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Reviewer one: 
 
Comment #1: It was a pleasure to review this carefully prepared manuscript. The related concepts 
of personalised treatment and inter-individual differences (i.e. identifying responders versus non-
responders) are currently very topical in the literature and regularly discussed in many papers in 
the literature and this journal in particular, both in relation to nutrition and the many other 
disciplines within the remit of MSSE. However, few studies include the necessary measurements 
to properly support such discussion. Within this context, the experimental design described here 
has been well-conceived and is precisely what is required both to advance understanding of 
individual differences in appetite regulation and also to show how individual differences can and 
should be studied. Beyond the design, all necessary details of the methodology are reported and are 
consistent with a rigorous data collection, while the statistical analysis is innovative and 
appropriate. I only have very minor suggestions the authors may consider, as listed below: 
 
Author response #1: We thank the reviewer for their positive comments regarding our manuscript 
and we hope that the helpful comments below have been addressed appropriately. 
 
Comment #2: Line 63: it may be worth slightly rewording here to make absolutely clear that the 
papers cited are those that are 'increasingly recognising' the problem rather than being examples of 
the 'some cases' recognised as the problem (especially given that one of the authors' own papers is 
cited). 
 
Author response #2: We agree that this sentence could lead to reader’s misinterpreting the 
references cited as examples of cases adopting less robust statistical approaches. We have made a 
subtle alteration to clarify that the references cited are those that recognise the methodological and 
statistical challenges of these types of investigations (Introduction, page 4, lines 60-63).  
 
Comment #3: Line 139: I expect the treadmill speed was only adjusted to achieve target relative 
exercise intensity in the first exercise trial (i.e. the subsequent trial would have matched the 
absolute intensity using the same treadmill speed as trial 1). This could be clarified. 
 
Author response #3: Our aim was to ensure the exercise intensity for each participant was as 
close as possible to the target of 70% peak oxygen uptake for both exercise conditions. Therefore, 
the treadmill speed was adjusted slightly in both exercise conditions on the rare occasion that the 
relative exercise intensity was above or below the target intensity of 70% peak oxygen uptake. We 
have updated this sentence to clarify that the treadmill speed was adjusted during both exercise 
conditions if necessary (Methods: Main trials, page 8, lines 141-143). 
 
Comment #4: It is unfortunate that there was an outlier but I feel this has been very clearly 
reported and thoroughly discussed such that it is not an issue. 
 
Author response #4: We agree that it was unfortunate to have an outlier in the study and we 
appreciate the positive comments from the reviewer regarding the discussion of our findings.  



 
Comment #5: Line 364-367: readers may benefit from some direction to relevant literature 
highlighting the potential for these factors that may alter the reported effects. Some of the authors' 
own papers could be cited with these lines. 
 
Author response #5: We agree that the reader may benefit from the citation of relevant literature 
highlighting potential differences in appetite parameters in response to other exercise protocols or 
observed in other populations (e.g., females, overweight individuals). We have referenced five 
papers in this regard which we hope will be useful for the interested reader (Discussion, page 18, 
lines 397-398).  
 
Comment #6: Table 1: missing '-1' after kg in the units for VO2max. 
 
Author response #6: We have amended Table 1 accordingly.  
 
 
Reviewer two: 
 
Comment #1: This manuscript reports on an acute replicated cross-over study comprised of two 
exercise and two control acute trials to establish the interindividual appetite response to acute 
exercise. The popularity of personalised medicine/nutrition is growing rapidly, but to date few 
studies have employed a robust design to assess true interindividual responses. To my knowledge, 
this is the first study to employ a replicated crossover design to exercise and appetite. The 
manuscript is excellently written and the study has been performed under very well-controlled 
conditions. The statistical analyses are comprehensive and appropriate to answer the question. On 
that basis I would strongly recommend this manuscript for publication in Medicine and Science in 
Sport and Exercise on the basis of the scientific rigour which is used to answer an important, novel 
and topical research question. I do however, have a few points outlined below, that I feel may 
improve the manuscript prior to publication. 
 
Author response #1: We thank the reviewer for their supportive comments regarding our paper 
and we hope that the comments raised have been addressed appropriately. 
 
Comment #2: Could the blood sampling site (antecubital vein) influence the variability of gut 
hormone concentrations that were measured? It is known that both GLP-1(total) and GLP-1(7-36) 
concentrations are lower in venous blood compared to arterial blood (Asmar et al. 2017 Physiol 
Rep 5(3): e13073) presumably due to interactions with GLP-1 receptor in tissues and metabolism 
by DPP-IV. Could the authors comment on whether they would expect ghrelin and PYY to show 
anything similar in this regard? If so, then could this contribute to the variability seen? For 
example, the concentrations of metabolites measured in venous blood are dependent on factors 
such as forearm blood flow, which in turn, is altered by ambient temperature (Frayn et al. 1989 
Clin Sci 76(3): 323) and it has been speculated that differences between arterialised and venous 
blood may depend on some characteristics of the individuals, such as forearm muscle 
mass/capilliarisation (Edinburgh et al. 2017 Br J Nutr 117(10):1414). I do not see the sample site 



as a limitation of this work, since many other studies that claim interindividual differences sample 
from the antecubital vein, and therefore the current study design allows the assessment of the 
apparent interindividual variability that is seen in these studies. It may however, be worthy of a 
discussion as a potential source of the variability seen. 
 
Author response #2: We agree with the reviewer that this is an interesting point of discussion. We 
have not investigated differences in appetite-regulating hormone concentrations between venous 
and arterialised blood in any of our previous work and the literature is very limited in this regard. 
Previous studies in patient populations have suggested that fasting ghrelin concentrations are 
similar in venous and arterial blood (Goodyear et al. 2010 Mol Biol Rep 37: 3697-3701; Martin et 
al. 2011 Clin Invest Med 34: E82-E87); however, we are not aware of studies examining 
differences in PYY concentrations at the different sample sites or studies that have examined 
potential differences with exercise. Nevertheless, it is conceivable that the sampling site may have 
introduced some variability in the appetite-regulating hormone concentrations in this study and we 
have included the following comment in the discussion and updated the reference list accordingly:  
 
Discussion, page 18, lines 381-390: ‘A potential source of variability in this study concerns the 
measurement of acylated ghrelin and total PYY concentrations from venous blood samples 
collected from an antecubital vein. Recent studies suggest that compared to arterialised blood, 
venous blood provides lower concentrations of glucagon-like peptide-1 (38) as well as lower 
glucose concentrations and higher insulin sensitivity (39). Although limited evidence in patient 
populations suggests that fasting ghrelin concentrations are comparable between venous and 
arterialised blood (40,41), direct comparisons of acylated ghrelin and total PYY between 
arterialised and venous blood after exercise has not been investigated. Nevertheless, the findings of 
the present study are relevant to the wider exercise and appetite regulation literature where blood 
sampling from an antecubital vein is commonplace for quantifying appetite-regulatory hormone 
concentrations.’ 
 
Comment #3: On a similar point to the sample site, where I do not believe this is a limitation, but 
could the exercise intensity chosen be another potential source of variability in the observed 
responses? At this exercise intensity some individuals may be above and some below the lactate 
threshold. Therefore the relative intensity for these people may be somewhat different. Secondly, if 
some people are exercising at an intensity above lactate threshold, then many aspects will not be in 
steady-state (e.g. longer slow component of VO2 etc.). Could either of these points be relevant to 
the responses seen? 
 
Author response #3: We thank the reviewer for raising this important point. The exercise 
intensity of 70% peak oxygen uptake was selected in order to replicate previous study designs 
which have consistently demonstrated changes in appetite and appetite-regulatory hormones in 
directions expected to suppress appetite. Although it is possible that the exercise intensity may 
represent a potential source of variability in the observed responses, unfortunately we do not have 
the data to identify whether the participants were exercising above or below their lactate threshold 
or to investigate further the oxygen uptake kinetics during the exercise bouts. Nevertheless, we 
have examined bivariate correlations between the exercise-induced change in each of the appetite 



parameters with the physiological variables measured during the exercise conditions (RPE, 
VE/V̇O2, RER and percentage of HRmax). This analysis revealed no significant correlations 
between the various appetite parameters and exercise variables (P ≥ 0.091). Therefore, there is 
limited evidence based on the available data that the exercise intensity adopted in this study was 
associated with the variability observed in the appetite responses. 
  
Comment #4: Line 88: was age measured to the nearest 0.1 year or were people just asked their age as 
a whole number? If the latter, the would it be more appropriate to report the number of decimal places 
to the same degree that you measured this variable at (i.e. a whole number for age)? 
 
Author response #4: The participants provided their age as a whole number so we have amended 
this accordingly (Methods: Participants, page 5, line 88). 
 
 
Reviewer three: 
 
Comment #1: The study design and statistical analysis are unique to the field of exercise and 
appetite control. Examining the reproducibility of subjective appetite and appetite hormone 
responses to acute exercise is important when attempting to demonstrate robust research findings, 
but also when considering the application of results to the wider population. This study presents an 
opportunity for researchers to expand on these initial findings and contribute to work examining 
the effectiveness of personalised exercise prescription for weight loss. There are some minor issues 
that are necessary to highlight, but overall, the study is well designed and the findings are novel. 
 
Author response #1: We thank the reviewer for their positive comments regarding our paper and 
we hope that we have addressed the comments below appropriately. 
 
Comment #2: Line 95: What pre-preliminary visit controls, if any, were selected? 
 
Author response #2: The preliminary visit was completed at a time of day that was most 
convenient for the participants and no special controls were implemented prior to the visit.  
 
Comment #3: Line 96-97: Which instruments were used to conduct the screening measures? 
 
Author response #3: Health status was assessed using the University's standard health screen 
questionnaire, dietary habits were assessed using the Three-Factor Eating Questionnaire (Stunkard 
& Messick (1985) J Psychosom Res, 29:71-83), and habitual physical activity was assessed using 
the International Physical Activity Questionnaire (Craig et al. (2003) Med Sci Sports Exerc, 
35:1381-1395). We have updated the methods section to clarify the instruments we used to 
conduct the screening measures (Methods: Preliminary measurements, page 6, lines 95-100).  
 
Comment #4: Line 129: Were the timing of the evening meals controlled? 
 



Author response #4: Participants were asked to consume the evening meal between 19:00 and 
20:00 during all four trials. We have updated the methods section to include this information 
(Methods: Experimental design, page 7, lines 132-134). 
 
Comment #5: Line 137: Why was peak VO2 chosen instead of VO2max? 
 
Author response #5:  We determined peak oxygen uptake from an expired air sample collected in 
the final minute of the test using Douglas bags when participants indicated that they could only 
continue running for an additional 1 min. Therefore, it was not possible to ascertain whether the 
participants had achieved a plateau in oxygen uptake with an increase in work rate, so it is more 
appropriate to use the term 'peak V̇O2' defined as the highest value of oxygen uptake attained on 
the test. In line with recent recommendations (Poole & Jones (2017) J Appl Physiol 122: 997-
1002), we have introduced a verification stage in our subsequent studies to improve this aspect of 
our exercise testing which enables the verification of maximum V̇O2.  
 
Comment #6: The authors have not examined correlations between appetite sensations and 
appetite hormones. If possible, this analysis should be conducted, as previous research has 
produced equivocal findings regarding the relationship between appetite ratings and appetite 
hormone concentrations following exercise. 
 
Author response #6: We thank the reviewer for this suggestion and we have calculated bivariate 
correlations between the pooled mean pre-to-post change in appetite-regulatory hormone 
concentrations and the pooled mean pre-to-post change in appetite perceptions. These results are 
presented in Supplementary Digital Content 2. This analysis revealed that the change in acylated 
ghrelin was significantly associated with hunger and prospective food consumption. In contrast, 
the change in PYY was not significantly associated with any of the appetite perceptions. We have 
updated the methods, results and discussion sections as follows: 
 
Methods: Statistical Analyses, page 11, lines 222-224: 'Pearson’s correlation coefficients were 
quantified between the pooled mean pre-to-post change in appetite-regulatory hormone 
concentrations and the pooled mean pre-to-post change in appetite perceptions across the four 
conditions.' 
 
Results: Correlations, page 14, lines 284-289: 'A large positive correlation was observed between 
the pre-to-post change in acylated ghrelin and the change in both hunger (r = 0.72, 95% CI 0.33 to 
0.90, P = 0.002) and PFC (r = 0.63, 95% CI 0.17 to 0.86, P = 0.011). There were no significant 
correlations between the pre-to-post change in PYY and appetite perceptions (P ≥ 0.129) (refer to 
Supplemental digital content 2).' 
 
Discussion, page 17, lines 366-367: ‘and is further supported by the meaningful positive 
relationships observed between the pre-to-post change in acylated ghrelin and the change in hunger 
and PFC.’ 
 



Discussion, pages 17-18, lines 374-377: 'Indeed, the absence of significant correlations between 
the pre-to-post change in total PYY and appetite perceptions may reflect the notion that PYY acts 
synergistically with these other satiety signals to suppress appetite.’  
 
Comment #7: Line 245: How was the outlier identified? 
 
Author response #7: We followed the procedures recommended by Hopkins et al. (2009 Med Sci 
Sports Exerc 1:3-12) to identify the outlier for PYY. This participant exhibited a PYY response 
greater than 3.5 residual SDs from the mean predicted value which is the threshold advised when 
the sample size is less than 50. We have clarified the procedure used to identify the outlier in the 
results section as follows:  
 
Results: Total PYY, page 12, lines 248-250: 'Based on the recommendations of Hopkins et al. 
(2009), an outlier was identified who exhibited a PYY response greater than 3.5 residual SDs from 
the mean predicted value (30).'  
 
Comment #8: Lines 357-359: Despite not being a primary aim of the present study, this design did 
present a good opportunity to investigate these factors in more detail. The authors should suggest 
measurements that could be performed in future research to assess the reasons for large individual 
differences in appetite responses following acute bouts of exercise. 
 
Author response #8: We thank the reviewer for this suggestion and we have identified several 
other appetite parameters that could be considered in future studies to provide a broader scientific 
understanding of the variability in appetite responses after acute exercise. We have updated the 
discussion as follows:  
 
Discussion, pages 17-18, lines 372-380: ‘In this regard, several other anorexigenic gut peptides are 
involved in the acute regulation of appetite including cholecystokinin, oxyntomodulin, pancreatic 
polypeptide and glucagon-like peptide-1. Indeed, the absence of significant correlations between 
the change in total PYY and appetite perceptions may reflect the notion that PYY acts 
synergistically with these other satiety signals to suppress appetite.  Furthermore, appetite control 
is influenced by a variety of non-homeostatic factors such as neuronal responses, hedonic 
processes and cognitive/behavioral cues (37). Future studies should consider the aforementioned 
appetite parameters to provide a more holistic scientific understanding of the variability in appetite 
responses after acute exercise.’  
  
Comment #9: Lines 370-372: Despite this being an appropriate reason for conducting this type of 
research, it is perhaps too easy to make such a statement without suggesting how research might 
actually enhance the effectiveness of personalised exercise interventions for weight loss. 
 
Author response #9: We thank the reviewer for raising this important point. We agree that the 
reader will benefit from some additional insight on how exercise interventions could be tailored at 
the individual level to optimise weight management strategies. We have updated the discussion 
section to include the following information:  



Discussion, page 18-19, lines 401-407: ‘The publication of more studies investigating individual 
variability in appetite responses to exercise may stimulate the development of more efficient 
weight management strategies by determining whether an exercise intervention is likely to be 
beneficial, ineffective or detrimental for different individuals. This information would help to 
identify individuals who may achieve more favorable appetite responses through alternative 
exercise and/or nutritional interventions, but further work is required to examine this chronically.’  
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Abstract  18 

Purpose: Acute exercise transiently suppresses appetite, which coincides with alterations in 19 

appetite-regulatory hormone concentrations. Individual variability in these responses is 20 

suspected, but replicated trials are needed to quantify them robustly. We examined the 21 

reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and 22 

quantified the individual differences in responses. Methods: Fifteen healthy, recreationally-23 

active men completed two control (60-min resting) and two exercise (60-min fasted treadmill 24 

running at 70% peak oxygen uptake) conditions in randomised sequences. Perceived appetite 25 

and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were 26 

measured immediately before and after the interventions. Inter-individual differences were 27 

explored by correlating the two sets of response differences between exercise and control 28 

conditions. Within-participant covariate-adjusted linear mixed models were used to quantify 29 

participant-by-condition interactions. Results: Compared with control, exercise suppressed 30 

mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62 to 1.47, P < 31 

0.001), and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the 32 

SD of the change scores was substantially greater in the exercise versus control conditions. 33 

Moderate-to-large positive correlations were observed between the two sets of control-34 

adjusted exercise responses for all variables (r = 0.54 to 0.82, P ≤ 0.036). After adjusting for 35 

baseline measurements, participant-by-condition interactions were present for all variables (P 36 

≤ 0.053). Conclusion: Our replicated cross-over study allowed, for the first time, the 37 

interaction between participant and acute exercise response in appetite parameters to be 38 

quantified. Even after adjustment for individual baseline measurements, participants 39 

demonstrated individual differences in perceived appetite and hormone responses to acute 40 

exercise bouts beyond any random within-subject variability over time. 41 

 42 



Key words 43 

Appetite; exercise; ghrelin; individual differences; peptide YY. 44 



Introduction 45 

Understanding the relationship between exercise and appetite control has direct implications 46 

regarding the role of exercise in regulating energy homeostasis and weight control (1,2). It is 47 

well-documented that circulating concentrations of acylated ghrelin are suppressed and 48 

satiety hormones, most notably peptide YY (PYY), are elevated in response to acute bouts of 49 

moderate- to high-intensity exercise (3). These hormonal fluctuations coincide with a 50 

transient reduction in appetite during and immediately after exercise without stimulating 51 

compensatory increases in appetite and ad libitum energy intake in the short term (4,5).  52 

The notion of inter-individual variability in response to an intervention, within the context of 53 

‘personalised’ or ‘precision’ medicine, continues to attract significant scientific attention (6-54 

8). Whilst the majority of researchers have focussed on main effects and mean group changes, 55 

some investigators have attempted to quantify the individual variability in appetite and 56 

energy intake responses to acute (9-11) and chronic (12,13) exercise interventions. Some 57 

researchers have classified individuals as ‘compensators’ or ‘non-compensators’ according to 58 

the individual magnitude and direction of change in energy intake they observed after 59 

exercise (9,10). Although the important issue of inter-individual variability has been 60 

considered in exercise and appetite regulation studies, recent evidence has recognised that the 61 

methodological and statistical approaches for such investigations are challenging and often 62 

lacking in some cases (6,14,15).  63 

One approach to quantifying “true” individual responses is via the participant-by-response 64 

interaction term in a statistical model, which requires replicated intervention and comparator 65 

arms with sufficient washout (16,17). Previous researchers have reported intra-class 66 

coefficients to support claims that pre-to-post changes in ad libitum energy intake in response 67 

to acute exercise are not consistent within an individual over time (11,18). Inter-individual 68 



variability in appetite and appetite-regulatory hormone responses to repeated acute exercise 69 

exposures are suspected; however, no published studies have confirmed this notion using 70 

robust designs (the replicated cross-over) and appropriate statistical models.  71 

Therefore, the aims of the present study were to examine the reproducibility of appetite, 72 

acylated ghrelin and total PYY responses to acute exercise bouts, and to quantify the 73 

magnitude of individual differences in responses using a replicated cross-over design. Recent 74 

insights have provided a framework for the accurate statistical analyses to quantify true inter-75 

individual variability in exercise responses using the standard deviation (SD) of the change 76 

scores and participant-by-response interaction (6,14-17). Using these approaches, it was 77 

hypothesised that exercise-induced changes in subjective and hormonal appetite parameters 78 

would be reproducible on repeated occasions and true inter-individual variability in appetite 79 

responses to acute exercise bouts would be observed in healthy, recreationally active men.   80 

 81 

Methods 82 

Ethical approval 83 

This study was conducted in accordance with the Declaration of Helsinki (2013) and all 84 

procedures were approved by the local ethics advisory committee. All participants provided 85 

written informed consent before taking part in any aspect of the study. 86 

Participants 87 

Fifteen healthy, recreationally active men (mean (SD): age 23 (3) years, body mass 81.9 88 

(11.4) kg, body mass index 24.8 (3.0) kg·m-2, waist circumference 84.3 (6.9) cm, body fat 89 

percentage 13.1 (5.9)%, peak oxygen uptake (V̇O2) 54.9 (6.5) mL·kg-1·min-1) participated in 90 

the study. The participants’ body mass was stable; ≤ 3 kg (≤ 3.7%) change in the previous 3 91 



months. Participants were non-smokers, had no history of cardiovascular or metabolic disease, 92 

and were not dieting or taking any medications.  93 

Preliminary measurements 94 

Before the main experimental conditions, participants attended the laboratory for a 95 

preliminary visit to complete screening questionnaires, and to undergo familiarisation, 96 

anthropometric measurements and exercise testing. Specifically, participants completed 97 

questionnaires assessing health status, food preferences, habitual physical activity 98 

(International Physical Activity Questionnaire) (19) and psychological eating tendencies 99 

(Three-Factor Eating Questionnaire) (20). Height and body mass were quantified using an 100 

electronic measuring station (Seca, Hamburg, Germany). Waist circumference was measured 101 

at the narrowest point of the torso between the lower rib margin and the iliac crest. The sum 102 

of seven skinfolds was used to estimate body density (21) and body fat percentage (22). 103 

After familiarisation with walking and running on the treadmill (Technogym Excite Med, 104 

Cesena, Italy), participants completed two preliminary exercise tests. The first test involved a 105 

16-min submaximal incremental treadmill protocol divided into 4  4 min stages to determine 106 

the relationship between treadmill speed and oxygen consumption. The initial running speed 107 

was set between 8 to 12 km·h-1 depending on each participant’s fitness level, and the 108 

treadmill speed was increased by 1–1.5 km·h-1 at the start of each subsequent stage. Heart 109 

rate was monitored continuously using short-range telemetry (Polar A3, Kempele, Finland), 110 

and ratings of perceived exertion (RPE) (23) were assessed at the end of each stage. Expired 111 

air samples were collected into Douglas bags in the final minute of each 4 min stage. Oxygen 112 

consumption and carbon dioxide production were determined using a paramagnetic oxygen 113 

analyser and an infrared carbon dioxide analyser (Servomex 1400, East Sussex, UK), and the 114 

volume of expired air was quantified using a dry gas meter (Harvard Apparatus, Kent, UK). 115 



After a 20-min standardised rest period, peak V̇O2 was measured using an incremental uphill 116 

treadmill protocol at a constant speed until the participants reached volitional fatigue. The 117 

initial incline of the treadmill was set at 3.5% which was increased by 2.5% every 3 min (24). 118 

Peak V̇O2 was determined from an expired air sample collected in the final minute when 119 

participants indicated that they could only continue for an additional 1 min. Heart rate and 120 

RPE were monitored throughout the tests as described previously. Data from the 16-min 121 

submaximal incremental and peak V̇O2 tests were used to determine the running speed 122 

required to elicit 70% of peak V̇O2 during the experimental exercise conditions.  123 

Experimental design 124 

In a replicated, cross-over experimental design, participants were randomised to different 125 

sequences of four experimental conditions: two control and two exercise (17). Each condition 126 

was separated by an interval of at least five days. Participants completed a weighed food 127 

record in the 24 h preceding the first experimental condition and were instructed to replicate 128 

this feeding pattern before each subsequent condition. Participants refrained from alcohol, 129 

caffeine, and strenuous physical activity during the same period. A standardised meal was 130 

consumed in the evening before the experimental conditions consisting of a pepperoni pizza 131 

(4891 kJ, 48% carbohydrate, 18% protein, 34% fat). Participants were instructed to consume 132 

the meal between 19:00 and 20:00, after which they consumed no food or drink except plain 133 

water until arriving at the laboratory the next morning. 134 

Main trials 135 

Participants arrived at the laboratory at 08:00 having fasted overnight for a minimum of 12 h. 136 

A cannula (Venflon, Becton Dickinson, Helsingborg, Sweden) was inserted into an 137 

antecubital vein for venous blood sampling, and participants rested for 1 h (~08:00–09:00) to 138 

acclimatise to the study environment (25). During both exercise conditions, participants then 139 



completed 60 min of fasted treadmill running at a speed predicted to elicit 70% of peak V̇O2. 140 

One minute expired air samples were collected and analysed every 15 minutes, and the 141 

treadmill speed was adjusted if necessary during both exercise conditions to ensure the target 142 

exercise intensity was achieved. Heart rate was monitored continuously and RPE was 143 

determined after each expired air sample was collected. The exercise energy expenditure and 144 

substrate utilisation were subsequently estimated using the equations of Frayn (26). Identical 145 

procedures were completed during both control conditions except participants rested within 146 

the laboratory for the equivalent duration.  147 

Appetite perceptions 148 

Ratings of perceived appetite (hunger, satisfaction, fullness and prospective food 149 

consumption (PFC)) were assessed immediately before (0 h) and after (1 h) the exercise and 150 

control interventions using 100 mm visual analogue scales (27). The scales were anchored by 151 

a descriptor at each end defining the extremes of the appetite perception being measured. 152 

Blood sampling and biochemical analysis 153 

Blood samples were collected in the semi-supine position immediately before (0 h) and after 154 

(1 h) the exercise and control interventions for the assessment of plasma acylated ghrelin and 155 

total PYY concentrations. Plasma acylated ghrelin concentrations were quantified from 156 

venous blood samples collected into pre-chilled 4.9 mL EDTA monovettes (Sarstedt, 157 

Leicester, UK). These monovettes contained p-hydroxymercuribenzoic acid to prevent the 158 

degradation of acylated ghrelin by protease and were centrifuged at 2,383 g for 10 min at 4°C 159 

(Burkard, Hertfordhire, UK). The plasma supernatant was aliquoted into a storage tube and 160 

100 µL of 1 M hydrochloric acid was added per milliliter of plasma. Samples were re-161 

centrifuged at 2,383 g for 5 min at 4°C before being transferred into Eppendorf tubes and 162 

stored at -80°C for later analysis. Venous blood samples for plasma total PYY were collected 163 



into pre-chilled 4.9 mL EDTA monovettes (Sarstedt, Leicester, UK) and centrifuged at 2,383 164 

g for 10 min at 4°C prior to storage at -80°C. Measurements of haemoglobin and haematocrit 165 

were determined in duplicate at 0 and 1 h in all conditions to calculate the acute change in 166 

plasma volume (28).  167 

Commercially available enzyme immunoassays were used to determine the plasma 168 

concentrations of acylated ghrelin (SPI BIO, Montigney le Bretonneux, France) and total 169 

PYY (Millipore, Watford, UK). All samples were analysed in duplicate. To eliminate inter-170 

assay variation, samples for each participant were analysed in the same run. The within-batch 171 

coefficients of variation for acylated ghrelin and total PYY concentrations were 4.1% and 172 

3.6%, respectively. 173 

Statistical analyses 174 

Data were analysed using the IBM SPSS Statistics software for Windows version 23.0 (IBM 175 

Corporation, New York, USA) and the PROC MIXED procedure in SAS OnDemand for 176 

Academics (https://www.sas.com/en_us/software/on-demand-for-academics.html). The 177 

presence of inter-individual differences in acylated ghrelin, total PYY and perceived appetite 178 

responses to acute exercise bouts were examined according to three recently-reported 179 

analytical approaches (6,16,17): 180 

(i) Pearson’s correlation coefficients were quantified between the exercise and control pre-to-181 

post (0 to 1 h) change scores for each appetite parameter on the two occasions (17). The first 182 

exercise bout in any participant’s sequence was paired to the first control bout in the same 183 

individual’s sequence. Differences between these trials were correlated with the second 184 

exercise-control condition differences in the participant’s trial sequence. Thresholds of 0.1, 185 

0.3 and 0.5 were used to define small, moderate and large correlation coefficients, 186 

respectively (29).  187 

https://www.sas.com/en_us/software/on-demand-for-academics.html


(ii) The difference in SDs of the pre-to-post changes between the exercise and control 188 

conditions was calculated to represent the true individual response SD using the following 189 

equation: 190 

SDR =  √SDE
2 − SDC

2  191 

where SDR is the SD of the true individual response to the exercise conditions and SDE and 192 

SDC are the SDs of the pre-to-post change scores for the exercise and control conditions, 193 

respectively (6,15). This estimation of the true SD for individual differences in response 194 

should be considered a “naïve estimation”, since important aspects of the experimental design, 195 

e.g. period effects, are not included. Therefore, a modelling approach to this estimation was 196 

also adopted (see iii below). 197 

(iii) A within-participant linear mixed model was formulated to quantify any participant-by-198 

condition interaction for each appetite parameter. Condition and period (sequence) were 199 

initially modelled as fixed effects. Senn et al. (2011) raised the question of whether the 200 

participant and participant-by-condition interaction terms should be modelled as fixed or 201 

random effects (16). Differences between these modelling approaches may exist depending 202 

on the distribution of the participant factor and the magnitude of the treatment (exercise 203 

effect). Our sample was, in clinical trial terms, relatively small and we expected the general 204 

effects of exercise to be substantial. Therefore, we modelled our data with participant and 205 

participant-by-condition terms as both fixed and random effects, and compared these results 206 

as a sensitivity analysis. When the participant-by-condition interaction was considered as a 207 

random effect, we used the SAS code supplied by Senn et al. (2011) with a modification 208 

designed to derive the true individual response variance (also estimated by approach ii) (16). 209 

This modification involved the adding of a covariate “dummy” variable we called “XVARE” 210 

(refer to the SAS code supplied in Supplemental digital content 1). 211 



It is also relevant to explore the extent to which an individual’s response depends on their 212 

status at baseline (6). Therefore, baseline status of the dependent variable was added to the 213 

various linear mixed models as a covariate. The mean differences between conditions were 214 

also quantified with this same statistical model. 215 

We found that correction of appetite hormone concentrations for acute changes in plasma 216 

volume had a negligible influence on our findings. Therefore, the unadjusted plasma 217 

concentrations are displayed for simplicity. Absolute standardised effect sizes (ES) were 218 

calculated, with a standardised ES of 0.2 denoting the minimum important mean difference 219 

for all outcomes, 0.5 - moderate and 0.8 - large (29). To calculate the minimal clinically 220 

important difference (MCID) for individual responses, the threshold of 0.2 for interpreting 221 

standardised mean changes (29) was halved, i.e. 0.1, and multiplied by the baseline between-222 

subject SD (6,15). Pearson’s correlation coefficients were quantified between the pooled 223 

mean pre-to-post change in appetite-regulatory hormone concentrations and the pooled mean 224 

pre-to-post change in appetite perceptions across the four conditions.  225 

Data are described as mean (SD). Mean differences and correlation coefficients are presented 226 

along with respective 95% confidence intervals (95% CI). P-values are expressed in exact 227 

terms apart for very low values, which are expressed as P < 0.001, and statistical significance 228 

was accepted as P < 0.05. 229 

 230 

Results 231 

Treadmill exercise responses 232 



Treadmill exercise responses are displayed in Table 1. No statistically significant nor 233 

practically important differences were observed in any of the treadmill exercise responses 234 

between the two exercise sessions (P ≥ 0.13).  235 

Acylated ghrelin 236 

A moderate positive correlation of 0.57 (95% CI 0.08 to 0.84, P = 0.025) was observed 237 

between the two sets of control-adjusted exercise responses for acylated ghrelin (Figure 1A). 238 

The within-trial SD for acylated ghrelin was substantially greater for the exercise than control 239 

conditions (Table 2). Baseline-adjusted linear mixed models for acylated ghrelin 240 

concentrations revealed a significant main effect of condition (P < 0.001) and a significant 241 

participant-by-condition interaction (P < 0.001). The mean acylated ghrelin concentration 242 

was 51 pg·mL-1 lower (95% CI -59 to -43 pg·mL-1, ES = 0.62) in the exercise versus control 243 

conditions. The magnitude of change in individual replicated mean responses after exercise 244 

for acylated ghrelin ranged from -141 to -9 pg·mL-1, with 100% (n = 15) of participants 245 

demonstrating a suppression beyond the MCID (±8.20 pg·mL-1) (Figure 1B).  246 

Total PYY 247 

A small positive correlation of 0.27 (95% CI -0.28 to 0.69, P = 0.339) was observed between 248 

the two sets of control-adjusted exercise responses for total PYY (Figure 2A). Based on the 249 

recommendations of Hopkins et al. (2009), an outlier was identified who exhibited a PYY 250 

response greater than 3.5 residual SDs from the mean predicted value (30). After removal of 251 

the outlier, the correlation for total PYY increased to 0.71 and became significant (95% CI 252 

0.31 to 0.90, P = 0.003) (Figure 2B). The within-trial SD for total PYY was substantially 253 

greater for the exercise than control conditions (Table 2). Baseline-adjusted linear mixed 254 

models for total PYY concentrations revealed a significant main effect of condition (P < 255 

0.001) and a significant participant-by-condition interaction (P = 0.012). The mean total PYY 256 



concentration was 56 pg·mL-1 higher (95% CI 44 to 68 pg·mL-1, ES = 1.49) in the exercise 257 

versus control conditions. The magnitude of change in individual replicated mean responses 258 

after exercise for total PYY ranged from 3 to 112 pg·mL-1, with 93% (n = 14) of participants 259 

demonstrating an increase beyond the MCID (±3.75 pg·mL-1) (Figure 2C). 260 

Appetite ratings 261 

Moderate-to-large positive correlations were observed between the two sets of control-262 

adjusted exercise responses for hunger (r = 0.82, 95% CI 0.53 to 0.94, P < 0.001), 263 

satisfaction (r = 0.74, 95% CI 0.37 to 0.91, P = 0.002), fullness (r = 0.55, 95% CI 0.05 to 264 

0.83, P = 0.035) and PFC (r = 0.54, 95% CI 0.04 to 0.82, P = 0.036) (Figure 3). The within-265 

trial SD was substantially greater for the exercise than control conditions for hunger, 266 

satisfaction, fullness and PFC (Table 2).  267 

Baseline-adjusted linear mixed models for all ratings of perceived appetite revealed a main 268 

effect of condition (P < 0.001) and participant-by-condition interactions (P ≤ 0.053). The 269 

main effect of condition identified suppressed appetite in the exercise compared with control 270 

conditions. The mean ratings of hunger and PFC were 26 mm (95% CI -29 to -22 mm, ES = 271 

1.47) and 19 mm (95% CI -25 to -13 mm, ES = 1.05) lower in the exercise versus control 272 

conditions, respectively. The mean ratings of satisfaction and fullness were 15 mm (95% CI 273 

11 to 20 mm, ES = 0.95) and 14 mm (95% CI 8 to 21 mm, ES = 0.88) higher in the exercise 274 

versus control conditions, respectively. The magnitude of change in individual replicated 275 

mean responses after exercise ranged from -65 to 10 mm for hunger, -13 to 72 mm for 276 

satisfaction, -23 to 89 mm for fullness and -96 to 7 mm for PFC. Ninety-three percent (n = 277 

14) of participants demonstrated a response beyond the MCID for hunger (±1.76 mm; 13% 278 

above, 80% below) and satisfaction (±1.62 mm; 60% above, 33% below), 87% (n = 13) for 279 



fullness (±1.64 mm; 53% above, 33% below) and 100% (n = 15) for PFC (±1.82 mm; 33% 280 

above, 67% below) (Figure 4). 281 

A sensitivity analysis with the participant factor entered into the statistical model as a random, 282 

rather than a fixed, effect also resulted in participant-by-condition interactions for all appetite 283 

parameters (Table 2, P = 0.013–0.077).  284 

Correlations 285 

A large positive correlation was observed between the pre-to-post change in acylated ghrelin 286 

and the change in both hunger (r = 0.72, 95% CI 0.33 to 0.90, P = 0.002) and PFC (r = 0.63, 287 

95% CI 0.17 to 0.86, P = 0.011). There were no significant correlations between the pre-to-288 

post change in PYY and appetite perceptions (P ≥ 0.129) (refer to Supplemental digital 289 

content 2). 290 

Discussion 291 

The primary finding from our replicated cross-over trial of appetite responses to exercise was 292 

that true inter-individual variability exists in the appetite, acylated ghrelin and total PYY 293 

responses to acute exercise bouts beyond any measurement error and random within-subject 294 

variability over time. A further finding was the moderate-to-large positive correlations 295 

observed between the exercise and control pre-to-post change scores on two occasions, 296 

indicating good reproducibility for exercise-induced changes in appetite parameters. 297 

Our study supports previous literature by confirming the appetite suppressing effect of acute 298 

exercise (3,5). In this regard, the grand mean changes at the sample level indicated a 299 

suppression of acylated ghrelin and perceived appetite, and an increase in total PYY after the 300 

exercise session. The correlation coefficients quantified between the exercise and control pre-301 

to-post change scores on the two pairs of conditions were positive, significant and moderate-302 



to-large for perceived appetite and acylated ghrelin. Although the correlation for total PYY 303 

was small and non-significant, closer examination of the change scores revealed that one 304 

participant presented two very opposite responses to exercise. Specifically, the change score 305 

between the first pair of trials indicated a suppression in total PYY (-34 pg·mL-1) and the 306 

second pair of trials showed a very strong increase in total PYY levels (146 pg·mL-1) (Figure 307 

2A, 2C). The reason for this disparity is unclear and removal of this apparent outlier resulted 308 

in a larger correlation of similar magnitude to the other appetite-related outcomes measured 309 

in our study. Overall, responses to exercise were similar on repeated occasions, providing 310 

evidence to support the reproducibility of changes in appetite parameters after acute exercise. 311 

While no previous researchers have quantified the reproducibility of perceived appetite or 312 

appetite-regulatory hormone responses to acute exercise, the reproducibility of post-exercise 313 

energy intake has received more attention (11,18,31). Specifically, Laan et al. (31) reported 314 

good reproducibility for ad libitum energy intake after duplicate aerobic exercise, resistance 315 

exercise and resting control conditions in young, active adults (31). However, the difference 316 

in ad libitum energy intake between the exercise and control conditions was not calculated in 317 

the study by Laan et al. (31). Therefore, it can be said that within-subject variations were not 318 

taken into account and the possibility of the observed responses to exercise being exclusively 319 

due to measurement errors and random variability cannot be excluded (6,15). Although 320 

energy intake appears reproducible when considering repeated resting and exercise 321 

conditions in isolation (11,31), the reproducibility of the difference in ad libitum energy 322 

intake between exercise and control interventions appears low when assessed with the use of 323 

intra-class coefficients (11,18).  324 

Alongside the good reproducibility of appetite responses to acute exercise, our data show that 325 

individuals differ in the general magnitude of this response (the mean of the replicated trials, 326 

Figures 1B, 2C and 4). A statistically significant participant-by-condition interaction was 327 



observed for all appetite parameters, even after adjusting for baseline values. Although 328 

previous studies have reported individual variability in perceived appetite and energy intake 329 

responses to acute exercise in healthy (9) and overweight and obese women (10), this 330 

variability was estimated using a single pair of trials, i.e. one control and one exercise 331 

condition. Repeated administrations of treatment in a cross-over fashion with a comparator 332 

arm (control condition) are required to assess individual variability in response to short-term 333 

or acute interventions from the participant-by-condition interaction term (15). We are not 334 

aware of previous studies assessing individual variability in appetite and appetite-regulatory 335 

hormone responses to acute exercise using a replicated cross-over design and the statistical 336 

methods employed in the present study. 337 

The SD of the change scores is a good indication of individual variability in the responses to 338 

an intervention. If the SD of the change scores does not differ substantially between control 339 

and intervention conditions, the change originated by the intervention could be explained by 340 

random within-subject variation and measurement error (6,15). The true individual response 341 

SD (using both estimates 1 and 2) was relatively large compared with the mean response for 342 

all appetite-related variables measured in this study (Table 2). For example, while the mean 343 

unadjusted exercise response (versus control change) for acylated ghrelin was approximately 344 

47 pg·mL-1, the true individual response SD was approximately ±30 pg·mL-1 (Table 2). This 345 

SD indicates the presence of substantial true inter-individual differences in the acylated 346 

ghrelin response to exercise; this interpretation also applies to the other appetite parameters 347 

we assessed.  348 

Furthermore, we also highlight that the vast majority of participants showed appetite 349 

responses that exceeded the MCID we selected. Therefore, very few participants were 350 

identified as “non-responders”, but some were “very large responders” while others were 351 

“small responders” according to the magnitude of change in acylated ghrelin, total PYY and 352 



appetite perceptions after single bouts of exercise (Figures 1B, 2C, 4). Specifically, all 353 

participants demonstrated replicated mean responses beyond the MCID for circulating 354 

acylated ghrelin indicating an exercise-induced suppression of this hormone, and 93% of 355 

participants experienced an increase in circulating total PYY beyond the MCID. The 356 

direction of the replicated mean responses was more variable for the perceived appetite 357 

ratings. Of the participants that demonstrated replicated mean responses beyond the MCID, 358 

53–80% of participants reported suppressed appetite after exercise (i.e., lower hunger and 359 

PFC, higher satisfaction and fullness), whereas 13–33% of participants reported higher 360 

perceived appetite after exercise (i.e., higher hunger and PFC, lower satisfaction and fullness).  361 

Although some studies report concomitant changes in appetite-regulatory hormones and 362 

appetite perceptions in response to acute exercise at the group level (32,33), exercise-induced 363 

changes in these parameters do not always occur simultaneously (34-36). The present study 364 

extends these findings by demonstrating that the majority of participants exhibited 365 

corresponding exercise-induced changes in acylated ghrelin, total PYY and appetite 366 

perceptions, and is further supported by the meaningful positive relationships observed 367 

between the pre-to-post change in acylated ghrelin and the change in hunger and PFC. 368 

However, some participants demonstrated divergent subjective and hormonal appetite 369 

responses to exercise. It is well established that appetite regulation is a complex process 370 

involving the interaction of many physiological and psychological factors (1). Therefore, 371 

perceived appetite in some participants could have been more strongly affected by other 372 

variables not assessed in the present study. In this regard, several other anorexigenic gut 373 

peptides are involved in the acute regulation of appetite including cholecystokinin, 374 

oxyntomodulin, pancreatic polypeptide and glucagon-like peptide-1. Indeed, the absence of 375 

significant correlations between the pre-to-post change in total PYY and appetite perceptions 376 

may reflect the notion that PYY acts synergistically with these other satiety signals to 377 



suppress appetite. Furthermore, appetite control is influenced by a variety of non-homeostatic 378 

factors such as neuronal responses, hedonic processes and cognitive/behavioural cues (37). 379 

Future studies should consider the aforementioned appetite parameters to provide a more 380 

holistic scientific understanding of the variability in appetite responses after acute exercise.  381 

A potential source of variability in this study concerns the measurement of acylated ghrelin 382 

and total PYY concentrations from venous blood samples collected from an antecubital vein. 383 

Recent studies suggest that compared to arterialised blood, venous blood provides lower 384 

concentrations of glucagon-like peptide-1 (38) as well as lower glucose concentrations and 385 

higher insulin sensitivity (39). Although limited evidence in patient populations suggests that 386 

fasting ghrelin concentrations are comparable between venous and arterialised blood (40,41), 387 

direct comparisons of acylated ghrelin and total PYY between arterialised and venous blood 388 

after exercise has not been investigated. Nevertheless, the findings of the present study are 389 

relevant to the wider exercise and appetite regulation literature where blood sampling from an 390 

antecubital vein is commonplace for quantifying appetite-regulatory hormone concentrations. 391 

The strengths of our study include the replicated cross-over design and the use of recently 392 

published robust statistical analyses for individual variability quantification. Moreover, the 393 

detailed standardisation protocol followed by all participants during the 24 h preceding each 394 

laboratory visit and the precise replication of the exercise sessions add credibility to our 395 

results. However, it should be highlighted that our results cannot be generalized to other 396 

populations such as females, overweight or obese, and older individuals who may present 397 

different results (42,43). It is also possible that different exercise modes, intensities, or 398 

session durations would elicit different responses (5,34,44). Therefore, further research is 399 

needed to assess the reproducibility and individual variability of exercise-induced changes in 400 

appetite-regulatory hormones and appetite perceptions in other populations and with different 401 

exercise protocols. The publication of more studies investigating individual variability in 402 



appetite responses to exercise may stimulate the development of more efficient weight 403 

management strategies by determining whether an exercise intervention is likely to be 404 

beneficial, ineffective or detrimental for different individuals. This information would help to 405 

identify individuals who may achieve more favourable appetite responses through alternative 406 

exercise and/or nutritional interventions, but further work is required to examine this 407 

chronically. 408 

In conclusion, healthy, young men exhibited reproducible appetite responses to acute exercise, 409 

and true individual variability exists in acylated ghrelin, total PYY and perceived appetite 410 

responses over and above any random within-subject variability and measurement error. 411 

Individual variability in appetite responses to acute exercise needs to be considered when 412 

interpreting study results so that misleading conclusions can be avoided.  413 
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Figure legends 540 

Figure 1. (A) Relationship between exercise and control pre-to-post (0 to 1 h) change scores 541 

on the two occasions for acylated ghrelin. 'Response 1' corresponds to the first pair of 542 

conditions (exercise 1 minus control 1) and 'Response 2' to the second pair of conditions 543 

(exercise 2 minus control 2). Dashed lines represent the mean responses. (B) Individual 544 

changes in acylated ghrelin between the exercise and control conditions (exercise minus 545 

control). Black circles (●) indicate pre-to-post change scores for ‘response 1’ and ‘response 2’ 546 

for each participant. Grey lines (▬) represent each participants’ replicated mean response. 547 

Dashed lines indicate the standardised minimal clinically important difference calculated as 548 

0.1 multiplied by the baseline between-subject SD (6). 549 

 550 

Figure 2. Relationship between exercise and control pre-to-post (0 to 1 h) change scores on 551 

the two occasions for total PYY before (A) and after (B) the removal of a substantial outlier. 552 

'Response 1' corresponds to the first pair of conditions (exercise 1 minus control 1) and 553 

'Response 2' to the second pair of conditions (exercise 2 minus control 2). Dashed lines 554 

represent the mean responses. (C) Individual changes in total PYY between the exercise and 555 

control conditions (exercise minus control). Black circles (●) indicate pre-to-post change 556 

scores for ‘response 1’ and ‘response 2’ for each participant. Grey lines (▬) represent each 557 

participants’ replicated mean response. Dashed lines indicate the standardised minimal 558 

clinically important difference calculated as 0.1 multiplied by the baseline between-subject 559 

SD (6). 560 

 561 



Figure 3. Relationship between exercise and control pre-to-post (0 to 1 h) change scores on 562 

the two occasions for (A) hunger, (B) satisfaction, (C) fullness, and (D) prospective food 563 

consumption (PFC). 'Response 1' corresponds to the first pair of conditions (exercise 1 minus 564 

control 1) and 'Response 2' to the second pair of conditions (exercise 2 minus control 2). 565 

Dashed lines represent the mean responses. 566 

 567 

Figure 4. Individual changes in each perceived appetite ratings between the exercise and 568 

control conditions (exercise minus control): (A) hunger, (B) satisfaction, (C) fullness, (D) 569 

prospective food consumption (PFC). Black circles (●) indicate pre-to-post change scores for 570 

‘response 1’ and ‘response 2’ for each participant. Grey lines (▬) represent each participants’ 571 

replicated mean response. Dashed lines indicate the standardised minimal clinically important 572 

difference calculated as 0.1 multiplied by the baseline between-subject SD (6).  573 



Table 1 The various responses during the treadmill exercise for the two exercise conditions.  

Variable 
Exercise 

condition 1 

Exercise 

condition 2 
95% CI* ES 

Oxygen uptake (mL·kg-1·min-1) 38.9 (5.1) 38.5 (4.9) -4.2 to 3.3 0.09 

% peak oxygen uptake 71 (3) 70 (3) -2 to 0.3 0.31 

Heart rate (beats·min-1) 176 (10) 176 (13) -5 to 4 0.04 

Rating of perceived exertion 15 (2) 15 (2) -1 to 0.2 0.13 

Respiratory exchange ratio 0.91 (0.03) 0.92 (0.04) -0.01 to 0.02 0.21 

Fat oxidation (g) 29 (12) 26 (14) -7 to 2 0.22 

Carbohydrate oxidation (g) 159 (29) 164 (36) -6 to 15 0.13 

Net energy expenditure (kJ) 3473 (551) 3433 (532) -104 to 23 0.08 

Values are mean (SD). *95% confidence interval for the mean absolute difference between 

exercise conditions. ES - standardised (to between-subjects SD) effect size.  
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Table 2 Unadjusted mean and standard deviations (SD) of the pre-to-post change scores for the exercise and control conditions and the true 

individual differences SD.  

Variable 
Exercise change 

Mean (SD) 

Control change 

Mean (SD) 

Estimate 1a Estimate 2b 

Individual 

differences SD 

Individual 

differences SD (SE) 
P-value 

Acylated ghrelin (pg·mL-1)  -41.9 (33.1) 4.8 (13.0) 30.4 30.9 (19.7) 0.014 

Total PYY (pg·mL-1) 40.7 (35.5) -10.7 (23.1) 27.0 25.7 (19.3) 0.077 

Hunger (mm) -13.6 (26.8) 10.5 (7.5) 25.7 24.5 (15.5) 0.013 

Satisfaction (mm) 6.5 (25.1) -7.7 (8.9) 23.5 23.2 (14.8) 0.015 

Fullness (mm) 3.6 (34.8) -8.3 (9.8) 33.4 31.6 (20.1) 0.013 

Prospective food consumption (mm) -9.9 (27.7) 7.7 (9.6) 26.0 23.7 (15.5) 0.019 

a Estimate 1: Individual differences SD estimated using SDR =  √SDE
2 − SDC

2 where SDR is the SD of the true individual response, and SDE and 

SDC are the SDs of the pre-to-post change scores for the exercise and control conditions, respectively (6,15). 

b Estimate 2: Individual differences SD estimated using a random effects statistical model based on Senn et al. (16). The SD was derived from 

the SAS model participant-by-condition interaction term (as a random effect). The P-value shown is also for this interaction term. 

SE, standard error. 
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