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Abstract

We see reversible computing as a generalisation of sequential compu-

tation obtained by revoking the law of the excluded miracle. Our execu-

tion language includes naked guarded commands and non-deterministic

choice. Choices which lead to miraculous continuations invoke reverse

computation, and non-deterministic choice plays the rôle of provisional

choice within a backtracking context. We require probabilistic choice for

symmetry breaking and sampling large search spaces, but must formulate

it differently from previous approaches to obtain the required interactions

between probabilistic choice and non-deterministic choice and between

probabilistic choice and feasibility. Our formulation allows us to derive the

post-distributions which characterise a program, and we use these to con-

struct a relational model. We consider refinement as containment of con-

vex closures within distribution space, qualified with additional conditions

to avoid over-refinement. We link the non-probabilistic and probabilistic

versions of the model with a Galois connection and show that classical

designs are a retract of our probabilistic designs. We consider the interac-

tion between probabilistic and non-deterministic choice and find the same

initially counter-intuitive results that have been noted by other investi-

gators. We provide an alternative formulation, within the same model,

of oblivious non-determinism, which allows all non-deterministic choices

to be moved to the start of a computation. We consider the interaction

between probabilistic choice and feasibility that is required to match an

operational interpretation in which infeasible commands provoke reverse

execution, and we present a small case study to show how the interaction

between probabilistic choice and feasibility can be exploited in a practi-

cal program. All programming structures described here are supported

by our implementation platform, the Reversible Virtual Machine, whose

development has accompanied our theoretical investigations.

This technical report is a working document. A peer reviewed version

of this work has been accepted for publication in the Formal Aspects of

Computing Special Issue on Unifying Theories of Programming.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322333239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


keywords Reversible Computing; Backtracking; Probability; Hoare-

He Designs; Bunches

1 Introduction

In our UTP Symposium paper [SZL06] we investigated, within the UTP frame-
work of Hoare-He designs, the effect of seeing computation as an essentially
reversible process. We described the theoretical link between reversibility, the
physics of computation and minimum power requirements, and we reviewed
Paolo Zuliani’s work [Zul01] on reversible probabilistic guarded command lan-
guage. We proposed an alternative formalisation of reversible computing which
accommodates backtracking. To obtain a single result from a search we ex-
ploited the already recognised properties of non-deterministic choice, using it as
provisional choice rather than implementor’s choice. We added a prospective-
value formalism which can describe programs that return all the possible results
of a search, and we showed how to formally describe the premature termination
of such a search, a mechanism analogous to the “cut” of Prolog.

In this paper we add probabilistic choice, which we require for symmetry
breaking, sampling, and modelling quantum algorithms. Symmetry breaking
allows us to resolve ties in search heuristics: multiple runs of the same search
algorithm then probabilistically take different execution paths. Replacing provi-
sional choice by probabilistic choice in a large search space allows us to select a
random sample of solutions, avoiding the clustering often associated with a set of
solutions obtained by imposing a cut. Many additional applications of random-
ness are described in [MM04]. For a recent sketch of unification of probabilism,
reversibility, and quantum computing in a formal context see [HS06]. This work
extends the approach of [Zul01] to accommodate, amongst other things, angelic
choice, for which the authors find a novel use, namely to provide the option of
a strict approach to non-termination, relating their resulting model to pGCL

by means of a Galois connection. They also consider the implication of pro-
viding a language which consists purely of reversible commands in the sense
of commands whose corresponding relations are bijections. In this approach
there is no additional hidden state. Such a language could be useful to us when
providing a concrete description of the instruction set of a reversible virtual
machine, where its use would preclude any accidental “cheating” through the
introduction of non-reversible commands. When using it, however, one is forced
to work at a completely concrete level since the language is not closed under
non-deterministic choice.

We turn now to our own approach. As in pGCL [MM04] we use D1 p⊕ D2

to represent a probabilistic choice in which D1 is chosen with probability p and
D2 with probability 1 − p. Our formalism differs from that of pGCL (which,
within a UTP context, we may perhaps take as the standard approach) in a
number of ways.

• We take a strict view of non-termination, so that, for example, abort 1

2

⊕ II
is equivalent to abort, whereas in pGCL it terminates with probability
1/2. The motivation is to ensure that attempting to discharge proof obli-
gations will clearly signal any precondition violations, even when these
occur with only a small probability.
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• We take a non-strict view of infeasibility, so that, for example magic 1

2

⊕ II
is equivalent to II . Whereas the syntactic restrictions of pGCL preclude
the direct use of naked guarded commands, i.e. commands of the form
g =⇒D , they are a vital component of our language, where they are used
in conjunction with non-deterministic choice to control backtracking. We
describe the interaction between non-deterministic choice, probabilistic
choice and feasibility in a manner which captures the execution behaviour
of our implementation platform, the Reversible Virtual Machine (RVM),
a reversible version of the Forth virtual machine.

• Like pGCL we use the statistical idea of expectation to express the prop-
erties of random states. However, we take a very general view of what
random quantities may be the subject of expectations. We allow any ex-
pression of type R, and also any of type seq R, treating them as vectors.
Our choice of sequences rather than tuples relates to our interest in infi-
nite sample spaces. By way of contrast, pGCL uses expectations based
on numerotized predicates.

• In considering the effect of non-deterministic choice, pGCL only retains
information about the choice least likely to provide a particular postcon-
dition. It is concerned with establishing the minimum guaranteed prob-
ability of obtaining that postcondition. In our formalism, where non-
determinism plays the dual rôle of expressing both implementor’s choice
and the provisional choices associated with backtracking, and where we
have executable program structures which provide all the possible results
of a computation (over its possible non-deterministic choices) we need to
retain all the information about such choices. One effect of this is that we
can derive post-distributions characterising a program’s behaviour.

• There is an interaction, within both formalisms, between probabilistic and
non-deterministic assignments to independent variables. This interaction
does not reflect the executional reality of our virtual machine. To capture
this reality we provide a refined description in which non-deterministic
choice is blind with respect to the current state.

For our purposes we need a new variant of the interactions between prob-
abilistic and non-deterministic choice. These interactions are not simple to
formulate. He and Sanders comment in [HS06] “The laws relating probabilism
and non-determinism are, as we have seen, the most subtle”. In a discussion
on a programming logic of distributions [MM04], McIver and Morgan find an
unexpected result and comment “Because there are several phenomena involved
here - and all our pre-conceptions as well - we cannot point to any one of them
and say “that causes the contradiction”. In a paper which extends a cate-
gorical formulation of non-determinism [VWar] Danielle Varacca and Glynne
Winskel comment “In Category Theory, non-determinism and probability are
represented by suitable monads. These two monads do not combine well, as
they are”. In his thesis “Probabilistic Extensions of Semantic Models” [dH01]
Jerry den Hartog devotes over 100 pages to combining the two forms of choice.

The paper is organised as follows. In Section 2 we discuss mathematical pre-
liminaries. We introduce our adaptation of Eric Hehner’s bunch theory, the use
of which will greatly simplify the presentation of our theory and in particular
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the representation of the combined effects of probabilistic and non-deterministic
choice. In this section we also give our precedence rules and parsing conventions.
In Section 3 we review our prospective-value formalism, reversibility, and the
use of backtracking in non-probabilistic programs. In Section 4 we introduce
probabilistic designs, which are designs enhanced by a probabilistic choice op-
erator. We formulate an expectation calculus to study their effect, we give the
associated probabilistic relational model, and we show how our expectation cal-
culus can be used to derive the after-state distributions of a probabilistic design.
In Section 5 we give a geometric characterisation of our relational model and
define refinement in terms of convex closures in distribution space. In Section 6
we relate designs to probabilistic designs via a Galois connection. We show that
the former are a retract of the latter and consider the consequences for apply-
ing standard (non-probabilistic) reasoning as an abstraction of our probabilistic
expectation calculus. In Section 7 we consider the interaction between prob-
abilistic and non-deterministic choice applied to independent sets of variables,
and formulate an alternative definition of probabilistic choice that eliminates
this interaction so that non-deterministic choice becomes “oblivious”. In Sec-
tion 8 we consider the interaction between probabilistic choice and feasibility.
This interaction is of vital importance to the reversible computations aspect of
our approach, in which infeasible continuations provoke reverse execution back
to the most recent point at which an unexplored choice is available. We include
a point search algorithm as a case study which exploits the interaction between
probabilistic choice and feasibility. In Section 9 we draw our conclusions and
discuss future work.

2 Mathematical Preliminaries

2.1 Bunches

A bunch [Heh81, Heh93] is the “contents of a set” without the packaging that
allows set representation to build up nested structures. A bunch of bunches is
self-flattening.

Any value is an elementary bunch or element; for example 2 is a bunch. In
set theory we make a distinction between 2 and {2}, i.e. between an element
and a set containing just that element. In bunch theory there is no distinction.

The empty bunch is written as null. If A and B are bunches then their
union, written A,B , is also a bunch. For any bunch A we have A,null = A.
We write A : B to say A is a sub-bunch of B . As with sets, the repetition and
order of elements has no significance, and thus bunch union is commutative.

Some examples of true predicates that use bunch inclusion are
2, 3 : 1, 2, 3, 4 2 : 2 A : A,B null : 1, 2 1, 2,null : 1, 2
If A is the bunch 1, 2 and B is the bunch 3, 5 then A + B is the bunch

made from summing individual values from A and B . Noting that arithmetic
operators have a higher precedence than bunch comma, we have

A + B = 1 + 3, 2 + 3, 1 + 5, 2 + 5 = 4, 5, 6, 7

Standard arithmetic operators applied to bunches of values are all lifted in
this way: they distribute through bunch union and are strict with respect to
null, e.g. A + null = null.
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We sometimes need to write a bunch within brackets to control operator
precedence, for example, since + has a higher precedence than comma, we would
write (1, 2) + 3 for the operation of adding 1, 2 and 3. This creates a potential
conflict with the traditional use of brackets to indicate tuples. In this paper
we use the maplet symbol 7→ to create ordered pairs: brackets are reserved for
structuring purposes. Operator precedences will be summarised in Section 2.2.

We write the bunch subtraction of B from A as A \B . It represents the
elements of A that are not in B .

We adopt bunch theory to our particular ends, which are to use it in a typed
(or multi-sorted) theory which uses partial functions together with classical two-
valued logic and takes a total-correctness view of program description, i.e. the
approach of B and Z, as well as of Hoare-He designs. All variables in our theory
denote elements. Bunches only arise as expressions. Bunches have no effect on
our treatment of types, which are maximal sets. The type of any non-empty
bunch is the same as the type of its elements. We also have an empty bunch
of each type. Although all expressions in our formalism are typed, we do not
necessarily give the type of each identifier explicitly, requiring only that it can
be inferred without ambiguity.

To model non-termination we introduce an improper bunch ⊥, or more ex-
actly an improper bunch for each type. Given a type (maximal set) T the as-
sociated improper bunch is ⊥T . Where context can determine its type we just
write it as ⊥. The bunches of any type form a complete lattice under reverse
bunch inclusion with null and ⊥ as its top and bottom elements. The properties
of the improper bunch are chosen to facilitate the description of sequential com-
putations within a total-correctness framework, i.e within an approach where
a computation invoked outside its assumption might provide any result (of the
correct type) or fail to terminate. For any proper bunch E we have E : ⊥ and
¬ ⊥ : E . Bunch union is strict with respect to ⊥ i.e. E ,⊥ = ⊥ . So also is any
operation of type T 7→ T or T × T 7→ T . e.g. E + ⊥ = ⊥, even when E is
null. However, it is not strict with respect to maplet construction, so we can
have values such as 3 7→ ⊥ which are distinguished from ⊥.

The “guarded bunch” g−→E is defined by the property:

(g ⇒ (g−→E = E )) ∧ (¬ g ⇒ (g−→E = null))

and we should note here that we are assuming the use of classical logic in which
g ∨ ¬ g is a theorem, so that this property is sufficient to fully define the
meaning of a guarded bunch.

The conditional expression if g then E1 else E2 end is defined by

if g then E1 else E2 end =̂ g−→E1, ¬ g−→E2

The “preconditioned bunch” p E is defined as

p E =̂ if p then E else ⊥ end

The bunch comprehension § x • E , where E is an expression that must
include information that determines the type of x , is the bunch of all values
that can be taken by E as x ranges over the values of its type. For example
§ n • 2 ∗ n is the bunch of even numbers, and § x • 0 < x ∧ x < 3−→10 ∗ x is
the bunch 10, 20.
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Given a predicate P we define two further forms of bunch comprehension,

§ x | P =̂ § x • P−→x

is the bunch of values of x which satisfy P , and

§ x | P • E =̂ § x • P−→E

is the bunch of values taken by E as x ranges over values that satisfy P .
Where a bunch comprehension occurs within set brackets, we omit the bunch

comprehension symbol, writing, for example {§ x | P • E} as {x | P • E}, which
has its familiar meaning as a set comprehension.

We write E [F/w ], where E and F are expressions and w a variable to denote
the substitution of F for w in E . If F and w are lists they must be of the same
arity and the substitution is made term-wise.

To remain within two-valued logic we avoid bunches of predicates by inter-
preting inner predicates (membership and equality) in a way that always makes
them either true or false. Given expressions X and S of types T and P T , the
membership predicate X ∈ S is true if it is point-wise true for each element
x : X and s : S . Predicates such as a < b are interpreted as set membership,
i.e. in this case as a 7→ b ∈ < . Thus 1, 2 < 3 is true, and both 1, 3 < 3 and
4 < 3, 5 are false. Expressions A and B are equal if A : B and B : A.

Bunches allow us to define function application in a generalised way. Given
r ∈ A ↔ B and a ∈ A, and where r , a, A and B are all elementary, we define
the application of r to a by:

r(a) =̂ § b | a 7→ b ∈ r

This generalisation of function application renders the separate notion of
relational image superfluous, but more importantly it allows us to write r(x ) = y
(where x and y are elements) to express that r is functional at x and the unique
value associated with x in r is y, a luxury not usually permitted in systems which
use classical two-valued logic with equality together with a relational model of
function application. For example given a partial function f and f (x ) = 3
we are not entitled, under the classical dispensation, to deduce x ∈ dom (f )
[SDG99, AM02]. With the definition of application given here we can make this
deduction, for were it false we would have f (x ) = null.

We define the weighted addition E1 p+ E2 where p is an element with
0 ≤ p ≤ 1 by

Definition 1

E1 p+ E2 =̂ E1 = null−→E2 , E2 = null−→E1 , p ∗ E1 + (1 − p) ∗ E2

This is a key definition which will be used in our characterisation of expected
values resulting from probabilistic choice. The body of the definition consists
of the bunch union of three terms. The definition covers nine cases, these being
that each of E1 and E2 could be a proper non-empty bunch, or null, or ⊥.
Where E1 and E2 are non-empty the first two terms equate to null and thus do
not contribute to the result, which is given by the third term. If either E1 or E2

is null, then, by the absorptive properties of null, the third term will be null

and the result will be given by the first two terms, at most one of which will be
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non-null. If either E1 or E2 is ⊥, the third term will be ⊥ (by the absorptive
power of ⊥), and the whole expression will equate to ⊥.

The bunch properties most used in this paper are given in the following
summary. E ,F and G are bunches and a is an element. Their types, where
required, are given by context.

Bunch union

E ,F = F ,E (E ,F ),G = E , (F ,G) E ,null = E
E ,⊥ = ⊥

Lifting

E + (F ,G) = E + F ,E + G E 7→ (F ,G) = E 7→ F ,E 7→ G
(E ,F ) 7→ G = E 7→ G,F 7→ G

Arithmetic, (in the last two of these rules E is proper)

E + F = F + E E ∗ F = F ∗ E E + ⊥ = ⊥ E ∗ ⊥ = ⊥
E + null = null E ∗ null = null

Distributivity

g−→(E ,F ) = g−→E , g−→F
a ∗ (E + F ) = a ∗ E + a ∗ F (a an element)

2.2 Precedence and Parsing

Precedence of infix symbols, in descending order, with those of equal priority
listed within brackets, is o (∗ /) (+ −) p+ × ∧ ∩ ∪ \ 7→ −→ , (< > ≤ ≥
) (= ∈ : 6= /∈) ¬ ∧ ∨ ⇒ ⇔ := ⊓ p⊕ ⊔ =⇒ ⊢ ; . • ⋄ (=̂ = ≡ ⇛ ⇚ ).
Unary symbols have higher precedence than related infix symbols, e.g logical
not ¬ binds more tightly than the logical infix connectives.

We make a syntactic distinction between terms representing declarations,
values, predicates and programs. Precedence is governed by well-formedness.
For example in the expression

x = 1 ∧ y = 2−→0

the highest-priority connective is−→but 2−→0 is ill-formed and this reduction
is rejected. The connective of next highest priority is =, and the first reduction
is to (x = 1) ∧ y = 2 −→ 0. The next is to (x = 1) ∧ (y = 2) −→ 0. The
guard symbol now has a predicate to its left and a value to its right, suggesting
a possible reduction to (x = 1) ∧ ((y = 2)−→ 0), but this is rejected because
the result is ill formed, having an ∧ symbol between a predicate and a value.
The final reduction is thus to ((x = 1) ∧ (y = 2))−→0.

3 Reversibility, Non-determinism and Backtrack-

ing

Discussion of “non-deterministic choice” (which, of course, we distinguish from
“probabilistic choice”) goes back at least as far as Floyd’s 1967 paper “Non-
deterministic Algorithms” [Flo67], where it is used to indicate provisional choices
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made during a search. Within the formal methods community, the use of non-
determinism as an essential abstraction tool (demonic or implementor’s choice)
has aroused more interest. However, as a number of writers have commented,
a single semantics of non-deterministic choice can serve both purposes [Mor88,
Nel89, Heh93].

In previous work, we have explored the use of non-deterministic choice used
as provisional choice within search procedures, both in the B formalism [ZSD05]
and in terms of Hoare and He’s unifying theories [SZL06]. We propose the
formalism D ⋄ E to represent the value(s) E might take after executing D .
By adding probabilistic choice to our language we will obtain an interpretation
of the expectation of D ⋄ E as the expected value(s) of E after conducting
“experiment” D .

Central to our project is the provision of an execution platform for the con-
structs we investigate in the form of the Reversible Virtual Machine [Sto06]. We
have created this platform in order to experiment with computations which are
organised in a way that minimises essential power requirements, as analysed by
Landauer [Lan61] and Feynman [Fey96]. This analysis maintains that heat is
necessarily generated within a computation only where information is erased.
We organise our computations in a similar way to Bennett [Ben73, Ben82] and
Zuliani [Zul01], providing a history stack to preserve information and recovering
the space thus consumed by reverse execution after the result of a computation
has been generated. Our approach has the original aspect of using reversibility
to support backtracking, and does so without compromising stepwise reversibil-
ity.

For the high level language which runs on the RVM we propose an extended
expression language in which we can use terms of the form D ⋄E . This yields the
value (or bunch of values) E would take after executing D , but does not change
the system’s state. Operationally it represents the execution of D , the recording
of the value of E , then reverse execution which will return to the most recent
choice construct and look for an unexplored alternative. If such an alternative is
found, forward execution re-commences, and a new value is added to the bunch
of results. Otherwise execution continues in reverse. On termination of the
evaluation of D ⋄ E the original system state has been restored. For a more
extensive overview see our UTP symposium paper [SZL06].

We do not obtain any benefits in terms of power consumption from our re-
versible virtual machine, since that just simulates reversibility on a conventional
architecture. There is, however, a second important advantage of reversibility
which we do exploit: reversibility provides a simple and efficient form of auto-
matic garbage collection. This makes it relatively easy to use mathematically
oriented data structures built on sets, and the RVM includes a complete imple-
mentation of finite sets and set operations.

To control reversibility we introduce naked guarded command of the form
g =⇒D . If such a command is invoked where g is false it causes reverse ex-
ecution. Otherwise the commands behaves as D . The introduction of such
commands requires the repeal of Dijkstra’s “Law of the Excluded Miracle”. In
UTP this means suspending healthiness condition H4, which insists that designs
should be feasible.

In the following discussions D =̂ P ⊢ Q will denote a design with assumption
P and commitment Q ; we refer to it generally as D , but as P ⊢ Q when we
need to explicitly mention its assumption or commitment. We define:
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g =⇒ (P ⊢ Q) =̂ (g ⇒ P ⊢ g ∧ Q)

Note that this is a design, but not one that will obey H4, other than in the
trivial case where g = true.

One effect of introducing this definition is that the conditional D1 ⊳ b ⊲ D2

is no longer a primitive construct: it can be defined in terms of guard and
non-deterministic choice as:

D1 ⊳ b ⊲ D2 =̂ b =⇒D1 ⊓ ¬ b =⇒D2

Let P ⊢ Q be a design with state variable (or variable list) v : V . Then we
define:

(P ⊢ Q) ⋄ E =̂ P § v ′ • Q−→E [v ′/v ]

We can then prove [SZL06] the following rules, which give the effect of D ⋄ E
over the fundamental syntactic constructs1 of our language. Each rule eliminates
one program connective, and they provide a complete characterisation. In these
rules x may be an atomic variable or a variable list.

Name Rule Side Cond’s

Assumption (P ⊢ D) ⋄ E = P D ⋄ E

Skip II ⋄ E = E

Assignment x := F ⋄ E = E [F/x ]

Guard g =⇒D ⋄ E = g−→D ⋄ E

Choice D1 ⊓ D2 ⋄ E = (D1 ⋄ E ), (D2 ⋄ E )

Choice from Set (x :∈ A) ⋄ E = § a • a ∈ A−→E [a/x ] a \ E , a \ A

Sequential Composition D1 ; D2 ⋄ E = D1 ⋄ D2 ⋄ E

Local Variable var z . D ⋄ E = § z • D ⋄ E

These rules provide an alternative semantics for sequential programs, which
we refer to as “prospective-value semantics”. A simple design which we will use
to illustrate their use is

D =̂ x := 1 ⊓ x := 2 ; x = 2 =⇒ II

and we will calculate the possible values of x after running D . We note from our
rules that the effect of a non-deterministic choice is captured by a bunch union.
The first operation of D is a choice between assigning x := 1 or x := 2. However,
if the choice x := 1 is taken, the following command becomes infeasible. In this
case our rules will ensure that this blocked path through the computation makes
a null contribution to the final result. If the choice x := 2 is taken the second

1Examples of constructs which we do not consider as fundamental are selection statements,
which as we have seen can be constructed as a choice of guarded commands, and iteration
constructs, which are formulated as solutions of fixed-point equations.
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command reduces to II , the program terminates with x = 2 and the contribution
to the final result from this path through the program is 2.

We calculate the possible values of x after running D as follows:

D ⋄ x

= “Defn of D”

x := 1 ⊓ x := 2 ; x = 2 =⇒ II ⋄ x

= “Sequential Composition”

x := 1 ⊓ x := 2 ⋄ x = 2 =⇒ II ⋄ x

= “Guard and Skip”

x := 1 ⊓ x := 2 ⋄ x = 2−→x

= “Choice”

(x := 1 ⋄ x = 2−→x ), (x := 2 ⋄ x = 2−→x )

= “Assignment”

1 = 2−→1, 2 = 2−→2

= “Guarded bunch”

null, 2 = 2

In effect, the non-deterministic choice is controlled by a guard in the following
operation. This is the basis of our backtracking semantics. An operational
interpretation would be that if the choice x := 1 is initially made the guard of
the following operation is false, provoking reverse execution. The alternative
x := 2 is then selected, resulting in a true guard and termination with x = 2.
We do not see the details of the operational interpretation when following the
formal analysis of course. What we see instead is that a blocked path makes no
contribution to the result.

One price we pay for exploiting the backtracking aspect of guards and choice
is that, if we wish to avoid refining away all the behaviour of a specification,
we must take more care with the management of refinement. In the classical
dispensation, we are entitled to refine x := 1 ⊓ x := 2 by x := 1, but doing that
in the design D above would result in a loss of feasibility as the result would
simply be magic, a valid refinement, but not a useful one. We therefore need to
identify choice used as provisional choice and not refine it away [ZSD03, Zey07].

Prospective-value semantics provides an alternative description of sequential
programs in a total-correctness setting, with exactly the same expressive power
as Hoare-He designs or the weakest-precondition calculus. We have already
defined the value of D ⋄ E in terms of the assumption P and commitment Q
of a design. We can similarly recover the P and Q of a design D using the
following prospective-value formulations

P ≡ ¬ (⊥ : D ⋄ null)
Q ≡ x ′ : D ⋄ x

The contribution of bunch theory to our prospective-value semantics can
be seen in the simplicity of the rules for skip and for sequential composition.
These rules are given in the following table, along with the rules that would be
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required for a formulation in which D ⋄ E represents the set of possible values
that could be taken by E after executing D .

Name Bunch Rule Set Rule

Skip II ⋄ E = E II ⋄ E = {E}

Sequential Composition D1 ; D2 ⋄ E = D1 ; D2 ⋄ E =

D1 ⋄ D2 ⋄ E
⋃

D1 ⋄ D2 ⋄ E

We see in the set-based rule for skip that we lose homogeneity between E and D ⋄
E . We see a consequence of this in the set-based rule for sequential composition,
where a generalised union operator must be used to flatten a set of sets.

4 Probabilistic Choice and Expected Values

To extend our theory of designs to include probabilistic designs we add a proba-
bilistic choice operator, D1 p⊕ D2, which chooses D1 with probability p and D2

with probability 1−p. Were we to formalise our theory of probabilistic designs in
terms of before-after predicates, we would require non-homogeneous predicates
Q which relate before states to after distributions. For example, given:

D =̂ x := x + 1 1

3

⊕ x := x + 2

the predicate describing the commitment of the design could be

∆′
x = {x + 1 7→ 1

3 , x + 2 7→ 2
3}

Rather than pursue this approach, however, we will formulate an expectation
calculus. As in classical probability theory, our expectations will range over real
values or vectors of real values. We represent such vectors as sequences, and
assume operations for vector addition and multiplication of vectors by scalars.
We emphasise at the outset that the restriction to real values will not imply
any loss of generality. Indeed, we will be able to use our expectation calculus
to recover the after-state distributions associated with a probabilistic design.

Before we formulate our notion of expectation, we briefly review the concepts
of random variables and expectation as they have been developed in classical
probability theory.

In probability theory a discrete sample space S is a countable set and a
distribution prob over that sample space is a function from S to the closed real
interval [0, 1] such that the range elements of prob sum to 1, and with prob(s)
interpreted as the probability that the result of some associated experiment will
be s . A random variable X on S is a function from S to the real numbers and
the expected value of X is given by

E (X ) =̂
∑

s∈S prob(s) ∗ X (s)

By an expressive abuse of notation, random variables are generally treated
notationally as if they are values rather than functions. For example, given
a random variable X we are often interested in the related random variable

11



whose values are the squares of those returned by X , i.e. the random variable
λ s • X (s)2. By the abuse of notation this random variable is referred to as X 2

and its expectation as E (X 2).
We should also note that in the notation E (X ) the random variable X is

privileged (in terms of visibility) over the distribution prob, which is understood
to be given by context.

In probabilistic programs, the sample space is the set of values that can be
taken by program variables, our experiments are programs, and their associated
distributions can be calculated from the semantics we will give to each program-
ming construct. An appropriate compositional notation for the expected value
of expression X after running D could be E (D , λ x • X ), which would allow us
to treat the expectation operator as a relation2 acting on D and on the lambda
abstraction of X . However, since we have a notation for the value of X after D ,
namely D ⋄ X , we prefer the notation E (D ⋄ X ). Note that this is a composite
notation, rather than the application of a relation E to a value D ⋄ X . We
define E (D ⋄ X ) according to the following rules:

Name Rule Cond

Assumption E (P ⊢ D ⋄ X ) = P E (D ⋄ X )

Skip E (II ⋄ X ) = X

Assignment E (x := E ⋄ X ) = X [E/x ]

Guard E (g =⇒D ⋄ X ) = g−→E (D ⋄ X )

Choice E (D1 ⊓ D2 ⋄ X ) = E (D1 ⋄ X ),E (D1 ⋄ X )

Sequential Composition E (D1 ; D2 ⋄ X ) = E (D1 ⋄ E (D2 ⋄ X ))

Local Variable E (var z . D ⋄ X ) = § z • E (D ⋄ X )

Probabilistic Choice 1 E (D1 p⊕ D2 ⋄ X ) = 0 < p

E (D1 ⋄ X ) p+ E (D2 ⋄ X ) < 1

Probabilistic Choice 2 E (D1 0⊕ D2 ⋄ X ) = E (D2 ⋄ X )

Probabilistic Choice 3 E (D1 1⊕ D2 ⋄ X ) = E (D1 ⋄ X )

A simple proof by structural induction will show that in the absence of
probabilistic choice E (D ⋄ E ) = D ⋄ E . This suggests that the theory of
designs is a sub-theory of the theory of probabilistic designs, an idea which we
will make more precise in Section 6.

To model probabilistic choice we use the weighted bunch addition p+
defined in the bunch section. As an (unsatisfactory) alternative we might have
used the simpler rule

E (S p⊕ T ⋄ E ) = p ∗ E (S ⋄ E ) + (1 − p) ∗ E (T ⋄ E )

2As discussed in Section 2.1 we allow the application of a relation to any argument in its
domain and obtain the bunch of associated range elements as the result.
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which would be correct in the case of feasible S and T , but would have the
unwanted effect of making a possibly infeasible operation certainly infeasible.
For example we would obtain E (false−→ II p⊕ II ⋄ 1) = null indicating that
the operation has no after states. To write code that complies with such a rule
we need to probe the feasibility of each of the choices, which would be very
inefficient. We therefore prefer execution to resolve infeasibility by use of its
backtracking mechanism, and the rule we adopt makes false−→II p⊕ II equal
to II . Thus, for us, magic is a zero element of probabilistic choice, just as it is
for non-deterministic choice. Also, by our rule, abort dominates in probabilistic
choice, just as it does for non-deterministic choice.

The probability or probabilities of postcondition Q holding after D is given
by

Definition 2

probD(Q) =̂ E (D ⋄ [Q ])

where [Q ] is a “numerotized predicate” taking the value 0 where Q is false and
1 where Q is true, and defined by

[Q ] =̂ Q−→1,¬ Q−→0

Note that probD (Q) may be a bunch of more than one element, and the
smallest probability is given by minset{probD (Q)}. McIver and Morgan,
whose approach is based on a probabilistic version of the wp calculus, call this
the “weakest pre-expectation of Q”. They take their minimums progressively by
defining (in their notation) wp.(D1 ⊓D2).postE = wp.D1.postE min wp.D2.postE .
That gives them an approach focused on wp analysis, since they assume that
only the non-deterministic choice which gives the least chance of a postcondition
being true is of any interest. We will use additional information retained by our
rules in a number of ways, including extracting the distributions of a design and
formulating alternative forms of probabilistic choice.

It is in handling the additional information present in our calculus that the
use of bunches plays its most vital rôle. If we had formulated our expected val-
ues in terms of sets, as briefly discussed in the previous section, it would have
been necessary to develop a theory of expectation based on sets of real values
rather than real values themselves. That would not have been impossible, but
would have required a number of special operation, such as a weighted addition
of sets of values that has isomorphic properties to those of bunch addition. The
theory would also have been unnecessarily clumsy when dealing with expecta-
tions that involve no non-determinism, whereas our approach makes a smooth
transition between probabilistic designs involving non-determinism and those
which do not.

We now demonstrate how we can extract the after-state distributions as-
sociated with a probabilistic design. We first consider designs whose alphabet
consists of a single non-auxiliary variable3 x ranging over values from the set
S = {a, b}. Considering the example design

D1(p) =̂ x := a p⊕ x := b

3The auxiliary variables of a design being ok and ok ′.
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we would intuitively expect it to yield an after-state distribution in which x takes
the value a with probability p and b with probability 1 − p. We will represent
such information in two different ways. Firstly as the sequence 〈 p, 1−p 〉, which
we will call “a point in distribution space”. Distribution space, (interpreted as
Euclidean space or in the infinite case as a Hilbert space), will play an important
part in our discussions, and the use of sequences to represent points will allow us
to handle space with countably infinite dimensions. The second representation
of distributions we will use is a mapping from values to probabilities, which
in this case would be {a 7→ p, b 7→ 1 − p} , and we call this a “probability
distribution”.

We begin with the following definition, which maps before states to points
in distribution space.

dist(D) =̂ λ x • E (D ⋄ 〈 [x = a], [x = b] 〉)

Now take the design D1 given above where 0 < p < 1. We calculate

dist(D1(p))

= “Defn of dist”

λ x • E (D1(p) ⋄ 〈 [x = a], [x = b] 〉)
= “Defn of D1”

λ x • E (x := a p⊕ x := b ⋄ 〈 [x = a], [x = b] 〉)
= “Probabilistic Choice with 0 < p < 1”

λ x • E (x := a ⋄ 〈 [x = a], [x = b] 〉) p+ E (x := b ⋄ 〈 [x = a], [x = b] 〉)
= “Assignment”

λ x • 〈 [a = a], [a = b] 〉 p+ 〈 [b = a], [b = b] 〉
= “Evaluation of [. . .]”

λ x • 〈 1, 0 〉 p+ 〈 0, 1 〉
= “Weighted addition with non-null arguments”

λ x • p ∗ 〈 1, 0 〉 + (1 − p) ∗ 〈 0, 1 〉
= “Multiplication of vectors by scalar”

λ x • 〈 p, 0 〉 + 〈 0, 1 − p 〉
= “Vector addition”

λ x • 〈 p, 1 − p 〉
In this case the result is a function which always returns the constant value

〈 p, 1 − p 〉. This is because the before state has no effect on the after state, so
the same distribution is obtained from any starting state.
We next consider a design in which D1 appears as an element.

D2 =̂ x = a =⇒ (D1(p) ⊓ D1(q)) ⊓ x = b =⇒D1(r)

Once again we are interested in calculating distribution points for the after
state, which will now depend on the before state. From the definition of dist

and application of the rules for E (D ⋄ X ) we obtain
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dist(D2) = λ x • x = a−→( 〈 p, 1 − p 〉, 〈 q, 1 − q 〉 ) , x = b−→〈 r , 1 − r 〉

To obtain the possible points in distribution space from pre-state x = a, we
evaluate dist(D2)(a), yielding the bunch of two distributions 〈 p, 1− p 〉, 〈 q, 1−
q 〉. Similarly from pre-state x = b we obtain the single distribution 〈 r , 1 − r 〉.

We now consider how to express the effect of D2 as a relation from states to
probability distributions. We first define for sequences of elementary values x =
〈 x1, x2, . . . 〉 and y = 〈 y1, y2, . . . 〉 the combinator x o y =̂ {x1 7→ y1, x2 7→ y2, . . .}.
We can then define (still within our limited example world) the probabilistic
relation of a design as

prel(D) =̂ {x | x ∈ S • x 7→ 〈 a, b 〉 o dist(D)(x )}

and again we will generalise this definition presently. For D2 we have:

prel(D2)

= “Defn of prel”

{x | x ∈ S • x 7→ 〈 a, b 〉 o dist(D2)(x )}
= “By comprehension of set terms”

{a 7→ 〈 a, b 〉 o dist(D2)(a), b 7→ 〈 a, b 〉 o dist(D2)(b)}
= “Expanding dist(D2)”

{a 7→ 〈 a, b 〉 o (λ x • x = a−→( 〈 p, 1 − p 〉, 〈 q, 1 − q 〉 ) ,
x = b−→〈 r , 1 − r 〉)(a),

b 7→ 〈 a, b 〉 o (λ x • x = a−→( 〈 p, 1 − p 〉, 〈 q, 1 − q 〉 ) ,
x = b−→〈 r , 1 − r 〉)(b)}

= “Function application and evaluation of guarded bunches”

{a 7→ 〈 a, b 〉 o ( 〈 p, 1 − p 〉, 〈 q, 1 − q 〉 ) , b 7→ 〈 a, b 〉 o 〈 r , 1 − r 〉}
= “Bunch lifting of o and 7→”

{a 7→ 〈 a, b 〉 o 〈 p, 1 − p 〉, a 7→ 〈 a, b 〉 o 〈 q, 1 − q 〉, b 7→ 〈 a, b 〉 o 〈 r , 1 − r 〉}
= “Applying the sequence combinator o ”

{a 7→ {a 7→ p, b 7→ 1−p}, a 7→ {a 7→ q, b 7→ 1−q}, b 7→ {a 7→ r , b 7→ 1−r}}
We now demonstrate how such a relation from states to probability distri-

butions can be used to calculate an expectation, under the assumption of a
given pre-distribution ∆. We note that prel(D2) from our above example has
two subsets which have the same domain as prel(D2) and which are functional,
namely

F1 = {a 7→ {a 7→ p, b 7→ 1 − p}, b 7→ {a 7→ r , b 7→ 1 − r}}

F2 = {a 7→ {a 7→ q, b 7→ 1 − q}, b 7→ {a 7→ r , b 7→ 1 − r}}

These model deterministic (though probabilistic) operations. Note that, for
example, F1(b)(a) is the probability of F1 going from a before state b to after
state a. The probability that F1 will yield x ′ = a is the probability of starting
in a and finishing in a plus the probability of starting in b and finishing in a,
that is:
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∆a ∗ F1(a)(a) + ∆b ∗ F1(b)(a) = ∆a ∗ p + ∆b ∗ r

Now letting S = {a, b}, the expectation of expression E after F1 will be:

∑
s∈S ,s′∈S ∆s ∗ F1(s)(s

′) ∗ E [s ′/x ]

and the expectation of E after D2 will be the bunch of two such terms obtained
from F1 and F2.

For a generalised model consider a design D =̂ P ⊢ Q whose alphabet
consists of a variable or variable list s taking values from a countable set S =
{s1, s2, . . .}. Then the distributions of D are given by

Definition 3 dist(D) =̂ E (D ⋄ 〈 [s = s1], [s = s2], . . . 〉)

and the probabilistic relation of D is given by

Definition 4 prel(D) =̂ {s | s ∈ S • s 7→ 〈 s1, s2, . . . 〉 o dist(D)(s)}

To model expectations we define a function to return the functions “packed”
within a relation:

F(R) =̂ {F | F ⊆ R ∧ dom F = dom R ∧ F ∈ dom R → ran R}

and the expectation of E after D assuming an initial distribution ∆ is:

§ F • F ∈ F(prel(D))−→
∑

s∈S ,s′∈S F (s)(s ′) ∗ E [s ′/x ]

A relational model from states to distributions over states was first pro-
posed by He, Seidel and McIver [HSM97] and is discussed in [MM04] though
formulated as a function from states to sets of distributions.

5 Convexity and Refinement

Suppose we have designs D1 and D2 which act on the same state space, and
suppose that, for any postcondition Q , the minimum probability of D2 estab-
lishing Q is at least as great as the minimum probability of D1 doing so. Then,
by analogy with standard operational refinement, we might be tempted to say
that D1 is refined by D2. Such a definition of refinement would, however, not be
monotonic with respect to program connectives, as is shown on pages 314–315
of [MM04]. In this section we attempt to provide some intuitive justification for
this result by means of a geometric model, and then show how non-deterministic
choice used as provisional choice must be handled during the refinement process.

We consider a state space with a single variable v which can range over
the distinct values a, b and c. A program acting on this state space has eight
possible postconditions: true, false, v = a, v = b, v = c, v 6= a, v 6= b and
v 6= c. Consider a program which offers a non-deterministic choice between six
distributions d1, . . . d6 for assigning a value to v . In the following table we write
the probabilities of each distribution yielding an a, b or c, labelling these as x ,
y and z to comply with a geometric interpretation in which we will represent
these probabilities as points in three dimensional space. To the right of them
we write lower and upper bound constraints imposed by each distribution.
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x y z lower bound upper bound

d1 0.1 0.4 0.5 prob(v = a) > 0.1 prob(v 6= a) ≤ 0.9

d2 0.5 0.1 0.4 prob(v = b) > 0.1 prob(v 6= b) ≤ 0.9

d3 0.4 0.5 0.1 prob(v = c) > 0.1 prob(v 6= c) ≤ 0.9

d4 0.2 0.2 0.6 prob(v 6= c) > 0.4 prob(v = c) ≤ 0.6

d5 0.6 0.2 0.2 prob(v 6= a) > 0.4 prob(v = a) ≤ 0.6

d6 0.2 0.6 0.2 prob(v 6= b) > 0.4 prob(v = b) ≤ 0.6

Table of Distributions.

Distribution d1 has the lowest probability of all distributions for establishing v =
a. It imposes the constraints that, after running our program, the probability of
v = a will be at least 0.1. Suppose we choose some value p < 0.1 and by running
our program many times we collect data to test the hypothesis prob(v = a) = p.
To do this we perform trials by repeatedly running our program and recording,
after each run, whether v = a is true or false. If we perform a hypothesis test
based on these results it will fail with a probability arbitrarily close to 1 if we
base it on a sufficiently large number of trials. This is true no matter what
choices the demon makes. Similarly any hypothesis that takes some p > 0.9
and posits prob(v 6= a) = p will similarly fail. The constraints shown in the
table show the limits outside which such hypotheses will fail with probability
arbitrarily close to 1 given a test based on a sufficiently large number of trials.

We can give a geometric illustration of these distributions and constraints.
In the left-hand diagram of Fig. 1 we see a portion of 3D Euclidean space within
which we have drawn the triangle with corners at 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 0〉. On
the plane defined by these points we have x + y + z = 1, and within the triangle
we have 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 ∧ 0 ≤ z ≤ 1. Each point within the
triangle corresponds to a unique distribution, with the x , y and z coordinates
representing the probabilities v = a, v = b and v = c.4

In the right-hand diagram of Fig. 1 we have taken the triangle of distributions
and drawn it flat on the page. Now, along the base of the triangle we have y = 0
and at the top we have y = 1. We have drawn lines on the triangle to mark the
points at which y = 0.1 and y = 0.6.

In Fig. 2 we have marked all the restrictions shown in the table of distribu-
tions along with the points corresponding to the distributions d1 to d6 them-
selves. Joining the points d1 to d6 as shown, we form a convex hexagon. Taking
any distribution within the hexagon and testing whether our program has that
distribution is not bound to fail in the manner previously described, because
the demon could make a judicious choice between his available distributions to
provide a distribution at that particular point. We call the region within the
hexagon the convex closure of the points d1, . . . d6. The convex closure of a set
of points in Euclidean space is the smallest set containing the points themselves,
and any point on a straight line between two other points in the closure.

We have also marked a question mark on the diagram of Fig. 2. This lies
outside the convex closure of the distributions, yet does not conflict with the

4A similar geometric representation is given in [MM04], but in their case accommodates
sub-distributions. Their space of sub-distributions is 3-dimensional, occupying the tetrahe-
dron with apexes (expressed in conventional tuple notation) at (0, 0, 0), (0, 0, 1), (0, 1, 0) and
(1, 0, 0).
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Figure 1: The space of distributions over three possible values.
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Figure 2: The convex closure and event constraints of a set of distributions.
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constraints imposed by any postcondition. No test based on the observation of
a particular postcondition can be sure of refuting the hypothesis that we are
observing a distribution situated at this point. We can design an experiment
which, based on a sufficient number of observations, is sure to refute this hy-
pothesis, but we must record all the information available from each trial. If
we record, after each trial, the value of 〈[x = a], [x = b], [x = c]〉, the vector
average of these values will approach the given point with probability 1 over a
long sequence of trials. In terms of hypothesis testing, a χ2 test could be used
to tell us the significance of a particular set of results.

If, on the other hand, we modify our program to add a seventh distribution,
but we place this new distribution within the convex closure defined by the other
six, there is no experiment based on observing repeated runs of the program that
will be able to detect any difference made by this additional distribution. This
consideration has led McIver and Morgan [MM04] to use convex closure (more
specifically convex “up closure” which also deals with sub-distributions) as the
key concept for defining the meaning of probabilistic programs and refinement.
They identify probabilistic programs with their convex closures and define re-
finement as containment. We now look at the problems we face in adopting
exactly this approach with our reversible language in which non-deterministic
choice serves both as provisional choice in a backtracking context, and as im-
plementor’s choice.

In [ZSD03] we consider refinement in the context of reversible computation,
and note the danger of over refinement in a language where our syntax allows
us to express infeasible programs. For example magic is a design that we can
express in our implementation language. It refines any program, but is unlikely
to satisfy any customer. Its run-time behaviour, in an operational sense, is to
put execution into reverse. We define “star-refinement” ⊑∗ designed to guard
against the problem of over-refinement by maintaining feasibility during the
refinement process. In the following definition fis(D) is the condition that D is
feasible in the current state.

Definition 5

DA ⊑∗ DC =̂ DA ⊑ DC ∧ (fis(DA) ⇛ fis(DC ))

This definition refers to non-probabilistic programs. We will use the idea of
preserving feasibility during refinement to produce a similar definition for the
probabilistic case.

For star-refinement to serve as a basis for piecewise and stepwise develop-
ment, we would like our language constructs to be monotonic with respect to
it. We prove in [ZSD03] that they are so for assumption, guard, assignment,
choice and sequential composition in its second operand.

We can illustrate the case of sequential composition in its first operand with
the program:

x := 1 ⊓ x := 2 ; x = 2−→II

this is equivalent to x := 2, but if we star-refine its first operand by x := 1,
the resulting program x := 1 ; x = 2−→ II is equal to magic. It illustrates a
typical backtracking situation in which the non-deterministic choice of the first
operand is acting as provisional choice. An operational interpretation was given
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earlier. To manage star-refinement such provisional choice must be identified
and not refined.

To give a definition of star-refinement in the probabilistic world we first
provide a definition for feasibility of a probabilistic design D with state variables
s . The idea of this definition is that only infeasibility can prevent the expected
value of ⊥ after executing D being ⊥.

Definition 6 fis(D) =̂ E (D ⋄ ⊥) = ⊥
The definition of star-refinement in a probabilistic world is:

Definition 7

DA ⊑∗ DC =̂ (PA ⇛ PC ) ∧
(∀ s • conv({dist(PA =⇒DC )(s)}) ⊆ conv({dist(PA =⇒DA)(s)}))

∧ fis(DA) ⇛ fis(DC )

where conv maps a set of points in distribution space to its convex closure.
We require DC to terminate whenever DA does, we restrict the required subset
inclusion to the termination region of DA, and we require the refinement to be
no less feasible than the program it refines.

We add a final note on infinite state spaces. Euclidean space is normally
thought of as having a finite number of dimensions. An infinite-dimensional
space with the Euclidean metric loses the important property that the distance
between any two points in the space is well-defined. If we take an n dimensional
cube of fixed size δ (however small), the length of the longest diagonal between
vertices of this cube will be δ ∗√n, a term which tends to infinity with n. Thus
in infinite-dimensional space, we have infinite distances within arbitrarily small
hypercubes. However, within distribution space, which is the space of sequences
whose elements represent probabilities, we have the following:

Proposition 1 The Euclidean metric is defined between any two points in in-
finitely dimensional distribution space and the square of the distance between
such points, say 〈 x1, x2.. 〉 and 〈 y1, y2.. 〉, which by the Euclidean metric is
Σ∞

i=1(xi − yi)
2, is less than or equal to 2.

Proof
∑∞

i=1(xi − yi)
2

= “Expanding each term”
∑∞

i=1(x
2
i − 2xiyi + y2

i )

≤ “Since 2xiyi > 0”
∑∞

i=1(x
2
i + y2

i )

= “By associativity of addition”
∑∞

i=1 x 2
i +

∑∞
i=1 y2

i

≤ “Since 0 ≤ xi ≤ 1 ∧ 0 ≤ yi ≤ 1”
∑∞

i=1 xi +
∑∞

i=1 yi

= “Since probabilities sum to 1”

2
2
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6 Linking Theories

We can link our probabilistic designs to classical designs by means of a Galois
connection.

Definition 8 Given a pair of partially ordered sets (posets) A and B, and func-
tions

L ∈ A → B , R ∈ B → A

then L and R form a Galois connection if

β ⊑ L(α) ⇔ R(β) ⊑ α (1)

L will play the rôle of a transformation from the richer world of probabilistic
designs to the world of designs, and it will lose information in a controlled way
by treating probabilistic choice as non-deterministic choice. The function R will
lift a design into the world of probabilistic designs by expressing values as point
distributions, i.e. distributions which give a particular value with probability
one. The existence of a Galois connection will tell us that should we perform
the transformation L from a probabilistic design to a design and then perform
the transformation R to take the result back to the probabilistic world, the re-
sult will be an abstraction (anti-refinement) of our original probabilistic design.
Performing transformations in the opposite direction, we will be able to lift a
design into the probabilistic world and transfer it back again to the same design,
a stronger property than required for a Galois connection, and the characteristic
of a “retract”.

Before applying these ideas to our theory, we give an equivalent characteri-
sation of Galois connections that is more directly related to the transformations
we have just discussed.

Proposition 2 Given posets A, B, a pair of monotonic functions L ∈ A → B
and R ∈ B → A form a Galois connection (L,R) if

R(L(α)) ⊑ α (2)

β ⊑ L(R(β)) (3)

We prove the given conditions are sufficient for (L,R) to be a Galois connec-
tion. This will be enough for our purposes, though it can also be readily shown
that the conditions are also necessary.
ProofWe need to show from the given conditions that (1) holds. We first assume
the LHS of (1), that is β ⊑ L(α) and prove the RHS

β ⊑ L(α)

⇒ “by monotonicity of R”

R(β) ⊑ R(L(α))

⇒ “by (2) and transitivity of ⊑”

R(β) ⊑ α
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And now we assume the RHS of (1) and prove the LHS

R(β) ⊑ α

⇒ “by monotonicity of L”

L(R(β)) ⊑ L(α)

⇒ “by (3) and transitivity of ⊑”

β ⊑ L(α) 2

In the following discussion D and D′ will represent probabilistic designs
and D and D ′ classical designs. To characterise the Galois connection between
designs and probabilistic designs we use the relational models of each. For a
design D acting on a state variable s ∈ S we define

Definition 9

rel(D) =̂ {s | s ∈ S • s 7→ D ⋄ s}
and for a probabilistic design we use the definition of prel previously given in
Definition 4.

As an example we take the design acting on variable v ∈ {a, b, c} defined by:

D =̂
v = a =⇒ ((v := a 1

2

⊕ v := c) ⊓ (v := b 1

2

⊕ v := c) ⊓ II )

⊓
v = b =⇒

((v := a 1

3

⊕ v := b) ⊓ (v := a 1

3

⊕ v := c) ⊓ (v := b 1

3

⊕ v := c))

calculating dist(D) = E (D ⋄ 〈[v = a], [v = b][v = c]〉) we obtain:

{a 7→ (〈1
2 , 0, 1

2 〉, 〈0, 1
2 , 1

2 〉, 〈1, 0, 0〉), b 7→ (〈1
3 , 2

3 , 0〉, 〈1
3 , 0, 2

3 〉, 〈0, 1
3 , 2

3 〉)}
where we are using the distributivity of maplet construction over bunch union
to write the contents of the set in a more compact form. The convex closures
of {dist(D)(a)} and {dist(D)(b)} are shown in Fig. 3. The value of prel(D) is

{a 7→ ({a 7→ 1
2 , b 7→ 0, c 7→ 1

2}, {a 7→ 0, b 7→ 1
2 , c 7→ 1

2}, {a 7→ 1, b 7→ 0, c 7→ 0})
b 7→ ({a 7→ 1

3 , b 7→ 2
3 , c 7→ 0}, {a 7→ 1

3 , b 7→ 0, c 7→ 2
3}, {a 7→ 0, b 7→ 1

3 , c 7→ 2
3})}

We define the transformation L, applicable to any probabilistic design D by

Definition 10

L(D) =̂ µD • s 7→ s ′ ∈ rel(D) ⇔ ∃ p • s 7→ p ∈ prel(D) ∧ p(s ′) > 0

which for our example yields

rel(D) = {(a, b) 7→ (a, b, c)}
which is a set of six elements expressed in more compact form using distributivity
of maplet construction over bunch union. From state v = a we can obtain after
states of v = a or v = b or v = c, as we can from state v = b. From state v = c
D is infeasible. The design D is

D =̂ v ∈ {a, b}=⇒ (v := a ⊓ v := b ⊓ v := c) (4)

We define the transformation R, applicable to any design D by
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〈0, 1, 0〉〈0, 1, 0〉

〈1, 0, 0〉〈0, 0, 1〉 〈0, 0, 1〉 〈1, 0, 0〉

Figure 3: The convex closures of {dist(D)(a)} and {dist(D)(b)}

Definition 11

R(D) =̂ µD′ • s 7→ p ∈ prel(D′) ⇔ ∃ s ′ • s 7→ s ′ ∈ rel(D) ∧ p(s ′) = 1

which for our example yields

prel(D′) = {(a, b) 7→
({a 7→ 1, b 7→ 0, c 7→ 0}, {a 7→ 0, b 7→ 1, c 7→ 0}, {a 7→ 0, b 7→ 0, c 7→ 1})} (5)

and the definition of D′ would be exactly that given for D in equation 4 above,
the difference being that we are now interpreting this definition in terms of our
probabilistic model. The value of dist(D′) is

{(a, b) 7→ (〈 1, 0, 0 〉, 〈 0.1.0 〉, 〈 0, 0, 1 〉}

We now check the Galois connection requirement R(L(D)) ⊑∗ D, i.e. D′ ⊑∗

D. The assumption and feasibility of D′ and D are true so we need consider
only the containment of convex closures, i.e.

∀ s • conv({dist(D)(s)}) ⊆ conv({dist(D′)(s)})

we have {dist(D′)(a)} = {〈 1, 0, 0 〉, 〈 0.1.0 〉, 〈 0, 0, 1 〉}, i.e. the point distri-
butions which form the vertices of distribution space. Their convex closure is
the whole of distribution space and must therefore contain the convex closure
of {dist(D)(a)}. Similar remarks apply to b, whereas for c the containment is
satisfied because the convex closures are empty, both operations being infeasible
in this case.

We argue the general case that R(L(D)) ⊑∗ D informally. The transfor-
mations L and R do not alter the assumption or feasibility of a design, so we
are concerned only with the containment of convex closures of distributions.
We recall that each dimension of distribution space corresponds to a particular
value within the state space. We can eliminate dimensions of distribution space
associated with impossible after state values. For the remaining dimensions and
any before state s , the convex closure of {dist(D′)(s)} will be the whole of
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the remaining distribution space, and must therefore contain the corresponding
convex closure of {dist(D)(s)}

Now consider the second Galois connection requirement D ⊑∗ L(R(D)). We
take D as defined in equation 4, and for D′ = R(D) we have prel(D′) as given
by equation 5. Letting D ′ = L(D′) we have from Definition 10 that

rel(D ′) = {(a, b) 7→ (a, b, c)}

and thus D ′ = D , i.e. L(R(D)) = D . Again, we argue informally, this result
also holds in general since the effect of R is to lift each after state of D into a
point distribution, and the effect of L is to return this point distribution to its
associated value.

The importance of the retract is that it confirms in a general sense that when
reasoning about the prospective-value effects of a design we can reason about
probabilistic choice as though it were non-deterministic choice, and that, in so
doing, we will be reasoning about an abstraction of our original probabilistic
design. This, indeed, is the impact of the property R(L(D)) ⊑∗ D. We can also
say, from the property L(R(D)) = D that the theory of designs is a sub-theory
of probabilistic designs, in that any reasoning about the prospective-value effect
of probabilistic designs that do not involve probabilistic choice will correspond
with reasoning about the effect of corresponding classical designs.

7 Interactions between Demonic and Probabilis-

tic Choice

Suppose we have designs D1 =̂ x := a ⊓ x := b and D2 =̂ y := c p⊕ y := d ,
where a, b, c and d are constants. At first glance, D1 and D2 appear to be inde-
pendent in terms of their effects, and we might suppose that D1 ; D2 = D2 ; D1.
However, as both McIver and Morgan [MM04] and He and Sanders [HS06] have
noted, this is not the case, and instead we have D2; D1 ⊑∗ D1; D2. In effect, to
reflect implementor’s choice we need to characterise D2 ; D1 (where the imple-
mentor’s choice follows the probabilistic assignment) so that the implementor’s
choice can be made in a manner that is dependent on the current state. We
will see how this works in our formalism in a moment. Then we will consider
why we might want, and how we can formulate, rules to give “oblivious non-
determinism”, a blind form of interaction.

To show D1 ; D2 6= D2 ; D1 we order the possible values of x 7→ y as a 7→ c,
a 7→ d , b 7→ c, b 7→ d and calculate the distributions of x 7→ y after D1 ; D2 and
D2 ; D1 respectively. For reasons of space we limit ourselves to the case where
a, b, c and d have different values. For D1 ; D2 we then have:

dist(D1 ; D2)

= “Defn of dist (Def. 3)”

λ x , y • E (D1 ; D2 ⋄ 〈 [x 7→ y = a 7→ c)], [x 7→ y = a 7→ d ], [x 7→ y = b 7→
c], [x 7→ y = b 7→ d ] 〉)
= “Defn of D2, Sequential composition, Probabilistic Choice and Assignment”

λ x , y • E (D1 ⋄ p ∗ 〈 [x 7→ c = a 7→ c], [x 7→ c = a 7→ d ], [x 7→ c = b 7→
c], [x 7→ c = b 7→ d ] 〉 +
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(1 − p) ∗ 〈 [x 7→ d = a 7→ c], [x 7→ d = a 7→ d ], [x 7→ d = b 7→ c], [x 7→
d = b 7→ d)] 〉)
= “Evaluation of numerotized predicates and simplification of terms”

λ x , y • E (D1 ⋄ p ∗ 〈 [x = a], 0, [x = b], 0 〉+ (1− p) ∗ 〈 0, [x = a], 0, [x = b] 〉)
= “Defn of D1 and Choice”

λ x , y • p ∗〈 1, 0, 0, 0 〉+(1−p)∗〈 0, 1, 0, 0 〉, p ∗〈 0, 0, 1, 0 〉+(1−p)∗〈 0, 0, 0, 1 〉
= “Vector multiplication and addition”

λ x , y • 〈 p, 1 − p, 0, 0 〉, 〈 0, 0, p, 1 − p 〉
The two distributions we see in this result correspond to the non-deterministic
choice in which the demon has assigned x := a and x := b respectively. We
next evaluate the distributions of D2 ; D1.

dist(D2 ; D1)

= “Defn of dist (Def. 3)”

λ x , y • E (D2 ; D1 ⋄ 〈 [x 7→ y = a 7→ c], [x 7→ y = a 7→ d ], [x 7→ y = b 7→
c], [x 7→ y = b 7→ d ] 〉)
= “Defn of D1, Sequential Composition, Choice and Assignment”

λ x , y • E (D2 ⋄
〈 [a 7→ y = a 7→ c], [a 7→ y = a 7→ d ], [a 7→ y = b 7→ c], [a 7→ y = b 7→

d ] 〉,
〈 [b 7→ y = a 7→ c], [b 7→ y = a 7→ d ], [b 7→ y = b 7→ c], [b 7→ y = b 7→

d ] 〉)
= “Evaluation of numerotized predicates and Simplification of terms”

λ x , y • E (D2 ⋄ 〈 [y = c], [y = d ], 0, 0 〉, 〈 0, 0, [y = c], [y = d ] 〉)
= “Defn of D2, Probabilistic Choice and evaluation of numerotized predicates”

λ x , y • p ∗ ( 〈 1, 0, 0, 0 〉, 〈 0, 0, 1, 0 〉 )+ (1 − p) ∗ ( 〈 0, 1, 0, 0 〉, 〈 0, 0, 0, 1 〉 )

= “Lifted vector multiplication”

λ x , y • ( 〈 p, 0, 0, 0 〉, 〈 0, 0, p, 0 〉 ) + ( 〈 0, 1 − p, 0, 0 〉, 〈 0, 0, 0, 1− p 〉 )

= “Lifted vector addition”

λ x , y • ( 〈 p, 1 − p, 0, 0 〉, 〈 p, 0, 0, 1 − p 〉, 〈 0, (1 − p), p, 0 〉, 〈 0, 0, p, 1 − p 〉 )

Here, where demonic choice follows probabilistic choice, we obtain a lambda
expression whose body is a bunch of four elements. The first and fourth are those
obtained from our analysis of D1 ; D2, and correspond to the demon assigning
x := a and x := b respectively. The second and third elements, which we
refer to as “hybrid terms”, correspond to demonic choices made according to
the current state. For example the element 〈 p, 0, 0, 1 − p 〉 corresponds to the
demon assigning x := a when y = c and x := b when y = d . We can see that
we need this element in our result if we recall that an operation is the demonic
choice of all its operational refinements, and:

x := a ⊓ x := b ⊑ y = c =⇒ x := a ⊓ y 6= c =⇒ x := b
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We also note that the new elements are not in the convex closure of those
found previously, so that we have D2 ; D1 ⊑∗ D1 ; D2 but not vice versa.

McIver and Morgan [MM04] discuss a number of alternatives to their main
expectation calculus, one of which is a programming logic of distributions. This
is based on Hoare triples, with both the pre and post-judgements being over
distributions. This formalism exhibits some different properties, one of which is
that non-deterministic choice becomes blind with respect to the current state.
“When we lift the whole semantic structure up to distributions, from states,
the demonic choice loses the ability to see individual states: it can only see
distributions.. There are circumstances in which such oblivious non-determinism
is the behaviour we are trying to capture, for example when we are dealing
with concurrency or modularity in which separation of processes, or information
hiding, we protect part of the state from being read freely by other parts of the
system”.

To approach the formulation of oblivious choice we consider the interaction of
probabilistic and demonic choice illustrated above and note that the interaction
between the two forms of choice comes from hybrid terms, i.e. the addition
of terms which originally arose from two different non-deterministic choices.
To eliminate them we replace the probabilistic choice in our language with an
alternative we refer to as “random choice”, where the random choice between
D1 and D2 which chooses D1 with probability p and D2 with probability 1 − p
will be represented by D1 p⊞ D2.

Definition 12 For E being elementary, null or ⊥ random choice is identical
to probabilistic choice:

E (D1 p⊞ D2 ⋄ E ) =̂ E (D1 p⊕ D2 ⋄ E ) for card(E ) 6 1 or E = ⊥

Otherwise we demand that random choice distributes through probabilistic choice,
namely for any bunches E and F we have

E (D1 p⊞ D2 ⋄ E ,F ) =̂ E (D1 p⊞ D2 ⋄ E ),E (D1 p⊞ D2 ⋄ F )

If we now take D1 =̂ x := a ⊓ x := b and D2 =̂ y := c p⊞ y := d , we can
use the method of extracting the distributions of D1; D2 and D2; D1 to show
D1; D2 = D2; D1; the non-deterministic choice in D1 has become oblivious of
state.

It may seem strange that we obtain oblivious non-deterministic choice by
changing our conception of how probabilistic choices are made, and we will
investigate this further. We now consider what we call “random designs” which
may be written with the connectives of classical designs plus random choice.
They exclude any use of the probabilistic choice operator p⊕ .

Proposition 3 For any random design D, prospective value calculations dis-
tribute through bunch union, that is:

E (D ⋄ E ,F ) = E (D ⋄ E ),E (D ⋄ F )

Proof

Proof is by structural induction over the constructs of random designs. We
consider just some constructs to show the general approach. We also omit
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special case analysis for E or F being ⊥ or null. As usual, assignment and skip
provide base cases. For skip we have

E (II ⋄ E ,F )

= “Rule for skip”

E ,F

= “Rule for skip applied separately to E and F”

E (II ⋄ E ),E (II ⋄ F )

As examples of constructs which appeal to the inductive case we consider first
the guard construct

E (g =⇒D ⋄ E ,F )

= “Rule for guard”

g−→E (D ⋄ E ,F )

= “inductive case”

g−→(E (D ⋄ E ),E (D ⋄ F ))

= “Distributivity of bunch guards, g−→(E ,F ) = g−→E , g−→F”

g−→E (D ⋄ E ), g−→E (D ⋄ F )

For sequential composition we have

E (D1; D2 ⋄ E ,F )

= “Rule for sequential composition”

E (D1 ⋄ E (D2 ⋄ E ,F ))

= “Inductive case on D2”

E (D1 ⋄ (E (D2 ⋄ E ),E (D2 ⋄ F )))

= “Inductive case on D1”

E (D1 ⋄ E (D2 ⋄ E )),E (D1 ⋄ E (D2 ⋄ F ))

= “Rule for sequential composition”

E (D1; D2 ⋄ E ),E (D1; D2 ⋄ F )

For random choice assuming 0 < p < 1 we have

E (D1 p⊞ D2 ⋄ E ,F )

= “Rule for random choice”

E (D1 p⊞ D2 ⋄ E ),E (D1 p⊞ D2 ⋄ F )

Here we make no appeal to the inductive case; the definition of random choice
has been chosen precisely to make it work as an additional base case. 2

Given Proposition 3 we can readily prove the following proposition which
captures the oblivious nature of non-deterministic choice in the context of a
random design.
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Proposition 4 Within a random design sequential composition distributes through
non-deterministic choice, that is for any random designs D1,D2,D3 and expres-
sion E

E (D1 ; D2 ⊓ D3 ⋄ E ) = E (D1; D2 ⊓ D1; D3 ⋄ E )

where we remind the reader that choice binds more tightly than sequential com-
position.

Proof

E (D1 ; D2 ⊓ D3 ⋄ E )

= “Rule for sequential composition”

E (D1 ⋄ E (D2 ⊓ D3 ⋄ E ))

= “Rule for choice”

E (D1 ⋄ (E (D2 ⋄ E ),E (D3 ⋄ E )))

= “By Proposition 3”

E (D1 ⋄ E (D2 ⋄ E )),E (D1 ⋄ E (D3 ⋄ E ))

= “Rule for sequential composition applied to each of the two terms in the
bunch union”

E (D1; D2 ⋄ E ),E (D1; D3 ⋄ E )

= “Rule for choice”

E (D1; D2 ⊓ D1; D3 ⋄ E ) 2In Proposition 4 the oblivious nature of non-
deterministic choice is captured by the property that in any sequential program
expressed as a random design any non-deterministic choice can be made at the
start of the program. McIver and Morgan describe oblivious choice in exactly
this way in [MM04], where, as we have noted, they obtain it in a programming
logic of distributions.

We return to the question of why we obtain oblivious non-determinism by
changing the definition of probabilistic choice rather than that of non-deterministic
choice itself. Proposition 4, which captures the idea of oblivious choice, was
proved by appeal to Proposition 3, which required a proof by structural induc-
tion over the programming connectives of random designs. Thus the oblivious
nature of choice within random designs is dependent not only on the definition
of choice itself, but also on the properties of the other programming connectives
in the language.

8 Interactions between Feasibility and Proba-

bilistic Choice

For non-probabilistic programs our computational model provides a backtrack-
ing interpretation. Non-deterministic choice is seen as provisional choice, with
the operational interpretation that attempting to execute a command of the
form g =⇒D when g is false will cause execution to reverse. Execution will
then continue back to a previous choice construct and then choose a previously
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untried forward execution path. We use a similar approach in the case of proba-
bilistic choice; any probabilistic choice that leads to infeasibility will be revised
on reverse execution. We can exploit this behaviour in random search algo-
rithms. Such algorithms are particularly effective where solutions are numerous
but clustered together so that an exhaustive and unrandomised search might
traverse most of the search space before encountering any of them. Random
search algorithms will sample different parts of the state space, rather than
work their way through it according to some unspecified pattern of search that
might be particularly unhelpful.

We will use probabilistic choice from a set, written as x :⊕ A, in which each
element of the set A that provides a feasible continuation is equally likely to be
assigned to x . This is made more precise in the following definition, which has
the restriction of applying only to finite sets. We define the effect of x :⊕ A in
terms of its expectation:

Definition 13

E (x :⊕ A ⋄ E ) =
let A′ = {a | a ∈ A ∧ x := a ⋄ E 6= null} and n = card(A′) in

n > 0−→E (x := choice (A′) 1

n
⊕ (x :⊕ A′ \ {choice (A′)}) ⋄ E )

end

In the following proposition we consider the case where E takes the form
G −→ [P ]. Such an expression is null where G is false, and where P is true
takes the value 1 or 0 depending on whether P is true or false.

Proposition 5 Given a finite set A and propositions G and P, define the fol-
lowing subsets of A:

A1 = {a | a ∈ A ∧ (x := a ⋄ G−→ [P ]) = 1}

A2 = {a | a ∈ A ∧ (x := a ⋄ G−→ [P ]) = 0}

Then

E (x :⊕ A ⋄ G−→ [P ]) = card(A1 ∪ A2) > 0−→ card(A1)
card(A1)+card(A2)

ProofA′ and n in the definition of probabilistic choice from a set are here equal
to A1 ∪ A2 and card(A1 ∪ A2) respectively. For n = 0 we have the LHS of
the proposition is null from the definition of E (x :⊕ A ⋄ E ) and property
of guarded bunches that false −→ E = null. The RHS of the definition is
false−→0/0 which is also null.

The remaining proof is by induction on the value n. For the base case n = 1
we have from the definition of E (x :⊕ A ⋄ E ) that

E (x :⊕ A ⋄ G−→ [P ]) = x := choice (A) ⋄ G−→ [P ]

and the goal of our proof becomes

x := choice (A) ⋄ G−→ [P ] = card(A1)
card(A1)+card(A2)

We can relate A′ in the definition of E (x :⊕ A ⋄ E ) to A1 and A2 of the propo-
sition by A′ = A1 ∪ A2. For n = 1, A′ contains a single element. We consider
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cases. For choice (A′) ∈ A1 we have both LHS and RHS of our conjecture are
1. Otherwise we must have choice (A′) ∈ A2, and both LHS and RHS of the
conjecture are 0.

For n > 1

E (x :⊕ A ⋄ G−→ [P ])

= “Defn of :⊕”

E (x := choice (A′) 1

n
⊕ (x :⊕ A′ \ {choice (A′)}) ⋄ G−→ [P ])

= “Defn of p⊕ ”

E (x := choice (A′) ⋄ G−→ [P ]) p+ E (x :⊕ A′ \{choice (A′)} ⋄ G−→ [P ])

= “Since choice (A′) ∈ A1 ∨ choice (A′) ∈ A2 and by inductive case”

choice (A′) ∈ A1−→ 1
n

+ n−1
n

∗ card(A1)−1
card(A1)−1+card(A2)

,

choice (A′) ∈ A2−→ n−1
n

∗ card(A1)
card(A1)+card(A2)−1

= “By simplification of fractions and using rule g−→a, h−→a = g ∨ h−→
a”

choice (A′) ∈ A1 ∨ choice (A′) ∈ A2−→ card(A1)
card(A1)+card(A2)

= “Since choice (A′) ∈ A1 ∨ choice (A′) ∈ A2”

card(A1)
card(A1)+card(A2) 2

8.1 Case Study

We consider the specification of a point search:

DA =̂ f ∈ X 7→ Y ∧ y ∈ ran (f ) ⊢ f (x ′) = y

and show that it has an implementation

DC =̂ x :⊕ dom (f ) ; f (x ) = y =⇒ II

We need to show E (DC ⋄ [f (x ) = y]) = 1 under the assumption f ∈ X 7→ Y ∧
y ∈ ran (f ).

LHS

= “By Defn of DC , Sequential Composition, Guard and Skip”

E (x :⊕ dom (f ) ⋄ f (x ) = y−→ [f (x ) = y])

= “By Proposition 1”

card(A1)
card(A1)+card(A2)

where:

A1 = {a | a ∈ dom (f ) ∧ (x := a ⋄ f (x ) = y−→ [f (x ) = y]) = 1}
A2 = {a | a ∈ dom (f ) ∧ (x := a ⋄ f (x ) = y−→ [f (x ) = y]) = 0}
by assignment rule these sets are:

A1 = {a | a ∈ dom (f ) ∧ (f (a) = y−→ [f (a) = y]) = 1}
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A2 = {a | a ∈ dom (f ) ∧ (f (a) = y−→ [f (a) = y]) = 0}
Now observing that an expression with form P −→ [P ] never takes the value
0, we see card(A2) = 0. Also since y ∈ ran (f ) there will be some a with
a ∈ dom (f ) and f (a) = y so card(A1) > 0, hence:

card(A1)
card(A1)+card(A2) = 1 and thus LHS = 1 as required. �

We can calculate the probability of obtaining a particular x ′ after Dc as follows:

probDC
(x = x ′)

= “Defn of probD”

E (DC ⋄ [x = x ′])

= “Defn of DC , Sequential Composition, Guard and Skip”

E (x :⊕ dom (f ) ⋄ f (x ) = y−→ [x = x ′])

= “By Proposition 1”

card(A1)
card(A1)+card(A2) where

A1 = {a | a ∈ dom (f ) ∧ (x := a ⋄ f (x ) = y−→ [x = x ′]) = 1} and

A2 = {a | a ∈ dom (f ) ∧ (x := a ⋄ f (x ) = y−→ [x = x ′]) 6= 1}
by substitution and bunch properties these sets are:

A1 = {a | a ∈ dom (f ) ∧ f (a) = y ∧ x = x ′}
A2 = {a | a ∈ dom (f ) ∧ f (a) = y ∧ x 6= x ′}

and hence

A1 ∪ A2

= “Set union property {x | P ∧ Q} ∪ {x | P ∧ ¬ Q} = {x | P}”
{a | a ∈ dom (f ) ∧ f (a) = y}

= “Since f −1(y) denotes the bunch of elements f maps to y”

{f −1(y)}
For f (x ′) = y we have card(A1) = 1 and for f (x ′) 6= y we have card(A1) = 0,
and noting that since A1 and A2 are disjoint card(A1)+card(A2) = card(A1∪
A2) we have

probDC
(x = x ′) = card(A1)

card(A1∪A2) = [f (x ′)=y]
card {f −1(y)}

a result that tells us it is impossible to obtain an x ′ for which f (x ′) 6= y and
that each value for which f (x ′) = y is equally likely to be obtained.

9 Conclusions and Future Work

We have added probabilistic choice to our design-based theory of reversible
computation. In our original theory we gave rules, defined over the syntactic
constructs of our language, which give the prospective values an expression
could take after an operation is executed. The rules were proved from a closed-
form definition. In this paper we introduce probabilism by adding probabilistic
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choice and converting our prospective-value rules to yield expectations. We do
not give a full semantic justification for our rules here, but they have certain
properties which provide a level of confidence in their correctness and indicate
how that confidence could be further increased. First, for designs which do
not contain probabilistic choice, expected values reduce to prospective values.
Second, we use our rules for expectation to extract the distributions associated
with a design and to express its associated relation. That in turn, is used to
obtain a derivation of expectations from relations, closing a circle that could be
used to validate our expectation calculus with respect to a relational model.

Refinement is defined in terms of the containment of convex closures in dis-
tribution space. However, since our approach allows the expression of possibly
infeasible operations, we must qualify our refinement rule with an additional
predicate that prevents over-refinement, i.e. refinement to the point of infeasi-
bility.

We are able to link our new probabilistic designs to non-probabilistic designs
by a Galois connection. To transform from the richer theory of probabilistic
designs to standard designs we treat probabilistic choice as non-deterministic
choice. The reverse transform lifts values into point distributions. The existence
of the Galois connection means we can apply standard reasoning to probabilistic
designs by treating probabilistic choice as non-deterministic choice.

In our formulation we find the same, initially counter-intuitive, interaction
between probabilistic and demonic choice as reported by other workers. On
reflection, this interaction is necessary and derives from the demon’s ability to
make a choice that depends on the current state. Sometimes, however, an obliv-
ious form of non-determinism is required, and we give an alternative formulation
which achieves this.

An important aspect of our approach is that probabilistic choice is governed
by feasibility. Operationally, a probabilistic choice may indeed select a contin-
uation which is not feasible, but this will result in execution reversing back to
the point of choice, and another alternative being selected if one is available.
A short case study is provided to show how this interaction between feasibility
and probabilistic choice may be exploited in terms of practical programming.

One aspect omitted from this paper, apart from one brief remark, is the
alphabetisation of probabilistic relations. This cannot be expressed solely in
terms of predicates on before states and after states, since that can only de-
scribe homogeneous relations. We therefore need to introduce a new after-state
variable ranging over distributions. The elaboration of these predicates and the
rules for their combination over the syntactic constructs of our language remains
as future work. Other “unfinished business” includes a formal exploration of the
monotonicity properties of probabilistic star-refinement and an exploration of a
link between our language with oblivious non-determinism and other languages
which exhibit the same property.
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