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ABSTRACT 
 
Introduction: This study aimed to compare the immediate effects of Posterior Anterior (PA) L4 and 

L5 mobilisations on range of motion and muscle activity measures in the lumbar and hamstring 

regions of asymptomatic individuals. 

 

Methods: Thirty-eight participants were randomly allocated to a mobilisation (n=20) or control 

(n=18) group. The mobilisation group received central PA mobilisations to the L4 and L5 vertebrae, 

three times for two minutes. The control group received no mobilisation. Pre- and post-test measures 

included lumbar range of motion, measured by the modified Schober test and hamstring extensibility 

by the active knee extension test.  Local Erector Spinae and Biceps Femoris muscle activation were 

also measured by surface Electromyography. Data were analysed using magnitude-based inferences. 

 

Results: Lumbar mobilisations had a most likely beneficial effect on active lumbar flexion 18.6% 

(90% CL 11.8% ± 25.8%) and active knee extension range 22.8% (-29.6%  ± 15.2%). Mobilisations 

had a possible beneficial effect in sEMG activation reduction of the Erector Spinae -4.7% (-10.5% ± 

1.4%) and Bicep Femoris -6.1% (-13.1% ± 1.6%) during lumbar flexion. Likely beneficial effects of 

reduced sEMG were found following mobilisations during the active knee extension test for the 

Erector Spinae -18.3% (-27.7% – 7.6%) and Biceps Femoris muscle activity -20.8% (-30.9% ± 9.2%).  

 

Discussion: L4 and L5 mobilisations increase lumbar and hamstring range of motion in the 

immediate term. Our unique finding was that, in this sample population, muscle activity in both local 

Erector Spinae and Biceps Femoris reduced, most likely due to the mobilisations applied. 
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INTRODUCTION 

Hamstring strains are one of the most common musculoskeletal injuries suffered within high-intensity 

intermittent sports [1-3]. The rehabilitation of hamstring strains continues to be problematic with no 

universally accepted rehabilitation programme; however the lumbar spine has been suggested as a 

pertinent area to treat as part of a multifactorial approach [4-7]. Evidence exists to support the efficacy 

of lumbar mobilisations to reduce spinal pain and restore mobility [8-12]. Furthermore, PA (Posterior 

Anterior) mobilisations have also produced increases in posterior chain neurodynamics and hamstring 

extensibility in a general population [13-14] and elite footballers [15]. This provides some evidence for 

the lumbar spine’s ability to influence the hamstring complex.   

 

Despite spinal mobilisations improving posterior neurodynamics, the mechanism of how this 

conservative treatment affects hamstring muscle activity has yet to be investigated. 

Neurophysiological responses to mobilisations have been suggested to involve centrally-mediated 

processes [16-19]. Research has focused on local muscle changes following PA mobilisations with 

Krekoukias et al [22] reporting reductions in the average sEMG (surface Electromyography) activity of 

the lumbar erector spinae. Taylor et al [23] and Sterling et al [24] have all reported decreased local 

muscular activity following central mobilisations. The metabolic activity within the hamstring 

complex is higher post hamstring injury compared to a non-injured control [25].  However, the ability 

for lumbar mobilisations to decrease the activity of distal muscle groups such as the hamstring 

complex has yet to be investigated. 

 

Lumbar mobilisations may offer the clinician a method of treating the hamstring group indirectly, in 

the acute injury stage, where traditional rehabilitation techniques including strength training and 

flexibility are restricted due to local tissue pathology [26-27].Accordingly, due to the current lack of 

evidence, the aim of our study was to investigate and quantify the potential effect of central PA 

lumbar mobilisations on active lumbar flexion range, hamstring extensibility and surface 

electromyography activity of the Erector Spinae and Biceps Femoris.  



 

METHODOLOGY 

Population 

An original population of forty-five  participants were recruited from staff and students at Teesside 

University, United Kingdom. Recruitment took place between May 2014-February 2015. Table 1 

displays the sample descriptions of both testing groups. 

Table 1 – Description statistics for intervention and control groups 

‘Insert Table 1 Here’ 

Participants were included if they were aged over eighteen, without current spinal or lower limb 

pathology. All participants were required to complete a medical questionnaire prior to testing. 

Exclusion criteria included current symptomatic low back pain, hamstring or hip pathology. Previous 

neurological disorders or current neurological symptoms also prevented inclusion. A history of 

lumbar surgery or any contraindication to spinal mobilisation prevented participation [28]. Following 

screening thirty-eight participants were eligible for inclusion. The study was granted ethical approval 

from Teesside University Research Ethics Committee (SSSBLREC230616).   

Protocol 

This study involved a randomised controlled trial pre-test/post-test parallel groups design to 

investigate the effects of central PA lumbar mobilisations on measures of lumbar and hamstring range 

of motion and muscle activity. This reporting will follow recommendations from CONSORT for 

publishing non-pharmacologic intervention studies [29].  Participants were electronically randomised 

by concealed allocation  to the intervention or control groups, via a blind assessor, without restriction 

to replicate clinical practice. Outcome measures taken at initial assessment included active lumbar 

flexion (ALF), active knee extension (AKE) and sEMG of the Erector Spinae and Biceps Femoris. All 

outcome measures were recorded by an assessor blinded to group allocation. sEMG during ALF and 

AKE were recorded together with resting potential. The order of the ALF and AKE were 



counterbalanced to prevent the order of assessment adversely influencing measurements. The 

study took place within a biomedical sciences laboratory at Teesside University at same time of day 

preventing diurnal differences. 

Pre-conditioning 

A pilot study conducted with six participants reported four ALF and AKE were required to counteract 

against variations in tissue extensibility [30-31]. The final ROM (range of motion) on the 4th repetition 

was recorded as the pre-intervention measurement.  A 20-min period was required for the clinician to 

explain, identify and perform lumbar mobilisations prior to re-testing. 

Lumbar Mobilisations 

Participants allocated to the intervention group received central PA lumbar mobilisations to the L4 

and L5 vertebrae segments. Participants lay prone on a plinth which was placed upon two force plates 

measuring the mobilisation force.  The force applied during the mobilisation protocol was an average 

force of 104.18N±11.2 in line with previous studies for a grade three PA mobilisation [22]. Grade three 

mobilisations were applied to the intervention group by a physiotherapist with 9 years’ clinical 

experience and postgraduate manual therapy qualifications. The mobilisation was performed for two 

minutes, three times alternating between L4 and L5, without rest in between [28,32]. Each vertebra level 

was determined by  the palpation of relevant spinous processes and passive physiological 

intervertebral movement. The mobilisations were applied at a frequency of 1Hz maintained by a 

metronome. Force plate data was recorded at 500Hz above the frequency of the mobilisations 

preventing sampling errors. 

The control group following pre-measurement lay in prone on a plinth for the twenty minute interval 

determined by the pre-conditioning study. Post intervention and control ALF and AKE were re-

assessed immediately via a single test with measurements taken. The reassessment process took 

approximately three minutes per participant.  

Active Lumbar Flexion Measurement 



The modified Schober (mSchober) test was performed to measure lumbar flexion. The mSchober test 

has been reported to obtain high reliability and has been recommended as an appropriate clinical 

evaluation tool of lumbar spinal motion [33-34]. The mSchober test was performed with the participant 

standing on a wooden box 60cm in height with feet positioned 8cm apart indicated by tape. The lead 

researcher, via a skin marker, identified one point 5cm below and one point 10 cm above the 

lumbosacral junction, determined by a passive physiological intervertebral movement [28, 34]. 

Participants were instructed to actively flex forward as far as possible, whilst keeping the knees 

extended, and to maintain this position until instructed to return to neutral. The distance between the 

two skin marks was measured by a tape measure (seca Germany) in centimeters pre and post-test with 

the difference recorded as the range of lumbar flexion.  

 

Active Knee Extension Measurement 

Active hamstring extensibility of the dominant leg determined by kicking foot was assessed via the 

AKE test, a reliable method of measuring hamstring tissue extensibility [35-37]. Participants lay supine 

on a padded plinth secured by a 5 centimeter mobilisation belt placed across the anterior superior iliac 

spine. Another mobilisation belt was placed 20 centimeters above the tibial tuberosity preventing 

motion of the non‐dominant/testing leg [38]. The belt positions were marked for re-measurement 

purposes. A purpose made wooden wedge provided a right angle surface to ensure the hip was 

supported at 90 degrees.  Hamstring extensibility was tested till the end of maximal range determined 

by the participant and was acknowledged by a manual trigger [39].  An inclinometer (Dr Rippstein, 

Zurich, Switzerland) recorded positional change and was placed on the anterior tibial border midway 

between the inferior pole of the patella and the line between the malleoli [40].The ankle was maintained 

in plantigrade by a medical brace. 

 

EMG Application 

sEMG of the Bicep Femoris and Erector Spine was recorded on the participant’s dominant side. As 

the most common hamstring tendon injured, Biceps Femoris, was chosen for EMG application [41]. 



These superficial muscles provide an accurate recording, clearer signals and reduce potential issues 

with sEMG cross talk [42]. sEMG was recorded for 10 seconds at rest pre and post intervention in 

prone, at end range of ALF and AKE pre and post intervention and control. Average values for the 10 

seconds were used for analysis.  Recording in a static position eliminated any movement artefact 

noise originating at the electrode-skin interface.    

Prior to the bipolar electrode application the area of skin was shaved and cleaned with a 70% 

isopropyl alcohol wipe. Noraxon, self-adhesive Ag/AgCl snap electrodes (Noraxon USA) were then 

applied providing a stable transition with low noise [43].  Noraxon electrodes have an inter electrode 

space of 20mm and were placed on the relevant muscle tissue in accordance to Seniam 

recommendations [43]. The position of the electrode for the Erector Spinae (longissimus) was placed 

two finger widths lateral to L1. The electrode for the Biceps Femoris was placed on the line half way 

between the ischial tuberosity and the lateral epicondyle of the tibia.  Electrodes remained in position 

throughout the testing procedure minimising potential electrode placement error. 

EMG Data Collection and Filter  

The sEMG was recorded at 2000Hz using the Cometa wave wireless EMG system. The A/D data 

logger converted the collected data at 2000HZ for each intervention. The sEMG signal was processed 

and filtered using Cometa v1.6 software. The data was processed using a high pass Butterworth filter 

with a cut off frequency of 20Hz [43-45].  

The data was rectified and smoothed using a RMS filter with a floating window of 20ms [22, 46, 47]. The 

zero wire system eliminated any cable motion artefacts that could contaminate the sEMG signal. This 

study compared low level sEMG data, which is inherently unstable, and therefore no Maximum 

Voluntary Contraction (MVC) was recorded. Recording MVC would have increased muscle activity 

potentially influencing data recorded at rest, during ALF and AKE [48].  Within a data collection 

session where no individual changes to the configuration of the EMG set-up (electrode placement, 

amplification, filtering) has taken place and whilst under constant temperature and humidity 

conditions EMG data does not need to be normalised against a MVC to be interpreted [49-50].  



Statistical Analysis  

Raw data is presented as the mean ± SD. Before analysis, data were log transformed and then back 

transformed to obtain the difference between lumbar flexion range, hamstring extensibility and sEMG 

of the lumbar extensors and Bicep Femoris as accurate percentages. This method also reduced the 

error rising from non-uniform residuals. The use of the P value alone fails to provide information 

about the direction, effect size or the range of feasible values [51]. We therefore used the magnitude-

based inference approach to examine the range of motion change in the lumbar spine and hamstring, 

sEMG activity in the local lumbar extensors and biceps femoris following PA lumbar mobilisations. 

Effect sizes of 0.2, 0.6, and 1.2 multiplied by the pooled between-participant SD were considered 

small, moderate and large, respectively [52], with uncertainty of the estimates shown as 90% 

confidence intervals. Subsequently, inference was based on the disposition of the confidence interval 

for the mean difference to this smallest worthwhile effect (0.2 of the between-subject SD); the 

probability (percent chances) that the true population difference between pre- and post-test, and also 

the pre-post intervention-control difference is substantial (> smallest worthwhile effect) or trivial was 

calculated as per the magnitude-based inference approach [53]. These percent chances were qualified 

via probabilistic terms assigned using the following scale: 0.5%, most unlikely or almost certainly 

not; 0.5–5%, very unlikely; 5–25%, unlikely or probably not; 25–75%, possibly; 75–95%, likely or 

probably; 95–99.5%, very likely; and .99.5%, most likely or almost certainly [54]. Inferences were 

categorised as clinical, with the default probabilities for declaring an effect clinically beneficial being 

<0.5% (most unlikely) for harm and >25% (possibly) for benefit. All data were analyzed using a 

custom-made spread sheet [53]. 

 

RESULTS 

The baseline outcome measures, along with effect statistics and inferences for the within- and 

between-treatment comparisons are presented in Table 2. Outcome measures were obtained 

from all thirty-eight participants. After controlling for baseline imbalances and test order, the 



application of lumbar mobilisations had a most likely beneficial effect on active lumbar flexion 18.6% 

(90% CL 11.8% ± 25.8%) and active knee extension range 22.8% (-29.6%  ± 15.2%). 

 

During ALF mobilisations had a possible beneficial effect of reduction in sEMG activation of the 

Erector Spinae -4.7% (-10.5% ± 1.4%) and Bicep Femoris -6.1% (-13.1% ± 1.6%) when directly 

compared to the control condition. Likely beneficial effects were found following the intervention in 

sEMG during the AKE for the Erector Spinae -18.3% (-27.7% – 7.6%) and Biceps Femoris muscle 

activity -20.8% (-30.9% ± 9.2%). No harm or unintended effects were reported. 

 

Table 2 - Outcome measures at baseline with effect statistics and inferences for within- and 

between-group comparisons 

 

‘Insert Table 2 Here’ 

 

DISCUSSION 

The effective treatment of the hamstring region continues to be one of the most difficult within sports 

medicine. Lumbar spine mobilisations are a conservative technique used by clinicians to treat not only 

the lumbar region but the hamstring complex, despite a lack of evidence to support its effectiveness. 

Therefore, this randomised control trial aimed to investigate the effects of central PA lumbar 

mobilisations on range of motion and muscle activation of the Erector Spinae and Biceps Femoris. PA 

mobilisations had a likely beneficial increase in range of motion in the ALF and AKE tests. Following 

L4 and L5 mobilisations a possible beneficial effect on the reduction of sEMG activity of the Erector 

Spinae and Biceps Femoris was reported compared to the control. A likely beneficial effect in the 

reduction of both the Erector Spinae and Biceps Femoris occurred during the AKE test following the 

intervention. Accordingly, this is the first study of its kind to report changes in the ROM and sEMG 

activity of both the Lumbar and Hamstring following spinal mobilisations. 



A key and unique finding of this study is the beneficial effect of central PA L4 and L5 mobilisations 

on hamstring range and Biceps Femoris sEMG activity. Chesterton et al [15] reported an increase in 

hamstring range following spinal mobilisations; however the underlying mechanisms were not 

investigated. This study suggests that range increases in the hamstring are also associated with sEMG 

activity reduction. Local reduction in sEMG has been observed by Krekoukias et al [22] and Pentelka et 

al [54] in the Erector Spinae following PA mobilisations to the lumbar region. Both studies findings are 

consistent with findings following mobilisations to the temporomandibular joint [23] and the cervical 

spine [24]. sEMG reduction in these studies have been linked to decreased associated pain and 

increased range of motion. Perry and Green [55] concluded that unilateral lumbar mobilisations result 

in side-specific peripheral sympathetic nervous system changes. Therefore, neurophysiological and 

anatomical inter-relationships within the lumbar spine exist and can by externally modulated through 

the application of mobilisation.  

A number of mechanisms for this sEMG reduction have been described previously within the 

literature. Following passive mobilisations muscle spindle activity may increase, stimulating golgi-

tendon organ activity and in turn produce a muscle reflex inhibition [56-58]. A hypoalgesic response has 

also been found following mobilisation to the cervical spine [24, 59-61], the knee [62] and shoulder [63]. 

This study suggests these changes may be found in the hamstring following PA lumbar mobilisations. 

These results provide clinicians with a clearer understanding of the effect mobilising the lumbar spine 

has on the hamstring muscle group. Despite this asymptomatic population this type of conservative 

technique has the potential to be employed as part of a wider holistic approach to hamstring 

management. Clinicians have been advised to account for complex neuromuscular mechanisms within 

the hamstring complex, with the quantity of hamstring muscle activation and recruitment critical to 

injury risk [25]. Increased activation has been linked to hamstring injury causing premature fatigue. 

Therefore, decreasing muscle activity and increasing extensibility, may have a role in prevention and 

rehabilitation, especially in the lumbar related hamstring described by Orchard et al [64].  



Furthermore, this study also suggests L4 and L5 central PA mobilisations have the ability to increase 

spinal ROM in the immediate term.  These results are in contrast to Petty [65], Chiradejnant et al [66 -67] 

and Stamos-Papastamos et al, [32]  who all found no significant effect of lumbar mobilisations on range 

of motion. However, both Powers et al [68] and McCollam and Benson [69] both have reported increases 

in ROM post mobilisation. Powers [68] reported an average increase of 17.8% compared to 7.1% by 

McCollam and Benson [69]. The actual range required to be deemed clinically significant has yet to be 

identified but importantly all studies do not have a follow-up to understand the treatments longevity. 

The current study differs in intervention dose from Powers [68], two minute spinal mobilisations at one 

vertebral level, and McCollam and Benson [69], three one minute applications at L3, L4 and L5. The 

vast number of variables including study design, technique, grade, dose and level of mobilisation 

mean that study comparison is difficult. At least one key differing variable is found within each 

design, and careful consideration of methodology is required for future studies to allow direct 

comparison.  

Limitations and Future Research 

This study was conducted on asymptomatic participants and therefore the ability for lumbar PA 

mobilisations to influence the ROM and sEMG activity of symptomatic individuals remains unknown. 

Only immediate effects were investigated due to the study objectives and therefore conclusions of the 

short and medium term effects of the intervention are unidentified. These limitations in themselves 

pave the way for future research on mobilisations assessed in symptomatic participants across short, 

medium and long-term timeframes. Optimal dose, grade and level of mobilisation need further 

research for a deeper understanding of how lumbar mobilisations may support hamstring 

management. The study was not powered and therefore it is appropriate to interpret the 

conclusions generated with this understanding. The application of sEMG itself has limitations. 

The quality of sEMG signal can be affected by external noise, the pickup of electrical activity of 

adjacent muscle, the amount of active motor units at the time of recording and the depth of adipose 

tissue the signal has to travel through [70].  



Implications 

Mobilisations continue to form part of the management of patients with lumbar spine and hamstring 

pathology. The results of this study suggest PA lumbar mobilisations decreased the muscle activity of 

both the Erector Spinae and Biceps Femoris. Functionally, the mobilisations resulted in an increase of 

lumbar and hamstring range of motion compared to a control. As part of a multifactorial approach to 

hamstring management lumbar mobilisations, as a conservative treatment technique, have the capacity 

to influence the hamstring complex.   
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Table 1 – Description statistics for intervention and control groups 

 Intervention Group 
(n = 20 ) 

Control Group 
(n = 18 ) 

 Mean ± SD Mean ± SD 
Age (years) 3 ± 11 27.1 ± 4.09 

Height (cm) 172 ± 13 173.1 ± 9.9 

Body Mass (kg) 71 ± 15 72 ± 18 
 

  



Table 2 - Outcome measures at baseline with effect statistics and inferences for within- and between-group comparisons 
 

Outcome Measure 

Within-Group Changes  Between-Group 
(intervention-control) 

Differences Mobilization (n=20)  Control (n=18)  

Baseline 
values 

(mean ± SD) 

Change score 
(% mean; 

±90% CL ) 

Qualitative 
inference 

 Baseline 
values 

(mean ± SD) 

Change score 
(% mean; 

±90% CL ) 

Qualitative 
inference 

 

 Change score 
(% mean; 

±90% CL ) 

Qualitative 
inference 

 

ALF ROM 5.69 ± 1.31 18.3 ± 6 Small Effect; 
Mostly likely 

Beneficial  

 6.01 ± 1.79 0.3 ± 1.1 Small effect;  
Most Likely 
Trivial  

 18.6 (11.8 ± 
25.8) 

Large Effect; 
Likely  

Beneficial  
 

ALF EMG  Erector 
Spinae 
 

5.56 ± 1.12 -5.3 ± 0.8 Small Effect; 
Likely 

Beneficial  

 6.76 ± 2.55 -0.6 ± 0.3 Small effect; 
Most likely 
Trivial  

 -4.7(-10.5 ± 
1.4) 

 

Moderate 
Effect; 

Possible 
Beneficial 

 
ALF EMG  Bicep 
Femoris 
 

5.82 ± 1.52 -4.3 ± 7.9 Large Effect; 
Likely 

Beneficial 

 5.69 ± 2.1 1.9 ± 1.7 Small Effect; 
Most Likely 
trivial 

 -6.1 (-13.1  
1.6) 

Small Effect; 
Possible 

Beneficial 
 

AKE ROM 30.9 ± 10.41 23.2 ± 9.6 Large Effect; 
      Likely 
Beneficial  

 33.85 ± 10.93 -0.6 ± 1.4 Small Effect; 
Most Likely 
Trivial  
 

 22.8 (-29.6  ± 
15.2) 

Large Effect;  
Likely 

Beneficial 

AKE EMG  
Erector Spinae 
 

7.30 ± 5.16 16.2 ± 12.9 Small Effect; 
Very Likely 
Beneficial  

 

 8.47 ± 4.44 2.6 ± 2.3 Small Effect 
Most Likely 
Trivial  

 -18.3 (-27.7 ± 
7.6) 

 

Small Effect; 
Likely 

Beneficial- 

AKE EMG  Bicep 
Femoris 
 

11.8 ± 8.21 -21 ± 14.7 Small Effect; 
Likely 

Beneficial  

 11.54 ± 5.67 -0.3 ± 0.6 Small Effect 
Most Likely 
Trivial  

 -20.8 (-30.9 ± 
-9.2) 

Small Effect; 
Likely   

Beneficial 
 

 



 


