
VLSI-BASED PARALLEL ARCHITECTURE FOR BLOCK-MATCHING
MOTION ESTIMATION IN LOW BIT-RATE VIDEO CODING

Donglai Xu and John Bentley

School of Science and Technology, University of Teesside
Middlesbrough, TS1 3BA, UK

D.Xu { J.P.Bentley) @Tees.ac.uk

Abstract: In this paper, we proposed a flexible
VLSI-based parallel processing architecture for an
improved three-step search (ITSS) motion
estimation algorithm that is superior to the
existing three-step search (TSS) algorithm in all
cases and also to the recently proposed new three-
step search (NTSS) algorithm if used for low bit-
rate video coding, as with the H.261 standard.
Based on a VLSI tree processor and an FPGA
addressing circuit, the architecture can
successfully implement the ITSS algorithm on
silicon with the minimum number of gates.
Because of the flexibility of the architecture, it can
also be extended to implement other three-step
search algorithms.

1. IUTRODUCTION
It is well known that motion estimation algorithms
play an important role in video sequence
compression. Many fast block-matching
algorithms for motion estimation have been
proposed because of their lower computation
overhead than that of full-search block-matching
algorithm, such as the existing three-step search
(TSS) algorithm [l] and the recently proposed
new three-step search (NTSS) algorithm [2].
Recent studies show that the motion vector
distribution of a real world image sequence within
the search window is highly centre-biased. Based
on this fact, we propose an improved version of
the well-known TSS method, the ITSS algorithm
[3], specifically aiming towards low bit-rate video
coding applications. The ITSS has much better
performance and faster speed than the original.
Compared to the NTSS, its performance is better
when applied to our target applications, such as
videophone, and its speed is faster as well, without
any direct or hidden costs.

Compared with TSS, the ITSS uses the same
number of checlung points in each step, but a
different search pattern. This leads to better
performance of ITSS while maintaining the same

data flow of TSS. That means the architecture for
TSS can also be used for ITSS. Many VLSI
architectures [4], [5], [6] have been proposed for
TSS. However, these architectures either have low
throughput, or high hardware cost, or too little
flexibility. To avoid these drawbacks and to
implement the proposed ITSS algorithm on silicon
with the minimum number of gates, a low-latency
and high-throughput parallel pipeline computing
architecture, based on a VLSI tree processor and
an FPGA addressing circuit, is presented. Owing
to its simple and modular properties, the tree
processor is suitable for VLSI implementation,
and because of the use of FPGA to implement
addressing and control circuits, the architecture is
flexible enough to implement different three-step
search algorithms. Furthermore, the tree processor
can be decomposed into sub-trees to reduce
hardware cost and pin count. Memory interleaving
and pipeline interleaving are also employed to
enhance memory bandwidth and to raise pipeline
utilisation to 100%.

In the next section, we will describe the ITSS
algorithm. In section 3, we will present the
computing architecture for ITSS. A sample design
for videophone application will be discussed in
section 4. Finally, the conclusion will be given in
section 5.

2. ITSS ALGORITHM
The experimental results in [2] have shown that
the block motion field of real world image
sequences is usually gentle, smooth, and varies
slowly. It results in a centre-biased global
minimum motion vector distribution instead of a
uniform distribution. For such a distribution, we
have developed an improved three-step search
algorithm (ITSS) which uses a centre-biased
checking point search pattern adapted to the
centre-biased motion vector distribution, hence its
performance is expected to be far better than that
of TSS which uses a uniformly distributed

0-7803-7057-0/01/$10.00 02001 IEEE. 217

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 14:55:23 UTC from IEEE Xplore. Restrictions apply.

mailto:Tees.ac.uk

checking point search pattern. Additionally, the
ITSS employs a smaller number of search points
than TSS to speed up block matching. The details
of the algorithm are given in the example
described below.

3. PROPOSED ARCHITECTURE
The system architecture of ITSS, which consists
of memory subsystem, tree processor, and address
generation circuit, is described in Figure 2.

Following earlier block-matching techniques, our
example takes a block size of 16x16 pixels and a
maximum search range of f 7 pixels in both
horizontal and vertical directions. The mean
absolute error (MAE) is used as an appropriate
estimate of the block distortion measure (BDM).
For a given (x,y), the MAE between block(m,n) of
the current frame and block(m+x,n+y) of the
previous (reference) frame is defined as:

1 15 15

256 i=o j=O
MAQm,n)(x, y) = - z z Ifk(m+i,n+j)-fk - i (m+x+i ,n + y + J) l
where fk(i , j) and & - l (i , J) are the pixel
intensities at position (ij) of the current frame k
and the previous frame k-1 respectively, and the
bZock(m,n) is the block with its upper left corner at
position (m,n) of a frame. The first step of the
algorithm employs a centre-biased search pattern
with nine checking points on a 5x5 window
(Figure 1) instead of the 9x9 window with TSS.
The centre of the search window is then shifted to
the point with minimum BDM. The search
window size of the next two steps depends on the
location of the minimum. If the minimum lies at
the centre of the search window, the search will go
to the final step (step 3) with a 3x3 search
window. Otherwise, the search window size is
maintained at 5x5 for step 2. In the final step, the
search window is reduced to 3x3 and the search
stops at this small search window.

Memory
unit

Figure 2 Block diagram of system architecture
for ITSS algorithm

The memory subsystem stores the current and
previous video frames by which the tree processor
is provided with input data. To enhance memory
bandwidth, the memory system adopts multiple
memory modules, such as an NxN module array,
to apply memory interleaving for simultaneous
accesses. In addition, the memory system is
divided into multi-banks and multi-ports in order
that the memory cycle time can afford the huge
partitions of pixels in a matching block to be
interleaved.

The tree processor, with the major computation
overhead in this architecture, computes MAE and
determines motion vector (MV). It can be a
modular-processing engine because it is not
directly related to the search pattern of ITSS
algorithm and the position of search points.
Therefore, we implement it in a single-chip VLSI.
As shown in Figure 3, pixels of the two 16x16
blocks respectively in the present frame X and in
the previous frame Y are fed to the tree processor.
The processing element D computes differences
between pixels of the present frame X and those of
the previous frame Y in parallel. The differences
are concurrently accumulated by the adders that
comprise the binary tree architecture. Each tree
level can be viewed as a parallel pipeline stage;
not only does this reduce the computational data
path length (tree height) but also prevents the data
from skewing in the course of doing the parallel
computations. However, extensive pipelining
always leads to lost resources if computed results
are not ready when are needed, thus resulting in
hazards. In the pipelined computation of ITSS,
during its three-step operations, the current step
must complete its computation before the next
step begins; therefore, it will lead to lost resources
because the computed results of the current step

(C) (d)

Figure 1 Search Pattern ofthe ITSS (a) First step
centred on centre Pixel; (b) Second step centred on
a corner Pixel; (C) S u ~ n d step centred on a middle
pixel; (d) Third step

218

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 14:55:23 UTC from IEEE Xplore. Restrictions apply.

X(l,lI

y(l+m+MVl,l+n+MVZ)

X(l.?I

y(l+m+MVI,?+n+MV?)

i (l j 1
y(l+m+MVl jtn+MVZ)

X (l J + l)

y(I +m+MV I j + l +n+MVZ)

X(l. I51
y(I+rn+MVl.l5+n+MVZl

x(I. 16)

y(I +rn+MV I, 16+n+MV2)

x(2.I)

y(Z+m+MVl.l+n+MV?)

X(Z.21

y(?+m+MV I .2+n+MV?)

X(2J)

y(Z+m+MV I ,j+n+MVZ)

X(ZJ+l)

y(Z+m+MV I J+ I +n+MV?)

~ (2 .15)

y(Z+m+MV I, I5cntMV2)

~ (2 . 1 6)
MVI,MV2

y(Z+m+MVI .I 6intMVZ) x(1.11 *
y(i+m+MVI .I+n+MV2)

r(i,2)

yii+m+MV I .Z+n+MVZ)

x(iJ)

. . . y(i+m+MV I j+n+MVZ)

X(lJ+l)

y(i+m+MV I j + I +n+MV2)

3Jj3=+
3JJ33

X(l.lS1

y(i+m+MV I , 15+n+MV?)

~ (~ 1 6 1

y(i+m+MV 1,16+n+MV2)

~(16.11
y(I6+m+MVl.l+n+MVZ)

~ (1 6 . 2 1

y(I6+m+MV I .2+n+MVZ)

~ (1 6 ~)
yi I6+m+MV I j+n+MVZ)

~ (1 6 ~ 1 1)

y(16+m+MVI j+l+n+MV?)

~(16.15)

y(I6+m+MVI.I5+n+MV?)

~(16.16)

y(I6+m+MV 1,l b+n+MV2)

Figure 3 Tree architecture processor for MAE and MV computation

are not ready when they are needed by the next
step. To avoid performance degradation caused by
these hazards, pipeline interleaving is employed in
the processor.

The address generation unit will address memory
for computing MAE and motion vector. It controls
the search pattern of the ITSS algorithm and
assigns search points by selecting the proper block
address and pixel address within the block. By
changing the design of this component, different
hierarchical search algorithms could be
implemented in this architecture. Therefore,
P G A implementation is used, to provide future
flexibility.

4. APPLICATION DESIGN
In VLSI implementation of the tree processor for
specific applications, it is not always necessary to
implement the whole tree architecture on a single
chip because the area-speed product is always
taken as the most important consideration. To
reduce hardware cost, the tree architecture can be
cut into sub-trees.

In the following, we consider the hardware
implementation of the tree architecture (N=16) for
a videophone application. Suppose dynamic
random access memories (DRAM'S) with 20011s
access time are used to implement the memory
system and the time to latch a pixel from a

219

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 14:55:23 UTC from IEEE Xplore. Restrictions apply.

memory module is simulated to be about 50ns. If a
l/C-cut sub-tree architecture and a B-bank
memory system are adopted, then we have the
following constraint:

20011s x B
2 Sons; and thus C x B 2 64.

(256 memory modules)/C

Thus the l/C-cut sub-tree architecture must
connect with a memory system of at least 64/C
memory banks to allow simultaneous accesses. On
the other hand, the period time for each pipeline
stage is also constrained by memory cycle time
and is 20011s. For videophone application
(288x352 frame size, 16x16 block size, and lOHz
frame rate), the throughput required by the
processing system is - .

352 288 x 10 = 3.96k blocks/sec ond,
16x16

so that 252 .5~s is allowed for each vector. With a
l/C-cut sub-tree, the number of time cycles
required to compute a motion vector is 27xC.
Thus, the sub-tree architecture for the application
is constrained by:
200ns x (27 x C timecyclesfor 1/C - cut sub - tree) 5 252.5~~;

and thusC 5 46.76.

Consequently, the 1/32-cut (C=32) sub-tree
architecture with two memory bands (B=2) for
this videophone application is optimal in speed or
hardware cost for the realisation of ITSS
algorithm.

The real throughput rate depends on the clock rate
applied to it. For the above application, the clock
cycles required to estimate a motion vector is
27xC=864. Suppose a clock rate of E MHz is
applied to the sub-tree processor. Then, in order to
estimate motion vector in real time for the
application, there should be the following
constraints:
E x 2 3.96 x lo3; then E 2 3.42 MHz.

864

This means that the minimum clock rate to do
real-time block matching is 3.42MHz. The single
chip 1/32-cut sub-tree is currently synthesised and
simulated in a 0.7um CMOS standard cell
technology, requiring about 5000 equivalent gates.

modular tree structures facilitate VLSI
implementation, the FPGA designs for addressing
and control circuits improve the flexibility of the
system, and memory interleaving and pipeline
interleaving enhance the overall system computing
performance. Furthermore, the tree-cut technique
is introduced to reduce the hardware cost of the
tree processor; but still allowing real-time
processing requirements to be met in the sub-tree
architecture for specific applications. Finally, a
videophone application is considered and its speed
and hardware cost trade-offs are evaluated to find
out an optimal VLSI implementation.

REFERENCES
1.

2.

3.

4.

5.

6.

T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T.
Ishiguro, “Motion-compensated inter-frame
coding for video conferencing”, National
Telecommunication Conference, New Orleans,
USA, November 1981, pp. G5.3.1-G5.3.5.
R. Li., B. Zeng and M. L. Liou, “A new three-step
search algorithm for fast block motion estimation”,
IEEE Trans. on Circuits and System for Video
Technology, Vol. 4, 1994, pp. 438-442.
W. Booth, J. M. Noras and D. Xu, “A novel fast
three-step search algorithm for block-matching
motion estimation”. In: Chin R., Pong T.C. (eds.):
Computer Vision. Lecture Notes in Computer
Science, Springer-Verlag, Vol. 1352, 1998, pp.

Z. He, M. L. Liou, P. C. H. Chan and R. Li, “An
efficient VLSI architecture for new three-step
search algorithm”, IEEE 38th Midwest Symposium
on Circuits and Systems, USA, August 1995, pp.

G. Gupta and C. Chakrabarti, “Architectures for
hierarchical and other block matching algorithms”,
IEEE Trans on Circuits and Systems for Video
Technology, Vol. 5, 1995, pp. 477-489.
P. M. Kuhn and W. Stechele, “Complexity analysis
of emerging MPEG-4 standard as a basis for VLSI
implementation”, Proceedings of The Society of
Photo-Optical Instrumentation Engineers (SPIE),
Vol. 3309, 1998, pp. 498-509.

623-630.

1228- 123 1.

5. CONCLUSIONS
In this paper, we describe a flexible and efficient
architecture for implementation of the improved
ITSS algorithm. In this architecture, simple and

220

Authorized licensed use limited to: Teesside University. Downloaded on May 25,2010 at 14:55:23 UTC from IEEE Xplore. Restrictions apply.

