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Abstract

We present a new game-theoretic framework in which
Bayesian players with bounded rationality engage in a
Markov game and each has private but incomplete infor-
mation regarding other players’ types. Instead of utilizing
Harsanyi’s abstract types and a common prior, we construct
intentional player types whose structure is explicit and in-
duces afinite-levelbelief hierarchy. We characterize an equi-
librium in this game and establish the conditions for existence
of the equilibrium. The computation of finding such equilib-
ria is formalized as a constraint satisfaction problem and its
effectiveness is demonstrated on two cooperative domains.

Introduction
A plethora of empirical findings in strategic games (Stahl
and Wilson 1995; Hedden and Zhang 2002; Wright and
Leyton-Brown 2010; Goodie, Doshi, and Young 2012)
strongly suggest that humans reason about others’ beliefs
to finite and often low depths. In part, this explains why a
significant proportion of participants do not play Nash equi-
librium profiles of games (Camerer 2003) because reasoning
about Nash play requires thinking about the other player’s
beliefs and actions, and her reasoning about other’s, and so
onad infinitum. Such reasoning is generally beyond the cog-
nitive capacity of humans. This has motivated models of
finitely-nested reasoning such as the cognitive hierarchy and
others (Ho and Su 2013).
Are there characterizations of equilibrium between play-

ers engaging in finite levels of inter-personal reasoning?
Aumann (1999) introduced the information partition as a ba-
sic element for representing a player’s knowledge. Recently,
Kets (2014) elegantly generalized the standard Harsanyi
framework for single-stage games of incomplete informa-
tion to allow for players’ partitions that lead to finite-level
beliefs. Any found equilibrium in this framework is also a
Bayes-Nash equilibrium (BNE) in a Harsanyi framework.
However, as we may expect, not every BNE for the game is
also an equilibrium between players with finite-level beliefs
because some BNE necessitate infinite-level beliefs.
We generalize the single-stage framework of Kets to allow

Bayesian players to play an incomplete-informationMarkov

game(Littman 1994; Maskin and Tirole 2001). These so-
phisticated games are finding appeal as a theoretical frame-
work for situating pragmatic interactions such as impromptu
or ad hoc teamwork (Albrecht and Ramamoorthy 2013).
Each player in our framework may have one of many types
–explicitlydefined unlike the abstract ones in the Harsanyi
framework – and whichinducesa belief hierarchy of fi-
nite depth. Contextual to such finite-level types in this new
framework of Bayesian Markov games (BMG) with explicit
types, we formally define a Markov-perfect finite-level equi-
librium, establish conditions for its existence, and present a
method for obtaining this equilibrium. We formulate find-
ing equilibrium in aBMGas a constraint satisfaction prob-
lem. For this, we generalize the constraint satisfaction al-
gorithm introduced by Soni et al. (2007) for finding BNE
in Bayesian graphical games. Key challenges for the gener-
alization are that the space of types is continuous and the
beliefs in each type must be updated based on the observed
actions of others. This makes the types dynamic. Because
strategies may bemixedand standard constraint satisfaction
algorithms do not operate on continuous domains, we dis-
cretize the continuous space of mixed strategies analogously
to Soni et al. (2007). Finally, motivated by behavioral equiv-
alence (Zeng and Doshi 2012), we use equivalence between
types for speed up.
In addition to presenting a new framework and discussing
its properties, we demonstrate it on two cooperative tasks.
Equilibrium has traditionally served as an important base-
line behavior for agents engaged in cooperation, providing
a locally-optimal solution (Nair et al. 2003; Roth, Simmons,
and Veloso 2006).BMGs with explicit types are particularly
well suited toward analyzing interactions between agents
that are boundedly rational and are uncertain about each
other’s type.

Background
Inspired by the real-world transport logistics domain, we
motivate our framework using the level-based foraging prob-
lem (Albrecht and Ramamoorthy 2013). Consider a 2-player
single-stage foraging problem illustrated in Fig. 1(a). Robot
iand humanjmustloadfood found in adjacent cells. Play-
ers can load if the sum of theirpowersis greater than or
equal to the power of the food. Thus,iorjindividually can-
not load the food in the bottom-left corner, but they can co-



ordinate and jointly load it. Humanjby himself can load
the food to the right of him. There is a possibility that the
human is robophobic and derives less benefit from the food
when loading it in cooperation with the robot.
Harsanyi’s framework (1967) is usually applied to such

games of incomplete information (human above could be
robophobic or not thereby exhibiting differing payoffs) by
introducing payoff-basedtypesand a common prior that
gives the distribution over joint types,Θ=Θi×Θj, where
Θi(j)is the non-empty set of types of playeri(j). However,
this interpretation that a player type is synonymous with
payoffs only is now considered naive and restrictive (Qin
and Yang 2013) because knowing a player’s payoff function
also implies perfectly knowing its beliefs over other’s types
from the common prior. The prevailing theoretical interpre-
tation (Mertens and Zamir 1985; Brandenburger and Dekel
1993) decouples the player’s belief from its payoffs by in-
troducing fixed states of the game as consisting of states of
natureXand the joint typesΘ(whereXwould be the set
of payoff functions), and a common priorpoverX×Θ.
This allows anexplicitdefinition of a Harsanyi type space
for playerias,ΘHi = Θi,Si,Σi,βi, whereΘiis as de-
fined previously;Siis the collection of all sigma algebras
onΘi;Σi:Θi→Sjmaps each type inΘito a sigma alge-
bra inSj; andβigives the belief associated with each type
ofi,βi(θi)∈ (X×Θj,FX×Σi(θi)),FX is a sigma al-
gebra onX. Notice thatβi(θi)is analogous top(·|θi)where
pis the common prior onX×Θ. We illustrate a Bayesian
game (BG), and the induced belief hierarchy next:

Definition 1 (Bayesian game)ABGbetweenNplayers is
a collection,G= X,(Ai,Ri,Θ

H
i)i∈N , whereXis the

non-empty set of payoff-relevant states of nature with two
or more states;Aiis the set of playeri’s actions;Ri:X×

i∈NAi→Risi’s payoff; andΘ
H
iis Harsanyi type space.

Example 1 (Beliefs in Harsanyi type spaces)Consider
the foraging problem described previously and illustrated in
Fig. 1(a). Let each player possess 4 actions that load food
from adjacent cells in the cardinal directions: Ld-W, Ld-N,
Ld-E, Ld-S. LetX ={x, x(=x)}and the corresponding
payoff functions are as shown in Fig. 1(b). Playerihas 4
types,Θi={θ

1
i,θ

2
i,θ

3
i,θ

4
i}, and analogously forj.Σi(θ

a
i),

a=1...|Θi|is the sigma algebra generated by the set
{θ1j,θ

2
j,θ

3
j,θ

4
j}. Finally, example belief measures,βi(·)and

βj(·), are shown in Fig. 1(c).
Distributionsβinduce higher-level beliefs as follows:

Playeriwith typeθ1ibelieves with probability 1 that the state
isx, which is its zero-level belief,bi,0. It also believes thatj
believes that the state isxbecauseβi(θ

1
i)places probability

1onθ1jandβj(θ
1
j)places probability 1 on statex. This isi’s

first-level belief,bi,1. Further,i’s second-level beliefbi,2in-
duced fromβi(θ

1
i)believes that the state isx, thatjbelieves

that the state isx, and thatjbelieves thatibelieves that
the state isx. Thus,bi,2is a distribution over the state and
the belief hierarchy{bj,0(θj),bj,1(θj):θj=θ

1
j,...,θ

4
j}.

This continues for higher levels of belief and gives the be-
lief hierarchy,{bi,0(θ

1
i),bi,1(θ

1
i),...}generated byβi(θ

1
i).

Other types for playerialso induce analogous infinite belief
hierarchies, and a similar construction induces forj.

Example 1 also suggests a path to formally defining the in-
duced infinite belief hierarchies from types. This definition
is well known (Mertens and Zamir 1985; Brandenburger and
Dekel 1993) and is not reproduced here due to lack of space.
Recently, Kets (2014) introduced a way to formalize the
insight thati’s levellbelief assigns a probability to all events
that are expressed byj’s belief hierarchies up to levell−1.
Further, beliefs with levels greater thanlassign probabili-
ties to events that are expressible byj’s belief hierarchies
of levell−1only; this is a well-known definition of finite-
level beliefs. The construction involves an information par-
tition (Aumann 1999) of other player’s types, representing
the cognitively-limited player’s ambiguous knowledge.

Example 2 (Beliefs in depth-1 type spaces)LetΣi(θ
1
i)be

the sigma algebra generated by the partition,{{θ1j,θ
3
j},

{θ2j,θ
4
j}}. Recall that beliefβi(θ

1
i)is a probability measure

overFX×Σi(θ
1
i). We may interpret this construction asi’s

typeθ1idistinguishes between the events thatj’s type isθ
1
j

orθ3jand that the type isθ
2
jorθ

4
jonly. We illustrate example

βi(θ
a
i),a=1,...,4andβj(θ

b
j),b=1,...,4in Fig. 2.

Notice thatβi(θ
1
i)induces a level 0 beliefbi,0that be-

lieves that the state of nature isxwith probability 1. It also
induces a level 1 beliefbi,1that believesjbelieves with
probability 1 that the state isx(it places probability 1 on
{θ1j,θ

3
j}; bothβj(θ

1
j)andβj(θ

3
j)place probability 1 onx).

However,βi(θ
1
i)does not induce a level 2 belief because

βj(θ
1
j)places probability 1 on{θ

1
i,θ

2
i}who each, in turn,

place a probability 1 onx, whereasβj(θ
3
j), analogously,

places a probability 1 onx. Therefore, agentj’s corre-
sponding level 1 beliefsβj(θ

1
j)andβj(θ

3
j)differ in what

they believe about agenti’s belief about the state of na-
ture. Consequently,βi(θ

1
i)induces a belief that is unable to

distinguish between differing events expressible byj’s level
1 belief hierarchies. The reader may verify that the above
holds true for allβi(θ

a
i)andβj(θ

b
j). Thus, the type spaces

in Fig. 2 induces a finite-level belief hierarchy of the same
depth of 1 for both agents.

Beliefs need not always concentrate all probability mass on a
single event. For example, we may replaceβi(θ

1
i)in Fig. 2

with a distribution that places probability 0.5 on{θ1j,θ
3
j}

and 0.5 on{θ2j,θ
4
j}both under columnx. Yet, both agents’

continue to exhibit belief hierarchies of level 1. A formal
definition of an induced finite-level belief hierarchy simply
modifies the definition of an infinite-level hierarchy to con-
sider sigma algebras on the partitions ofΘiandΘj.

Let us denote depth-ktype spaces of playeriusingΘki,
where each type foriinduces a belief hierarchy of depth
k. Let the strategy of a playeribe defined as,πi: Θi→
Δ(Ai). Computation of theex-interimexpected utility of
playeriin the profile, (πi,πj)giveni’s type proceeds iden-
tically for both Harsanyi and depth-ktype spaces:

Ui(πi,πj;θi)=

FX×Σi(θi)
Ai,Aj

Ri(ai,aj,x)πi(θi)(ai)

×πj(θj)(aj)dβi(θi) (1)



(a)Playersiandjseek to
loadfood. Sum ofpowersof
players≥powerlevel of the
food to load it.

x Ld-W Ld-NLd-ELd-S

Ld-W 0,0 0,0 0,1 0,0

Ld-N 0,0 0,0 0,1 0,0

Ld-E 0,0 0,0 0,1 0,0

Ld-S1.5,1.50,0 0,1 0,0

x =xLd-W Ld-NLd-ELd-S

Ld-W 0,0 0,0 0,1 0,0

Ld-N 0,0 0,0 0,1 0,0

Ld-E 0,0 0,0 0,1 0,0

Ld-S 1.5,1 0,0 0,1 0,0

(b)Payoff tables for statesx
and robophobicx.

βi(θ
1
i)xx

θ1j 1 0

θ2j 0 0

θ3j 0 0

θ4j 0 0

βi(θ
2
i)xx

θ1j 0 0

θ2j 0 0

θ3j 0 1

θ4j 0 0

βi(θ
3
i)xx

θ1j 0 0

θ2j 1 0

θ3j 0 0

θ4j 0 0

βi(θ
4
i)xx

θ1j 0 0

θ2j 0 0

θ3j 0 0

θ4j 1 0

βj(θ
1
j)xx

θ1i 1 0

θ2i 0 0

θ3i 0 0

θ4i 0 0

βj(θ
2
j)xx

θ1i 0 0

θ2i 0 0

θ3i 0 1

θ4i 0 0

βj(θ
3
j)xx

θ1i 0 0

θ2i 1 0

θ3i 0 0

θ4i 0 0

βj(θ
4
j)xx

θ1i 0 0

θ2i 0 0

θ3i 0 0

θ4i 1 0

(c)Conditional beliefs of playeriover the payoff states and types
ofj(top) and analogously forj(below).

Figure 1:(a)Single-step foraging on a 2×3 grid;(b)Payoffs corresponding to states of nature inX. Rows correspond to
actions of playeriand columns to actions ofj; and(c)Conditional beliefs in the explicit Harsanyi type spaces of playersiand
j.

βi(θ
1
i)xx

{θ1j,θ
3
j}1 0

{θ2j,θ
4
j}0 0

βi(θ
2
i)xx

{θ1j,θ
3
j}0 0

{θ2j,θ
4
j}1 0

βi(θ
3
i)xx

{θ1j,θ
3
j}0 0

{θ2j,θ
4
j}0 1

βi(θ
4
i)xx

{θ1j,θ
3
j}0 1

{θ2j,θ
4
j}0 0

βj(θ
1
j)xx

{θ1i,θ
2
i}1 0

{θ3i,θ
4
i}0 0

βj(θ
2
j)xx

{θ1i,θ
2
i}0 1

{θ3i,θ
4
i}0 0

βj(θ
3
j)xx

{θ1i,θ
2
i}0 0

{θ3i,θ
4
i}1 0

βj(θ
4
j)xx

{θ1i,θ
2
i}0 0

{θ3i,θ
4
i}0 1

Figure 2: Playeri’s andj’s conditional beliefs on payoff
states and partitions of the other agent’s type set.

However, the expected utility may not be well defined in the
context of depth-ktype spaces. Consider Example 2 where
Σi(θ

1
i)is a partition of{{θ

1
j,θ

3
j},{θ

2
j,θ

4
j}}.Uiis not well

defined forθ1iifj’s strategy in its argument has distributions
forθ1jandθ

3
jthat differ, or has differing distributions forθ

2
j

andθ4j. More formally, such a strategy is notcomprehensible

for typeθ1i(Kets 2014).

Definition 2 (Comprehensibility)A strategyπjis compre-
hensible for typeθ1iif it is measurable with respect toΣi(θ

1
i)

(and the usual sigma algebra on setAj).

Obviously, lack of comprehensibility does not arise in
Harsanyi type spaces because each player’s belief is over
a partition of the other player’s types whose elements are of
size 1. Finally, we define an equilibrium profile of strategies:

Definition 3 (Equilibrium)A  profile  of  strategies,
(πi)i∈N, is in equilibrium for a BGG if for every
type,θi∈Θi,i∈N,
1. Strategyπj,j∈N, j=i, is comprehensible forθi;
2. Strategyπigives the maximal ex-interim expected utility,
Ui(πi,...,πz;θi)≥Ui(πi,...,πz;θi)whereπi=πi
andUiis as defined in Eq. 1.

Condition 1 ensures that others’ strategies are comprehen-
sible for each ofi’s type so that the expected utility is well
defined. Condition 2 is the standard best response require-
ment. If the type spaces inGare the standard Harsanyi ones,
then Definition 3 is that of the standard Bayes-Nash equilib-
rium. Otherwise, ifGcontains depth-ktype spaces, then the
profile is infinite-level equilibrium(FLE).

BMG with Finite-Level Types
Previously, we reviewed a framework that allows character-
izing equilibrium given belief hierarchies of finite depths. A
key contribution in this paper is to generalize this framework
endowed with finite-level type spaces to an incomplete-
information Markov game played by Bayesian players. In
this setting, types are now dynamic and a challenge is to
identify a way of updating the types. Thereafter, we intro-
duce an equilibrium that is pertinent for these games.
We define a Bayesian Markov game (BMG) with explicit
types:

Definition 4 (BMG)A Bayesian Markov game with finite-
level type spaces (BMG) is a collection:

G∗= S, X,(Ai,Ri,Θ
k
i)i∈N,T,OC

•Sis the set of physical states of the game;
•XandAiare as defined in the previous section for aBG;
•Ri:S×X× i∈NAi→ Risi’s reward function; it
generalizes the reward function in aBGto also include
the physical state;
•Θkiis the depth-ktype space of some finite depthk;
•T:S× i∈NA→Δ(S)is a Markovian and stochastic
physical state transition function of the game; and
•OCis the optimality criterion which could be to optimize
over a finite number of steps or over an infinite number of
steps with discount factor,γ∈(0,1).

ABMGbetween two agentsiandjof some typeθiand
θjrespectively, proceeds in the following way: both agents
initially start at statestthat is known to both and perform
actionsatianda

t
jaccording to their strategies, respectively.

This causes a transition of the state in the next time step to
some statest+1 according to the stochastic transition func-
tion of the game,T. Both agents now receive observations,
ot+1i = st+1,atj ando

t+1
j = st+1,ati respectively, that

perfectly inform them about current state and other’s previ-
ous action. Based on these observations, their next actions,
at+1i andat+1j , are selected based on their strategies.

Dynamic Type Update
As we mentioned previously, playersiandjengaging in a
BMGobserve the initial state,o0i s0, followed by receiv-



ing observations of the state and other’s previous action in
subsequent steps,ot+1i st+1,atj. An observation ofj’s
action provides information thatimay use to update its be-
liefβi(θi)in its type. Recall thatβi(θi)is a distribution over
(X×Θj,FX ×Σi(θi)). Consequently, the type gets up-
dated. We are interested in obtaining updated distributions,
βt+1i (θi)for eachθi∈Θi, given the history of observations

o0:t+1i o0i,o
1
i,...,o

t+1
i . This is a simple example of us-

ing a current step observation to smooth past belief.

βt+1i (θi)(x, θj|o
0:t+1
i )∝Pr(atj|θj,s

t)βti(θi)(x, θj)(2)

In Eq. 2,Pr(atj|θj,s
t)is obtained fromj’s strategy in the

profile under consideration and indexed byθjand states
t

as outlined in the next subsection. Termβti(θi)(x, θj)is the
prior. Because of the Markovian assumption, observation
history until statestis a sufficient statistic for the update.

Solution

Types defined using belief hierarchies limited to finite lev-
els may not yield equilibria that coincide precisely with
Bayesian-Nash equilibrium (Kets 2014), which requires that
the level be infinite. We define the solution of aBMGwith
explicit finite-level types to be a profile of mixed strategies
inFLEthat isMarkov perfect(Maskin and Tirole 2001); it
generalizes the FLE formalized in Def. 3. Prior to defining
the equilibrium, define a strategy of playerias a sequence of

horizon-indexed strategies,πhi=(π
h
i,π

h−1
i ,...,π1i). Here,

πhi:S×Θi→ Δ(Ai)gives the strategy that best responds
withhsteps left in the Markov game. Notice that each strat-
egy in the sequence is a mapping from the current physical
state and player’s type; this satisfies the Markov property.
Further recall that a player’s typeθiis associated with a be-
lief measureβi(θi). We define the equilibrium and specify
conditions for its existence next.

Definition 5 (Markov-perfect finite level equilibrium)A
profile of strategies,πhk =(π

h
i,k)i∈N is in Markov-perfect

finite-level equilibrium (MPFLE) of levelkif the following
holds:
1. Each player has a depth-ktype space;
2. Strategyπhj,k,j∈N,j= iand at every horizon is
comprehensible for every type of playeri;

3. Each player’s strategy for every type is a best response
to all other players’ strategies in the profile and the equi-
librium is subgame perfect.

Notice that if, instead of condition 1 above, players pos-
sess the standard Harsanyi type space, then Def. 5 gives the
Markov-perfect Bayes-Nash equilibrium. Definition 2 char-
acterizes a comprehensible strategy.
Strategyπhi,kis a best response if its value is the largest
among all ofi’s strategies given the profile of other play-
ers’ strategies. To quantify the best response, we define an
ex-interimvalue function for the finite horizon game that as-
signs a value to each level strategy of a player, sayi,given
the observed state,i’s own type and profile of other players’
strategies. For a two playerBMGG∗, each player endowed
with a depth-ktype space, this function is:

Qi(s, π
h
i,k,π

h
j,k;θi)=U

∗
i(s, π

h
i,k,π

h
j,k;θi)+ (3)

γ
oi
Pr(oi|s, π

h
i,k,π

h
j,k;θi)Qi(s,π

h−1
i,k ,π

h−1
j,k ;θi)

whereoidenotess,aj,θiis the updated type ofidue
toaj(Eq. 2), andQi(s, π

h
i,k,π

h
j,k;θi)reduces toU

∗
iwhen

h=1. Here,

U∗i(s, π
h
i,k,π

h
j,k;θi)=

FX×Σi(θi)
Ai,Aj

Ri(s, x, ai,aj)

×πhi,k(s, θi)(ai)π
h
j,k(s, θj)(aj)dβi(θi)

Utility functionU∗iextendsUiin Eq. 1 to the single stage of
aBMG. Next, we focus on the termPr(oi|s, π

h
i,k,π

h
j,k;θi):

Pr(oi|s, π
h
i,k,π

h
j,k;θi)=

Σi(θi)
Ai

T(s, ai,aj,s)

×πhi,k(s, θi)(ai)π
h
j,k(s, θj)(aj)d̂βi(θi)

whereβ̂i(θi)is the marginal of measureβi(θi)onΣi(θi)
only. This equation is derived in the supplement. Subse-
quently,πhi,kthat optimizesQiis a best response to given

πhj,k. When the horizon is infinite, each player possesses
a single strategy that is not indexed by horizon. Note that
Eqs. 1 and 2 can be easily generalized to|N|agents.
We define an -MPFLE which relaxes the strict require-
ment of the exact equilibrium allowing a player in approx-
imate equilibrium to deviate if her loss due to deviating to
some other strategy is not more than. Finally, a MPFLE
may not always exist for aBMGof levelkbecause the given
depth-ktype space of a player may not admit any compre-
hensible and best response strategy as required by conditions
2 and 3 of Def. 5. We do not view the nonexistence of equi-
librium for all games as particularly limiting, but simply as
a consequence of the fact that some equilibria are too com-
plicated to reason with finite cognitive capabilities.

Finding MPFLE using constraint satisfaction
Vickrey and Koller (2002) present a way to compute Nash
equilibrium in single-shot graphical games with complete
information using constraint satisfaction. Later, Soni et
al. (2007) extend their work and model the problem of
finding a Bayes-Nash equilibrium in single-shot graphical
games with incomplete information and repeated graphi-
cal games also as a constraint satisfaction problem (CSP).
We further adapt their methods toward finding MPFLE in
BMGs.
First, we transform theBMGinto anextendedBayesian
game by defining strategy for playeri∈ N as a vec-
tor of horizon-indexed strategies as elucidated previously.
Next, we formalize the CSP represented as a 3-tuple:
PE = V, D, C. Here,V is a set of variables,V =
{v1,...,v|N|}, where each variable corresponds to a player
in theBMG;D is the set of domains for the variables,
D = {D1,...,D|N|}. The domainDifor a variablevi
(i∈N) is the space ofcomprehensiblestrategies for player



i. Comprehensibility limits the size of the domain, which in
turn translates to significant computational savings in time
while also ensuring that the expected utility is well-defined.
Cis a set of|N||N|-ary constraints. Each constraintCi∈N
has the scopeVwhich is the set of all variables, and the re-
lationRi⊆ ×i∈NDi. A tupleri∈Riis considered legal
if the corresponding strategy of playeriis a best response
to the strategy profile of others specified inri. The relation
Rionly constitutes legal tuples. Next, we generate thedual
CSP from the original CSP formalized above. The variables
of the dual CSP are the constraints of the original CSP. Thus,
the dual variables areC={C1,...,C|N|}. The domain of
each dual variable is the tuple of the corresponding relation
in the original CSP. Thus, the dual variableCi∈N has|Ri|
values. Finally, we add an|N|-ary equality constraint on the
dual variables. This constraint essentially performs an inter-
section across the domains of each of the dual variables. This
guarantees that all players play a mutual best response strat-
egy and hence, commit to the same Nash equilibrium which
is in turn an MPFLE for theBMG.
In general, solving a CSP involves pruning the domain

of each variable. If at any stage, any variable’s domain be-
comes empty on application of constraints, it indicates that
the CSP is unsatisfiable. On modeling the game as a CSP,
we may apply any standard CSP solver to compute equilib-
ria. We used the generic procedure described in an efficient
arc consistency algorithm called MAC3 (Liu 1998) to solve
the CSP. The complexity of the best-response constraint-
checking step is exponential in the total number of agents
and the planning horizonH. If all agents interact with each
other, this step runs in timeO(|N|(1τ)

|A||Θ||N|H)whereτ
is the granularity of agents’ strategy space. Furthermore, we
take advantage ofsub-game perfectionin MPFLE by going
bottom-up from a 1-step equilibrium strategy to anH-step
strategy in the consistency checking phase for savings.

Approximation for Mixed Strategies

Recall that a possible value of each variable is a profile of
strategies. As the level strategies may bemixedallowing
distributions over actions, the domain of each variable is
continuous. Algorithms such as MAC3 are unable to oper-
ate on continuous domain spaces. Soni et al. (2007) point
out this problem and suggest discretizing the continuous
space of mixed strategies using aτ-grid on the simplex.
In the context of aBMG, given theτ-grid and playeri’s
strategyπhi,k, the probability of taking an actionai∈Ai,

πhi,k(·,·)(ai)∈{0,τ,2τ,...,1}. Compared to uncountably
many possibilities for each strategy before, we now consider
1/τ2entries on theτ-grid. Subsequently, discretizing the
continuous space of mixed strategies on theτ-grid becomes
a part of initializing the domain of each variable.
However, a profile of strategies in equilibrium may not lie

on theτ-grid if the discretization is too coarse. Thus, the dis-
cretization may introduce error and motivates relaxing the
exact equilibrium to-MPFLE. Interestingly, we can bound
the loss suffered by any player in moving to the adjacent
joint strategy on theτ-grid, which in turn allows us to show
that a relaxed MPFLE is preserved by the discretization.We

present this bound and related proofs in the supplement.
Unfortunately, the bound is usually loose and therefore, a
small could lead to unreasonably fineτ-grids and we may
end up having an intractably large mixed-strategy space. In-
versely, if we fix the granularityτof the grid to be small, we
may end up approximating to an extent that the solution
becomes meaningless. In both cases, the risk of not finding
an equilibrium is still probable because of finite-level rea-
soning. In the empirical results we present next, we attempt
to find a reasonable trade off while ensuring the existence of
at least one MPFLE on two standard domains.

Empirical Evaluation
We implemented the MAC3 algorithm for obtaining MPFLE
as discussed earlier. We experiment with two benchmark
problem domains:n-agent multiple access broadcast chan-
nel(nMABC) (Hansen, Bernstein, and Zilberstein 2004)
(|N|= 2 to 5;H= 1 to 5;|S|=4;|A|=4;|Xi∈N|up to 4;

i∈N|Θi|up to 1024) and sequentiallevel-based foraging,
which involves players performingmoveactions in cardinal
directions and just oneloadaction (m×mForaging) (Al-
brecht and Ramamoorthy 2013) (m=3;|N|=2;H= 1 to 3;
|S|= 81;|A|= 25;|Xi∈N|=2; i∈N|Θi|= 16).
In our experiments on both domains, for each agent, we
manually created partitions of the other agents’ types with a
maximum size of 2 with as many payoff states as there are
partitions and ensured that the construction induced a level-
1 belief hierarchy for all participating agents. For example,
in the2MABCproblem, say each agent{i, j}has a total of
4 types. Then, the type-set for each agent is divided into 2
partitions containing 2 types each:{{θ1i,θ

2
i},{θ

3
i,θ

4
i}}and

{{θ1j,θ
3
j},{θ

2
j,θ

4
j}}; and let there be a total of 2 states of

nature:xandx’. We assume that the beliefβicontinues to
assign a point probability mass of either 1 or 0 on any partic-
ular partition and state of nature. These beliefs were manu-
ally assigned such that the type spaces induced a finite-level
belief hierarchy of depth 1 for both agents. Figure 2 shows
one such configuration for the2MABCproblem.
ValidationFirst, we focus on generating MPFLE in games
ofN Bayesian players. Multiple equilibria with pure and
mixed comprehensible strategies were found for depth-1
type spaces. For example, atH = 2, we found 3 pure-
strategy exact MPFLE. We also found 12 and 17-MPFLE
for= 0.17 and 0.33 respectively. We begin by noting that all
computed-MPFLE coincide with-BNE for the 2MABC
problem. We obtained BNE by considering a common prior
and a unit size of the partitions of the other agent’s type set.
As expected, there were additional BNEs as well. Specifi-
cally, we found 6 pure-strategy exact BNE, and 21 and 36
-BNE for = 0.17 and 0.33 respectively. This empirically
verifies the correctness of our approach.
Run time for finding equilibriumNext, we explore the run
time performance ofBMGand investigate how varying the
different parameters,N,H,X,Θ,τ, and, impacts the per-
formance and scalability in the two domains. Our computing
configuration included an Intel Xeon 2.67GHz processor, 12
GB RAM and Linux.
In Fig. 3(top), we report the average time to compute the

first 10 equilibria for a 3-horizon 2MABCand 3MABCwith
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Figure 3: Impact of parameters on performance. Time taken
to compute:(top)MPFLE in2MABCand3MABCfor vary-
ingτand atH =3,(left)a pure-strategy MPFLE in
5MABCfor varyingandHshowing scalability in agents,
and(right)MPFLE in 2-agent 3×3Foragingfor varyingτ
andHwith =0.1showing scalability in domain size (in
|A|and|S|).

|X|= 2 and|Θ|= 16 and 64 types, respectively (4 types
for each player). The bound ongivenτshown in Proposi-
tion 1 (see supplement) is loose. Therefore, we consider var-
ious values ofthat are well within this bound. An example
pure-strategy profile for two players in exact equilibrium in
2MABCexhibited ex-interim values [1.9,1.52] for playersi
andj, respectively.

ScalabilityWe scale in the number of agents and illustrate
in Fig. 3(left), times for5MABC(5 agents) for increas-
ing horizons with the subgame-perfect equilibrium taking
just under 4 hours to compute forH =5and =0.1.
Notice that this time increases considerably if we compute
profiles in exact equilibria. To scale in the number of states,
we experimented on the larger3×3Foragingand illus-
trate empirical results in Fig. 3(right). The time taken to
compute the first-MPFLE for varying horizons and two
coarse discretizations is shown. Run time decreases by about
two orders of magnitude as the discretization gets coarser
forH =2. A pure-strategy profile for two players in ex-
act equilibrium in 3×3Foragingexhibited ex-interim val-
ues [1.98, 0.98] for playersiandj, respectively. In gen-
eral, as the approximation increases because the discretiza-
tion gets coarser, the time taken to obtain strategy profiles in
-equilibria decreased by multiple orders of magnitude.

Type equivalenceA complication in solving the CSP is that
the type space is continuous because it is defined in terms
of beliefs over payoff states and others’ type-set partitions.
This makes strategy a continuous function due to which the
variables in the CSP are infinite dimensional; an additional
challenge not present in Soni et al. (2007), which uses dis-
crete types. Rathnasabapathy et al. (2006) show how we may
systematically and exactly compress large type spaces us-
ing exactbehavioral equivalence. Its manifestation here as

H 3 4 5

Without

TE

|Θk=1|16  36  64 16  36  64 16 36  64

Time (s)0.07 0.8 1335.61.01 42.6 1481.11.6 31.2 >1 day

With

TE

|Θk=1| 4 9   16 4 12 16 4 16  25

Time (s)0.11 0.54 27.20.96 14.3 311.21.3 26.7 3161.7

Table 1:Computational savings due to TE in computing a pure-
strategy MPFLE in2MABCfor level-1 types.

type equivalence (TE)preserves the quality of the solutions
obtained, which we verified experimentally as well. The re-
duced size of player type spaces in turn reduces the number
of strategy profiles that need to be searched for finding an
equilibrium. This helps lower the time complexity by sev-
eral orders of magnitude as we demonstrate. Table 1 illus-
trates the reduction in the type space due to TE in2MABC
for varying horizons. It also shows the time savings in gener-
ating one pure-strategy profile in equilibrium. Note the over-
head in computing the equivalence classes which is promi-
nent for smaller horizons. However, savings due to TE com-
pensate for this overhead at longer horizons and larger type
spaces.
In summary, our CSP finds multiple pure and mixed-
strategy profiles in MPFLE that are exact or approximate.
Feasible run times are demonstrated for two domains, and
we reported on scaling along various dimensions. The equi-
libria that we have found serve as optimal points of refer-
ences for current and future methods related to coordination.
The equilibrium computation could benefit from a more ef-
ficient CSP algorithm; one that potentially takes advantage
of the structure of interpersonal interactions among players
inBMGs.

Concluding Remarks
BMGs generalize Markov games to include imperfect infor-
mation about players’ types.BMGs take significant steps
beyond Kets’ single-shot games and Markov games by in-
troducing sequential reasoning to the former and bounded-
depth reasoning to the latter, both of which are non-trivial.
They construct a type space that is founded on Aumann’s
concept of information partitions as a way of formalizing
(imperfect) knowledge.BMGis the first formalization of
incomplete-information Markov games played by Bayesian
players, which integrates types that induce bounded reason-
ing into an operational framework.
BMGs are related to stochastic Bayesian games intro-
duced by Albrecht and Ramamoorthy (2013) for formaliz-
ing ad hoc coordination but they exhibit key differences:
1) Types inBMGare explicitly defined while those de-
fined in Albrecht et al. are abstract. Importantly, the latter
are coupled with a prior distribution over types that is com-
mon knowledge. 2) Furthermore, we allow for acontinu-
oustype space (with intentional types) while Albrecht et al.
relies onarbitrarilypicking a discrete set of hypothesized
user-defined (sub-intentional) types for agents.BMGs share
similarities with interactive POMDPs (Gmytrasiewicz and
Doshi 2005) that also allow individual agents to intention-



ally (or sub-intentionally) model others using a finite be-
lief hierarchy that is constructed differently. However, the
focus in I-POMDPs is to compute the best response to sub-
jective beliefs and not to compute equilibria. Indeed, con-
verging to equilibria in I-POMDPs is difficult (Doshi and
Gmytrasiewicz 2006).
There is growing interest in game-theoretic frameworks

and their solutions that model pragmatic types of players.
This paper provides a natural starting point for a shared con-
versation about realistic and computationally feasible mod-
els. We ask the following questions as we further investigate
BMGs. Does increasing the depth of reasoning get MPFLE
“closer” to BNE, and can we formalize the closeness? Are
there profiles in MPFLE which do not occur in the set of
BNE even if the Harsanyi type space reflects the finite-level
beliefs? In response, we observe that higher levels of be-
liefs would require increasingly fine partitions of the types.
Therefore, MPFLE is hypothesized to coincide with BNE
with increasing levels. Kets (2014) establishes the presence
of BNE that are not present in any finite-level equilibria.
However, it is always possible to construct a Harsanyi ex-
tension of the finite-level type space such that any FLE is
also a BNE.
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