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Abstract 7 

This paper advances the use of in-situ Near-Infrared (NIR) spectroscopy as the basis for an in-line 8 

control system to optimise mixing time of food powder blends. A non-contact NIR fibre-optic probe 9 

installed in a conical screw mixer was used to scan three powder mixtures characterised by different 10 

particle size distribution and component distribution. The current state of the art is extended by 11 

comparing Conformity Index and Standard deviation of the Moving Block Standard Deviation 12 

(MBSD), establishing the optimal pre-treatment combination and investigating the effects of the 13 

mixture properties on the results. Products with a broad particle size distribution were more accurately 14 

represented using derivatives rather than SNV and Detrending, while products with a broad 15 

component distribution showed good results with all pre-treatments.  16 

This study evaluated the effect of data pre-treatments on mixing time for different physical properties 17 

of powder blends and provided a general guidance on the most appropriate pre-treatment. 18 
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1 Introduction 24 

Food manufacture is subject to many safety and quality regulations in order to reassure the 25 

consumer that the product is free from any unwanted substance and provide customers with a 26 

consistent quality. Quality inspection protocols need to be in place to ensure confidence that products 27 

leaving the plant fall within safety regulations and customer specification. Effective quality control is 28 

thus a preeminent consideration in the food industry in that it ensures customer satisfaction and safety 29 

are achieved as far as possible.  30 

The attention of this study will be directed towards powder blending processes which are very 31 

common in the food industries (Cullen, 2009). Mixing time has to date been typically based on 32 

experimental experience and generally extended far beyond the time when full homogeneity was 33 

indicated to accommodate natural variability and perceived risk. Off-line testing by taking samples 34 

from a vessel and then performing a destructive analysis have been the most common option to assess 35 

the product quality, however this method is time-consuming and often error-prone. Samples are not 36 

necessarily representative of the entire batch and the insertion of the thief probe disturbs the powder 37 

bed, so compromising the sampling and resulting in an inaccurate measurement. Segregation issues in 38 

the sample compartment may arise if the particle size distribution of the components is wide (El-39 

Hagrasy et al., 2001). In addition, results are typically obtained after the production is ended, so not 40 

providing a prompt feedback in the case of deviation. A detailed literature review of powder mixing 41 

and standard sampling procedures can be found in the work of Muzzio, Goodridge et al. (2003).  42 

Recent studies focussed on the in-line monitoring of food powder blending processes and in 43 

particular on the evaluation of blend uniformity. Process Analytical Technology (PAT) comprises a 44 

series of tools for designing and controlling manufacturing processes online and has been employed 45 

by several types of industries aiming at ensuring the final product quality and increasing the 46 

efficiency.The recent developments and main challenges to adopting PAT in the food industry have 47 

been discussed (Cullen et al., 2014). 48 

Near-Infrared spectroscopy (NIR) is the most popular PAT system adopted as an inline method to 49 

monitor the powder blending process. Radiation in the NIR frequency range hits the sample and 50 
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provides spectra containing information on molecular absorption of overtones and combination bands 51 

(Burns and Ciurczak, 2008). These spectra used to be difficult to interpret since a single band may 52 

result from several combinations of fundamental and overtone vibrations, but progress in 53 

chemometric tools now makes it easier to decode spectra, relate them to sample properties and 54 

recognise scatter effects (Reich, 2005). The first industrial applications of NIR spectroscopy were in 55 

the 1960s with the work of Norris and Hart (1963) who measured the moisture of agricultural 56 

products. From then on, NIR spectroscopy gained importance in industry especially because it allows 57 

monitoring and controlling the process in real time, without being invasive.  58 

Mixing time has been assessed for different blending processes: for instance, NIR probes were 59 

applied to a modified V- blender (Sekulic et al., 1996), a Nauta mixer (Berntsson et al., 2002) and a 60 

lab-scale blender (Blanco et al., 2002). Further applications can be found in the work of Blanco, 61 

Cueva-Mestanza et al. (2012) which provided a good review of blending time assessment and a 62 

detailed comparison of the different methods and pre-treatments. Given the great success of NIR in 63 

estimating the end time of powder blending, this technique was also employed to monitor and 64 

determine the end time of other processes. For instance, NIR was applied to a fluid bed granulation 65 

(Alcalà et al., 2010), a red peony root extraction (Wu et al., 2012) and a pan tablet coating process 66 

(Möltgen et al., 2012). All these studies proved the feasibility of NIR as an inline instrument to 67 

monitor the production and optimise the mixing time. Other studies focussed their attention on the 68 

optimisation of the parameters to obtain more accurate results. It was demonstrated that multiple 69 

sampling points provide for accurate and precise estimation of mixing end points (El-Hagrasy et al., 70 

2001, Scheibelhofer et al., 2013). Critical factors affecting powder blending, such as humidity, 71 

component concentration, blender speed, particle size and powder density were identified (El‐Hagrasy 72 

et al., 2005). The effects of temperature and moisture content on the dehydration behaviour of 73 

different materials were studied (Räsänen et al., 2003).  74 

With this study the aim is to advance the field by establishing the optimal pre-treatment 75 

combination and investigating the effects of the mixture physical properties on the results. 76 

Specifically, the main purpose is to evaluate the influence of the distributions of the components and 77 

the particle size on the results and on the choice of the pre-treatment. The study subsequently also 78 
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aims to optimise the mixing time of food powder blends. Analyses were repeated using two different 79 

methods in order to verify the assumption that the effects of the physical properties and of the pre-80 

treatments were not depending on the algorithm employed. Homogeneity analyses in this way will be 81 

tailored depending on the specific product and its properties. This will increase the accuracy of the 82 

analyses and provide a more reliable result. This paper thus describes how with deep process 83 

understanding, sophisticated measurement and appropriate data pre-treatment, the approach to 84 

assessing powder homogeneity in food mixing using NIR can be further improved. 85 

2 Materials and methods 86 

2.1 Materials 87 

The formulation of the materials used in this study cannot be revealed due to industrial confidentiality 88 

reasons, but all the information required to place the research advances outlined in context and to 89 

underpin the justifications are described.  90 

Bread and confectionery powder mixtures aimed at the bakery market were analysed in this study; the 91 

main components were flour, sugar, gluten and salt. Three different products were taken into 92 

consideration: 93 

• Product A: a blend with a narrow particle size distribution and more than one main 94 

component; 95 

• Product B: a blend with a narrow particle size distribution and one main component that 96 

counts for more than 90% of the mass; 97 

• Product C: a blend with a broad particle size distribution and more than one main component. 98 

Figure 1 shows histograms with particle sizes of Product A and Product C and provides the mass 99 

percentage for each component. Product A component dimensions range from 0.1 mm to 0.5 mm and 100 

thus the size distribution is narrow. However, Product C has a broad particle size distribution; from a 101 

minimum value of 0.09 mm to a maximum of 10 mm. Dimensions thus vary by more than two 102 

magnitudes. Mass percentages of Product B components are 93.22% , 5.08% and 1.71%. 103 
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2.2 Instrumentation 104 

The experiments were performed using two conical screw mixers, each one equipped with a diffuse 105 

reflectance fibre-optic probe. The fibre optic probe was installed on a side of the vessels at about 1.5 106 

m from the bottom, which resulted to be the best physical location. The probe position is a 107 

compromise between being sufficiently low in the vessel so as to scan blends at the starting of the 108 

material loading phase, but not too low to prohibit installation welding requirements which need to be 109 

undertaken from the inside of the vessel. Both blenders have a nominal capacity of 4000 l, are 3.52 m 110 

high and probes are installed on a side of the vessel at about 1.5 m from the bottom. The screw orbit 111 

arm rotates with a speed of 1.2 rpm, while the screw itself rotates at 70 rpm and at a distance of 5 mm 112 

from the vessel side, so guaranteeing the glass probe cleanliness and avoiding powder remaining stuck 113 

on it. Figure 2 shows the configuration of the conical screw mixer and how the NIR probe is 114 

connected to the blender.  115 

The fibre optic NIR heads contain two tungsten light sources which illuminate the sample. Scattered 116 

light is collected by a thermo-electrically cooled InGaAs detector and guided via a 60 m long fibre 117 

optic cable to the Bruker Matrix-F FT-NIR spectrometer. The probe outer diameter is 12.5 cm while 118 

the nominal sampling diameter is 10 mm, which corresponds to a measurement area of 0.78 cm2. 119 

Spectral data were collected using OPUS software version 7.0 and analysed with Matlab version 120 

R2014a. The spectral resolution was 16 cm-1 and frequency region ranged from 10000 cm-1 to 4600 121 

cm-1 (1000 nm – 2174 nm), resulting in 700 data points per sample. The sampling frequency was set 122 

to 20 scans per spectrum and the total time between each spectrum was approximately 31 seconds. 123 

2.3 Methods 124 

Spectra were collected continuously during the whole production time from the point of loading the 125 

first ingredient until the process was stopped. The fundamental assumption of the approach is that, 126 

when the spectra are consistent and multiple spectral samples overlap each other, homogeneity has 127 

been achieved. To support this assumption, off-line NIR probe tests were undertaken considering 128 

known well-mixed ingredients, where the formulation was changed to test sensitivity, confirming that 129 
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concentration changes were apparent in the NIR signal. In addition, samples of the batches monitored 130 

were also test baked and they all performed as expected, proving that their homogeneity levels were 131 

sufficient to meet the product specifications. However, given that spectra are subject to noise, data 132 

first need to be pre-treated before the analysis. Two methods were investigated to establish spectra 133 

overlap: “Conformity Index” and “Standard deviation of the Moving Block Standard Deviation 134 

(MBSD)”. 135 

2.3.1 Spectral pre-processing  136 

When dealing with solid samples, the data collected is largely influenced by light scattering: the Near-137 

Infrared light beam when hitting the powder sample is partially deflected by the solid particles 138 

causing differences in the effective path length that in turn lead to significant variations in spectra. 139 

Scattering effects are more likely witnessed in case of uncontrollable physical variations such as non-140 

homogeneous distribution of the particles, changes in refractive index, particle size distribution, 141 

sample packing/density variability and sample morphology (Huang et al., 2010). Several pre-142 

treatments algorithms are available to remove scattering and in this study the most frequently applied 143 

were considered. Since homogeneity analyses involve spectra belonging to different production 144 

phases, and thus to different composition, only pre-treatments employing independent references and 145 

isolating each spectrum from the dataset were considered.  146 

Derivatives 147 

Derivatives of spectra are calculated using the Savitzky-Golay algorithm. 1st and 2nd order derivatives 148 

are most common: 1st order removes baseline change from spectra, while 2nd order also eliminates 149 

linear trends across the spectra (Rinnan et al., 2009). Derivatives are very good at enhancing 150 

differences between spectra and differentiate the overlapping signature, but they also increase noise. 151 

Detrending 152 

Detrending subtracts a polynomial fit from the original spectra in order to correct the baseline (Golic 153 

and Walsh, 2006). The resulting spectrum is given by: 154 

��� = ����	 − ��
 + ����  155 
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where XDT is the spectrum corrected with detrending, Xorig is the original spectrum, a0 and a1 are 156 

polynomial coefficients and λ is the wavelength. 157 

Normalisation 158 

The same weight is given to all the absorbances: each spectrum is in fact normalised to a length of 1 159 

by dividing it by the Euclidian norm (Rinnan et al., 2009). 160 

����� = �����
�∑������� �

  161 

where Xnorm is the spectrum normalised and Xorig is the original spectrum. 162 

Standard Normal Variate (SNV) 163 

SNV normalises each spectrum to zero mean and unit variance by subtracting the mean of each 164 

spectrum and dividing by its standard deviation σ (Rinnan et al., 2009). 165 

��� = �����!�"#$%
&   166 

where XSNV is the spectrum corrected with SNV, Xorig is the original spectrum, Xmean is the average 167 

value of the spectrum to be corrected and σ is the standard deviation of the sample spectrum. 168 

2.3.2 Conformity Index 169 

The Conformity Index (CI) was calculated as the difference between every single spectrum acquired 170 

and the target spectrum referred to the homogeneous blend; then this difference was weighted by the 171 

corresponding standard deviation σ on the respective wavelength.  172 

'() = *+,-./0	20./)3),5 − 	.0/6,.	*+,-./72
8)  

The Conformity Index has been used in previous studies to test the identity of the product and check 173 

potential unconformities (Bodson et al., 2006, Pestieau et al., 2014). The result is a second matrix 174 

where every column represents the difference between a single spectrum and the target one; for every 175 
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column the maximum values were calculated in order to create the vector describing the homogeneity 176 

trend. 177 

Target spectrum has to be representative of the finished product, hence spectra were collected at the 178 

production end of multiple batches of the same powder blend and then averaged. All batches were 179 

manufactured following the same production instructions: the mixing screw was activated at the 180 

process start and raw materials are manually loaded into the vessel by operators while the screw is 181 

rotating. Then when the loading phase is over, the screw is left rotating for a time which is specific for 182 

every product and based on experience and is considerably in excess of what is required to attain 183 

complete mixing. The number of the spectra included varied depending on the production frequency 184 

and thus on the data availability. 50 spectra were used for Product A, 40 spectra for Product B and 185 

100 spectra for Product C. 186 

2.3.3 Standard deviation of Moving Block Standard Deviation (MBSD) 187 

The standard deviation was calculated in both the wavelength and time domains. Initially the standard 188 

deviation was calculated for every group of three consecutive spectra in the wavelength domain, so 189 

forming the Moving Block Standard Deviation (MBSD) matrix. The standard deviation was then 190 

calculated for each individual wavelength and the final vector obtained showed how spectra changed 191 

over time (Sekulic et al., 1996). 192 

The main advantage of MBSD is that it is calibration-free and thus it does not require a reference 193 

spectrum. Hence analyses can be performed with no need of previous studies (Momose et al., 2011).  194 

A block of three spectra in MBSD was found to be the optimal size after investigating how the block 195 

dimension could impact on the results.  196 

3 Results and discussion 197 

In all the experiments the change of spectra over time was observed, eventually converging to the 198 

steady state spectrum (see the example in Figure 3). The green spectra represent the beginning of the 199 

production, when the blend was still under the level of the probe. The characteristic flat shape is due 200 
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to the fact that what is scanned in this phase is only the air present in the mixer. As air does not 201 

contain any organic component, no relevant peaks can be observed in its spectra, therefore giving a 202 

flat shape. As soon as the probe starts getting covered by the powder mixture, the spectra begin to 203 

show a few peaks. This is represented by the blue spectra. The position of the peaks is related to the 204 

different molecular groups, while the height of peaks depends on the concentration. Blue spectra are 205 

shown to change over time indicating the composition is changing. In fact, during the process 206 

different ingredients are added and blends are continuously mixed, leading to different powders being 207 

scanned by the NIR probe. Spectra are seen to start to overlap after a certain time, as illustrated by the 208 

red spectra. Since each sample of a given composition and concentration is uniquely identified by a 209 

spectrum, the overlap demonstrates that samples of equal composition and concentration are being 210 

scanned. As the powder is still being mixed by the screw, scans resulting in a near identical signal are 211 

only possible if all the powder inside the mixer has the same concentration, thus indicating the blend 212 

is homogeneous. Mixing time is therefore determined by the time it takes for the spectra to overlap 213 

with each other and a steady state fully mixed spectrum is reached. Both methods, “Conformity 214 

Index” and “Standard deviation of MBSD”, were applied to estimate this mixing time. Initially the 215 

influence of pre-treatments on the calculation of mixing time was studied; subsequently it was 216 

assessed whether the results of these homogeneity studies was affected by the physical properties of 217 

the powder blend. The effect of component distribution was evaluated comparing results obtained for 218 

Product A and B, while particle size distribution was studied by investigating the different effects on 219 

Product A and C. 220 

3.1 Conformity Index 221 

The entire blend run was analysed employing different pre-processing techniques. Analyses were 222 

repeated for 20 different batches to verify the reproducibility of the results. Blending profiles of 223 

Conformity Index for Product A are shown in Figure 4.  224 

Variations in profiles were observed when using pre-treatments, demonstrating the important role 225 

of pre-processing algorithms in the estimation of mixing time. However, for all the experiments, an 226 

overall qualitative behaviour was observed for four phases: 227 
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1) 1st stationary phase: the profile is stable over time and its highest value is recorded. Powder is still 228 

under the level of the probe and NIR is scanning only air which is very different from the final 229 

powder blend due to both composition and state of matter. When loading the ingredients inside 230 

the vessel, powder starts to disperse in the air phase, but not enough to determine any variation in 231 

composition. The green spectra shown in Figure 3 represent this phase; 232 

2) Decreasing phase: the CI suddenly decreases due to the powder approaching the probe level. NIR 233 

starts scanning a powder mixture which is closer in composition and state of matter to the final 234 

powder blend compared to the air phase. Referring to Figure 3, this phase illustrates the passage 235 

from green to blue spectra; 236 

3) Oscillations: the profile changes over time as a consequence of the variation in composition 237 

during the production process. Spectra being scanned in this phase might present different peaks 238 

due to new ingredients loaded into the vessel. The continuously rotating screw moves the powder 239 

through the whole mixer, causing changes in composition even when loading of ingredients is 240 

completed. Blue spectra shifting over time in Figure 3 describe the phenomenon of oscillations; 241 

4) 2nd stationary phase: the profile finally approaches the zero value and remains stable over time. 242 

When spectral differences are no longer recorded, the scanned mixture has the same composition 243 

and concentration of the ideal mixture. The stationary character of the results means the blend 244 

composition is stable over time, hence it can be assumed that full homogeneity is reached. Red 245 

spectra overlapping to each other in Figure 3 represent the 2nd stationary phase. 246 

Mixing time is thus given by the starting point of the 2nd stationary phase, the sensitivity of detection 247 

of which may change depending on the pre-treatment chosen. It is therefore of vital importance to 248 

understand the effect of the different pre-treatments.  249 

As can be seen in Figure 4, a plot of raw data (a) differs enormously from the ones obtained 250 

following any pre-treatment: there is a peak in the 1st stationary phase and decreasing phase is soon 251 

followed by 2nd stationary phase (starting at minute 4 in Figure 4(a)). Since it is unlikely that the blend 252 

reaches the homogeneity soon after the powder mixture reaches the level of the probe, it is concluded 253 

that raw data do not describe the process satisfactorily. Scattering effects in fact dominate when the 254 
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blend is under the level of the probe as a relatively small quantity of powder particles is dispersed in 255 

the gas phase and NIR light deviates from the original path length. All pre-processing algorithms 256 

studied (first and second derivatives, normalisation, SNV, and detrending) contribute to removing 257 

scattering effects and to make the homogeneity starting point more distinct (Figure 4 b-f).  258 

In order to investigate the effect of component distribution on choosing the right pre-treatment, the 259 

same study was performed on Product B, which presents a very small variability given that more than 260 

90% of the product is represented by the same component. The Conformity Index was evaluated for 261 

18 different batches of Product B. Figure 5 presents the blending run profiles obtained for Product B. 262 

None of the pre-treatment methods studied were able to reliably estimate mixing time due to the 263 

oscillation phase not being accentuated sufficiently and thus being confused with the 2nd stationary 264 

phase. Changes in composition are not easy to detect as a consequence of the reduced component 265 

distribution of the product. The Conformity Index was shown not to be a suitable method for 266 

measuring mixing time of blends with concentrations of a single component higher than 90% given 267 

the lack of variability in the mixture.  268 

In order to study the effect of particle size distribution on the pre-treatment choice, Conformity 269 

Index analyses were performed on Product C. Calculations were repeated for 29 different batches of 270 

Product C and an example of the results obtained is shown in Figure 6. The first notable difference 271 

compared with profiles of Product A is the presence of high peaks during the oscillation phase at 11 272 

minutes. Before this all the ingredients in the vessel had a similar nature and a similar particle size. 273 

Soon after the introduction in the mixer of particulates almost 100 times larger than the other 274 

components, the blend became more heterogeneous presenting parts of only fine powder and parts of 275 

only particulate. Peaks at 11 minutes represent the variation when scanning the different parts of the 276 

blend (fine powder and particulate). After these few peaks, the oscillation phase returns to that 277 

exhibited prior to the addition due to the continuous movement of the screw acting to mix all the 278 

ingredients (redistributed fine powder and particulate making the mixture homogeneous). Pre-279 

treatments such as SNV and Detrending show slight oscillations in the 2nd stationary phase, making 280 

the homogeneity starting point less clear. Better results were achieved by derivatives, especially 281 

second derivative, as the 2nd stationary phase was flatter and it was more evident when the oscillation 282 
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phase ends. Due to the greater variability introduced by the increase in particle size distribution, the 283 

system was more heterogeneous and differences in spectra were enhanced. Pre-processing such as 284 

SNV accentuated these differences even when the mixture was homogeneous: the stationary phase 285 

was more oscillatory and it was more difficult to clearly assess mixing time. Derivatives on the other 286 

hand were less sensitive to these variations and still clearly showed the start of the 2nd stationary 287 

phase, so defining the mixing time. Since Product C is characterised by a broad particle distribution, 288 

in order to assess its homogeneity, the distribution of particle sizes cannot be ignored. Techniques 289 

such as SNV and Detrending were actually born to reduce particle size effects (Zeaiter et al., 2005) 290 

hence they might be less suitable to analyse products with broad particle distribution. Derivatives, on 291 

the other hand, retain the effects of particle size contained in a NIR spectrum. These results were 292 

confirmed by a previous study determining the particle size distribution of a solid product: calibration 293 

models built by pre-treating data with SNV achieved higher errors than by pre-treating data with 294 

second derivative (Blanco and Peguero, 2008). Table 1 shows mixing time results for Product A and 295 

Product C obtained using different pre-treatments.  296 

Results obtained analysing blending run profiles using different pre-treatment techniques 297 

demonstrated the importance of data pre-processing in the Conformity Index studies. In addition, 298 

considering different product categories demonstrated how the choice of pre-treatment actually 299 

depends on the properties of the powder blend. In order to set up a general method valid for every 300 

product, the best option is to adopt a combination of pre-treatments, rather than relying on just one 301 

technique, in order to obtain all the advantages provided by each algorithm. Normalisation was taken 302 

into consideration as for all the experiments it proved to be best for the removal of initial scattering 303 

effects which cause unwanted peaks after the 1st stationary phase. On the other hand it also flattens 304 

oscillations making mixing time less evident, so other pre-treatments able to accentuate differences 305 

need to be used together with Normalisation. Two combinations were studied: Normalisation + SNV 306 

+ Detrending and Normalisation + 2nd derivative. Results are presented in Figure 7. Product A mixing 307 

time can be clearly estimated using both combinations (Figure 7 (a), (b)), but homogeneity of Product 308 

B cannot be analysed properly by any of the combinations employed (Figure 7 (c), (d)). The blend 309 

appears homogeneous as soon as the powder reaches the probe (minute 12), due to the extreme 310 
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component distribution. Product C mixing time can be estimated accurately using Normalisation + 311 

derivative, but not by Normalisation + SNV + Detrending (Figure 7 (e), (f)). The large variation in the 312 

particle size distribution of Product C is in fact responsible for the increase in variability, and SNV 313 

and Detrending accentuate these differences excessively, causing oscillations also in the 2nd stationary 314 

phase. Table 2 provides mixing time results for Product A, B and C obtained using pre-treatments 315 

combinations of Normalisation+SNV+Detrending and Normalisation+1st derivative. 316 

When analysing and test baking production samples, the time provided by 317 

Normalisation+SNV+Detrending and Normalisation+1st derivative for Product A (33.25 minutes) 318 

was estimated to be the mixing time of the batch analysed, which resulted in saving 26% of the total 319 

time the product was mixed (45 minutes). While for Product C, time provided by Normalisation+1st 320 

derivative (46.67 minutes) was estimated to be the mixing time of the batch analysed, so saving about 321 

22% of the total time the product was mixed (60 minutes). 322 

Normalisation + SNV + Detrending gives all the benefits provided by these three techniques: 323 

initial scattering is removed, the oscillation phase is emphasised and the homogeneity starting point is 324 

clearly detectable. This combination can be generally used for products with average or narrow 325 

component distribution, but not for products with a single component concentration higher than 90%. 326 

For this kind of material, represented here by Product B, the Conformity Index cannot be used reliably 327 

to estimate the mixing time. Concerning particle size distribution, the preference is to employ 328 

Normalisation + derivative as differences would be accentuated too much by SNV-Detrending due to 329 

the high variability involved in these products. 330 

3.2 Standard deviation of Moving Block Standard Deviation (MBSD) 331 

Following analysis using the CI, the entire blend run was re-analysed with MBSD and different 332 

pre-processing techniques in order to evaluate their effects. The same batches used to test the validity 333 

of Conformity Index were further analysed using MBSD. Again the plots can be generally divided in 334 

four parts, looking very similar to those seen for the Conformity Index. The only difference is given 335 

by the high peak replacing the decreasing phase: standard deviation comes through a big rise due to 336 

the significant change in composition recorded when powder approaches the probe level. Mixing 337 
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time, as with “Conformity Index” analysis, corresponds to the starting point of the 2nd stationary 338 

phase. 339 

Products A, B and C were analysed and compared in order to investigate the effect of component 340 

distribution and particle size distribution when pre-treatment approaches are applied with the Standard 341 

deviation of MBSD. Blending profiles of Standard deviation of MBSD for Products A, B and C using 342 

the pre-treatment combinations Normalisation + SNV + Detrending and Normalisation + 1st derivative 343 

are compared in Figure 8. 344 

The same pre-treatment effects as found for the CI were found with MBSD, despite the two methods 345 

focusing on different aspects. Product A was well described by both Normalisation + SNV + 346 

Detrending and Normalisation+1st derivative as can be seen by comparing the plots in Figure 8 (a) and 347 

(b): same mixing time was estimated. Product B could not be analysed employing any of the pre-348 

treatments or their combinations (Figure 8 (c) and (d)), and Product C could only be analysed using 349 

Normalisation + derivative (Figure 8 (e) and (f)). 350 

3.3 Control program 351 

A program was developed to automate the homogeneity assessment into the factory control 352 

systems in order to provide on-line indications of the mixing extent for the production process and 353 

ultimately move to in-line control. A model for Conformity Index was built using the specific 354 

application in OPUS software; for every product the target spectra were loaded and the best pre-355 

treatment combination and frequency range were specified. A lower limit of maximum Conformity 356 

Index combined with a time under the limit criterion was used to indicate homogeneity. A script was 357 

written using a text-based programming language in OPUS: the program includes one main program 358 

and a sub-program that is called by the main program to calculate the time spent below the lower limit 359 

of CI. The control program starts when the loading phase is over: the main script is initially run and 360 

spectra are continuously collected during the mixing phase. For every scan, CI is calculated using the 361 

model previously built and a check is made to ascertain whether the value is below the lower limit 362 

previously set. One possible practical issue arises due to the oscillatory nature of the signal as a 363 

consequence of mixing before homogeneity is achieved. As homogeneity approaches, the signal may 364 
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fall and rise repeatedly around the threshold. To avoid this issue, the program continues running until 365 

consecutive values of CI under the lower limit are obtained for a specified time window. If the CI falls 366 

below the limit and subsequently rises above the limit before the time limit criterion is satisfied the 367 

blend cannot be considered homogeneous and the time counter is reset. This time was set to a value of 368 

5 minutes. This was determined through experience and behaviour of the historical batches. Once the 369 

signal remains below the threshold for the specified time, in this case 5 minutes, the program is 370 

stopped and a message is displayed on the screen indicating that the blend is homogeneous and the 371 

process can be stopped.  372 

A possible situation could arise if the signal is noisy in that it may repeatedly fail to reach the time 373 

criterion due to signal noise. For practical operational reasons, a limit is set based on existing over 374 

cautious settings and, if 15 minutes has passed, a message is displayed saying that homogeneity 375 

cannot be established.  376 

Applying this control method to the data of the batches previously produced, it was evaluated that 377 

up to 15 minutes of unnecessary blending and up to a third of the total batch production time can be 378 

saved. This can lead to an increase in the productivity of about 33% with consequent benefits on the 379 

profits.  380 

4. Conclusions 381 

The Conformity Index and Standard deviation of Moving Block Standard Deviation (MBSD) both 382 

demonstrated their capability to determine homogeneity and they indicated the same mixing time. 383 

Blending run profiles are quite different, but both can be divided in four parts: the last part being a 2nd 384 

stationary phase whose beginning indicates the homogeneity starting point.  385 

Raw data were not able to accurately determine the mixing time due to scattering effects obscuring 386 

important information. Blending profiles generally improved by pre-treating data, in particular 387 

derivatives were preferred for products with broad particle size distribution, as oscillations were less 388 

enhanced and starting of 2nd stationary phase was more evident. Derivatives indeed retain the effects 389 

of particle size contained in the spectra which need to be considered to assess the homogeneity of 390 

products with broad particle size distribution. Neither the Conformity Index nor the Standard 391 
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deviation of MBSD were able to provide satisfactory estimates of the mixing time for products 392 

characterised by a very narrow component distribution. These products show a high concentration of 393 

one of the components (>90%) and none of the pre-treatment methods used nor their combinations 394 

appeared to improve the mixing time predictions. Other methods need to be found to assess 395 

homogeneity in products with a very narrow component distribution. 396 

The study was performed using one type of mixer and three materials and it provides a general 397 

guidance on the choice of pre-treatment based on particle size distribution and component distribution 398 

of the material. Employing a different blender will surely affect the mixing time results, but should 399 

not modify the target spectrum hence differences in mixing time evaluation process for the same 400 

material should not be relevant and same pre-treatment should be applied. On the other hand, the use 401 

of a different powder blend requires a prior investigation of the best pre-treatment before determining 402 

the mixing time since particle size distribution and component distribution do not fully describe the 403 

material. The amount of time and effort required to optimise pre-treatment mainly depends on the data 404 

available, hence on the production frequency of the material under investigation. Mixing time 405 

evaluation of products frequently manufactured will require a shorter time and a smaller level of 406 

effort. The cost of operation will increase in an initial phase mainly due to more resources needed to 407 

perform the analysis. However, after the model assessing mixing time has been built, this would only 408 

require maintenance and operation costs will decrease. As the method is deployed in the factory, 409 

experience will determine the breakeven point balancing increased initial resource against long term 410 

mixing time savings. Such financial considerations are confidential to our collaborating company but 411 

suffice to say role out of the technology is ongoing. 412 

This study revealed the still unexplored effects of particle size distribution and component 413 

distribution on the choice of the pre-treatment so representing a further step in the evaluation of 414 

mixing time using Near-Infrared spectroscopy. Awareness of these properties and their effects allows 415 

optimisation of blending time and helps reducing the risk of under/over-mixing. 416 
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Histograms with particle sizes of Product A (a) and Product C (b). Mass percentages of each components are 
reported at the bottom of the histogram. Product A components dimensions are similar to each other, while Product 
C presents a larger variability. 
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Conical screw mixer configuration. (a) Configuration of the conical screw mixer. (b) Connection of the probe to the 

blender.  
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Example of spectra collected during the production phase. Green spectra are recorded when the powder is still under 

the level of the probe. Blue spectra show powder reaching the level of the probe. Red spectra represent the 

homogeneous mixture. 
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Profiles of Conformity Index calculated for Product A. Data were first pre-treated using different pre-processing 

techniques, and then Conformity Index was calculated. The vertical line represents homogeneity starting point 

according to the different pre-treatments. 
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Blending profiles of Conformity Index calculated for Product B. Data were first pre-treated using different pre-

processing techniques, and then Conformity Index was calculated.  
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Blending profiles of Conformity Index calculated for Product C. Data were first pre-treated using different pre-
processing techniques, and then CI was calculated. The vertical line represents homogeneity starting point.  
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Comparison of pre-treatment combinations for Products A, B and C. Data were first pre-treated using 
Normalisation+SNV+Detrending and Normalisation+2nd derivative, and then Conformity Index was calculated. The 
vertical line represents the homogeneity starting point. Where the vertical line is missing it was not possible to 
determine the mixing time. 
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Comparison of pre-treatment combination for Products A, B and C in Standard Deviation of MBSD analyses. Data 
were first pre-treated using Normalisation+SNV+Detrending and Normalisation+1st derivative, and then Standard 
deviation of MBSD was calculated. The vertical line represents homogeneity starting point. Where the vertical line is 
missing it is because it was not possible to determine mixing time. 
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Normalisation+1st derivative 
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Product A [min] 4.08 25.08 30.33 25.08 25.08
Product C [min] 20.42 47.25 41.42 47.83 -

Table 1: Mixing time results for Product A and Product C using different pre-treatments
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A B C
Normalisation+SNV+Detrending 33.83 - -
Normalisation+1st derivative 33.83 -  46.67

Table 2: Mixing time results for Product A, B and C using pre-treatments combinations of 
Normalisation+SNV+Detrending and Normalisation+1st derivative
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Figure 1 (a) Figure 1(b)

Figure 1: Histograms with particle sizes of Product A (a) and Product C (b). Mass percentages of each components are reported at the bottom of the histogram. 
Product A components dimensions are similar to each other, while Product C presents a larger variability.
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Figure 2(a) Figure 2(b)

Figure 2: Conical screw mixer configuration. (a) Configuration of the conical screw mixer. (b) Connection of the probe to

the blender.
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Figure 3: Example of spectra collected during the production phase. Green spectra are recorded when the powder is 
still under the level of the probe. Blue spectra show powder reaching the level of the probe. Red spectra represent the 
homogeneous mixture. 
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Figure 4 (c) Second derivative Figure 4 (d) Detrending

Figure 4 (e) Normalisation Figure 4 (f) SNV

Figure 4: Profiles of Conformity Index calculated for Product A. Data were first pre-treated
using different pre-processing techniques, and then Conformity Index was calculated. The
vertical line represents homogeneity starting point according to the different pre-treatments.
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Figure 5 (c) Second derivative Figure 5 (d) Detrending

Figure 5 (e) Normalization Figure 5 (f) SNV

Figure 5: Blending profiles of Conformity Index calculated for Product B. Data were first pre-treated
using different pre-processing techniques, and then Conformity Index was calculated.
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Figure 6 (c) Second derivative Figure 6 (d) Detrending

Figure 6 (e) Normalization Figure 6 (f) SNV

Figure 6: Blending profiles of Conformity Index calculated for Product C. Data were first 
pre-treated using different pre-processing techniques, and then CI was calculated. The 
vertical line represents homogeneity starting point.
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Figure 7 (c), Product B, Norm-SNV-Dt Figure 7 (d), Product B, Norm-First derivative

Figure 7 (e), Product C, Norm-SNV-Dt Figure 7 (f), Product C, Norm-First derivative

Figure 7: Comparison of pre-treatment combinations for Products A, B and C. Data were first pre-treated
using Normalisation+SNV+Detrending and Normalisation+2nd derivative, and then Conformity Index was
calculated. The vertical line represents the homogeneity starting point. Where the vertical line is missing it
was not possible to determine the mixing time.
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Figure 7: Comparison of pre-treatment combinations for Products A, B and C. Data were first pre-treated
using Normalisation+SNV+Detrending and Normalisation+2nd derivative, and then Conformity Index was
calculated. The vertical line represents the homogeneity starting point. Where the vertical line is missing it
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Figure 8 (a), Product A, Norm-SNV-Dt Figure 8 (b), Product A, Norm-First derivative

Figure 8 (c), Product B, Norm-SNV-Dt Figure 8 (d), Product B, Norm-First derivative

Figure 8 (e), Product C, Norm-SNV-Dt Figure 8 (f), Product C, Norm-First derivative

Figure 8: Comparison of pre-treatment combination for Products A, B and C in Standard Deviation of MBSD
analyses. Data were first pre-treated using Normalisation+SNV+Detrending and Normalisation+1st derivative, and
then Standard deviation of MBSD was calculated. The vertical line represents homogeneity starting point. Where
the vertical line is missing it was not possible to determine mixing time.
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Figure 8 (b), Product A, Norm-First derivative

Figure 8 (d), Product B, Norm-First derivative

Figure 8: Comparison of pre-treatment combination for Products A, B and C in Standard Deviation of MBSD
analyses. Data were first pre-treated using Normalisation+SNV+Detrending and Normalisation+1st derivative, and
then Standard deviation of MBSD was calculated. The vertical line represents homogeneity starting point. Where
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Highlights 

• Novel approach using Near Infrared spectroscopy to optimise mixing time is proposed 
• Particle size and component distribution influence the pre-treatment choice 
• Derivatives preferred for products with broad particle size distribution 
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