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Reviewer one:

Comment #1: The manuscript aims “to explore the influence of the FTO genotype on fasting 
and postprandial appetite-related hormones and perceived appetite in heterogeneous sample of 
men and women”. The study is innovative and current, but presents some important problems 
that should be reviewed.

Author response #1: We thank the reviewer for the kind comment on the novelty of our study 
and we hope our responses below and the modifications in the manuscript address the 
comments raised.

Comment #2: Line 2 - the authors need to put the "rs" of the FTO gene that was studied, 
considering that there are several "rs" in the scientific literature. Do not just put "risk AA 
genotype".

Author response #2: We have specified the “rs” of the FTO gene throughout the manuscript, 
including the title and the abstract.

Comment #3: Line 4 - The authors said that the study population was heterogeneous, but they 
were all adults. Therefore, the age difference of the research volunteers should be expected 
when it is proposed to evaluate adults without limiting the age group.

Author response #3: We recruited men and women aged between 18 and 50 years old. We 
have included this information in the abstract for clarity as follows:

Abstract, page 2, lines 32-35: 112 healthy men and women aged 18-50 years old completed 
three laboratory visits for the assessment of FTO rs9939609 genotype, body composition, 
aerobic fitness, resting metabolic rate, visceral adipose tissue, liver fat, fasting leptin, and 
fasting and postprandial acylated ghrelin, total PYY, insulin, glucose and perceived appetite.

Comment #4: Introduction: Paragraph 4 - the authors described ghrelin, adipose tissue, 
physical activity .... and specifically spoke of ghrelin in obese people. Were the other variables 
described in the paragraph observed in eutrophic or obese people? The behavior of several 
indicators described differ between eutrophic and obese. In addition, the study evaluated 
eutrophic.

Author response #4: Our study included participants with a wide range of adiposity, from 
normal weight to obesity (BMI range from 18.4 to 40.3 kg·m-2, as described in Table 1). The 
wide range of adiposity enabled us to evaluate whether adiposity was associated with the 
appetite-related outcomes of interest. The evidence highlighted in the fourth paragraph of the 
introduction is an overview of potential factors that can influence appetite. We have specified 
for each study cited whether the study sample included individuals with normal weight, 
overweight or obesity, as follows:

Introduction, page 4, lines 90-106: Data from previous studies have indicated that women 
exhibit higher fasting concentrations of acylated ghrelin than men in those who were lean 



(Alajmi et al. 2016; Douglas et al. 2017) and in those who were overweight/obese (Douglas et 
al. 2017). Furthermore, an inverse relationship between general adiposity levels and fasting 
ghrelin levels has been suggested in study samples including individuals who were lean and 
individuals who were obese, possibly because of elevated insulin or leptin levels (Tschöp et al. 
2001; Shiiya et al. 2002; Sondergaard et al. 2009). Individuals who are obese also exhibit a 
reduced postprandial suppression of ghrelin (Le Roux et al. 2005) and blunted postprandial 
increases in PYY (Le Roux et al. 2006). Limited evidence has also suggested an inverse 
association between visceral adipose tissue and fasting ghrelin levels in women who were lean 
and women who were obese, likely caused by substances secreted by visceral adipocytes, such 
as TNF and leptin (Sondergaard et al. 2009). Moreover, fat-free mass, as the largest 
contributor to resting metabolic rate, has been identified as a key driver of appetite and energy 
intake in individuals who were lean and in individuals who were obese (Blundell et al. 2015b). 
In a systematic review including studies in individuals with normal weight, overweight or 
obesity, physical activity has also been suggested to alter the sensitivity of the appetite control 
system by enhancing meal-induced satiety which may facilitate energy balance over the long 
term (Beaulieu et al. 2016).

Comment #5: Objective: The second objective proposed " to explore potential associations 
between fasting and postprandial appetite outcomes and physiological and behavioral 
characteristics" was not completely answered in the results and conclusion. The results of the 
first objective are in table 1, figure 1, table 2 and table 3. In table 4, the authors associate fasting 
insulin, glucose and leptin with anthropometrics, metabolic and physical active parameters.

Author response #5: The second objective of the study is answered in the results section in 
page 17, lines 326 to 357, where all sex-specific Pearson’s correlation coefficients between 
appetite-related outcomes and individual characteristics are summarised. Table 4 highlights 
where significant correlations were observed, namely the correlations between the individual 
characteristics and fasting insulin, glucose and leptin. Additionally, this objective is also 
addressed in the discussion section on lines 374-376 and on lines 465-499. Nevertheless, we 
have included a sentence in the conclusion of the manuscript which answers the second 
objective directly, as follows:

Discussion, page 24, lines 530-532: The associations between fasting and postprandial acylated 
ghrelin, total PYY and general or abdominal adiposity were also small, while fasting leptin, 
glucose and insulin and postprandial insulin concentrations were consistently and positively 
associated with adiposity outcomes.

Comment #6: Participants: Why did the authors add 1% of blacks people in the study sample? 
It is well known that blacks people have different body composition and energy metabolism 
than White Europeans and Asians. Why did they not exclude blacks people? This sample is not 
representative of the race.

Author response #6: We did not recruit participants based on ethnicity as it was expected that 
the vast majority of the study sample would be white Europeans, considering the general 



population where the study was conducted. Excluding participants of black or Asian ethnicity 
did not alter the interpretation of our findings and, therefore, it was preferred to maintain the 
original study sample in order to increase the statistical power of our analyses. 

Comment #7: Preliminary testing: Why did you use three skinfolds to estimate body 
composition? It is a doubly indirect method for estimating body composition.

Author response #7: We appreciate the reviewer’s comment and we agree that skinfolds is an 
indirect method to estimate body composition which presents inherent limitations. However, 
we did not have access to other more accurate methods of assessing total body fat in such a 
large sample (e.g. BOD POD, DEXA). It is known that, when performed by a trained and 
experienced examiner, skinfold measurements can provide a reliable estimation of body fat 
mass. Additionally, we used body fat mass estimated by skinfolds in conjunction with BMI 
and body fat distribution assessed with high-quality MRI scans (visceral adipose tissue, 
abdominal subcutaneous adipose tissue and liver fat). Our approach of using three skinfold 
sites was based on the equation which has been validated for the population we recruited for 
the study. We have included a sentence in the methods section of the manuscript to highlight 
the care taken for the consistency of skinfold measurements, as follows:

Methods, page 5, lines 137-138: All skinfold measurements were performed by the same 
experienced examiner throughout the study.

Comment #8: Blood sampling and biochemical analysis - paragraph 1 - lines 9 and 10 - the 
authors describe "haemoglobin concentrations and hematocrit", but did not show results of 
these analysis.

Author response #8: Haemoglobin concentration and haematocrit were assessed to ensure any 
changes in plasma volume did not affect the quantification of blood parameters. As no exercise 
was performed during the study visit where blood samples were collected, we did not expect 
to observe any significant plasma volume changes and these analyses were performed for 
reassurance only. We have clarified that “Correction of blood parameter concentrations for 
acute changes in plasma volume had a negligible influence on our findings and, therefore, the 
unadjusted plasma concentrations are displayed for simplicity” in the statistical analysis section 
(Methods, page 9, lines 247-249).

Comment #9: Statistical analysis: The Hardy-Weinberg equilibrium was calculated?

Author response #9: We have calculated the genetic variation of our population using the 
Hardy-Weinberg equation and can confirm there was no significant deviation from Hardy-
Weinberg equilibrium. This information has been added to the methods as indicated below. 
Furthermore, the prevalence of the three FTO rs9939609 genotypes in our study sample was 
similar to the prevalence reported previously by Frayling et al. 2007 in 13 cohorts with 38,759 
participants: 16% of the population as AA (19% in our study), 37% as TT (36% in our study) 
and 47% as AT (45% in our study).



Methods, page 8, lines 219-221: Genotype frequency of FTO rs9939609 was assessed using a 
goodness-of-fit chi-square test and did not deviate from Hardy-Weinberg equilibrium (χ2 = 
0.435, P = 0.509). 

Comment #10: Participants characteristics: lines 3-5 - results are expected and do not need be 
discussed in detail.

Author response #10: The sentence summarizing the differences observed between men and 
women was removed from the text, as requested by the reviewer.

Comment #11: Figure 1 - results are not innovative, but I recommend that you keep the figure. 
It would be important to add the p-value in the figures.

Author response #11: We have kept the figure and highlighted where the P-value was lower 
than 0.05 between males and females.

Comment #12: Sex-specific Pearson - We lacked discussing the result of the insulin ratio with 
VO2 and glucose with VO2. The authors could talk in the context of energy metabolism.

Author response #12: We have now highlighted the associations between insulin and glucose 
with V̇O2 peak in the discussion section, as follows:

Discussion, pages 22-23, lines 484-488: Additionally, negative associations between V̇O2 
peak and fasting and postprandial insulin, fasting glucose and fasting leptin were observed. 
Acute and chronic exercise augments insulin sensitivity by increasing insulin-like growth 
factor 1, and individuals with higher cardiorespiratory fitness typically show higher insulin 
sensitivity (Borghouts and Keizer, 2000; Castro et el. 2016).

Comment #13: Table 4 is extensive, with many correlations already expected. In addition, it 
was not the objective of the study. I suggest a careful review of the results for table 4! Many 
correlations were already expected and need not be highlighted. I suggest highlighting the 
correlations necessary to respond to the objectives proposed in the study.

Author response #13: Table 4 was included in order to summarize the significant associations 
observed between fasting insulin, glucose and leptin and individual characteristics, which 
answers the second objective of the study i.e. to explore potential associations between fasting 
and postprandial appetite outcomes and physiological and behavioural characteristics. 
However, the table can be included as supplementary online material if deemed appropriate by 
the reviewer and/or editor.

Comment #14: Discussion:
Paragraph 1 – line 11 - The authors said that they evaluated "lifestyle characteristics", but only 
the physical activity practice was evaluated.



Author response #14: We used the term ‘lifestyle characteristics’ to summarize the 
measurements of both habitual physical activity levels and sitting time. 

Comment #15: Paragraph 2 - line 11 - the authors refer to "heterogeneous samples" to justify 
the difference of the results found in the present study and in Karra et al (2013). Does age 
influence the relationship of ghrelin to appetite?

Author response #15: Our sample was heterogeneous not only in terms of age, but also in 
adiposity parameters (as shown in Table 1), as well as including both males and females. On 
the contrary, the study performed by Karra et al. only included healthy young lean males with 
an average age of ~23 years. These differences in study samples might explain differences in 
the observed results, as previous evidence indicates ghrelin levels can vary between males and 
females and also according to body adiposity (as indicated in the manuscript’s introduction). 
Additionally, although evidence is limited, it has been suggested that the loss of appetite and 
decline in energy intake in older adults may be related to the concomitant elevation in 
circulating leptin and insulin and a reduction in ghrelin concentrations (Landi et al. Nutrients, 
2016;8(2):69). We have clarified that the study of Karra et al. included only lean young males 
in the discussion section, as follows:

Discussion, pages 19-20, lines 389-391: Differences between study samples can possibly 
explain discrepancies between findings, as Karra et al. (2013) recruited healthy young lean 
males, while our sample was composed of a heterogeneous group of males and females.

Comment #16: I would suggest adding also a result of a recent study published with obese 
women in which "Participants with the AA genotype had lower values than those with TT and 
TA in the postprandial period." (Magno et al. , 2018).

Author response #16: We appreciate the reviewer’s suggestion and the reference to the study 
performed by Magno is included in the discussion section (page 20, lines 393-397).

Comment #17: Paragraph 3 - line 10 - review use of numbers 3-36 subscript!

Author response #17: We have presented ‘3-36’ in subscript to indicate the form of PYY that 
was measured in the study by Karra et al. (2013). PYY3-36 is commonly reported in the 
literature with 3-36 presented in subscript; therefore, we feel ‘PYY3-36’ will be familiar to the 
reader. 

Comment #18: Paragraph 6 - line 3 - review "women had significantly lower fat mass and fat 
free mass" because women had higher fat mass. See table 1!

Author response #18: The sentence highlighted by the reviewer reads “It should be noted that 
all participants received an identical standardised meal and, as women had significantly lower 
body mass and fat free mass, and consequently lower resting metabolic rate, it was expected 
that the postprandial suppression of appetite would be stronger in women.”. We have not 



mentioned fat mass in this sentence but highlighted that both body mass and fat free mass were 
lower in women than men which is supported by the data presented in Table 1. 

Comment #19: Conclusion: The conclusion does not address the second objective proposed 
by the authors (association between fasting and postprandial appetite with physiological and 
behavioral characteristics).

Author response #19: We have included a sentence in the conclusion of the manuscript which 
answers the second objective of the study, as follows:

Discussion, page 24, lines 530-532: The associations between fasting and postprandial acylated 
ghrelin, total PYY and general or abdominal adiposity were also small, while fasting leptin, 
glucose and insulin and postprandial insulin concentrations were consistently and positively 
associated with adiposity outcomes.

Comment #20: References: The references of Carvalho et al (2018) and Melhorn et al (2018) 
were not found. Please review all other references!

Author response #20: We thank the reviewer for bringing this to our attention. All references 
have been reviewed accordingly. 



Reviewer two:

Comment #1: In the current manuscript the authors seek to understand the role of the obesity-
associated gene FTO on behavioral feeding phenotype and associated physiologic and 
metabolic parameters. Specifically multiple indices of appetite, feeding peptide levels in 
plasma (in fasted and fed state), fitness and metabolic rate in healthy and FTO-identified 
patients were performed. This is achieved through a combination of laboratory visits and data 
obtained from an accelerometer that patients wore while away from the lab. The authors should 
be commended on this effort.  This topic is relevant to the field of obesity research and 
associated feeding pathologies. I offer my constructive criticisms here.

Author response #1: We thank the reviewer for the positive comments on our manuscript and 
we hope that the helpful comments below have been addressed appropriately.

Comment #2: I appreciate the care taken to measure acylated ghrelin across fed and fasted 
states. However cephalic ghrelin secretion in anticipation of meals was not measured. I bring 
this up because normalizing each patient by fasting does not evaluate conditioned or pre-meal 
ghrelin responses associated with anticipation of food. I think this should be qualified in the 
discussion. 

Author response #2: We presented the appetite and plasma concentrations of acylated ghrelin, 
total PYY, insulin and glucose relative to baseline values (i.e., delta) to minimise the potential 
influence of day-to-day biological variability in these outcomes. However, given that 
participants knew when the meal would be provided, we cannot rule out that a preprandial 
increase in ghrelin may reflect an anticipatory signal for food intake rather than initiating meal 
intake (e.g., Cummings et al. 2001 Diabetes, 50: 1714-1719; Frecka & Mattes 2008 Am J 
Physiol Gastrointest Liver Physiol, 294: G699-707). Therefore, we have included this in the 
discussion section as follows: 

Discussion, page 24, lines 522-526: Furthermore, participants were aware of the meal timing 
so it is possible that the higher preprandial ghrelin concentrations reflected an anticipatory 
response to impending meal intake (Cummings et al. 2001). Future studies should consider 
isolating meal provision from time-related cues and/or examining the influence of cephalic 
phase ghrelin release during meal anticipation on postprandial appetite responses. 

Comment #3: Is it possible that a laboratory setting is not appropriate to measure FTO X 
obeseogenic food environment interactions known to promote maladaptive physiologic 
responses that induce obesity? Given the lack of interactions it would seem suitable to mention 
this in the discussion inline with targeted weight loss for example. 

Author response #3: We thank the reviewer for raising this point. The aim of our study was 
to determine the influence of the FTO rs9969309 genotype on fasting and postprandial 
appetite-related hormones and, therefore, it was important to study participants in a controlled 
environment and in response to a standardised meal to minimise the influence of any potential 
confounding factors. However, we agree that the laboratory setting may not be appropriate to 



determine the effect of the FTO rs9939609 genotype on food choice and eating behavior and 
we have highlighted this as a limitation and potential future direction in the discussion as 
follows:
Discussion, pages 23-24, lines 518-521: Additionally, it is possible that a study design where 
individuals are exposed to an obesigenic food environment, such as an ad libitum buffet meal 
rather than a standardised meal stimulus, may be more appropriate to elucidate the effect of the 
FTO rs9939609 genotype on food choice and eating behaviour

Comment #4: Separate from physiologic responses, psychological process are also regulators 
of food intake. For example, Dang et al. 2018, recently reported that AA individuals have 
higher food craving than controls, supporting the contention that in some cases food reward 
mechanisms may contribute to body weight gain in FTO individuals. Although the authors did 
not set out to test this aspect of feeding behavior, the discussion of physiologic versus 
psychological mechanisms would strengthen the conclusion. 

Author response #4: We thank the reviewer for the suggestion and we have included the 
findings from Dang et al. in the discussion section as well as highlighting the importance of 
assessing psychological factors in future studies in the conclusion, as follows:

Discussion, page 20, lines 418-420: Moreover, recent evidence suggests that AA individuals 
show higher total food cravings, compared to TT individuals, which correlated with BMI 
(Dang et al. 2018).

Discussion, page 24, lines 532-534: Further research is needed to clarify the precise role of the 
FTO rs9939609 genotype in moderating appetite control and energy intake, including both 
physiological and psychological factors that influence eating behaviour.



Exploration of associations between the FTO rs9939609 genotype, fasting and 

postprandial appetite-related hormones and perceived appetite in healthy men and 

women

Fernanda R. Goltz 1,2, Alice E. Thackray 1,2, Veronica Varela-Mato 1, James A. King 1,2, 

James L. Dorling 3, Monika Dowejko 1, Sarabjit Mastana 1, Julie Thompson 1,2, Greg 

Atkinson 4, David J. Stensel 1,2

ABSTRACT

Background: The fat mass and obesity-associated gene (FTO) rs9939609 A-allele has been 

associated with obesity risk. Although the exact mechanisms involved remain unknown, the 

FTO rs9939609 A-allele has been associated with an impaired postprandial suppression of 

appetite. Objectives: To explore the influence of FTO rs9939609 genotype on fasting and 

postprandial appetite-related hormones and perceived appetite in a heterogeneous sample of 

men and women. Design: 112 healthy men and women aged 18-50-years-old completed three 

laboratory visits for the assessment of FTO rs9939609 genotype, body composition, aerobic 

fitness, resting metabolic rate, visceral adipose tissue, liver fat, fasting leptin, and fasting and 

postprandial acylated ghrelin, total PYY, insulin, glucose and perceived appetite. Participants 

wore accelerometers for seven consecutive days for the assessment of physical activity and 

sedentary behaviour. Multivariable general linear models quantified differences between FTO 

rs9939609 groups for fasting and postprandial appetite outcomes, with and without the addition 

of a priori selected physiological and behavioural covariates. Sex-specific univariable 

Pearson’s correlation coefficients were quantified between the appetite-related outcomes and 

individual characteristics. Results: 95% confidence intervals for mean differences between 

FTO rs9939609 groups overlapped zero in unadjusted and adjusted general linear models for 

all fasting (P≥0.28) and postprandial (P≥0.19) appetite-related outcomes. Eta2 values for 

explained variance attributable to FTO rs9939609 were <5% for all outcomes. An exploratory 

correlation matrix indicated that associations between fasting and postprandial acylated ghrelin, 

total PYY and general or abdominal adiposity were also small (r = -0.23 to 0.15, P≥0.09). 

Fasting leptin, glucose and insulin and postprandial insulin concentrations were associated with 

adiposity outcomes (r = 0.29 to 0.81, P≤0.033). Conclusions: Associations between the FTO 

rs9939609 genotype and fasting or postprandial appetite-related outcomes were weak in 

healthy men and women. 

Keywords: FTO, appetite, ghrelin, PYY, hunger.
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25 ABSTRACT

26

27 Background: The fat mass and obesity-associated gene (FTO) rs9939609 A-allele has been 

28 associated with obesity risk. Although the exact mechanisms involved remain unknown, the FTO 

29 rs9939609 A-allele has been associated with an impaired postprandial suppression of appetite. 

30 Objectives: To explore the influence of FTO rs9939609 genotype on fasting and postprandial 

31 appetite-related hormones and perceived appetite in a heterogeneous sample of men and women. 

32 Design: 112 healthy men and women aged 18-50-years-old completed three laboratory visits for 

33 the assessment of FTO rs9939609 genotype, body composition, aerobic fitness, resting 

34 metabolic rate, visceral adipose tissue, liver fat, fasting leptin, and fasting and postprandial 

35 acylated ghrelin, total PYY, insulin, glucose and perceived appetite. Participants wore 

36 accelerometers for seven consecutive days for the assessment of physical activity and sedentary 

37 behaviour. Multivariable general linear models quantified differences between FTO rs9939609 

38 groups for fasting and postprandial appetite outcomes, with and without the addition of a priori 

39 selected physiological and behavioural covariates. Sex-specific univariable Pearson’s correlation 

40 coefficients were quantified between the appetite-related outcomes and individual characteristics. 

41 Results: 95% confidence intervals for mean differences between FTO rs9939609 groups 

42 overlapped zero in unadjusted and adjusted general linear models for all fasting (P≥0.28) and 

43 postprandial (P≥0.19) appetite-related outcomes. Eta2 values for explained variance attributable 

44 to FTO rs9939609 were <5% for all outcomes. An exploratory correlation matrix indicated that 

45 associations between fasting and postprandial acylated ghrelin, total PYY and general or 

46 abdominal adiposity were also small (r = -0.23 to 0.15, P≥0.09). Fasting leptin, glucose and 

47 insulin and postprandial insulin concentrations were associated with adiposity outcomes (r = 

48 0.29 to 0.81, P≤0.033). Conclusions: Associations between the FTO rs9939609 genotype and 

49 fasting or postprandial appetite-related outcomes were weak in healthy men and women. 

50

51 Keywords: FTO, appetite, ghrelin, PYY, hunger.
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3

52 INTRODUCTION

53 The scientific understanding of appetite control has increased considerably in recent decades, 

54 which has been helpful in elucidating the complex nature of energy balance and weight control. 

55 Central components of the homeostatic control of appetite comprise signals from adipose tissue 

56 and peptide hormones secreted from the digestive tract, which act acutely and/or chronically on 

57 central neural pathways to influence hunger, satiety and subsequent energy intake (MacLean et 

58 al. 2017). These signals and hormones include the tonic signals leptin and insulin that regulate 

59 long-term changes in energy balance and adiposity status, as well as a variety of episodic gut 

60 signals, which mediate hunger and satiety on a meal-by-meal basis (Blundell et al. 2008, 2015a; 

61 MacLean et al. 2017). Notable among the episodic mediators of appetite and energy intake are 

62 acylated ghrelin and peptide YY (PYY) which exert orexigenic and anorexigenic effects, 

63 respectively, to facilitate meal initiation and termination (Neary and Batterham, 2009). 

64 Over the last 16 years, our laboratory has measured circulating concentrations of appetite-related 

65 hormones in response to meal ingestion in many studies. A consistent observation from this body 

66 of work is the degree of variability in responses observed between participants studied under 

67 identical conditions. Furthermore, using the “gold standard” replicated crossover study design 

68 (Atkinson and Batterham, 2015; Senn, 2016), we have demonstrated recently the presence of 

69 true interindividual heterogeneity in appetite perceptions and circulating concentrations of 

70 acylated ghrelin, total PYY, insulin and glucose in response to a standardised meal, over and 

71 above any random within-subject variability and measurement error (Goltz et al. 2019). Similar 

72 findings were also observed in acylated ghrelin, total PYY and perceived appetite responses to 

73 replicated single bouts of aerobic exercise (Goltz et al. 2018). 

74 The factors responsible for interindividual variability in appetite-related hormone concentrations 

75 are not fully understood, but it is plausible that differences in individual characteristics and 

76 behaviours may contribute to the variability observed. In this regard, the fat mass and obesity-

77 associated gene (FTO) has been associated with obesity risk, with individuals homozygous for 

78 the A allele (AA) of FTO rs9939609 having a 1.7-fold higher obesity risk than individuals 

79 homozygous for the T allele (TT) (Frayling et al. 2007). Although the exact mechanisms through 

80 which FTO rs9939609 influences fat mass accumulation remain unknown, it has been suggested 

81 that it exerts its effect on food intake rather than on energy expenditure (Speakman et al. 2008). 

82 Furthermore, rs9939609 AA individuals have been shown to exhibit an attenuated postprandial 

83 suppression of hunger and acylated ghrelin compared with TT individuals, which may 
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84 predispose AA individuals to higher energy intake and, consequently, higher fat mass (Karra et 

85 al. 2013). However, the study by Karra and colleagues was performed in young healthy weight 

86 males and it is not known whether this influence of the FTO rs9939609 gene on postprandial 

87 appetite regulation is observed in a heterogenous sample of men and women.

88 Beyond genetic influence, it has been speculated that other individual factors may affect appetite 

89 regulation. Data from previous studies have indicated that women exhibit higher fasting 

90 concentrations of acylated ghrelin than men in those who were lean (Alajmi et al. 2016; Douglas 

91 et al. 2017) and in those who were overweight/obese (Douglas et al. 2017). Furthermore, an 

92 inverse relationship between general adiposity levels and fasting ghrelin levels has been 

93 suggested in study samples including individuals who were lean and individuals who were obese, 

94 possibly because of elevated insulin or leptin levels (Tschöp et al. 2001; Shiiya et al. 2002; 

95 Sondergaard et al. 2009). Individuals who are obese also exhibit a reduced postprandial 

96 suppression of ghrelin (Le Roux et al. 2005) and blunted postprandial increases in PYY (Le 

97 Roux et al. 2006). Limited evidence has also suggested an inverse association between visceral 

98 adipose tissue and fasting ghrelin levels in women who were lean and women who were obese, 

99 likely caused by substances secreted by visceral adipocytes, such as TNF and leptin 

100 (Sondergaard et al. 2009). Moreover, fat-free mass, as the largest contributor to resting metabolic 

101 rate, has been identified as a key driver of appetite and energy intake in individuals who were 

102 lean and in individuals who were obese (Blundell et al. 2015b). In a systematic review including 

103 studies in individuals with normal weight, overweight or obesity, physical activity has also been 

104 suggested to alter the sensitivity of the appetite control system by enhancing meal-induced 

105 satiety which may facilitate energy balance over the long term (Beaulieu et al. 2016). Together, 

106 these findings highlight the importance of investigating the effect of the FTO rs9939609 gene 

107 on appetite parameters in a sample of males and females with a wide range of age, adiposity and 

108 physical activity levels, including physiological and behavioural characteristics as covariates in 

109 the analyses.

110 The primary aim of this study was to use objective assessment methods in order to explore the 

111 influence of the FTO rs9939609 genotype on fasting and postprandial appetite-related hormones 

112 and perceived appetite in a sample of healthy men and women. The secondary aim was to explore 

113 potential associations between fasting and postprandial appetite outcomes and physiological and 

114 behavioural characteristics.

115
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116 METHODS

117 Participants

118 With the approval of the University Ethics Advisory Sub-Committee, a total of 121 participants 

119 (57 men, 64 women) aged 18 to 50 years provided written informed consent before taking part 

120 in the study. All participants were deemed to be stable in their body mass (≤ 3 kg change in the 

121 previous 3 months), non-smokers, habitual breakfast eaters, had no history of cardiovascular or 

122 metabolic disease, and were not dieting or taking any medications known to influence the 

123 outcome measures. Female participants were premenopausal and postmenopausal and not 

124 pregnant. Nine participants withdrew from the study before completing all study measurements 

125 due to time constraints. Therefore, data are presented for 112 participants (56 men, 56 women) 

126 in this manuscript. The study sample self-reported ethnicity distribution was as follows: 93% 

127 white Europeans, 6% Asians and 1% black. 

128 Visit 1: Preliminary testing

129 Participants attended the laboratory for a preliminary visit to confirm eligibility, and to undergo 

130 familiarisation, anthropometric measurements and determination of peak oxygen uptake (V̇O2 

131 peak). The eligibility assessment included screening questionnaires to assess health status and 

132 food preferences and/or restrictions. Stature was measured to the nearest 0.1 cm and body mass 

133 to the nearest 0.1 kg using an electronic measuring station (Seca, Hamburg, Germany), and body 

134 mass index (BMI) was calculated. The sum of three skinfolds (chest, abdomen and thigh for 

135 men, and triceps, suprailiac and thigh for women) was used to estimate body density (Jackson 

136 and Pollock 1978, 1980) and body fat percentage (Siri, 1961). All skinfold measurements were 

137 performed by the same experienced examiner throughout the study. Waist circumference was 

138 measured as the narrowest point between the lower rib margin and the iliac crest. 

139 Participants were familiarised with walking and running on the treadmill (Technogym Excite 

140 Med, Cesena, Italy) before completing an incremental uphill treadmill protocol to determine 

141 V̇O2 peak. The participants ran at a fixed individualised speed (4.5 to 14.0 km·h-1), with the 

142 initial gradient of the treadmill set to 0%. The treadmill gradient was increased by 1% every 

143 minute until volitional exhaustion. Heart rate was monitored continuously using short-range 

144 telemetry (Polar A3, Kempele, Finland), and ratings of perceived exertion (Borg, 1973) were 

145 recorded at the end of each minute. Expired air samples were monitored continuously using a 

146 breath-by-breath gas analysis system (Cortex Metalyser 3B, Leipzig, Germany). An average of 
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147 the breath-by-breath oxygen uptake data was taken every 10 s, and V̇O2 peak was defined as 

148 the highest 30 s rolling average.

149 Visit 2: Magnetic resonance imaging (MRI) scan

150 Each participant underwent an MRI scan in the supine position using a dual-echo Dixon fat and 

151 water sequence on a 3-T MRI scanner (MR750w, GE Healthcare, Chicago, USA). A detailed 

152 description of the protocol has been reported previously (Borga et al. 2015; West et al. 2016). 

153 Briefly seven overlapping image stacks were acquired from the neck to knee with stacks covering 

154 the abdomen (stacks 2 to 5) acquired during breath-hold. Additional abdominal slices were 

155 acquired with the IDEAL-IQ sequence to assess proton density fat fraction in the liver. Scans 

156 were analysed to quantify visceral adipose tissue, abdominal subcutaneous adipose tissue and 

157 liver fat fraction using the AMRA Profiler (AMRA Medical AB, Linköping, Sweden) (Borga et 

158 al. 2015; West et al. 2016).

159 Visit 3: Resting metabolic rate and test meal

160 All premenopausal female participants completed the main trial during the follicular phase of 

161 the menstrual cycle (days 6-12) to avoid potential hormonal influences on appetite parameters. 

162 Participants were asked to refrain from caffeine, alcohol, and strenuous exercise during the 24 h 

163 before the main trial. A standardised evening meal (3297 kJ, 40% fat, 39% carbohydrate, 21% 

164 protein) was consumed the evening before the main trial and only plain water was permitted after 

165 the meal until participants arrived at the laboratory the next day.

166 Participants reported to the laboratory at 08:00 after fasting overnight for 12 h. A cannula 

167 (Venflon; Becton Dickinson, Helsingborg, Sweden) was inserted into an antecubital vein for 

168 venous blood sampling, and participants rested for 60 min to eliminate any stress effects in 

169 response to the cannula (Chandarana et al. 2009). During this time, resting metabolic rate was 

170 measured using an open circuit indirect calorimetry system (GEM Nutrition Ltd., Cheshire, 

171 England). Participants were asked to lie in a comfortable supine position and were instructed not 

172 to talk or sleep, and to move as little as possible during the measurement. The clear hood canopy 

173 was placed over the head area, and plastic sheeting attached to the hood was placed around the 

174 body to form a seal between the air inside and outside the hood. Oxygen uptake, carbon dioxide 

175 production, respiratory exchange ratio and energy expenditure were determined at 30 s intervals 

176 over a 30 min period. The first 10 min of data was discarded to account for any initial short-term 

177 respiratory artefact. 
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178 A fasting venous blood sample and rating of perceived appetite were taken 60 min after the 

179 insertion of the cannula. Participants then consumed a standardised breakfast within 15 min 

180 marking the start of the postprandial assessment period (09:00; 0 h). Breakfast consisted of a 

181 ham and cheese sandwich, milkshake and chocolate biscuit which provided 4435 kJ of energy 

182 (41% carbohydrate, 18% protein, 41% fat). Subsequent venous blood samples and ratings of 

183 perceived appetite were taken at 0.5, 1 and 2 h after the start of the breakfast whilst the 

184 participants rested in a semi-supine position. 

185 Appetite perceptions

186 Appetite perceptions (hunger, satisfaction, fullness, prospective food consumption) were 

187 assessed using 100 mm visual analogue scales (Flint et al. 2000). An overall appetite rating was 

188 calculated as the mean value of the four appetite ratings once satisfaction and fullness were 

189 reverse-scored (Stubbs et al. 2000). 

190 Blood sampling and biochemical analysis

191 Venous blood samples were collected into pre-chilled EDTA monovettes (Sarstedt, Leicester, 

192 UK) for the determination of plasma acylated ghrelin, total PYY, leptin, insulin and glucose 

193 concentrations. Monovettes for acylated ghrelin also contained p-hydroxymercuribenzoic acid 

194 to prevent the degradation of acylated ghrelin by protease and were centrifuged at 2,383 g for 10 

195 min at 4°C (Burkard, Hertfordhire, UK). The plasma supernatant was aliquoted into a storage 

196 tube and 100 µL of 1 M hydrochloric acid was added per millilitre of plasma. Samples were re-

197 centrifuged at 2,383 g for 5 min at 4°C before being transferred into Eppendorf tubes and stored 

198 at -80°C for later analysis. Monovettes for total PYY, leptin, insulin and glucose were 

199 centrifuged immediately at 2,383 g for 10 min at 4°C prior to storage at -80°C. Haemoglobin 

200 concentration and haematocrit were quantified in duplicate at 0 and 2 h to estimate the acute 

201 change in plasma volume (Dill and Costill, 1974).

202 Commercially available enzyme-linked immunosorbent assays were used to determine the 

203 concentrations of plasma acylated ghrelin (Bertin Bioreagent, Montigney le Bretonneux, France), 

204 total PYY (Millipore, Billerica, MA, USA), leptin (R&D Systems, Minneapolis, MN, USA) and 

205 insulin (Mercodia, Uppsala, Sweden). Plasma glucose concentrations were determined by 

206 enzymatic, colorimetric methods using a benchtop analyser (Pentra 400, HORIBA Medical, 

207 Montpellier, France). The within-batch coefficient of variation for acylated ghrelin, total PYY, 

208 leptin, insulin and glucose concentrations were 4.3%, 5.1%, 8.3%, 4.7%, 0.4%, respectively.  
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209 An additional fasting venous blood sample was collected into a 2.7-mL EDTA monovette 

210 (Sarstedt, Leicester, UK) and the whole blood sample was stored at 4°C to undergo DNA 

211 extraction and genotyping. Genomic DNA was extracted from the whole blood samples using 

212 the QIAamp DNA Mini kit (QIAGEN, Hilden, Germany). The samples were genotyped for the 

213 rs9939609 allele within the FTO gene using the Applied Biosystems TaqMan® (Roche 

214 Molecular Systems, Pleasanton, California, USA) genotyping assay and real-time polymerase 

215 chain reaction system. Participants were assigned to one of three groups according to their 

216 genotype: homozygous major allele, TT (36%; males n = 23, females n = 17); heterozygous 

217 allele, AT (45%; males n = 22, females n = 29); or homozygous minor allele, AA (19%; males 

218 n = 11, females n = 10). Genotype frequency of FTO rs9939609 was assessed using a goodness-

219 of-fit chi-square test and did not deviate from Hardy-Weinberg equilibrium (χ2 = 0.435, P = 

220 0.509). 

221

222 Habitual physical activity and sedentary time

223 Participants wore an ActiGraph GT3X+ accelerometer (ActiGraph, Pensacola, USA) on an 

224 elasticated belt on the waist above the mid-line of the thigh on their non-dominant side of the 

225 body. The device was initialised at a frequency of 100HZ and downloaded using ActiLife 

226 software v6.11.8 and firmware version 2.0.0. ActiGraph data were downloaded in 60-seconds 

227 epochs and physical activity was classified as low, light and moderate-to-vigorous. Participants 

228 also wore an activPAL3 accelerometer (PAL Technologies Ltd., Glasgow, UK), attached 

229 directly to the skin on the midline of the anterior aspect of the thigh in line with the ActiGraph 

230 GT3X+ accelerometer. The activPAL3 determines posture using information derived from 

231 accelerations of the thigh, including the gravitational component, using a triaxial accelerometer 

232 (Atkin et al. 2012). The activPAL3 is a valid measure of time spent sitting/lying, standing, and 

233 walking in adults (Kozey-Keadle et al. 2011). ActivPAL3 sitting time data were retrieved and 

234 clustered into 60-seconds epochs using a customized spreadsheet. Participants were advised to 

235 wear both devices concurrently and continuously over a 7-day period. Non-wear time and sleep 

236 time were removed from the analysis and moderate-to-vigorous physical activity (MVPA) and 

237 sitting time data were averaged over the seven-day period. 

238 Statistical analyses

239 We estimated the effect size detection sensitivity given our sample size using NQuery (version 

240 3, Statistical Solutions, Cork, Ireland). For a total sample size of 110 and three study groups, we 
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241 estimated that a “medium” (Cohen, 1998) Eta2 value of 0.18 would be detected in a univariable 

242 model as statistically significant (P < 0.050) with power of 90%.

243 Postprandial overall appetite and plasma concentrations of acylated ghrelin, total PYY, insulin 

244 and glucose are presented relative to baseline values (delta) to minimise the potential influence 

245 of day-to-day biological variability (Deighton et al. 2013, 2014). Total area under the curve 

246 (AUC) values were calculated using the trapezoidal method. Correction of blood parameter 

247 concentrations for acute changes in plasma volume had a negligible influence on our findings 

248 and, therefore, the unadjusted plasma concentrations are displayed for simplicity.

249 Multivariable general linear models were used to quantify the mean differences (and 95% 

250 confidence intervals) between FTO rs9939609 genotype groups for each fasting and postprandial 

251 appetite outcome. The eta-squared statistic (with associated 90% confidence interval) was also 

252 estimated for each model and each outcome (Kline, 2004; Steiger, 2004). This statistic is 

253 interpreted in a similar way as the coefficient of determination, where 100 x eta-squared gives 

254 the explained variance attributable to the FTO groups. A 90% rather than a 95% confidence 

255 interval is reported because the eta-squared statistic can only be positive in sign. The model 

256 residuals of the appetite outcome variables were explored for parity to a Gaussian distribution 

257 using histograms. The model residuals for fasting acylated ghrelin and insulin concentrations 

258 were observed to show a positively skewed distribution so these data were logarithmically-

259 transformed prior to analysis (Bland and Altman, 1996). Three models were used for each of the 

260 fasting and postprandial appetite outcomes, as follows:

261 1. Model I: Univariable models with FTO rs9939609 genotype as single fixed effect;

262 2. Model II: A multivariable model based on the selection of matched covariates studied 

263 by Karra et al. (2013), i.e., age, fat mass and visceral adipose tissue. FTO rs9939609 

264 genotype was entered as a fixed effect and sex, age, fat mass and visceral adipose 

265 tissue were entered as covariates;

266 3. Model III: A multivariable model, where FTO rs9939609 genotype was entered as a 

267 fixed effect and sex, age, BMI, V̇O2 peak, resting metabolic rate, visceral adipose 

268 tissue, abdominal subcutaneous adipose tissue, liver fat, sitting time and MVPA were 

269 entered as covariates. Rather than the now discouraged use of stepwise selection 

270 procedures, these covariates were included based on their hypothesised influence on 

271 the outcome variables, while considering the potential that some predictors were 

272 mathematically coupled (Flom and Cassell, 2007; Whittingham et al. 2006). For 
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273 example, total fat mass was excluded from this model because multiple specific 

274 adiposity parameters were considered.

275 The covariates in models II and III were each standardised prior to analysis by dividing each 

276 datum by twice the respective SD (Gelman and Pardoe, 2007). In sensitivity analyses, model III 

277 was also run with (i) waist circumference replacing BMI; (ii) percentage body fat replacing BMI; 

278 and (iii) with a sex-by-genotype interaction term.

279 Univariable general linear models with FTO rs9939609 genotype as a single fixed effect were 

280 used to quantify differences between genotype groups for body mass, BMI and fat mass. 

281 Between-sex differences in participant characteristics and appetite-related outcomes in the 

282 fasting and postprandial states were assessed using univariable general linear models with sex 

283 as a single fixed effect. Sex-specific univariable Pearson’s correlation coefficients were 

284 quantified between appetite-related outcomes and individual characteristics, and between 

285 appetite-related blood parameters and perceived appetite.

286 95% confidence intervals (95% CI) were quantified for correlation coefficients. P-values are 

287 expressed in exact terms apart from very low values, which are expressed as P < 0.001. A 

288 threshold of statistical significance was accepted as P < 0.050, although we deemed a P value of 

289 < 0.005 as a stronger indication of potentially more reproducible results in line with recent advice 

290 (Benjamin et al. 2017). All statistical analyses were performed in SPSS (v.23, IBM Corporation, 

291 New York, USA). 

292

293 RESULTS

294 Missing data

295 Due to technical issues with the equipment, resting metabolic rate is presented for 107 

296 participants (53 males), sitting time for 96 participants (47 males) and MVPA for 100 

297 participants (49 males). Eleven participants were unable to undertake the MRI scan for safety 

298 reasons and, therefore, visceral adipose tissue and abdominal subcutaneous adipose tissue are 

299 presented for 101 participants (50 males). Liver fat could not be quantified from some images 

300 due to motion artefacts and, therefore, data is presented for 97 participants (48 males). 

301 Participant characteristics and appetite-related outcomes

302 Participant characteristics, perceived appetite and appetite-related blood parameters in the 

303 fasting and postprandial states are presented in Table 1. Postprandial delta values for acylated 
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304 ghrelin, total PYY, insulin and glucose concentrations and perceived overall appetite are 

305 presented in Figure 1.
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Table 1. Participant characteristics and appetite outcomes in the fasting and postprandial states.

All 

(n = 112)

Range 

(min to max)

Men 

(n = 56)

Women

(n = 56) P 

Mean difference

95% CI 

Age (years) 34 (9) 18 to 50 35.3 (9.7) 33.5 (9.1) 0.303 -5.4 to 1.7

Stature (cm) 171.0 (9.2) 149.1 to 200.4 178.5 (6.6) 165.3 (6.2) < 0.001 -15.6 to -10.8

Body mass (kg) 74.9 (14.7) 48.5 to 140.4 83.3 (12.9) 66.5 (11.1) < 0.001 -21.2 to -12.2

Body mass index (kg·m-2) 25.2 (3.9) 18.4 to 40.3 26.1 (3.7) 24.4 (4.0) 0.016 -3.2 to -0.3

Waist circumference (cm) 82.7 (10.8) 62.4 to 125.0 88.4 (9.8) 77.0 (8.7) < 0.001 -14.9 to -8.0

Fat mass (kg) 16.9 (8.4) 3.5 to 47.8 15.5 (9.1) 18.2 (7.4) 0.078 -0.3 to 5.9

Fat free mass (kg) 58.1 (12.2) 36.8 to 92.6 67.8 (8.8) 48.3 (5.5) < 0.001 -22.2 to -16.8

V̇O2 peak (mL·kg·min-1) 44.0 (9.3) 21.0 to 81.0 49.0 (9.3) 39.0 (6.1) < 0.001 -13.0 to -7.1

Resting metabolic rate (kcal)* 1617 (322) 889 to 2567 1808 (290) 1430 (232) < 0.001 -478 to -277

Visceral adipose tissue (L)* 1.70 (1.26) 0.11 to 6.22 2.27 (1.41) 1.14 (0.75) < 0.001 -1.58 to -0.69

Abdominal subcutaneous 

adipose tissue (L)*

5.39 (3.02) 1.45 to 16.86 4.49 (2.39) 6.27 (3.33) 0.003 0.64 to 2.93

Liver fat (%)* 2.12 (1.81) 0.46 to 10.45 2.62 (2.19) 1.63 (1.16) 0.006 -1.69 to -0.28

Sitting time (min·day-1)* 509 (85) 256 to 737 513 (73) 504 (95) 0.630 -43 to 26

MVPA (min·day-1)* 55 (31) 11 to 163 57 (30) 54 (33) 0.706 -15 to 10

Fasting leptin (ng·mL-1) 8.62 (8.63) 1.34 to 43.85 4.07 (3.08) 13.16 (9.95) < 0.001 6.33 to 11.84

Fasting acylated ghrelin 

(pg·mL-1)

173.6 (491.8) 12.0 to 4410.6 103.3 (108.8) 243.8 (682.9) 0.131 -42.6 to 323.6

Fasting total PYY (pg·mL-1) 117.5 (50.5) 13.6 to 270.0 121.9 (47.9) 113.0 (53.1) 0.353 -27.8 to 10.0

Fasting insulin (pmol·L-1) 23.3 (15.0) 2.9 to 97.1 22.9 (14.3) 23.6 (15.8) 0.825 -5.0 to 6.3

Fasting glucose (mmol·L-1) 5.24 (0.43) 4.29 to 6.56 5.37 (0.43) 5.12 (0.39) 0.001 -0.41 to -0.10

Fasting overall appetite (mm) 70.8 (15.3) 19 to 95 71.2 (13.4) 70.4 (17.1) 0.787 -6.5 to 5.0

Acylated ghrelin delta AUC (2 

h, pg·mL-1)

-87.9 (126.6) -1183.5 to 165.8 - 51.3 (56.3) - 124.6 (162.6) 0.002 -118.9 to -27.8

Total PYY delta AUC 

(2 h, pg·mL-1)

101.6 (61.0) -26.4 to 340.7 99.0 (62.4) 104.2 (59.9) 0.653 -17.7 to 28.1

Insulin delta AUC 

(2 h, pg·mL-1)

420.6 (236.8) 121.3 to 1485.8 403.9 (256.6) 437.3 (216.3) 0.458 -55.5 to 122.2

Glucose delta AUC 

(2 h, pg·mL-1)

0.77 (1.59) -2.20 to 5.79 0.54 (1.37) 1.00 (1.77) 0.125 -0.13 to 1.05

Overall appetite delta AUC (2 

h, pg·mL-1)

-77.4 (34.4) -150.0 to -14.0 -65.7 (30.9) -89.1 (34.0) < 0.001 -35.5 to -11.1

Values are mean (SD). P values and 95% CI are from univariable general linear models with sex as a single fixed effect.
* n = 107 (53 males) for resting metabolic rate, 96 (47 males) for sitting time, 100 (49 males) for MVPA, 101 (50 males) 
for visceral adipose tissue and abdominal subcutaneous adipose tissue, and 97 (48 males) for liver fat.
AUC, area under the curve; CI, confidence interval; MVPA, moderate-to-vigorous physical activity, PYY, peptide YY; 
V̇O2 peak, peak oxygen uptake.
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Figure 1. Delta postprandial values for acylated ghrelin (A), total peptide YY (PYY) (B), insulin (C), glucose (D) and overall perceived appetite 

(E) in 56 males and 56 females. Grey rectangles indicate meal consumed within 15 min. Values are presented as mean (SD). 

* indicates P < 0.05 between males and females.
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306 Univariable and multivariable general linear models

307 No statistically significant influence of the FTO rs9939609 genotype was identified for body 

308 mass (Eta2 = 0.027, P = 0.234), BMI (Eta2 = 0.003, P = 0.688) or fat mass (Eta2 = 0.025, P = 

309 0.259).

310 Fasting appetite-related outcomes

311 Separate univariate modelling (model I) did not reveal any statistically significant influence of 

312 the FTO rs9939609 genotype on fasting acylated ghrelin, total PYY, insulin, glucose, leptin or 

313 overall appetite (P ≥ 0.501) (Table 2). Similarly, no significant effect of the FTO rs9939609 

314 genotype was detected on fasting appetite-related outcomes in model II (P ≥ 0.098) or model III 

315 (P ≥ 0.453) (Table 2). All eta-squared values were very low (< 0.05). Replacing BMI with waist 

316 circumference, replacing BMI with body fat percentage, and including a sex-by-genotype 

317 interaction term in the sensitivity analyses did not result in a significant effect of the FTO 

318 rs9939609 genotype on any of the fasting appetite-related outcomes (P ≥ 0.470, P ≥ 0.437, P ≥ 

319 0.455, respectively).

320 Postprandial appetite-related outcomes

321 Separate univariate modelling (model I) did not reveal any statistically significant influence of 

322 the FTO rs9939609 genotype on delta AUC for acylated ghrelin, total PYY, insulin, glucose, 

323 leptin or overall appetite (P ≥ 0.322) (Table 3). Similarly, no significant effect of the FTO 

324 rs9939609 genotype was detected on delta AUC for any of the appetite-related outcomes in 

325 model II (P ≥ 0.271) or model III (P ≥ 0.186) (Table 3). Again, all eta-squared values were very 

326 low (< 0.05). Replacing BMI with waist circumference, replacing BMI with body fat percentage, 

327 and including a sex-by-genotype interaction term in the sensitivity analyses did not result in a 

328 significant effect of the FTO rs9939609 genotype on any of the postprandial appetite-related 

329 outcomes (P ≥ 0.133, P ≥ 0.102, P ≥ 0.206, respectively). A sensitivity analysis was undertaken 

330 on all the postprandial outcomes AUC by adding the respective fasting measurement as a 

331 covariate to the model. Again, no statistically significant differences between FTO groups could 

332 be detected (P > 0.200) and mean differences were small.
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Table 2. Estimated marginal means from the multivariable general linear models used to quantify the differences between FTO rs9939609 genotype groups in each fasting appetite 
outcome. 

Model I Model II Model III

AT 
(n = 49)

AA
(n = 21)

TT
(n = 40)

AT 
(n = 45)

AA 
(n = 18)

TT 
(n = 37)

AT 
(n = 34)

AA 
(n = 17)

TT 
(n = 28)

4.47  
(4.25 to 4.69)

4.59  
(4.26 to 4.92)

4.51 
(4.27 to 4.75)

4.42 
(4.18 to 4.65)

4.57 
(4.20 to 4.94)

4.57 
(4.30 to 4.83)

4.42 
(4.20 to 4.64)

4.56 
(4.23 to 4.88)

4.29 
(4.03 to 4.54)

Fasting acylated 
ghrelin 
(log pg·mL-1)

Eta2 = 0.003 (90% CI: 0.000-0.023), P = 0.835 Eta2 = 0.009 (90% CI: 0.000-0.047), P = 0.660 Eta2 = 0.024 (90% CI: 0.000-0.091), P = 0.453

110.3 
(96.1 to 124.5)

123.5 
(101.8 to 145.2)

120.4 
(104.7 to 136.2)

109.2 
(94.0 to 124.4)

123.6 
(100.2 to 147.0)

122.4 
(105.7 to 139.1)

114.3 
(97.6 to 130.9)

117.2 
(93.3 to 141.0)

114.1 
(95.0 to 133.2)

Fasting total PYY 
(pg·mL-1)

Eta2 = 0.013 (90% CI: 0.000-0.055), P = 0.501 Eta2 = 0.018 (90% CI: 0.000-0.069), P = 0.434 Eta2 = 0.001 (90% CI: 0.000-0.014), P = 0.977

3.00 
(2.83 to 3.16)

2.87 
(2.61 to 3.12)

2.97 
(2.79 to 3.16)

3.03 
(2.88 to 3.19)

2.93 
(2.70 to 3.17)

2.96 
(2.79 to 3.13)

3.01 
(2.81 to 3.20)

2.98 
(2.70 to 3.27)

2.95 
(2.72 to 3.18)

Fasting insulin 
(log pmol·L-1)

Eta2 = 0.007 (90% CI: 0.000-0.038), P = 0.699 Eta2 = 0.007 (90% CI: 0.000-0.041), P = 0.716 Eta2 = 0.002 (90% CI: 0.000-0.028), P = 0.935

5.23 
(5.11 to 5.36)

5.28 
(5.09 to 5.47)

5.22 
(5.09 to 5.36)

5.27 
(5.15 to 5.38)

5.28 
(5.11 to 5.46)

5.14 
(5.02 to 5.27)

5.24 
(5.10 to 5.38)

5.30 
(5.10 to 5.51)

5.16 
(5.00 to 5.32)

Fasting glucose 
(mmol·L-1)

Eta2 = 0.002 (90% CI: 0.000-0.016), P = 0.882 Eta2 = 0.027 (90% CI: 0.000-0.087), P = 0.278 Eta2 = 0.018 (90% CI: 0.000-0.078), P = 0.553

9.17 
(6.70 to 11.65)

8.06 
(4.27 to 11.84)

7.95 
(5.21 to 10.69)

9.77 
(8.15 to 11.39)

6.67 
(4.17 to 9.17)

7.93 
(6.15 to 9.71)

9.76 
(7.91 to 11.62)

8.71
(6.05 to 11.37)

8.72 
(6.59 to 10.85)

Fasting leptin 
(ng·mL-1)

Eta2 = 0.005 (90% CI: 0.000-0.030), P = 0.779 Eta2 = 0.049 (90% CI: 0.000-0.122), P = 0.098 Eta2 = 0.010 (90% CI: 0.000-0.057), P = 0.713

70.0 
(65.7 to 74.4)

69.6 
(63.0 to 76.2)

72.2 
(67.4 to 77.0)

67.6 
(63.0 to 72.3)

70.2 
(63.0 to 77.4)

72.4 
(67.3 to 77.6)

66.8 
(60.9 to 72.7)

68.9 
(60.4 to 77.3)

69.3 
(62.5 to 76.0)

Fasting overall 
appetite (mm)

Eta2 = 0.005 (90% CI: 0.000-0.033), P = 0.748 Eta2 = 0.019 (90% CI: 0.000-0.072), P = 0.402 Eta2 = 0.005 (90% CI: 0.000-0.034), P = 0.850

Model I: Univariable model with FTO rs9939609 genotype as single fixed effect. Model II: Multivariable model with FTO rs9939609 genotype as a fixed effect and sex, age, fat 
mass and visceral adipose tissue as covariates. Model III: Multivariable model with FTO rs9939609 genotype as a fixed effect and sex, age, body mass index, peak oxygen uptake, 
resting metabolic rate, visceral adipose tissue, abdominal subcutaneous adipose tissue, liver fat, sitting time and moderate-to-vigorous physical activity as covariates. 

Values are mean (95% confidence interval (CI)). Eta2, 90% CI and P-values are from the fixed effect of the FTO rs9939609 genotype group. 

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849



16

Table 3. Estimated marginal means from the multivariable general linear models used to quantify the differences between FTO rs9939609 genotype groups in each postprandial appetite 
outcome. 

Model I Model II Model III

AT 
(n = 49)

AA
(n = 21)

TT
(n = 40)

AT 
(n = 45)

AA 
(n = 18)

TT 
(n = 37)

AT 
(n = 34)

AA 
(n = 17)

TT 
(n = 28)

-76.0 
(-110.8 to -41.2)

-86.3 
(-139.5 to -33.1)

-96.3 
(-134.9 to -57.8)

-69.5 
(-107.1 to -32.0)

-93.1 
(-151.1 to -35.0)

-103.2 
(-144.5 to -61.8)

-87.4 
(-106.9 to -67.9)

-87.0 
(-114.9 to -59.0)

-67.8 
(-90.2 to -45.4)

Acylated ghrelin 
delta AUC 
(2 h pg·mL-1) Eta2 = 0.006 (90% CI: 0.000-0.034), P = 0.740 Eta2 = 0.015 (90% CI: 0.000-0.063), P = 0.494 Eta2 = 0.026 (90% CI: 0.000-0.097), P = 0.414

101.1 
(84.2 to 118.1)

89.7 
(63.8 to 115.6)

113.4 
(94.7 to 132.2)

98.5 
(80.2 to 116.8)

86.5 
(58.2 to 114.8)

113.7 
(93.5 to 133.8)

103.5 
(81.2 to 125.8)

80.4 
(48.4 to 112.4)

120.1 
(94.4 to 145.7)

Total PYY delta 
AUC 
(2 h pg·mL-1) Eta2 = 0.021 (90% CI: 0.000-0.072), P = 0.322 Eta2 = 0.028 (90% CI: 0.000-0.088), P = 0.271 Eta2 = 0.050 (90% CI: 0.000-0.137), P = 0.186

411 
(345 to 476)

404 
(303 to 503)

432 
(359 to 504)

409 
(342 to 477)

415 
(311 to 519)

430 
(356 to 504)

411 
(330 to 492)

429 
(313 to 545)

463 
(370 to 556)

Insulin delta AUC 
(2 h pmol·L-1)

Eta2 = 0.002 (90% CI: 0.000-0.017), P = 0.875 Eta2 = 0.002 (90% CI: 0.000-0.022), P = 0.921 Eta2 = 0.010 (90% CI: 0.000-0.055), P = 0.728

0.66 
(0.21 to 1.12)

0.60 
(-0.10 to 1.30)

1.01 
(0.51 to 1.52)

0.60 
(0.19 to 1.02)

0.54 
(-0.09 to 1.18)

0.79 
(0.34 to 1.25)

0.68 
(0.19 to 1.17)

0.44 
(-0.26 to 1.14)

0.88 
(0.32 to 1.44)

Glucose delta 
AUC 
(2 h mmol·L-1) Eta2 = 0.012 (90% CI: 0.000-0.054), P = 0.511 Eta2 = 0.006 (90% CI: 0.000-0.036), P = 0.766 Eta2 = 0.013 (90% CI: 0.000-0.066), P = 0.642

-79.3 
(-89.1 to -69.5)

-72.4 
(-87.4 to -57.5)

-79.2
(-90.1 to -68.4)

-75.3 
(-85.2 to -65.4)

-73.6 
(-88.8 to -58.3)

-82.1 
(-93.0 to -71.2)

-73.4 
(-85.4 to -61.4)

-75.6 
(-92.7 to -58.4)

-75.6 
(-89.3 to -61.8)

Overall appetite 
delta AUC 
(2 h mm) Eta2 = 0.006 (90% CI: 0.000-0.036), P = 0.718 Eta2 = 0.012 (90% CI: 0.000-0.056), P = 0.568 Eta2 = 0.001 (90% CI: 0.000-0.021), P = 0.965

Model I: Univariable model with FTO rs9939609 genotype as single fixed effect. Model II: Multivariable model with FTO rs9939609 genotype as a fixed effect and sex, age, fat mass 
and visceral adipose tissue as covariates. Model III: Multivariable model with FTO rs9939609 genotype as a fixed effect and sex, age, body mass index, peak oxygen uptake, resting 
metabolic rate, visceral adipose tissue, abdominal subcutaneous adipose tissue, liver fat, sitting time and moderate-to-vigorous physical activity as covariates. 

Values are mean (95% confidence interval (CI)). Eta2, 90% CI and P-values are from the fixed effect of the FTO rs9939609 genotype group. 
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333 Sex-specific Pearson’s correlation coefficients

334 Appetite-related outcomes and individual characteristics

335 No significant correlations were observed between fasting acylated ghrelin and age, BMI, fat 

336 mass, V̇O2 peak, resting metabolic rate, visceral fat, abdominal subcutaneous adipose tissue, 

337 liver fat, average sitting or average MVPA in men (r = -0.18 to 0.07, P ≥ 0.185) or women (r = 

338 -0.19 to 0.06, P ≥ 0.175). Similarly, no significant correlations were observed between fasting 

339 total PYY and any of the individual characteristics in men (r = -0.13 to 0.14, P ≥ 0.330) or women 

340 (r = -0.14 to 0.10, P ≥ 0.323). Pearson’s correlation coefficients between individual 

341 characteristics and fasting insulin, glucose and leptin are presented in Table 4. In summary, 

342 fasting insulin was positively correlated with general and abdominal adiposity parameters in both 

343 sexes and with liver fat in men (r = 0.32 to 0.53, P ≤ 0.010). Fasting insulin was negatively 

344 correlated with V̇O2 peak in both sexes and with MVPA in men (r = -0.35 to -0.47, P ≤ 0.004). 

345 Fasting glucose was positively correlated with total and abdominal adiposity parameters in both 

346 sexes, with age and liver fat in men, and with resting metabolic rate in women (r = 0.28 to 0.44, 

347 P ≤ 0.017). Fasting glucose was negatively correlated with V̇O2 peak in both sexes (r = -0.29 

348 to -0.28, P ≤ 0.020). Fasting leptin was positively correlated with general and abdominal 

349 adiposity parameters in both sexes, and with age and liver fat in men (r = 0.24 to 0.83, P ≤ 0.040). 

350 Fasting leptin was negatively correlated with V̇O2 peak in both sexes and with MVPA in men 

351 (r = -0.35 to -0.64, P ≤ 0.006). In men, fasting overall appetite was negatively associated with 

352 fat mass (r = -0.31, P = 0.022, 95% CI = -0.53 to -0.05) and abdominal subcutaneous adipose 

353 tissue (r = -0.30, P = 0.032, 95% CI = -0.53 to -0.02). No significant correlations between fasting 

354 overall appetite and individual characteristics were observed in women (r = -0.12 to 0.09, P ≥ 

355 0.391). 

356 Delta AUC for acylated ghrelin was positively associated with sitting time (r = 0.29, P = 0.048, 

357 95% CI = 0.00 to 0.53) and negatively associated with age (r = -0.32, P = 0.017, 95% CI = -0.54 

358 to -0.06) in men. Insulin AUC was positively associated with visceral adipose tissue in men (r = 

359 0.38, P = 0.007, 95% CI = 0.11 to 0.59) and women (r = 0.32, P = 0.021, 95% CI = 0.05 to 0.55), 

360 and with fat mass (r = 0.39, P = 0.003, 95% CI = 0.14 to 0.59), abdominal subcutaneous adipose 

361 tissue (r = 0.31, P = 0.026, 95% CI = 0.03 to 0.54) and liver fat (r = 0.47, P = 0.001, 95% CI = 

362 0.21 to 0.66) in men. Insulin AUC was negatively associated with V̇O2 peak (r = -0.44, P = 

363 0.001, 95% CI = -0.63 to -0.20) and MVPA (r = -0.38, P = 0.007, 95% CI = -0.60 to -0.11) in 
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364 men. None of the correlations between AUC for total PYY, glucose and overall appetite and 

365 individual characteristics were statistically significant (r = -0.23 to 0.24, P ≥ 0.061).
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Table 4. Sex-specific Pearson’s correlation coefficients between fasting appetite-related blood markers and individual characteristics.  

Fasting insulin (pmol·L-1) Fasting glucose (mmol·L-1) Fasting leptin (ng·mL-1)

Age (years) Men: r = -0.01, P = 0.457, 95% CI = -0.27 to 0.25

Women: r = -0.16, P = 0.123, 95% CI = -0.40 to 0.11

Men: r = 0.34, P = 0.005, 95% CI = 0.08 to 0.55

Women: r = 0.08, P = 0.270, 95% CI = -0.19 to 0.33

Men: r = 0.24, P = 0.040, 95% CI = -0.02 to 0.47

Women: r = -0.07, P = 0.298, 95% CI = -0.33 to 0.20

Body mass index 
(kg·m-2)

Men: r = 0.39, P = 0.003, 95% CI = 0.14 to 0.59

Women: r = 0.53, P < 0.001, 95% CI = 0.31 to 0.69

Men: r = 0.33, P = 0.013, 95% CI = 0.07 to 0.54

Women: r = 0.35, P = 0.004, 95% CI = 0.10 to 0.56

Men: r = 0.62, P < 0.001, 95% CI = 0.43 to 0.76

Women: r = 0.77, P < 0.001, 95% CI = 0.64 to 0.86

Fat mass (kg) Men: r = 0.49, P < 0.001, 95% CI = 0.26 to 0.67

Women: r = 0.32, P = 0.008, 95% CI = 0.06 to 0.54

Men: r = 0.44, P < 0.001, 95% CI = 0.20 to 0.63

Women: r = 0.28, P = 0.017, 95% CI = 0.02 to 0.50

Men: r = 0.83, P < 0.001, 95% CI = 0.73 to 0.90

Women: r = 0.75, P < 0.001, 95% CI = 0.61 to 0.85

V̇O2 peak 
(mL·kg·min-1)

Men: r = -0.47, P < 0.001, 95% CI = -0.65 to -0.24

Women: r = -0.35, P = 0.004, 95% CI = -0.56 to -0.10

Men: r = -0.29, P = 0.015, 95% CI = -0.51 to -0.03

Women: r = -0.28, P = 0.020, 95% CI = -0.50 to -0.02

Men: r = -0.64, P < 0.001, 95% CI = -0.77 to -0.45

Women: r = -0.58, P < 0.001, 95% CI = -0.73 to -0.37

Resting metabolic 
rate (kcal)

Men: r = -0.04, P = 0.381, 95% CI = -0.31 to 0.23

Women: r = 0.03, P = 0.402, 95% CI = -0.24 to 0.29

Men: r = -0.12, P = 0.205, 95% CI = -0.38 to 0.15

Women: r = 0.35, P = 0.005, 95% CI = 0.09 to 0.56

Men: r = 0.05, P = 0.369, 95% CI = -0.22 to 0.32

Women: r = 0.05, P = 0.359, 95% CI = -0.22 to 0.31

Visceral adipose 
tissue (L)

Men: r = 0.41, P = 0.002, 95% CI = 0.15 to 0.62

Women: r = 0.33, P = 0.010, 95% CI = 0.06 to 0.55

Men: r = 0.42, P = 0.001, 95% CI = 0.15 to 0.63

Women: r = 0.36, P = 0.005, 95% CI = 0.09 to 0.58

Men: r = 0.65, P < 0.001, 95% CI = 0.45 to 0.79

Women: r = 0.62, P < 0.001, 95% CI = 0.42 to 0.76

Abdominal 
subcutaneous 
adipose tissue (L)

Men: r = 0.43, P = 0.002, 95% CI = 0.17 to 0.63

Women: r = 0.44, P = 0.001, 95% CI = 0.19 to 0.64

Men: r = 0.39, P = 0.005, 95% CI = 0.13 to 0.60

Women: r = 0.34, P = 0.013, 95% CI = 0.07 to 0.56

Men: r = 0.79, P < 0.001, 95% CI = 0.66 to 0.87

Women: r = 0.79, P < 0.001, 95% CI = 0.66 to 0.87

Liver fat (%) Men: r = 0.49, P < 0.001, 95% CI = 0.24 to 0.68

Women: r = 0.06, P = 0.338, 95% CI = -0.22 to 0.33

Men: r = 0.33, P = 0.010, 95% CI = 0.05 to 0.56

Women: r = 0.07, P = 0.305, 95% CI = -0.21 to 0.34

Men: r = 0.44, P = 0.001, 95% CI = 0.18 to 0.64

Women: r = 0.18, P = 0.112, 95% CI = -0.11 to 0.44

Average sitting 
time (min·day-1)

Men: r = -0.06, P = 0.340, 95% CI = -0.34 to 0.23

Women: r = 0.12, P = 0.196, 95% CI = -0.17 to 0.39

Men: r = -0.12, P = 0.210, 95% CI = -0.39 to 0.17

Women: r = 0.13, P = 0.190, 95% CI = -0.16 to 0.40

Men: r = -0.12, P = 0.207, 95% CI = -0.39 to 0.17

Women: r = 0.05, P = 0.353, 95% CI = -0.23 to 0.33

Average MVPA 
time (min·day-1)

Men: r = -0.44, P = 0.001, 95% CI = -0.64 to -0.18

Women: r = -0.01, P = 0.493, 95% CI = -0.28 to 0.27

Men: r = -0.03, P = 0.420, 95% CI = -0.31 to 0.25

Women: r = 0.09, P = 0.274, 95% CI = -0.19 to 0.36

Men: r = -0.35, P = 0.006, 95% CI = -0.57 to -0.08

Women: r = -0.10, P = 0.241, 95% CI = -0.36 to 0.18

AUC, area under the curve; FTO, fat mass and obesity associated gene; MVPA, moderate-to-vigorous physical activity, PYY, peptide YY; V̇O2 peak, peak oxygen uptake.   
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366 Perceived appetite and appetite-related blood parameters

367 Fasting overall appetite was negatively associated with fasting insulin (r = -0.32, P = 0.015, 95% 

368 CI = -0.54 to -0.06) and fasting leptin (r = -0.35, P = 0.008, 95% CI = -0.56 to -0.10) in men. 

369 Delta AUC for overall appetite was positively associated with insulin AUC (r = 0.35, P = 0.009, 

370 95% CI = 0.10 to 0.56) in women. No other significant correlations between overall appetite and 

371 appetite-related blood parameters were evident in the fasted or postprandial state (r = -0.20 to 

372 0.26, P ≥ 0.052). 

373

374 DISCUSSION

375 The primary finding of this study is that very little influence of the FTO rs9939609 genotype 

376 was identified for fasting and postprandial perceived appetite and appetite-related blood 

377 outcomes in healthy men and women. Explained variance for FTO group on all outcomes was 

378 small (< 5%) according to the thresholds suggested by Cohen (1998). Even the upper 90% 

379 confidence limits of the explained variance were low for each outcome (< 15%). In the context 

380 of precision medicine, we maintain that explained variance would need to be much larger than 

381 our observed values for the FTO rs9939609 gene to be a useful predictor of appetite-related 

382 outcomes. We also found that fasting and postprandial acylated ghrelin and total PYY were not 

383 associated with general or abdominal adiposity, while leptin, glucose and insulin concentrations 

384 were consistently associated with adiposity variables. Our study is the first to employ an 

385 integrative approach to investigate associations between a variety of genetic, physiological and 

386 lifestyle characteristics with appetite-related outcomes. Previous research has provided limited 

387 evidence on the influence of specific individual characteristics on appetite-related blood 

388 parameters and appetite perceptions.

389 The FTO gene represents the most extensively-studied gene that has been associated with a 

390 higher risk of obesity (Frayling et al. 2007), yet evidence on the physiological mechanisms 

391 involved is limited. The study undertaken by Karra et al. (2013) supported the hypothesis that 

392 satiety control differs between FTO rs9939609 genotype groups. Specifically, the group with 

393 higher obesity risk (AA) presented attenuated suppression of acylated ghrelin and perceived 

394 hunger after consumption of a meal, which can naturally lead to higher energy intake and, 

395 consequently, higher body mass (Karra et al. 2013). However, our results do not support this 

396 hypothesis as we found very little influence of genotype group on acylated ghrelin concentrations 

397 or perceived appetite ratings. Differences between study samples can possibly explain 
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398 discrepancies between findings, as Karra et al. (2013) recruited healthy young lean males, while 

399 our sample was composed of a heterogeneous group of males and females. Additionally, Karra 

400 et al. (2013) selectively sampled their participants in order to match groups for certain variables, 

401 whereas we adopted a multivariate-adjusted approach to our data analysis. Interestingly, recent 

402 studies have reported lower postprandial total ghrelin concentrations in AA compared to AT and 

403 TT individuals (Magno et al. 2018; Melhorn et al. 2018), and postprandial hunger ratings were 

404 either similar between genotype groups (Melhorn et al. 2018) or were lower in AA individuals 

405 (Magno et al. 2018). These findings were observed despite the AA individuals exhibiting higher 

406 energy intake during an ad libitum buffet (Melhorn et al. 2018). Of note, the active part of ghrelin 

407 (acylated ghrelin) only represents approximately 5 to 10% of total ghrelin (Hosoda et al, 2000; 

408 Yoshimoto et al. 2002) and, therefore, the assessment of total ghrelin in these studies could 

409 potentially explain the variability in findings. 

410 Our research group has recently conducted a replicated crossover study to examine individual 

411 appetite responses to meal intake in healthy men recruited according to their FTO rs9939609 

412 genotype (AA or TT) (Goltz et al. 2019). The findings from this study highlighted the existence 

413 of interindividual variability in perceived appetite and acylated ghrelin, total PYY, insulin and 

414 glucose responses to a standardised meal over and above any measurement errors and/or natural 

415 variance of the outcomes. However, the magnitude of postprandial appetite parameter responses 

416 after meal intake was not influenced by the FTO rs9939609 gene (Goltz et al. 2019). In line with 

417 our findings, previous studies have reported no differences between FTO rs9939609 genotype 

418 groups for fasting glucose and insulin (Speakman et al. 2008), fasting leptin (Speakman et al. 

419 2008; Karra et al. 2013; Melhorn et al. 2018), fasting and postprandial PYY3-36 (Karra et al. 2013) 

420 and fasting and postprandial GLP-1 (Melhorn et al. 2018). Beyond the subjective appetite and 

421 appetite-related blood outcomes assessed in this study, AA and TT individuals have been shown 

422 to exhibit divergent neural responsiveness to food cues within homeostatic and reward brain 

423 regions in both fasted and postprandial states (Karra et al. 2013). Specifically, AA individuals 

424 rated high-energy food images as more appealing than TT individuals, and positive associations 

425 between circulating acylated ghrelin and central neural system responsiveness to food cues were 

426 observed only in TT individuals (Karra et al. 2013). Moreover, recent evidence suggests that AA 

427 individuals show higher total food cravings, compared to TT individuals, which correlated with 

428 BMI (Dang et al. 2018). Additional studies are needed to elucidate the precise role that FTO 

429 rs9939609 plays in moderating appetite control and energy intake which include both central and 

430 peripheral factors implicated in appetite regulation.
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431 Although evidence to date suggests a negligible impact of FTO rs9939609 genotype on energy 

432 expenditure, higher levels of physical activity seem to exert a protective effect on the obesity risk 

433 associated with FTO (Sonestedt et al. 2009; Speakman, 2015). On the contrary, diets with higher 

434 fat content can exacerbate the susceptibility to obesity linked to the FTO rs9939609 high-risk 

435 genotype (Sonestedt et al. 2009; Speakman, 2015). Our study included objectively assessed 

436 sitting time, MVPA and cardiorespiratory fitness as covariates in the statistical analyses. 

437 However, only 20% of our participants accumulated, on average, less than 30 min of MVPA per 

438 day, indicating that most participants in our sample had relatively high levels of physical activity. 

439 Therefore, we cannot rule out the possibility of this hindering our ability to detect differences in 

440 appetite-related outcomes between the genotype groups (Speakman et al. 2008). Our study did 

441 not include any assessment of habitual dietary intake and, therefore, fat intake was not taken into 

442 consideration in our analyses. Nevertheless, it is well known that the currently available dietary 

443 intake assessment tools do not provide reliable data, and this currently represents a major 

444 challenge for those involved in nutrition-related research, clinical practice or policy development 

445 (Dhurandhar et al. 2015; Archer et al. 2018). 

446 In contrast to previous studies (Alajmi et al. 2016; Douglas et al. 2017), we did not observe a 

447 statistically significant difference in fasting concentrations of acylated ghrelin between men and 

448 women. The reason for this disparity is unclear but it is worth noting that two female participants 

449 were identified as clear outliers within our sample, with fasting acylated ghrelin concentrations 

450 of 2,899 and 4,411 pg·mL-1. These extremely high concentrations of acylated ghrelin were 

451 observed consistently in all four samples collected for each participant, indicating these values 

452 represented physiological characteristics of these two individuals rather than merely one-off 

453 measurement errors. Further studies are needed to investigate potential causes and consequences 

454 of such extreme concentrations of acylated ghrelin, and care should be taken when interpreting 

455 group mean results, as group means can be greatly impacted by such outliers. Nevertheless, 

456 exclusion of the outliers did not influence any of the statistical models in this study and, therefore, 

457 data are presented with the outliers included. Higher concentrations of fasting glucose were 

458 observed in men than women in the current study, which may be indicative of a greater degree 

459 of insulin resistance resulting from the higher visceral adipose tissue and liver fat levels observed 

460 in men (Marchesini et al, 2001; Ibrahim, 2010). Higher levels of fasting leptin were observed in 

461 women, likely because of the higher fat mass values in relation to total body mass in women, 

462 compared to men (Marshall et al. 2000; Rosenbaum and Leibel, 2014).
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463 After meal consumption, greater changes in acylated ghrelin and overall appetite were observed 

464 in women than men. It should be noted that all participants received an identical standardised 

465 meal and, as women had significantly lower body mass and fat free mass, and consequently lower 

466 resting metabolic rate, it was expected that the postprandial suppression of appetite would be 

467 stronger in women. However, it is interesting to observe that, apart from acylated ghrelin, no 

468 other statistically significant differences were observed between men and women in any of the 

469 remaining postprandial appetite-related blood parameters. Previous evidence has demonstrated a 

470 stronger suppression of acylated ghrelin in women than men after acute exercise and standardised 

471 meals (Douglas et al. 2017), but not after the consumption of a standardised liquid meal (Carroll 

472 et al. 2007). 

473 Our exploratory analyses did not identify any statistically significant or meaningful association 

474 between adiposity parameters and fasting or postprandial concentrations of acylated ghrelin and 

475 total PYY. This is in contrast with findings from previous studies which demonstrated a lower 

476 postprandial suppression of total and acylated ghrelin (Le Roux et al. 2005; Carrol et al. 2007) 

477 and a blunted postprandial elevation in PYY (Le Roux et al. 2006) in individuals with obesity. 

478 However, as expected, fasting insulin, glucose and leptin and postprandial insulin were all 

479 positively associated with general and visceral adiposity, demonstrated by moderate to very large 

480 correlation coefficients, which is consistent with the well-established role of leptin in signalling 

481 adiposity levels (Rosenbaum and Leibel, 2014) and the impact of adiposity on insulin resistance 

482 (Ibrahim, 2010). Additionally, fat free mass, which represents the largest determinant of resting 

483 metabolic rate, has been identified as a primary determinant of appetite and energy intake 

484 (Blundell et al. 2015b). However, our findings did not reveal any significant associations of 

485 appetite-related hormones or perceived appetite with resting metabolic rate.

486 While acute bouts of exercise have been shown consistently to transiently suppress appetite (King 

487 et al. 2017), chronic exercise and high levels of physical activity have been suggested to increase 

488 the overall drive to eat and, concomitantly, to increase the satiating effect of a standardised meal 

489 (King et al. 2009; Beaulieu et al. 2016). We did not identify any significant associations between 

490 habitual physical activity levels and fasting or postprandial acylated ghrelin, total PYY, glucose 

491 or perceived appetite. However, a negative association was observed between MVPA and fasting 

492 leptin and insulin, and postprandial insulin in men. Additionally, negative associations between 

493 V̇O2 peak and fasting and postprandial insulin, fasting glucose and fasting leptin were observed. 

494 Acute and chronic exercise augments insulin sensitivity by increasing insulin-like growth factor 
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495 1, and individuals with higher cardiorespiratory fitness typically show higher insulin sensitivity 

496 (Borghouts and Keizer, 2000; Castro et el. 2016). Furthermore, a recent meta-analysis showed 

497 that leptin concentrations can be reduced by exercise in individuals who are overweight even in 

498 the absence of dietary interventions or major weight loss (BMI reduction of > 2.5%) (Rostás et 

499 al. 2017). Postprandial acylated ghrelin was positively associated with sitting time in men, but 

500 this correlation was small in magnitude and would not be considered significant if the stricter 

501 threshold of P < 0.005 was applied in line with recent recommendations (Benjamin et al. 2017). 

502 Perceived fasting overall appetite was negatively associated with total fat mass in men supporting 

503 previous evidence suggesting the existence of negative feedback signals originating from fat 

504 mass in order to regulate appetite and maintain body weight (Weise et al. 2014; Blundell et al. 

505 2015a). However, no association was observed between postprandial perceived appetite and any 

506 adiposity parameter in our study. Interestingly, no statistically significant associations between 

507 fasting or postprandial perceived overall appetite and acylated ghrelin or total PYY were 

508 identified. Even though circulating concentrations of acylated ghrelin and PYY vary on a meal-

509 to-meal basis, concomitantly with perceived appetite, the magnitude and direction of the changes 

510 in hormone concentrations are not always mirrored by changes in perceived appetite (Goltz et al. 

511 2018). In contrast, postprandial overall appetite AUC was positively associated with postprandial 

512 insulin AUC in women, which is consistent with previous findings showing that postprandial 

513 insulin concentrations are positively associated with postprandial satiety and negatively 

514 associated with postprandial hunger (Flint et al. 2007).

515 The strengths of our study include the use of an integrative approach and objective assessment 

516 methods to explore the associations of the FTO rs9939609 genotype with fasting and postprandial 

517 appetite-related hormones and perceived appetite, taking into consideration a variety of 

518 individual characteristics that have been previously suggested to influence appetite parameters. 

519 Furthermore, the recruitment of a highly heterogeneous sample for parameters such as age, 

520 adiposity and cardiorespiratory fitness levels adds strength to our analyses. Finally, the careful 

521 standardisation of diet and physical activity in the 24 h preceding the laboratory visit, as well as 

522 the inclusion of a cannula acclimatisation period, also contributed to the quality of the study 

523 outcome measurements obtained. However, it should be highlighted that our study employed an 

524 exploratory approach and the cross-sectional design makes it impossible to imply any causation 

525 in our results. Our results may have been compromised by the reduced sample size and by the 

526 loss of power in some of the statistical models due to missing data. Additionally, it is possible 
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527 that a study design where individuals are exposed to an obesigenic food environment, such as an 

528 ad libitum buffet meal rather than a standardised meal stimulus, may be more appropriate to 

529 elucidate the effect of FTO rs9939609 genotype on food choice and eating behaviour. 

530 Furthermore, participants were aware of the meal timing so it is possible that the higher 

531 preprandial ghrelin concentrations reflected an anticipatory response to impending meal intake 

532 (Cummings et al. 2001). Future studies should consider isolating meal provision from time-

533 related cues and/or examining the influence of cephalic phase ghrelin release during meal 

534 anticipation on postprandial appetite responses.

535 In conclusion, the FTO rs9939609 genotype did not have any significant influence on fasting or 

536 postprandial perceived appetite or appetite-related blood parameters in healthy men and women. 

537 The associations between fasting and postprandial acylated ghrelin, total PYY and general or 

538 abdominal adiposity were also small, while fasting leptin, glucose and insulin and postprandial 

539 insulin concentrations were consistently and positively associated with adiposity outcomes. 

540 Further research is needed to clarify the precise role of the FTO rs9939609 genotype in 

541 moderating appetite control and energy intake, including both physiological and psychological 

542 factors that influence eating behaviour. Specifically, well-controlled long-term studies are 

543 needed to improve understanding of the effect of the FTO rs9939609 genotype on appetite and 

544 energy intake during and after interventions targeting weight loss and/or prevention of weight 

545 gain. Understanding the complex interaction between genetics and other individual 

546 characteristics, physiological appetite parameters and perceived appetite is of crucial importance 

547 for planning targeted strategies for weight control.
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