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(i) Abstract Genome-scale metabolic models are valuable tools for assessing the

metabolic potential of living organisms. Being downstream of gene expression,

metabolism is being increasingly used as an indicator of the phenotypic outcome

for drugs and therapies. We here present a review of the principal methods used for

constraint-based modelling in systems biology, and explore how the integration of

multi-omic data can be used to improve phenotypic predictions of genome-scale

metabolic models. We believe that the large-scale comparison of the metabolic
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response of an organism to different environmental conditions will be an important

challenge for genome-scale models. Therefore, within the context of multi-omic

methods, we describe a tutorial for multi-objective optimisation using the metabolic

and transcriptomics adaptation estimator (METRADE), implemented in MATLAB.

METRADE uses microarray and codon usage data to model bacterial metabolic

response to environmental conditions (e.g. antibiotics, temperatures, heat shock).

Finally, we discuss key considerations for the integration of multi-omic networks into

metabolic models, towards automatically extracting knowledge from such models.

(ii) Keywords: Multi-omics, metabolic models, flux-balance analysis, machine learn-

ing, data integration, multi-objective optimisation.

1. Introduction

Metabolism is the set of biochemical reactions in a cell which maintain its living

state. As these reactions are indispensable, it is vital that metabolic networks in all

living organisms are as well-characterised as possible. In the higher organisation

level of a microbial community, cells can act as either sinks or sources of metabolites

in their environment, as they consistently produce or deplete a range of metabolites

in the environmental metabolite pool [1]. Being downstream of gene expression,

metabolism is being increasingly used as an indicator of the phenotypic outcome for

drugs and therapies, as well as for cancer studies [2].

Constraint based reconstruction and analysis (COBRA) techniques are commonly

used for modelling reconstructions of metabolic networks at the genome scale. The

most widely used method is flux balance analysis (FBA), which has long been used

to mathematically express the flow of metabolites through a network of biochemical

pathways. FBA uses the assignment of stoichiometric coefficients to represent each
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of the metabolites involved in any given reaction [3]. Through these coefficients,

mass-balance constraints can be imposed on the system to identify a range of points

representing all possible flux distributions, which correspond to the set of feasible

phenotypic states. In this solution space, there exists a global optimal value which

satisfies a given objective function (usually the maximisation of biomass). For pur-

poses of mass conservation, all fluxes within this system are calculated under the

steady state assumption that the total amount of any metabolite being produced must

be equal to the total amount of that metabolite consumed, [4] and that the cell can

utilise resources optimally in time-invariant and spatially homogeneous extracellular

conditions [5, 6]. Linear programming can be used to maximise an objective function

indicating the extent to which each reaction contributes to a certain phenotype, under

constraints which can be defined by a cell’s metabolic potential, stoichiometry and

limits of reaction and transport rates [1].

The main advantage of using FBA is that it does not invariably require the definition

of kinetic parameters. In fact, fluxes are calculated in a pseudo-steady state using

stoichiometric coefficients and mass balances; this affirms its suitability for building

mechanistic predictive models from genome-scale metabolic networks [7]. Using

the optimal value obtained through FBA, flux variability analysis (FVA) [8] returns

the maximum and minimum values for fluxes through each reaction whilst keeping

the formation of biomass to a minimum, which can help in calculating the rate of

metabolite consumption or production [9].

More detailed analyses can be carried out to provide a deeper insight into certain

aspects of metabolic processes. To overcome the limitations of the steady state

assumption, dynamic FBA can be carried out by monitoring time dependent changes

in the concentration of metabolites and reaction fluxes over time [5]. This involves

calculating the conservation of mass for each of the metabolites consumed and
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produced in reactions and imposing additional constraints on the rates of flux changes,

non-negative metabolite and flux levels and transport fluxes [10].

Several genome-scale metabolic models are readily available in online repositories

such as KEGG [11], BIGG [12], BioCyc [13] and SEED [14]. These are prepared

by building a genome-scale reconstruction of all metabolic reactions taking place

in the organism followed by manual curation, gap-filling and annotation of specific

genes, metabolites and pathways with descriptive metadata. Recently, an increasing

number of genome-scale signalling and regulatory networks are also being compiled

in order to garner a better understanding of the underlying mechanisms of metabolic

pathways [5], and approaches to extract pathway cross-talks have been proposed

[15].

Parsimonious enzyme usage FBA (pFBA) is a variant of FBA which aims to maximise

the stoichiometric efficiency of a metabolic network by identifying a subset of genes

which contribute to maximising the growth rate in silico. These include both essential

and non-essential genes, as well as those which are enzymatically and metabolically

less efficient and those which are completely unable to carry flux in experimental

conditions [16].

For a more detailed introduction to constraint-based metabolic models, the interested

reader is referred to the following texts: [17, 18]. After reviewing the available

methods for optimisation of metabolic networks, we also provide a tutorial for multi-

objective optimisation using METRADE. The tutorial illustrates how to predict

bacterial multi-response under varying environmental conditions, by computing the

trade-off between contrasting metabolic objectives.

Finally, we recognise that systematic fusion of multiple data types into a single, co-

hesive network is a challenge faced by many modellers, particularly when measuring

bacterial response at multiple omic levels. In view of this, we include a critical per-
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spective describing key considerations for the integration of multi-omic networks into

metabolic models, towards automatically extracting knowledge from such models.

2. Materials

2.1 Multi-target optimisation of multi-omic metabolic networks

Available methods for analysis of metabolic networks and metabolic engineering

usually define gene lethality in terms of effect on the growth rate only. In fact,

organisms often have multiple objectives to satisfy in addition to the maximisation

of biomass. To this end, a number of approaches have been recently proposed to

take into account multi-target optimisation of cellular tasks. Unlike single-objective

approaches, these allow for simultaneous maximisation or minimisation of two or

more properties of interest.

Gene knockout simulation is one of most consistently used methods for determin-

ing the essentiality of genes, and has been successfully applied to the design and

optimisation of strains for metabolic engineering. However, it has been contended

that single gene perturbations can often fail to capture the essentiality of genes or

localise gene function owing to genetic redundancy. As a result, when a metabolic

function is encoded by two or more genes, the removal of any one of these genes

will not result in an altered phenotype, and it may therefore be falsely concluded that

they are superfluous [19]. The regulatory on/off minimisation (ROOM) algorithm

uses mixed integer linear programming to predict the metabolic state of an organism

following knockout [20]. This is achieved by searching for the flux distribution of

the perturbed strain that minimises the number of significant flux changes (which

may allude to underlying regulatory changes after knockout) whilst satisfying all
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stoichiometric, thermodynamic and flux capacity constraints applied during FBA. On

the other hand, multiple genetic perturbations carried out concurrently may lead to

issues relating to technical and conceptual scaling. Hence, pairwise gene knockouts

may be considered better for identifying which deletions have a damaging effect.

For instance, a computational approach has been presented for identifying dosage

lethality effects (IDLE) in genome scale models of cancer metabolism [21] using

synthetic dosage lethality to simulate the pairwise knockout of non-essential enzymes

by overexpressing the first enzyme-coding gene but underexpressing the second.

On the whole, performing complete gene knockouts is still likely to present a number

of complications such as: (i) the lack of information regarding the effect of removing

essential reactions; (ii) increased compression of the flux distribution following the

removal of flux values during knockout; (iii) difficulty in optimising fluxes if they

are limited to their Boolean definition of having either a lethal or neutral phenotypic

effect [22].

To address the problem of the state-space explosion when considering all possi-

ble combinations of multiple gene knockouts, evolutionary algorithms have been

proposed, both searching in the discrete space of gene knockouts [23] and in the

continuous space of gene partial overexpression/underexpression [24]. This enables

the consideration of more than one objective function and expands the phenotypic so-

lution space as there are a greater number of feasible optimal points. Multi-objective

optimisation can help to resolve trade-offs between conflicting metabolic objec-

tives through simulating a series of optimal, non-dominated vectors in the multi-

dimensional objective space. In metabolic engineering, each vector may represent a

Boolean gene knockout strategy, or a real-valued partial knockdown/overexpression

strategy. For such vectors, there is no better solution which exists for a given objective

without sacrificing the performance of another [25]. This is known as a Pareto front



Optimisation of multi-omic genome-scale models 7

and enables the consideration of multiple conditions and constraints affecting each

objective in a multi-objective optimisation problem.

The key advantage of multi-objective optimisation is that it seeks a trade-off be-

tween multiple cellular objectives, without the need to define individual weights

and combine them into a single objective [26] or hierarchically order objectives

[27]. This eliminates difficulties associated with choosing the most suitable objec-

tive function or selecting weights which uniformly represent the Pareto front. The

use of multi-objective evolutionary algorithms (MOEAs) such as NSGA-II [28],

SPEA2 [29] and MOEA/D [30] quickly renders all Pareto-optimal solutions when

objectives are simultaneously optimised. Linear physical programming-based flux

balance analysis (LPPFBA) orders objectives by their Pareto-optimal solutions to

identify those which are in conflict [31]. This helps to select regions of the solution

space which contain feasible fluxes. Optimal flux vectors can be also found using

comprehensive polyhedra enumeration flux balance analysis (CoPE-FBA) through

finding the topology of sub-networks corresponding to these vectors [32]. In this

method, dividing reversible reactions into separate forward and backward reactions

further simplifies the solution space for finding non-decomposable flux routes [33].

Multi-objective optimisation can be implemented into FBA using the noninferior set

estimation (NISE) method to approximate Pareto curves for conflicting objectives

and examine flux at all Pareto-optimal solutions [34]. More recently, variations of

MOFBA and MOFVA have been used to compute metabolic trade-offs for multiple

species within microbial communities in terms of growth rates and associated reac-

tions [35]. Thermodynamic states have also been incorporated in such analyses to

inform responses to environmental conditions. Estimations of maximum yields using

single objective optimisation can be extended for multiple objectives to find the area

for which one factor cannot be increased without sacrificing another (i.e. a Pareto
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surface of yield versus productivity), through which it is possible to devise strategies

for improving performance by increasing metabolic flexibility [36].

As a pre-processing step, sensitivity analysis can be carried out to discover the most

influential inputs for the multi-objective optimisation problem by interrogating the

pathway, reaction or species spaces of the model. In particular, pathway-oriented sen-

sitivity analysis [23] has proved to be useful in metabolic engineering for improving

the robustness of strains by determining the most sensitive metabolic pathways; this

is achieved by identifying which knockouts or genetic manipulations contribute the

most towards a certain output.

2.2 Integration of multi-omic data types into genome-scale

metabolic models

Several methods for integration of gene expression data into metabolic models have

been proposed; for a comprehensive review, the reader is referred to Machado and

Herrgård [37]. However, it has readily been established that multi-omic integration

of data allows for a more comprehensive evaluation of model predictions, rather

than solely relying on gene expression profiling for the observation of metabolic

responses over a range of different environmental conditions. The optimisation of

transcriptomic and proteomic layers with respect to different growth conditions

serves to refine predictions of metabolic phenotypes (Figure 1).

Regulatory FBA (rFBA) is an extension of FBA which adds the dimension of tran-

scriptional regulation to improve flux predictions for dynamic models by recording

transcriptional events and protein activity as well as simulating the uptake of metabo-

lites, biomass production and the secretion of by-products [38]. Alternatively, the

probabilistic regulation of metabolism (PROM) method combines gene expression
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Fig. 1 Through the collection of transcriptomic, proteomic and other omic data across various
growth conditions from in-vivo experiments and existing literature, a genome-scale metabolic model
can be constructed and FBA carried out at multiple levels. The simulation of growth under different
conditions allows for condition-specific optimisation of each of the omic layers, which can then be
combined to form a multi-omic network.

data with transcriptional regulatory networks by quantifying the interactions from

high-throughput data in an automated fashion [39] to overcome limitations associated

with Boolean logic. This is achieved through the use of conditional probabilities to

represent gene states and gene-transcription factor interactions [40]. Therefore, a

greater number of interactions can be modelled, consequently improving the predic-

tion of phenotypic states for various transcriptional perturbations.

Conditional FBA applies conditional dependencies present in the metabolic model

as constraints for each flux. In other words, each flux is constrained by the activity

of the compound that facilitates it. For example, temporal variations in response to

varying light intensity and associated conditional dependencies were included in a

constrained genome-scale metabolic model, in order to simulate the phototrophic

growth of the cyanobacterium Synechocystis sp. PCC 6803 over a diurnal cycle

[41]. More recently, a system was devised using Synechococcus elongatus PCC

7942 as a model to study issues concerning resource allocation encountered during

phototrophic growth [42].

A unified measure of bacterial responses computed by a condition-specific model

allows for the detection of coordinated responses shared between different data



10 Supreeta Vijayakumar*, Max Conway*, Pietro Lió and Claudio Angione

types as well as the variation in responses across differing growth conditions. In this

regard, a method for the concatenation of disparate omics data types (layers) has

been proposed over varying growth conditions (nodes) into an aggregated model [43].

Using multilayer network models, the omics were weighted for the reliability of the

flux rate predictions. Additionally, calculating flux distributions with multiple levels

allowed for exploration of the total metabolic potential of the organism and the use

of a non-binary measure of gene expression. By coupling fluxomic and proteomic

data, a novel biological relationship was uncovered between protein structure and

translational pausing, as well as an improved in vivo estimation of genome-wide

enzyme turnover rates [44]. This approach helped to develop a parameterised model

to predict responses to conditions, and consequently inform metabolic cost-benefit

ratios at the cellular level.

The minimisation of metabolic adjustments (MOMA) uses quadratic programming

to solve its optimisation problem. The objective function is calculated as the distance

between two different flux distributions: the flux distribution for optimal growth

rate and the flux distribution following the generation of a knockout mutant through

genetic perturbation [45]. This accounts for the fact that knockout mutants are likely

to display a lower growth rate than the wild type, therefore their flux distribution is

better predicted by the minimal flux response to the knockout rather than by an opti-

mal growth rate [46]. The inactivation of genes imposes additional constraints on the

system, arguably leading to a shift towards a more valid and biologically meaningful

representation of flux distribution as close as possible to that of the wild type [47, 48].

Similarly, integrative omics metabolic analysis (IOMA) uses a mechanistic model to

determine reaction rates by incorporating quantitative proteomic and metabolomic

data into the model to deliver more accurate predictions of flux alterations following

genetic perturbation [49].
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In the context of metabolic engineering, multi-omic integration has been used to find

strain-specific differences for the improved selection and design of optimal strains.

The goal is threefold: (i) maximising the theoretical yield of a particular metabolic

product by comparing high flux reactions between strains using physiological data

added to the model; (ii) quantifying differential gene expression using transcriptomic

profiles; (iii) analysing gene expression across different conditions, thus character-

ising the specific metabolic capabilities of individual strains [50]. Gene expression

measurements can be obtained from microarray and/or RNA sequencing data from

public repositories for integration with metabolic networks. Gene inactivity moder-

ated by metabolism and expression (GIMME) is a switch-based algorithm which can

be used to perform discretisation (i.e. binary classification) of gene expression data

to reduce the amount of experimental noise, by finding inactive genes in the dataset

and re-enabling flux associated with false negative values [51]. Chiefly, the algorithm

scores the consistency of gene expression data for a given metabolic objective [52].

Conversely, there are a number of valve-based algorithms such as E-flux [53] and

METRADE [24], which treat gene expression data as continuous rather than discrete.

Lower and upper bounds are set so that the maximum allowable flux for a reaction is

a function of the normalised expression of genes controlling that reaction. The idea is

to tightly constrain the maximum and minimum flux when the expression for a gene

is low, but relaxing these constraints when the expression is high. Due to the addition

of these constraints, performing FBA returns an altered flux distribution, which may

consequently alter the corresponding metabolic state or optimal metabolic capacity

identified. There is another branch of methods which employ ’pruning’ so that only a

core set of reactions are retained in the metabolic model. Methods using this approach

to integrate models with tissue-specific data include MBA [54], FASTCORE [55]

and mCADRE [56].
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Since an increasing number of genome-scale transcriptional regulatory networks

are now available, methods like PROM [39] should be preferred to examine cellular

transcriptional activity, as they do not rely on assigning a Boolean on/off state to

each gene. Regulatory elements may also be incorporated into models by performing

enrichment analysis of transcription factors for differential control of genes [50], or by

merging transcriptional regulatory networks with constraint-based metabolic models

[57]. A multilayer model was constructed for Escherichia coli [58] which merged

sub-models of transcriptional regulatory networks, signal transduction pathways and

metabolic networks; trained parameters were fed into the model to return information

for an objective function and set of constraints with subsequent model predictions

improved through supplementation with experimental data. To bridge the gap (and

the still debated assumption of strong correlation) between gene expression levels and

protein abundance, a method was recently proposed to account for the synonymous

codon usage bias [59].

We believe that the large-scale comparison of the metabolic responses between

different environmental conditions will be an important challenge for genome-scale

modelling. In the following section, a tutorial is presented for METRADE [24],

which gives a step-by-step guide to perform optimisation of metabolic models.

This is achieved by mapping gene expression values to the objective space of a

genome-scale metabolic model and performing multi-objective optimisation for

identifying optimal phenotypes through the comparison of predicted flux rates for

multiple objectives. METRADE develops a multi-omic model of Escherichia coli that

includes a multi-objective optimisation algorithm to find the allowable and optimal

metabolic phenotypes through concurrent maximisation or minimisation of multiple

metabolic markers. A number of experimental conditions are mapped to the model

through transcriptomic data, and then mapped to a phenotypic multidimensional

objective space.
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3. Methods

The framework for the metabolic and transcriptomics adaptation estimator (ME-

TRADE) incorporates multi-objective optimisation by constructing a Pareto front

which displays gene expression profiles and codon usage arrays in a condition-phase

space, where each profile is associated with a growth condition [24]. This allows for

comparison of objectives to identify the best trade-off, where the maximal number of

cellular objectives are simultaneously optimised. Sets of Pareto-optimal solutions in

the front may be represented using a hypervolume indicator [60], enabling compari-

son between mapped conditions and examination of Pareto set evolution towards an

optimal configuration over time.

In the context of metabolic engineering, strains may be compared for their ability to

simultaneously fulfil multiple objectives and optimise production of multiple metabo-

lites at the same time. It is also possible to establish the optimal growth conditions

necessary to achieve this output and devise strategies for further optimisation through

performing gene knockouts or changing flux rates in-vitro. Additional insights into

bacterial adaptability can be obtained through principal component analysis (PCA)

[61], pseudospectra [62], and community detection [63]. PCA aids investigation of

components (i.e. expression profiles) with the greatest variance for multiple objec-

tives, whereas the pseudospectra and community detection methods elucidate the

community structure of bacteria in the condition phase-space.

METRADE can be run (i) as a standalone program to find the optimal gene expression

values for maximisation of given cellular objectives, and (ii) on a dataset of growth

conditions to find the predicted flux rates in any given condition.
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3.1 Initial settings

METRADE is fully compatible with the COBRA 2.0 toolbox [64]. The full code

needed for METRADE can be downloaded from http://www.nature.com/articles/

srep15147. The user can download COBRA toolbox for MATLAB from http://

opencobra.github.io/ and set the local COBRA folder in the MATLAB path with the

instruction

addpath(genpath('local_path_to_COBRA_toolbox'));

Load the model e.g. the one included in the folder, Escherichia coli iJO1366 [65]

with acetate-biomass set as objectives:

load('iJO1366_Ecoli_ac.mat')

The variable fbamodel.f selects the first objective (default: biomass). The variable

fbamodel.g selects the second objective (default: acetate). To find the indices of the

reactions for oxygen, succinate and acetate import/export, type

ix_o2 = find(ismember(fbamodel.rxns, 'EX_o2(e)')==1);

ix_succ = find(ismember(fbamodel.rxns, 'EX_succ(e)')==1);

ix_ac = find(ismember(fbamodel.rxns, 'EX_ac(e)')==1);

The pair of objective functions can be changed. For instance, to change the second

objective to succinate, use:

fbamodel.g(ix_ac) = 0;

fbamodel.g(ix_succ) = 1;

To change between aerobic and anaerobic conditions, we have to set a new lower

bound for the reaction importing oxygen. For instance, to simulate an anaerobic

condition, set the lower bound to zero (no import allowed).

http://www.nature.com/articles/srep15147
http://www.nature.com/articles/srep15147
http://opencobra.github.io/
http://opencobra.github.io/
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fbamodel.lb(ix_o2) = 0;

Note that default aerobic conditions are considered with a lower bound of −10

mmol/h/gDW. A negative lower bound represents the maximum rate available for the

import of that metabolite. Anaerobic conditions are with a null lower bound.

3.2 Mapping gene expression compendia to multidimensional

objective spaces

Run pareto_microarray_fluxes.m. This will generate flux rates for 466 given growth

conditions [66], and will save them in a variable called fluxes. The two fluxes chosen

as objectives (default: biomass and acetate) will be saved in a file called points. These

values represent the coordinates of the points in the bi-dimensional objective space

shown in the paper.

Listing 1 Mapping growth conditions on multidimensional phenotypic spaces

1 format long

2

3 % starts the parallel toolbox to use four cores

4 if (matlabpool('size') == 0) %opens only if it is closed

5 matlabpool('open','local',4)

6 end

7

8 % initialises the Cobra toolbox

9 initCobraToolbox

10
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11 % loads variables

12 load('genes.mat');

13 load('reaction_expression.mat');

14 load('probe_genes.mat');

15 load('glucose.mat');

16 load('oxygen.mat');

17 load('name_conditions_with_replicates.mat');

18 load('name_conditions.mat');

19 if evalin('base','exist(''data_only'',''var'')')==0

20 load('data_only.mat');

21 end

22 load('gene_variances.mat')

23 max_gene_importance = 10000;

24

25

26 %The following instructions find the locations of the gene 'bXXXX

' (genes in the fbamodel) in the array probe_genes (sequence

of genes appearing in the microarray data available)

27

28 position_gene = cell(length(genes),1);

29

30 for i=1:length(genes)

31 matches = strfind(probe_genes,genes{i});

32 position_gene{i} = find(~cellfun('isempty', matches));

33 end

34
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35 points = zeros(size(data_only,2),2); %table of points

coordinates. The number of points is equal to the number of

conditions in the microarray data

36 gene_importance = zeros(length(genes),1); %array of the

coefficients indicating gene importance. The size is equal to

the number of genes in the model

37

38 min_var = min(gene_variances);

39 probe_gene_importance = max_gene_importance * 1./(gene_variances/

min_var); %this way the importance of a gene can range from

0 to max_gene_importance

40

41 for i=1:length(genes)

42 if isempty(position_gene{i})

43 gene_importance(i) = max_gene_importance/2;

44 else

45 gene_importance(i) = probe_gene_importance(position_gene{

i});

46 end

47

48 end

49

50 number_conditions = size(data_only,2);

51 points = zeros(number_conditions,2);

52 fluxes = zeros (length(reaction_expression),number_conditions);

53

54 parfor_progress(number_conditions); % Initialize
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55

56 for index_cond = 1 : number_conditions

57 microarray_data = data_only(:,index_cond);

58 [v1, out] = process_conditions(microarray_data, index_cond,

genes, position_gene, fbamodel, oxygen, glucose,

name_conditions, name_conditions_with_replicates,

reaction_expression, gene_importance); %it is necessary

to pass the original fbamodel that will be changed in the

subfunction (oxygen will be put to zero or not according

to the anaerobic or aerobic condition, the default

condition in fbamodel is aerobic)

59 points(index_cond,:) = out;

60 fluxes(:,index_cond) = v1;

61 disp(index_cond);

62 parfor_progress;

63 end

64

65

66 string = ['points_gene_importance_' num2str(max_gene_importance)

];

67 save(string, 'points');

68

69 string = ['fluxes_gene_importance_' num2str(max_gene_importance)

];

70 save(string, 'fluxes');
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3.3 Multi-objective optimisation of gene expression

We will now solve the inverse problem, namely finding the best genome-wide ex-

pression values that allow for the maximisation of two given cellular objectives. This

part implements a multi-objective optimisation algorithm using a genetic algorithm

based on NSGA-II [28] (the comments in the genetic algorithm code below are

adapted from the original NSGA-II implementation). The trade-off between multiple

metabolic objectives is found as a result. Such methods can guide genetic engineering

to find the best gene expression values for specific goals. Furthermore, they can eluci-

date the metabolic capability of an organism and the relationship between contrasting

cellular objectives.

To start the optimisation, launch RUN.m (by editing the file, it is possible to set the

number of cores and select the model). The number of populations of the optimisation

algorithm is set to 150 by default, and the number of individuals per population is

set to 100. We suggest keeping this proportion. The results in the METRADE paper

have been obtained with 1500 populations of 1000 individuals each.

Listing 2 Multi-objective optimisation of metabolic models. The code has been parallelised to

work on all the available cores when executed on a multi-core processor.

1

2 load 'genes.mat';

3 load 'reaction_expression.mat';

4

5 M = 2; %number of objective functions

6 V = length(genes); %length of the input individuals without

ranking, crowding distance and outputs

7 N = pop; %population size

8
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9 min_range = zeros(1,V); %the expression of each gene is >= 0

10 max_range = 100*ones(1,V); %the expression of each gene is <=

100

11

12

13 %% Initialise the population

14

15 if ((last_gen==0))

16 chromosome=ones(pop,V+M); %gene expressions initialized as

1, i.e. all the genes are normally expressed (reference

state). A chromosome means, in our case, an array of gene

expression values

17

18 % chromosome = chromosome + 0.1.*(rand(pop,V+M)−0.5.*ones(pop,

V+M)); %adds some initial random noise

19 chromosome = chromosome + 2.*(rand(pop,V+M)−0.5.*ones(pop,V+

M)); %adds some initial random noise

20 [v1, fmax] = flux_balance(fbamodel,true);

21

22 for i=1:pop

23 chromosome(i,V+1)= − fmax;% acetate

24 chromosome(i,V+2)= − fbamodel.f' * v1;%biomass

25 end

26 %% Sort the initialised population

27 % Sort the population using non−domination−sort. This returns

two columns for each individual which are the rank and

the crowding distance corresponding to their position in
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the front they belong. At this stage the rank and the

crowding distance for each chromosome is added to the

chromosome vector for easy of computation.

28 chromosome = non_domination_sort_mod(chromosome, M, V);

29 else

30 sol=['solution' num2str(last_gen) '.mat'];

31 load(sol);

32 end

33

34 %% Start the evolution process

35 % The following are performed in each generation

36 % * Select the parents which are fit for reproduction

37 % * Perform crossover and mutation operators on the selected

parents

38 % * Perform selection from the parents and the offspring

39 % * Replace the unfit individuals with the fit individuals to

maintain a

40 % constant population size.

41

42 for i = last_gen+1 : gen

43 % Select the parents

44 % Parents are selected for reproduction to generate offspring

. The original NSGA−II uses a binary tournament selection

based on the crowded−comparison operator. The arguments

are

45 % pool − size of the mating pool. It is common to have this

to be half the population size.
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46 % tour − Tournament size. Original NSGA−II uses a binary

tournament selection, but to see the effect of tournament

size this is kept arbitrary, to be chosen by the user.

47

48 pool = round(pop/2);

49 tour = 2;

50 % Selection process

51 % A binary tournament selection is employed in NSGA−II. In a

binary tournament selection process two individuals are

selected at random and their fitness is compared. The

individual with better fitness is selected as a parent.

Tournament selection is carried out until the pool size

is filled. Basically a pool size is the number of parents

to be selected. The input arguments to the function

tournament_selection are chromosome, pool, tour. The

function uses only the information from last two elements

in the chromosome vector.

52 % The last element has the crowding distance information

while the penultimate element has the rank information.

Selection is based on rank and if individuals with same

rank are encountered, crowding distance is compared. A

lower rank and higher crowding distance is the selection

criteria.

53 parent_chromosome = tournament_selection(chromosome, pool,

tour);

54

55 % We now apply crossover and mutation operators
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56 mu = 20;

57 mum = 20;

58 if (num_cores>1)

59 offspring_chromosome = genetic_operator_parallel(

parent_chromosome, M, V, mu, mum, min_range,

max_range, fbamodel, genes, reaction_expression);

60 else

61 offspring_chromosome = genetic_operator(parent_chromosome

, M, V, mu, mum, min_range, max_range, fbamodel,

genes, reaction_expression);

62 end

63

64

65 % We now create the intermediate population, namely the

combined population of parents and offspring of the

current generation. The population size is two times the

initial population.

66

67 [main_pop,temp] = size(chromosome);

68 [offspring_pop,temp] = size(offspring_chromosome);

69 clear temp

70 % intermediate_chromosome is a concatenation of current

population and the offspring population.

71 intermediate_chromosome(1:main_pop,:) = chromosome;

72 intermediate_chromosome(main_pop + 1 : main_pop +

offspring_pop,1 : M+V) = offspring_chromosome;

73
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74 % Non−domination−sort of intermediate population

75 % The intermediate population is sorted again based on non−

domination sort before the replacement operator is

performed on the intermediate population.

76 intermediate_chromosome = non_domination_sort_mod(

intermediate_chromosome, M, V);

77

78 % Perform Selection

79 % Once the intermediate population is sorted only the best

solution is selected based on it rank and crowding

distance. Each front is filled in ascending order until

the addition of population size is reached. The last

front is included in the population based on the

individuals with least crowding distance

80 chromosome = replace_chromosome(intermediate_chromosome, M, V

, pop);

81 % chromosome = delete_redundant(chromosome,fbamodel);

82 solution=['solution' num2str(i)];

83 save(solution, 'chromosome');

84

85 end

After the optimisation, append_and_plot_solutions.m computes the Pareto front. The

file non_dominated.mat contains all the Pareto optimal points, while others.mat

contains the dominated points. The first two columns of both output files contain

the predicted values for the two objective functions. The 4th column is the number
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of population in which that solution has been found, while the 5th column is the

position of that solution in that population.

Finally, plot_and_export_color.m plots the final version of the Pareto front. An

example of a Pareto front obtained for 12propanediol and biomass is shown in Figure

2.

Fig. 2 Pareto front produced by METRADE when maximizing for 1,2-propanediol and biomass in
E. coli (adapted from [24]). The trade-off sheds light on the regions where the bacterium operates.
Solutions are asterisks denoted by progressively warmer colours according to the time step of the
genetic algorithm in which they have been generated. Although discrete, the Pareto front can be
approximated by a piecewise linear function.

To validate with the proteomic dataset by Hui et al. [67] included in METRADE, load

iJO1366_Ecoli_ac_lactoseMedium.mat and run pareto_proteomic.m. The dataset is

composed of 14 expression profiles in different growth conditions with: (i) titrated

catabolic flux through controlled inducible expression of the lacY gene; (ii) titrated

anabolic flux through controlled expression of GOGAT; (iii) inhibition of protein

synthesis with chloramphenicol. To run the pseudospectrum analysis on the growth

conditions as detailed in METRADE, run plot_eigenvector.m. The code requires an

updated eigtoollib toolbox.
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There are numerous factors to consider when integrating such multi-omic datasets

into metabolic models, many of which are discussed in the following perspective. In

order to extract the most meaning from multi-omic models, systematic fusion of the

multiple data types into a single, cohesive network is essential for measuring bacterial

response at multiple omic levels. Whilst considering the structure of multi-omic data

to be used for integration, the techniques used to integrate these data into the model

are of equal importance.

4. Notes

4.1 Omic network integration in metabolic models: a (critical)

perspective

A large proportion of the techniques which incorporate multi-omic methods into

metabolic modelling involve using other omics to constrain the metabolome: they are

one-way procedures. However, to properly interpret the results of these procedures,

techniques are required which can integrate the different datasets to produce some-

thing that is easier to interpret than the separate datasets, and then provide feedback

on how those separate datasets affected the integrated dataset. For example, in gene

expression constrained FBA methods, the genome and metabolome are integrated

into a combined model that enumerates feasible metabolic states. However, the result-

ing model is inherently complex: the actual relationship between a particular gene

and a particular outcome can be hard to understand, even though it is deterministic in

the model. Additionally, there is a lack of consensus about the best approach to take

when estimating flux rates in different conditions.
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Any approach based upon FBA has an inherently linear character: the outputs (fluxes

of interest) are linearly dependent on some subset of the inputs (the bounds and

objective function). The complexity comes from the fact that, while the output is

only linearly dependent on a small fraction of the inputs in any given configuration,

all of the other inputs affect which subset this is. This relationship is a piecewise

linear equation with a large number of terms, but where most of the coefficients are

zero in any given piece. This means that the challenge in understanding these models

in an intuitive way is not so much in understanding how each variable affects the

model, as when.

When looking to understand the effects of genetic or proteomic data on simulated

phenotypes, naturally, the first place to start is at techniques used for understanding

the effects of genetic or proteomic data on real phenotypes. With regression style

techniques, it becomes clear that the reaction rates induced by FBA are often multi-

modal, since the best values are likely to be at either the maximum or minimum of the

possible range. This multimodality violates normality assumptions, and it is therefore

difficult to sensibly normalise such distributions. This issue has been demonstrated in

a correlation analysis between expression levels and Pareto front position [22]. More

specifically, even if there are several layers of normalisation and the Pareto front

acts to smooth flux values, there are two clear peaks in the distribution of flux rates.

Figure 3 shows how this pattern occurs across a number of reactions in a knockout

simulation.

The obvious choice when faced with distributions with several narrow peaks is regard

these values as fully categorical. However, this approach eventually ends up mired

in overfitting; a good approach to combat this is to incorporate structure from the

network, e.g. by using a network regularised regression [68] technique to tie the

values at nodes to those at nearby nodes.
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Fig. 3 Density plots of reaction fluxes for 19 reactions across 4560 simulations of one and two
reaction knockouts on a model of E. coli core metabolism. Data was filtered to remove fluxes for
reactions when they were knocked out, to remove simulations with low biomass flux, and to remove
reactions with low variation. These reactions all show unsurprising peaks at a flux of 0, but more
interestingly show a multimodal distribution, with a small number of other preferred values.

Using multi-omic data, it is possible to go a step further than network regularised

regression, and merge multiple omic layers together to form a single network where

the value at each node incorporates information both from equivalent nodes in multi-

ple layers, and also neighbours at each level. For instance, Similarity Network Fusion

has been proposed to integrate information from a large number of simulations in

genotype, metabolome and phenotype domains [43]. This step was as an unsuper-

vised precursor to a supervised decision tree algorithm, which was used to explore

the information that various reactions supply about phenotypes.

Ultimately, however, these techniques can only go so far. At their best, they identify

under what circumstances certain variables are important, what their effects are,

and how they can be clustered. This is a good start, but in order to understand why
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variables have the effects they do, a view on the network is required that is simple

enough to understand but contains the detail necessary to elucidate a given type of

regulation. It is not clear at this stage whether it is better to approach this through

general statistical learning techniques or more domain-specific analytical techniques.

Either way, it appears to be a goal that will be widely useful for the systems biology

community.
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