
Heterogeneous Facility Location without Money∗

Paolo Serafino Carmine Ventre
School of Computing
Teesside University

U. K.
email: {p.serafino, c.ventre}@tees.ac.uk

Abstract

The study of the facility location problem in the presence of self-interested agents has recently
emerged as the benchmark problem in the research on mechanism design without money. In the
setting studied in the literature so far, agents are single-parameter in that their type is a single number
encoding their position on a real line. We here initiate a more realistic model for several real-life
scenarios. Specifically, we propose and analyze heterogeneous facility location without money, a
novel model wherein: (i) we have multiple heterogeneous (i.e., serving different purposes) facilities,
(ii) agents’ locations are disclosed to the mechanism and (iii) agents bid for the set of facilities they
are interested in (as opposed to bidding for their position on the network).

We study the heterogeneous facility location problem under two different objective functions,
namely: social cost (i.e., sum of all agents’ costs) and maximum cost. For either objective function,
we study the approximation ratio of both deterministic and randomized truthful algorithms under the
simplifying assumption that the underlying network topology is a line. For the social cost objective
function, we devise an (n− 1)-approximate deterministic truthful mechanism and prove a constant
approximation lower bound. Furthermore, we devise an optimal and truthful (in expectation) ran-
domized algorithm. As regards the maximum cost objective function, we propose a 3-approximate
deterministic strategyproof algorithm, and prove a 3/2 approximation lower bound for deterministic
strategyproof mechanisms. Furthermore, we propose a 3/2-approximate randomized strategyproof
algorithm and prove a 4/3 approximation lower bound for randomized strategyproof algorithms.

1 Introduction

Mechanism design without money is a relatively recent and challenging research agenda introduced by
Procaccia and Tennenholtz in [16]. It is mainly concerned with the design of truthful (or strategyproof,
SP for short) mechanisms in scenarios where monetary compensation cannot be used as a means to re-
align the agents’ interest to the mechanism designer’s objective (as, e.g., done by VCG mechanisms).
It has been noticed that such a circumstance occurs very frequently in real-life scenarios, as payments
between agents and the mechanism are either illegal (e.g., organ transplant) or unethical (e.g., in the case
of political decision making). To circumvent the impossibility of utilizing payments to enforce truthful-
ness, Procaccia and Tennenholtz propose instead to leverage the approximation ratio of the mechanism
in those cases where the optimal outcome is not truthful. The facility location problem is arguably the
archetypal problem in mechanism design without money [16]. It demands locating a set of facilities on
a network, on input the bids of the agents for their locations, in such a way as to optimize a given objec-
tive function that depends on agents’ costs. If we regard the problem of locating facilities as a political
decision (e.g., a city council locating facilities of public interest on the basis of the population residing
∗Preliminary versions of this paper have appeared as [19, 18, 20]. This work is partially supported by EPSRC grant

EP/M018113/1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322329521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in a certain area), the impossibility to utilize payments and the need to locate the facilities to minimize
the social cost (e.g., the traffic in the city) in this context becomes immediately apparent.

Another application scenario that can be envisaged is big data distribution in cloud networks. Con-
sider a multinational company having to decide how to distribute the data contained in its databases over
its data network. Not all the various offices working for the company need access to the whole dataset,
e.g., a payroll office arguably needs access to employees’ data but not to customers’, whilst sales offices
need customers’ data but not employees’. Thus, a demand-based allocation seems a sensible approach.
However, due to well-known issues such as space consumption, consistency and query latency, it might
be impractical to allow replication of the requested data at all the demanding offices’ sites. Fast data
access becomes then competitive and, guided by their willingness to have prompt access to the data they
need, offices might strategize and amend their demands accordingly. The company, however, wants to
minimize the maximum access time in order to guarantee a decent quality of service so that each office
can work efficiently.

1.1 Our Contribution

Inspired by the work on facility location without money, and aiming at analyzing a richer and more
realistic setting, we introduce and study the problem of heterogeneous facility location without money.
With respect to the main stream of works on facility location, our model features heterogeneous (i.e.,
serving different purposes) as opposed to the homogeneous (i.e. serving the same purpose) facilities.
Allowing heterogeneous facilities influences the agent cost model as in our setting the cost of an agent
is the cost to access the set of facilities she is interested in, rather than accessing (as in the traditional
setting) the nearest facility. Furthermore, we assume in our model that agents’ locations are disclosed to
the mechanism. This assumption fits many real-life applications (e.g., for the aforementioned examples,
the city council can ask for proof of residence whilst the multinational company knows where its payroll
offices are located).

Social Cost Maximum Cost
LB UB LB UB

Deterministic 9/8 n− 1 3/2 3

Randomized 1 4/3 3/2

Table 1: Summary of our results

In more detail, we focus on the heterogeneous facility location problem in the case in which the
agents are on a discrete line and we have two facilities to locate. Despite its apparent simplicity, this
class of instances already encodes many intricacies and showcases the tension between truthfulness
without money and approximation. Moreover, these instances model the aforementioned content distri-
bution scenario (the linear network being the backbone of the company’s data network; facilities being
employee and customer records). We study both utilitarian (i.e., social cost) and non-utilitarian (i.e.,
max-cost) objective functions. Under either objective function, we analyze both deterministic and ran-
domized algorithms (see Table 1), prove that in both cases the optimal allocation does not preserve
truthfulness, and provide lower and upper bounds for the approximation of truthful mechanisms.

As regards the social cost objective function, we prove a 9/8 lower bound for the approximation of
deterministic strategyproof algorithms. We then propose a truthful (n − 1)-approximate deterministic
algorithm named TWOEXTREMES, an adaptation to our model of a mechanism already proposed in
[16], that assigns each facility to an extreme of the subnetwork of nodes requesting it. In order to pro-
vide better approximation guarantees, we then turn our attention to randomized algorithms and devise
an optimal randomized algorithm that is truthful in expectation. At intuitive level, the reason for which
deterministic optimal algorithms are not truthful resides in the richness of optimal solutions in very sym-

2

metric instances. For each way a deterministic optimum can break these ties, one side of the network
will be disadvantaged and will then be able to manipulate the algorithm. The idea behind our random-
ized algorithm is to take care of these symmetries with randomization so that in expectation agents on
either sides of the network are “happy”. The technical challenge is that, in some cases, there are not
enough optimal solutions to randomize upon and therefore a careful combination of deterministic and
randomized solutions is designed and shown to preserve truthfulness.

As regards the maximum cost objective function, we prove a lower bound of 3/2 on the approxima-
tion guarantee of deterministic SP mechanisms. The proof connects three different instances and uses
truthfulness constraints on two agents to establish the lower bound. This is somehow more complex than
typical lower bounds in literature wherein two instances and one lying agent are normally considered.
We then analyze TWOEXTREMES for maximum cost and prove it is 3–approximate. We observe that
TWOEXTREMES retains its strategyproofness as the latter is independent from the objective function of
the mechanism but depends solely on the agents’ cost function. Regarding randomized mechanisms we
first prove a lower bound of 4/3 and then design a 3/2-approximate randomized SP mechanism. This
algorithm is mainly based on the idea of allocating (in expectation) each facility on the average position
of the subgraph comprised of agents requesting it. This way truthfulness is guaranteed since there is no
advantage in hiding one’s own requested facilities as the aforementioned subgraph can only move away
from the lying agent. (Note that adding unneeded facilities does not help either.) A complication to this
intuition is that facilities cannot always be located in the “middle” of the subgraph. Our algorithm works
around this, while preserving truthfulness and guaranteeing a good approximation.

Roadmap. The remainder of this paper is organized as follows. Section 2 is devoted to survey some
related literature. In Section 3 we formalize our model for the heterogeneous facility location problem on
the line and give some definitions that will be used in the remainder of the paper. In Section 4 we discuss
our results about the social cost objective function, whereas in Section 5 we analyze the maximum cost
objective function Finally, in Section 6 we draw some conclusions and highlight some future research
efforts.

2 Related Work

Over the years, the facility location problem has proved to be a fertile research problem and, as such, has
been addressed by as diverse research communities as Operation Research, Algorithm Design, Social
Choice and, relatively recently, Algorithmic Mechanism Design.

The Social Choice community has been mostly concerned with the problem of locating a single
facility on the line. In his classical paper [13] Moulin characterizes the class of generalized median
voter schemes as the only deterministic SP mechanisms for single-peaked agents on the line. Schummer
and Vohra [17] extend the result of Moulin to the more general setting where continuous graphs are
considered, characterizing SP mechanisms on continuous lines and trees. They show that on circular
graphs every SP mechanism must be dictatorial.

From a Mechanism Design perspective, the aforementioned paper by Procaccia and Tennenholtz
[16] initiated the field of approximate mechanism design without money. For the 2-facility location
problem, they propose the Two-Extremes algorithm, that places the two facilities in the leftmost and
rightmost location of the instance, and prove that it is group strategyproof and (n − 2)-approximate,
where n is the number of agents. Furthermore, they provide a lower bound of 3/2 on the approximation
ratio of any SP algorithm for the facility location problem on the line and conjecture a lower bound of
Ω(n).

Lu et al. [12], improve several bounds studied in [16]. Particularly, as regards deterministic algo-
rithms they prove a better (w.r.t. [16]) lower bound of 2 − O(1

n). Furthermore, they prove a 1.045

3

lower bound for randomized mechanisms for the 2-facility location problem on the line and present a
randomized n/2-approximate mechanism.

Fotakis et al. [8] prove the conjectured lower bound of Ω(n) for deterministic SP algorithms for
the facility location problem on the line. Their main result is the characterization of deterministic SP
mechanisms with bounded approximation ratio for the 2-facility location problem on the line. They
show that there exist only two such algorithms: (i) a mechanism that admits a unique dictator and (ii)
the Two-Extremes mechanism proposed in [16].

In [11], Lu et al. focus on general metric spaces for the 2-facility game. They prove an Ω(n)
lower bound for the approximation of deterministic strategyproof mechanisms and propose the so-called
Proportional Mechanism, the first randomized algorithm to attain constant approximation ratio.

Alon et al. [1] derive a linear (in the number of agents) lower bound for SP mechanisms on contin-
uous cycles. Furthermore, they derive a constant approximation bound for randomized mechanisms in
the same settings. Dokow et al [2] shift the focus of research to discrete lines and cycles instead. They
prove that SP mechanisms on discrete large cycles are nearly-dictatorial in that all agents can effect the
outcome to a certain extent. Contrarily to the case of continuous cycles studied in [17], for small discrete
graphs Dokow et al. prove that there are anonymous SP mechanisms. Furthermore, they prove a linear
lower bound in the number of agents for the approximation ratio of SP mechanisms on discrete cycles.

Another interesting line of research in this area advocates the use of imposing mechanisms, i.e.,
mechanisms able to limit the way agents exploit the outcome of a game. For the facility location prob-
lem, imposing mechanisms typically prevent an agent from connecting to some of the facilities, thus
increasing her connecting cost and penalizing liars. Following this wake, the authors of [7] consider
winner-imposing mechanisms, namely mechanisms that (i) allocate a facility only at a location where
there is an agent requesting it (as opposed to mechanisms that allocate facilities at arbitrary locations)
and (ii) require that an agent that wins a facility (i.e. has a facility allocated to her location) must
connect to it. They prove that the winner-imposing version of the Proportional Mechanism proposed
in [11] is SP for the K-facility location problem and achieves an approximation ratio of at most 4K,
for K ≥ 1. Furthermore they propose a deterministic non-imposing group strategyproof O(log n)-
approximate mechanism for a variant of the facility location problem on the line with opening costs of
facilities and no constraint on the number of facilities to be located.

Nissim et al. [14] combine imposing mechanisms and differentially private mechanisms (i.e., ran-
domized algorithms whose outcomes are sufficiently ”close” on instances that differ only on the declara-
tion of one agent) to obtain the only known general technique for designing SP approximate mechanisms
without money. In particular, they devise an SP approximate imposing mechanism for the K-facility
location problem with a running time exponential in K. Unfortunately the algorithm proposed in [14]
has an approximation ratio which is not bounded by any constant.

An approach similar to the work on imposing mechanisms is followed by a recent research avenue
which attempts to import the advantages of verification into the field of mechanism design without
money. Generally speaking, mechanisms with verification can prevent certain lies of the agents, by sim-
ply “observing” the output of the mechanism and punishing uncovered liars. This mechanism design
paradigm has proved to be pretty powerful allowing for very general and strong, otherwise impossible,
positive results in mechanism design with money, see [15] and references therein. Truthful mechanisms
without money for scheduling selfish unrelated machines whose execution times can be (strongly) ver-
ified are considered in [9]. Mechanisms without money for combinatorial auctions are instead briefly
treated in [10] and recently studied in [4, 5]. Verification has also recently been studied for homogenous
facility location problem [3].

The literature on Min-Max objective function is quite rich in the case of mechanism design with
money but sparse in the case of moneyless mechanisms. Procaccia and Tennenholtz prove in their model
tight bounds for min-max approximation with 1 facility and nearly tight results with 2 facilities. Further
results on min-max approximation for 2 facilities are contained in [6]. The paper [9] mentioned above

4

studies min-max approximation for the scheduling selfish unrelated machines scenario considered.

3 Model and Preliminary Definitions

The heterogeneous 2-facility location problem on the line (hereinafter facility location, for short) consists
of locating two facilities on a linear unweighted graph. More specifically, we are given a set of agents
N = {1, . . . , n}; an undirected unweighted linear graphG = (V,E), where V ⊇ N is the set of vertices
and E is the set of edges; and a set of facilities F = {F1,F2}. Graph G is linear in the sense that its
vertices can be listed in the order (v1, v2, . . . , v|V |) and E is the set of edges connecting vi and vi+1, for
all i = 1, . . . , |V | − 1. Because of this property, for each node v we can identify a successor, denoted
as v + 1, and a predecessor, denoted as v − 1. If v is the leftmost (rightmost, respectively) node of G,
then its predecessor (successor, respectively) is the fictitious node NIL, and we will write v − 1 = NIL

(v + 1 = NIL, respectively). A point µ on G is either a vertex (which we will denote as µ ∈ V) or a
point on an edge connecting two nodes (which we will denote as µ ∈ E).

Nodes where no agent resides, namely those in V \N , are referred to as empty nodes. Agents’ types
are subsets of F, called their facility set. We denote the true type of agent i as Ti ⊆ F.1 Furthermore, we
will denote as T = (T1, . . . , Tn) the vector of types of N , whereas (T ′i , T−i) will denote the vector of
types where agent i declares T ′i ⊆ F instead of her true type. A mechanism M for the facility location
problem takes as input a vector of types T and returns as output a feasible allocation M(T) = (F1, F2),
such that Fi ∈ V and F1 6= F2.2 Given a feasible allocation F = (F1, F2), agent i has a cost defined
as costi(F) =

∑
j∈Ti d(i, Fj), where d(i, Fj) denotes the length of the shortest path from i to Fj in G.

Naturally, agents seek to minimize their cost. Therefore, they could misreport their facility sets to the
mechanism if this reduces their cost. We are interested in the following class of mechanisms.

A mechanism M is truthful (or strategyproof, SP, for short) if for any vector of types T , any agent
i, and any declaration T ′i , we have costi(F) ≤ costi(F ′), where F = M(T) and F ′ = M(T ′i , T−i). A
randomized mechanism M is a truthful in expectation if the expected cost of every agent is minimized
by truthtelling. In the study of randomized mechanisms we will require the concept of mean set, which
we define here for convenience.

Definition 3.1. Let S ⊂ V × V be a set of feasible allocations on G and µ be a point on G. Let
M ⊆ S and let Xk and Xk+1 be the random variables defined as the positions of facilities Fk and
Fk+1, respectively, if an allocation is drawn uniformly at random fromM. Then,M is a mean set of S
centered around µ for facility Fk if E[Xk] = µ. A solution extracted from a mean set is called a mean
set solution.

To illustrate Definition 3.1, let us consider Figure 3, where we have a graph G = (V,E) such that
V = {v1, v2, v3} and E = {{v1, v2}, {v2, v3}}. In this case, a point on G can be either one of the
vertices or any point on the straight line edges connecting the vertices. In Figure 3 the midpoints of
edges {v1, v2} and {v2, v3} are denoted as µ1 and µ2, respectively. Let us consider the set of feasible
allocations S = {(v1, v3), (v2, v1)}where (v1, v3) signifies that F1 is located at v1 and F2 at v3, whereas
(v2, v1) signifies that F1 is located at v2 and F2 at v1. If we extract uniformly at random an allocation
from S, then we have that E[X1] = µ1, whereas E[X2] = v2. ThenM = S is a mean set of S centered
around µ1 (v2, respectively) for F1 (F2, respectively).

In this paper, we are interested in truthful mechanisms M that return allocations F = M(T) mini-
mizing a certain objective function obj(F), dependent on the costs of individual agents. In particular, we

1Sometimes, slightly abusing notation, we will regard Ti as a set of indices j s.t. Fj ∈ Ti.
2We note that when this constraint is lifted we are in the case of capacious nodes, meaning that we can accommodate all

the facilities at one node. It is not difficult to see that in this case the optimal allocation is always truthful under both objective
functions and computable in polynomial time. The same holds true even for the more general problem of K-facility location
on general graphs if we allow capacious nodes, i.e., every single node can accommodate all K facilities.

5

v1 v2 v3µ1 µ2

Figure 1: Illustrating the concept of mean set solutions.

will consider two objective functions: (i) the social cost function, namely cost(F) =
∑

i∈N costi(F)
and (ii) the maximum cost function, namely mc(F) = maxi∈N costi(F).

We call optimal a mechanism M such that M(T) ∈ argminF feasible obj(F) (where obj is either
cost or mc) and denote an optimal allocation on declaration vector T as OPT (T) if obj(OPT (T)) =
minF feasible obj(F).

Alas, sometimes we have to content ourselves with sub-optimal solutions. In particular, we say that
a mechanism M is α-approximate if obj(M(T)) ≤ α · obj(OPT (T)). Furthermore, we denote as
Nj [T] ⊆ N the set of agents wanting access to facility Fj according to a declaration vector T , i.e.,
Nj [T] = {i ∈ N |Fj ∈ Ti}.

For the sake of notational conciseness, in the remainder of the paper we will often omit the decla-
ration vector T (e.g., Nk[T] simply denoted as Nk) and denote an untruthful declaration (T ′i , T−i) of
agent i by a prime symbol (e.g., Nk[T

′
i , T−i] simply denoted as N ′k). Finally, we define avg(Nk) =

max(Nk)+min(Nk)
2 to be the function that computes the average point of a set of agents Nk. As an ex-

ample, in the instance of Figure 3 if N1 = {v1, v2} and N2 = {v2, v3}, then avg(N1) = µ1 and
avg(N2) = µ2.

4 Social Cost Objective Function

In this section we discuss our results about the social cost objective function. In particular, in Sec-
tion 4.1 we discuss deterministic algorithms, whereas in Section 4.2 we present our results concerning
randomized algorithms.

4.1 Deterministic Mechanisms

In this section we study deterministic mechanisms for the 2-facility location problem under the social
cost objective function. We first ask ourselves whether the optimal allocation for the facility location
problem is truthful, to which we give a negative answer in Theorem 4.1, also providing a 9/8 lower bound
for the approximation of deterministic SP algorithms. Afterwards, we discuss an (n − 1)-approximate
deterministic algorithm for the facility location problem.

Theorem 4.1. No deterministic α-approximate SP mechanism can obtain an approximation ratio α <
9/8 for the social cost objective function.

Proof. Let us consider the instance depicted in Figure 2 according to the following declarations: T1 =
{F1}, T2 = {F2}, T3 = {F1,F2}, T4 = {F2}, T5 = {F1}. It can be easily checked that the optimal
locations for this instance are the ones that locate a facility on node 3 and the other on either node 2 or 4,
namely: (F ∗1 = 2, F ∗2 = 3), (F ∗1 = 4, F ∗2 = 3), (F ∗1 = 3, F ∗2 = 2) and (F ∗1 = 3, F ∗2 = 4). Let us note
that any α-approximate algorithm with α < 9/8 on input T would return an optimal solution. Indeed,
it can be easily checked that the two second-best solutions (F1 = 2, F2 = 4) and (F1 = 4, F2 = 2) are
8/7-approximate, their cost being 8 whereas cost(OPT (T)) = 7.

Let us consider the optimal solution (F ∗1 = 2, F ∗2 = 3). If agent 5 reports T ′5 = {F1,F2}, then the
only optimal solution is OPT (T ′i , T−i) = (3, 4). We note that, since the cost (with respect to (T ′i , T−i))
of this optimal solution is 8 whereas the cost of any second best solution (i.e, (F1 = 4, F2 = 3),
(F1 = 2, F2 = 3) and (F1 = 2, F2 = 4)) is 9, any α-approximate algorithm with α < 9/8 would return

6

1 2 3 4 5

{F1} {F2} {F1,F2} {F2} {F1}

Figure 2: Instance showing that OPT is not truthful

the optimum. Furthermore, we note that the optimal solution is not SP, since cost5(OPT (T ′i , T−i)) =
2 < 3 = cost5(OPT (T)). We note that, due to the intrinsic symmetry of the instance, a similar
argument applies for solution (F ∗1 = 4, F ∗2 = 3) when agent 1 reports T ′1 = {F1,F2}.

Let us consider the optimal solution (F ∗1 = 3, F ∗2 = 4). If agent 2 reports T ′2 = {F1,F2}, then the
only optimal solution is OPT (T ′i , T−i) = (F ∗1 = 2, F ∗2 = 3). We note that, since the cost (with respect
to (T ′i , T−i)) of this optimal solution is 7 and the cost of any second best solution (i.e, (F1 = 2, F2 = 4),
(F1 = 3, F2 = 4) and (F1 = 4, F2 = 3)) is 8, any α-approximate algorithm with α < 9/8 would return
the optimum. Furthermore, we note that the optimal solution is not SP, since cost2(OPT (T ′i , T−i)) =
1 < 2 = cost2(OPT (T)). We note that, due to the intrinsic symmetry of the instance, a similar
argument applies for solution (F ∗1 = 3, F ∗2 = 2) when agent 4 reports T ′4 = {F1,F2}.

We now discuss TWOEXTREMES, a deterministic mechanism which is truthful and returns linear-
approximate allocations. The algorithm, reported in Algorithm 1, is inspired by Two-Extremes of [16],
the difference being that, due to the multi-dimensional nature of our problem, we need to check for
the feasibility of solutions putting facilities at the extremes and handle cases of clash. In more detail,
Algorithm 1 tries to allocate facility F1 at the leftmost element of N1 and F2 at the rightmost element
of N2. If this allocation is unfeasible, i.e., F1 = F2, then it applies the following tie-breaking rule: if
there is a node in the graph at the left of the clash node, i.e., F2 6= NIL, then it moves F2 to the left,
i.e., F2 := F2 − 1; if the clash node is the leftmost node of the graph, it moves F1 to the right3, i.e.
F1 := F1 + 1.

Algorithm 1: TWOEXTREMES

Require: Line G, facilities F = {F1,F2}, declarations T = {T1, . . . , Tn}
Ensure: F (T), a (n− 1)-approximate allocation for 2-facility location on G

1: F1 := minN1[T]
2: F2 := maxN2[T]
3: if F1 = F2 then
4: if F2 − 1 6= NIL then
5: F2 := F2 − 1
6: else
7: F1 := F1 + 1
8: end if
9: end if

10: return (F1, F2)

We begin by proving the truthfulness of the algorithm.

Theorem 4.2. Algorithm TWOEXTREMES is SP.

Proof. For the sake of contradiction, let us assume that there exist i ∈ N with type Ti and an untruth-
ful declaration T ′i such that

∑
j∈Ti d(i, Fj(T)) >

∑
j∈Ti d(i, Fj(T

′
i , T−i)), where Fj(Z) denotes the

location in which TWOEXTREMES, on input the declaration vector Z , assigns facility Fj . We need to
analyse three cases: (a) i = minN1, (b) i = maxN2, and (c) i /∈ {minN1, maxN2}.

3We note that there must be at least two nodes otherwise the set of feasible solutions would be empty.

7

If case (a) occurs, it can be either Ti = {F1} or Ti = {F1,F2}. If Ti = {F1} then F1 = i,
costi(F (T)) = 0 and i cannot decrease her cost any further by misreporting her type. If Ti = {F1,F2},
then it can be either i = maxN2 (in which case the algorithm returns (F1 = i − 1, F2 = i) or
(F1 = i, F2 = i+ 1), costi(F) = 1 and i cannot decrease her cost any further by lying) or i < maxN2

(in which case F1 = i and i cannot influence the location of facility F2).
It is easy to check that case (b) is symmetric to case (a).
If case (c) occurs, then it can be either: Ti = {F1}, Ti = {F2} or Ti = {F1,F2}. If Ti = {F1},

then i > minN1. It is easy to check that if minN1 6= maxN2 then i cannot influence the location of
facility F1. Let us assume then that ` = minN1 = maxN2. In this case the algorithm outputs either
(F1 = `, F2 = ` − 1) or (F1 = ` + 1, F2 = `). In either case, if T ′i = ∅ the output of the algorithm
does not change, whereas if F2 ∈ T ′i then the algorithm outputs (F ′1 = `, F ′2 = i) (as i > maxN2) and
costi(F (T)) ≤ costi(F (T ′i , Ti)). It is easy to check that the case when Ti = {F2} is symmetric to the
case when Ti = {F1}.

If Ti = {F1,F2} then minN1 < i < maxN2, and it is easy to check that i cannot influence the
outcome of the algorithm.

In order to prove the approximation guarantee of TWOEXTREMES, we initially prove a lower bound
on the value of the optimal social cost.

n−1
2

n−1
2 − 1

Fi
δi

Figure 3: Bounding OPTi from below

n1−1
2

n1−1
2 − 1

F1 F2

δ1 = δ2 n2−1
2 − 1 n2−1

2

{F1} {F1} {F1} {F1} {F1} {F1,F2} {F1,F2} {F2} {F2} {F2} {F2} {F2}

Figure 4: Bounding OPT from below

Lemma 4.1. Let T be an instance of the 2-facility location problem, such that n1 = |N1|, n2 = |N2|,
and δi ≥ 0 is the number of empty nodes in in the interval [minNi,maxNi]. Then the following holds:
cost(OPT (T)) ≥ n2

1
4 +

n2
2
4 −

1
2 + δ1 + δ2.

Proof. We first consider the problem of allocating only one facility. Let us consider the instance depicted
in Figure 3, where we have a sequence of n − 1 adjacent agents requesting the facility, δ empty nodes
and then the n-th agent requesting the facility. For the sake of exposition, le us assume n is odd. In this
configuration, the minimum social cost is obtained when the facility is located at the median node (node
n−1
2 + 1). We argue that this configuration, along with its specular counterpart where (some of) the

empty nodes are located between agent 1 and agent 2, yields the least social cost. In this configuration
only the n–th agent incurs the cost of travelling through the empty nodes. Let us suppose we move one
empty node to another location, say between agent ` − 1 and agent `, still to the right of the median
node, i.e. n−1

2 + 1 ≤ ` − 1 < n. Then the n–th node will still have to travel through the same number
of empty nodes as before, but now n − ` − 1 nodes will have to travel through an empty node, which
increases the social cost of n− `− 1. If we move the empty node to a location between agent `− 1 and
agent ` to the left of the median node, i.e. 1 < ` ≤ n−1

2 + 1, then agent n will have to travel through
δ − 1 empty nodes, whereas `− 1 agents will have to travel through 1 empty node, which increases the
social cost of `− 1. The same reasoning applies if we move more than one empty node.

8

n−1
2

n−1
2 − 1

F ∗2 F2

δ + δi

Figure 5: Computing cost(LR2(T)). Full edges denote links used byOPT2 while dashed edges denote
links used in cost(LR2(T))−OPT2.

Let us take into consideration the family of instances depicted in Figure 4. It is easy to see that this
instance is a composition of two min-cost instances of the type depicted in Figure 3, and that this family
of instances yields the least cost for the social cost objective function when locating two facilities. It can
be easily checked that the following holds:

OPT ≥ 2

n1−1
2∑
i=1

i+ δ1 + 2

n2−1
2∑
i=1

i+ δ2 =
n21
4

+
n22
4
− 1

2
+ δ1 + δ2,

where 2
∑nj−1

2
i=1 i+δj represents the social cost of the instance in Figure 3. This concludes the proof.

Theorem 4.3. Algorithm TWOEXTREMES is (n−1)-approximate for the social cost objective function.

Proof. Let us consider a generic instance T . Moreover, let (F ∗1 , F
∗
2) be an optimal solution for such

an instance, and let cost(OPT (T)) = OPT1 + OPT2, where OPT1 =
∑

i∈N1
d(i, F ∗1) and OPT2 =∑

i∈N2
d(i, F ∗2) denote the cost incurred by the agents to connect to facility F1 and F2, respectively. Let

LR(T) be the solution output by TWOEXTREMES on input T and let (F1 = LR1(T), F2 = LR2(T))
denote the locations that LR(T) computes for the two facilities. We can express the cost of location
(F1, F2) as a function of the optimal allocation (F ∗1 , F

∗
2) as follows:

cost(LR(T)) = OPT1 + 2
∑

i∈NL
1 \F1

d(i, F1) + d(F1, F
∗
1)

+OPT2 + 2
∑

i∈NR
2 \F2

d(i, F2) + d(F2, F
∗
2),

where NR
j (NL

j , respectively) denotes the set of nodes in Nj [T] to the right (left, respectively) of F ∗j
(excluding the node where F ∗j is located). Figure 5 gives the geometric intuition behind this equality.
We note that F1 and F2 are excluded from the summation as d(F1, F1) = d(F2, F2) = 0.

We can then observe that:

cost(LR(T)) ≤OPT + (n1 − 3) · d(F1, F
∗
1) + d(F1, F

∗
1)

+ (n2 − 3) · d(F2, F
∗
2) + d(F2, F

∗
2)

≤OPT + (n− 2) · (d(F1, F
∗
1) + d(F2, F

∗
2))

where: (i) the first inequality follows from: upper-bounding d(i, F1) and d(i, F2), respectively, by
d(F1, F

∗
1) and d(F2, F

∗
2) and observing that 2 · |NR

j \ Fj | = 2(dnj

2 e − 2) ≤ 2(
nj+1
2 − 2) = nj − 3;

9

whereas the second inequality follows from upper-bounding n1 and n2 by n− 1 (i.e., max{n1, n2} ≤ n
since |N1| > 0 and |N2| > 0). In order to upper bound d(F1, F

∗
1) and d(F2, F

∗
2), let us consider the

instance depicted in Figure 6, where α is the number of “empty” nodes between F ∗2 and F ∗1 , α1 is the
number of empty nodes between F1 and F ∗2 and α2 is the number of empty nodes between F ∗1 and F2.
We argue that this instance is the one exhibiting the maximum possible distance d(F1, F

∗
1) (respectively,

d(F2, F
∗
2)) as between F1 and F ∗1 (F2 and F ∗2 , respectively) there is the maximum possible number of

agents requesting facility F2 (respectively, F1) and the maximum number of empty nodes (the number
of agents requesting F1 is dictated by the fact that F ∗1 is the median node of N1). It is easy to check that
d(F ∗1 , F1) ≤ (n1

2 + n2 − 1 + α+ α1) and d(F ∗2 , F2) ≤ (n2
2 + n1 − 1 + α+ α2), which applied to the

last inequality yields:

cost(LR(T)) ≤ OPT + (n− 2)

(
3

2
(n1 + n2) + 2α+ α1 + α2

)
.

In virtue of Lemma 4.1, by observing that α+αi ≤ δi, we conclude that 3
2(n1 +n2)+2α+α1 +α2

is bounded from above by OPT . Applying the above lower bound to the last inequality yields the
following: cost(LR(T)) ≤ (n− 1) ·OPT which proves the claim.

We finish this section by proving that the analysis of TWOEXTREMES presented above is tight.

Theorem 4.4. The upper bound of Theorem 4.3 for the TWOEXTREMES algorithm is tight.

Proof. We are going to exhibit an instance for which the TWOEXTREMES algorithm obtains an approx-
imation ratio of (n − 1). The instance we consider is the one depicted in Figure 7 and is such that
|N1| = n, |N2| = 1 and n is odd. The number of nodes of the graph is n + δ, where δ is the number
of empty nodes. The declarations, depicted in brackets below each nodes are as follows: Ti = {F1} for
each 1 ≤ i < n, Tn = {F1,F2}. As before, (F ∗1 , F

∗
2) and (F1, F2) denote the optimal allocation and the

outcome of the TWOEXTREMES algorithm, respectively. It is easy to check that (1) gives the cost of the
optimal location, whereas (2) gives the cost of (F1, F2):

cost(OPT (T)) = 2 ·

(n−1)
2∑
i=1

(i) + δ =
n2 − 1 + 4δ

4
(1)

cost(LR(T)) =
n−1∑
i=1

(δ + i+ 1)

=
n2 − 3n+ 2(n− 1)δ − 2

2
. (2)

Equation (3) below expresses the approximation ratio of the TWOEXTREMES algorithm with respect
to the instance of Figure 7 as a function of both the number of players n and the number of empty nodes
δ.

α(n, δ) = 2 · n
2 − 3n+ 2(n− 1)δ − 2

n2 − 1 + 4δ
(3)

F1 F ∗2 F ∗1 F2

n2 − 1 n1 − 1

αα1 α2

Figure 6: Upper bound to d(F1, F
∗
1) and d(F2, F

∗
2)

10

· · · · · · · · ·{F1} ∅ ∅ {F1} {F1} {F1} {F1} {F1,F2}

n−3
2

n−1
2

δ

F1 F ∗2 ≡ F2F ∗1

Figure 7: TWOEXTREMES is Θ(n− 1)-approximate

We can see from (3) that if δ ∈ ω(n2) then α(n, δ) tends to n− 1.

4.2 Randomized Mechanisms for the Social Cost Objective Function

In this section we present and analyze RANDOPT, a truthful randomized optimal algorithm for the 2-
facility location problem. To adequately describe the algorithm, we first need to define some concepts
and ideas of interest. For notational convenience, in this section we let the index of the two facilities be
binary and all the operations involving indexes be modulo 2. Hence, we will refer indistinctly to one
facility as Fk and to the other one as Fk+1.

Definition 4.1. We denote as Sk the set of optimal locations onG for facility Fk taking into consideration
the requests for facility Fk alone.

By the results in [13], we know that the optimal location for a single facility is the median point, and
therefore the set of optimal locations Sk is either a singleton, i.e., when the number of requests is odd,
or has size greater than 1, i.e., when the number of requests is even.4 We observe that when only one
agent changes her declaration for facility Fk, i.e. Nk 6= N ′k, due to the change of the parity of Nk we
have that if |Sk| = 1 then |S′k| 6= 1 and, vice versa, if |Sk| 6= 1 then |S′k| = 1. We will extensively use
this simple observation in the rest of this section, and refer to it as the parity argument.

Definition 4.2. A solution Fk is extreme for Sk w.r.t. Sk+1
5 if: (i) |Sk| = 2; (ii) |Sk ∩ Sk+1| ≤ 1; and

(iii) Fk = argmax`∈Sk
{d(`, Sk+1)}, where d(`, Sk+1) = mins∈Sk+1

d(`, s).

The main idea of algorithm RANDOPT is to return either an extreme solution or a mean set solution
centered on avg(Sk) in order to preserve truthfulness: we will show why this is necessary before giving
the details of algorithm RANDOPT.

To give an example, let us consider the instance depicted in Figure 8, where V = N = {1, 2, 3, 4, 5}
and T1 = {F0,F1}, T2 = {F0}, T3 = {F0,F1}, T4 = {F0,F1} and T5 = {F0}. In this case, S0 =
{2, 3}, S1 = {3, 4} and a mean set solution for F0 and F1 centered around avg(S0) = 2.5 and avg(S1) =
3.5 is M = {(F0 = 2, F1 = 3), (F0 = 3, F1 = 4)}, which is also a set of optimal solutions for the
instance. For the same instance, F0 = 2 is an extreme solution for S0 w.r.t S1, as: (i) |S0| = 2,
(ii) |S0 ∩ S1| ≤ 1 and (iii) F0 = argmax`∈S0

{d(`, S1)}; and F1 = 4 is an extreme solution for S1
w.r.t. S0 as: (i) |S1| = 2, (ii) |S0 ∩ S1| ≤ 1 and (iii) F1 = argmax`∈S1

{d(`, S0)}. Let us now
consider the instance of Figure 9, where we have the same graph and same agents as before, but the
declarations are T1 = {F0,F1}, T2 = {F0}, T3 = {F0,F1}, T4 = {F0} and T5 = {F1}. In this case,
S0 = {2, 3} and S1 = {3}. We note that there is no feasible optimal mean set solution centered around
avg(S0) = 2.5, as to do so we need to allocate F0 half of the times on node 2 and half of the times on
node 3, whereas node 3 is the only optimal allocation point for facility F1. The only feasible optimal

4All empty nodes between minSk and maxSk are optimal solutions.
5For the sake of notational conciseness, when referring to extreme and mean solutions we omit Sk and Sk+1 as they can

be easily deduced from the context.

11

allocation in this case is (F0 = 2, F1 = 3), which is an extreme solution for S0 w.r.t S1, as |S0| = 2,
|S0 ∩ S1| = 1 and F0 = argmax`∈S0

{d(`, S1)}. Furthermore, if we consider the instance in Figure 9
as the truthful instance and, as a consequence of that, we regard agent 4 in the instance of Figure 8 as
reporting T ′4 = {F0,F1} instead of her true type T4 = {F0}, we can easily see that returning a mean set
solution in the instance of Figure 8 is not truthful. Indeed, in the instance of Figure 9 the expected cost
of agent 4 for the (only) optimal allocation (F0 = 2, F1 = 3) is 2, whereas in Figure 8 the true expected
cost of agent 4 for the mean set solution for F0 centered around 2.5 is 1.5. To preserve truthfulness, in
the instance of Figure 8 an extreme solution must be returned.

1 2 3 4 5

{F0,F1} {F0} {F0,F1} {F0,F1} {F1}

Figure 8: Extreme solution example

1 2 3 4 5

{F0,F1} {F0} {F0,F1} {F0} {F1}

Figure 9: Extreme solution example - truthful instance

We can now discuss algorithm RANDOPT, whose pseudocode is reported in Algorithm 2. The al-
gorithm meaningfully discerns the cases when an optimal mean set solution exists and can be outputted
from the cases when an extreme solution must be returned in order to preserve strategyproofness. More
specifically, when an extreme solution exists for both facilities (i.e., Line 6), algorithm RANDOPT re-
turns it with probability 1, whereas when an extreme solution exists for one facility only (i.e., Line 9),
say facility Fk, it returns a solution extracted uniformly at random from a mean set solution for facility
Fk+1 where facility Fk is always allocated as an extreme solution. When no extreme solutions exists for
either facility, the algorithm then returns either (i) a solution extracted uniformly at random from a mean
set solution centered around avg(Sk) and avg(Sk+1) (i.e., Line 20), computed by means of procedure
COMPUTEOPTMEANSET, or (ii) in the very restricted case when Sk = Sk+1 = {s} and s is the first
or last node of the graph, a solution where, due to feasibility reasons, only facility Fk is allocated as a
mean set solution whereas the other facility is allocated to the nearest node (i.e., lines 14 and 16).

Procedure COMPUTEOPTMEANSET, whose pseudocode is reported in Algorithm 3, takes as input
the sets of optimal locations Sk and Sk+1 and returns a mean set solution for Fk and Fk+1 centered
around avg(Sk) and avg(Sk+1), respectively. It constructs mean set solutions by carefully considering
the structure of Sk and Sk+1 in order to avoid unfeasible solutions. The pseudocode of procedure
COMPUTEOPTMEANSET is an algorithmic transposition of case c.3 of the proof of Theorem 4.5, which
offers a constructive proof of the existence of mean set solutions.

The remainder of this section is devoted to prove two important properties of algorithm RANDOPT,
namely: its optimality (Theorem 4.5) and its strategyproofness (Theorem 4.6).

Theorem 4.5. Algorithm RANDOPT always returns an optimal solution for the social cost objective
function.

Proof. RANDOPT returns solutions that are extracted from the set of optimal solutions Sk and Sk+1,
which proves by definition the optimality of the algorithm6. What is left to be proven is that the solutions
returned by the algorithm are actually feasible. The solutions returned by RANDOPT are always feasible

6Strictly speaking, this is always true but in one case: when |Sk| = 1, |Sk+1| = 1 and |Sk ∩ Sk+1| = 1, as the solutions
computed by RANDOPT at lines 14, 16 and 19 (when the mean set returned by COMPUTEOPTMEANSET is computed at Line
7) allocate facility F1 at the nodes that are immediately to the left (i.e., s− 1) and right (i.e., s+1) of node s = Sk ∩ Sk+1. It
is easy to check that, in this special case, F1 = s− 1 and F1 = s+1, although suboptimal for the problem of locating facility
F1 alone, are optimal for the 2-facility location problem.

12

Algorithm 2: RANDOPT
Require: Line G, facilities F = {F1,F2} , declarations T = {T1, . . . , Tn}
Ensure: F (T) optimal allocation for 2-facility location on G

1: ∀k Sk := OPT(Nk[T])
2: if ∃k ∈ {0, 1} s.t. |Sk| = 2 and |Sk ∩ Sk+1| ≤ 1 then
3: Fk := argmax

v∈Sk

{ d(v, Sk+1)}

4: if |Sk+1| = 2 then
5: Fk+1 := argmax

v∈Sk+1

{ d(v, Sk)}

6: return (Fk, Fk+1) w.p. 1
7: else
8: M = {(Fk,min(Sk+1)), (Fk,max(Sk+1))}
9: return (Fk, Fk+1) ∈M w.p. 1/|M|

10: end if
11: else
12: if |Sk| = |Sk+1| = 1 and Sk = Sk+1 = {s} and (s− 1 = NIL or s+ 1 = NIL) then
13: if s− 1 = NIL then
14: return (F0 = s, F1 = s+ 1) w.p. 1
15: else
16: return (F0 = s, F1 = s− 1) w.p. 1
17: end if
18: else
19: M :=COMPUTEOPTMEANSET(Sk, Sk+1)
20: return (Fk, Fk+1) ∈M w.p. 1/|M|
21: end if
22: end if

whenever Sk ∩ Sk+1 = ∅ (Line 2 of Algorithm 3, invoked at Line 20 of algorithm RANDOPT), as a
clash in the allocation of the two facilities cannot occur, so in the remainder we are going to assume
that Sk ∩ Sk+1 6= ∅. The solutions returned by RANDOPT are also feasible by construction when
Sk = Sk+1 = {s} and either s − 1 = NIL or s + 1 = NIL (lines 14 and 16), so we can also assume
in the remainder that this case does not occur. We need to consider three cases: (c.1) both facilities are
allocated as extreme solutions (Line 6 of algorithm RANDOPT), denoted in the sequel as (E,E); (c.2)
one facility is allocated as an extreme solution while the other facility is allocated as a mean solution
(Line 9 of algorithm RANDOPT), referred to as either (E,M) or (M,E); and (c.3) both facilities are
allocated as mean solutions (Line 20 of Algorithm RANDOPT), denoted as (M,M).

In Line 6 (case c.1) Algorithm RANDOPT allocates both facilities as extreme solutions, so |Sk| = 2,
|Sk+1| = 2 and |Sk∩Sk+1| ≤ 1. Let us suppose w.l.o.g. that Sk = {l, l+1} Sk+1 = {l+1, l+2}. It is
easy to check that (l, l+ 2), where the first (second, respectively) element of the ordered couple denotes
the location of facility Fk (Fk+1, respectively), is a feasible extreme solution for Fk and Fk+1.

In Line 9 (case c.2) algorithm RANDOPT allocates a facility as an extreme solution and the other
one as a mean solution. W.l.o.g. let us suppose that Fk is allocated as an extreme solution and Fk+1

is allocated as a mean solution. Therefore, we have |Sk| = 2, |Sk ∩ Sk+1| ≤ 1 and |Sk+1| 6= 2. Let
us denote Sk = {l, l + 1} and let us suppose w.l.o.g. that Sk ∩ Sk+1 = {l + 1} (i.e., the case when
Sk ∩ Sk+1 = {l} is symmetric). There are two cases to consider: (i) |Sk+1| = 1, (ii) |Sk+1| > 2.
We notice that in both cases Fk = l is a feasible extreme solution for Sk. When case (i) occurs,
then Sk+1 = {l + 1} and M = {(l, l + 1)} is a feasible mean set for Sk+1. When case (ii) occurs,
M = {(l,min(Sk+1)), (l,max(Sk+1))} is a feasible mean set for Sk+1.

13

In Line 20 (case c.3) algorithm RANDOPT invokes COMPUTEOPTMEANSET and returns an (M,M)
solution, so either (i) |Sk| 6= 2 and |Sk+1| 6= 2 or (ii) |Sk ∩ Sk+1| > 1. Let us consider case
(i). Let us suppose that |Sk| > 2. If allocations (min(Sk),min(Sk+1)) and (max(Sk),max(Sk+1))
are feasible (Line 14 of COMPUTEOPTMEANSET) then M = {(min(Sk),min(Sk+1)), (max(Sk),
max(Sk+1))} is trivially a mean set, and the claim is true. The same holds if (min(Sk),max(Sk+1))
and (max(Sk),min(Sk+1)) are feasible (Line 16 of COMPUTEOPTMEANSET). If neither of the pre-
vious holds, then min(Sk+1) = max(Sk+1), hence Sk+1 = {s} and s ∈ {min(Sk),max(Sk)} (Line
11 of COMPUTEOPTMEANSET). Then both (min(Sk) + 1, s) and (max(Sk) − 1, s) are optimal and
M = {(min(Sk) + 1, s), (max(Sk)− 1, s)} is a mean set. Let us consider the case when |Sk| = 1, and
let Sk = {s}. If |Sk+1| = 1 then Sk = Sk+1 (Line 7 of COMPUTEOPTMEANSET). We note that in this
case {(s, s−1), (s, s+ 1)} is a feasible mean set for both Sk and Sk+1. If |Sk| = 1 and |Sk+1| > 2, this
case is analogous to the case when |Sk| > 2 and |Sk+1| = 1 that we analysed above. Let us now consider
case (ii) (Line 20 of COMPUTEOPTMEANSET). Since |Sk ∩ Sk+1| > 1, then |Sk| ≥ 2 and |Sk+1| ≥ 2.
Then, either {(min(Sk),min(Sk+1)), (max(Sk),max(Sk+1))} (Line 22 of COMPUTEOPTMEANSET)
or {(min(Sk),max(Sk+1)), (max(Sk),min(Sk+1))} (Line 24 of COMPUTEOPTMEANSET) is a feasi-
ble mean set for both Sk and Sk+1.

We are now going to prove that algorithm RANDOPT is strategyproof. Before we can do that, we
need to prove four auxiliary lemmata.

Lemma 4.2 states that if an agent i “hides” facility Fk from her declaration, then the average point
avg(S′k) is located further away from i than avg(Sk). Put in other words, if facility Fk is assigned as
mean set solution, agent i cannot gain by misreporting on Fk.

Lemma 4.2. If i ∈ Nk and N ′k = Nk \ {i}, then d(i, avg(Sk)) < d(i, avg(S′k)).

Proof. Let us consider the case when i ≤ min{Sk}, the case when i ≥ max{Sk} is symmetric. If
|Sk| = 1, let sk denote the sole element of Sk. If i /∈ N ′k, then |S′k| > 1 by the parity argument and
S′k is such that min(S′k) = sk and max(S′k) = `, where ` ∈ N ′k is the location of the leftmost agent
such that ` > sk and k ∈ T`. Clearly, i ≤ avg(Sk) < avg(S′k), which implies the claim. If |Sk| > 2,
then |S′k| = 1 by the parity argument. If i /∈ N ′k then S′k = {max(Sk)} from which it follows that
i ≤ avg(Sk) < avg(S′k), and the claim.

Lemma 4.3 states that if an agent does not report facility Fk then the set of optimal allocations S′k
does not get any closer.

Lemma 4.3. Let i ∈ N be an agent such that i ∈ Nk, N ′k = Nk \ {i}. Then min`∈Sk
{d(i, `)} ≤

min`′∈S′k{d(i, `′)}.

Proof. Let us assume that i ≤ min(Sk). Sk can be either a singleton (if |Nk| is odd) or have cardinality
greater than 1 (if |Nk| is even). Let Sk = {sk}, then |S′k| > 1 by the parity argument. Let r = max(S′k).
The thesis holds since min`∈Sk

|i− `| = |i− sk| = min`′∈S′k |i− `
′|. If |Sk| > 1, let l = min(Sk) and

r = max(Sk). Then S′k = {r}. The thesis holds in this case since min`∈Sk
|i− `| = |i− l| < |i− r| =

min`′∈S′k |i − `
′|. The same argument holds for the case when i ≥ max(Sk). Finally, we observe that

when min(Sk) < i < max(Sk) then i /∈ Nk.

In essence, the previous lemma states that in a monodimensional setting if an agent does not declare
a facility she is interested in, the space of optimal allocation points gets further away from her.

Lemma 4.4. Let Fk and F ′k be two extreme solutions. Then it must be Fk = F ′k.

Proof. We note that since Fk and F ′k are by hypothesis two extreme solutions, by definition |Sk| =
|S′k| = 2. We argue that it must be Sk = S′k = {l, r}. Indeed, if only one agent changes her declaration

14

between Sk and S′k either |Sk| 6= 2 or |S′k| 6= 2 Let us suppose w.l.o.g. that Fk = r. Since both Fk
and F ′k are extreme solutions, it must be the case that |Sk ∩ Sk+1| ≤ 1 and |S′k ∩ S′k+1| ≤ 1. This
implies that s ≤ l < r, where s is the element of Sk+1 nearest to Sk. Let us suppose, for the sake of
contradiction, that F ′k = l. In this case it must be l < r ≤ s′, where s′ is the element of S′k+1 nearest
to Sk. We observe that whenever this happens s ∈ S′k+1 (as we assume that only one agent changes her
declaration), which implies that |S′k ∩ S′k+1| ≥ 2 and contradicts the hypothesis that F ′k is an extreme
solution.

The previous lemma essentially states that an agent cannot gain on a facility assigned as an extreme
solution, unless she changes the declaration for that facility.

Lemma 4.5. Let |Sk| = 1, F ′k be an extreme solution for S′k, and let N ′k = Nk \ {i}. Then d(Fk, i) ≤
d(F ′k, i).

Proof. SinceFk = argmin`∈Sk
{d(i, `)}, and since, in the best case for agent i, F ′k = argmin`′∈S′k

{d(i, `′)},
by Lemma 4.3 d(i, Fk) ≤ d(i, F ′k).

We now ready to prove that the algorithm RANDOPT is truthful.

Theorem 4.6. Algorithm RANDOPT is SP.

Proof. Consider the outcomes F = RANDOPT(T) and F ′ = RANDOPT(T ′i , T−i). We next show that
costi(F) ≤ costi(F ′). Assume by contradiction that costi(F) > costi(F ′); this implies that there
exists at least a facility k ∈ {0, 1} such that d(i, E[Fk]) > d(i, E[F ′k]), where Fk (F ′k, respectively)
denotes the position of facility k in F (F ′, respectively). Recall that we will denote as Sk and S′k the
optimal locations of facility k in the instances T and (T ′i , T−i), respectively. Let us assume for now that
algorithm RANDOPT always returns either a mean set solution or an extreme solution for both facilities.
We will analyze the special case when this is infeasible (lines 14 and 16 of algorithm RANDOPT) at the
end of the proof.

We denote a possible output transition of RANDOPT as (F0, F1) → (F ′0, F
′
1), where the left-hand

side pair denotes the outcome of the algorithm when each agent reports truthfully, whereas the right-
hand side pair denotes the outcome of the algorithm when agent i misreports her type. It can be easily
showed that all possible output transitions of algorithm RANDOPT (with the exception of a particular
case treated at the end of the proof) can be represented by the directed graph G = (V, E), such that
V = {(E,E), (E,M), (M,E), (M,M)} and E = V ×V \ {((E,E), (E,E))}, where E and M stand,
respectively, for an extreme and a mean set solution being returned. Notice that the set of arcs of G
comprises all possible transitions but (E,E) → (E,E): we are now going to prove that this transition
cannot occur. Firstly, we notice that if a solution of type (E,E) is returned then either Sk 6= S′k or
Sk+1 6= S′k+1, since if Sk = S′k and Sk+1 = S′k+1 then the output of the algorithm does not change and
strategyproofness trivially holds. Let us suppose w.l.o.g. that Sk 6= S′k (i.e. the case when Sk+1 6= S′k+1

is symmetric). If Fk is an extreme solution for Sk and Sk 6= S′k then F ′k is a mean solution for S′k, which
would result in a transition (E,E)→ (M,E). To prove the claim, we are now going to prove that every
arc of G represents an SP transition.

It can be easily verified that transition (M,M) → (M,M) is SP by Lemma 4.2. Indeed, we can
regard transition (M,M)→ (M,M) as two M →M transitions. According to Lemma 4.2 if an agent
misreports hiding a facility she is interested in from her bid, then her distance from that facility increases.
Transitions (M,E) → (M,E) and (E,M) → (E,M) are SP by Lemmata 4.2 and 4.4. Indeed, they
can be regarded as two transitions M → M and E → E. As before, Lemma 4.2 implies transition
M → M is SP, as no agent can improve her utility function by misreporting on a facility allocated as
a mean set (transition M → M). Transition E → E is SP by Lemma 4.4, which implies that no agent
can improve her utility function on a facility allocated as an extreme solution if, when the agent lies, the
facility is still allocated as an extreme solution (transition E → E).

15

Algorithm 3: COMPUTEOPTMEANSET

Require: Sk and Sk+1 sets of optimal locations for Fk and Fk+1.
Ensure: a set of allocationsM such that when an allocation (F1, F2) is extracted uniformly at random

fromM the expected value of F1 and F2 is, respectively, avg(S1) and avg(S2).
1: if Sk ∩ Sk+1 = ∅ then
2: return M = {(minSk,minSk+1), (maxSk,maxSk+1)}
3: end if
4: if |Sk| 6= 2 and |Sk+1| 6= 2 and |Sk ∩ Sk+1| = 1 then
5: if |Sk| = 1 and |Sk+1| = 1 then
6: s = Sk ∩ Sk+1

7: return M = {(F0 = s, F1 = s+ 1), (F0 = s, F1 = s− 1)
8: end if
9: if |Sk| > 2 and |Sk+1| = 1 then

10: s = Sk ∩ Sk+1

11: return M = {(Fk = min(Sk) + 1, Fk+1 = s), (Fk = max(Sk)− 1, Fk+1 = s)}
12: end if
13: if min(Sk) 6= min(Sk+1) and max(Sk) 6= max(Sk+1) then
14: return

M = {(Fk = min(Sk), Fk+1 = min(Sk+1)), (Fk = max(Sk), Fk+1 = max(Sk+1))}
15: end if
16: if min(Sk) 6= max(Sk+1) and max(Sk) 6= min(Sk+1) then
17: return

M = {(Fk = min(Sk), Fk+1 = max(Sk+1)), (Fk = max(Sk), Fk+1 = min(Sk+1))}
18: end if
19: else
20: if |Sk ∩ Sk+1| > 1 then
21: if min(Sk) 6= min(Sk+1) and max(Sk) 6= max(Sk+1) then
22: return

M = {(Fk = min(Sk), Fk+1 = min(Sk+1)), (Fk = max(Sk), Fk+1 = max(Sk+1))}
23: else
24: return

M = {(Fk = max(Sk), Fk+1 = min(Sk+1)), (Fk = min(Sk), Fk+1 = max(Sk+1))}
25: end if
26: end if
27: end if

We note that we can regard (M,M) → (E,M) and (M,M) → (M,E) as one case, as in both
cases one facility makes a transition M → M and the other one makes a transition M → E. Lemma
4.2 assures that transition M → M is SP. Let us focus then on transition M → E. Two cases can
occur: (i) Sk = S′k, in which case it must be |Sk| = |S′k| = 2 and (ii) Sk 6= S′k, in which case |Sk| = 1
and |S′k| = 2 by the parity argument. In case (i), let Sk = {l, l + 1}. We notice that |Sk ∩ Sk+1| > 1
and E[Fk] = avg(Sk) = l + 1

2 must hold, the latter since Fk is assigned by assumption as a mean set
solution. Let us suppose w.l.o.g. i ≤ l (i.e. the case when i ≥ l + 1 is symmetric). We note that i
can gain on Fk only if F ′k = l (i.e., the nearest node of S′k to i is selected as extreme solution when i
lies). In order for this to happen, S′k+1 needs to be to the right of S′k, which implies that l < l + 1 ≤ s
where s is the nearest point of S′k+1 to Sk. As we assume no other agent changes her bid, this can only
happen if Fk+1 ∈ Ti and Fk+1 /∈ T ′i and, as a consequence of that, S′k+1 moves to the right with respect
to Sk+1. It follows that E[|F ′k − i|] = E[|Fk − i|] − 1

2 but E[|F ′k+1 − i|] ≥ E[|Fk+1 − i||] + 1
2 (since

16

S′k+1 moves away from i, avg(S′k+1) moves away of at least 1/2), which implies that costi(F ′k, F
′
k+1) =

d(i, E[F ′k]) + d(i, E[F ′k+1]) ≥ d(i, E[Fk]) + d(i, E[Fk+1]) = costi(Fk, Fk+1). In case (ii), we note
that Fk ∈ Ti (i.e., if Fk /∈ Ti the location of facility Fk is irrelevant to agent i) and Fk /∈ T ′i . Since,
|Sk| = 1, F ′k is an extreme solution for S′k and N ′k = Nk \ {i}, by Lemma 4.5 this transition is SP.

We note that we can regard cases (E,M)→ (E,E) and (M,E)→ (E,E) as the same case, since
in both cases we have a transition E → E and a transition M → E. We notice that transition E → E
is SP by Lemma 4.4. Let us now focus on transition M → E. We notice that in this case |Sk| = 1 and
F ′k is an extreme solution. By Lemma 4.5 this transition is SP.

We note we can regard (E,E)→ (E,M) and (E,E)→ (M,E) as one case, in both cases we have
a transition E → E and a transition E → M . For the transition E → E, we note that by Lemma 4.4
the facility does not move, so truthfulness is preserved. Let us now analyse transition E → M . Agent
i can only gain if Fk ∈ Ti, so the only possible lie is T ′i = Ti \ {k}. Since Fk is an extreme solution,
|Sk| = 2. Let us denote Sk = {l, l + 1}. Let us suppose w.l.o.g. that i ≤ l < l + 1 (i.e., the case when
l < l+1 ≤ i is symmetric). When i misreports her type, the number of requests for Fk becomes odd, so
|S′k| = 1. It is easy to check that S′k = {l+1} and i < Fk ≤ F ′k, which implies that d(i, Fk) ≤ d(i, F ′k).

Let us now consider the case (M,M)→ (E,E). We notice that in this case |Sk| 6= 2 and |Sk+1| 6=
2. To prove this, let us suppose for the sake of contradiction that |Sk| = 2. In order to have an (M,M)
pair it must be the case that |Sk ∩ Sk+1| > 1 which implies that |Sk+1| ≥ 2. We notice that in this
case |S′k+1| = 1 by the parity argument, which would not result in a (E,E) pair. The same argument
holds if we assume by contradiction that |Sk+1| = 2. Let us then consider the case when |Sk| 6= 2 and
|Sk+1| 6= 2. We highlight that, since |Sk| 6= 2 and |Sk+1| 6= 2 but |S′k| = |S′k+1| = 2, it must be that
Nk 6= N ′k and Nk+1 6= N ′k+1, from which by the parity argument it follows that |Sk| = |Sk+1| = 1.
Furthermore it must be the case that Fk ∈ Ti (i.e. otherwise the location of facility Fk would be irrelevant
for the cost of agent i) and Fk /∈ T ′i . We can apply to both M → E transitions Lemma 4.5 to show that
strategyproofness is preserved.

Let us now consider the case (E,E) → (M,M). We have |Sk| = 2, |Sk+1| = 2. We are going to
prove that Sk 6= S′k and Sk+1 6= S′k+1. For the sake of contradiction, if Sk = S′k, then Sk+1 6= S′k+1 and
|S′k+1| = 1. Since F ′k must be a mean solution for S′k, it must be that |S′k ∩ S′k+1| > 1 (as otherwise F ′k
would be allocated as an extreme solution), which is a contradiction, since |S′k+1| = 1. Furthermore, we
can assume that Fk ∈ Ti (i.e., otherwise the location of facility Fk would be irrelevant for agent i) and
Fk /∈ T ′i . We observe that |S′k| = |S′k+1| = 1, because Fk /∈ T ′i and by the parity argument. Since (in the
best case for agent i) Fk = min`∈Sk

{d(i, `)} and since F ′k = min`′∈S′k{d(i, `′)} (as S′k is a singleton)
by Lemma 4.3 strategyproofness is preserved.

We note we can regard (E,M) → (M,E) and (M,E) → (E,M) as the same case, since both
cases have a transition E →M for one facility and a transition M → E for the other one. To fix ideas,
let us assume facility Fk makes transition E → M and facility Fk+1 makes transition M → E. We
are going to prove that Sk 6= S′k and Sk+1 6= S′k+1. We note that |Sk| = 2 and |S′k+1| = 2. Let us
suppose for the sake of contradiction that Sk = S′k. We reach a contradiction since |S′k| = |S′k+1| = 2
can yield either a (M,M) solution (if |S′k ∩ S′k+1| ≥ 2) or a (E,E) solution (if |S′k ∩ S′k+1| ≤ 2). Let
us suppose now that Sk+1 = S′k+1. As before, we reach a contradiction since |Sk| = |Sk+1| = 2 can
yield either a (M,M) solution or a (E,E) solution. Furthermore, it can be easily checked that |S′k| = 1
and |Sk+1| = 1. We can now analyse each transition singularly. Let us focus on transition E → M .
We can restrict ourselves to the case when Fk ∈ Ti (i.e., otherwise the location of facility Fk does not
affect the cost of agent i) and Fk /∈ T ′i . Since (in the best case for agent i) Fk = argmin`∈Sk

{d(i, `)}
and F ′k = argmin`′∈S′k

{d(i, `′)} (as S′k is a singleton), and strategyproofness is guaranteed by Lemma
4.3. Let us consider transition M → E. Once again, we can restrict to the case when Fk+1 ∈ Ti and
Fk+1 /∈ T ′i . Since |Sk+1| = 1 and Fk+1 is an extreme solution, by Lemma 4.5 strategyproofness is
preserved.

We now analyze the special case when Sk = Sk+1 = {s} and s is either the first or the last node of

17

the graph. We next prove that this can only happen when there is only one agent s located either at the
first or the last node of the graph and who is bidding for both facilities. Let us consider the case when
s is the first node of the graph, i.e. s = 1, the case when s = |V | being symmetric. It is easy to see
that Sk = Sk+1 = {s} only if there is no other agent to the right of s bidding for either Fk or Fk+1, as
this would imply the existence of at least one agent to the left of s making the same bid, contradicting
the assumption that s is the first node of the graph. Furthermore, we notice that if we assume that no
agent is misreporting her bid when this configuration occurs, than the only agent located at s = 1 has no
incentive to lie, since F0 = s, F1 = s + 1 and costi(F) = 1 and s cannot increase her utility function
any further. We will hence analize the case when case when T ′ = {Ts = {F0,F1}} and there is an agent
i 6= s misreporting her bid.

For any i > s we need to consider Ti = {F0}, Ti = {F1} and Ti = {F0,F1}. If Ti = {F0},
then if i = 2 F0 is assigned as an extreme solution, i.e. F0 = 1, and costi(F) = costi(F ′), whereas
if i > 2 then F0 is assigned as a mean set solution, i.e. the expected location of F0 is avg(S0), and
costi(F) = d(i, avg(S0)) ≤ d(i, F ′0 = 1) = costi(F ′). If Ti = {F1}, then if i = 2 the allocation
returned is F = (F0 = 1, F1 = 2) and the output does not change, whereas if i > 2 then F1 is allocated
in expectation on avg(S1) and costi(F) = d(i, avg(S1)) ≤ d(i, F ′1 = 2) = costi(F ′). Finally, if
Ti = {F0,F1} then both facilities are assigned as mean set solutions and the expected locations of F0

and F1 are at avg(S0) = avg(S1). It is easy to check that costi(F) = d(i, avg(S0)) + d(i, avg(S1)) ≤
d(i, F ′0 = 1) + d(i, F ′1 = 2) = costi(F ′).

5 Maximum cost Objective Function

In this section we analyze the heterogeneous 2-facility location problem under the maximum cost ob-
jective function. Section 5.1 is devoted to study deterministic mechanisms, whereas in Section 5.2 we
explore randomized mechanisms.

5.1 Deterministic Mechanisms for the Maximum Cost Objective Function

In this section we analyze deterministic mechanisms for the maximum cost heterogeneous facility lo-
cation problem. We start by presenting a negative result stating the impossibility of approximating the
optimal allocation within 3/2 of the optimal value while maintaining strategyproofness.

Theorem 5.1. There exists no α-approximate deterministic SP algorithm for the facility location prob-
lem with α < 3/2.

Proof. Let us first consider the two instances depicted in Figure 10(a) and Figure 10(b). The agents
in the instance of Figure 10(a) have declarations T1 = {F1,F2}, T2 = {F1} and T3 = {F1}, whereas
the agents in Figure 10(b) have declarations T1 = {F1}, T2 = {F1} and T3 = {F1,F2}. It is easy
to check that the optimal allocation for the instance of Figure 10(a) is F1 = (F1 = 2, F2 = 1),
whereas the optimal allocation for the instance of Figure 10(b) is F2 = (F1 = 2, F2 = 3), having
both cost 1. We note that, in both cases, any second-best solution has cost 2, so any 3/2-approximate
algorithm would return the optimal solution for these instances. Let us now consider the case when
agent 3 in instance 10(a) lies declaring T ′3 = {F1,F2} (see Figure 10(c)). In this case we have two
optimal solutions: F ′1 = (F1 = 3, F2 = 1) and F ′2 = (F1 = 1, F2 = 3), with cost 2. We note that
we obtain the same instance (and hence the same optimal solutions) if we consider the case when agent
1 in instance 10(b) lies declaring T ′1 = {F1,F2} instead of her true type. We now note that neither F ′1
nor F ′2 are SP. In fact, if F ′1 is returned, we can then regard the instance of Figure 10(c) as resulting
from the instance of Figure 10(a) when agent 3 lies, in which case agent 3 would gain by lying, as
cost3(F1) = 1 > 0 = cost3(F ′1). On the other hand, if F ′2 is returned, we can then regard the instance

18

1 2 3

{F1,F2}

F2

{F1}

F1

{F1}
(a)

1 2 3

{F1}{F1}

F1

{F1,F2}

F2

(b)

1 2 3

{F1,F2} {F1} {F1,F2}

F2 F1

F2F1

F ′1 =

= F ′2

(c)

Figure 10: Instances used to prove the lower bound of 3/2

of Figure 10(c) as resulting from the instance of Figure 10(b) when agent 1 lies, in which case agent 1
would gain by lying, as cost1(F2) = 1 > 0 = cost1(F ′2). It is clear from the above argument that an
SP solution for the instance of Figure 10(c) locates facility F1 at node 2, hence the only SP solutions are
(F1 = 2, F2 = 1) and (F1 = 2, F2 = 3). Since the cost of these solutions is 3, the claim is proven.

Since we have proved a 3/2 approximation lower bound for deterministic SP algorithms, the follow-
ing corollary easily follows.

Corollary 5.1. There is no optimal deterministic SP algorithm for the facility location problem.

We now show that algorithm TWOEXTREMES, presented in Section 4.1 is tightly 3-approximate
for the maximum cost objective function. We note that the strategyproofness of algorithm TWOEX-
TREMES follows from Theorem 4.2, since truthfulness is independent of the objective function but is
rather dependent on the agents’ cost model.

Theorem 5.2. The TWOEXTREMES algorithm is 3-approximate.

Proof. Let F∗ denote the optimal allocation and F denote the allocation returned by the TWOEX-
TREMES algorithm. Let us consider an agent i such that i ∈ argmaxi∈N costi(F) and let us denote
EXT = costi(F). It is easy to check that the following holds:

costi(F∗) = EXT −∆F ≤ OPT (4)

where ∆F =
∑

j∈Ti ∆Fj and ∆Fj = d(i, Fj) − d(i, F ∗j). Intuitively, i can be regarded as the worse
off agent under the TWOEXTREMES, and (4) formalizes the fact that the optimal allocation locates the
facilities closer to i with respect to TWOEXTREMES in order to lower the cost of agent i and, as a
consequence, to lower the value of the objective function. On the other hand, because the position of
the facilities changes, there are some agents that are better off under the TWOEXTREMES allocation
and that are made worse off by the optimal allocation. For instance, unless the TWOEXTREMES al-
location is optimal, the agents that reside at the extremes of the graph are strictly better off under the
TWOEXTREMES allocation (since they have a facility located at their node) than they are under the op-
timal allocation. To formalize this intuition, let S denote the set {minN1,maxN2} if Ti = {F1,F2},
{minN1} if Ti = {F1} and {maxN2} if Ti = {F2}. Then there exists x ∈ S and a facility k ∈ Ti ∩ Tx
such that d(x, Fk) ≤ d(x, F ∗k). Intuitively, agent s is the agent made worse off by the optimal allo-
cation in order to make agent i better off and lower the overall cost of the allocation. Furthermore,

19

1 2 3 4 5

λ λλ/2 λ/2

{F1}

F ∗1

{F1,F2}

F ∗2

{F2}

F1 F2

Figure 11: Instance showing that the bound of Theorem 5.2 is tight.

d(x, F ∗k)− d(x, Fk) ≥ d(i, Fk)− d(i, F ∗k), since x is at least as much better of in the optimal allocation
as i is worse off, according to facility Fk. It is not hard to check that the following holds for x ∈ S:

OPT ≥ costx(F∗) ≥ d(x, F ∗k)

≥ d(x, F ∗k)− d(x, Fk)

≥ d(i, Fk)− d(i, F ∗k) ≥ ∆Fk.

(5)

Two cases can occur: (i) |Ti| = 1 and (ii) |Ti| = 2. If case (i) occurs, we notice that ∆F = ∆Fk, k ∈ Ti,
and from (4) and (5) we derive EXT ≤ 2 ·OPT . If case (ii) occurs, we notice that applying (5) with k
and k + 1, we obtain 2 ·OPT ≥ ∆Fk + ∆Fk+1, and, finally, from (4), EXT ≤ 3 ·OPT .

Theorem 5.3. The upper bound of Theorem 5.2 is tight.

Proof. We are now going to prove that the bound is tight. Let us consider the 3-agent family of instances
depicted in Figure 11, where between nodes 1 and 2 and between nodes 4 and 5 there are λ “empty”
nodes whereas between nodes 2 and 3 and between nodes 3 and 4 there are λ

2 “empty” nodes. It is
easy to check that the optimal allocation in this case is F∗ = (F ∗1 = 2, F ∗2 = 4) and the optimal
cost is mc(F∗) = λ. Furthermore, it is easy to check that the cost of the allocation F = (F1 =
1, F2 = 5) computed by algorithm TWOEXTREMES is mc(F) = cost3(F) = 3λ, which is indeed
3-approximate.

5.2 Randomized Mechanisms for the Min-Max Objective Function

In this section we shift our focus to randomized algorithms. Similarly to the case of deterministic mech-
anisms, our results are twofold: (i) we prove a negative result regarding the impossibility of obtaining
arbitrarily good approximations by means of SP algorithms and (ii) we present a 3/2-approximate ran-
domized SP algorithm.

We begin by proving the impossibility of approximating the optimum within a factor of 4/3 while
preserving strategyproofness.

1 2 3 4

{F1} {F1} {F1,F2} {F2}

F1 F2

Figure 12: Truthful instance used to prove the bound of Theorem 5.4

Theorem 5.4. There is no SP randomized α-approximate algorithm for the maximum cost objective
function with α < 4/3.

20

Proof. Let us consider the instance depicted in Figure 12. It is easy to check that the (unique) optimal
solution F∗ = (F1 = 2, F2 = 3) has cost mc(F∗) = 1, whereas any suboptimal allocation has
cost at least 2. Let us consider a generic randomized algorithm A that returns the optimal allocation
with probability ρ and some suboptimal allocations with probability 1 − ρ. If A is 4/3-approximate,
then 4/3 ≥ mc(A(T)) ≥ 1 · ρ + 2(1 − ρ) which implies that A must return the exact solution with
probability ρ ≥ 2/3. In particular, this means that for agent 4 the allocation computed by A has cost
cost4(A(T)) ≥ 2/3. If agent 4 lies declaring T ′4 = {F1,F2} (see Figure 13), then the optimal allocations
areF ′1 = (F1 = 2, F2 = 4) andF ′2 = (F1 = 3, F2 = 4), having cost 2, whereas any suboptimal solution
has cost at least 3. Once again, A would return an optimal solution with a certain probability π and a
suboptimal solution with probability 1−π. In particular, to preserve strategyproofness cost4(A(T ′)) ≥
2/3 must hold, which can only happen if a suboptimal solution is returned with probability greater than
2/3, as both optimal solutions F ′1 and F ′2 locate F2 and cost4(F ′1) = cost4(F ′2) = 0. This implies that
1−π ≥ 2/3 and π ≤ 1/3. Hence,mc(A(T ′)) ≥ 2 ·1/3+3 ·2/3 = 8/3, which yields an approximation
ratio of α ≥ 4/3.

1 2 3 4

{F1} {F1} {F1,F2} {F1,F2}

F1 F2

Figure 13: Instance used in the proof of Theorem 5.4 wherein agent 4 lies

Since we have proved a 4/3 approximation lower bound for randomized SP algorithms, the following
corollary easily follows.

Corollary 5.2. There is no optimal randomized SP algorithm for the facility location problem with
respect to the maximum cost objective function.

We now present a randomized SP algorithm, which returns 3/2-approximate solutions. The main
idea behind the algorithm, called RANDAVG and presented in Algorithm 5, is to locate in expectation
facility Fk on the mean location ofNk, thus guaranteeing that hiding Fk from one’s own type is not prof-
itable (i.e., Nk can only shrink away from the lying agent). Much like algorithm RANDOPT, algorithm
RANDAVG uses mean set solutions, although we do not require mean set solutions to be optimal any
more. Mean set solutions are computed by means of COMPUTEMEANSET(x, y) that returns a mean
set (see Definition 3.1) centered around two points x and y on the graph.7 There are, however, certain
extreme situations in which the existence of mean sets is not guaranteed (cf. Lemma 5.1). RANDAVG
needs to consider these cases separately (cf. lines 3 and 6 of the algorithm) and return deterministic
solutions instead.

In this section, we let µk denote the average location of Nk, i.e., µk = avg(Nk) = minNk+maxNk
2 ,

k = 0, 1. Depending on the parity of |Nk|, µk might either lie on a vertex of G (if |Nk| is odd) or in
between two vertices (if |Nk| is even); we denote the former case as µk ∈ V and the latter as µk ∈ E
(meaning that µk lies on an edge of G, formally: ∃(u, v) ∈ E such that µk = (u + v)/2). We let
RIGHT(µk) = dµke if µk ∈ E and µk+1 otherwise. Similarly, LEFT(µk) = bµkc if µk ∈ E and µk−1
otherwise.

Algorithm 4 reports the pseudocode for procedure COMPUTEMEANSET, which is used by algorithm
RANDAVG to compute mean set solutions. It takes as input two points µ1 and µ2 on the graph and
returns a set of allocationsM such that when a solution is extracted uniformly at random fromM, the
expected value of F0 and F1 are, respectively, µ0 and µ1. Lemma 5.1 gives sufficient conditions for

7To ease the notation, in this section we use binary indexes for the facilities.

21

Algorithm 4: COMPUTEMEANSET

Require: Two points µ0 and µ1 on G.
Ensure: a set of allocationsM such when an allocation (F0, F1) is extracted uniformly at random

fromM the expected value of F0 and F1 is, respectively, µ0 and µ1.
1: if |µ0 − µ1| ≥ 1 then
2: if µ0 ∈ V and µ1 ∈ V then
3: return M = {(µ0, µ1)}
4: if µk ∈ V and µk+1 ∈ E then
5: return M = {(µk, LEFT(µk+1)), (µk,RIGHT(µk+1))}
6: else
7: return M = {(LEFT(µ0), LEFT(µ1)) , (RIGHT(µ0),RIGHT(µ1))}
8: end if
9: end if

10: else
11: if µ0 ∈ V and µ1 ∈ V then
12: return {(µ0, LEFT(µ1)), (µ0,RIGHT(µ1)), (LEFT(µ0), µ1), (RIGHT(µ0), µ1)}
13: end if
14: if (µk ∈ V and µk+1 ∈ E) or (µk ∈ E and µk+1 ∈ E) then
15: return M = {(RIGHT(µk), LEFT(µk+1)), (LEFT(µk),RIGHT(µk+1))}
16: end if
17: end if

a mean set solution to be feasible. Algorithm 4 is an algorithmic polynomial-time transposition of the
constructive proof of Lemma 5.1.

Lemma 5.1. There always exists a feasible mean set for graph G = (V,E) if either of the following
holds: (i) |µk − µk+1| ≥ 1, (ii) ∀k ∈ {0, 1}, RIGHT(µk) 6= NIL and LEFT(µk) 6= NIL.

Proof. Let us focus on case (i) initially. We distinguish the cases in which µk is in V from those in
which it is in E. If µk ∈ V and µk+1 ∈ V then M = {(µk, µk+1)} is a mean set for G (note
that this solution is feasible as |µk − µk+1| ≥ 1 by hypothesis). If µk ∈ E and µk+1 ∈ V then:
LEFT(µk) 6= NIL, RIGHT(µk) 6= NIL and both LEFT(µk) 6= µk+1 and RIGHT(µk) 6= µk+1 (as, by
hypothesis, |µk − µk+1| ≥ 1). Hence, M = {(LEFT(µk), µk+1), (RIGHT(µk), µk+1)} is a feasible
mean set for G. If both µk ∈ E and µk+1 ∈ E, then since |µk − µk+1| ≥ 1, we have that M =
{(LEFT(µk), LEFT(µk+1)), (RIGHT(µk),RIGHT(µk+1))} is a mean set for G.

Let us now focus on case (ii). We assume that |µk − µk+1| < 1 (for otherwise the arguments
above apply). It is easy to check that in this case we have either: (i) µk ∈ V and µk+1 ∈ E for
some k ∈ {0, 1} or (ii) µk = µk+1 and µk, µk+1 ∈ V or (iii) µk = µk+1 and µk, µk+1 ∈ E. Then
M = {(LEFT(µk),RIGHT(µk+1)), (RIGHT(µk), LEFT(µk+1))} is a feasible mean set for G.

Theorem 5.5. Algorithm RANDAVG is SP in expectation.

Proof. It is easy to check that algorithm RANDAVG returns either a feasible mean set solution (i.e., line
10) or a feasible deterministic solution (lines 3 and 6) when no mean set solutions exist. For the sake of
notation, in the remainder we will denote a mean set solution asM and a deterministic solution as D.
Let us denote by i the lying agent; we shall prove that costi(F ′) ≥ costi(F), where F and F ′ denote
the outcomes of RANDAVG on input the true type of i and a misreport, respectively. (The value of
costi(·) must be intended here with respect to the expected locations of the facilities in Ti.) The analysis
distinguishes what type of allocation (i.e.,M or D) F and F ′ are. By letting X → Y symbolize that F

22

Algorithm 5: RANDAVG
Require: Line G, facilities F = {F0,F1} , declarations T = {T1, . . . , Tn}
Ensure: FAV G(T), a 3/2-approximate allocation for 2-facility location on G

1: µk := avg(Nk), ∀k ∈ {0, 1}
2: if ∃k ∈ {0, 1} s.t. RIGHT(µk) = NIL AND |µ0 − µ1| < 1 then
3: return

(
F̄k := µk, F̄k+1 := LEFT(µk+1)

)
4: end if
5: if ∃k ∈ {0, 1} s.t. LEFT(µk) = NIL AND |µ0 − µ1| < 1 then
6: return

(
F̄k := µk, F̄k+1 := RIGHT(µk+1)

)
7: end if
8: S := {(u, v) : u ∈ V, v ∈ V, u 6= v}
9: M := COMPUTEMEANSET(µk, µk+1, S)

10: return (Fk, Fk+1) ∈M with probability 1/|M|

is of type X and F ′ is of type Y , we consider three cases: (a)M→M; (b)M→ D; (c) F is of type
D.

Case (a). Let i ∈ {minN0,maxN0,minN1,maxN1}. In this case each facility is located inde-
pendently (in expectation) and truthfulness follows from the simple observation that d(i, avg(Nk)) ≤
d(i, avg(N ′k)), for k ∈ Ti. If i /∈ {minN0,maxN0,minN1,maxN1}, it is easy to check that i cannot
alter the outcome of RANDAVG, as avg is computed based on the extreme elements of N0 and N1.

Case (b). Let us consider the caseM→ D. Since F ′ is of type D, |µ′0 − µ′1| < 1 and there exists
k ∈ {0, 1} such that either LEFT(µ′k) = NIL or RIGHT(µ′k) = NIL. We focus on the former case; the
other case follows by symmetry. Since LEFT(µ′k) = NIL then, by definition of LEFT, µ′k ∈ V and, in
turns, by definition of µ′k, N ′k = {`} and µ′k = `. Note also that since |µ′k − µ′k+1| < 1 then µ′k+1 ∈ E,
with LEFT(µ′k+1) = `. In this case we then have T ′` = {Fk,Fk+1}, T ′`+1 = {Fk+1} and T ′r = ∅ for
all r ≥ ` + 2, but Tl = T ′l for all l 6= i (i.e. we assume that only agent i is lying). On this instance
RandAvg returns F ′ = (F ′k = `, F ′k+1 = ` + 1) (see Line 6 of algorithm RANDAVG). Let us assume
that i = `. In this case, if Ti = {Fk}, then F = (Fk = `, Fk+1 = ` + 1) (line 3 of RANDAVG) and
the cost of agent i is unchanged, whereas if Ti = {Fk+1} then Nk+1 = {`, ` + 1}, Fk+1 = ` + 0.5
and costi(F ′) = 1 > 0.5 = costi(F). Let us assume that i = ` + 1. We need to consider two cases:
Ti = {Fk} and Ti = {Fk,Fk+1}. If Ti = {Fk}, then Nk = {1, 2}, Nk+1 = {1} and RANDAVG
outputs F = (Fk = ` + 1, Fk+1 = `) (line 6 or RANDAVG) and costi(F) = 0 < 1 = costi(F ′).
If Ti = {Fk,Fk+1}, then Nk = Nk+1 = {1, 2}, the expected position of the solution returned by
RANDAVG is `+0.5 for both Fk and Fk+1, and costi(F) = 1 = costi(F ′). Let us assume that i ≥ `+2.
In this case it can be Ti = {Fk}, Ti = {Fk+1} or Ti = {Fk,Fk+1}. If Ti = {Fk}, then Nk = {`, i}
and Nk+1 = {`, ` + 1}. In this case the expected position of facility Fk is avg(Nk) = `+i

2 > ` and
costi(F) = i−`

2 < i − ` = costi(F ′). If Ti = {Fk+1}, then Nk = {`} and Nk + 1 = {`, ` + 1, i}. In
this case the expected position of facility Fk+1 is `+i

2 and costi(F) = i−`
2 < `+ 1− 1 = costi(F ′). If

Ti = {Fk,Fk+1}, then Nk = {`, i} and Nk+1 = {`, `+ 1, i}. In this case the expected position for both
facilities Fk and Fk+1 is `+1

2 and costi(F) = i− ` < 2(i− `)− 1 = costi(F ′).
Case (c). Since F is of type D, by the same reasoning of case (b) we conclude that there exists

k ∈ {0, 1} such that Nk = {`}, µk = ` and either LEFT(µk) = NIL or RIGHT(µk) = NIL. We
focus on the former case, the other being symmetric. We note that in this case we have a 2-agents
instance such that T` = {Fk,Fk+1}, and T`+1 = {Fk+1}. Since the allocation outputted by RANDAVG
is (Fk = `, Fk+1 = `+ 1) it is easy to check that no agent can lower her cost any further.

Theorem 5.6. Algorithm RANDAVG is 3/2-approximate for the maximum cost objective function.

Proof. We note that whenever algorithm RANDAVG returns a deterministic solution, then it returns an

23

optimal allocation. Hence, in the remainder we restrict ourselves to considering only the case when
RANDAVG returns a mean set solution.

Let us denote a bottleneck agent (i.e., an agent incurring the maximum cost) of RANDAVG by i,
namely: costi(F) = mc(F), where F = (F0, F1) denotes the output of RANDAVG. (Again, costi(·)
must be considered w.r.t. the expected locations of the facilities in Ti.) Hereinafter, F∗ = (F ∗0 , F

∗
1) will

denote the optimal solution. We can assume that Ti = {F0,F1}, as otherwise RANDAVG would return
an optimal allocation. Indeed, if we let Ti = {k}, we have AV G = mc(F) = Rk−Lk

2 ≤ mc(F∗) =
OPT , where Lk = minNk and Rk = maxNk, hence F must be optimal.

Let us denote ∆Fj = d(i, Fj)− d(i, F ∗j), for j ∈ {0, 1}. It is easy to check that:

costi(F∗) = AV G−∆F ≤ OPT, (6)

where ∆F = ∆F0+∆F1. Intuitively, the optimal allocation locates the facilities closer to iwith respect
to RANDAVG in order to lower the cost of agent i. Because of this, there is an agent x ∈ {L0, R0}
such that d(x, F0) ≤ d(x, F ∗0). For instance, any agent at or near avg(N0) is made worse off if the F0

is moved away from avg(N0). It is not too hard to check that the following holds:

OPT ≥ costx(F∗) ≥ R0 − L0

2
+ ∆F0. (7)

Likewise, there is an agent y ∈ {L1, R1} such that d(y, F1) ≤ d(y, F ∗1) and we have:

OPT ≥ costy(F∗) ≥
R1 − L1

2
+ ∆F1. (8)

We now need to consider two cases: ∆F ≤ OPT
2 and ∆F > OPT

2 . If ∆F ≤ OPT
2 , the claim follows

immediately from (6), as AV G− OPT
2 ≤ AV G−∆F holds. If ∆F > OPT

2 , then the following holds:

OPT

2
< ∆F0 + ∆F1

≤ 2 ·OPT − R0 − L0

2
− R1 − L1

2

(9)

where the second inequality follows from (7) and (8). From (9), we obtain

R0 − L0

2
+
R1 − L1

2
<

3

2
·OPT.

By observing that

AV G ≤ R0 − L0

2
+
R1 − L1

2
,

the claim follows.

a1 m1 o1 a2 m2 o2 a3

{F0} {F0,F1} {F0}

F ∗0 F ∗1F̄0 F̄1

λ λ

Figure 14: Tight instance for RANDAVG

24

Theorem 5.7. The upper bound of Theorem 5.6 is tight.

Proof. Figure 14 depicts a family of instances for which the RANDAVG algorithm always returns a 3/2-
approximate solution, thus showing that the analysis above is tight. This family of instances consists of
(at least) 3 agents a1, a2 and a3 such that: (i) a1 < a2 < a3; (ii) d(a1, a2) = d(a2, a3) = λ, where
λ ∈ Z; (iii) a1 = minN0, a2 = maxN0 = minN1 and a3 = maxN1; (iv) Ta = {F0}, Tb = {F0,F1}
and Tc = {F1}. It is easy to check that, for this family of instances, the optimal allocation is (F ∗0 =
o1, F

∗
1 = o2), such that o1 = 2

3λ and o2 = 4
3λ, and mc((F ∗0 , F

∗
1)) = 2

3λ. Algorithm RANDAVG returns
allocation (F0 = m1, F1 = m2) such that: m1 = a1+a2

2 , m2 = a2+a3
2 and mc((F0, F1)) = λ. Hence,

the approximation ratio of algorithm RANDAVG on this family of instances is 3/2.

6 Conclusions

In this paper, we have introduced and analyzed a multi-dimensional variant of the facility location prob-
lem, arguably the paradigmatic case study in the literature on approximate mechanism design without
money. Moreover, works falling in this research agenda often only deal with single-parameter agents
(exceptions being the studies on mechanisms without money and verification [9, 4, 5]).

In greater detail, we have studied the heterogeneous facility location problem, which features het-
erogeneous facilities (i.e., serving different purposes). Our study encompasses both utilitarian and non
utilitarian objective functions, namely: (i) social cost, which consist of the sum of the agents’ individual
costs, and (ii) maximum cost, which accounts for the highest cost incurred by any of the agents.

In both cases, we have shown that even for very simple agents’ domains comprised of only 2 bits
(as in the case of heterogeneous 2-facility location), truthfulness might impose a penalty on the quality
of the solutions computed by deterministic mechanisms. Indeed, we have proved a 9/8 approxima-
tion lower bound for deterministic mechanisms when the social cost objective is concerned, and a 3/2
approximation lower bound for maximum cost. We have coupled these negative results with an (n− 1)-
approximate truthful deterministic mechanism for the social cost objective function and a 3-approximate
truthful deterministic mechanism for maximum cost.

Randomization provably helps to improve the approximation quality, as it enables us to obtain the
optimal allocation via truthful mechanisms with respect to the social cost objective. As regards the
maximum cost objective function, we have proved that in order to impose truthfulness, we still have to
content ourselves with suboptimal allocations even when resorting to randomized algorithms, although
we can provide better approximations.

Naturally, our results leave a gap between upper and lower bounds for both deterministic and ran-
domized truthful mechanisms. To close these gaps, a better understand of truthfulness without money
of multi-dimensional agents is needed, which is left as a future direction for further investigation.

References

[1] N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz. Strategyproof approximation of the
minimax on networks. Mathematics of Operations Research, 3:513–526, 2010.

[2] E. Dokow, M. Feldman, R. Meir, and I. Nehama. Mechanism design on discrete lines and cycles.
In ACM EC, pages 423–440, 2012.

[3] D. Ferraioli, P. Serafino, and C. Ventre. What to verify for optimal truthful mechanisms without
money. In AAMAS, 2016. In press.

[4] D. Fotakis, P. Krysta, and C. Ventre. Combinatorial auctions without money. In AAMAS, pages
1029–1036, 2014.

25

[5] D. Fotakis, P. Krysta, and C. Ventre. The power of verification for greedy mechanism design. In
AAMAS, pages 307–315, 2015.

[6] D. Fotakis and C. Tzamos. Strategyproof facility location for concave cost functions. In ACM EC,
pages 435–452, 2013.

[7] D. Fotakis and C. Tzamos. Winner-imposing strategyproof mechanisms for multiple Facility Lo-
cation games. Theoretical Computer Science, 472:90–103, 2013.

[8] D. Fotakis and C. Tzamos. On the power of deterministic mechanisms for facility location games.
ACM Trans. Economics and Comput., 2(4):15:1–15:37, 2014.

[9] E. Koutsoupias. Scheduling without payments. Theory Comput. Syst., 54(3):375–387, 2014.

[10] P. Krysta and C. Ventre. Combinatorial auctions with verification are tractable. Theoretical Com-
puter Science, 571:21–35, 2015.

[11] P. Lu, X. Sun, Y. Wang, and Z. A. Zhu. Asymptotically optimal strategy-proof mechanisms for
two-facility games. In ACM EC, pages 315–324, 2010.

[12] P. Lu, Y. Wang, and Y. Zhou. Tighter bounds for facility games. In WINE, pages 137–148, 2009.

[13] H. Moulin. On strategy-proofness and single-peakedness. Public Choice, 35:437–455, 1980.

[14] K. Nissim, R. Smorodinsky, and M. Tennenholtz. Approximately optimal mechanism design via
differential privacy. In ITCS, pages 203–213, 2012.

[15] P. Penna and C. Ventre. Optimal collusion-resistant mechanisms with verification. Games and
Economic Behavior, 86:491–509, 2014.

[16] A. D. Procaccia and M. Tennenholtz. Approximate mechanism design without money. ACM Trans.
Economics and Comput., 1(4):18, 2013.

[17] J. Schummer and R. V. Vohra. Strategy-proof location on a network. Journal of Economic Theory,
104:405–428, 2002.

[18] P. Serafino and C. Ventre. Heterogeneous facility location without money on the line. In ECAI,
pages 807–812, 2014.

[19] P. Serafino and C. Ventre. Truthful mechanisms for the location of different facilities. In AAMAS,
pages 1613–1614, 2014.

[20] P. Serafino and C. Ventre. Truthful mechanisms without money for non-utilitarian heterogeneous
facility location. In AAAI, pages 1029–1035, 2015.

26

	Introduction
	Our Contribution

	Related Work
	Model and Preliminary Definitions
	Social Cost Objective Function
	Deterministic Mechanisms
	Randomized Mechanisms for the Social Cost Objective Function

	Maximum cost Objective Function
	Deterministic Mechanisms for the Maximum Cost Objective Function
	Randomized Mechanisms for the Min-Max Objective Function

	Conclusions

