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Abstract—Bayesian networks are known for providing an
intuitive and compact representation of probabilistic infor-
mation and allowing the creation of models over a large
and complex domain. Bayesian learning and reasoning are
nontrivial for a large Bayesian network. In parallel, it is
a tough job for users (domain experts) to extract accurate
information from a large Bayesian network due to dimensional
diff culty. We def ne a formulation of local components and
propose a clustering algorithm to learn such local components
given complete data. The algorithm groups together most inter-
relevant attributes in a domain. We evaluate its performance
on three benchmark Bayesian networks and provide results in
support. We further show that the learned components may
represent local knowledge more precisely in comparison to the
full Bayesian networks when working with a small amount of
data.

I. INTRODUCTION
Bayesian network (BN) [1] is a directed acyclic graph

where nodes represent variables (or attributes) of a subject
of matter, and arcs between the nodes describe the causal
relationship of variables (or attributes). It is a tedious job for
domain experts to construct a BN from domain knowledge.
Instead, they resort to possible methods for learning the BN
if data is available in the domain. More about the specif c
methods is discussed and summarized in an experimental
comparison regarding their learning ability and capabil-
ity [2]. It shows that building a large Bayesian network is
still a piece of tough work in a complex domain. The large
domain presents much diff culty for the determination of
causal relationships among the variables. Matters are more
serious when there are relatively few data since the data are
insuff cient to structure a reliable and accurate network.
On other aspect, even having a large BN that has been

successfully learned from the data, users (or domain ex-
perts) still f nd it hard to analyze the BN due to familiar
dimensional diff culty. Some users are often lost in a large
and complex network. More often, they choose to study
each portion of the large BN that is a small size of BN
representing specialized local domain knowledge. By doing
so, they would not be interfered by other irrelevant (or
weakly relevant) variables in the large network. In some
cases, they may be interested in a particular portion hereby
it is not necessary to learn a full BN from the data. For

instance, some users are only interested in either the left
ulnaris or right ulnaris in the MUNIN network (the full
network consists of thousands of nodes) [3]. It would be
more useful and eff cient to present them the specif ed
portion of the MUNIN network instead of exposing them
the full network that must be learned using computation
intensive learning techniques. Hence, the twin problems,
limitations of conventional learning methods and complex
representation of a full network, arise of learning a small
portion of network that would provide a more proper way
on understanding a large BN.
In this paper, we f rst def ne a portion of BN as a local

component, and then propose a clustering algorithm to learn
local components from the data. We discuss two properties
of local components that project a suff cient representation
of local domain knowledge. The property proposal makes it
possible to learn local components automatically from the
data.
We do not intend to learn the full BN, but propose to

f nd local components automatically in the learning process.
We inspire the clustering algorithm from the identif cation
of local structures in a general complex network [4], and
adapt the star discovering approach in the BN decomposition
learning algorithm [5]. The research on complex networks
ref ects that most network structures are not random and
most relevant nodes are close and reside in a neighboring
position. We may discover a hidden, but natural, local
structure from a constructed graph through the connectivity
analysis of networks.
Following the same vein, the clustering algorithm f rst

f nds a set of clusters from an initial dependency graph in
an iterative way. The dependency graph is an expansion
of a tree structure and is built directly from the data. It
structures most relevant variables in a regular way. Given the
detected cluster variables, the algorithm utilizes any of BN
learning approaches to construct the f nal local components
into small BNs. We show experimental results on three
benchmark networks and demonstrate the algorithm perfor-
mance regarding the learning and reasoning accuracy. More
importantly, we verify that the learned local component is
suff cient to represent local domain knowledge in a large
network.
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II. RELATED WORK

The idea of using small BNs to represent local domain
knowledge is not new on a large BN reasoning. Xiang [6]
provided an early piece work on multiply sectioned Bayesian
network (MSBN). The MSBN is a large BN that contains
a set of connected local BNs. Each local BN is formulated
carefully to model local knowledge so that an exact propaga-
tion is guaranteed in the large BN. Currently, an example of
MSBN is constructed manually by domain experts. Similar
work includes network fragments in multi-entity BN [7].
Another branch work proposed mixture component densities
to approximate BN so as to achieve tractable inference [8].
Most of the above work does not refer to data-driven
construction of BN.
Druzdzel [9] used a local model, called pICI model, to

improve the BN parameter learning whenever there are large
conditional probability tables. However, the local model is
formulated by partitioning a given network structure. We
also notice that local structures were examined to improve
the quality of learning BN structures [10]. It shows that
the learning requires fewer parameters while resulting in a
more complex network structure. In a parallel line, Eran
et al. [11] proposed a formulation of module in a large
BN for a special learning task. A module contains a set
of variables that exhibit similar behavior. More precisely,
the module variables must share the same parents and
conditional probability distribution, and the module may
not be equivalent to local models. The restriction makes it
possible for learning a large BN of thousands of variables.
One additional relevance is the k-modes algorithm on

the attribute clustering [12]. The algorithm is one of the
most eff cient methods on clustering attributes. Similar to
the k-means, it is subject to local optima due to a random
selection of initial modes. Current work shows that the star
discovering procedure outperforms the k-modes algorithm
in Bayesian domains [13]; thereby, we adapt the star dis-
covering procedure in this paper.

III. LEARNING LOCAL COMPONENTS

We start with the property of local components and move
to an approach for learning local components from data.

A. Local Components
A local component is a small size of Bayesian network

that represents local domain knowledge. A full Bayesian
network may contain several local components that are
disjoint or share a set of common nodes. To ease the
illustration, we denote a local component as B = {G, P}
where G = {V, E} is a directed acyclic graph having a
set of nodes V connected by directed arcs E 1, and P

is the probability distribution over V . Moreover, we need
some guideline to facilitate the learning of local components

1Later, we may abuse E for a set of undirected edges in other graphs.

from the data. Formally, a local component shall satisfy the
following two properties.
Property 1: Local Dependency. The variables within a

local component have a strong inter-dependency.
The dependency is weighted by a correlation function

such as mutual information [14]. Assume that the local
component Bi has the component center oi, the weight sum
is def ned: WBi =

∑
vj∈Vi/oi

woi,vj
. Given the complete

data D = (d1,l, · · · , dn,l) where di,l represents the sample
indexed by l for attribute di

2, we aim to f nd a set of local
components B = (B1, · · · , Bm) that maximize the weight
sum over the set of components:

∑
Bi∈B WBi .

Property 2: Suff ciency. A local component is suff cient
to learn local domain knowledge without querying other
components.
The second property examines the goodness of a local

component. The suff cient representation could be evaluated
by investigating a Markov blanket of component variables
and querying component variables given specif c evidences
in the local component. The Markov blanket of a variable
vi is the set consisting of the parents of vi, the children of
vi, and the variables sharing a child with vi [1]. Given its
Markov blanket, the variable vi is conditional independent
from other variables in a BN.
We notice that the f rst property points out the basic

principle for constructing a local component. The resulted
local components may expect to fulf ll the second property
partially. The two properties suggest our new algorithm in
the next section.

B. The Learning Algorithm
The main approach we propose in this paper is the

algorithm for learning local components. The basic idea
adopts mutual information between pairs of discrete random
variables as a correlation function in order to group variables
into a set of clusters. Then, a local component is learned
given cluster variables and domain data. The learning com-
ponent algorithm consists of three main phases: Capturing
Dependency, Clustering Variables, and Recovering Compo-
nents.
Prior to presenting the learning algorithm, we ex-

plain some denotations. We introduce a distance function,
Dist(vi, vj), to measure the length between a pair of nodes,
vi and vj , in a graph. For instance, Dist(vi, vj) is equal to
1 if vi and vj are adjacent and linked by the edge ei,j . The
Deg(vi) function returns the degree of the node vi. The
algorithm is detailed in Fig. 1.
Phase 1. We construct and expand a maximum spanning

tree [15] to build an initial dependency graph (lines 1-
6). We use mutual information MI(vi, vj) to evaluate the
dependency between two variables vi and vj . The mutual

2In this paper, both attributes di in data and nodes or vertices vi in
graphs represent random variables in the domain. They are not further
distinguished.



Learning Local Components
Input: Data D = (d1,l, · · · , dn,l), θ
Output: B = (B1, · · · , Bm)

Phase 1: Capturing Dependency
1: Compute a complete graph CG = (V CG, ECG) with weights

W CG = (wCG
i,j = MI(vi, vj)|i, j = 1, · · · , n and i 6= j)

2: Construct a maximum spanning tree M = (V M , EM )
with weights W M

3: FOR each vi ∈ V M DO

4: Compute AW (vi) =

∑
vj∈V M wi,j

Deg(vi)
⊲ AW (vi): average

⊲ weight for vi

5: FOR each vi ∈ V CG DO
6: IF wCG

i,j > AW (vi) THEN
7: Add wCG

i,j and eCG
i,j into W M and EM respectively

Phase 2: Clustering Variables
8: WHILE V S 6= ∅ DO
9: FOR each vi ∈ V M THEN ⊲ Generate a star

⊲ Si = (V Si , ESi) with the weight sum W Si

10: Add vi into the set V Si ⊲ Initialize Si with
⊲ the star center oi = vi

11: Add vj into the set V Si iff Dist(oi, vj) ≤ 2
⊲ vj = (vj1 , vj2 |Dist(oi, vj1) = 1,
⊲ Dist(oi, vj2 ) = 2)

12: Add vh into the set V Si iff Deg(vh) = 1 and
Dist(vh, vj2) = 1

13: Add ei,j1 , ej1,j2 and eh,j2 into the set ESi

14: Compute the weight sum for Si:
W Si =

∑
(wi,j1 + wj1,j2 + wh,j2)

15: Find a cluster Ck←V Si iff Si = argmax
Si∈S

(W Si ∈W
S)

16: Remove star edges: EM←(EM − ei,j1) iff ei,j1 ∈ ESi

17: Compose a set of clusters C
∪
← Ck

18: V S←(V S −C)

19: IF |Ci∩Cj |

|Ci|
≥ θ THEN

20: Combine Ci and Cj , C←(C − Ci)

Phase 3: Recovering Components
21: FOR each Ci ∈ C THEN
22: Learn Bi using any BN learning method
23: Compose a set of local components B

∪
← Bi

Figure 1. The learning local component algorithm contains three phases.
The f rst phase outputs the dependency graph that is an expansion of the
maximum spanning tree. Subsequently, a set of clusters are discovered from
the graph and constructed into a set of local components.

information measures an average reduction in uncertainty
about vi that results from learning values of vj . We compute
MI(vi, vj) for all pairs of variables and build a complete
graph in which each edge ei,j connecting two variables,
vi and vj , has weight wi,j (or wCG

i,j )3 (line 1). Given the
complete graph, we build the maximum spanning tree M

using a modif ed version of the Kruskal’s algorithm [16]

3The superscript denotes the holder of variables such as a complete graph
CG, a maximum spanning tree M , and later a star Si, and is ignored if
the indication is already clear in the text.

(the original Kruskal’s algorithm for f nding the minimum
spanning tree sorts the weights increasingly instead of de-
creasingly) (line 2). The construction results in n− 1 edges
in the tree M .
The maximum spanning tree is the smallest graph that

optimally approximates the probability distribution between
the variables. However, some strong dependency may be
lost since the tree structure needs to be preserved in the
construction process. To retrieve such dependency, we ex-
pand the tree by adding more edges into the already built
tree M (lines 3-7). We compute the average weight AW (vi)
for every node vi in the tree. It is the ratio of the weight
sum of edges (wi,j connecting vi to its adjacent nodes vj

in M ) to vi’s degree (line 4). The average weight becomes
the lower bound when we are adding possible edges. We
consider all edges eCG

i,j that link vi to other nodes in the
complete graph CG. If the edge eCG

i,j has a larger weight
than the computed average weight, it is retrieved and added
into M (line 6-7). Consequently, the expansion ensures most
of the largely weighted edges to be kept for each variable
in the dependency graph. The resulted graph M contains
n nodes, V M = (v1, · · · , vn), and generally more than
n − 1 edges each of which is weighted by the mutual
information MI(vi, vj). The dependency graph captures the
most relevant connections among n variables.
Most computation occurs in constructing the complete

graph. The complexity takes the order of O(n2). For build-
ing the maximum spanning tree, we use an union-f nder
data structure and a sorted list in the modif ed Kruskal’s
algorithm and the complexity is in the order of O(n log n).
Phase 2. Given the resulted dependency graph, we group

the domain variables into a set of clusters. Each cluster
consists of a subset of domain variables that have strong
dependency. This phase is an iterative process on compos-
ing the set of clusters. Each iteration examines whether
the established clusters have already contained all domain
variables (line 8). In the beginning, we build n stars,
S = (S1, · · · , Sn). Each star is a graph, S = {V Si , ESi},
that contains nodes V Si and edges ESi connecting them
(lines 9-14). A star has the selected node vi as the star
center oi (line 10). Then, we expand the star by adding
two types of nodes: one is within the distance of 2 from
the star center oi(= vj) (line 11) and the other is a leaf
node(Deg(vh) = 1) connected to the nodes already included
in the star (line 12). For convenience, we denote the nodes
as vj1 and vj2 that are away from the start center with the
distances of 1 and 2 respectively. We choose the distance
value (Dist(vi, vj) ≤2) considering that vi has the largest
distance of two from other nodes vj within vi’s Markov
blanket. We include all potential nodes in a greedy way. In
addition, we compute the weight WSi for each star Si by
summing up all edge weights (line 14). The weight ref ects
the dependency among star variables.
We select the star as a cluster that has the largest weight



in the set of stars (line 15). Note that a cluster consists of
only nodes without edges. Once one star becomes the new
cluster, we remove edges ei,j1 from the dependency graph
M that connect the center of the elected star to its adjacent
nodes (line 16). This step is necessary since we need to
weaken the impact of the established cluster on the selection
of a new cluster in the next iteration. We do not remove
other star edges because they may connect cluster outliers
and relate to future clusters. The reduced dependency graph
enters a new iteration in which a new cluster emerges from
the selection of stars. The process terminates until all nodes
are exhaustively clustered.
Some of the established clusters may have a set of

overlapping nodes. We proceed to merge two clusters into
a larger one if any of them has at least a θ percentage of
common nodes (line 19-20). It was empirically found that
setting θ to 0.5 produced a reasonable amount of clusters,
and a setting of θ = 1 provided the highest number of
clusters. Formally speaking: Let |Ci| be the number of nodes
in clusters Ci, the percentage of common nodes between Ci

and Cj for |Ci| is at least θ iff |Ci∩Cj |
|Ci|

≥ θ.
The complexity of phase 2 is dominated by the iterative

construction of stars and cluster selection in each iteration.
Assume having k numbers of clusters built iteratively, we
need to take O(kn3) operations searching for all nodes
within a certain distance.
Phase 3. Each cluster has a subset of local domain

variables and will be constructed into a local component.
The second phase f nds most relevant variables for each local
component, and then we need to structure the variables in
the local component. Note that the expanded tree structure
(using the measurement of mutual information in the f rst
phase) is only utilized to f nd a set of clusters in the initial
dependency graph and will not function in this phase.
We use any of available BN learning methods to learn

each local component (line 22). It includes both the structure
and parameter learning. The structure learning links compo-
nent variables using directed arcs E while the parameter
learning provides conditional probability distributions P in
the local component. The complexity of this phase depends
on the selected learning technique. For example, regarding
the structural learning method, if the PC algorithm is used,
the complexity is in the order of O(mqr), where r is the
largest size of parents for a node, q is the largest component
size. In general q ≪ n, the complexity of learning local
components is trivial in comparison with learning the full
network.

IV. EXPERIMENTAL RESULTS

We take several benchmark networks to evaluate the
performance of the local component learning algorithm.
Three of them are simply described in Table 1. Table 1
depicts the number of variables for each domain and all
sample sizes.

Table I
DOMAINS, NUMBER OF VARIABLES AND DIFFERENT SAMPLE SIZES

USED IN THE EXPERIMENTS.

Domain |V | Sample Sizes

HeparII 70 210∼20K
Win95PTS 76 228∼20K
Andes 223 669∼20K

As for the suff ciency of local components, we demon-
strate that the algorithm learns an accurate structure of
local components representing local domain knowledge. It
shows that structures of local components are even more
representative, using the measurement of Markov blankets,
than the full network when working with a small sample
size. More importantly, we show local components response
quite well in the reasoning task when queries are proposed
within a single component.

A. Experiment 1: Structural Tests
The experiments compared both the local component and

the full BN structure learned from the same sample size
against the true BN 4. We use the PC algorithm to learn
both the local component (phase 3 in Fig. 1) and the full
BN structures. Note that we learn the full BN directly from
the data without local components.
The evaluation targets at the property of local components

on the suff cient knowledge representation. We consider the
Markov blanket for the comparison measurement and def ne
two evaluation criteria, λ1(vi) and λ2(vi), in Eq. 1.

λ1(vi) = |MBL(vi)∩MBT (vi)|
|MBT (vi)|

λ2(vi) = |MBL(vi)∩MBT (vi)|
|MBL(vi)|

(1)

where MBL(vi) denotes the learned Markov blanket of vi

in the local component (or in the full BN if the full network
is learned directly from the data), and MBT (vi) the true
Markov blanket of vi in the true BN 5. For the case when
the variable vi resides in different local components, we take
the Markov blanket that has the largest size among all the
local components.
As shown in Eq. 1, λ1(vi) measures the ability of the

learning algorithm to identify the Markov blanket in the true
Bayesian network. The second criterion λ2(vi) is the ratio of
the true Markov blankets to all of the Markov blankets found
in the local components (or in the full BN if the full network
is measured). It evaluates the accuracy of the learning
algorithm to identify proper Markov blankets. We compute
the average values of λ1(vi) and λ2(vi) respectively for all
variables vi ∈ V , and denote them as λ1 and λ2.

4We take the benchmark networks as the true BN.
5We def ned: λ1(vi) = 1 and λ2(vi) = 1 if both |MBL(vi)| and

|MBT (vi)| are equal to 0; λ1(vi) = 0 and λ2(vi) = 0 if either
|MBL(vi)| or |MBT (vi)| is equal to 0, but not both.
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a certain evidence is entered into the selected nodes. We use
the junction tree algorithm [1] for the reasoning, and get the
posterior probability, Prvi∈(V Bi /ENBi )(vi|ENBi), for each
of the rest nodes conditioned on the evidence in each local
component. We may get different probabilities for some of
the rest nodes since the nodes may appear in different local
components. In this case, we return their average probability
values.
We do the same thing (selecting the same evidence

nodes and evidence) in the true BN. By doing so, for
each node vi, we may obtain two (different) posterior
probability values: the one, Prvi∈(V Bi /ENBi )(vi|ENBi),
is computed from the learned local components, and the
other, Prvi∈(V BN /ENBN )(vi|ENBN ), from the true BN.
We compute the Kullback-Liebler (KL) divergence between
these two probabilities, and get the average KL values for all
of the rest nodes. We repeat the selection and propagation
for 10 times in both the local components and the true BN,
and report the average of the average KL values.
Similarly, we get the average KL divergence between the

posterior probabilities in the full BN and those in the true
BN. We show the comparison in Fig. 3.
For all three domains, the KL divergence is lower than

0.03 (an insignif cant number when thinking about KL esti-
mates) over different sample sizes. In general, the reasoning
results in the local component prove to be at least as accurate
as the ones in the full BN. For a small sample size (3|V | to
21|V |), the local components have a lower discrepancy with
respect to the true BN than the full BN. This may be resulted
from the cascading effect of errors in both the parameter
and structure learning of the full BN when the BN contains
a large number of nodes. For a suff cient sample size the
local components perform the propagation as well as the full
BN. We conclude that the local components are suff cient to
provide accurate and reliable answers to initiated queries.
It is not necessary to learn the full BN and then perform
the inference in the large network, which is often a time-
consuming task .
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