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Abstract: Finding robust explanations of behaviours in Alife and related fields is made difficult 
by the lack of any formalised definition of robustness. A concerted effort to develop a framework 
which allows for robust explanations of those behaviours to be developed is needed, as well as a 
discussion of what constitutes a potentially useful definition for behavioural robustness. To this 
end, we describe two senses of robustness: robustness in systems; and robustness in explanation. 
We then propose a framework for developing robust explanations using linked sets of models, 
and describe a programme of research incorporating both robotics and chemical experiments 
which is designed to investigate robustness in systems. 
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1 Introduction 

Despite our frequent use of the term, the robustness concept 
as commonly defined in Alife and related disciplines is no 
longer adequate for producing real insight into the functions 
of biological life. Robustness in one methodology or virtual 
world does not imply robustness in another, and likewise 
does not imply that we can develop a robust explanation of 
the behaviour of interest. In order to move in this direction, 
we must develop a stronger understanding of the 
relationship between the differing senses of robustness – 
and through that understanding, formulate a new means of 
generating robust explanation using simulation and robotics. 

Of course, within the field of artificial life, the potential 
background on which theories can be constructed is 
enormous. Alife began with the aim of investigating the 

larger questions surrounding life and its origins: how  
do populations develop and evolve? How might life  
have originally begun? Might we be able to investigate  
new forms of life through computer simulation, a sort of 
‘life-as-it-could-be’ (Langton, 1992)? 

Such an undertaking is far from straightforward. Beyond 
the fact that computer simulations are still a relatively recent 
development in science, our biological understanding of the 
origins and evolution of life is still quite tenuous. There  
is a pronounced lack of high-level overarching theories 
which can unify the drive in Alife to understand these larger 
questions about biological life. Without such a background, 
Alife researchers face the daunting prospect of developing  
a new method for examining the robustness of their 
simulations or robots. 
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2 The senses of robustness 
Before we can propose a research programme designed to 
investigate robustness in Alife (Ikegami and Suzuki, 2008; 
Ikegami, 2009), we must develop a firmer definition of and 
relation between two senses of robustness: robustness in 
systems, and robustness in explanation. Each sense carries 
with it a set of foundational concepts which can guide us 
toward an understanding of how these senses can be related. 

When discussing systems, robustness is often described 
as a property which gives the system a certain resilience 
against perturbation. A robust system is thus able to retain 
functionality despite variation. This concept is further 
elucidated in the following section. 

In contrast, a robust explanation is a scientific 
explanation which can identify causal factors that underlie a 
phenomenon in a variety of circumstances. Thus, rather than 
an explanation which pertains to only once instance of 
behaviour in a system, a robust explanation will identify 
those elements which drive a system’s behaviour as a 
whole. We examine this concept further in Section 4. 

3 Robustness in systems 
Jen (2005) presented a discussion of stability and robustness 
in her paper, ‘Stable or robust? What’s the difference?’. She 
argues that formalising the differences between these two 
properties is far from simple, given that robustness has 
never been explicitly defined, but rather is subject to 
multiple conflicting interpretations. 

Jen attempts to address this problem by discussing the 
generally agreed-upon differences between stability and 
robustness, before progressing into a detailed discussion of 
the nature of robustness itself. She argues that robustness in 
general is broader in scope that stability, encompassing a 
larger range of systems and features of systems. She posits a 
definition of robustness as “a measure of feature persistence 
for systems or for features of systems, that are difficult to 
quantify or parameterise (i.e., to describe the dependence on 
quantitative variables), and with which it is therefore 
difficult to associate a metric or norm” (p.13). 

Beyond this, however, she also characterises robustness 
as a measure of persistence against perturbation in systems 
in which those perturbations encompass not just fluctuations 
in inputs or parameters, but ‘represent changes in system 
composition, system topology, or in the fundamental 
assumptions regarding the environment in which the system 
operates’. This differs substantially from stability analysis, 
in which one most often postulates a single perturbation. 
Robustness, in contrast, often requires the examination of 
many possible perturbations. Thus, robustness may exist or 
not exist on different levels of a system: the individuals in 
an Alife simulation may display robustness, for example, 
but that does not imply that the population as a whole is 
robust. 

3.1 Extending Jen's definition 

Kitano (2007) extends Jen’s definition of robustness, noting 
that the particular separation of stability and robustness she 
proposes allows a system to display one property while 
lacking the other. In other words, a system could be both 
robust and unstable: elements of the system which is robust 
could be individually unstable, but still provide the system 
with robustness against perturbations. Similarly, systems 
could also be stable and not robust: single perturbations may 
not disturb the system, while multiple perturbations may 
overwhelm it. 

Kitano’s view leads us to the need for a strong 
distinction between stability and robustness within a system. 
If we imagine a system performing some behavioural task, 
we can imagine the elements of that system operating at a 
functional level to produce the desired behaviour. If we take 
Kitano’s view into account, then we can argue that stability 
thus operates on this functional level – the sub-tasks and 
related elements of behaviour that lead to successful 
operation at the task level. 

4 Robustness in explanations: Levins and 
robustness analysis 

To address the second sense of robustness, robustness in 
explanations, we will examine the concept of robustness 
analysis and how it may apply to studies in Alife. 
Robustness analysis as a concept originated in the seminal 
paper ‘The strategy of model-building in population 
biology’ (Levins, 1966). This paper has been frequently 
cited and justifiably lauded for its insightful commentary  
on the pragmatic issues facing modellers in biological 
disciplines. However, his discussion of robustness analysis 
has been comparatively ignored, despite its apparent 
applicability to these difficulties in evaluating robustness in 
Alife. 

Levins’ conception of robustness analysis hinges  
upon the concept of studying multiple models of the  
same phenomenon. In his view it is important that each 
model is distinct from the other, containing different core 
assumptions or methodologies. As a consequence, he argues 
that “If these models, despite their different assumptions, 
lead to similar results, we have what we can call a robust 
theorem that is relatively free of the details of the model.... 
our truth is the intersection of independent lies” (p.20). 

Thus, the modeller needs to be able to separate 
predictions which are relevant to the system of interest from 
those which are artefacts of the assumptions made in  
the construction of these distinct models. By assembling  
the predictions of these models together, and finding 
commonalities amongst them, the theorist attempts to find 
this ‘intersection of independent lies’ which is a robust 
theorem regarding the behaviour or system of interest. 
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4.1 Objections to robustness analysis, and 
Weisberg's clarification 

Orzack and Sober (1993) launched a critique of Levins’ 
paper, arguing that Levins’ conception of robustness 
analysis is non-empirical and thus fundamentally flawed. 
The procedure outlined by Levins centres on the 
examination of models, not data, and this fact leads Orzack 
and Sober to conclude that the whole enterprise would be 
ineffective. In essence, they argue that such a procedure is 
only guaranteed to produce a correct robust theorem if the 
theorist knows ahead of time that one of the models in the 
set to be examined is true. 

Their objections at first seem quite reasonable; after all, 
how could the modeller separate bonafide predictions from 
mere artefacts of their simplifying assumptions without this 
sort of foreknowledge? As Weisberg (2005) explains, this 
would further imply that if the models to be examined were 
indeed true, then robustness analysis becomes entirely 
unnecessary anyway; Levins proposes the method as a 
means for examining models which are highly idealised and 
thus not necessarily true or accurate. 

Weisberg then provides an intensive examination of 
robustness analysis using predator-prey models and the 
Volterra principle as an example of a robust property,  
or a property common to multiple models which contain 
different idealising assumptions. This leads to a discussion 
of the need to find common structures between models: 
those structures found in different models which give rise to 
the robust property. Finally, he elucidates a four-step 
procedure for robustness analysis: 

1 examine a group of similar but distinct models for a 
robust behaviour 

2 find the core model structures which give rise to this 
robust property 

3 interpret these common structures as descriptions of 
empirical phenomena 

4 construct a robust theorem, and use stability analysis to 
examine the boundaries of that robust theorem and the 
behaviour it describes. 

However, these four steps are not the end of the robustness 
analysis procedure. The theorist must also confirm that 
these common structures found in these disparate models 
are instantiated in the system of interest, and examine the 
effects of other possible causal factors on the function  
of that structure. Thus, we must discover if the common 
structure is present in the real system, and whether it is truly 
the primary causal element in the original behaviour of 
interest. 

4.2 Problems with the Weisberg formulation 

Thus far, Weisberg’s reformulation of Levins’ original idea 
seems quite fruitful. Weisberg expands the original simple 
and abstract concept into a pragmatic framework for the 

modeller and theorist, presenting a plausible means by 
which multiple models can contribute to an understanding 
of the real-world structures that produce a given behaviour. 
He further toughens his burgeoning framework against 
criticisms akin to those levelled at Levins by Orzack and 
Sober (1993). 

However, the framework as described implies a higher 
level of general consensus amongst model-builders than 
seems to be present in Alife. While modellers in Alife may 
share certain simplifying assumptions when making models 
of similar phenomena, the methodologies used to create 
these models can vary enormously, ranging from cellular 
automata to evolutionary simulations to robotics. 

Within his formulation, Weisberg specifically describes 
these sought-after common structures as mathematical 
constructs. While he makes allowances for common 
structures which may not fall into such clearly-defined 
territory, and thus must be divined through the theoretical 
expertise of the examiner of the collection of models, the 
advantage here clearly lies with the theorist that can 
construct a mathematical formulation of the common 
structures they see within that collection. 

Say for example that our theorist is examining a 
collection of models which examine the evolution of 
parasitism. Models of such a phenomenon within Alife are 
incredibly diverse even when examining related 
phenomena, as we see in Tom Ray’s Tierra and its parasites 
and hyper-parasites (Ray, 1994) as compared to Kaneko  
and Ikegami’s homeochaotic examination of host-parasite 
dynamics (Kaneko and Ikegami, 1992). When examining 
models which contain not only different assumptions,  
but different means of constructing the various worlds  
these simulated systems inhabit, can we realistically follow 
Weisberg’s plan for robustness analysis? 

5 Weisbergian robustness analysis and Alife 
In order to escape this conundrum, we need a unified 
framework under which to search for common structures in 
order to perform robustness analysis. Models in Alife can 
frequently share a conceptual relationship – they examine 
similar behaviours within biological systems, but using 
fundamentally different methods. The way forward, then, is 
to create experiments and simulations which share common 
grounding and related contexts. 

Robust theories, as we have discussed here, require a 
framework of models to develop. The models within that 
framework must share a common background of 
assumptions and the same context. Our studies of robust 
systems reveal the importance of the relationship between 
context and environment. Further study of this relationship 
can allow us to develop a common background of 
assumptions on which to construct our framework of 
similar, but distinct models – each with differing 
simplifying assumptions, rather than different methods 
altogether. 
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6 Experimental insights on environment and 
robustness 

Having discussed robustness in explanation, we return once 
more to robustness in systems – this time examining the 
results of a related experiment. The experiment detailed 
below has demonstrated the strong, highly complex links 
between environment and the generation of robust 
behaviour in a system. In particular, this novel chemical 
experiment (Hanczyc et al., 2007) provides an illustration of 
how real robust systems are a consequence of a balance 
between multiple causal factors – a balance that would not 
be revealed by a single perturbation of that system. 

In this experiment, the following procedure was 
performed: adding oleic anhydride oil phase to highly 
alkaline water phase (in between pH 11 and 12) to see how 
the hydrolysis of the anhydride proceeds in a glass plate. 
Immediately the oil begins to react with the water, causing 
the oil phase to break up into smaller spherical droplets, 
ranging a few to several hundred microns in diameter. These 
droplets are like gliders in Conway’s Game of Life, in that 
they move freely in space and interact with each other. In 
Figure 1, a snapshot of the initial reaction phase is 
presented. The wavy form shown is the interface which 
appears between the oil phase and the aqueous phase. After 
a few minutes, droplets begin to appear and start to move 
around. In some conditions, we see a population of droplets 
begin to cross the glass plate (see Figure 2). 

We argue that the mechanism of the movement is 
caused by the coupling of the hydrolysis reaction at the 
interface with the fluid dynamics of the droplet. The surface 
tension of the droplet is determined by the amount of 
chemical product (oleic acid). Inhomogenity of chemical 
distribution on the surface causes the Marangoni force, 
which results in a convection flow (which goes from the 
leading to tailing portion along the inner surface of a 
droplet, then goes straight back to the leading portion along 
the axis through the centre). This flow transports fresh 
chemicals to the leading portion, thereby sustaining the 
reaction. Because of this coupling, the droplet can enhance 
its self-motility and prolong its non-equilibrium state, and 
thus its lifetime. This scenario has been largely confirmed 
with numerical simulations (Matsuno et al., 2007) 

Figure 1 The hydrolysis of the oleic anhydride oil (top and 
centre) in the presence of alkaline water 

 

Figure 2 Population of droplets that self assembled after partial 
hydrolysis of the initial oil mass was added to the 
system, Figure 1 

 
Note: Each droplet is several hundred μ metres in size. 

The droplets observed here can change direction 
spontaneously, and when coming into contact they never 
fuse together. When gliders in the Game of Life collide with 
each other, however, they normally disappear entirely 
except for a few very special cases. The oil droplets are 
attracting or repulsing each other due to the flow patterns 
exhibited and product secreted around them. Therefore, the 
interaction range is quite wide in the case of these droplets. 
On the other hand, the interaction range of the Game of Life 
remains at one bit even if the organised pattern becomes 
huge. Also, a single bit flip in a Game of Life pattern 
usually causes fatal damage to those complex patterns (see 
Figure 3). From these facts, we observe that the oil droplets 
are far more robust than gliders in the Game of Life. 
However in terms of lifespan, gliders in the Game of Life 
are immortal, while the oil droplets have finite life spans of 
less than 10–15 minutes (though it is difficult to tell when 
the droplet dies) and are sensitive to factors in the external 
environment such as pH. 

Figure 3 Break up of spaceship pattern in the Game of Life by 
flipping an arbitrary bit of the big triangular pattern in 
the figure 

 

The lifespan of these droplets can be made much longer by 
using a mixture of reactive oleic anhydride and non-reactive 
nitrobenzene as a carrier oil. This results in droplets with 
controlled volume that are more amenable to analysis. 
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However, in the first experiment, the environmental 
conditions (such as pH, product concentration and Reynolds 
number) are self-organised by the system itself rather than 
being prepared by the experimenter. The self-moving 
behaviour of the self-organised droplets is different from 
that of the controlled droplets. In particular, the size of the 
self-organised droplets is suppressed under a few hundred 
micrometres, due to the moving mechanism being 
dominated by the convection flow. Further, the interaction 
between droplets is mediated by the chemical product 
around the droplets, but in the case of controlled droplets, 
these interactions appear more like ballistic collision. 
However this needs to be investigated further. 

Comparing these droplet behaviours and the gliders of 
the Game of Life, we notice that both self-organisation and 
a rich complex initial state are required for biological 
robustness. Self-organisation tends to simplify the final 
outcome, limiting it to a low degree of complexity, while 
this low complexity assures the robustness of the outcome. 
The rich and complex initial state prevents the system from 
falling into a simple state which displays no interesting 
behaviours. Ikegami and Hanczyc (2009) has dubbed this 
balancing act between these two factors the maximalism 
design principle for biological robustness. 

7 Quantifying robustness using robotics 
experiments 

The above serves as an example of a novel study which 
provides some insight into factors that contribute to the 
robustness of a system. In particular, we notice the 
importance of complex interaction with the environment 
and the self-organisation of this chemical process, which 
can lead to the later development of robust behaviours. 
However, we still require a research framework which will 
allow us to produce more robust explanations of these sorts 
of behaviours. While our discussion of robustness analysis 
has illuminated some possibilities for developing studies 
which produce robust explanations, how might such a 
comprehensive approach to modelling assist our efforts to 
study robust systems? 

Hubert et al. (2009) provides one example, using robots 
and simulation in a combined approach to study robustness 
in a simple system. While robotics has been used frequently 
to study elements of complex biological systems, these 
studies mention robustness only as a property of the system 
under study rather than as the central concern. This leads to 
experimenters simply perturbing their system and declaring 
it robust when the system remains functional. As we have 
seen, however, developing an understanding of how the 
system achieves that robustness is a highly complex task. 

This study aims to examine these questions by studying 
a simple system which contains several interacting  
sub-systems. Hubert et al. use the Lego Mindstorms NXT 
(see Figure 4), an modular robotics system based upon  
the NXT microcontroller. In this case, the robot was given 
the task of navigating through a simple environment to 
reach a goal, and attempted to complete this task in several 

conditions using two different sensory modalities (visual 
and auditory). The goal is to develop a means to quantify 
robustness through studying the contribution of sub-systems 
(in this case, visual and auditory sensory systems) to the 
overall robustness of a system. 

Figure 4 The Lego Mindstorms NXT 

 

7.1 Robot experiment overview 

Our experiments were performed in three stages. In the first 
stage, the robot used only the light source to reach the goal 
(L). In the second stage, it used only the sound source (S). 
The last stage allows the robot to use both sources to locate 
the goal (LS). Each of these stages required specific 
implementations of the robot’s controller that are detailed 
below. 

The performance of the robot is measured by its 
capacity to reach the goal in less than six minutes. For a 
single trial, the performance of a robot was one if it reached 
the goal and zero otherwise. The duration of the trial was 
not considered in the performance measure. We relate this 
measure of performance to the robustness of the robot and 
will use both terms to describe its capacity to reach the goal. 

For the S and LS conditions, different levels of noise 
were added to the sound sensor in order to evaluate how the 
perturbation of one modality impacts the overall 
performance of the system. The noise was added by adding 
a value drawn from a uniform distribution to every measure 
reported by the sound sensor. The values for the noise 
presented in the results were always positive and represent 
the maximum MAX added. The range of those values is  
[–MAX; MAX]. 

7.2 Robot platform 

Our robotic platform is the Lego Mindstorms NXT (see 
Figure 4), which is a modular robot assembled from many 
elements such as motors, sensors and structural modules. 
The onboard processor is called the NXT and is a general 
purpose microprocessor whose function is to command the 
motors, retrieve information from the sensors and run 
custom software. The setup used in our experiments 
consisted of two motors, one light sensor and one sound 
sensor. The two latter sensors measure the intensity of light 
and the volume of sound respectively. 

Our experiments were performed on the real platform 
using a speaker as a sound source and a fluorescent lamp as 
a light source. We also examined the robot performance in 
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simulation, where we used real sensor readings from the 
robot to make it consistent with the real experiment. 

7.3 The controller 

The controller of the robot is a feedforward artificial neural 
network (NN) which possesses four or seven inputs based 
on the number of sources it must track and four outputs. No 
hidden neurons are present. The input and output neurons 
are fully interconnected, as seen in Figure 5, and the weights 
are tuned using Hebbian learning (Hebb, 1949). 

Figure 5 The robot’s NN controller (see online version  
for colours) 

 

The inputs of the NN were pre-processed in order to obtain 
binary inputs. The pre-processing was necessary for the 
Hebbian learning to be stable and is different for each type 
of source in the environment. The outputs were squashed to 
a range of [0; 1] using a sigmoid function. 

Before explaining the pre-processing, it should be noted 
that the robot was using two timescales to accomplish its 
task. The first one is the microprocessor timescale (MT) 
which corresponds to one step of the sensory-motor loop. 
One MT time-step involves one update of the sensors and of 
the motors. The second timescale is the neural 
timescale(NT) which corresponds to an update of the 
outputs of the NN. 

In this NN, four inputs are for sound and three inputs are 
for light source processing. The current sensory inputs for 
sound and light are compared with the previous sensory 
inputs and the background value in order to let the robot 
achieve the goal reaching behaviour. The parameters used 
for this pre-processing were determined by hand. Further 
details of this pre-processing can be found in the Appendix. 

The weights connecting the inputs to the outputs were 
tuned through Hebbian learning. Hebbian learning is an 
unsupervised learning algorithm which relies on correlations 
between inputs and outputs to decide if their connecting 
weights should be increased or not. There are  
many different implementations of Hebbian learning with 
different capabilities. The one we chose in our experiments 
is Oja’s rule (Oja, 1982). This rule implements regular 
Hebbian learning while stabilising the growth of the 
weights. 

Due to the unsupervised nature of Hebbian learning, we 
cannot expect the NN to converge to the desired behaviour 
without guidance. Hebbian learning will increase the value 

of a weight when the input and output are simultaneously 
activated, but in addition we must ensure that the network 
learns to demonstrate the appropriate behaviour for a given 
set of inputs. Given that the robot may use light, sound or 
both for navigation depending on the experimental 
condition, the appropriate behaviour for a given set of inputs 
can vary in each condition. Thus, prior to applying the 
Hebbian learning algorithm, we train the network to reflect 
the correct behaviour for the possible inputs in each 
experimental condition. 

7.4 Robotics experiment results 

After programming the robot, its behaviour was examined 
by alternating the environmental conditions as follows: an 
environment with only a light source (L condition); an 
environment with only a sound source (S condition); and an 
environment with both sources present (LS condition). The 
robot was then placed in different initial starting points, and 
its ability to reach the sound or light sources was evaluated 
over 1,000 trials while uniform sonic noise was added to its 
environment. 

The results indicate that there is a certain amount of 
noise above which the LS condition always shows better 
performance than the S condition (but not the L condition). 
The performance shown in the LS condition is not a simple 
superposition of the L or S only condition, however. Above 
this noise threshold, a compensatory behaviour emerges: the 
robot utilises its ability to navigate in the visual modality to 
compensate for the added noise in the auditory environment. 

We hypothesise from these observations that a certain 
amount of noise, whether it is from an internal or external 
source, encourages the robot to develop cross-modal 
performance as a means to navigate the environment (in this 
case light and sound modalities). This also implies that the 
concept of robustness is different from that of stability as we 
described in Section 3. The stability of a system will always 
degrade with the introduction of noise, but noise can prompt 
a robust system to become more robust (in this case, a robot 
can acquire cross-modal behaviours). 

8 Building a research programme to study 
robustness 

While this initial foray into studying robustness using 
robotics is a useful step forward on its own, the most 
important property of this study in the current analysis is the 
experimental design: a system with a complex initial state  
(a robot containing a NN controller and several sensors) 
which possesses several clearly-defined sub-systems, each 
of which can be studied both in a real environment and in 
simulation. 

The modularity of this system also allows it to be 
expanded simply and quickly, and the resultant data can be 
shared between both the robot and the corresponding 
simulation. This research programme is moving toward  
the way forward we propose based upon Weisberg (2005):  
a framework of models with a shared background of 
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assumptions. Upon this framework we can build a set of 
similar, but distinct models – perhaps utilising varied 
environments, subjecting the system to different forms of 
perturbation, or altering the construction of the robot or its 
controller – which will allow us to discern which common 
elements between those models contribute to the 
development of robust behaviours within the overall system. 

Further, this study serves to link the insights gained 
through the oil droplet experiments to a new potential 
means to examine the components of a robust behaviour. 
The oil droplets provided an example of how the 
environment can allow a system to self-organise, which can 
allow the system to begin to develop complex and robust 
behaviours. The robotics study starts with an un-structured 
internal organisation (a robot with a NN controller with 
random parameters) then allows self-organisation to 
proceed; the robot is placed into the environment, and 
examining the resultant emergent behaviours allow us to 
probe how robust behaviours may develop and function. 
With this comprehensive, combined approach to the study 
of robustness, utilising several methodologies based upon 
linked base assumptions regarding robustness and  
self-organisation, we hope to further unravel the 
complexities of robustness. 

9 Conclusions 
Most studies of robustness to date have used the term only 
as a general descriptor for systems which are able to retain 
functionality despite perturbation. While Jen (2005) and 
Kitano (2007) have managed to develop more insightful 
definitions of robustness in complex systems, we still lack a 
robust explanation for how robust behaviours develop and 
function. 

Our discussion of robustness analysis has illuminated 
the importance of developing a comprehensive research 
programme to develop such explanations. The need to 
combine similar but distinct models to discover the causal 
factors in systems that lead to robust behaviour has been 
discussed in great detail by Levins (1966), Orzack and 
Sober (1993) and Weisberg (2005). Our goal here has been 
to demonstrate that, even in the highly diverse field of 
artificial life, such an approach may still flourish. 

In our case, a novel biochemical experiment together 
with simulation and robotics approaches are being used to 
develop an in-depth understanding of robustness and how 
we may quantify and examine its effects. The oil droplets 
have demonstrated the potential impact of the maximal 
design principle, which underlines the importance of  
‘half-way design’ (of the initial states and architecture of a 
system) and letting a system self-organise in interacting 
with an environment, which can later lead to robust 
behaviours. Using a robotic platform, we are continuing to 
study further potential aspects of robustness by developing a 
series of robotic models which will allow us to probe the 
impact of various sub-systems on the robustness of the 
overall system. 

In the case of the chemical experiment, the 
environmental conditions, pH and oleate concentration are 
controlled by the droplet motion. We define robustness of 
the droplets with respect to their ability to sustain  
self-moving behaviour. In contrast, gliders in the Game of 
Life appear to display self-moving behaviour but do not 
actually function in this way. This evolution of self-
movement, autonomy and individuality appears to be a key 
prerequisite for developing robust behaviours. 

When giving a robot the capacity for self-organisation, 
however, the robot cannot sustain its autonomous movement 
quite so easily. Developing robustness in this case appears 
to depend on the development of an appropriate use of  
time-scales for its behaviour; in particular, parameter 
settings for the robot’s learning and forgetting during the 
process of Hebbian learning can affect the time-scales of the 
robot’s behaviours. Finding a range of these parameters 
which allow proper functioning by utilising the background 
noise of the environment will allow the development of 
more robust behaviours. 

As we move forward, our goal is to develop a  
strong definition of robustness: one which allows us to 
comprehend how it functions, and to quantify it in a variety 
of contexts. By increasing our understanding of how we can 
connect artificial systems with natural environments, we can 
further our development of a theoretical framework which 
provides a background of assumptions to inform our robotic 
and simulated models. Only via such a combined approach 
can we develop a robust explanation for robust behaviours 
in natural and artificial systems. 
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Appendix 

The pre-processing applied on the inputs for the sound 
seeking task is as follows: 

1 Input 0 is set to 1 if the current sound volume is higher 
than the volume measured 30 MT timesteps ago to 
which is added a small value of 0.03. 

2 Input 1 is set to 1 if the current sound volume is lower 
than the volume measured 30 MT timesteps ago from 
which is subtracted a small value of 0.03. 

3 Input 2 is set to 1 if the current sound volume is greater 
than or equal to the volume measured 30 MT timesteps 
ago. 

4 Input 3 is set to 1 if none of the other inputs is 
activated. The controller goes through this list until one 
input is activated. The remaining ones are set to zero. 

For the light seeking behaviour, the same system of rules is 
used but it is necessary to add an additional variable 
allowing the controller to distinguish between the ambient 
light in the room and the light coming from the goal. This is 

not necessary in the case of the sound as the room is quiet 
during the experiments. This memory, referred to as 
imprint, is updated every 120 MT timesteps and contains the 
intensity of the light at the time of its update. Every 
subsequent reading of the sensor is offset by this value. The 
following list details how the inputs are updated: 

1 input 2 is set to 1 if the intensity of the light is lower 
than a threshold set to 0.01 

2 if the current intensity is lower than the intensity  
10 MT timesteps ago minus a small value of 0.01, then 
there are two choices: 
a input 1 is set to 1 if the robot goes backward 
b input 2 is set to 1 otherwise 

3 if the current intensity fits in none of the above, input 1 
is set to 1 if the robot goes backward and input 0 is set 
to 1 otherwise. 

The need to test for the direction of the robot arises from the 
unidirectionality of the light sensor which only picks up 
light when facing the source directly. In that sense, going 
backward is not necessary but can nevertheless happen in 
the early stages of the learning process. Because of that 
possibility, it is necessary to allow the robot to reverse its 
direction. The memory of 10 MT timesteps used for the 
light differs from the 30 MT timesteps of the sound. Both 
values have been determined experimentally in order to 
improve the performance in a real world environment. 

The sound being noisier, a value of 30 MT timesteps is 
necessary to ensure a correct evaluation of the tendency of 
the robot to approach it. The light shows less noise and only 
requires 10 MT timesteps. 

When the task combines light and sound, the robot uses 
a controller with seven input neurons to allow it to combine 
both behaviours. In this condition the inputs are set 
according to the above algorithms. This means that at each 
NT timestep two inputs will be activated simultaneously: 
one for the sound and one for the light. The NN always has 
four outputs regardless of the task. These represent the four 
possible behaviours that can be activated by the robot. To 
determine which behaviour is activated, a winner-takes-all 
strategy is used and the output with the highest activation 
wins. The four behaviours are: 

1 Output 0 maintains the current behaviour. 

2 Output 1 inverts the current behaviour. If the robot is 
going forward, it will go backward at the next MT 
timestep and vice-versa. 

3 Output 2 modifies the current behaviour to create a left 
turn while maintaining the same direction. 

4 Output 3 modifies the current behaviour to create a 
right turn while inverting the current direction. 

 


