no significant impact on macrophyte 

292 richness compared to the influence of water chemistry (principally conductivity and pH) and 

293 presence of an outflow (Fig. 3). Macrophyte morpho-group diversity was again strongly 

294 related to macrophyte richness, whilst ammonium and nearby urban land use also had minor 

295 negative effects on morpho-group diversity. The degree of urbanisation within 500 m of a 

296 pond had contrasting effects on macroinvertebrate biota, being positive for molluscs, but 

297 highly negative for beetles and odonates. A negative effect of altitude was observed for 

298 mollusc and beetle richness in ponds, as with lakes. Nevertheless, despite some variation 

299 being explained by physical variables, water chemistry and land use, an increased 

300 macrophyte morpho-group diversity had a significant positive effect on all macroinvertebrate 

301 groups. 

302

303
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304 Discussion

305 Simple surrogates for freshwater biodiversity should help to inform choices over the 

306 protection, restoration or creation of waterbodies, and in monitoring the effectiveness of 

307 related actions. However, few studies have sought out a surrogate appropriate for multiple 

308 freshwater habitats and disparate species assemblages over large spatial scales. We found 

309 that, regardless of the landscape, high macrophyte richness, specifically via high morpho-

310 group diversity, was a suitable surrogate for a higher richness of multiple macroinvertebrate 

311 species assemblages (molluscs, beetles and odonates) in ponds, but only mollusc richness 

312 could be predicted by macrophyte morpho-group diversity in lakes. 

313

314 The drivers of species richness

315 Land use is often assumed to be a major driver of species composition as it provides a 

316 proxy for stressors (e.g. agriculturally-derived nutrients or pollutants originating from urban 

317 areas) (Hassall, 2014) or affects spatial processes (altering connectivity both positively and 

318 negatively) (Hill et al., 2017). Urbanisation is assumed to be indicative of reduced 

319 connectivity due to the density of roads and built-up areas that restrict dispersal between 

320 waterbodies (Hassall, 2014). Moreover, previous studies of ponds and rivers indicate that 

321 active dispersers were less restricted by habitat structure than passive dispersers (Hill et al., 

322 2017; Sarremejane et al., 2017). In our study, urban land use had a negative effect on 

323 actively-dispersing odonates and beetles in ponds, suggesting that an active dispersal ability 

324 may be insufficient to counteract effects of urbanisation and the associated changes to local 

325 habitat structure that urbanisation produces. However, urban land use was positively 

326 associated with passively dispersing molluscs. This latter finding may reflect the increased 

327 presence of vectors within the local landscape (for example waterfowl attracted by 

328 supplementary feeding may increase bird-mediated dispersal (van Leeuwen et al., 2012; 
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329 Simonová et al., 2016)), combined with molluscs’ tolerance of productive poorly oxygenated 

330 conditions. Alternatively, the increased concentrations of some major ions due to rural and 

331 urban run-off may also benefit molluscs since calcium is used for shell construction (Moss, 

332 2017). It was expected that adjacent agricultural land use would negatively affect biodiversity 

333 due to increased nutrient or fine sediment inputs, yet agriculture within 500 m of lakes had a 

334 slight positive effect on lake macrophyte richness. However, the interpretation that 

335 agriculture is positive for biodiversity should be taken with caution, since in the composite 

336 LMs that underpin the SEM, agricultural land use in the catchment as a whole had a non-

337 linear relationship with macrophyte richness, becoming negative when agricultural extent 

338 exceeded ~40% (though this was not significant in the final model). Freshwaters and 

339 wetlands in the catchment or buffers were expected to positively affect biodiversity as they 

340 potentially increase connectivity, and therefore resilience, by acting as stepping stones (Biggs 

341 et al., 2005). Although we observed a positive effect of nearby wetlands (within a 500 m 

342 buffer), or wetlands in the catchment on lake beetles and molluscs, respectively, this was 

343 secondary to waterbody-specific influences (e.g. altitude and water chemistry), consistent 

344 with other studies (Hill et al., 2017; Thornhill et al., 2017). Water chemistry influenced 

345 macrophyte richness in both lakes and ponds, with variables indicative of nutrient-enrichment 

346 negatively affecting richness. Alkalinity had a negative effect on lake macrophytes, which 

347 was unexpected as previous work has generally shown a positive influence of alkalinity on 

348 macrophyte richness (Vestergaard & Sand-Jensen, 2000). The effect we observed was most 

349 likely driven by a strong correlation between alkalinity and total oxidised nitrogen or 

350 conductivity (Figure S1), indicative of declining water quality (Heegaard et al., 2001). 

351 Waterbody chemistry had few direct effects on the studied macroinvertebrate groups and it is 

352 therefore likely that macrophytes mediate nutrient-enrichment effects (Declerck et al., 2005).  

Page 16 of 62Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

17

353 Identifying a simple surrogate of diverse and complex species assemblages that 

354 transcends multiple, potentially interacting variables which vary both temporally and 

355 spatially is difficult, with few variables seemingly transferable across habitat types, regions 

356 and species assemblages (Batzer, 2013). Macrophyte richness and composition have 

357 previously been shown to positively affect macroinvertebrate assemblages in multiple 

358 freshwater habitats; ponds (Palmer, 1981; Gioria et al., 2011), wetlands (Kirkman et al., 

359 2012), lakes (Heino & Tolonen, 2017) and rivers (Holmes & Raven, 2014). However, the 

360 drivers of species surrogacy are mostly speculative rather than explicitly studied. In our 

361 study, the most plausible basis for the surrogacy we observed is that good water quality 

362 allows for high macrophyte richness, which leads to a greater diversity of macrophyte 

363 morpho-groups and macroinvertebrate richness benefits through provision of increased 

364 architectural complexity. These benefits are probably group- or life stage-specific. For 

365 example, molluscs may benefit from high macrophyte richness due to increased food 

366 resources, reduced predation and increased microhabitat diversity (Brönmark, 1985). Beetles 

367 may benefit from the heterogenous substrate available for egg-laying, refugia and through 

368 increased prey availability (Bloechl et al., 2010). Furthermore, adult odonates use emergent 

369 macrophytes for perching, egg-laying and emergence (Le Gall et al., 2018), whereas their 

370 larvae use submerged macrophytes for shelter and foraging (Goertzen & Suhling, 2013). A 

371 greater macrophyte morpho-group richness linked to asynchronous growth peaks may also 

372 extend the duration of macrophyte cover (van Donk & Gulati, 1995; Sayer, Davidson & 

373 Jones, 2010) which should benefit macroinvertebrates, but this area is relatively unexplored. 

374  It is also possible that some macroinvertebrate groups may influence the richness of 

375 others, for example, via predation. However, as positive or negative pathways between any of 

376 the macroinvertebrate groups were not identified in our analysis, we can hypothesize that the 

377 effect of predation on richness are low, relative to the effect of macrophytes. Differences in 
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378 explained variance amongst macroinvertebrates were reasonably consistent across waterbody 

379 types, with mollusc richness highest followed by odonates and then beetles. The low 

380 explained variance observed for beetles may in part reflect the high species richness found. 

381 Beetles are one of the most speciose groups globally with a wide geographical and ecological 

382 range (Bilton et al., 2006); moreover, the balance between habitat specialists and generalists 

383 will be masked when considering diversity only in terms of species richness.

384 The strength of the surrogacy between macrophytes and macroinvertebrates differed 

385 between waterbody types, with macrophyte richness being a stronger driver of 

386 macroinvertebrate richness in ponds than lakes. This pattern may arise because lakes are 

387 more likely to support large populations of fish, which are known to exert strong predation 

388 pressure on macroinvertebrates (Diehl, 1992; Jones & Sayer, 2003). Molluscs, for example, 

389 are commonly consumed by fish with resulting reductions in density, although effects on 

390 richness are less understood (Dillon, 2000). Fish could also influence macroinvertebrates 

391 indirectly via various cascading effects on macrophyte diversity caused by herbivory 

392 (Matsuzaki et al., 2009), zooplanktivory (Jeppesen et al., 1998) or benthivory, particularly in 

393 shallow lakes (Kloskowski, 2011). Both abundance of macrophytes and macroinvertebrates 

394 will also be affected by waterfowl herbivory and bioturbation (Rodríguez-Pérez & Green, 

395 2012; Wood et al., 2012), with lakes likely to support greater waterfowl densities than ponds. 

396 A further factor affecting macroinvertebrate diversity in lakes may be physical disturbance of 

397 the shoreline due to wave action, which is much more intense in lakes than ponds due to an 

398 increased fetch (Fairchild, Faulds & Matta, 2000). Given that our focal macroinvertebrate 

399 groups, molluscs in particular, are poorly stream-lined and prone to being dislodged by 

400 currents, their link with macrophyte diversity may reflect a shared need for sheltered 

401 marginal habitats. In this study, it is likely that the effects of fish predation or physical 

402 disturbance on macroinvertebrate richness is mediated through macrophyte morpho-group 
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403 diversity, as found in Cladocera (Burks, Jeppesen & Lodge, 2007), but further study would 

404 be useful to tease apart the multiple interacting processes involved (see Dillon (2000) for a 

405 review). Moreover, future studies should endeavour to determine fish abundance. As fish can 

406 be important drivers of aquatic community composition (Scheffer et al., 2006), their 

407 inclusion will undoubtedly improve the predictive power of models and therefore the 

408 application of surrogates in other freshwater habitats. 

409

410 Surrogacy and available statistical tools

411 The search for widely applicable and robust surrogates of freshwater biodiversity has 

412 probably been somewhat confounded by the differing statistical approaches used to detect 

413 surrogacy (Gioria et al., 2011). The majority of studies have tested congruence between 

414 species assemblages by using multivariate ordination to consider the influence of local 

415 environmental variables (Declerck et al., 2005; Bilton et al., 2006; Santi et al., 2010; Gioria 

416 et al., 2010; Guareschi et al., 2015). Others have utilised Mantel tests (Heino, 2010; Rooney 

417 & Bayley, 2012; Ruhí & Batzer, 2014; Ilg & Oertli, 2017), species correlations (Sánchez-

418 Fernández et al., 2006; Slimani et al., 2019) or a Species Accumulation Index (Kirkman et 

419 al., 2012). In addition to the range of analytical methods used, the choice of diversity index 

420 for assessing surrogacy also influences outcomes, with alternative measures of alpha 

421 diversity (e.g. richness, functional and phylogenetic alpha) varying in their sensitivity to 

422 environmental drivers (Heino & Tolonen, 2017). To our knowledge SEMs have not been 

423 previously utilised in the quest for surrogacy in freshwater ecology. The advantage of SEMs 

424 is that disparate species assemblages can be analysed in relation to environmental variables, 

425 unlike most community analyses that can only directly compare two assemblages at a time. 

426 Moreover, SEMs standardise across environmental variables without the need for multiple 
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427 tests that risk false positives, and can, therefore, elucidate the relative strengths of 

428 explanatory variables in driving observed relationships. 

429

430 Applications

431 An effective surrogate should be transferable over a broad context and offer a 

432 currency that is understandable to a range of stakeholders. According to our findings, 

433 macrophytes could meet these criteria in providing an indirect surrogate for molluscs, beetles 

434 and dragonflies in ponds and for molluscs in lakes. Macrophyte richness as a freshwater 

435 biodiversity surrogate could applicable from local to landscape scales, and simplify complex 

436 patterns and processes. By isolating the effects of multiple environmental and spatial 

437 explanatory variables in our dataset we demonstrate statistically that, via the diversity of 

438 morpho-group diversity, a greater richness of macrophytes is also broadly indicative of 

439 greater richness across disparate macroinvertebrate groups in ponds and molluscs in lakes. 

440 From an applied perspective, as macrophytes act as ecosystem architects, our findings 

441 suggest that researchers or practitioners can straightforwardly obtain a broad indication of the 

442 overall habitat quality and macroinvertebrate biodiversity by monitoring the number of 

443 macrophyte species and diversity of macrophyte morpho-groups, especially in the case of 

444 ponds. Despite the advantages of surrogates, they cannot replace detailed surveys of 

445 taxonomic groups particularly where species are rare, specialists or of conservation interest. 

446 Therefore, although our results show that macrophyte morpho-group diversity can be useful 

447 to indicate freshwater biodiversity, some caution is required as these results may not be 

448 definitive in the broad sense. 

449 It has been argued that declines in macrophyte richness should be viewed as an early 

450 warning system for declines in overall macrophyte abundance and hence the quality of the 

451 wider environment (Sayer et al., 2010). Hence, we would recommend practitioners and 
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452 conservation managers need to be concerned for wider biodiversity if macrophyte richness 

453 begins to decrease. The use of macrophytes as freshwater biodiversity surrogates can be 

454 important for rapid and cost-effective assessment of conservation and restoration projects, 

455 however, they will be most effective where constraints to biodiversity are diagnosed and 

456 addressed at site, habitat and landscape-scales. For example, at the site-scale, high grazing 

457 pressures may limit macrophyte regeneration from seedbanks and therefore wider 

458 biodiversity will only benefit if areas of macrophytes are protected from over-grazing and 

459 high disturbance. Additionally, at the habitat or landscape-scale, species translocations may 

460 be needed to enhance structural complexity if there are significant barriers to colonisation. 

461 However, in using macrophytes as a proxy for wider biodiversity, particularly when assessing 

462 habitat restoration, it should be recognised that macrophyte responses to management are 

463 complex and can be highly variable (Phillips, Willby & Moss, 2016). 

464
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689 Table 1. A summary of environmental characteristics per waterbody type and hydroscape; 

690 mean ± SE (min-max). Land use is representative from within catchments for lakes and the 

691 surrounding 500 m buffer for ponds.

Waterbody 

type

Hydroscape 

(No. waterbodies 

surveyed)

Size (ha.) Altitude (m) Urban (%)
Agriculture 

(%)

Freshwater 

(%)
Wetland (%)

Upland (n=27)
103.7 ± 57.1 

(1.5 – 1435.8)

166.9 ± 20.5 

(41.0 – 469.0)

0.4 ± 0.2 

(0.0 – 2.8)

14.0 ± 4.1 

(0.0 – 83.2)

7.0 ± 0.9 

(0.8 – 19.4)

0.1 ± 0.1 

(0.0 – 0.3)

Urban (n=22)
15.3 ± 4.8 

(1.4 – 81.9)

93.3 ± 11.6 

(23.0 – 217.0)

17.1 ± 5.1 

(0.0 - 90.8)

33.2 ± 4.1 

(0.0 – 69.3)

7.5 ± 1.3 

(0.0 – 19.1)

4.2 ± 1.8 

(0.0 – 27.2)
Lake

Agricultural 

(n=25)

14.5 ± 3.4 

(1.0 – 57.6)

14.6 ± 4.5 

(0.0 – 78.0)

4.2 ± 1.0 

(0.0 – 16.9)

61.7 ± 5.1 

(2.0 – 88.3)

7.9 ± 2.4 

(0.0 – 40.6)

4.9 ± 2.8 

(0.0 – 56.0)

Upland (n=27)
0.4 ± 0.1 

(0.1 - 1.6)

160.4 ± 12.3 

(64.0 – 306.0)

0.3 ± 0.1 

(0.0 – 2.2) 

22.2 ± 4.7 

(0.0 – 75.5)

1.4 ± 0.5 

(0.0 – 12.2)

0.4 ± 0.2 

(0.0 – 5.5)

Urban (n=26)
0.3 ± 0.1 

(0.1 - 1.2)

92.5 ± 12.3 

(9.0 – 233.0)

39 ± 5.3 

(0.0 – 98.9)

33.1 ± 4.9 

(0.0 – 94.6)

0.5 ± 0.4 

(0.0 – 12.2)

1.1 ± 0.6 

(0.0 – 16.6)Pond

Agricultural 

(n=30)

0.2 ± 0.1 

(0.1 - 1.2)

49.2 ± 5.1 

(0.0 – 82.0)

2 ± 0.5 

(0.0 – 13.4)

78.3 ± 4.4 

(14.4 – 

99.4)

0.4 ± 0.2 

(0.0 – 4.1)

6.7 ± 2.9 

(0.0 – 58.5)

692

693

694

695

696

697

698

Page 32 of 62Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

33

699 Table 2. Summary of species richness and sampling efficiency per waterbody type and 

700 hydroscape for each species assemblage. The estimated sample coverage gives an indication 

701 of the sampling completeness of each species group per waterbody type per hydroscape. 

Waterbody type

Hydroscape 

(No. waterbodies 

surveyed)

Species group

Mean richness 

(range)
Total 

richness

Estimated 

sample 

coverage (%)

Macrophytes 20 (11-34) 88 95

Molluscs 4 (0-22) 22 80

Beetles 13 (3-30) 86 90
Upland (n=27)

Odonates 6 (2-13) 19 98

Macrophytes 25 (12-39) 113 95

Molluscs 8 (1-15) 28 97

Beetles 16 (6-26) 68 95
Urban (n=22)

Odonates 5 (1-10) 10 100

Macrophytes 17 (3-29) 87 94

Molluscs 16 (3-29) 46 99

Beetles 20 (5-76) 157 87

Lake

Agricultural (n=25)

Odonates 16 (5-23) 34 98

Macrophytes 15 (1-25) 86 95

Molluscs 2 (0-5) 12 90

Beetles 15 (3-35) 88 94
Upland (n=27)

Odonates 10 (6-16) 21 99

Macrophytes 12 (2-19) 84 90

Molluscs 4 (0-16) 26 90

Beetles 11 (2-30) 69 95
Urban (n=26)

Odonates 5 (1-9) 10 100

Macrophytes 11 (1-26) 95 89

Molluscs 3 (0-12) 29 95

Pond

Agricultural (n=29)

Beetles 17 (3-50) 130 90
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Odonates 11 (1-25) 29 99

702 Figure captions

703 Figure 1. The conceptual model used to illustrate the direct and indirect relationships between 

704 response variables (macrophyte richness, macrophyte morpho-group diversity, mollusc, 

705 beetle and odonate richness) and explanatory variables (land use, connectivity, physical and 

706 water chemistry metrics). 

707

708 Fig. 2 Structural equation model (SEM) path diagram for lakes. Arrows are scaled according 

709 to standardised effect sizes, with black arrows indicating positive effects, red arrows negative 

710 and grey arrows indicating specified correlated errors. Explanatory variables with no arrows 

711 indicate that they were included in the final SEM but were not significant. Boxes with a 

712 superscript represent parameters that had a non-linear relationship with the predictor. 

713 Coefficients of determination (R2) are shown for each response variable. Non-significant 

714 relationships (P > 0.05) are omitted for clarity. 

715

716 Fig. 3 Structural equation model (SEM) path diagram for ponds. Arrows are scaled according 

717 to standardised effect sizes, with black arrows indicating positive effects and red arrows 

718 negative. Explanatory variables with no arrows indicate that they were included in the final 

719 SEM but were not significant. Coefficients of determination (R2) are shown for each response 

720 variable. Non-significant relationships (P > 0.05) are omitted for clarity. 

721

722

723

724

725
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727 Figure 1. The conceptual model used to illustrate the direct and indirect relationships between 

728 response variables (macrophyte richness, macrophyte morpho-group diversity, mollusc, 

729 beetle and odonate richness) and explanatory variables (land use, connectivity, physical and 

730 water chemistry metrics). 

731
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732

733

734 Fig. 2 Structural equation model (SEM) path diagram for lakes. Arrows are scaled according 

735 to standardised effect sizes, with black arrows indicating positive effects, red arrows negative 

736 and grey arrows indicating specified correlated errors. Explanatory variables with no arrows 

737 indicate that they were included in the final SEM but were not significant. Boxes with a 

738 superscript represent parameters that had a non-linear relationship with the predictor. 

739 Coefficients of determination (R2) are shown for each response variable. Non-significant 

740 relationships (P > 0.05) are omitted for clarity. 

741
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742

743

744 Fig. 3 Structural equation model (SEM) path diagram for ponds. Arrows are scaled according 

745 to standardised effect sizes, with black arrows indicating positive effects and red arrows 

746 negative. Explanatory variables with no arrows indicate that they were included in the final 

747 SEM but were not significant. Coefficients of determination (R2) are shown for each response 

748 variable. Non-significant relationships (P > 0.05) are omitted for clarity. 

749
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750 Supporting Information

751 Table S1. Percentage and number of sites visited by the authors by waterbody type and 

752 taxonomic group.

Waterbody type Water chemistry Macrophyte Mollusc Beetle Odonate

Lake (n = 74) 73% (n = 61) 57% (n = 48) 70% (n = 59) 70% (n = 59) 14% (n = 12)

Pond (n = 83) 98% (n = 81) 86% (n = 71) 90% (n = 75) 90% (n = 75) 0% (n = 0)

753

754
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755 Table S2. List of major nutrients and metals derived from each 500ml water subsample. 

Machine Determinant
Thermo iCap 6000 Series Ca

K
Mg
Na
Ag
Al
Ba
Cd
Fe
Li
Mn
Ni
Ti
Cu
Pb
Zn
TP
OC
TN

Dionex DX-120 Fl
Cl
NO2
Br
NO3
PO4
SO4

Thermo Helious Epsilion Spectrophotometer Water colour
Bran + Luebbe Autoanalyzer 3 Ammonium

756

757
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758 Table S3. Table of macrophyte morpho-groups, their frequency and percentage of sites 

759 present. Adapted from Willby, Abernethy & Demars (2000) to accommodate a wider 

760 taxonomic and ecological range of taxa.

Morpho 

-group 

class

Taxa Notes Frequency % of sites 

present

1 Lemna minor Small and free-floating 73 46.2

1 Lemna minuta Small and free-floating 9 5.7

1 Lemna trisulca Small and free-floating 48 30.4

1 Spirodela polyrhiza Small and free-floating 6 3.8

2 Utricularia intermedia agg. Bladderworts 4 2.5

2 Utricularia minor Bladderworts 16 10.1

2 Utricularia stygia Bladderworts 2 1.3

2 Utricularia vulgaris agg. Bladderworts 7 4.4

3 Callitriche hermaphroditica Elodeids (aquatics with 

submerged long stems)

9 5.7

3 Ceratophyllum demersum Elodeids (aquatics with 

submerged long stems)

23 14.6

3 Ceratophyllum submersum Elodeids (aquatics with 

submerged long stems)

2 1.3

3 Crassula helmsii Elodeids (aquatics with 

submerged long stems)

10 6.3

3 Elodea canadensis Elodeids (aquatics with 

submerged long stems)

34 21.5

3 Elodea nuttallii Elodeids (aquatics with 

submerged long stems)

35 22.2

3 Ranunculus circinatus Elodeids (aquatics with 

submerged long stems)

4 2.5
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4 Callitriche sp. Starworts 12 7.6

4 Callitriche hamulata Starworts 17 10.8

4 Callitriche platycarpa Starworts 4 2.5

4 Callitriche stagnalis Starworts 14 8.9

5 Apium inundatum Myriophyllids (aquatics 

with long stems reaching 

the surface)

13 8.2

5 Hippuris vulgaris Myriophyllids (aquatics 

with long stems reaching 

the surface)

13 8.2

5 Hottonia palustris Myriophyllids (aquatics 

with long stems reaching 

the surface)

2 1.3

5 Myriophyllum alterniflorum Myriophyllids (aquatics 

with long stems reaching 

the surface)

40 25.3

5 Myriophyllum spicatum Myriophyllids (aquatics 

with long stems reaching 

the surface)

12 7.6

6 Baldellia ranunculoides Submerged graminoids 1 0.6

6 Butomus umbellatus Submerged graminoids 2 1.3

6 Luronium natans Submerged graminoids 1 0.6

6 Sparganium angustifolium Submerged graminoids 15 9.5

6 Sparganium emersum Submerged graminoids 14 8.9

6 Sparganium natans Submerged graminoids 7 4.4

7 Ranunculus aquatilis thin-leaved water 

crowfoots

6 3.8

8 Chara sp. Stoneworts 11 7.0

8 Chara aculeolata Stoneworts 1 0.6
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8 Chara aspera Stoneworts 1 0.6

8 Chara baltica Stoneworts 2 1.3

8 Chara connivens Stoneworts 2 1.3

8 Chara contraria Stoneworts 4 2.5

8 Chara globularis Stoneworts 14 8.9

8 Chara hispida Stoneworts 7 4.4

8 Chara intermedia Stoneworts 2 1.3

8 Chara virgata Stoneworts 29 18.4

8 Chara vulgaris Stoneworts 13 8.2

8 Nitella sp. Stoneworts 4 2.5

8 Nitella flexilis agg. Stoneworts 32 20.3

8 Nitella confervacea Stoneworts 1 0.6

8 Nitella flexilis Stoneworts 5 3.2

8 Nitella mucronata Stoneworts 2 1.3

8 Nitella opaca Stoneworts 5 3.2

8 Nitella translucens Stoneworts 25 15.8

8 Nitellopsis obtusa Stoneworts 2 1.3

9 Eleocharis acicularis Isoetids (submerged 

rosette-forming aquatics)

2 1.3

9 Isoetes lacustris Isoetids (submerged 

rosette-forming aquatics)

17 10.8

9 Juncus bulbosus Isoetids (submerged 

rosette-forming aquatics)

47 29.7

9 Littorella uniflora Isoetids (submerged 

rosette-forming aquatics)

41 25.9

9 Lobelia dortmanna Isoetids (submerged 

rosette-forming aquatics)

18 11.4

9 Subularia aquatica Isoetids (submerged 

rosette-forming aquatics)

1 0.6
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10 Elatine hexandra Diminutive and living on 

substrate

4 2.5

10 Elatine hydropiper Diminutive and living on 

substrate

2 1.3

10 Hypericum elodes Diminutive and living on 

substrate

2 1.3

10 Lythrum portula Diminutive and living on 

substrate

1 0.6

10 Montia fontana Diminutive and living on 

substrate

3 1.9

10 Ranunculus hederaceus Diminutive and living on 

substrate

1 0.6

10 Ranunculus omiophyllus Diminutive and living on 

substrate

2 1.3

11 Menyanthes trifoliata Rooted and medium 

floating leaves

44 27.8

11 Nymphoides peltata Rooted and medium 

floating leaves

1 0.6

11 Persicaria amphibia Rooted and medium 

floating leaves

20 12.7

12 Nuphar lutea Rooted and large floating 

leaves

34 21.5

12 Nymphaea alba Rooted and large floating 

leaves

35 22.2

12 Nymphaea marliacea Rooted and large floating 

leaves

12 7.6

12 Sagittaria sagittifolia Rooted and large floating 

leaves

1 0.6
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13 Najas marina Thin and flat leaved 

pondweeds and similar 

habits

6 3.8

13 Potamogeton berchtoldii OR 

Potamogeton pusillus

Thin and flat leaved 

pondweeds and similar 

habits

24 15.2

13 Potamogeton berchtoldii Thin and flat leaved 

pondweeds and similar 

habits

34 21.5

13 Potamogeton friesii Thin and flat leaved 

pondweeds and similar 

habits

4 2.5

13 Potamogeton obtusifolius Thin and flat leaved 

pondweeds and similar 

habits

20 12.7

13 Potamogeton pusillus Thin and flat leaved 

pondweeds and similar 

habits

15 9.5

13 Potamogeton trichoides Thin and flat leaved 

pondweeds and similar 

habits

4 2.5

14 Eleogiton fluitans Thin and cylindrical 

pondweeds and similar 

habits

19 12.0

14 Potamogeton filiformis Thin and cylindrical 

pondweeds and similar 

habits

1 0.6
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14 Potamogeton pectinatus Thin and cylindrical 

pondweeds and similar 

habits

27 17.1

14 Zannichellia palustris Thin and cylindrical 

pondweeds and similar 

habits

17 10.8

15 Potamogeton alpinus Submerged/floating broad-

leaved pondweeds

10 6.3

15 Potamogeton gramineus Submerged/floating broad-

leaved pondweeds

1 0.6

15 Potamogeton natans Submerged/floating broad-

leaved pondweeds

62 39.2

15 Potamogeton polygonifolius Submerged/floating broad-

leaved pondweeds

44 27.8

16 Potamogeton crispus Submerged-only broad-

leaved pondweeds

19 12.0

16 Potamogeton gramineus x 

perfoliatus = P. x nitens

Submerged-only broad-

leaved pondweeds

2 1.3

16 Potamogeton perfoliatus Submerged-only broad-

leaved pondweeds

9 5.7

16 Potamogeton praelongus Submerged-only broad-

leaved pondweeds

1 0.6

17 Apium nodiflorum Semi-submerged 10 6.3

17 Berula erecta Semi-submerged 9 5.7

17 Hydrocharis morsus-ranae Semi-submerged 8 5.1

17 Oenanthe aquatica Semi-submerged 1 0.6

17 Oenanthe crocata Semi-submerged 2 1.3

17 Oenanthe fistulosa Semi-submerged 1 0.6

17 Sium latifolium Semi-submerged 1 0.6
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17 Stratiotes aloides Semi-submerged 2 1.3

18 Acorus calamus Large (>1m), emergent, 

rhizomatous graminoid 

emergents

4 2.5

18 Bolboschoenus maritimus Large (>1m), emergent, 

rhizomatous graminoid 

emergents

2 1.3

18 Carex acutiformis Large (>1m), emergent, 

rhizomatous graminoid 

emergents

18 11.4

18 Carex aquatilis Large (>1m), emergent, 

rhizomatous graminoid 

emergents

1 0.6

18 Carex lasiocarpa Large (>1m), emergent, 

rhizomatous graminoid 

emergents

5 3.2

18 Carex pseudocyperus Large (>1m), emergent, 

rhizomatous graminoid 

emergents

6 3.8

18 Carex riparia Large (>1m), emergent, 

rhizomatous graminoid 

emergents

23 14.6

18 Carex rostrata Large (>1m), emergent, 

rhizomatous graminoid 

emergents

72 45.6

18 Carex vesicaria Large (>1m), emergent, 

rhizomatous graminoid 

emergents

22 13.9
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18 Cladium mariscus Large (>1m), emergent, 

rhizomatous graminoid 

emergents

6 3.8

18 Equisetum fluviatile Large (>1m), emergent, 

rhizomatous graminoid 

emergents

51 32.3

18 Glyceria maxima Large (>1m), emergent, 

rhizomatous graminoid 

emergents

9 5.7

18 Iris pseudacorus Large (>1m), emergent, 

rhizomatous graminoid 

emergents

50 31.6

18 Phalaris arundinacea Large (>1m), emergent, 

rhizomatous graminoid 

emergents

34 21.5

18 Phragmites australis Large (>1m), emergent, 

rhizomatous graminoid 

emergents

55 34.8

18 Schoenoplectus lacustris Large (>1m), emergent, 

rhizomatous graminoid 

emergents

22 13.9

18 Schoenoplectus 

tabernaemontani

Large (>1m), emergent, 

rhizomatous graminoid 

emergents

4 2.5

18 Sparganium erectum Large (>1m), emergent, 

rhizomatous graminoid 

emergents

62 39.2
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18 Typha angustifolia Large (>1m), emergent, 

rhizomatous graminoid 

emergents

22 13.9

18 Typha latifolia Large (>1m), emergent, 

rhizomatous graminoid 

emergents

61 38.6

18 Typha latifolia x 

angustifolia = T. x glauca

Large (>1m), emergent, 

rhizomatous graminoid 

emergents

1 0.6

19 Carex elata Tussock forming emergents 4 2.5

19 Carex paniculata Tussock forming emergents 4 2.5

20 Eleocharis palustris Other graminoid emergents 74 46.8

20 Glyceria declinata Other graminoid emergents 2 1.3

20 Glyceria fluitans Other graminoid emergents 37 23.4

20 Juncus articulatus Other graminoid emergents 15 9.5

21 Alisma lanceolatum Broad-leaved emergents 3 1.9

21 Alisma plantago-aquatica Broad-leaved emergents 29 18.4

21 Bidens cernua Broad-leaved emergents 2 1.3

21 Caltha palustris Broad-leaved emergents 21 13.3

21 Cicuta virosa Broad-leaved emergents 6 3.8

21 Lysimachia thyrsiflora Broad-leaved emergents 4 2.5

21 Lythrum salicaria Broad-leaved emergents 8 5.1

21 Mentha aquatica Broad-leaved emergents 69 43.7

21 Mimulus guttatus Broad-leaved emergents 6 3.8

21 Myosotis laxa Broad-leaved emergents 13 8.2

21 Myosotis scorpioides Broad-leaved emergents 38 24.1

21 Myosotis secunda Broad-leaved emergents 11 7.0

21 Persicaria hydropiper Broad-leaved emergents 4 2.5

21 Potentilla palustris Broad-leaved emergents 38 24.1
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21 Ranunculus flammula Broad-leaved emergents 60 38.0

21 Ranunculus lingua Broad-leaved emergents 7 4.4

21 Ranunculus sceleratus Broad-leaved emergents 10 6.3

21 Rorippa nasturtium-

aquaticum

Broad-leaved emergents 21 13.3

21 Rumex hydrolapathum Broad-leaved emergents 3 1.9

21 Veronica anagallis-aquatica Broad-leaved emergents 2 1.3

21 Veronica beccabunga Broad-leaved emergents 21 13.3

21 Veronica catenata Broad-leaved emergents 1 0.6

21 Veronica scutellata Broad-leaved emergents 12 7.6

22 Bacillariophyta Amorphous growth 4 2.5

22 Blue-green algal scum/pelts Amorphous growth 1 0.6

23 Batrachospermum sp. Filamentous algae 5 3.2

23 Cladophora glomerata Filamentous algae 17 10.8

23 Filamentous green algae Filamentous algae 13 8.2

23 Hydrodictyon reticulatum Filamentous algae 2 1.3

23 Klebsormidium sp. Filamentous algae 1 0.6

23 Microspora sp. Filamentous algae 1 0.6

23 Mougeotia sp. Filamentous algae 1 0.6

23 Spirogyra sp. Filamentous algae 22 13.9

23 Ulothrix sp. Filamentous algae 1 0.6

23 Ulva flexuosa Filamentous algae 10 6.3

23 Vaucheria sp. Filamentous algae 7 4.4

23 Zygnematalean algae Filamentous algae 4 2.5

24 Brachythecium rivulare Pleurocarpous mosses 

(bryophyte)

3 1.9

24 Calliergonella cuspidata Pleurocarpous mosses 

(bryophyte)

14 8.9
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24 Cratoneuron filicinum Pleurocarpous mosses 

(bryophyte)

2 1.3

24 Drepanocladus aduncus Pleurocarpous mosses 

(bryophyte)

10 6.3

24 Fontinalis antipyretica Pleurocarpous mosses 

(bryophyte)

21 13.3

24 Fontinalis squamosa Pleurocarpous mosses 

(bryophyte)

2 1.3

24 Leptodictyum riparium Pleurocarpous mosses 

(bryophyte)

7 4.4

24 Platyhypnidium riparioides Pleurocarpous mosses 

(bryophyte)

1 0.6

24 Scorpidium scorpioides Pleurocarpous mosses 

(bryophyte)

3 1.9

24 Sphagnum sp. Pleurocarpous mosses 

(bryophyte)

21 13.3

24 Sphagnum cuspidatum Pleurocarpous mosses 

(bryophyte)

10 6.3

24 Sphagnum denticulatum Pleurocarpous mosses 

(bryophyte)

7 4.4

24 Thamnobryum alopecurum Pleurocarpous mosses 

(bryophyte)

1 0.6

24 Warnstorfia fluitans Pleurocarpous mosses 

(bryophyte)

2 1.3

25 Bryum pseudotriquetrum Acrocarpous mosses 

(bryophyte)

2 1.3

25 Philonotis fontana Acrocarpous mosses 

(bryophyte)

1 0.6
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25 Racomitrium aciculare Acrocarpous mosses 

(bryophyte)

1 0.6

26 Chiloscyphus polyanthos Liverworts (byophytes) 1 0.6

26 Jungermannia sp. Liverworts (byophytes) 3 1.9

26 Marsupella emarginata Liverworts (byophytes) 3 1.9

26 Pellia sp. Liverworts (byophytes) 3 1.9

26 Pellia epiphylla Liverworts (byophytes) 1 0.6

26 Scapania undulata Liverworts (byophytes) 2 1.3
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763 Table S4. Missing pathways added to the SEM per waterbody.

Waterbody 
type

Response Explanatory added

Lake Macrophyte richness NA
Macrophyte morpho-group 
richness

Alkalinity 

Altitude
WB_area
AmmoniumPoly
AmmoniumPoly2

Mollusc richness Altitude
UrbanCcatchment
WetlandPresence500m

Beetle richness WetlandCatchment
WBArea.catchment.ratio
ArableC500m

Odonate richness Altitude
UrbanCcatchment

Pond Macrophytes NA
Macrophyte morpho-group 
richness

UrbanC500m

Ammonium.mg.L
Mollusc richness Altitude

UrbanC500m
Shade
pH

Beetle richness Altitude
UrbanC500m
Water.Colour..440um.HAZEN

Odonate richness UrbanC500m
Dissolved.Oxygen.mg.L
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766 Table S5. Unstandardised and standardised pathway coefficients for lake and pond SEMs.

Waterbody 
type

Response Explanatory Estimate DF P.Value Std.Estimate Sig

Lake mphyte.rich AmmoniumPoly 7.1542 52 0.2918 0.1165

mphyte.rich AmmoniumPoly2 -8.9608 52 0.1822 -0.1459

mphyte.rich Alkalinity.mg.L -2.7624 52 0.0273 -0.3846 *

mphyte.rich NO3.mg.L -2.4456 52 0.0016 -0.3469 **

mphyte.rich pH 2.815 52 0.0194 0.3978 *

mphyte.rich TP.mg.L -2.244 52 0.0047 -0.3149 **

mphyte.rich Water.Colour..440um.HAZEN -3.5937 52 0.0017 -0.487 **

mphyte.rich ArableCcatchmentPoly -13.3993 52 0.2056 -0.2182

mphyte.rich ArableCcatchmentPoly2 2.5966 52 0.7211 0.0423

mphyte.rich Freshwatercatchment -0.638 52 0.5818 -0.0836

mphyte.rich UrbanCcatchment 0.423 52 0.7149 0.0717

mphyte.rich WetlandCatchment -0.1215 52 0.8973 -0.0164

mphyte.rich AltitudePoly 4.6184 52 0.6525 0.0752

mphyte.rich AltitudePoly2 -13.3673 52 0.06 -0.2177

mphyte.rich SDI.m 0.8424 52 0.4249 0.1109

mphyte.rich WB_area -1.5534 52 0.2076 -0.2129

mphyte.rich WBArea.catchent.ratio 1.793 52 0.1036 0.2509

mphyte.rich FreshwaterPresence 2.0114 52 0.1262 0.2713

mphyte.rich WetlandPresence -0.3962 52 0.7331 -0.0476

mphyte.rich ArableC500m 1.9012 52 0.0435 0.3509 *

mphyte.rich UrbanC500m -0.9449 52 0.3836 -0.1571

mphyte.morpho mphyte.rich 0.3184 67 0 0.6998 ***

mphyte.morpho Alkalinity.mg.L -0.2642 67 0.2795 -0.0809

mphyte.morpho Altitude 1.0381 67 1.00E-
04

0.3138 ***

mphyte.morpho WB_area 0.4831 67 0.0111 0.1456 *

mphyte.morpho AmmoniumPoly -0.5259 67 0.7193 -0.0188

mphyte.morpho.fun AmmoniumPoly2 -2.9691 67 0.0456 -0.1063 *

mollusc.rich.log mphyte.morpho 0.0717 69 3.00E-
04

0.2874 ***

mollusc.rich.log UrbanCcatchment 0.2024 69 0 0.3023 ***

mollusc.rich.log WetlandPresence 0.1704 69 0.0178 0.1806 *

mollusc.rich.log Altitude -0.6266 69 0 -0.7598 ***

beetle.rich.log mphyte.morpho -2.00E-04 69 0.9894 -0.0014

beetle.rich.log WetlandCatchment 0.1658 69 0.013 0.2779 *

beetle.rich.log WBArea.catchent.ratio -0.1981 69 0.0025 -0.3436 **

beetle.rich.log ArableC500m 0.1078 69 0.0285 0.2466 *

odonate.rich.log mphyte.morpho -0.011 70 0.674 -0.0514

odonate.rich.log Altitude -0.4179 70 0 -0.5885 ***
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odonate.rich.log UrbanCcatchment -0.1644 70 0.0069 -0.2851 **

Pond mphyte.rich Ammonium.mg.L 0.0887 64 0.9006 0.0144

mphyte.rich Conductivity.uS.cm -2.5184 64 0.0187 -0.4394 *

mphyte.rich Dissolved.Oxygen.mg.L 1.0003 64 0.1503 0.1719

mphyte.rich pH 2.2842 64 0.0032 0.3981 **

mphyte.rich TP.mg.L -0.8439 64 0.2363 -0.1495

mphyte.rich Water.Colour..440um.HAZEN 0.2076 64 0.7587 0.0359

mphyte.rich ArableC500m 1.1487 64 0.0612 0.2717

mphyte.rich FreshwaterPresence 0.7617 64 0.3074 0.1239

mphyte.rich UrbanC500m -0.1161 64 0.8012 -0.031

mphyte.rich WetlandPresence 0.1381 64 0.8671 0.018

mphyte.rich Altitude -0.2317 64 0.7718 -0.0389

mphyte.rich Outflow 1.7905 64 0.0096 0.3076 **

mphyte.rich SDI.m 0.3581 64 0.5584 0.0636

mphyte.rich WB_area 1.5258 64 0.0729 0.2619

mphyte.rich Shade 0.0915 64 0.9016 0.0154

mphyte.rich Catchment.present -0.7676 64 0.3051 -0.1288

mphyte.rich NearestNeighbour 0.5141 64 0.614 0.0551

mphyte.morpho mphyte.rich 0.461 78 <0.001 0.8232 ***

mphyte.morpho UrbanC500m -0.4762 78 <0.001 -0.2272 ***

mphyte.morpho Ammonium.mg.L -0.4318 78 0.0139 -0.1253 *

mollusc.rich.log mphyte.morpho 0.0641 76 0.0024 0.2832 **

mollusc.rich.log Altitude -0.2029 76 0.0038 -0.2687 **

mollusc.rich.log UrbanC500m 0.1988 76 <0.001 0.4193 ***

mollusc.rich.log Shade -0.18 76 0.006 -0.2389 **

mollusc.rich.log pH 0.171 76 0.011 0.2351 *

beetle.rich.log mphyte.morpho 0.0427 77 0.0263 0.2301 *

beetle.rich.log Altitude -0.2263 77 <0.001 -0.3658 ***

beetle.rich.log UrbanC500m -0.122 77 0.0048 -0.3138 **

beetle.rich.log Water.Colour..440um.HAZEN -0.1508 77 0.0178 -0.2509 *

odonate.rich.log mphyte.morpho 0.0566 78 0.0014 0.3071 **

odonate.rich.log UrbanC500m -0.178 78 <0.001 -0.4611 ***

odonate.rich.log Dissolved.Oxygen.mg.L 0.1515 78 0.0065 0.2524 **
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768 Figure S1. Principal components analysis (PCA), correlations & dredge outputs for lakes and ponds.
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779 Figure S2. Species accumulation curves for all taxonomic groups per waterbody type (lakes – 

780 blue lines, and ponds – red lines) and hydroscape (agricultural, upland and urban). Lines are 

781 extrapolated to estimate the effect of doubling sampling effort.
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784 Figure S3. The correlation coefficients between taxonomic groups for lakes and ponds. 
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