1	Using one-step facile and solvent-free mechanochemical process to synthesize photoactive
2	Fe ₂ O ₃ -TiO ₂ in treatment of industrial wastewater
3	
4	Wennie Subramonian, Ta Yeong Wu* and Siang-Piao Chai
5	
6	Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon
7	Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
8	
9	*Corresponding author: Ta Yeong Wu
10	E-mail addresses: wu.ta.yeong@monash.edu; tayeong@hotmail.com
11	Tel. : +60 3 55146258
12	Fax : +60 3 55146207
13	
14	ABSTRACT
15	
16	In this present study, Fe ₂ O ₃ -TiO ₂ photocatalyst was synthesized and used to degrade real
17	industrial wastewater, namely pulp and paper mill effluent (PPME). Fe ₂ O ₃ -TiO ₂ was synthesized
18	via ball milling at ambient conditions without incorporating any solvent. Comprehensive
19	characterization studies and photocatalytic evaluations of the synthesized Fe ₂ O ₃ -TiO ₂ were
20	conducted in this study. It was verified that Fe_2O_3 -TiO ₂ possessed crystalline structures of γ -
21	Fe ₂ O ₃ , anatase and rutile TiO ₂ . Also, a good dispersion of Fe and O elements within the TiO ₂
22	framework could be attained. A detection of Fe-O-Ti bond elucidated a substitution of Ti ⁴⁺ by
23	Fe ³⁺ in the TiO ₂ lattice sites through mechanical milling, which ultimately enhanced the

24 photocatalytic activities of Fe₂O₃-TiO₂. Moreover, Fe₂O₃-TiO₂ exhibited enhanced catalytic properties in terms of specific surface area (58.40 m^2/g), porosity (0.29 cm^3/g), band gap (2.95 25 26 eV), and charge separation in comparison with commercial P25. The present work also proved 27 that both characteristics and photoactivity of Fe₂O₃-TiO₂ were significantly affected by its 28 synthesis conditions (milling time, milling speed, and Fe₂O₃ loading). The highest treatment 29 efficiency of PPME (62.3% of chemical oxygen demand or COD removal) was achieved using 30 Fe₂O₃-TiO₂, which was synthesized at 20 min, 250 rpm and 1 mol% of milling time, milling 31 speed and Fe₂O₃ loading, respectively. Noticeably, the photoactivity of the Fe₂O₃-TiO₂ was more 32 superior than the P25 (40.6% of COD removal). This study proved that mechanochemical 33 process enabled the green synthesis of Fe₂O₃-TiO₂ that could be used in treatment of real 34 industrial wastewater.

35

Keywords: Ball milling; Iron (III) oxide; Titanium (IV) oxide; Photocatalysis; Pulp and paper
mill effluent; Wastewater treatment

38

Pulp and paper mills are one of the major sources of industrial pollution worldwide, in 41 42 which pulp and paper effluent (PPME) contains high amount of total suspended solids, chemical 43 oxygen demand (COD), and other toxic contaminants [1]. However, most PPME treatment 44 plants apply biological treatment systems, which result in ineffective removal of colour and 45 toxicity from the effluent [2]. As an alternative, advanced oxidation processes (AOPs) have been 46 proposed in wastewater treatment systems to effectively oxidize recalcitrant pollutants into 47 biodegradable intermediates and innocuous compounds (i.e. carbon dioxide and water) due to the 48 generation of highly potent oxidant, hydroxyl radicals (·OH) [3,4]. Other advantages of AOPs 49 include colour removal from the wastewater, lower sludge production, and simplicity in 50 operation [5]. Among several AOPs, powerful oxidants such as ozone, hydrogen peroxide, and 51 potassium permanganate have been studied in photocatalysis of wastewater. Typically, these 52 oxidants were used in homogenous photocatalysis processes, which incurred instability and 53 difficulty in catalyst separation process [6]. Conversely, heterogeneous photocatalysis is deemed 54 as the most economically profitable and environmentally safe technology among other AOPs in 55 the removal of organic pollutants from water systems [7]. Hence, heterogeneous photocatalysis 56 was employed as a promising treatment route to degrade highly contaminated PPME in this 57 current study.

Numerous studies have established that TiO_2 as one of the most promising photocatalysts to initiate photocatalytic reactions, owing to its optical and electronic properties, strong oxidizing power, chemical inertness, high stability, non-toxicity, corrosion resistant, inexpensiveness, and environmentally benign nature as compared to other photocatalysts [8-10]. However, TiO_2 has a

62 wide band gap (anatase phase: 3.2 eV and rutile phase: 3.0 eV) and presents a high 63 recombination rate of photogenerated electron-hole pairs [11,12]. In view of this, coupling of 64 TiO₂ with other metal oxides (e.g. Fe₂O₃ [13], WO₃ [14], ZnO [15], SnO₂ [16], and CeO₂ [17]) 65 was investigated extensively for its potential application in degradation of organic pollutants. 66 Generally, the synthesis of these hybrid metal oxides photocatalysts employed conventional 67 methods (such as sol-gel, hydrothermal, solvothermal, precipitation, and chemical/physical 68 vapour deposition) that posed several drawbacks. These conventional methods were 69 predominantly multi-step procedures, necessitated the utilization of toxic metal-organic 70 precursors, and required expensive equipment [18,19]. Also, longer duration was needed, which 71 was undesirable for industrial fabrication purposes [18]. Therefore, development of a greener and 72 facile fabrication method using non-solvent synthesis under ambient temperature and 73 atmospheric pressure was pursued in the current work.

74 Green chemistry was an initiative driven by the U.S. Environmental Protection Agency in 75 the early 1990. It involved the design of chemical products and processes that reduced or 76 eliminated the need and generation of hazardous substances [20]. Growing emphasis on green 77 chemistry led to the use of mechanochemical process as a prospective method to activate and 78 fabricate a photocatalyst under a solvent-free condition [21]. Previously, mechanochemical 79 reaction was applied widely in areas including material synthesis, coal industry, extractive 80 metallurgy, powder surface modification, pharmacy, and waste management [22]. During the 81 course of mechanochemical process via ball milling (mechanical milling), accumulated potential 82 energy with shear and friction forces were transferred from milling balls to the materials. This 83 energy induced severe plastic deformation as well as created new interfaces and defects on the 84 materials, which potentially led to substantial improvement in material properties of the final

85 product [23-25]. Mechanochemical process has gained importance over conventional synthesis 86 methods because of its greener and facile technique [8,18]. In comparison with conventional 87 synthesis methods, mechanochemical process did not require solvents and thus, no wastes were 88 generated from catalyst washing. It also eliminated the need of multi-step procedures, high 89 temperature and pressure conditions, plus no additions of hazardous and expensive chemicals 90 were required [25,26]. Moreover, mechanochemical process yielded large quantities of desired 91 product at ambient conditions within a very short processing time [8,18]. The advantages from 92 this process serve as a very lucrative aspect from an economical viewpoint, thus, making 93 mechanochemical synthesis very attractive for large-scale industrial production [18].

94 Herein, the current study demonstrated a facile and solvent-free mechanochemical process 95 via mechanical milling to synthesize Fe₂O₃-TiO₂ photocatalyst as an approach towards a greener 96 process. The synthesized Fe_2O_3 -TiO₂ was used in degrading real PPME. To the best of our 97 knowledge, there has been no report concerning the use of mechanochemically fabricated Fe₂O₃-98 TiO₂ photocatalyst in treating real industrial effluent, such as PPME. Thus, a detailed 99 characterization study was performed to closely examine the structural and textural properties of 100 mechanochemical То the fabricated Fe₂O₃-TiO₂ via process. further understand 101 mechanochemical process, effects of fundamental synthesis conditions (i.e. milling time, milling 102 speed, and Fe_2O_3 loading) on the properties and photoactivity of Fe_2O_3 -TiO₂ were studied.

- 103
- 104
- 105
- 106
- 107

110 **2.1. Materials**

111 Iron (III) oxide, tungsten (VI) oxide, zinc oxide, cerium (IV) oxide, anatase titanium (IV) oxide, rutile titanium (IV) oxide, and Aeroxide[®] P25 were purchased from Sigma-Aldrich. All 112 113 chemicals were used as received without further modification. Raw PPME was collected from 114 Muda Paper Mills Sdn. Bhd., Kajang, Selangor, According to Subramonian et al. [27], raw 115 PPME should be pre-treated using coagulation process to reduce the amount of total suspended 116 solids from the effluent. In this study, PPME was pre-treated to the methods proposed by 117 Subramonian et al. [28] and the pre-treated PPME with lesser suspended solids was used to 118 evaluate the photocatalytic performance of the synthesized Fe₂O₃-TiO₂.

119

120 **2.2. Mechanochemical synthesis of Fe₂O₃-TiO₂**

121 Fe₂O₃-TiO₂ photocatalyst was fabricated in the absence of solvent via mechanochemical 122 process using a planetary ball mill (Fritsch Pulverisette 5). Two zirconia vials with 500 cm³ 123 capacity were filled with a stoichiometric amount of Fe₂O₃ and P25 powder. 10 mm diameter 124 balls were used as milling medium. Ball to powder mass ratio was kept constant at 10:1. Effect 125 of mechanochemical synthesis conditions on the fabricated photocatalyst was studied by varying 126 the milling time (10-30 min), milling speed (150-350 rpm), and Fe₂O₃ molar content (0.4-1.2 127 mol%). The synthesized Fe₂O₃-TiO₂ was then characterized and its catalytic performance was 128 evaluated based on COD removal of PPME.

129

130 **2.3. Characterization study**

131 Crystallinity and phase identification of samples were determined from powder X-ray 132 diffraction (XRD) patterns. XRD data was recorded on a X-ray diffractometer (Bruker D8 Discovery) using Ni filtered Cu-K α radiation ($\lambda = 0.154056$ nm) at a scan rate of 0.02° s⁻¹. The 133 134 accelerating voltage and current were 40 kV and 40 mA, respectively. Crystallite sizes of the 135 samples were calculated based on Scherrer formula. Surface morphology and elemental 136 compositions of the samples were obtained using field electron scanning electron spectroscopy 137 (FESEM) (Hitachi SU8010) equipped with energy-dispersive X-ray (EDX). X-ray photoelectron 138 spectroscopy (XPS) analysis was conducted on a Kratos Axis-Ultra DLD instrument with a monochromatized Al K α X-ray source (15 kV, 200 W) at a pressure of 7.6 \times 10⁻⁹ Torr and 20 eV 139 140 pass energy. All binding energies were referenced to C 1s peak at 284.6 eV of the adventitious 141 carbon. Transmission electron microscopy (TEM) images were taken with a JEOL JEM-2100F 142 microscope operated at 200 kV. Meanwhile, textural properties of the samples were analyzed 143 based on nitrogen adsorption/desorption isotherms using Micromeritics, ASAP 2020. Specific 144 surface areas and pore distributions were determined from Brunauer-Emmett-Teller (BET) and 145 Barrett-Joyner-Halenda (BJH) methods, respectively. Raman spectra were acquired using 146 HORIBA Scientific, LabRAM HR Evolution with an excitation wavelength of 514 nm under 147 room temperature whereas Fourier transform infrared (FTIR) spectra were recorded over a range of 4000-400 cm⁻¹ at room temperature using a FTIR spectrophotometer (Thermo Scientific 148 149 Nicolet iS10). Additionally, ultraviolet-visible (UV-vis) diffused reflectance spectra (DRS) were 150 recorded on a UV-vis spectroscopy (Cary 100, Agilent) with BaSO₄ as reference. Band gap 151 energies of the samples were estimated from plot of transformed Kubelka-Munk function [F(R)] $(hv)^{1/2}$ against abscissa of photon energy (hv). Photoluminescence (PL) emission spectra was 152

analyzed using a fluorescence spectrometer (LS55, Perkin Elmer) at an excitation wavelength of
315 nm with 500 nm min⁻¹ scanning speed. The widths of the excitation and emission slits were
fixed at 10 nm.

156

157 2.4. Photocatalytic evaluation of Fe₂O₃-TiO₂

158 Photoactivity of the prepared Fe₂O₃-TiO₂ was evaluated in terms of photodegradation of 159 PPME. In a typical procedure, 1.0 g/L of Fe₂O₃-TiO₂ was dispersed in 50 mL of PPME at pH 4. 160 The suspension was magnetically stirred in the dark at 800 rpm for 30 min to achieve adsorption-161 desorption equilibrium. Then, the suspension was exposed to UV irradiation (400 W of UV 162 lamp) for 3 h under continuous stirring and aeration (air flow rate = 4.0 L/min). The initial and 163 final samples were withdrawn from the suspension before and after irradiation to determine a 164 change in COD (Equation (1)). Photocatalyst was removed from the samples by centrifugation 165 (13500 rpm for 15 min).

166
$$COD \ removal, \% = \frac{COD_{initial} - COD_{final}}{COD_{initial}} \times 100$$
 (1)

167

168

169 **3. Results and discussion**

170

171 **3.1. Effect of mechanical milling on characteristics and photoactivity of Fe₂O₃-TiO₂**

In mechanochemical synthesis, metal oxide powders (Fe_2O_3 and TiO_2) were plastically deformed due to high-energy impact between milling balls and wall of the vial, producing the final composite Fe_2O_3 -TiO₂ [8]. Fundamental mechanochemical synthesis conditions played a crucial role in manipulating photocatalytic properties of Fe_2O_3 -TiO₂ [7]. Therefore, the present 176 study investigated the effect of mechanochemical process conditions (milling time, milling 177 speed, and loading of Fe_2O_3) on the intrinsic properties and photoactivity of Fe_2O_3 -TiO₂.

178

179 **3.1.1. Effect of milling time**

180 Change in Fe₂O₃-TiO₂ morphology as a function of milling time was observed from FESEM 181 images. Mechanically milled Fe₂O₃-TiO₂ samples were gradually ground to finer particles from 182 10 to 20 min (Fig. 1a-c) due to longer duration of impact and shear forces incurred from the 183 milling balls. However, prolonging the milling time above 20 min resulted in highly 184 agglomerated particles with rough surfaces (Fig. 1d and e). Similar findings were observed by 185 House et al. [29]. Powder that was milled at 25 and 30 min had a high surface energy, which 186 facilitated the powder to reunite and reagglomerate in order to reduce surface energy and re-187 stabilize the system [30]. In short, fracture of solids only occurred at shorter milling time 188 whereas reagglomeration appeared at longer milling time [31]. Surface morphology of Fe₂O₃-189 TiO₂, P25 and Fe₂O₃ powder were also compared. From the FESEM images, P25 powder (Fig. 190 1f) consisted of uniform spherical particles whereas Fe₂O₃ (Fig. 1g) particles were large and 191 irregular-sized. The fabricated Fe₂O₃-TiO₂ (Fig. 1a-c) photocatalyst was finer than Fe₂O₃ (Fig. 192 1g). In addition, Fe₂O₃-TiO₂ (Fig. 1a-c) was irregular in shape, randomly organized, and slightly 193 agglomerated as compared to P25 (Fig. 1f). Carneiro et al. [8] also reported very similar catalyst 194 morphology that was induced by the effect of ball milling.

An employment of mechanochemical synthesis was reported to promote mesoporosity and change in specific surface area of the materials [32]. Hence, surface properties of the synthesized Fe₂O₃-TiO₂ were evaluated at different milling time and were compared with Fe₂O₃ and pristine P25. According to IUPAC classification, nitrogen adsorption/desorption isotherm of Fe₂O₃-TiO₂

199 showed a typical type IV pattern with a hysteresis loop beginning around relative pressure of 0.7 200 (Fig. 2). The pattern suggested the occurrence of mesoporous structure with a broad pore size 201 distribution [32,33]. Pore size distribution curve (inset in Fig. 2) depicts a wide range of pore 202 diameter from 4 to 35 nm with the pore size mainly distributed at 17 nm, implying that an 203 incorporation of Fe₂O₃ into TiO₂ lattice through mechanochemical synthesis did not defect the 204 surface mesoporous structure of the TiO₂ [34]. Specific surface area, pore volume, and pore size 205 of Fe₂O₃-TiO₂ were found to be higher than P25 (Table 1). Higher textural properties provided 206 better surface adsorption and mass transfer between organic pollutants and Fe_2O_3 -TiO₂ in the 207 catalyst pore, suggesting a potential enhancement in photocatalytic activity [34].

208 The specific surface areas, pore volumes, and pore sizes of the milled samples were also 209 clearly affected by the milling time (Table 2). Overall, the aforementioned textural properties 210 improved from milling time 10 to 20 min because of repeated fracturing of solids induced by the 211 milling balls, which consequently led to a reduction in particle size, and an increase in both 212 surface area and porosity [31]. However, a deterioration of textural properties occurred from 25 213 to 30 min due to reagglomeration of solids as evidenced in Fig. 1d and e. Similarly, the 214 photocatalytic trend also displayed a gradual increase in COD removal (52.7 to 62.3%) from 10 215 to 20 min, followed by a decrease (57.4 to 52.8%) from 25 to 30 min of milling time (Fig. 3). 216 One-way analysis of variance (ANOVA) revealed that the recommended milling time was 20 217 min. Thus, subsequent synthesis of Fe_2O_3 -TiO₂ photocatalyst was carried out based on this 218 milling time.

219

220 **3.1.2. Effect of milling speed**

221 Change in milling speed stimulated modifications to the crystallite structure of Fe_2O_3 -TiO₂. 222 It was proven in this study that by increasing the milling speed (150 to 350 rpm), XRD 223 diffraction peaks (Fig. 4) became broader with diminishing intensities. The result denoted the 224 presence of smaller-sized particles formed at elevated milling speed [8]. Besides, crystallite sizes 225 of Fe₂O₃-TiO₂ also decreased with increasing milling speed (150 to 350 rpm) as shown in Table 226 3. Mechanical impact from the milling balls at rising milling speed deformed the powders and 227 introduced lattice defects, leading to a reduction in crystallite size [8]. Fig. 5 shows an 228 improvement in catalytic activity from 150 to 250 rpm (52.2 to 62.3% of COD removal, 229 respectively) followed by a drop from 300 to 350 rpm (53.2 to 50.2% of COD removal, 230 respectively). Decline in photoactivity at elevated milling speed was attributed to higher rutile 231 content in Fe₂O₃-TiO₂ at 300 to 350 rpm (Table 3). The rutile phase fraction for each sample 232 (Table 3) was determined from the XRD patterns (Fig. 4) using Spurr equation. At higher milling 233 speed, more collisions occurred between the milling balls and powders. Following that, an 234 increase of local temperature and pressure at the collision sites induced an anatase-to-rutile phase 235 transformation of the fabricated Fe₂O₃-TiO₂ [8]. One-way ANOVA suggested that 250 rpm was 236 the recommended milling speed to prepare Fe₂O₃-TiO₂ and subsequent milling was carried out 237 using this speed.

In addition, XRD patterns of the synthesized Fe_2O_3 -TiO₂ (Fig. 4) exhibited characteristic peaks of Fe_2O_3 , anatase, and rutile TiO₂. Peaks at 25.3, 37.8, 48.1, 54.4, 55.1, 62.7, 69.0, and 75.1°corresponded to (101), (004), (200), (105), (211), (204), (116), and (215) planes, respectively of anatase TiO₂ (JCPDS card file: 21-1272). Trace amounts of rutile TiO₂ present in Fe₂O₃-TiO₂ were represented at 27.4 , 36.0 , 39.2 , 54.2 , 56.7 , 69.9°, which were assigned to (110), (101), (200), (211), (220), and (112) planes, respectively (JCPDS card file: 21-1276). The

244 presence of both anatase and rutile phases was due to the mix phases of P25 (anatase: ~80% and 245 rutile: ~20%) used as a material to fabricate Fe₂O₃-TiO₂. Meanwhile, traces of Fe₂O₃ present in Fe₂O₃-TiO₂ showed lower peak intensities at 30.2, 35.5, 57.0, and 62.9°, which were indexed to 246 247 (220), (311), (511), and (440) planes, respectively (JCPDS card file: 39-1346). The low peak 248 intensities were due to low concentration of Fe₂O₃ (1 mol%) added during the fabrication of 249 Fe₂O₃-TiO₂ [12]. Upon closer observation, angular positions of certain XRD peaks of the 250 synthesized Fe₂O₃-TiO₂ were slightly shifted as compared to the peaks of P25. This implied a 251 small distortion in TiO₂ crystal lattice due to presence of Fe. The TiO₂ lattice distortion was a result from Ti⁴⁺ replaced by Fe³⁺ because of their comparable radii (0.068 and 0.064 nm, 252 respectively) [8,35]. A substitution of Ti⁴⁺ by Fe³⁺increased the number of oxygen vacancies, 253 254 which promoted photoactivity of Fe₂O₃-TiO₂ [35]. Overall, the XRD patterns of Fe₂O₃-TiO₂ 255 established the coexistence of Fe_2O_3 , anatase and rutile TiO_2 crystalline structures. Additionally, 256 average crystallite sizes of Fe₂O₃-TiO₂, P25, and Fe₂O₃ were 22.99, 24.29, and 17.45 nm, 257 respectively (Table 1).

258

259 **3.1.3. Effect of Fe₂O₃ loading**

PL measurement was conducted to evaluate the correlation between photoactivity of Fe_2O_3 -TiO₂ and Fe_2O_3 loading. Peak intensity of PL spectra correlated to the recombination rate of electron-hole pairs whereby weaker peak intensity represented lower recombination rate [36]. According to the PL signals (Fig. 6), an addition of Fe_2O_3 from 0.4 to 1.2 mol% reduced the PL peak intensities, signifying better charge separation at higher Fe_2O_3 molar content. Due to the close radii of Fe^{3+} (0.064 nm) and Ti^{4+} (0.068 nm), an increase of Fe_2O_3 loading led to more substitution of Ti^{4+} by Fe^{3+} , consequently, generating more oxygen vacancies [35]. An increase

267 in oxygen vacancies, which acted as electron donors in TiO₂ lattice, promoted better charge 268 separation. On the other hand, excessive addition of Fe_2O_3 could cause an undesirable energy 269 transfer between nearby ions due to shorter distance of Fe-Fe ions, leading to a deterioration in 270 charge separation and reduction in photoactivity [35]. As a comparison, the synthesized Fe₂O₃-271 TiO₂ exhibited a significant 84% reduction in PL emission intensity as compared to P25 (Fig. 6). 272 The reduction of emission intensity signified a high efficiency of charge separation and transfer 273 between the two Fe_2O_3 and TiO_2 metal oxides in the synthesized Fe_2O_3 -TiO₂ [37]. Theoretically, an incorporation of Fe₂O₃ into TiO₂ lattice resulted in the substitution of Ti⁴⁺ by Fe³⁺ species, 274 275 creating oxygen vacancies, which in turn supported charge separation [35].

276 Band gap measurements from diffuse reflectance study pave way to a better understanding 277 of the optical response of fabricated Fe₂O₃-TiO₂ [38]. Band gaps of Fe₂O₃-TiO₂ samples at 278 different Fe₂O₃ loading are displayed in the transformed Kulbeka-Munk function plot (Fig. 7a). 279 Although the band gap values were in close range (2.85-2.95 eV) despite a change in Fe_2O_3 280 molar content, the photodegradation efficiency (Fig. 8) improved significantly from 40.6 to 281 62.5% with increasing Fe₂O₃ loading (0.4 to 1.2 mol%, respectively). Upon light absorption, 282 excited electrons from TiO₂ conduction band were transferred to the interface of Fe₂O₃ and converted Fe^{3+} into Fe^{2+} [37,39]. Since the unstable Fe^{2+} was rapidly oxidized by dissolved 283 oxygen to Fe³⁺, Fe³⁺ once again behaved as a shallow trapping site for photoexcited electrons 284 285 from TiO₂, hindering electron-hole pair recombination [36,39]. So, at higher Fe₂O₃ molar content, more Fe³⁺ was incorporated into TiO₂ lattice [40]. Thus, electron-hole recombination 286 287 was suppressed more effectively and enhanced the photoactivity of Fe₂O₃-TiO₂ [40]. However, 288 further addition of Fe₂O₃ beyond 1.0 mol% did not help to improve photoactivity of the catalyst due to high percentage of free Fe_2O_3 (Fe^{3+}), which was not incorporated into TiO₂ lattice [40]. 289

290 On the other hand, band gap values of Fe_2O_3 -TiO₂ were enhanced considerably as compared to 291 P25 (Table 1 and Fig. 7a). An improvement in band gap values indicated a successful incorporation of Fe³⁺ into the TiO₂ framework [40]. Notably, coupling of Fe₂O₃ with TiO₂ 292 293 stimulated better light harvesting ability and further extended the light absorption range as shown 294 in Fig. 7b. In addition, plot of transformed Kulbeka-Munk function (Fig. 7a) reveals that band 295 gap energy of Fe₂O₃-TiO₂ was lower (2.95 eV) than P25 (3.35 eV). This observation was 296 probably due to electronic coupling between the wide band gap of TiO₂ with the narrow band 297 gap of $Fe_2O_3[41]$.

Based on one-way ANOVA, maximum photodegradation efficiency of PPME (62.3% COD removal) was observed at 20 min of milling time, 250 rpm of milling speed, and 1 mol% of Fe_2O_3 loading. The synthesized Fe_2O_3 -TiO₂ photocatalyst was 1.5-times more superior to the commercial P25 (40.6% COD removal).

302

303 **3.2.** Comparison of other metal oxide-TiO₂ photocatalysts with Fe₂O₃-TiO₂

304

Other metal oxide candidates (WO₃, ZnO, and CeO₂) were introduced into the TiO₂ lattice under recommended milling conditions and their photocatalytic activity was compared with Fe₂O₃-TiO₂. Based on the photodegradation of PPME (Fig. 9 and Table 4), it was apparent that Fe₂O₃-TiO₂ attained the highest COD removal (62.3%) as compared to other metal oxide-TiO₂ photocatalysts (35.4-45.5%), P25 (40.6%), anatase TiO₂ (24.9%), rutile TiO₂ (2.9%), and Fe₂O₃ (1.1%). Therefore, Fe₂O₃-TiO₂ was established as a desired and promising photocatalyst to degrade PPME in this work.

313 **3.3. Detailed characterizations of Fe₂O₃-TiO₂**

314

The fabricated Fe_2O_3 -TiO₂ under recommended milling conditions (20 min of milling time, 250 rpm of milling speed, and 1 mol% of Fe_2O_3 loading) was subjected to additional characterization studies to further investigate its catalytic properties.

318

319 **3.3.1. Elemental compositions and distribution**

EDX spectrum (Fig. 10a) shows simultaneous presence of Fe, Ti and O elements in Fe₂O₃-TiO₂, which was produced through mechanochemical process. In addition, EDX mapping (Fig. 10b-d) shows extensive dispersion of Fe and O elements within the TiO₂ framework. This result indicated that Fe₂O₃ was well distributed throughout the fabricated Fe₂O₃-TiO₂ using mechanochemical process. Elemental compositions of Fe₂O₃-TiO₂ sample was further verified using XPS analysis.

326 In order to ascertain the chemical states of Fe, Ti and O existing in Fe₂O₃-TiO₂, XPS 327 analysis was conducted. As displayed in Fig. 11a, XPS survey spectrum detected the presence of 328 Fe (Fe 2p), Ti (Ti 2p), and O (O 1s) in Fe₂O₃-TiO₂. Carbon peak (C 1s) was attributed to the 329 carbon tape used as a support during XPS analysis. High resolution XPS spectra reveal chemical 330 species within the prepared Fe_2O_3 -TiO₂ (Fig. 11b-d). Binding energies of Fe $2p_{3/2}$ and Fe $2p_{1/2}$ were 710.7 and 724.5 eV respectively, verifying the presence of Fe^{3+} . An absence of peaks 331 around 707 and 719 eV ruled out the presence of Fe²⁺, firmly supporting the addition of γ -Fe₂O₃ 332 phase into TiO₂ [42]. Peaks corresponding to Ti⁴⁺ were centered at 458.6 and 464.4 eV, which 333 334 were analogous to Ti $2p_{3/2}$ and Ti $2p_{1/2}$, respectively. From O 1s spectra, binding energy at 529.8

eV was assigned to lattice oxygen, O^2 species from Fe₂O₃ and Ti-O-Ti [34,43]. The attained XPS findings (Fig. 11a-d) were in conformity with the obtained EDX analysis data (Fig. 10a).

337

338 **3.3.2. Surface morphology**

339 TEM image (Fig. 12a) shows that Fe₂O₃-TiO₂ nanoparticles had an average particle size of 340 30 nm. Darker regions corresponded to Fe₂O₃ particles whereas lighter regions were ascribed to 341 TiO₂ nanoparticles. Noticeably, an intimate contact between Fe₂O₃ and TiO₂ particles was 342 formed from mechanochemical process. The contact was advantageous for charge transfer 343 between the two metal oxides due to a shorter carrier diffusion length that would suppress 344 recombination of electron-hole pairs [37]. Furthermore, Fe₂O₃ particles appeared to be well-345 dispersed throughout the Fe₂O₃-TiO₂ sample. High resolution TEM (HRTEM) image (Fig. 12b) 346 revealed clear lattice fringes of Fe₂O₃ and TiO₂. Lattice fringe of 0.29 nm was equivalent to (220) plane of γ -Fe₂O₃, whereas lattice fringes of 0.35 and 0.32 nm corresponded to (101) 347 348 anatase plane and (110) rutile plane of TiO₂, respectively [43,44].

349

350 3.3.3. Raman analysis

Based on Raman spectrum of the Fe₂O₃-TiO₂ sample (Fig. 13), major Raman peaks at 155, 394, 514, and 633 cm⁻¹ were indexed to the typical structure of TiO₂ whereas peak at 205 cm⁻¹ indicated the presence of γ -Fe₂O₃ [35,45]. A formation of Fe-O-Ti bond in the fabricated Fe₂O₃-TiO₂ was evidenced by a peak at 279 cm⁻¹. This denoted that Fe³⁺ replaced some Ti⁴⁺ species in lattice sites of the crystalline structure, indicating a successful synthesis of Fe₂O₃-TiO₂ photocatalyst [35]. Peak intensity analogous to the presence of Fe₂O₃ was low due to low concentration of Fe₂O₃ (1 mol%). An incorporation of Fe atoms into Ti lattice sites also caused a shift of peaks to slightly greater frequencies as a result from force constant and vibrationalamplitudes of neighbouring bonds [34,35].

360

361 3.3.4. FTIR analysis

362 FTIR analysis was employed to determine the functional groups present in Fe₂O₃-TiO₂ [21]. 363 Based on Fig. 14, FTIR spectrum of Fe₂O₃-TiO₂ was similar to P25, signifying that Fe₂O₃ was well-infused into the TiO₂ lattice [39]. Two bands observed at 3400 and 1634 cm⁻¹ were 364 365 characteristics of O-H stretching vibrations and H-OH bending of hydroxyl groups present [46]. 366 These bands played a significant role in photocatalytic reactions to react with photogenerated holes on the Fe₂O₃-TiO₂ surface upon light irradiation. Broad peak at 3250 cm⁻¹ was due to O-H 367 stretching vibration of water whereas bands at 2924 and 2840 cm⁻¹ were attributed to C-H 368 369 stretching vibrations of alkyl chain [40,42].

370

371

372 4. Conclusions

373

In this study, a photoactive Fe_2O_3 -TiO₂ catalyst was successfully synthesized using a onestep facile and solvent-free mechanochemical process under ambient temperature and atmospheric pressure. Characterization studies showed that the synthesized Fe_2O_3 -TiO₂ possessed crystalline structures of γ -Fe₂O₃, anatase, and rutile phases of TiO₂. It was further confirmed that Fe, Ti and O elements were present and were well-dispersed within the Fe₂O₃-TiO₂ framework. Enhanced photoactivity of Fe₂O₃-TiO₂ was attributed to the following distinctive traits: (i) formation of Fe-O-Ti bond due to substitution of Ti⁴⁺ by Fe³⁺ in TiO₂ lattice;

(ii) higher specific surface area (58.40 m^2/g) and porosity (0.29 cm^3/g) than commercial P25; (iii) 381 lower band gap (2.95 eV) than P25 due to electronic coupling of TiO₂ and Fe₂O₃; (iv) and 382 suppressed electron-hole recombination rate, which was ascribed to the incorporation of Fe³⁺ that 383 384 acted as a charge-transfer mediator. In addition, the highest treatment efficiency of PPME 385 (62.3% of COD removal) was achieved by using Fe₂O₃-TiO₂, which was synthesized at 20 min 386 of milling time, 250 rpm of milling speed, and 1 mol% of Fe₂O₃ loading. Markedly, the 387 photoactivity of Fe₂O₃-TiO₂ was 53.4% higher than the commercial P25. In conclusion, this 388 study provided a better insight into the potential use of mechanochemical process as a greener, 389 simpler and low-cost approach in synthesizing high efficiency photocatalysts to degrade complex 390 industrial effluent.

391

392 Acknowledgements

393 The authors would like to thank Monash University Malaysia for providing W. Subramonian394 with a Ph.D. scholarship.

395

396 **References**

- 397 [1] C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation398 flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res. 55 (2016)
 399 4363-4389.
- 400 [2] L. Fernandes, M.S. Lucas, M.I. Maldonado, I. Oller, A. Sampaio, Treatment of pulp mill
 401 wastewater by *Crytococcus* podzolicus and solar photo-Fenton: a case study, Chem. Eng. J.
 402 245 (2014) 158-165.
- 403 [3] W. Subramonian, T.Y. Wu, Effect of enhancers and inhibitors on photocatalytic sunlight
 404 treatment of methylene blue, Water Air Soil Pollut. 225 (2014) 1-15.
- 405 [4] C. Lopez-Lopez, J. Martín-Pascual, M.V. Martínez-Toledo, M. M. Muñío, E. Hontoria,
 406 J.M. Poyatos, Kinetic modeling of TOC removal by H₂O₂/UV, photo-Fenton and
 407 heterogeneous photocatalysis processes, Int. J. Environ. Sci. Technol. 12 (2016) 3255-3262.
- 408 [5] H.N. Chin, Z.Z. Noor, N.S.A. Mutamin, K.L. Chi, Green Technology in wastewater
 409 treatment technologies: integration of membrane bioreactor with various wastewater
 410 treatment systems, Chem. Eng. J. 283 (2016) 582-594.
- 411 [6] E. Ghasemi, H. Ziyadi, A.M. Afshar, M. Sillanpää, Iron oxide nanofibers: a new magnetic
 412 catalyst for azo dyes degradation in aqueous solution, Chem.
 413 Eng. J. 264 (2015) 146-151.
- 414 [7] D. Wodka, R.P. Socha, E. Bielańska, M. Elżbieciak-Wodka, P. Nowak, P. Warszyński,
 415 Photocatalytic activity of titanium dioxide modified by Fe₂O₃ nanoparticles, Appl. Surf. Sci.
 416 319 (2014) 173-180.
- 417 [8] J.O. Carneiro, S. Azevedo, F. Fernandes, E. Freitas, M. Pereira, C.J. Tavares, S. Lanceros418 Méndez, V. Teixeira, Synthesis of iron-doped TiO₂ nanoparticles by ball-milling process:

- the influence of process parameters on the structural, optical, magnetic, and photocatalytic
 properties, J. Mater. Sci. 49 (2014) 7476-7488.
- 421 [9] Y. Su, Z. Wu, Y. Wu, J. Yu, L. Sun, C. Lin, Acid orange II degradation through a
- 422 heterogeneous Fenton-like reaction using $Fe-TiO_2$ nanotube arrays as a photocatalyst, J.
- 423 Mater. Chem. A. 3 (2015) 8537-8544.
- 424 [10]F.C.F. Low, T.Y. Wu, C.Y. Teh, J.C. Juan, N. Balasubramanian, Investigation into
 425 photocatalytic decolorisation of CI Reactive Black 5 using titanium dioxide nanopowder,
 426 Color. Technol. 128 (2012) 44-50.
- 427 [11]D. Liŭ, Z. Li, W. Wang, G. Wang, D. Liú, Hematite doped magnetic TiO₂ nanocomposites
 428 with improved photocatalytic activity, J. Alloy. Compd. 654 (2016) 491-497.
- 429 [12] S. Neubert, D. Mitoraj, S.A. Shevlin, P. Pulisova, M. Heimann, Y. Du, G.K.L. Goh, M.
- 430 Pacia, K. Kruczata, S. Turner, W. Macyk, Z.X. Guo, R.K. Hocking, R. Beranek, Highly
- 431 efficient rutile TiO₂ photocatalysts with single Cu(II) and Fe(III) surface catalytic sites, J.
 432 Mater. Chem. A. 4 (2016) 3127-3138.
- [13] A. Luengnaruemitchai, K. Srihamat, C. Pojanavaraphan, R. Wanchanthuek, Activity of
 Au/Fe₂O₃-TiO₂ catalyst for preferential CO oxidation, Int. J. Hydrog. Energy 40 (2015)
 13443-13455.
- [14] S. Zhang, Q. Zhong, Y. Shen, L. Zhu, J. Ding, New insight into the promoting role of
 process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature, J.
 Colloid Interface Sci. 448 (2015) 417-426.
- 439 [15] M. Naimi-Joubani, M. Shirzad-Siboni, J.-K. Yang, M. Gholami, M. Farzadkia,
 440 Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO₂ composite, J.
- 441 Ind. Eng. Chem. 22 (2015) 317-323.

- 442 [16]K.-R. Wee, B.D. Sherman, M.K. Brennaman, M.V. Sherridan, A. Nayak, L. Alibabaei, T.J.
- 443 Meyer, An aqueous, organic dye derivated SnO₂/TiO₂ core/shell photoanode, J. Mater.
 444 Chem. A 4 (2016) 2969-2975.
- 445 [17] W. Deng, Q. Dai, Y. Lao, B. Shi, X. Wang, Low temperature catalytic combustion of 1,2-
- 446 dichlorobenzene over CeO₂-TiO₂ mixed oxide catalysts, Appl. Catal. B-Environ. 181 (2016)
 447 848-861.
- [18] S. Fathinia, M. Fathinia, A.A. Rahmani, A. Khataee, Preparation of natural pyrite
 nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous
 Fenton process, Appl. Surf. Sci. 327 (2015) 190-200.
- [19] C.Y. Teh, T.Y. Wu, J.C. Juan, Facile sonochemical synthesis of N,Cl-codoped TiO₂:
 synthesis effects, mechanism and photocatalytic performance, Catal. Today 256 (2015) 365374.
- 454 [20]K. Wieczorek-Ciurowa, K. Gamrat, Mechanochemical synthesis as an example of green
 455 processes, J. Therm. Anal. Calorim. 88 (2007) 213-217.
- 456 [21] Ž. Kesić, I. Lukić, M. Zdujić, Č. Jovalekić, H. Liu, D. Skala, Mechanochemical synthesis of
- 457 CaO·ZnO·K₂CO₃ catalyst: characterization and activity for methanolysis of sunflower oil,
- 458 Chem. Ind. Chem. Eng. 21 (2015) 1-12.
- 459 [22]S. Lu, J. Huang, Z. Peng, X., Li, J. Yan, Ball-milling 2,4,6-trichlorophenol with calcium
 460 oxide: dechlorination experiment and mechanism considerations, Chem. Eng. J. 195-196
 461 (2012) 62-68.
- 462 [23]K. Ralphs, C. Hardacre, S.L. James, Application of heterogeneous catalyst prepared by
 463 mechanochemical synthesis, Chem. Soc. Rev. 42 (2013) 7701-7718.

- 464 [24] A. Banerjee, R. Gupta, K. Balani, Non-monotonic lattice parameter variation in ball-milled
 465 ceria, J. Mater. Sci. 50 (2015) 6349-6358.
- 466 [25]C. Xu, S. De, A.M. Balu, M. Ojeda, R. Luque, Mechanochemical synthesis of advanced
 467 nanomaterials for catalytic applications, Chem. Commun. 15 (2015) 6698-6713.
- [26] T.J. Clarke, T.E. Davies, S.A. Kondrat, S.H. Taylor, Mechanochemical synthesis of copper
 manganese oxide for the ambient temperature oxidation of carbon monoxide, Appl. Catal.
 B-Environ. 165 (2015) 222-231.
- 471 [27] W. Subramonian, T.Y. Wu, S.-P. Chai, A comprehensive study on coagulant performance
 472 and floc characterization of natural *Cassia obtusifolia* seed gum in treatment of raw pulp and
- 473 paper mill effluent, Ind. Crops Prod. 61 (2014) 317-324.
- 474 [28] W. Subramonian, T.Y. Wu, S.-P. Chai, An application of response surface methodology for
 475 optimizing coagulation process of raw industrial effluent using *Cassia obtusifolia* seed gum
 476 together with alum, Ind. Crops Prod. 70 (2015) 107-115.
- 477 [29] S.D. House, J.J Vajo, C. Ren, A.A. Rockett, I.M. Robertson, Effect of ball milling duration
- and dehydrogenation on the morphology, microstructure and catalyst dispersion in Nicatalyzed MgH₂ hydrogen storage materials, Acta Mater. 86 (2015) 55-68.
- 480 [30] X. Chen, T. Lu, Z. Lu, L. Chen, Q. Zhang, G. Cheng, J. Qi, Systematic optimization of ball-
- 481 milling for highly transparent Yb:YAG ceramic using co-precipitated raw powders, J. Alloy.
- 482 Compd. 653 (2015) 552-560.
- [31] Y.H. Taufiq-Yap, C.K. Goh, G.J. Hutchings, N. Dummer, J.K. Bartley, Effects of
 mechanochemical treatment to the vanadium phosphate catalysts derived from
 VOPO₄·2H₂O, J. Mol. Catal. A-Chem. 260 (2006) 24-31.

- 486 [32]F.M.T. Mendes, A.C.C. Marques, D.L. Mendonça, M.S. Oliveira, R.O. Moutta, V.S.
 487 Ferreira-Leitão, High surface area activated carbon from sugar cane straw, Waste Biomass
 488 Valor. 6 (2015) 433-440.
- [33] N. Aman, N.N. Das, T. Mishra, Effect of N-doping on visible light activity of TiO₂-SiO₂
 mixed oxide photocatalysts, J. Environ. Chem. Eng. 4 (2016) 191-196.
- 491 [34] L. Qin, X. Pan, L. Wang, X. Sun, G. Zhang, X. Guo, Facile preparation of mesoporous TiO₂
 492 (B) nanowires with well-dispersed Fe₂O₃ nanoparticles and their photochemical catalytic
 493 behavior, Appl. Catal. B-Environ. 150-151 (2014) 544-553.
- 494 [35] A. Banisharif, A.A. Khodadadi, Y. Mortszavi, A.A. Firooz, J. Behestian, S. Agah, S.
- 495 Menbari, Highly active Fe_2O_3 -doped TiO₂ photocatalyst for degradation of trichloroethylene
- 496 in air under UV and visible light irradiation: experimental and computational studies, Appl.
 497 Catal. B-Environ. 165 (2015) 209-221.
- 498 [36] W. Li, X. Liu, H. Li, Hydrothermal synthesis of graphene/Fe³⁺ -doped TiO₂ nanowire
 499 composites with highly enhanced photocatalytic activity under visible light irradiation, J.
 500 Mater. Chem. A 3 (2015) 15214-15224.
- 501 [37] S.J.A. Moniz, S.A. Shevlin, X. An, Z.-X. Guo, J. Tang, Fe₂O₃-TiO₂ nanocomposites for
 502 enhanced charge separation and photocatalytic activity, Chem. Eur. J. 20 (2014) 15571503 15579.
- [38]G.S. Pozan, M. Isleyen, S. Gokcen, Transition metal coated TiO₂ nanoparticles: synthesis,
 characterization and their photocatalytic activity, Appl. Catal. B-Environ. 140-141 (2013)
 537-545.

- 507 [39] T.K. Ghorai, M. Chakraborty, P. Pramanik, Photocatalytic performance of nano 508 photocatalyst from TiO₂ and Fe₂O₃ by mechanochemical synthesis, J. Alloy. Compd. 509
 509 (2011) 8158-8164.
- 510 [40] B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, Sol-gel synthesis of
- 511 mesoporous mixed Fe_2O_3/TiO_2 photocatalyst: application for degradation of 4-chlorophenol,
- 512 J. Hazard. Mater. 252-253 (2013) 233-242.
- [41] Y. Wang, X. Fan, S. Wang, G. Zhang, F. Zhang, Magnetically separable γ-Fe₂O₃/TiO₂
 nanotubes for photodegradation of aqueous methyl orange, Mater. Res. Bull. 48 (2013) 785789.
- 516 [42] M.A. Bhosale, D. Ummineni, T. Sasaki, D. Nishio-Hamane, B.M. Bhanage, Magnetically
 517 separable γ-Fe₂O₃ nanoparticles: an efficient catalyst for acrylation of alcohols, phenols, and
 518 amines using sonication energy under solvent free condition, J. Mol. Catal. A-Chem. 404519 405 (2015) 8-17.
- 520 [43]G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ 521 Fe₂O₃@C nanorod-carbon sphere composite and its application as microwave absorbing
 522 material, J. Alloy. Compd. 652 (2015) 346-350.
- 523 [44] P. Mirtchev, K. Liao, E. Jaluague, Q. Qiao, Y. Tian, M. Varela, K.S. Burch, S.J. Pennycook,
 524 D.D. Perovic, G. Ozin, Fe₂O₃/Cu₂O heterostructured nanocrystals, J. Mater. Chem. A 2
- 525 (2014) 8525-8533.
- 526 [45] M.T. Qamar, M. Aslam, I.M.I. Ismail, N. Salah, A. Hameed, The assessment of the
- 527 photocatalytic activity of magnetically retrievable ZnO coated γ -Fe₂O₃ in sunlight exposure,
- 528 Chem. Eng. J. 283 (2016) 656-667.

- 529 [46]Z.Y. Bai, Q. Yang, J.L. Wang, Fe₃O₄/multi-walled carbon nanotubes as an efficient catalyst
- for catalyst for catalytic ozonation of p-hydroxybenzoic acid, Int. J. Environ. Sci. Technol.
 13 (2016) 483-492.

List of Figures

Fig. 1. (a)

Fig. 1. (b)

Fig. 1. (c)

Fig. 1. (d)

Fig. 1. (e)

Fig. 1. (f)

Fig. 1. (g)

Fig. 1. FESEM images of (a) Fe₂O₃-TiO₂ milled at 10 min, (b) 15 min, (c) 20 min, (d) 25 min and (e) 30 min, (f) P25 and (g) Fe₂O₃.

Fig. 2. Nitrogen adsorption/desorption isotherm. Inset shows the BJH pore size distribution of Fe_2O_3 -TiO₂.

Fig. 3. Effect of milling time on photodegradation of PPME (milling speed = 250 rpm; $[Fe_2O_3] = 1 \text{ mol}\%$; ball:powder mass ratio = 10:1; irradiation time = 3 h; initial effluent pH = 4; $[Fe_2O_3-TiO_2] = 1.0 \text{ g/L}$; air

flow rate = 4.0 L/min; n = 3). Values annotated with different letters represent significant differences (one-way ANOVA, Tukey's test; P < 0.05).

Fig. 4. XRD patterns of P25 (red), Fe₂O₃ (brown), and Fe₂O₃-TiO₂ milled at 150 rpm (green), 200 rpm (yellow), 250 rpm (purple), 300 rpm (blue) and 350 rpm (pink) (A: anatase phase; R: rutile phase).

Fig. 5. Effect of milling speed on photodegradation of PPME (milling time = 20 min; $[Fe_2O_3] = 1 \text{ mol}\%$; ball:powder mass ratio = 10:1; irradiation time = 3 h; initial effluent pH = 4; $[Fe_2O_3-TiO_2] = 1.0 \text{ g/L}$; air flow rate = 4.0 L/min; n = 3). Values annotated with different letters represent significant differences (one-way ANOVA, Tukey's test; P < 0.05).

Fig. 6. PL spectra of P25 (red), Fe₂O₃ (brown), and Fe₂O₃-TiO₂ with Fe₂O₃ loading of 0.4 mol% (blue), 0.6 mol% (yellow), 0.8 mol% (green), 1.0 mol% (purple) and 1.2 mol% (pink).

Fig. 7. (a)

Fig. 7. (b)

Fig. 7. (a) Plot of transformed Kulbeka-Munk function $[F(R) \cdot hv]^{1/2}$ versus hv of P25 (red), Fe₂O₃ (brown), and Fe₂O₃-TiO₂ with Fe₂O₃ loading of 0.4 mol% (blue), 0.6 mol% (yellow), 0.8 mol% (green), 1.0 mol% (purple) and 1.2 mol% (pink). (b) DRS spectra of P25 (red), Fe₂O₃ (brown), and Fe₂O₃-TiO₂ with Fe₂O₃ loading 1.0 mol% (purple).

Fig. 8. Effect of Fe₂O₃ loading on photodegradation of PPME (milling time = 20 min; milling speed = 250 rpm; ball:powder mass ratio = 10:1; irradiation time = 3 h; initial effluent pH = 4; $[Fe_2O_3-TiO_2] = 1.0 \text{ g/L}$; air flow rate = 4.0 L/min; *n* = 3). Values annotated with different letters represent significant differences (one-way ANOVA, Tukey's test; P <0.05).

Fig. 9. Comparison of other metal oxide-TiO₂ photocatalysts with Fe₂O₃-TiO₂.

Fig. 10. (a)

Fig. 10. (b)

Fig. 10. (c)

Fig. 10. (a) EDX spectrum of Fe₂O₃-TiO₂. EDX mapping of (b) O, (c) Fe, and (d) Ti elements in Fe₂O₃-TiO₂.

Fig. 11. (a)

Fig. 11. (b)

Fig. 11. (c)

Fig. 11. (d)

Fig. 11. XPS (a) survey spectrum and narrow spectra of (b) Fe 2p, (c) Ti 2p, and (d) O 1s of Fe₂O₃-TiO₂.

Fig. 12. (a)

Fig. 12. (b)

Fig. 12. (a) TEM image of Fe_2O_3 -Ti O_2 . (b) HRTEM image of Fe_2O_3 -Ti O_2 .

Fig. 13. Raman spectra of Fe₂O₃-TiO₂ (purple), P25 (red), and Fe₂O₃ (brown).

Fig. 14. FTIR spectra of Fe₂O₃-TiO₂ (purple), P25 (red), and Fe₂O₃ (brown).

List of Tables

Table 1

Comparison of catalyst characteristics among Fe_2O_3 -TiO₂, P25 and Fe_2O_3 .

Sample	XRD	Surface analysis		Band gap	
	Crystallite	Specific	Pore volume,	Pore size, nm	energy, eV
	size, nm	surface area,	cm ³ /g		
		m ² /g			
Fe ₂ O ₃ -TiO ₂ *	22.99	58.40	0.29	18.52	2.95
P25	24.29	52.32	0.17	15.62	3.35
Fe ₂ O ₃	17.45	7.70	0.03	13.14	1.60
*Mechanoche	mical synthesis	conditions: m	illing speed =	250 rpm; [Fe ₂	O_3] =1 mol%;

ball:powder mass ratio =10:1

Table 2

Textural properties of Fe₂O₃-TiO₂ at different milling time.

Milling time, min	Surface analysis			
	Specific surface area, m ² /g	Pore volume, cm ³ /g	Pore size, nm	
10	55.57	0.26	16.16	
15	56.99	0.28	17.22	
20	58.40	0.29	18.52	
25	55.18	0.24	15.29	
30	52.41	0.22	15.00	

Mechanochemical synthesis conditions: milling speed =250 rpm; $[Fe_2O_3] =1 mol\%$; ball:powder mass ratio =10:1

Table 3

Milling speed, rpm	XRD analysis			
	Crystallite size, nm	Rutile phase fraction, %		
150	25.72	0.29		
200	24.05	0.29		
250	22.99	0.36		
300	22.00	0.38		
350	21.42	0.44		

Crystallite properties of Fe₂O₃-TiO₂ at different milling speed.

Mechanochemical synthesis conditions: milling time =20 min; $[Fe_2O_3]$ =1 mol%; ball:powder mass ratio =10:1

Table 4

Control photocatalytic experiments.

Control	COD removal, %
Photolysis	0.1
Catalysis (in the dark using Fe_2O_3 -TiO ₂)	0.4
P25	40.6
Anatase TiO ₂	24.9
Rutile TiO ₂	2.9
Fe ₂ O ₃	1.1