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Abstract: Tertiary recovery is directly dependent on the alteration in wettability and interfacial
tension (IFT), hence releasing the trapped oil from rock pore spaces. Bio-surfactant water flooding to
mobilise residual oil in reservoirs is a new and developing prospect that can be used more often in
future due to its environmentally friendly nature and economic advantages. In this work, the impact
of rhamnolipids as water soluble bio-surfactant solutions on the interfacial activities of saline water
and the wettability of carbonate rock are studied at elevated temperature. The effectiveness of the
bio-surfactant as a rock wettability modifier is analysed in the presence of different salinities, in
particular SO4

2− ions. The reason for the focus on SO4
2− is its high affinity towards calcite surfaces,

and hence its ability to intervene strongly on bio-surfactant performance. To achieve the objectives of
this study, the oil-wet calcite samples at elevated temperature were put through a washing process
that included bio-surfactant solutions in seawater at various concentrations of sodium sulphate
ions, where the measurement of the contact angles of each sample after treatment and the IFT
between the oil model and the washing solutions were taken. The obtained results illustrated that
bio-surfactants (rhamnolipids) with incremental concentrations of SO4

2− ions in sea water (up to
three times higher than the original ion concentration) can lower the IFT, and assessed changing the
rocks towards greater water-wettability. This study reveals that the alteration of SO4

2− ions had a
greater impact on the wettability alteration, whereas rhamnolipids were better at reducing the IFT
between the oil phase and the aqueous phase. This study also looked at temperatures of 50 ◦C and
70 ◦C, which demonstrated undesired influences on the wettability and IFT. Bio-surfactants at high
temperature showed less interfacial activity, thus indicating that rhamnolipids are not active at high
temperatures, while the addition of SO4

2− shows a continuous decrease in the contact angle and IFT
measurements at high temperature.

Keywords: carbonate rock; bio-surfactant; rhamnolipids; wettability; contact angle; sulphate ions;
elevated temperature; IFT

1. Introduction

With the world’s energy demands growing, oil recovery has become a global priority.
The development of oil extraction techniques has gradually changed and improved in order to
increase oil recovery. Worldwide, oil production only recovers on average about a third of the oil
originally present in reservoirs, which is the amount of oil recovered economically using conventional
methods. The remaining two-thirds of residual oil in the reservoirs is the focus of Enhanced Oil
Recovery (EOR) methods [1].

Microbial enhanced oil recovery (MEOR) represents the use of microbes in oil recovery, which is
a tertiary EOR technique still under development. MEOR is widely appropriate in carbonate and
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sandstone reservoirs for both light and heavy crude oil. MEOR has been proposed as an effective and
cheap alternative for EOR, and involves utilising the metabolic products the microorganisms produce
to aid the oil production. In general, there are seven types of bioproducts, which include biopolymers,
bio-surfactants, biomass, solvents, acids, emulsifiers, and gases. It is noted that bio-surfactants are
more attractive compared to other bioproducts due to their low toxicity, stability, and impact on the
wettability alteration to increase enhanced oil recovery [2].

Bio-surfactants are amphiphilic, consisting of both hydrophobic and hydrophilic parts.
Bio-surfactants have the potential to lower the surface and interfacial tension (IFT) by gathering
at the interface between the two immiscible fluids. This reduces the repulsive forces and allows the
two phases to interact and mix more easily; it also improves the mobility and solubility of the insoluble
or hydrophobic organic compounds [3,4].

Rhamnolipids are a type of bio-surfactant that are produced mainly by Pseudomonas aeruginosa.
It should be noted that because of their low toxicity, production from renewable sources, and
antimicrobial (particularly antifungal) activity, the use of rhamnolipid bio-surfactants shows great
promise for broad commercial application [5].

The concentration of a bio-surfactant is effective until the critical micelle concentration (CMC)
is obtained. CMC is associated with micelle formation, which allows bio-surfactants to reduce the
IFT and increase the solubility and bioavailability of a hydrophobic compound. CMC is known as
the efficiency of the bio-surfactant, where less bio-surfactant is required to lower the IFT; an effective
bio-surfactant will have a low CMC [6]. The remaining oil residual in reservoirs is generally located in
restricted access regions where oil is trapped in pores by capillary pressure. Bio-surfactants can lower
the IFT between oil/rock and water/oil and also alter the wettability to water-wet the system—this
reduces the capillary forces, which allows water to move through the rock pores [7].

Al-Sulaimani et al. [8] found that the maximum production of residual oil went up by 50%
by using bio-surfactant and chemical surfactant in a 50:50 mixing ratio. The study also looked at
the influence of the bio-surfactant on the wettability of calcite surface by studying contact angle
measurements. The results showed that a 0.25% treated (w/v) bio-surfactant solution changed to
greater water-wetting as the angle decreased from 70.6 to 25.32◦. Other studies [9–11] presented similar
trends in the use of different bio-surfactants for the displacement of oil by water.

Wettability tests performed on carbonate reservoirs at elevated temperature have showed that
increasing temperatures alter the wettability towards greater water-wetting, which was attributed to
the de-attachment of oil-wet particles (i.e., calcium stearate) from the calcite surface, making the surface
more water-wet [12–14]. In general, wettability and IFT are considered to be the main controlling
parameters of fluid flow in carbonate rocks, particularly for high temperature reservoir conditions.

Water salinity has also been shown to have a significant impact via an increase of the capillary
force, lowering of the IFT, and altering of the wettability of carbonate reservoirs [15,16]. Seawater is an
example of brine water that contains different active ions such as calcium (Ca2+), magnesium (Mg2+),
and sulphate (SO4

2−) ions [17,18]. By injecting brine water into the rock fracture, SO4
2− ions are

adsorbed onto the positive calcite surface. This decreases the rock positive charges, which also reduces
the electrostatic repulsion, thereby allowing cation ions to move closer to the surface. The presence
of cation ions will bind with the negatively charged carboxylic acids and remove them from the rock
surface. As the temperature increases, the concentration of Ca2+ and SO4

2− near the surface increases,
increasing the efficiency of the displacement of carboxylic groups. The removal of adsorbed carboxylic
groups from the rock surface reduces the capillary forces, which improves oil recovery [19].

The main objective of this research was to assess the alteration in wettability of modified oil-wet
calcium carbonate and IFT reduction under the influence of bio-surfactants. Moreover, this study
investigated the effectiveness of bio-surfactants in the wetting alteration process as well as the
fluid/fluid interfacial tension in the presence of most active sulphate ions at elevated temperature.
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2. Materials and Methods

2.1. Chemicals, Solvents, and Bio-Surfactants

All the salt chemicals (CaCO3, NaCl, Na2SO4, KCl, NaHO3, KBr, MgF2, CaCl2, and SrCl2),
n-decane, stearic acid and calcite powder were supplied by Sigma-Aldrich. Stearic acid was used
as a surface-active additive in n-decane to produce model oil resembling crude oil. Calcite powder
with 99% purity was used to represent the carbonate rock reservoirs. Water soluble rhamnolipids, the
bio-surfactant dominant form of dirhamnolipid, provided by the TeeGene Company (Teesside, UK),
was added to the water solutions to study its application in EOR [20]. Different water compositions in
the presence and absence of bio-surfactants were used as washing solutions to investigate their ability
to wash out the adsorbed stearic acid from calcite surface. Table 1 presents the compositions of the
washing solutions.

Table 1. Composition of washing solutions. Distilled water was considered as a reference and called
WS1. WS5 solution was made by adding 73 mg/L of the bio-surfactant to distilled water [20]. The base
for the rest of the solutions was artificial sea water [21].

Additives to
Distilled Water

WS2 g/kg
of

Distilled
Water

WS3 g/kg
of

Distilled
Water

WS4 g/kg
of

Distilled
Water

WS5 g/kg
of

Distilled
Water

WS6 g/kg
of

Distilled
Water

WS7 g/kg
of

Distilled
Water

WS8 g/kg
of

Distilled
Water

Cl− 19.353 19.353 19.353 0 19.353 19.353 19.353
Na+ 10.765 10.765 10.765 0 10.765 10.765 10.765

SO4
2− 2.711 5.422 8.133 0 2.711 5.422 8.133

Mg2+ 1.295 1.295 1.295 0 1.295 1.295 1.295
Ca2+ 0.414 0.414 0.414 0 0.414 0.414 0.414
K+ 0.387 0.387 0.387 0 0.387 0.387 0.387

HCO3
− 0.142 0.142 0.142 0 0.142 0.142 0.142

Br− 0.066 0.066 0.066 0 0.066 0.066 0.066
Sr2+ 0.008 0.008 0.008 0 0.008 0.008 0.008

H3BO3 0.026 0.026 0.026 0 0.026 0.026 0.026
F− 0.001 0.001 0.001 0 0.001 0.001 0.001

Added
Bio-Surfactant

—Rhamnolipids
0 0 0 0.073 mL 0.073 mL 0.073 mL 0.073 mL

2.2. Sample Preparations

2.2.1. Modification of Water-Wet Calcite to Oil-Wet Calcite

In order to produce an oil-wet calcite surface resembling oil reservoir conditions, calcite rock was
treated with dissolved polar components in the model oil. To this end, first 500 mL of n-decane was
added to 1.42 g of stearic acid to make a 0.01 M concentration. Afterwards, 80 mL of oil model was
mixed with 20 g of calcite powder within a conical flask. Then, the conical flask was placed into a
hot plate stirrer at a speed of 50 rpm/min stirring for 24 h to collect the filtered liquid. Finally, calcite
powder was transferred into a beaker oven at a temperature of 40 ◦C for 24 h to dry and solidify.

2.2.2. Wash Solution Preparation

To determine the effect of active ions such as SO4
2− as well as the bio-surfactant (rhamnolipids)

on oil-wet calcite, different forms of wash solutions (WS) were made to wash the modified calcite,
which is listed in Table 2, with distilled water as a reference WS1. The compositions are presented in
Table 1.
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Table 2. Wash solution label description.

Wash Solution Label Wash Solution Name

WS1 Distilled water
WS2 Seawater (composition found in Kester, et al., 1967 [21])
WS3 Seawater with 2X SO4

2−

WS4 Seawater with 3X SO4
2−

WS5 Distilled water + Bio-surfactant
WS6 Seawater + Bio-surfactant
WS7 Seawater with 2X SO4

2− + Bio-surfactant
WS8 Seawater with 3X SO4

2− + Bio-surfactant

2.2.3. Washing Process of Modified Calcite

In order to determine the effect of the saline solution and the bio-surfactant on the calcite surface,
a washing process of the modified calcite was performed. First, 4 g of modified calcite and 20 mL WS1

were mixed into a beaker. Then, the beaker was placed on a hot plate stirrer at a speed of 50 rpm/min
stirring for 48 h to collect the filtered liquid. Finally, the beaker was placed in a vacuum oven at a
temperature of 40 ◦C for 24 h for the solid to completely dry. All these processes were done for the
remaining of WS2–WS8 solution.

2.3. Contact Angle Measurement

To measure the contact angle, the calcite powder was crushed into fine granular forms and then
pressed into small disks that provided the samples with a flat and smooth surface for accurate contact
angle measurement when the water droplet could come into contact with the powder surface. Finally,
the disk was placed on a Kruss DSA 100 Goniometer analyser (KRÜSS GmbH, Hamburg, Germany)
with distilled water released on the surface to measure the contact angle at room temperature of
modified calcite sample and samples treated (washed) with three different temperatures. Table 3
presents a list of selected samples with different wash solutions at three different temperatures for
contact angle measurement.

Table 3. Selected treated samples with different wash solutions at three different temperatures for
contact angles.

Wash Solution Temperature Label

WS1 25 ◦C K1
WS2 25 ◦C K2
WS5 25 ◦C K3
WS6 25 ◦C K4
WS3 25 ◦C K5
WS4 25 ◦C K6

WS1
50 ◦C K7
70 ◦C K8

WS2
50 ◦C K9
70 ◦C K10

WS5
50 ◦C K11
70 ◦C K12

WS7

25 ◦C K13
50 ◦C K14
70 ◦C K15

WS8

25 ◦C K16
50 ◦C K17
70 ◦C K18
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2.4. Interfacial Tension Measurement

To carry out the required experiments for the IFT measurements, the Du Nouy ring method using
a Kruss Digital Tensiometer Model K9 (KRÜSS GmbH, Hamburg, Germany) was utilised. First, 10 mL
of model oil and 10 mL of wash solution were mixed into a beaker and then heated with a hot plate
stirrer. After that, the mixtures of the model oil and washing solution were transferred into special
glassware to measure the IFT (Table 4).

Table 4. Mixture label description.

Mixtures Label Oil Mixture Wash Solution Temperature

M1 N-decane WS1 25 ◦C
M2 Dissolved steric acid + n-decane WS1 25 ◦C
M3 Dissolved steric acid + n-decane WS2 25 ◦C
M4 Dissolved steric acid + n-decane WS3 25 ◦C
M5 Dissolved steric acid + n-decane WS4 25 ◦C
M6 Dissolved steric acid + n-decane WS5 25 ◦C
M7 Dissolved steric acid + n-decane WS6 25 ◦C
M8 Dissolved steric acid + n-decane WS7 25 ◦C
M9 Dissolved steric acid + n-decane WS8 25 ◦C
M10 Dissolved steric acid + n-decane WS5 50 ◦C
M11 Dissolved steric acid + n-decane WS7 50 ◦C
M12 Dissolved steric acid + n-decane WS8 50 ◦C
M13 Dissolved steric acid + n-decane WS5 70 ◦C
M14 Dissolved steric acid + n-decane WS7 70 ◦C
M15 Dissolved steric acid + n-decane WS8 70 ◦C

3. Results and Discussion

3.1. Contact Angle Measurement

Three water droplets were used and repeated on different sections of the disk surface with at
least three readings taken for each droplet, which produced an accurate average contact angle for each
sample. Table 5 shows the contact angle of a modified sample before any additive are used.

Table 5. Contact angle measurement on modified calcite before contact with any washing solutions.

Modified Calcite

#Attempt Reading 1 (◦) Reading 2 (◦) Reading 3 (◦) Average Reading Contact Angle (◦) Wetting System

Water
Droplet 1 108.6 108.3 109.4 108.8 Oil-Wet

Water
Droplet 2 109.8 110.1 110.0 110.0 Oil-Wet

Water
Droplet 3 107.1 106.9 107.4 107.1 Oil-Wet

Overall Average Water Droplet Contact Angle (◦) 108.6 Oil-Wet

In this work, IFT measurement between the oil model and washing solution containing
bio-surfactant was conducted to determine the CMC of the bio-surfactant (rhamnolipids) in distilled
water and seawater where the average CMC was approximately 73 mg/L. This bio-surfactant
concentration in the washing solution was used under different conditions to assess the impact.

Tables 6 and 7 show the contact angle results after washing with WS1 and WS5. The addition
of bio-surfactant into washing solutions reduced the contact angle from 108.6◦ to 73.4◦, altering the
surface to weakly water-wet. However, washing the oil-wet calcite with distilled water did not show a
significant impact, as seen with WS1, where the contact angle reduced from 108.6◦ to 94◦, altering the
surface to neutral-wet.
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Table 6. Contact angle measurements on a calcite surface washed by WS1.

WS1

#Attempt Reading 1 (◦) Reading 2 (◦) Reading 3 (◦) Average Reading Contact Angle (◦) Wetting System

Water
Droplet 1 91.7 91.9 92.1 91.9 Neutral-Wet

Water
Droplet 2 97.8 98.4 97.2 97.8 Neutral-Wet

Water
Droplet 3 92.6 92.3 91.9 92.3 Neutral-Wet

Overall Average Water Droplet Contact Angle (◦) 94 Neutral-Wet

Table 7. Contact angle measurements on a calcite surface washed by WS5.

WS5

#Attempt Reading 1 (◦) Reading 2 (◦) Reading 3 (◦) Average Reading Contact Angle (◦) Wetting System

Water
Droplet 1 70.5 69.3 69.9 69.9 Slightly Water-Wet

Water
Droplet 2 76.5 76.0 75.5 76.0 Slightly Water-Wet

Water
Droplet 3 74.2 73.7 74.6 74.2 Slightly Water-Wet

Overall Average Water Droplet Contact Angle (◦) 73.4 Slightly Water-Wet

Changing the washing solution from distilled water to artificial seawater (WS2) had a significant
impact on the wettability of the modified calcite, where the measured average contact angle was
reduced from 108.6◦ to 61.1◦. It is worth mentioning that the addition of bio-surfactant to WS2 did
not show a significant impact on wettability, with the contact angle only reduced to 58.4◦. This means
that the presence of salt ions in the water hinders the effect of the bio-surfactant. The summary of all
contact angle measurements with their corresponding labels are provided in Table 8.

Table 8. Measured contact angles for all treated calcite surfaces.

Label Contact Angle (◦) Wetting System

K1 94.0 Neutral-wet
K2 73.3 Water-wet
K3 61.1 Water-wet
K4 58.4 Water-wet
K5 54.6 Water-wet
K6 41.3 Water-wet
K7 91.1 Neutral-wet
K8 100.3 Slightly oil-wet
K9 75.9 Water-wet
K10 85.7 Slightly water-wet
K11 91.8 Neutral-wet
K12 102.4 Slightly Oil-wet
K13 52.0 Water-wet
K14 62.6 Water-wet
K15 81.7 Slightly water-wet
K16 35.5 Water-wet
K17 41.9 Water-wet
K18 49.0 Water-wet

3.1.1. The Effect of the Bio-Surfactant and Salinity on the Contact Angle at 25 ◦C

The obtained data confirm that rhamnolipids altered the wetting state from oil-wet to water-wet.
Figure 1 illustrates the effectiveness of the added rhamnolipids with different salt concentrations at a
contact angle of 25 ◦C. It can be also seen from Figure 1 that the modification of the salt composition
with affective ions such as SO4

2− caused a further reduction in the contact angle, with the contact
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angle reduced to 54.6◦. The addition of rhamnolipids to modified seawater with three times SO4
2−

converted the calcite surface to water-wet with a measured contact angle of 41.3◦. Interestingly, the
rhamnolipids had a small impact on the contact angle when the salt ions took part in a wettability
alteration. This could be due to the rhamnolipids reaching the CMC, therefore no additional reduction
was demonstrated in the obtained results.
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Figure 1. Contact angle measurements for the untreated modified calcite sample and samples treated
with different water solutions in the presence and absence of bio-surfactant at 25 ◦C.

3.1.2. Effect of Elevated Temperature on Bio-Surfactant Behaviour

In this section, the effect of temperature on the effectiveness of the bio-surfactant in changing
the wetting state of the modified calcite was investigated. The temperature was increased during the
washing process to simulate high temperature reservoirs, obtaining the results displayed in Figure 2.
In general, it can be seen from Figure 2 that the increase in temperature has a negative impact on the
contact angle measurements when the system remains oil-wet.
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Figure 2. Contact angle measurement at elevated temperature for the untreated modified calcite sample
and samples treated with different water solutions.

In detail, the observation of the washing process using distilled water at different temperatures
showed that the contact angle measurement at 70 ◦C was negligible, as the measurement remained
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around 91.1◦ to 100.3◦. However, distilled water mixed with bio-surfactant emphasised the additional
effect on the wettability. Furthermore, other washing solutions showed a high contact angle
measurement at 70 ◦C, which is inconsistent with the thermal recovery theory used in the tertiary
method using external heat to raise the temperature and recover oil residuals. It has been stated that
the thermal recovery temperature range can go above 350 ◦C [22]. Only increasing this to 70 ◦C in
this experiment means that we cannot fully assume that a contact angle above 70 ◦C will result in a
subsequent trend of the contact angle remaining oil-wet as the temperature increases.

According to Pacwa-Płociniczak et al. [6], bio-surfactants are active at extreme pH, salinity, and
temperature levels. In contrast, based on Figure 2, it can be seen that the bio-surfactant (rhamnolipids)
shows less effectiveness at high temperatures, this pattern might only occur with rhamnolipids and
some other specific bio-surfactants. The minor change to water-wet in terms of the wettability could
also be a result of the bio-surfactant being degradable, while at high temperatures the bio-surfactant
was broken down, therefore not affecting wettability.

Additionally, as it has been shown in Figure 2, the increase in SO4
2− concentration altered

the wettability. In fact, by increasing the SO4
2− concentration, a drop pattern in the contact angle

measurement was observed. Looking at different concentrations of SO4
2− at increasing temperatures

showed a different consistent outline of wettability remaining for oil-water. Strand et al. [23], conducted
experiments on the effect of different concentrations of Ca2+ and SO4

2− brine composition mixtures
using the oil-wet chalk core flooding method at high temperatures. Their results showed that SO4

2−

absorption onto chalk surfaces increased as the temperature and concentration of Ca2+ increased,
which is similar to the pattern shown in Figure 2.

3.2. Interfacial Tension Measurement

To understand the interaction of different ions and bio-surfactants in washing solutions, the interfacial
activities of all the selected solutions were measured. Table 9 shows the reference point of pure n-decane
with distilled water and the reduction in IFT when stearic acid was dissolved in n-decane.

Table 9. IFT measurements for reference solutions.

Mixture Label Reading 1 (mN/m) Reading 2 (mN/m) Reading 3 (mN/m) Average Reading IFT (mN/m)

M1 27.1 27.0 27.1 27.1
M2 9.3 9.6 10.0 9.6

Similarly to the IFT measurement for the reference case, the IFT for all selected solutions labelled
in Table 4 were measured and the results are provided in Table 10.

Table 10. Measured IFT between the model oil and all washing solutions.

Mixtures Label IFT (mN/m)

M1 27.1
M2 9.6
M3 5.9
M4 5.4
M5 2.9
M6 4.6
M7 4.0
M8 0.5
M9 0.5
M10 2.7
M11 1.0
M12 1.0
M13 4.2
M14 0.7
M15 0.7
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3.2.1. Effect of Bio-Surfactant and Salinity on IFT at 25 ◦C

The measured IFT between the model oil and different washing solutions presented in Figure 3
indicate that rhamnolipids had a big impact on the interfacial activity of the oil/water system.
The reference sample was measured at 9.6 mN/m with distilled water and dissolved stearic acid in
n-decane. The addition of rhamnolipids to distilled water reduced the IFT by half, to 4.6 mN/m.
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Figure 3. Measured IFT between model oil and different washing solutions at 25 ◦C.

In terms of seawater with and without a bio-surfactant effect, the results showed that the IFT was
reduced to 5.9 mN/m and 4 mN/m, respectively.

The biggest reduction in IFT was observed by increasing the SO4
2− ions concentration. It should

be noted that there was a huge difference between the IFT results with and without addition of the
bio-surfactant in presence of SO4

2− ions in water solutions. In fact, by adding bio-surfactant to 2X
SO4

2− ions, there was a significant decline of 4.4 mN/m in IFT from 5.9 to 0.5 mN/m. Similarly, it was
noticeable that there was a gradual decrease in IFT for 3X SO4

2− ions and bio-surfactant solution.
The IFT has a direct impact on the displacement processes and multiphase flow in porous media.

Isehunwa and Olubukola [24] studied the effect of salinity on the IFT oil/brine system of five different
Niger Delta reservoirs. Their results indicated a strong relationship between IFT and salinity, with a
similar trend in the three experimental reservoirs, revealing a gradual increase in the salt concentration,
and the IFT decreasing at different rates. Similar results were reported for IFT reductions when salt
concentrations were increased [25].

3.2.2. Effect of High Temperatures on the Interfacial Activities of Bio-Surfactants

Figure 4 illustrates the effect of distilled water and different concentrations of SO4
2− ions with

bio-surfactant on IFT at high temperature. In terms of distilled water, first the IFT was decreased to
1.9 mN/m from 25 ◦C to 50 ◦C. Then, by increasing the temperature to 70 ◦C, an increase in the IFT
was observed, showing that the mixture of distilled water and bio-surfactant did not significantly
affect the reduction of IFT at high temperatures. However, Abouseoud et al. [26] investigated the
bio-surfactant produced by Pseudomonas fluorescens on the surface tension, and their results suggested
that when the temperature increased to 100 ◦C, there was no significant effect on the bio-surfactant’s
performance and it was still able to reduce surface tension. Varadavenkatesan and Murty [27] observed
similar results.
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Figure 4. Measured IFT between model oil and washing solutions containing bio-surfactant at
elevated temperature.

The highest reduction of IFT was observed when SO4
2− ions added to the water solutions. As is

shown in Figure 4, a similar pattern was observed for different concentration of SO4
2− on IFT from 25

to 70 ◦C but with higher percentage error in IFT measurements for 3X SO4
2−. In fact, as the temperature

increased from 25 ◦C to 50 ◦C, the IFT increased from 0.5 to 1 mN/m. However, as the temperature
increased from 50 to 70 ◦C, the IFT decreased from 1 to 0.7 mN/m. The obtained results in this
study are in line with [22] where both increase and decrease in IFT was reported as the temperature
increased at the same salt concentration. A conclusive assumption regarding whether temperature
has a negative or positive impact on wettability and IFT can be made with regard to the effects of the
temperature, which depend on the simulated or actual reservoir rock itself, as the existing research
supports both impacts.

4. Conclusions

Many research studies have been carried out to find cheap, effective, and environmentally friendly
methods to recover the remaining oil residual in the reservoirs. The objective of this research was to
obtain more detailed information on the mechanism and effects of a bio-surfactant (rhamnolipids), on
interfacial activities of oil/water and wettability of calcium carbonate as a substitute for carbonate
rock in presence of salt and at elevated temperature.

The results showed that rhamnolipids is capable to alter the wettability of carbonate rocks and
reduce the IFT between oil and water. Rhamnolipids successfully improved the modified oil-wet rock
to water-wet rock, and the observation of the IFT showed the existence of a large decrease even under
the disturbance of different brine waters. The increase of SO4

2− showed a positive impact on the rocks
wettability and IFT, which also helps to lower the IFT and modify the rocks more towards water-wet.
The resultant diagrams showed that presence of salt had a greater effect on the contact angle reduction,
whereas rhamnolipids were better at reducing the IFT.

The results showed that increasing temperature conditions had undesired effects on the wettability
and IFT, as well as on the performance of the bio-surfactant. Even though addition of biosurfactant to
water solutions under higher temperature showed the rock surface remaining oil-wet, but the salinity
were not affected as the results still demonstrates a reduction in the contact angle and IFT measurement
after increase in temperature.
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