
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2012; 00:1–38
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Comparative Modeling and Verification of Pthreads and Dthreads∗

Yuan Fei1 Huibiao Zhu1† Xi Wu1,4 Huixing Fang5 Shengchao Qin2,3

1Shanghai Key Laboratory of Trustworthy Computing
MOE International Joint Laboratory of Trustworthy Software

International Research Center of Trustworthy Software
East China Normal University, Shanghai, China

2School of Computing, University of Teesside, Middlesbrough, UK
3School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

4School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
5School of Information Engineering, Yangzhou University, Jiangsu, China

SUMMARY

The POSIX threads (Pthreads) library is a thread API for C/C++ to control parallel threads and spawn
concurrent process flows. Programming in Pthreads usually suffers from undesirable deadlock, data race
and race condition problems due to the potential non-deterministic execution behaviors between parallel
threads. Dthreads, as another multithreading model that re-implements Pthreads, was proposed by Liu et al.
[1] for efficient deterministic multithreading. They found out that, under specific test cases, Dthreads can
effectively prevent data races. However, no comparison test has been made with Pthreads.

To carry out a formal comparison between Pthreads and Dthreads over deadlocks, data races and
race conditions, in this paper, we adopt CSP (Communicating Sequential Processes) as a formal model
for specifying part of API functions in Pthreads and Dthreads, and illustrate the model construction using
four classical example programs. By feeding the models into the model checker PAT (Process Analysis
Toolkit), we have verified that deadlocks and data races exist in Pthreads, but do not exist in Dthreads, for the
considered programs. We have also found that neither of them can prevent race conditions. Our comparative
modelling and verification of Pthreads and Dthreads show that though Dthreads can not prevent all the
deadlock situations, shown by verification results of another two example programs, Dthreads is better than
Pthreads on eliminating data races and preventing deadlocks. Considering limited scalability of Dthreads,
we have introduced a new programming model to support coarse granularity in bank transfer. Our modelling
is also extended by covering the synchronization operations in Liu et al.’s work. Copyright c© 2012 John

Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Pthreads; Dthreads; Modeling; Verification; CSP

1. INTRODUCTION

The demands for multi-threaded programs increase rapidly with the development of multi-
processors. However, the consequent concurrency issues, for example deadlocks [3, 4], data races
[5, 6], and race conditions [7, 8], make concurrent programming more challenging. Deadlocks are
often due to improper request/release of resources between multiple threads. Data races occur when

∗A short version of this paper appeared in HASE 2016: 17 International Symposium on High Assurance Systems
Engineering [2].
†Corresponding author.
E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu).

Copyright c© 2012 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2

two or more threads read and write the same memory unit concurrently. A race condition appears
because of unsuitable timing or ordering of events.

Deadlock detections can be conducted via static or dynamic techniques. Static techniques [3, 9]
use static analysis tools to analyse the codes to find out the locations where deadlocks may occur.
However, they usually require high computation cost and may not be suitable for large-scale code.
Dynamic techniques [6, 10] detect deadlocks along with the execution of the codes. Due to their
dynamic nature, it would be difficult for them to detect all deadlock scenarios. Data race detections
could also be divided into static analysis techniques and dynamic analysis techniques. Static analysis
techniques [5, 11] check all execution paths to determine if there is a data race. However, incorrect
alerts on data races may occur with the adoption of certain hypotheses, which can lead to a high
rate of false positives. Dynamic analysis techniques [6, 12], conversely, monitor memory and
synchronizing information at runtime to detect data races. They have higher accuracy, but need to
improve code coverage, e.g. by considering multiple executions of programs. Finally, race condition
detections are categorized into static analysis techniques and dynamic analysis techniques as well.
Static analysis techniques [13] can only report the possible occurrences of race conditions on
special programming environments. Therefore, manual analysis is needed when it comes to runtime
environments. Dynamic analysis techniques [14] are of two kinds: modifying or interrupting system
calls and checking log files. They both have their drawbacks. The former causes the loss of accuracy.
The latter relies on the completeness of log files.

The uncertainty in the execution of threads is the fundamental cause for concurrency issues. The
methods to eliminate uncertainty can be categorized into external methods and internal methods.
The most common external methods are testing all the possible interleavings at runtime and
embedding control logic at compiling time. For example, in [15], Petri nets-based control logic is
added into the source codes to eliminate concurrency problems. However, such methods may cause
high cost. Internal methods try to avoid the uncertainty. For example, Edwards et al. introduced a
concurrent programming language called the SHIM for C-plus-Pthreads compiler [16], but it has
a sharp learning curve and may be impractical for every programmer to learn it. Grace [17] can
eliminate concurrency problems, but only for certain program idioms (e.g. fork-join).

The IEEE POSIX 1003.1c standard [18] specifies a thread programming interface that has been
widely used to achieve portability. As an implementation to this standard, Pthreads [19] may cause
concurrency problems [20]. Dthreads, proposed by Liu et al. [1], is a lightweight implementation of
Pthreads, aiming to avoid such problems by guaranteeing deterministic execution. Some researches
have been done on the comparison of Pthreads and Dthreads. In [21], iThreads, a threading library
for parallel incremental computation, is compared with Pthreads and Dthreads on performance
gains, scalability and performance overheads. A Framework for multi-threaded program including
Pthreads and Dthreads is presented by Webber et al. [22].

There are several testing approaches [23, 24, 25] to verify multi-threaded programs by model
checking. Some of them are devoted to Java and some of them are used for C program using the
Pthreads library. Another important work on reasoning about locking in multi-threaded code is done
at an abstract model level [26]. As there is no methods for Dthreads, we choose the model checker
PAT [27, 28] as the same approach for Pthreads and Dthreads.

In [1], Dthreads is tested with cases and the result shows that Dthreads can effectively prevent
data races. But they have not made comparison test with Pthreads over deadlocks, data races and
race conditions. In this paper, we comparatively verify Pthreads and Dthreads in the scenario of four
classical example programs based on several API functions. First, we employ CSP [29, 30] to model
example programs with the API functions of Pthreads and Dthreads. As automatic verifications are
useful in many fields [31, 32], we add the conversion from C code to PAT code. By using the model
checker PAT, for our considered models converted from CSP models automatically, we verify the
presence of deadlocks, data races and race conditions in Pthreads, and their absence in Dthreads.
And we add two more example programs to rich our comparison using more synchronization
operations. Our verification results of comparison for Pthreads and Dthreads show that Dthreads
is better than Pthreads on eliminating data races and preventing deadlocks. In addition, we find out
that neither of them can avoid race conditions.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

3

The rest of the paper is organized as follows. Section 2 gives a brief introduction of Dthreads, as
well as the introduction of CSP. Section 3 introduces thread API functions and example programs.
Section 4 is devoted to the modelling of Pthreads and Section 5 is about the modelling of Dthreads.
Section 6 describes the conversion method from C code to PAT code, which is implemented by
Java. In Section 7, we apply model checker PAT to verify deadlocks, data races and race condition.
Section 8 extends our modelling by covering the synchronization operations in Liu et al.’s work. In
Section 9, we also verify some new models applying the new API functions. Section 10 introduces
a new programming model for bank transfer. Finally, Section 11 describes the conclusion and future
work.

2. BACKGROUND

In this section, we briefly introduce the special characteristics of Dthreads compared with Pthreads
and show the main mechanism of it. We also give a brief introduction to CSP.

2.1. Dthreads vs Pthreads

Dthreads and Pthreads have different design decisions on the following three aspects:

The way of implementing threads: In Pthreads, threads have shared address space. It means that
when there is an update operation, the thread updates shared data directly. But in Dthreads, threads
are implemented in the way of processes, which means they have separate addresses. Hence, the
thread can choose to update shared data or its private copy under certain conditions.

The writing order to shared memory: As Pthreads has various interleavings of threads at runtime,
it may result in different writing order to shared memory. Dthreads contains a special rule that only
the thread which owns the token can write to shared memory. Hence, the expected writing order to
shared memory can be guaranteed.

The sequence of synchronization operations: The sequence of synchronization operations in
Pthreads may be different at runtime. However, as Dthreads adds a special token processing
mechanism, the sequence in Dthreads is the same.

We now introduce an overview of Dthreads execution, as illustrated in Fig.1. The vertical lines
represent the fences and the lines with arrows between them stand for threads. The states of fences
switch between Arrival Phase and Departure Phase. Similarly, the states of threads also change
between Parallel Phase and Serial Phase.

Here we use Thread 1 as an example to describe the whole process. First, Thread 1 is in Parallel
Phase and the fence is in Arrival Phase. When it performs a synchronization operation, it blocks.
That is to say, Thread 1 is stopped by the fence. As Thread 1 is the first one arriving at the fence,
it gets the token. After Thread 2 and Thread 3 arrive at the fence, the fence’s state changes to
Departure Phase and Thread 1 will be woken up and its state is set to Serial Phase. Then, it finishes
the synchronization operation and passes the token to Thread 2, which means it leaves the fence.
Once Thread 2 and Thread 3 also leave the fence, Thread 1 and the fence are reset to Parallel Phase
and Arrival Phase respectively. This cycle repeats.

2.2. A Brief Introduction of CSP

In this subsection, we give a short introduction to CSP (Communicating Sequential Processes)
[29, 30]. It is a process algebra proposed by Hoare in 1978. As one of the most mature formal
methods, it is tailored for describing the interaction between concurrency systems by mathematical
theories. Because of its well-known expressive ability, CSP has been widely used in many fields
[33, 34, 35, 36].

CSP processes are constituted by primitive processes and actions. We use the following syntax
to define the processes in this paper, whereby P and Q represent processes, the alphabets α(P) and
α(Q) mean the set of actions that the processes P and Q can take respectively, and a and b denote

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

4

Parallel Phase Serial Phase

Thread 1

Thread 2

Thread 3

Time

Transac
tion Commit Sync Token

Passing

Figure 1. An overview of Dthreads execution (adapted from[1])

the atomic actions and c stands for the name of a channel.

P,Q = Skip | Stop | a→ P | c?x→ P | c!e→ P | P2Q | P‖Q | P|||Q | P � b � Q | P;Q

where:

• Skip stands for a process which only terminates successfully.

• Stop represents that the process does nothing and its state is deadlock.

• a→ P first performs action a, then behaves like P.

• c?x→ P receives a message by the channel c and assigns it to a variable x, then does the
subsequent behavior like P.

• c! e→ P sends a message e through the channel c, then performs P.

• P�Q acts like either P or Q and the environment decides the selection.

• P ‖ Q shows the parallel composition between P and Q.

• P|||Q indicates the process chooses to perform actions in P and Q randomly.

• P � b � Q denotes if the condition b is true, the process behaves like P, otherwise, like Q.

• P;Q executes P and Q sequentially.

3. THREAD API AND EXAMPLE PROGRAMS

In this section, we first list the relevant interfaces of both Pthreads and Dthreads and then present
four classical multi-threaded programs on which our comparative modelling and verification will be
carried out.

3.1. API (Application Programming Interface)

We list five API functions that will be modelled. These API functions will be invoked by our
illustrative programs.

• pthread create()

• pthread exit()

• pthread join()

• pthread mutex lock ()

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

5

• pthread mutex unlock ()

Their functions are for creating, terminating and joining threads, as well as locking and unlocking
mutexes, respectively. Because Dthreads is a re-implementation of the multi-threading library
Pthreads, it has the same API functions.

3.2. Example Programs

We choose one classical example program to reason about deadlocks and three example programs
about the bank transformation process with respect to data races and race conditions, to be the
scenarios of Pthreads and Dthreads. Here we show the main parts of the example programs. The
main part of the example program for deadlocks is listed as below.

void ∗ThreadFunc1 (void ∗ a r g){
p t h r e a d m u t e x l o c k (&m0) ;
p t h r e a d m u t e x l o c k (&m1) ;
p t h r e a d m u t e x u n l o c k (&m1) ;
p t h r e a d m u t e x u n l o c k (&m0) ;
re turn NULL;

}

void ∗ThreadFunc2 (void ∗ a r g){
p t h r e a d m u t e x l o c k (&m1) ;
p t h r e a d m u t e x l o c k (&m0) ;
p t h r e a d m u t e x u n l o c k (&m0) ;
p t h r e a d m u t e x u n l o c k (&m1) ;
re turn NULL;

}

These two functions describe the tasks of two sub-threads. Thread 1 first locks mutexm0 and mutex
m1, then unlocks mutexm1 and mutexm0. And thread 2 changes the order of locking and unlocking
mutexes.

Now we describe how the threads cooperate in Dthreads briefly. First, we suppose that thread 1
and thread 2 have been created and the order of the threads arriving at the fence is thread 1, thread
2 and the main thread. It is also supposed that the current time is for the threads to leave the fence.
Thread 1 first gets the token and does its first lock operation. According to the principle of Dthreads,
the thread can only release the token to other threads until it owns no mutex. So thread 1 keeps on
doing the following lock and unlock operations and then passes the token to thread 2. Thread 2 also
does all the manipulation of mutex m1 and m0 and gives the token to the main thread. The main
thread can not do the join operation because thread 1 and thread 2 are still running. As the three
threads have no other non-synchronization operation, it can be considered that they have arrived at
the fence. Again, thread 1 owns the token and does the exit operation and transmits the token to
thread 2. Thread 2 also ends itself and delivers the token to the main thread. The main thread now
can do the join operation of two subthreads and end the whole program.

The main part of the three example programs considering data races and race conditions are
illustrated below. Initially, A and B are assigned to 100 and 0, respectively. We use some example
cases in [37] with modification. The sub-threads of the three programs almost do the same things,
expect for the statements about locking the mutex. If the balance of account A is not less than 100,
the sub-thread moves 100 from account A to account B. Due to the manipulation of the mutex, the
properties of data races and race conditions need to be considered, which we will discuss later.

void ∗ThreadFunc1 (void ∗ a r g){
i f (A < 100){

re turn NULL;
}
B = B + 100 ;
A = A − 100 ;
re turn NULL;

}

void ∗ThreadFunc2 (void ∗ a r g){
i f (A < 100){

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

6

re turn NULL;
}
B = B + 100 ;
A = A − 100 ;
re turn NULL;

}

void ∗ThreadFunc1 (void ∗ a r g){
i f (A < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (& t h l o c k) ;
B = B + 100 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
p t h r e a d m u t e x l o c k (& t h l o c k) ;
A = A − 100 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
re turn NULL;

}

void ∗ThreadFunc2 (void ∗ a r g){
i f (A < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (& t h l o c k) ;
B = B + 100 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
p t h r e a d m u t e x l o c k (& t h l o c k) ;
A = A − 100 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
re turn NULL;

}

void ∗ThreadFunc1 (void ∗ a r g){
p t h r e a d m u t e x l o c k (& t h l o c k) ;
i f (A < 100){

re turn NULL;
}
B = B + 100 ;
A = A − 100 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
re turn NULL;

}

void ∗ThreadFunc2 (void ∗ a r g){
p t h r e a d m u t e x l o c k (& t h l o c k) ;
i f (A < 100){

re turn NULL;
}
B = B + 100 ;
A = A − 100 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
re turn NULL;

}

4. MODELING PTHREADS

We use CSP to model the illustrative programs and the thread API functions given in Section 3.
For each illustrative program, the whole system is modelled as the parallel composition of four CSP
processes, Mutex, Controller, Program and Buffer, which will be defined in what follows. The buffer
component Buffer is used to store and manage data used in the system, for other components to
access. For convenience, we only show three components in Fig. 2: Program, Controller and Mutex,
omitting Buffer. Note that the process Program is used to model an illustrative program, Controller

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

7

ControllerMutex Program

createThreadt

exitThreadt

isCreatedt

joinThreadt

lockRequestt

unlockRequestt
feedbackt

endController

ackToProgram

getMutext

releaseMutext

ackFromMutex

endMutex

relockRequestt

Figure 2. Interprocess Communication of the Model of Pthreads

Mutex

Mutex Sets
{m0,m1,…}

{…}

Program

Global Variables

Controller Thread States

A,B,…

Mutex Variables

m0,m1,…

Figure 3. Data Communication of the Model of Pthreads

processes the requests from the synchronous operations of the threads, such as creating a new thread,
locking a mutex, etc., and Mutex is especially responsible for handling mutexes according to the lock
and unlock requests from Controller.

To better understand the process Buffer, we give the data communication graph of Pthreads model
in Fig. 3. The thread states, mutex sets, mutex variables and global variables are all modelled by
Buffer. They are used in Program, Controller and Mutex respectively.

SystemPthreads(scenario) =df Mutex()‖Controller()‖Program(scenario)‖Buffer()

Note that the parameter scenario can be deadlock, datarace or racecondition, corresponding to the
three illustrative programs respectively.

Table I. The Explanations of Channels in Pthreads Model

Channels Functionalities
(ack∗)t Receiving the acknowledgements
(end∗)t Terminating the processes

(∗Mutex)t Managing the mutexes between Mutex and Controller
(∗Thread)t Manipulating the threads between Program and Controller
(∗Request)t Managing the mutexes between Controller and Program
feedbackt Receiving the feedback from Controller to Program
isCreatedt Checking if the thread t is created or not from Controller to Program

Table I gives the explanations of channels in the Pthreads Model. Note that we use a uniform form
to describe the channels with the same functionality. For example, (ack*)t represents the channels
beginning with the word “ack” and their effects, including the channel ackFromMutex and the
channel ackToProgram. Both of them are used to receive the acknowledgements from the senders
to the receivers.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

8

4.1. The Program

In this subsection, we will model the three example programs described in Section 3. The process
Program changes in different scenarios, and it is modelled as below.

Program(scenario) =df ProgramDeadLock(�(scenario == deadlock)�
(ProgramTransfer1 � (scenario == transfer1)�
(ProgramTransfer2 � (scenario == transfer2)� ProgramTranfer3))

ProgramDeadLock =df (|| t:{1..(Tn−1)}ThreadDeadLockt)‖MainThread; endController!yes→
ackToProgram?v→ Skip

ProgramTransfer1 =df (|| t:{1..(Tn−1)}ThreadTransfer1t)‖MainThread; endController!yes→
ackToProgram?v→ Skip

ProgramTransfer2 =df (|| t:{1..(Tn-1)}ThreadTransfer2t)‖MainThread; endController!yes→
ackToProgram?v→ Skip

ProgramTransfer3 =df (|| t:{1..(Tn−1)}ThreadTransfer3t)‖MainThread; endController!yes→
ackToProgram?v→ Skip

Note here the ID of main thread is assumed to be 0 and v denotes a variable. Tn denotes the
maximum number of the threads at runtime and t represents a sub-thread ID.

We focus on ProgramDeadlock, ProgramTransfer1, ProgramTransfer2 and ProgramTransfer3.
All the subthreads interleave with each other and run in parallel with the main thread. At the end,
each process notifies the process Controller that it has been completed and then ends itself.

Process ThreadDeadLock, process ThreadTransfer1, process ThreadTransfer2 and process
ThreadTransfer3 correspond to the main parts of the illustrative programs in Section 3. In what
follows we first present the core model for the program with respect to deadlocks (expressed in
ThreadDeadLock). The two threads try to obtain the mutexes they need, and wait until they succeed.
Note m is the ID of a mutex.

ThreadDeadLockt =df isCreatedt?v→ (Lockt,t−1;Lockt,2−t; unLockt,2−t;unLockt,t−1;Exitt)

Lockt,m =df ThreadStatet?state→ (lockRequestt!m→ LockSubt � (state == run)� Lockt,m)

LockSubt =df feedbackt?v→ (Skip � (v == yes)� LockSubt)

UnLockt,m =df ThreadStatet?state→ (unlockRequestt!m→ feedbackt?v → Skip
� (state == run)� UnLockt,m)

The process ThreadTransfer1, ThreadTransfer2 and ThreadTransfer3 given below represent the
core model of the illustrative program with respect to the account transformation process. It modifies
the value of two variables, according to different conditions. More specifically, ThreadTransfer1
means the thread determines if the value of the global variable A is more than or equal to 100, the
global variable A will be set to A-100 and B will be assigned to B+100 if so. ThreadTransfer2
also does the same things but each assignment is protected by locking and unlocking the mutex M .
ThreadTransfer3 is similar with ThreadTransfer1 as well. It adds the lock operation and the unlock
operation at the front and rear of the assignments. Note that val1 and val2 denote variables, cond
and val represent values in the program.

ThreadTransfer1t =df isCreatedt?v → WriteME100,A,A,100;WriteME100,A,B,-100;Exitt

ThreadTransfer2t =df isCreatedt?v → Lockt,M;WriteME100,A,A,100;UnLockt,M;

Lockt,M;WriteME100,A,B,-100;UnLockt,M;Exitt

ThreadTransfer3t =df isCreatedt?v → Lockt,M;WriteME100,A,A,100;WriteME100,A,B,-100;UnLockt,M;Exitt

WriteMEcond,var1,var2,val =df getValuevar1?data1→ getValuevar2?data2→
(setValuevar2!(data2+val) � (data1 >= cond)� Skip)

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

9

4.2. The Mutex

Process Mutex describes the manipulation of mutexes, i.e., handling lock and unlock requests from
process Controller. In addition, it also modifies information about the mutexes. The mutexes are
abstracted using process Mutex, The module of process Mutex is shown as below:

Mutex =df (2t∈1..(Tn−1)MLockt)2 (2t∈1..(Tn−1)MUnLockt)

2 (endMutex?v→ ackFromMutex!yes→ Skip)

Here, t and Tn are defined to be the thread ID and the maximal number of threads. Process MLockt
and process MUnLockt handle the lock requests and unlock requests from thread t respectively. The
last part is to end this module and synchronize with the whole system.

For the process MLock, it first gets the message m from the channel getMutext, which means
threadt requests for mutex m. In addition, competitions between threads awaiting the same mutex
lead to the impossibility to predicate which one will get the mutex. As a result, we use set instead
of queue to store threads’ IDs waiting for the mutex. The thread ID t will be put into the set of the
mutex m and the size of the set will be increased.

MLockt =df getMutext?m→ Mutexm?state→ (Mutexm!busy→ ackFromMutex!yes→ Skip)
�(state == idle)�
(MutexSetInm!t→ MutexSetSizem!Increase→
ackFromMutex!no→ Skip)

 ;Mutex

For the process MUnLockt, it first receives the message m from the channel releaseMutext, which
means thread t releases the mutex m. Therefore, thread ID t needs to be removed from the set and the
size of the set should be decreased. Furthermore, it must check if there are still any threads waiting
for the mutex m. If so, one element of the set is taken out and the thread is allowed to request for
the mutex m again. The process is illustrated as below.

MUnLockt =df releaseMutext?m→ Mutexm!idle→ MutexSetSizem?size→(
(MutexSetOutm?t→ MutexSetSizem!Decrease
→ RelockRequestt!m→ Skip)� (size > 0)� Skip

)
;

ackFromMutex!yes→ Skip;Mutex

4.3. The Controller

We use the process Controller to handle the messages from the process Program and the process
Mutex. Its purpose is to create threads, terminate threads, join threads, lock and unlock mutexes.

Controller=df (2t∈1..(Tn−1)CLockt)2 (2t∈1..(Tn−1)CUnLockt)

2 (2t∈1..(Tn−1)CReLockt)2 (2t∈1..(Tn−1)CCreateThreadt)

2 (2t∈1..(Tn−1)CExitThreadt)2 (2t∈1..(Tn−1)CJoinThreadt)

2 EndController

We illustrate the first two sub-processes below. By mapping to the model, the action that a thread
tries to lock a mutex signifies that the process Program sends a lock or unlock request to the process
Controller. Hence, the sub-processes CLockt and CUnLockt in Controller depict how to deal with
the requests.

First, Controller informs Mutex that thread t needs to lock or unlock mutex m. When Mutex replies
with a failure or success feedback, Controller just sends it directly to Program without any change.

CLockt =df lockRequestt?m→ getMutext!m→ ackFromMutex?v→ feedbackt!v→ Skip;Controller

CUnLockt =df unlockRequestt?m→ releaseRequestt!m→ ackFromMutex?v→ feedbackt!v→ Skip;Controller

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

10

ControllerToken Program

createThreadt

exitThreadt

isCreatedt

joinThreadt

lockRequestt
unlockRequestt
feedbackt

endController
ackToProgram

getTokent

releaseTokent

ackFromToken

endToken

Fence

Commit

arrive
Fence

end
Fence

ackFrom
Fence

leave
Fence

end
Commit

ackFrom
Commit

commit
Write

Figure 4. Interprocess Communication of the Model of Dthreads

5. MODELING DTHREADS

As mentioned in Section 2, Dthreads has some specific mechanisms (for fence and commit). For
the formal modelling, we introduce two more modules Fence and Commit for the fence and the
special commit mechanism. We also list the five components in Fig. 4, omitting Buffer. They are
Program, Controller, Token, Commit and Fence. In Dthreads, the token replaces all the mutexes for
lock and unlock requests. Hence, here Token replaces Mutex compared with the Pthreads model. Due
to the fence and special commit steps, the process Commit modifies memory contents and decides
when to commit the update to (shared) memory. The process Fence simulates the fence mechanism
in Dthreads, which controls the running of threads. As a result, the whole system is modelled as
follows.

SystemDthreads(scenario) =df Token ‖Controller ‖Commit ‖Fence ‖Program(scenario) ‖Buffer

Fig. 5 provides the data used by the components of the Dthreads model except for Buffer. We
relate the processes to the data by the lines with arrow. The correlated data include waiting threads
number, living threads number, thread states, fence phase, token queue, lock count, token state and
global variables. They are modelled by Buffer.

Table II provides the explanation for channels in Fig. 4. Note that there are some channels in
both of our Dthreads Model and Pthreads Model, i.e., having the same name (e.g., feedbackt). Their
functionalities are the same, but the messages in them are in a different form. We do not list them in
Table II.

5.1. The Program

The components in the process Program, such as Lock and UnLock, are fundamentally the same as
those in Pthreads, except for WriteME. As mentioned earlier, Dthreads re-implements the Pthreads.
An important difference between Pthreads and Dthreads is the way they treat updates. In Pthreads,
the write operation makes direct modification to the (shared) memory. However, in Dthreads, once
a thread tries to do the write operation, if it is the owner of the token, the thread is allowed to update

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

11

TokenProgram
{t0,t1,…}

Token Queue

FenceController

Fence Phase

Commit

Thread States

Lock Count

Living Threads Number

Waiting Threads Number

Global Variables

A,B,…

Token State

Figure 5. Data Communication of the Model of Dthreads

Table II. The Explanations of Channels in Dthreads Model

Channels Functionalities
(*Token)t Managing the token between Token and Controller
(*Fence)t Changing the states of the fences between Fence and Controller

commitWrite Committing the update to memory from Controller to Commit

the memory by using SetValue channel. Otherwise, it just updates its own private copy by sending
a message to SetPrivateValue channel. The write operation in Dthreads can be formally defined as
below. Note that t is for thread ID, var, val1 and var2 denote the variables, while cond, val, val2
and val represent the data used in the program.

WriteMEt,cond,var1,var2,val =df getValuevar1?data1→ getValuevar2?data2→
(Modifyt,var2,val � (data1 >= cond)� Skip)

Modifyt,var,val =df TokenOwner?t′ → (SetValuevar!val→ Skip� (t′ == t)�

SetPrivateValuet,var!val→ isWritet!yes→ Skip)

5.2. The Token

When dealing with the mutex in Pthreads, we use a set to store the thread ID for each mutex.
However, in Dthreads, we need to modify the state of the token, maintain the token queue, and record
the number of locks each thread owns to achieve Dthreads’ special mechanism. Our modelling is
shown as below.

Token =df (2t∈1..(Tn−1)GetTokent)2 (2t∈1..(Tn−1)ReleaseTokent)

2 (endToken?v→ ackFromToken!yes→ Skip)

Here, t is the ID of a sub-thread. If Token receives the acquire and release requests from Controller,
GetTokent and ReleaseTokent will deal with them respectively. When the whole system terminates,

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

12

the last part will end this module. We define the GetTokent and ReleaseTokent as below.

GetTokent =df GetTokent?m→ Token?state→ ((Token!busy→ TokenOwner!t→
ackFromToken!yes→ Token)� (state == idle)� (TokenQuet!Enqueue→
TokenQueLength!Increase→ackFromToken!no→Token))

ReleaseTokent =df releaseTokent?v → LockCountt?num→ (Token!idle→ TokenOwner!none→ ackFromToken!yes→ Token)
�(num==0)� (LockCountt!Decrease→ LockCountt?num→
((Token!idle→ TokenOwner!none→ ackFromToken!yes→ Token)
�(num==0)� (ackFromToken!no→ Token))



When a token acquiring request comes, GetTokent checks the state of the token. If the state is
idle, it sets the state to busy, declares the token owner to be the thread t and replies Controller
with a positive feedback. Otherwise, the thread is inserted into the token queue and GetTokent feeds
Controller with a negative feedback.

ReleaseTokent is a little different from GetTokent. First of all, ReleaseTokent judges the number
of locks that the thread owns. If the number is zero, it sets the state of the token to idle, clears the
token owner, and sends a success feedback to Controller. Otherwise, it decreases the lock count and
checks if thread t holds any lock. If so, a failure feedback is sent to Controller or it just does the
same things as when the number is zero.

5.3. The Commit

The process Commit takes charge of managing updates to the memory. When it receives the request
of committing memory, Commit first determines if the private copy has changed. If so, it updates the
copy to shared memory. Finally, Commit gives a success feedback to Controller. Note that t denotes
the sub-thread ID and VariableSet denotes the variables used in the program.

Commit =df 2t∈1..(Tn−1),v∈VariableSet commitWritet?v→ commitWritet,v

CommitWritet,v =df isWritet?state→ ((GetPrivateValuet,v?d→ SetValuev!d→ isWritet!no→
Skip)� (state == yes)� Skip); ackFromCommit!yes→ Commit

5.4. The Controller

As Dthreads has a particular mechanism of committing updates and controlling fences, Controller
here is more complex than the one in the Pthreads model. Controller is composed of ParallelPhase
and SerialPhase.

Controller =df fencePhase?phase→ (ParallelPhase � (phase == Arrival)� SerialPhase)

As mentioned in Section 2, when a thread tries to do a synchronization action, it is blocked by the
fence. During this period, all the threads are in the Parallel Phase. We need to record these actions in the
process ParallelPhase, as they will be executed when the threads leave the fence. ParallelPhase describes
the situation when the fence is in the Arrival Phase, and all the threads are in the Parallel Phase, which is
modelled as below.

ParallelPhase =df (2t∈1..(Tn−1)PPLockt)2 (2t∈1..(Tn−1)PPUnLockt)

2 (2t∈1..(Tn−1)PPCreatet)2 (2t∈1..(Tn−1)PPJoint)

2 EndController

The first four parts in ParallelPhase record different synchronization actions of threads and tell
the fence that the thread has arrived. The last part in ParallelPhase is the end part. That is, when
the system receives the message of ending from the outside, it automatically ends itself. PPLockt is
listed below as an example to illustrate the main function of ParallelPhase.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

13

PPLockt =df lockRequestt?m→ SetMutexVart!m→ ThreadStatet!lock→
arriveFence!t→ Controller

The process SerialPhase is more complicated. It handles the situation when the fence is in the
Departure Phase. It takes the first ID of threads from the token queue, which means releasing
the blocked threads, and executing the pending synchronized actions. According to the records of
synchronized actions, the blocked thread continues its unfinished action. If the action is to lock the
mutex, SPLockt will handle it. If the action is to unlock the mutex, SPUnLockt will tackle it. If the
action tries to create a thread, SPCreatet will deal with it. If the action wants to join two threads,
SPJoint will cope with it. When the action tries to kill the process, SPExitt will manage it.

SerialPhase =df leaveFence?v→ TokenQueDequeue?t→ TokenQueLength!Decrease→
ThreadStatet?state→ (SPLockt � (state == lock)�
(SPUnLockt � (state == unlock)� (SPCreatet � (state == create)�
(SPJoint � (state == join)� (SPExitt � (state == exit)� Contoller))))

Let us take SPLockt as an example to make the explanation. SPLockt illustrates the way how
Controller deals with the requests for the mutex from Program. It first checks if the lock count is
zero. If it is zero, thread t is able to ask for the token. AcquireTokent will keep on asking for the token
until it gets one. And thread t updates its private copy to the shared memory after owning the token.
Besides, the lock count is increased and the subsequent management is handled by SPLockSubt.
As explained earlier, Dthreads uses the lock count to guarantee that a thread keeps on holding the
token until it gives up all the locks it owns. Consequently, the job of SPLockSubt is to manage the
following lock and unlock requests from Program. They are modelled as below.

SPLockt =df LockCountt?num→ (AcquireTokent; commitWrite!t→
ackFromCommit?v→ Skip � (num == 0)� Skip);

LockCountt!Increase→ feedbackt!yes→ SPLockSubt;

AcquireTokent =df getToken!t→ ackFromToken?v→ (Skip � (v == yes)� AcquireTokent);

SPLockSubt =df (lockRequest?t→ SPLockt)

2


unlockRequest?t→ releaseToken!t→ ackFromToken?v→
(

commitWrite!t→ ackFromCommit?v→
TokenQueEnqueue!t→ TokenQueLength!Increase→
feedbackt!yes→ Controller

)
�(v == yes)�
(feedbackt!no→ SPLockSubt)




5.5. The Fence

The process Fence simulates the fence mechanism in Dthreads. Two processes ArrivalPhase and
DeparturePhase constitute Fence as shown below.

Fence =df (fencePhase?state→ (ArrivalPhase � (state == Arrival)� DeparturePhase)
2 endFence?v→ ackFromToken?v→ Skip)

The fence first checks which phase it is in. If it is in the Arrival Phase, it increases the waiting
thread number when a thread arrives. Once all the living threads have arrived, the fence is set to the
Departure Phase, and releases all the threads blocked by itself. After that, the fence is reset to the
Arrival Phase. These are defined below.

ArrivalPhase =df arriveFence?t→ waitingThread!Increase→ waitingThreadNum?n→
livingThreadNum?n′ → (fencePhase!Departure→ Skip � (n == n′)� Skip);Fence

DeparturePhase =df waitingThread!Decrease→ leaveFence!yes→ waitingThreadNum?n→
(fencePhase!Arrival→ Skip � (n == 0)� Skip);Fence

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

14

Definition of threads
(using keyword pthread_t)

Match between thread ID and
thread function name

(using keyword pthread_create)

Definition of mutexes
(using keyword pthread_mutex_t)

Definition of global variables

Definition of function names

ThreadDefine

ThreadID

ThreadFunc

MutexID

GlobalID

FunctionHead

FunctionElement

First Process:
Scan C code

Get the statement t

t belongs to one function

t is an assignment t owns function call

Self-defined
functions

System
functions

Pthreads
functions

Add the function/global
variable to FunctionElement

Second Process:
Scan C code

Third Process:
Use algorithm to update

FunctionElement

Fourth Process:
Convert to PAT code

Figure 6. Process of conversion from C code to PAT code

6. CONVERSION

In order to complete our verification, a conversion from C code to PAT code is needed. In [2],
we just do this manually. Now, we introduce a new method which can transfer C code to PAT
code automatically. It is coded in Java. The key point of conversion is how to analyse the context
of C code. Here we give the process of conversion in Fig. 6. In the first scan, we find all the
definitions of threads and put them into string list ThreadDefine. The statements containing function
pthread create are analysed to record the matching between the thread functions and the thread
IDs for future use. The calling of pthread mutex lock and pthread mutex unlock need parameters
of mutex IDs, so we use the key word pthread mutex t to extract mutex IDs to MutexID. Global
variables are also recorded in GlobalID. Moreover, we detect all the function names and add them
to FunctionHead and FunctionElement.

In the second scan, we analyse every statement belonging to one function, to check if it is an
assignment and if it owns a function call. Each global variable, appearing in left hand side of the
assignment operator, is recorded in the responding element in FunctionElement. The functions
can be divided into self-defined functions, Pthreads functions and system functions. As system
functions, such as printf(), often not affect the global variables, we do not discuss these here. Self-
defined functions and Pthreads functions are treated specially. All function calls are also noted in
FunctionElement.

We introduce a new method to deal with a more complex situation. As we translate all the
elements in one function to the element in FunctionElement, it is possible that the element is a
self-defined function call, which means the function calls another function. We can not tell if it
modifies any global variable or not. If we can get the subelements of this function, we can figure
out if it has affected the global variables. Consequently, a method is needed to handle the expansion
of functions appearing in each element in FunctionElement, illustrated in Fig. 7. Expansion here
means to make every subelement of the element in FunctionElement to be a global variable or a
Pthreads function without self-defined functions.

We will traverse all the elements in FunctionElement. As the subelements (global variables
or function calls) are separated by the symbol |, they are retrieved and inserted to a temp stack
called TmpStack. Then the following situation is treated by function Expand() and its subfunction
ExpandSub().

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

15

Figure 7. Method to expand the functions appearing in each element in FunctionElement

We get the first element t out of TmpStack and use guard to record the guard in t. Then t is checked
if it is a function call. If so, we get the responding function element in FunctionElement, and take all
the subelements by the separator |. Then the combination between the variable guard and the guard
in subelement will be done if necessary. Finally, we put them into TmpStack for future checking. If
t is not a function call, it is inserted directly to TmpString. When there is no element in TmpStack,
TmpString will be translated into a new element and updated it to FunctionElement.

The last process is to build PAT code. We use the elements in FunctionElement to build the part
of Program in our CSP model. Fig. 8 shows the processing procedure of changing the C code of the
four example programs in Section 3.2.

7. VERIFICATION

Liu et al. [1] raised the point that Dthreads can almost eliminate data races and prevent deadlocks,
whereas Pthreads can not. That is to say, for majority programs which cause data races and

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

16

Figure 8. Processing procedure of changing the C code of the example programs

deadlocks in Pthreads, Dthreads can eliminate the bad situations. As explained in the introduction,
race conditions are important concurrent issues as well. In the following subsections, we show
how we will verify the three properties (deadlocks, data races and race conditions) in Pthreads and
Dthreads for our illustrative programs, with the help of the model checker PAT [27, 28], which has
been applied in various places [38, 39, 40]. To carry out the verification, we have implemented

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

17

the formal models in Section 4 and Section 5 in PAT‡. Note that our comparative verification is to
check if Dthreads performs better than Pthreads on eliminating data races, preventing deadlocks and
avoiding race conditions.

7.1. Verification of Deadlock

In this subsection, we consider the verification of the deadlock freedom in Pthreads and Dthreads.
As we have constructed the models in PAT, there is a primitive assertion to describe this situation
as below.

Property 1: Deadlock Freedom
#assert PthreadsDeadLock() deadlockfree;
#assert DthreadsDeadLock() deadlockfree;
There are many reasons of causing deadlocks. Our illustrative program shows a very typical

scenario where the two threads are waiting for each other to release a mutex.
Fig. 9 shows the verification results of deadlock freedom in Pthreads and Dthreads. The assertion

of PthreadsDeadLock() is invalid, indicating that there is a deadlock existing in the Pthreads model.
Meanwhile, the verification result shows that Dthreads model has no deadlocks, as the assertion of
DthreadsDeadLock() is valid.

PAT can provide a failure trace for the failure assertion. Fig. 25 (in appendix) shows a deadlock
track of the Pthreads model. We can see that the main thread first creates Thread1. Then Thread1
locks the mutex m0 successfully. After that, the main thread also creates Thread2, and Thread2 also
locks the mutex m1. Then Thread1 tries to lock mutex m1, but it fails. The request from Thread2 to
lock mutex m0 blocks as well. Therefore, a deadlock appears.

7.2. Verification of Data Race

In this subsection, we focus on the verification of data race freedom of Pthreads and Dthreads. In
Section 3, our illustrative programs with respect to data races and race conditions describe the most
common scenario when a thread executes a assignment statement after a conditional statement. The
statements check whether global variable A is less than 100. If not, B will add 100 and A will minus
100. Here we list the core conditional statement and assignment statements again for convenience.

i f (A < 100){
re turn NULL;

}
B = B + 100 ;
A = A − 100 ;

The threads in PthreadsTransfer1() and DthreadsTransfer2() run the same statements as above.
In PthreadsTransfer2() and DthreadsTransfer2(), the threads add extra lock and unlock operations
at each assignment statements. While in PthreadsTransfer3() and DthreadsTransfer3() the threads
apply one lock operation and one unlock operation at the beginning and end of the three statements
respectively.

John Erickson et al. [41] at Microsoft Research define data races as that if two memory accesses
in a program access the same memory location concurrently and at least one of them is a write. In

‡As assertions in PAT can only deal with the process with no parameters, the models are renamed as below.

PthreadsDeadLock() = SystemPthreads(deadlock);DthreadsDeadlock() = SystemDthreads(deadlock);
PthreadsTransfer1() = SystemPthreads(transfer1);DthreadsTransfer1() = SystemDthreads(transfer1);
PthreadsTransfer2() = SystemPthreads(transfer2);DthreadsTransfer2() = SystemDthreads(transfer2);
PthreadsTransfer3() = SystemPthreads(transfer3);DthreadsTransfer3() = SystemDthreads(transfer3);

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

18

Figure 9. Result of Deadlock Freedom Verification of Pthreads and Dthreads Models

order to accomplish synchronization actions and interleaving actions, we translate the memory write
access in CSP models to PAT models by spacial methods. For example, in PAT model of Pthreads,
the assignment B=B+100; in function ThreadFunc1 is implemented like this.

W r i t e T h r e a d F u n c 1 1 () = W r i t e T h r e a d F u n c 1 1 I ()
[] W r i t e T h r e a d F u n c 1 1 S () ;

W r i t e T h r e a d F u n c 1 1 I () = W r i t e V a l I {B=B+100;}−> Skip ;
W r i t e T h r e a d F u n c 1 1 S () = D a t a R a c e S t a r t −> Wri t eVa l S {B=B+100;} −>

DataRaceEnd −> Skip ;

Write ThreadFunc1 1 I() represents the interleaving actions. And Write ThreadFunc1 1 S()
describes the synchronization actions. As [] is a choice operator, Write ThreadFunc1 1() may
do synchronization actions or interleaving actions. Action DataRaceStart and DataRaceEnd are
used for synchronization. On this basis, we can simulate that the modification of the same location
currently.

When action WriteVal S is done, two threads are both modifying global variable A or B, or
one of them is accessing A while another is changing B. It indicates that two threads change the
shared data concurrently, which means a data race happens. The assertion checks that whether all
the running traces contain WriteVal S. The ideal result is that action WriteVal S does not appear.
Therefore, if the process passes the assertion, it means that action WriteVal S is never performed.

Property 2: Data Race Freedom
#assert PthreadsTransfer1() | = [] ! WriteVal S;
#assert DthreadsTransfer1() | = [] ! WriteVal S;
#assert PthreadsTransfer2() | = [] ! WriteVal S;
#assert DthreadsTransfer2() | = [] ! WriteVal S;
#assert PthreadsTransfer3() | = [] ! WriteVal S;
#assert DthreadsTransfer3() | = [] ! WriteVal S;

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

19

Figure 10. Result of Data Race Verification of Pthreads and Dthreads Models

Fig. 10 shows the verification results of data races in Pthreads and Dthreads for three
scenarios of bank transfers. For the first bank transfer, we get an invalid result of the assertion
of PthreadsTransfer1(), which means data races appear in the Pthreads model. However,
DthreadsTransfer1() obtains a valid assertion result, indicating that the Dthreads model is data
race free. Likewise, the valid results of the assertion of PthreadsTransfer2(), DthreadsTransfer2(),
PthreadsTransfer3() and DthreadsTransfer3() show the second and the third programs of bank
transfers will not cause data races.

In PAT, a failure trace is generated for the invalid assertion of PthreadsTransfer1(), shown in
Fig. 26 (in appendix). The trace explains why the assertion fails. At the beginning, the main thread
creates Thread1 and Thread2, and waits for their ending by the join operation. Then Thread1 first
finds out that the global variable A is not less than 100, so it is allowed to change the value of the
global variable B to B + 100. Then Thread2 also checks the global variable A is not less than 100,

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

20

it changes B to B + 100 while A is assigned to A− 100 by Thread1. At this moment, Thread1 and
Thread2 are accessing the same memory location at the same time. This is not what we expect, as
we hope action WriteVal S never appears. Hence, the assertion does not stand.

In general, the second and third programs of bank transfers do not cause data races in Pthreads,
Dthreads can also guarantee this property. In particular, a data race does appear in the first program
of Pthreads, while Dthreads successfully avoids the bad situation.

7.3. Verification of Race Condition

In this subsection, we deal with the verification of the race condition in Pthreads and Dthreads.
Race conditions and data races have the same word race literally, whereas there is the overlap and
difference between them. While they frequently go hand in hand, there is no subset relationship
between them and neither one is the sufficient or necessary condition for another. As long
as two threads access the same memory location at the same time and one of them is doing
a write operation, a data race occurs. By contrast, only the improper timing or ordering of
events, which affects the program correctness, can cause a race condition. In other words,
data races and race conditions can both appear in one program. A program can only have data
races and also can only own race conditions. Using the models in PAT, assertions are listed as below.

Property 3: Race Condition Freedom
#define goal A < 0;

#assert PthreadsTransfer1() reaches goal;
#assert DthreadsTransfer1() reaches goal;
#assert PthreadsTransfer2() reaches goal;
#assert DthreadsTransfer2() reaches goal;
#assert PthreadsTransfer3() reaches goal;
#assert DthreadsTransfer3() reaches goal;
As we know that in a bank transfer, the balance in the account can not be less than 0. Considering

our example bank transfer programs, we need to ensure that A can not be negative guaranteeing
the program correctness. During the transfer, once A is less than 0, this means that a race condition
exists. We use the assertions above to check whether the process can reach a state at which A is
negative.

Fig. 11 displays the verification results of race conditions in Pthreads and Dthreads. The four valid
results of PthreadsTransfer1(), DthreadsTransfer1(), PthreadsTransfer2() and DthreadsTransfer2()
illustrate the situation that the variable A is negative occurs after running the responding processes.
The last two invalid results indicate that in PthreadsTransfer3() and DthreadsTransfer3() the
variable A can always be positive or zero.

Our above results indicate that the first two programs of bank transfers in Pthreads and Dthreads
both have race conditions and for the last program there is no race condition. Consequently, both
Pthreads and Dthreads can not prevent race conditions. Appearing of race conditions may cause bad
situations, programmers need to be more careful.

8. MODEL EXTENSION

This section is devoted to the extensions we have made to enrich our Pthreads and
Dthreads model. We model four more API functions pthread cond wait(), pthread cond signal(),
pthread barrier wait() and pthread cancel(). That is, we have now modelled all the synchronization
operations described in [1]. Consequently, our Pthreads and Dthreads model becomes more general
and can now specify more programs using synchronization operations of the Pthreads and Dthreads
API functions.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

21

Figure 11. Result of Race Condition Verification of Pthreads and Dthreads Models

8.1. Condition Variables in Pthreads

Condition variables are synchronization primitives. It will block the threads until a special condition
happens. For simplicity, we assume every user-defined condition owns a queue of threads that wait
for it in Pthreads. When a thread calls pthread cond wait(), it must have owned a mutex. Then
the function will unlock the mutex and put the calling thread into the wait queue of the condition
variable. Meanwhile, the thread decreases the live thread count, which means it can not keep on
doing other things. pthread cond signal() is the corresponding function of pthread cond wait(). It
wakes up one of the threads that waits on the corresponding condition variable. Then the thread
needs to compete for the related mutex.

Firstly let us add some new subprocesses in the process Program to simulate the
API pthread cond wait() and pthread cond signal(). They are expressed as CondWaitt,c,m and
CondSignalt,c.

CondWaitt,c,m =df condWaitRequestt!c.m→ condWaitSubt

CondWaitSubt =df feedbackt?v→ (Skip � (v == yes)� condWaitSubt)

CondSignalt,c,m =df condSignalRequestt!c.m→ feedbackt?v→ Skip

Secondly, we also need to put two components CConWaitt and CCondSignalt into Controller to
deal with requests considering condition variables, and they are in parallel with other components
such as CLockt. They both receive the relative requests from Program, send the information to
Condition (described later), then await the acknowledgement.

CConWaitt =df condWaitRequestt?c.m→ condWaitt!c.m→ ackFromCondition?v→
feedbackt!v→ Skip;Controller

CCondSignalt =df condSignalRequestt?c→ condSignalt!c→ ackFromCondition?v→
feedbackt?v→ Skip;Controller

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

22

Thirdly, a new module Condition is introduced into our model. Condition is responsible for the main
duty of calling the functions pthread cond wait() and pthread cond signal(). It has connections with
Controller, Program and Buffer.

Condition =df (2t∈1..(Tn−1)CDConWaitt)

2 (2t∈1..(Tn−1)CDConSignalt)

2 (endCondition?v→ ackFromCondition!yes→ Skip)
CDConSignalt =df condSignalt?c→ ConditionQueLengthc?length→

(
ConditionQueDequeuec?t′ → ConditionQueLengthc!Decrease→
liveThread!Increase→ RelatedMutexc?m→ getMutext′ !m→
ackFromMutex?v→ feedbackt′ !v→ ackFromCondition!yes→ Skip

)
�(length > 0)�
(ackFromCondition!yes→ Skip)

 ;

Condition

CDConWaitt primarily simulates pthread cond wait(). It tells Mutex to release the mutex and
decreases the live thread count. Then thread t is inserted into the condition variable queue of
condition variable c. In Pthreads the thread must acquire a mutex before calling pthread cond wait(),
but it will release the mutex when calling the function. Additionally, it needs to get the mutex again
when it is woken up by pthread cond signal(). Therefore, we need to record the mutex. A negative
acknowledge is sent to Controller. Subsequently, Controller will give Program a negative feedback,
causing it to keep on waiting until some other threads wake it up.

CDConWaitt =df condWaitt?c.m→ releaseMutext!m→ ackFromMutex?v→
liveThread!Decrease→ ConditionQuet,c!Enqueue→
RelatedMutexc!m→ ackFromCondition!no→ Skip;Condition

8.2. Condition Variables in Dthreads

The situation becomes more complicated in Dthreads when taking into account conditional
variables. The modification to Program is the same as the one in Pthreads notwithstanding it
is totally different concerning Controller. As a result of guaranteeing determinism for condition
variables, more subprocesses need to be introduced into Controller.

We simulate the main function of pthread cond wait() and pthread cond signal() in Controller.
As the threads in Dthreads own two different phases, we first update the subprocess ParallelPhase of
Controller. Two sub components PPCondWaitt and PPCondSignalt are added in parallel with other
components, such as PPLockt. Their duty is to record the synchronization operations and announce
their arrivals to Fence.

PPCondWaitt =df condWaitRequestt?c→ setCondVart!c→ ThreadStatet!condw→
arriveFence!t→ Controller

PPCondSignalt =df condSignalRequestt?c→ setCondVart!c→ ThreadStatet!conds→
arriveFence!t→ Controller

The core task of the functions is done by SPCondWaitt and SPCondSignalt, which are introduced
into the subprocess SerialPhase of Controller. We no longer need to deal with locking and unlocking
of mutex of pthread cond wait(), since the operations on the token can do the same things.

SPCondWaitt describes how Controller implements pthread cond wait(). Thread t needs to
acquire the token and then commits the changes to shared memory. In addition, we decrease the
live thread count and put thread t to the condition queue of condition variable c. Lastly, Controller
makes t release the token and sends a failure feedback to Program.

SPCondWaitt =df AcquireTokent; commitWrite!t→ ackFromCommit?v→ getCondVart?c→
liveThread!Decrease→ ConditionQuet,c!Enqueue→ ConditionQueLengthc!Increase→
releaseToken!t→ ackFromToken?v → feedbackt!no→ Controller

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

23

Similarly, SPCondSignalt defines how pthread cond signal() works. Firstly, thread t acquires the
token and also commits all the modifications. If no thread is waiting on this condition, thread t
passes the token to the next thread and Program receives a success feedback. Otherwise, we get
thread t′ by dequeuing an element of condition queue of condition variable c. It is woken up by
increasing the live thread count, and inserting it into the token queue. The following steps are the
same as when there is no thread waiting on the condition.

SPCondSignalt =df AcquireTokent; commitWrite!t→ ackFromCommit?v→ getCondVart?c→
((ConditionQueDequeuec?t′ → ConditionQueLengthc!Decrease→
TokenQueEnqueue!t′ → TokenQueLength!Increase→ liveThread!Increase→ Skip)
� (ConditionQueLengthc > 0)� Skip);

releaseToken!t→ ackFromToken?v→ feedbackt!yes→ Controller

In Section 5.4 we give the formal definition for ParallelPhase and SerialPhase (see page 12).
Now we want to update them by adding PPCondWaitt and PPCondSignalt to ParallelPhase and
inserting SPCondWaitt and SPCondSignalt to SerialPhase. In this way, we extend the capabilities
of process Controller to deal with pthread cond signal() and pthread cond wait().We extend the
modelling of frequently-used API function as more as possible. In this way, the performance and
practicability of our models are improved greatly.

ParallelPhase =df (2t∈1..(Tn−1)PPLockt)2 (2t∈1..(Tn−1)PPUnLockt)

2 (2t∈1..(Tn−1)PPCreatet)2 (2t∈1..(Tn−1)PPJoint)

2 (2t∈1..(Tn−1)PPCondWaitt)2 (2t∈1..(Tn−1)PPCondSignalt)

2 EndController
SerialPhase =df leaveFence?v→ TokenQueDequeue?t→ TokenQueLength!Decrease→

ThreadStatet?state→ (SPLockt � (state == lock)�
(SPUnLockt � (state == unlock)� (SPCreatet � (state == create)�
(SPJoint � (state == join)� (SPExitt � (state == exit)�
(SPConWaitt � (state == conw)� (SPConSignalt � (state == cons)�
Contoller))))))

8.3. Barriers in Pthreads

The pthread barrier wait() function tries to synchronize all the threads using the same barrier, hence
a thread will be blocked until each of the involved threads has arrived at the barrier.

In the beginning, a new process BarrierWaitt,b is required to help the programmer model the
related API directly.

BarrierWaitt,b =df barrierWaitRequest!t.b→ BarrierWaitSubt

BarrierWaitSubt =df feedbackt?v → (Skip � (v == yes)� BarrierWaitSubt)

Some new adjustments happen in Controller. CBarrierWaitt is in parallel with other subprocesses
in Controller. Its function is to record the barrier status, send the request to Barrier (described later)
and finally give a feedback to Program.

CBarrierWaitt =df barrierWaitRequestt?b→ ThreadStatet!barrier→ barrierWaitt!b→
ackFromBarrier?v→ feedbackt!v→ Skip;Controller

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

24

We also introduce a new module Barrier to deal with the barrier specially. It communicates with
Controller, Program and Buffer.

Barrier =df (2t∈1..(Tn−1)BBarrierWaitt)

2 (endBarrier?v→ ackFromBarrier!yes→ Skip)
BBarrierWaitt =df barrierWaitt!b→ liveThread!Decrease→ BarrierSetInb!t→

BarrierSetSizeb!Increase→ liveThread!Decrease→
((BarrierWaitSubb; ackFromBarrier!yes→ Barrier)
� (BarrierSetSizeb == BarrierNumb)�

(ackFromBarrier!no→ Barrier))
BBarrierWaitSubb = df ((BarrierSetOutb?t→ BarrierSetSizeb!Decrease→

ThreadStatet!run→ liveThread!Increase→ feedbackt!yes→
BBarrierWaitSubb)� (BarrierSetSizeb > 0)� Skip)

In Pthreads, the waking up order of the threads blocked at the barrier is nondeterministic.
Consequently, we use sets to store IDs of threads waiting at barriers instead of queues, assuming
that the element is taken out of a set randomly. The main responsibility of BBarrierWaitt is to lift a
barrier until all the corresponding threads have arrived, then it will wake them up arbitrarily. More
specifically, it decreases the live thread count, puts the threads into the related barrier set, then judges
whether all the threads involved with the barrier have called pthread barrier wait(). If so, it wakes
up the elements in the barrier set arbitrarily, which is handled by BBarrierWaitSubb.

8.4. Barriers in Dthreads

The modification concerning barriers in Program is the same as the situation in Pthreads.It may
be confusing to figure out the difference between the fence and the barrier, as they have the same
meaning literally. The fence is the one that can stop the threads doing synchronization operations
in Dthreads, and it releases the threads when all the living threads have been blocked. Besides, the
waking up order of the threads is deterministic. The barrier is the concept used in Pthreads API
functions. The barrier also bars all the threads that have called pthread barrier wait(), and it frees
them when all of them arrived. In addition, the waking up order of the threads is random.

As Dthreads re-implements Pthreads, we also need to modify the mechanism of implementing
pthread barrier wait(). We primarily translate the implementation of pthread barrier wait() in
Dthreads as follows. Controller is updated in Dthreads to achieve the goal. PPBarrierWaitt is used
to record barrier operation from Program in Arrival Phase and tell Fence the arrival of the thread.
We add PPBarrierWaitt to ParallelPhase in Controller, which is in parallel with other parts, such
as PPLockt.

PPBarrierWaitt =df BarrierWaitRequestt?b→ setBarrierVart!b→ ThreadStatet!barrier→
arriveFence!t→ Controller

SerialPhase of Controller also needs to be refreshed. We introduce the subprocess SPBarrierWaitt
to depict the situation when a thread leaves the fence whose state is barrier.

SPBarrierWaitt =df AcquireTokent; commitWrite!t→ ackFromCommit?v→ getBarrierVart?b→
BarrierQueEnqueueb!t→ BarrierQueLengthb!Increase→
liveThread!Decrease→ (SPBarrierWaitSubt,b

� (BarrierQueLengthb == BarrierNumb)� (releaseToken!t→
ackFromToken?v→ feedbackt!no→ Controller))

SPBarrierWaitSubt,b =df ((BarrierQueDequeue?t’→ BarrierQueLength!Decrease→
TokenQueEnqueue!t’→ TokenQueLength!Increase→ liveThread!Increase→
SPBarrierWaitSubt,b)� (BarrierQueLengthb > 0)�

(releaseToken!t→ ackFromToken?v→ feedbackt!yes→ Skip))

First, thread t gets the token when it leaves the fence and commits its private changes to shared
memory. Then thread ID is appended to the barrier queue of b and the living thread number is

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

25

decreased, which means that thread t is blocked by the barrier. We check whether all the related
threads have arrived at the barrier. If so, thread t releases the token and feeds Program with a failure
acknowledgement. If not, all the threads are retrieved from the barrier queue of b. And we add them
into the token queue and increase the live thread count, which indicates that the blocked threads have
been able to get the token again. Eventually, thread t passes the token to the next thread and sends a
success feedback to Program. Similarly, SPBarrierWaitt is combined into process SerialPhase and
PPBarrierWaitt is also added into process ParallelPhase.

8.5. Thread Cancellation in Pthreads and Dthreads

In this section, we list the modelling of the API pthread cancel() in our Pthreads model and Dthreads
model. As mentioned before, Dthreads share the same API names with Pthreads. Thus, the changes
in Program are the same. It sends the cancel request to Controller and waits for reply.

Cancelt =df condCancelRequest?t→ feedbackt?v→ Skip

We also add a new subprocess in Controller. CCancelt belongs to our Pthreads model, while
PPCancelt and SPCancelt pertain to SerialPhase and ParallelPhase in our Dthreads model
respectively. They reduce the live thread count and remove the thread from the condition queues, the
barrier sets or queues, or the mutex sets. There is one big difference though. In Dthreads, Controller
needs to get the token before doing the things described before.

CCancelt =df condCancelRequest?t→ ThreadStatet!cancel→ ConditionQueDelete!t→
MutexSetDelete!t→ BarrrierSetDelete!t→ liveThread!Decrease→
feedbackt!yes→ Controller

PPCancelt =df CancelRequest?t→ ThreadStatet!cancel→ arriveFence!t→ Controller

SPCancelt =df AcquireTokent;ConditionQueDelete!t→ BarrrierQueDelete!t→
liveThread!Decrease→ releaseToken!t→ ackFromToken?v→ feedbackt!yes→ Controller

9. VERIFICATION EXTENSION

As we have extended our model by adding new API functions, in this section we introduce new
example programs to test whether the new parts work well with original models. More importantly,
there is still some thing of deadlock avoidance of Dthreads we want to check. [1] states that it is
possible for a program run with Dhreads to deadlock, but only for programs that can also deadlock
with Pthreads. We find more proper examples to verify this. Two classic producer and consumer
programs are introduced to dig out more about the performance of avoiding deadlocks for Pthreads
and Dthreads, while applying our new API functions modelled in Section 8. Meanwhile, we record
the time of verification to explain the complexity of our Pthreads and Dthreads models.

9.1. Example Programs

The core functions of the classic producer and consumer programs are illustrated below.

void consume () {
p t h r e a d m u t e x l o c k (& t h l o c k) ;
i f (v a l == 0)

p t h r e a d c o n d w a i t (& th cond ,& t h l o c k) ;
}
v a l = v a l − 1 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
p t h r e a d c o n d s i g n a l (& t h c o n d) ;

}

void produce () {
p t h r e a d m u t e x l o c k (& t h l o c k) ;

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

26

Figure 12. Processing procedure of changing the C code of the consumer and producer programs

i f (v a l == 1)
p t h r e a d c o n d w a i t (& th cond ,& t h l o c k) ;

}
v a l = v a l + 1 ;
p t h r e a d m u t e x u n l o c k (& t h l o c k) ;
p t h r e a d c o n d s i g n a l (& t h c o n d) ;

}

Function consume locks the mutex th lock and then inspects if the global variable val is 0. If it
is, consume has to wait for val to be a larger number. Because it will consume val by reducing it.
Finally, it unlocks the mutex th lock and signals other threads that wait on the condition th cond.
Similarly, function produce almost does the same things. But it waits for val not to be equal to 1 and
then increments val.

void ∗ consumer (void ∗ a r g){
consume () ;
re turn NULL;

}

void ∗ p r o d u c e r (void ∗ a r g){
produce () ;
p roduce () ;
re turn NULL;

}

In the first program, we apply the functions to represent the mission for each thread. Thread
consumer wants to reduce val and thread producer demands to increment val twice.

void ∗ consumer (void ∗ a r g){
consume () ;
consume () ;
re turn NULL;

}

void ∗ p r o d u c e r (void ∗ a r g){
produce () ;
re turn NULL;

}

For the second program, consumer and producer do the opposite things compared with the one in
the first program. Thread consumer wants to consume val twice, and producer only produces once.
We use our method to convert C code to PAT code automatically, shown in Fig.12.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

27

Figure 13. Result of Deadlock Freedom Verification of Pthreads and Dthreads Models

9.2. Verification of Deadlock

We verify the property of deadlock freedom of the two programs running in Pthreads and Dthreads.

Property 4: Deadlock Freedom
#assert PthreadsProCon1() deadlockfree;
#assert DthreadsProCon1() deadlockfree;
#assert PthreadsProCon2() deadlockfree;
#assert DthreadsProCon2() deadlockfree;
The results of verification are shown in Fig.13. PthreadsProCon1() and DthreadsProCon1() both

pass the assertion, indicating that the first program can never cause a deadlock in Pthreads and
Dthreads. The failure of PthreadsProCon2() and DthreadsProCon2() shows that neither Pthreads
nor Dthreads can prevent the deadlock in the second program. We give the analysis of deadlock in
the following subsection in more details.

9.3. Analysis of Deadlock

As the property of deadlock has been verified several times in Section 7.1 and Section 9.2,
in this subsection, we introduce RAG (Resource Allocation Graph) to analyse the deadlocks.
RAGs are directed labeled graphs used to represent the current state of a system, which
illustrates how interacting processes can deadlock. As it is applied for processes and resources,
we do some modification to make it suitable for our six models involved with deadlock.
They are PthreadsDeadLock(), DthreadsDeadLock(), PthreadsProCon1(), DthreadsProCon1(),
PthreadsProCon2() and DthreadsProCon2(). The whole system consists of three types of elements
illustrated in Fig.14. We use threads instead of processes. Mutexes and val are considered to be
resources. Request edge represents that thread Ti is requesting for resource Rj and assignment edge
denotes that thread Ti is assigned to resource Rj .

In PthreadsDeadLock(), there are three possible RAGs depicted in Fig.15. We reduce the RAGs

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

28

Thread

Resources with
multiplicity 2

Ti Rj

Ti Rj

Request Edge from
thread Ti to resource Rj

Assignment Edge from
thread Rj to resource Ti

Figure 14. Definitions of RAG (Resource Allocation Graph)

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Figure 15. RAGs of Pthreads model PthreadsDeadLock()

to detect deadlocks. The reducing steps are as follows. First, we find a non-isolated thread node
which only owns assignment edges, cut off the related assignment edges and turn it to an isolated
node. As a result, several resources are released. Then the related resources are assigned to one
thread which is waiting for them. That is to say, the request edges of this thread are changed
to assignment edges. Repeat the above steps until no non-isolated thread node which only owns
assignment edges is found. Finally, if all the thread nodes become isolated, there is no deadlock in
the system. Otherwise, deadlock occurs. As depicted in Fig.14, the edge can only appear between a
thread node and a resource node. An RAG is called fully reducible if it can be reduced to a graph
without any edges. Fig.16 demonstrates the reduction process of the first RAG in Fig.15.

According to the reducing steps of the RAG, the first two RAGs in Fig.15 are fully reducible.
However, we can not find any non-isolated node which only owns assignment edges in the last
RAG in Fig.15, which means it is not reducible. Obviously, deadlock occurs in Pthreads model
PthreadsDeadLock(). Meanwhile, two RAGs can be built from DthreadsDeadLock() in Fig.17,
which are the same as the first two RAGs of PthreadsDeadLock() illustrated in Fig.15. As both
of the RAGs are reducible, no deadlock appears in Dthreads model DthreadsDeadLock().

We construct RAGs from PthreadsProCon1(), DthreadsProCon1(), PthreadsProCon2() and
DthreadsProCon2() as well. As val is considered to be the resource and the initial value of val
is zero. Thread producer can not move on until consumer has increased val. As consumer does
not request the resource, we convert producer from the thread to the resource in the RAG for

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

29

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Figure 16. An example of reduction of a RAG

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Thread1 m0

Thread2 m1

Figure 17. RAGs of Dthreads model DthreadsDeadLock()

consumer val

Figure 18. RAG of PthreadsProCon1() and DthreadsProCon1()

consumer val

Figure 19. RAG of PthreadsProCon2() and DthreadsProCon2()

its producing function. The RAGs of PthreadsProCon1(), DthreadsProCon1(), PthreadsProCon2()
and DthreadsProCon2() are shown in Fig.18 and Fig.19 respectively. If we apply the reduction to
these two RAGs, the first one is reducible while the second one is not. This means that there is
no deadlock in PthreadsProCon1() and DthreadsProCon1(). Meanwhile, PthreadsProCon2() and
DthreadsProCon2() will confront deadlock.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

30

The deadlocks due to resource allocations can only occur if four conditions hold simultaneously.
They are listed as follows:

• Mutual Exclusion: One resource can only be used by one thread.

• Hold and Wait: At least one resource is held by a thread and the thread is waiting for new
resources.

• No Preemption: The requester of resource can not take the resource until it is released by the
holder.

• Circular Wait: A list of processes are waiting for each other in circular form.

As shown by the irreducible RAG in Fig.15, the implementation of Pthreads can cause deadlock by
meeting these conditions simultaneously. But special mechanisms in Dthreads implement deadlock
prevention, demonstrated by reducible RAGs in Fig.17. The irreducible RAG depicted in Fig.19
shows the other reason causing deadlock. It indicates that Dthreads can do nothing for the deadlock
situation, where the reason of deadlock comes from environment that the thread requires more
resources than the total number of resource in the whole system.

Therefore, combining with the results in Section 7.1 and Section 9.2, we can conclude that
Dthreads can not eliminate all the deadlock situations, but it does perform better than Pthreads for
some special deadlock programs. It also means that deadlocks stemming from particular resource
problems can be handled better by Dthreads than by Pthreads.

9.4. Complexity of Modeling

In order to deal with the complexity of our Pthreads and Dthreads models, we utilize the verification
time of the assertions. PAT provides the verification time it used, so we can figure out the complexity
of our model broadly. If an assertion is passed, the whole model is checked deeply to find whether
there is any violation. If a fault trace is found, the time will be equal or less than the time of
exploring the whole model. As a result, we choose an assertion to verify a property that will be
valid for every model. Divergence free property is suitable, for its verification time can reflect the
complexity of modelling, as all of our models can pass it. Consequently, we choose the assertion of
divergence free rather than deadlock free. If a process performs an infinite internal actions, it is said
to be divergent. This assertion is applied to the twelve models as below.

Property 5: Divergence Freedom
#assert PthreadsDeadLock() divergencefree;
#assert DthreadsDeadLock() divergencefree;
#assert PthreadsTransfer1() divergencefree;
#assert DthreadsTransfer1() divergencefree;
#assert PthreadsTransfer2() divergencefree;
#assert DthreadsTransfer2() divergencefree;
#assert PthreadsTransfer3() divergencefree;
#assert DthreadsTransfer3() divergencefree;
#assert PthreadsProCon1() divergencefree;
#assert DthreadsProCon1() divergencefree;
#assert PthreadsProCon2() divergencefree;
#assert DthreadsProCon2() divergencefree;
We present the time used for verification in Table III. From the results, except PthreadsTransfer1()

and DthreadsTransfer1(), the verification of Pthreads models requires more time than Dthreads
models. Only these two processes do not use lock operations. We think it is because the
lock operations will increase the frequency of feedback no and re-lock operations in Pthreads

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

31

models.We conclude that our Pthreads models are larger than Dthreads models in most cases, except
PthreadsTransfer1() and DthreadsTransfer1().

Table III. The Verification Time of Divergence-free Assertion

aaaaaaaaa
Model

Times(s)
1 2 3 4 5 6 7 8 avg

PthreadsDeadLock() 0.1360 0.1239 0.1227 0.1213 0.1199 0.1211 0.1202 0.1208 0.1232

DthreadsDeadLock() 0.0462 0.0383 0.0409 0.0394 0.0389 0.0381 0.0381 0.0391 0.0448

PthreadsTransfer1() 0.0357 0.0314 0.0313 0.0320 0.0334 0.0325 0.0311 0.0330 0.0326

DthreadsTransfer1() 0.1602 0.1529 0.1505 0.1492 0.1482 0.1505 0.1478 0.1490 0.1510

PthreadsTransfer2() 0.2459 0.2300 0.2305 0.2286 0.2281 0.2276 0.2289 0.2265 0.2308

DthreadsTransfer2() 0.0738 0.0660 0.0656 0.0651 0.0677 0.0665 0.0663 0.0662 0.0672

PthreadsTransfer3() 0.0822 0.0756 0.0752 0.0786 0.0768 0.0780 0.0752 0.0781 0.0775

DthreadsTransfer3() 0.0185 0.0158 0.0180 0.0183 0.0164 0.0174 0.0163 0.0180 0.0173

PthreadsProCon1() 0.4378 0.4182 0.4210 0.4206 0.4216 0.4201 0.4215 0.4247 0.4232

DthreadsProCon1() 0.0804 0.0689 0.07505 0.0712 0.0708 0.0703 0.0708 0.0681 0.0714

PthreadsProCon2() 0.1456 0.1394 0.1332 0.1354 0.4216 0.1379 0.1372 0.1364 0.1377

DthreadsProCon2() 0.0510 0.0441 0.0461 0.0432 0.0434 0.0427 0.0460 0.0474 0.0455

10. A NEW PROGRAMMING MODEL OF BANK TRANSFER

Dthreads has problems on scalability over dozens or hundreds of threads, as it is fine-grained, while
Pthreads is more scalable, but it is also vulnerable to deadlocks. In this section, we introduce a new
example of bank transfer with several transfer actions, and change its granularity by manipulating
mutexes. Then new Pthreads and Dthreads models are built to illustrate how a coarse-grained
programming model works. Finally, analysis and verification are done for better understanding of
the essence of reducing the cost of parallelism.

10.1. Example program

Our new example program consists of five bank transfers illustrated in Fig.20. To ensure all the
transfers to be performed successfully, we assign the initial value of accounts A, B, C, D, and E to
100, 100, 200, 100 and 0, respectively. For simplicity, each transfer will move 100 from one account
to another. We introduce an algorithm to support coarse-grained programming, which also avoids
data races in Pthreads of our bank transfer model effectively.

Fig.21 illustrates the application of the algorithm to the example program. First of all, a directed
graph is built. The accounts are denoted by nodes and the transfers between accounts are represented
by directed edges. As each thread is only related to one bank transfer, that is to say, one directed edge
represents one thread. A transfer involves two accounts, and the two accounts may connect other
accounts because of other transfers. Therefore, we need to divide the accounts into groups according
to related transfers. As we have used the directed graph to describe the transfers and accounts,
searching for connected components is a solution. WCCs (Weakly Connected Components) are
chosen instead of SCCs (Strongly Connected Components), because we focus on the relation
between two accounts involving the transfer rather than the direction of the transfer. An SCC is

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

32

A B

C

D E

Account balance
Before: After:
A=100
B=100
C=200
D=100
E=0

Thread matching

Thread 1: A->B
Thread 2: B->C
Thread 3: C->B
Thread 4: C->A
Thread 5: D->E

100

100

100

100

100

A=100
B=200
C=100
D=0
E=100

Figure 20. Bank Transfer, Account Balance and Thread Matching

A B

C

D E

100

100

100

100

100

1 2

3

4 5

(1) Convert accounts and
transfers to a directed graph

(2) Compute weakly
connected components by
modified Tarjan's algorithm

1 2

3

4 5

A B

C

D E
100

100

100

100

mutex m0

mutex m1

(3) Assign same mutex
id to the directed edges
whose begin node and
end node belong to the
same component

Figure 21. Processing of assigning mutexes

a sub-graph where there is a path from every node to every other node. While, a WCC is a sub-
graph in which any two nodes are connected by some path, ignoring directions. As a result, we
modify Tarjan’s Algorithm of finding SCCs by relaxing the conditions of judging connected edges.
This makes the Tarjan’s Algorithm suitable to search for WCCs.

Our algorithm computes how many weakly connected components are in the graph and records
the belonging component of every node. Using the recordings, we can assign the same mutex id
to the directed edges in the graph whose begin node and end node belong to the same component.
As each directed edge is related to a thread, we add new statements of manipulating mutexes into
programs. In this way, the coarse-grained programming model is built.

We use an adjacency matrix to store the graph and represent the main part of WCC computing
coded in C. Our core function DFS modify is a depth first search. Array stack simulates a stack to
record traversing information about nodes. Boolean array instack marks whether the node is in stack
or not. Array visit records the unique time stamp when the node is visited and array low stores the
oldest time stamp looking back from the node. Variable t represents the time and count records the

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

33

component ID. We use array belong to declare the relationship between the node and the connected
component.

void DFS modify (i n t i)
{

v i s i t [i] = low [i] = ++ t ;
s t a c k [t o p ++] = i ;
i n s t a c k [i] = t r u e ;

f o r (i n t j =1 ; j<=NODEN; ++ j)
i f (a d j [i] [j] | | a d j [j] [i])
{

i f (! v i s i t [j])
DFS modify (j) ;

i f (i n s t a c k [j])
low [i] = min (low [i] , low [j]) ;

}

i f (v i s i t [i] == low [i])
{

++ c o u n t ;
i n t j ;
do
{

j = s t a c k [−− t o p] ;
i n s t a c k [j] = f a l s e ;
be lo n g [j] = c o u n t ;

} whi le (j != i) ;
}

}

As the core function DFS modify has been defined, we call it in a loop in function Tarjan modify.
Finally, we can learn the number of connected components from count and the belonging connected
components of the nodes from array belong.

void T a r j a n m o d i f y ()
{

c o u n t = 0 ;
t = 0 ;
memset (v i s i t , 0 , s i z e o f (v i s i t)) ;
f o r (i n t i =1 ; i<=NODEN; i ++)

i f (! v i s i t [i])
DFS modify (i) ;

}

As depicted in Fig.21, we acknowledge that in order to support coarse-grained programming
mutex m0 should be shared by Thread 1, Thread 2 and Thread 3. While mutex m1 is assigned to
Thread 4 and Thread 5. As a consequence, we can update our program as below.

void ∗ThreadFunc1 (void ∗ a r g){
i f (A < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (&m0) ;
B = B + 100 ;
A = A − 100 ;
p t h r e a d m u t e x u n l o c k (&m0) ;
re turn NULL;

}

void ∗ThreadFunc2 (void ∗ a r g){
i f (B < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (&m0) ;
C = C + 100 ;
B = B − 100 ;
p t h r e a d m u t e x u n l o c k (&m0) ;
re turn NULL;

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

34

}

void ∗ThreadFunc3 (void ∗ a r g){
i f (C < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (&m0) ;
B = B + 100 ;
C = C − 100 ;
p t h r e a d m u t e x u n l o c k (&m0) ;
re turn NULL;

}

void ∗ThreadFunc4 (void ∗ a r g){
i f (C < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (&m1) ;
A = A + 100 ;
C = C − 100 ;
p t h r e a d m u t e x u n l o c k (&m1) ;
re turn NULL;

}

void ∗ThreadFunc5 (void ∗ a r g){
i f (D < 100){

re turn NULL;
}
p t h r e a d m u t e x l o c k (&m1) ;
E = E + 100 ;
D = D − 100 ;
p t h r e a d m u t e x u n l o c k (&m1) ;
re turn NULL;

}

10.2. Verification

In this subsection, we consider the verification of the correctness of bank transfer in our example
program running in Pthreads and Dthreads, as well as analyze the evidence of coarse granularity in
our Pthreads model performs better then fine granularity in Dthreads model. The correctness means
that all the transfers have been taken and no money is lost. As we have constructed the models in
PAT, the following assertion is to describe this situation.

Property 6: Correctness of Bank Transfer
#define goal1() A == 100;

#define goal2() B == 200;

#define goal3() C == 100;

#define goal4() D == 0;

#define goal5() E == 100;

#assert PthreadsTransferNew() | =<> (goal1&&goal2&&goal3&&goal4&&goal5);
#assert DthreadsTransferNew() | =<> (goal1&&goal2&&goal3&&goal4&&goal5);
As depicted in Fig.20, we need to ensure all the transfers have worked in all possible interleaving

or parallel running of threads. As Linear Temporal Logic (LTL) is supported by PAT, | =<> here
means that the model on the left side will eventually satisfy the boolean formula on the right side.
Fig. 22 displays the verification results of correctness of bank transfer in Pthreads and Dthreads.
The assertions of PthreadsTransferNew() and DthreadsTransferNew() are valid, indicating that all
the bank transfers are performed successfully.

We need to check whether our strategy of coarse-grained modeling worked in our Pthreads
model. Checking the state of the mutex can indicate whether the threads are paralleled. We use

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

35

Figure 22. Result of Correctness of Bank Transfer Verification of Pthreads and Dthreads Models

this clue because if a mutex is occupied by a thread this means that a bank transfer is processing.
Meanwhile, if two mutexes are owned at the same time, we can deduce that two threads are
parallelled with each other without influencing each other. This also represents that coarse-grained
programming helps to reduce costs of time. The assertions in PAT are illustrated as below.

Property 7: Granularity Check: the First Step
#define isparalleled MutexState[m0] == busy&&MutexState[m1] == busy;
#assert PthreadsTransferNew() reaches isparalleled;
#assert DthreadsTransferNew() reaches isparalleled;
Fig. 23 shows the verification results of first granularity check in Pthreads and Dthreads for the

new bank transfer program. For PthreadsTransferNew(), the valid result describes that there is
a situation that coarse-grained programming benefits to time reducing, which provides evidence
for supporting scalability of Pthreads with coarse-grained programming. The invalid result for
DthreadsTransferNew() suggests that the modified version of the program did not influence
Dthreads, as Dthreads supports fine granularity. Based on the above analysis, we can explore
more properties about granularity of our models. As the previous result indicates that two bank
transfers were processed simultaneously in our Pthreads model. We want to determine whether this
happens every time the model runs. For Dthreads, a much more indicative view of verifying the
fine granularity of Dthreads is provided. The related assertions are list as below.

Property 8: Granularity Check: the Second Step
#assert PthreadsTransferNew() | =<> isparalleled;
#assert DthreadsTransferNew() | =<> !isparalleled;
The results of verification are shown in Fig.24. PthreadsTransferNew() failed to pass the assertion,

which means that simultaneous bank transferring will not happen in all the running of the model. It
is possible because different interleavings of threads can affect the results. Even though we can still
claim that coarse-grained programming generally contributes to reducing costs of time in Pthreads.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

36

Figure 23. Result of First Step Granularity Check Verification of Pthreads and Dthreads Models

Figure 24. Result of Second Step Granularity Check Verification of Pthreads and Dthreads Models
.

The valid verification result of DthreadsTransferNew() displays that due to fine-grained feature in
Dthreads all the bank transfers can not be taken simultaneously in all the situations.

After verifying of our related Pthreads and Dthreads model, we have found out that Dthreads
keeps its fine-grained feature while Pthreads benefits from flexible mutex assignment to reduce the
cost of time. It indicates that it is possible to take advantage of scalability of Pthreads while avoiding
data race by using special programming model.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

37

11. CONCLUSION AND FUTURE WORK

In this paper we have conducted a comparative formal modelling and verification for Pthreads and
Dthreads. We have formalized the thread API functions of Pthreads and Dthreads using the CSP
process algebra, as well as the four illustrative programs. We have also transformed C code into
the models automatically that are recognized by the model checker PAT and employed assertions
to specify and verify three key concurrency properties (deadlocks, data races and race conditions)
for these models. Our comparative modelling and verification of Pthreads and Dthreads shows that
Dthreads is better than Pthreads on eliminating data races and preventing deadlocks. Additionally,
their performances are similar in terms of their incapability of dealing with race conditions. We also
have extended our modelling by covering the synchronization operations in Liu et al.’s work. Then
two new programs are introduced to test our new API functions and figure out that Dthreads can
not prevent all the deadlocks, but it indeed performs better than Pthreads for some special deadlock
programs, which satisfy four necessary conditions of deadlock. Considering limited scalability of
Dthreads, we have introduced a new programming model to support coarse granularity in bank
transfer, which turns out efficient in Pthreads.

As for future work, we would conduct further comparative verification on Pthreads and Dthreads.
We would like to improve the robustness of our system by taking into account more components,
e.g. those that manage the error situation in programs. We would also like to consider more APIs
so as to extend the functionality further, so as to model more multi-threaded programs. We would
also like to find other methods to check the complexity of modelling and improve the efficiency of
our conversion method from C code to PAT code. We also want to explore more properties for the
comparative study between Pthreads and Dthreads.

Acknowledgement. This work was partly supported by the Danish National Research Foundation
and the National Natural Science Foundation of China (Grant No. 61361136002) for the Danish-
Chinese Center for Cyber Physical Systems. It was also supported by National Natural Science
Foundation of China (Grant No. 61321064) and Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (No. ZF1213).

REFERENCES

1. Liu T, Curtsinger C, Berger ED. Dthreads: efficient deterministic multithreading. SOSP, 2011; 327–336.
2. Fei Y, Zhu H, Wu X, Fang H. Comparative modeling and verification of Pthreads and Dthreads. 17th IEEE

International Symposium on High Assurance Systems Engineering, HASE 2016, Orlando, FL, USA, January 7-
9, 2016, 2016; 132–140.

3. Xu J, Zhang Z, Chan WK, Tse TH, Li S. A general noise-reduction framework for fault localization of java
programs. Information & Software Technology 2013; 55(5):880–896.

4. Flanagan C, Freund SN. Fasttrack: efficient and precise dynamic race detection. Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland, June
15-21, 2009, 2009; 121–133.

5. Agarwal R, Wang L, Stoller SD. Detecting potential deadlocks with static analysis and run-time monitoring.
Hardware and Software Verification and Testing, First International Haifa Verification Conference, Haifa, Israel,
November 13-16, 2005, Revised Selected Papers, 2005; 191–207.

6. Bensalem S, Havelund K. Dynamic deadlock analysis of multi-threaded programs. Hardware and Software
Verification and Testing, First International Haifa Verification Conference, Haifa, Israel, November 13-16, 2005,
Revised Selected Papers, 2005; 208–223.

7. Bishop M, Dilger M. Checking for race conditions in file accesses. Computing Systems 1996; 2(2):131–152.
8. Uppuluri P, Joshi U, Ray A. Preventing race condition attacks on file-systems. Proceedings of the 2005 ACM

Symposium on Applied Computing (SAC), Santa Fe, New Mexico, USA, March 13-17, 2005, 2005; 346–353.
9. Deshmukh JV, Emerson EA, Sankaranarayanan S. Symbolic modular deadlock analysis. Autom. Softw. Eng. 2011;

18(3-4):325–362.
10. Luo ZD, Das R, Qi Y. Multicore SDK: A practical and efficient deadlock detector for real-world applications. Fourth

IEEE International Conference on Software Testing, Verification and Validation, ICST 2011, Berlin, Germany,
March 21-25, 2011, 2011; 309–318.

11. Voung JW, Jhala R, Lerner S. RELAY: static race detection on millions of lines of code. Proceedings of the 6th
joint meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007, 2007; 205–214.

12. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson TE. Eraser: A dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst. 1997; 15(4):391–411.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

38

13. Ilgun K. USTAT: a real-time intrusion detection system for UNIX. 1993 IEEE Computer Society Symposium on
Research in Security and Privacy, Oakland, CA, USA, May 24-26, 1993, 1993; 16–28.

14. Tsyrklevich E, Yee B. Dynamic detection and prevention of race conditions in file accesses. Proceedings of the 12th
USENIX Security Symposium, Washington, D.C., USA, August 4-8, 2003, 2003.

15. Lafortune S, Wang Y, Reveliotis SA. Eliminating concurrency bugs in multithreaded software: An approach based
on control of petri nets. Petri Nets, 2013; 21–28.

16. Edwards SA, Vasudevan N, Tardieu O. Programming shared memory multiprocessors with deterministic message-
passing concurrency: Compiling shim to pthreads. DATE, 2008; 1498–1503.

17. Berger ED, Yang T, Liu T, Novark G. Grace: safe multithreaded programming for C/C++. OOPSLA, 2009; 81–96.
18. IEEE. IEEE POSIX 1003.1c standard. URL http://standards.ieee.org/findstds/interps/

1003-1c-95_int/index.html.
19. Johnson R. Pthread win-32: Level of standards conformance. URL http://www.sourceware.org/

pthreads-win32/conformance.html.
20. Lucia B, Ceze L. Finding concurrency bugs with context-aware communication graphs. 42st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-42 2009), December 12-16, 2009, New York, New York,
USA, 2009; 553–563.

21. Huang Y, He J, Zhu H, Zhao Y, Shi J, Qin S. Semantic theories of programs with nested interrupts. Frontiers of
Computer Science 2015; 9(3):331–345.

22. Lu K, Zhou X, Wang X, Bergan T, Chen C. An efficient and flexible deterministic framework for multithreaded
programs. J. Comput. Sci. Technol. 2015; 30(1):42–56.

23. Gradara S, Santone A, Villani ML, Vaglini G. Model checking multithreaded programs by means of reduced
models. Electr. Notes Theor. Comput. Sci. 2004; 110:55–74.

24. Li J, Hei D, Yan L. Correctness analysis based on testing and checking for OpenMP programs. Fourth ChinaGrid
Annual Conference, ChinaGrid 2009, Yantai, Shandong, China, 21-22 August, 2009, 2009; 210–215.

25. Yang Y, Chen X, Gopalakrishnan G. Inspect: A runtime model checker for multithreaded C programs. Technical
Report 2008.

26. Zhang D, Bosnacki D, van den Brand M, Huizing C, Kuiper R, Jacobs B, Wijs A. Verification of atomicity
preservation in model-to-code transformations using generic java code. MODELSWARD 2016 - Proceedings of
the 4rd International Conference on Model-Driven Engineering and Software Development, Rome, Italy, 19-21
February, 2016., 2016; 578–588.

27. PAT. PAT: Process analysis toolkit. URL http://pat.comp.nus.edu.sg/.
28. Sun J, Liu Y, Dong JS. Model checking CSP revisited: Introducing a process analysis toolkit. Leveraging

Applications of Formal Methods, Verification and Validation, Third International Symposium, ISoLA 2008, Porto
Sani, Greece, October 13-15, 2008. Proceedings, 2008; 307–322.

29. Brookes SD, Hoare CAR, Roscoe AW. A theory of Communicating Sequential Processes. Journal of ACM 1984;
31(7):560–599.

30. Hoare CAR. Communicating Sequential Processes. Prentice-Hall, 1985.
31. Ferreira JF, Gherghina C, He G, Qin S, Chin W. Automated verification of the freertos scheduler in hip/sleek. STTT

2014; 16(4):381–397.
32. Qin S, He G, Luo C, Chin W, Yang H. Automatically refining partial specifications for heap-manipulating programs.

Sci. Comput. Program. 2014; 82:56–76.
33. Roscoe AW. The theory and practice of concurrency. 1998.
34. Roscoe A. Understanding Concurrent Systems. 2010.
35. Lowe G, Roscoe AW. Using CSP to detect errors in the TMN protocol. IEEE Trans. Software Eng. 1997;

23(10):659–669.
36. Kapoor HK. A process algebraic view of latency-insensitive systems. IEEE Trans. Computers 2009; 58(7):931–944.
37. Regehr J. Race condition vs. data race. http://blog.regehr.org/archives/490. Accessed May 22,

2017.
38. Sun J, Liu Y, Dong JS, Liu Y, Shi L, André É. Modeling and verifying hierarchical real-time systems using stateful

timed CSP. ACM Trans. Softw. Eng. Methodol. 2013; 22(1):3.
39. Liu Y, Sun J, Dong JS. Developing model checkers using PAT. ATVA, 2010; 371–377.
40. Si Y, Sun J, Liu Y, Dong JS, Pang J, Zhang SJ, Yang X. Model checking with fairness assumptions using PAT.

Frontiers of Computer Science 2014; 8(1):1–16.
41. Erickson J, Musuvathi M, Burckhardt S, Olynyk K. Effective data-race detection for the kernel. 9th USENIX

Symposium on Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC,
Canada, Proceedings, 2010; 151–162.

APPENDIX

In the verification of our considered examples, we find out that deadlocks and data races both exit
in Pthreads. At the same time, both of them can not avoid race conditions. Fig.25 illustrates the
trace that can cause a deadlock in Pthreads model. Meanwhile, Fig.26 gives the data race trace in
Pthreads model, which makes the assertion fail.

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

http://standards.ieee.org/findstds/interps/1003-1c-95_int/index.html
http://standards.ieee.org/findstds/interps/1003-1c-95_int/index.html
http://www.sourceware.org/pthreads-win32/conformance.html
http://www.sourceware.org/pthreads-win32/conformance.html
http://pat.comp.nus.edu.sg/
http://blog.regehr.org/archives/490

39

1

addliveThread

2

3

4

5

createThread.main.Thread1

isCreated[1].yes

feedback[0].yes

6

lockRequest.Thread1.m0

12

addliveThread

11

10

9

8

getMutex.Thread1.m0

ackFromMutex.yes

setMutexBusy

7

isCreated[2].yes

13

createThread.mian.Thread2

14

15

16

17

feedback[0].yes

lockRequest.Thread2.m1

18

getMutex.Thread2.m1

24

23

22

21

20

setMutexBusy

19

ackFromMutex.yes

joinThread.main.Thread1

SetJoinTable

feedback[0].no

feedback[2].yes

addliveThread

lockRequest.Thread2.m0

feedback[1].yes

25

26

27

28

29

30

lockRequest.Thread1.m1

feedback[2].no

ackFromMutex.no

getMutex.Thread1.m1

enQueMutex

getMutex.Thread2.m0

33

32

enQueMutex

feedback[1].no

ackFromMutex.no

31

Figure 25. Simulation Result of Deadlock Freedom Trace of Pthreads Model

1

addliveThread

2

3

4

5

createThread.main.Thread1

isCreated[1].yes

feedback[0].yes

6

addliveThread

12

joinThread.mian.Thread1

11

10

9

8

createThread.main.Thread2

feedback[0].yes

isCreated[2].yes

7

feedback[0].no

13

SetJoinTable

14

15

16

17

[if!((A < 100))]

WriteVal_I

[if!((A < 100))]

DataRaceStart

addliveThread

18

WriteVal_C

Figure 26. Simulation Result of Data Race Trace of Pthreads Model

Copyright c© 2012 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2012)
Prepared using smrauth.cls DOI: 10.1002/smr

	1 Introduction
	2 Background
	2.1 Dthreads vs Pthreads
	2.2 A Brief Introduction of CSP

	3 Thread API and Example Programs
	3.1 API (Application Programming Interface)
	3.2 Example Programs

	4 Modeling Pthreads
	4.1 The Program
	4.2 The Mutex
	4.3 The Controller

	5 Modeling Dthreads
	5.1 The Program
	5.2 The Token
	5.3 The Commit
	5.4 The Controller
	5.5 The Fence

	6 Conversion
	7 Verification
	7.1 Verification of Deadlock
	7.2 Verification of Data Race
	7.3 Verification of Race Condition

	8 Model extension
	8.1 Condition Variables in Pthreads
	8.2 Condition Variables in Dthreads
	8.3 Barriers in Pthreads
	8.4 Barriers in Dthreads
	8.5 Thread Cancellation in Pthreads and Dthreads

	9 Verification extension
	9.1 Example Programs
	9.2 Verification of Deadlock
	9.3 Analysis of Deadlock
	9.4 Complexity of Modeling

	10 A new programming model of Bank transfer
	10.1 Example program
	10.2 Verification

	11 Conclusion and Future Work

