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Abstract: Several popular tuning strategies applicable to Model Predictive Control (MPC) schemes such as 

GPC and DMC have previously been developed. Many of these tuning strategies require an approximate 

model of the controlled process to be obtained, typically of the First Order Plus Dead Time type. One popular 

method uses such a model to analytically calculate an approximate value of the move suppression 

coefficient to achieve a desired condition number for the regularized system dynamic matrix; however it is 

not always accurate and tends to under-estimate the required value. In this paper an off-line method is 

presented to exactly calculate the move suppression coefficient required to achieve a desired condition 

number directly from the unregularized system dynamic matrix. This method involves an Eigen 

decomposition of the system dynamic matrix - which may be too unwieldy in some cases – and a simpler 

analytical expression is also derived. This analytical expression provides a guaranteed tight upper bound on 

the required move suppression coefficient yielding a tuning formula which is easy to apply, even in on-line 

situations. Both methods do not require the use of approximate or reduced order process models for their 

application. Simulation examples and perturbation studies illustrate the effectiveness of the methods in both 

off-line and on-line MPC configurations. It is shown that accurate conditioning and improved closed loop 

robustness can be achieved. 

 

Keywords: Predictive Control, Generalized Predictive Control, Dynamic Matrix Control, Move Suppression, 

Numerical Conditioning. 

 

1. Introduction 
Model predictive control (MPC) has been implemented widely in the chemical and process control industries 

since its introduction in the 1970s [1-3]. Although a large number of different approaches to MPC have been 

formulated, two of the most popular with practitioners have proved to be the Dynamic Matrix Control (DMC) 

technique [4] and the Generalized Predictive Control (GPC) technique [5]. Both schemes employ a receding-

horizon approach which minimizes, at each time step, a multi-stage quadratic cost function involving the 

predicted future errors and weighted magnitude of the applied incremental control moves. A typical MPC 

controller has many tuneable parameters: aside from considerations regarding the process parameterisation, 

the principal ones of interest for DMC and GPC are the choice of sampling time T, the length of the 

prediction horizon P and the control horizon M, and also the value of the move suppression coefficient λ. The 

latter parameter applies a weight on the magnitude of the projected control moves in the objective function. 

Due to the complex relationships between these tuneable parameters and the closed loop system properties, 

many previous authors have suggested ‘tuning rules’ that allow a user to configure an MPC instance to 

achieve a desired level of closed-loop performance [3-14]. This paper is concerned with the selection of the 

move suppression coefficient, which serves a dual purpose of conditioning the system matrix before its 

inversion and suppressing aggressive control actions [3-14]. This non-negative dimensionless parameter is 
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known to have a significant impact upon performance and robustness [4-8], and in practice proves difficult to 

tune empirically (even for experienced control engineers) as recent work has highlighted [12]. 

 

A variety of methods have been proposed to tune this parameter. In [11] the authors describe a procedure for 

iteratively tuning λ for a GPC controller, assuming a Second Order Plus Dead Time (SOPDT) process model. 

The chosen performance criteria are that the closed loop poles satisfy certain bounds; at each iteration of the 

search, fourth order polynomials are solved and the GPC gains recomputed from quadratic formulae. In [12], 

the authors propose to use the Nelder-Mead downhill simplex algorithm to search for values of λ which 

minimize an objective criteria in multivariable DMC controllers. The objective criteria that the authors suggest 

are based upon the magnitude and shape of the Manipulated Variables (MVs). It is suggested that one of the 

ways that the aggressiveness of the controller is measured is by the percentage of overshoot that occurs in 

each of the MVs following a step setpoint change in reference; it is recommended that the search aims to 

produce tunings with no more than 20% MV overshoot following a step on any reference. This choice of 

metric is limited to input/output relationships of Type 0, i.e. those which are self-regulating, as the presence 

of one or more open-loop integrators renders the metric undefined. The authors in [9] describe an analytical 

method to compute the required move suppression coefficients to achieve a pre-specified closed loop 

performance for FOPDT processes when the control horizon M is equal to either 1 or 2. The method has also 

been extended to multivariable processes which can be approximated as a matrix of FOPDT responses [10]. 

No considerations of numerical stability or smoothness of control actions are considered in either method; 

extensions to higher order system models and/or larger control horizons was not considered in these works. 

 

One method which has proved popular for calculation of the move supression parameter was previously 

proposed by Shridhar & Cooper [6]. A key contribution of this work was the identification of the link between 

the condition number of the regularized Gramian of the system dynamic matrix and the closed-loop 

performance and robustness of the resulting controller. For its application, the method requires an 

approximate First Order Plus Dead Time (FOPDT) model of the controlled process to be obtained. This 

model is employed for a number of reasons, principally to analytically calculate from its parameters an 

approximate value of the move suppression coefficient to achieve a certain condition number C for the 

regularized Gramian. The aim of this procedure is to ensure that ‘the condition number is always bounded by 

a fixed low value’ [6]. The tuning strategy, although principally developed for DMC, can also be applied to 

control of FOPDT models with GPC [6] and has been extended to multivariable MPC [7] and integrating 

processes [8]. However, the requirement for low-order approximate process models renders the method only 

suited to off-line MPC tuning for processes in which such a model is reasonable. In addition, as will be 

demonstrated through examples in a later section, the accuracy of the achieved condition number is highly 

dependent upon the accuracy and validity of the low-order approximation; oftentimes the required move 

suppression is underestimated, and the resulting condition number exceeds that which is desired (in some 

cases by ≈ 100%)1. This warrants the consideration of possible alternative methods to calculate the move 

                                                           
1Although this is in line with observations made in [14] (also cited in [13]), it must be cautioned that the 
results presented in [14] do not seem reproducible and the extent of the problem significantly over-estimated 
in this paper: please refer to Appendix A for details. 
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suppression coefficient directly from the employed process model (i.e. avoid the need to utilize an 

approximate low-order model) in order to achieve well-conditioned MPC [16]. 

 

In this paper, two methods are presented for this purpose. The first method exactly calculates the required 

move suppression needed to achieve a given conditioning directly from the unregularized system matrix. 

This method requires an Eigen decomposition of the system matrix and is suitable for an off-line MPC design 

using a suitable numerical software package. The second method involves a simple analytical expression 

using only the trace of the unregularized matrix and its square to obtain a tight upper bound on the required 

value of move suppression, and is easy to apply. Simulation results and perturbation studies verify that 

accurate conditioning and improved closed loop robustness can be achieved. Before describing the 

proposed methods, it must be stressed that the use of move suppression (regularization) is not the only 

possible method to have been proposed to improve the numerical properties and robustness of MPC 

algorithms. Methods based upon Principal Components Analysis (PCA) [15] or the use of a ‘shifted’ DMC 

algorithm [16] can both achieve such goals and correct rank deficiencies in MPC controllers without the need 

to obtain a reduced order approximation of the actual progress dynamics [16]. However in this paper, the 

focus will be upon move suppression only, and specifically improvements to the methods proposed in the 

works [6-8]. 

 

The remainder of the paper is structured as follows. Section 2 introduces preliminaries. The methods to 

calculate the move suppression parameter are presented in Section 3 of the paper. Section 4 presents 

simulation examples, perturbation studies and analysis to illustrate the effectiveness of the proposed 

methods in on-line and off-line situations. A short conclusion is given in Section 5. 

 

2. Preliminaries 
MPC algorithms employ a receding-horizon optimization of the process input which minimizes a multi-stage 

quadratic cost function at each time step. In the Single-Input-Single-Output (SISO) case the cost function to 

be minimized at each discrete time step t can typically be written as: 
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In which ŷ(t+k|t) is a k-step ahead prediction of the process output at time step t, d ≥ 0 represents the integer 

part of the system time delay (excluding the zero-order hold), r(k) is the value of a known reference/setpoint 

sequence at step k, and the decision variables Δu(k) represent the incremental change in the applied 

controls at step k. The integer parameter M > 0 represents the length of a short future control horizon, while 

the integer P ≥ M represents the length of the prediction horizon. The move suppression parameter λ ≥ 0 

introduces an additional weighted quadratic penalty on the magnitude of the control moves into the objective 

function. The principal difference between approaches such as DMC and GPC lies in the assumptions made 

of the process and disturbance model, and in the techniques employed to obtain the process predictions; the 

latter also allows more flexibility in the choice of weights than that shown in (1) - although (1) represents its 
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typical ‘default’ configuration for industrial plant [5]. In the unconstrained case minimization of (1) leads to an 

analytical expression for calculating the projected optimal control moves at each time step, which surmounts 

to solving the system of linear equations (GTG+λI)Δu(t) = GTe(t), where the M-vector Δu(t) represents the 

optimal control moves to make at time t, G is the system dynamic matrix (of dimension P-by-M) consisting of 

the shifted system step co-efficients arranged in Toeplitz fashion. The vector e(t) represents, at time t, the 

future (predicted) errors between the free trajectory of the process and the desired trajectory along each step 

of the prediction horizon P. The move suppression parameter λ appears in the solution as a regularization 

parameter applied to GTG, the Gramian of the system matrix. As MPC is a receding-horizon control, only the 

first element of the M-vector of optimal controls Δu(t) is applied at time t. At time step t+1, the optimization is 

repeated to obtain Δu(t+1) using the newly acquired knowledge of the plant state and an updated set of 

predicted errors e(t+1). This process repeats indefinitely. For the remainder of the current work, the focus is 

upon SISO processes, with the understanding that the results also generalize to Multi-Input-Multi-Output 

(MIMO) systems. This generalization is possible since for any MIMO system, it is possible to partition the 

dynamic matrix into sub-blocks connecting each input-output pair [2][7]; the proposed SISO method may 

then be applied to each such sub-block in turn. 

 

3. Move Suppression Calculations 
3.1 Conditioning and Robustness 
Typically, for the implementation of MPC one desires the first row of the left pseudo-inverse ‘gain’ matrix G+ = 

(GTG+λI)-1GT [2]. To obtain this gain vector, the inverse of the matrix (GTG+λI)-1 is required; standard 

numerical techniques such as Gauss-Jordan elimination can be employed to obtain it [2][17]. Let the 

unregularized dynamic matrix GTG be denoted by A, with the element on the ith row and jth column of A 

denoted as aij. By construction the M-by-M matrix A is symmetric and positive-definite and hence has 

positive Eigenvalues, which may be ordered as μ1 ≥ μ2 ≥ … μM-1 ≥ μM > 0. Setting μmax = μ1 and μmin = μM, the 

condition number of the square matrix A with respect to matrix inversion (henceforth denoted κ(A)) can be 

expressed as the ratio of the largest to the smallest of these Eigenvalues: 
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The effect of move suppression is to add an M-by-M identity matrix scaled by λ to A. For λ ≥ 0 the resulting 

effect upon its Eigenvalues is that of a uniform additive shifting [17], such that the condition number is 

modified as follows: 
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From which it is possible to see that regularization in the form of move suppression improves conditioning 

(i.e. reduces the condition number) of the system matrix. To see how this relates to the robustness of the 
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MPC controller, consider that the condition number of a square matrix A gives information regarding the 

sensitivity of the solution of a system of linear equations Ax = b to perturbations of both the left and right 

hand sides due to errors, typically arising due to measurement inaccuracy or uncertainty. Specifically, 

assume that the matrix A is perturbed by a small amount ΔA and the vector b is perturbed by some small 

amount Δb; this produces a perturbation Δx in the solution vector x. Denote the Euclidian norm of a vector x 

as ||x|| and the induced norm of a matrix A as ||A|| such that: 
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and assume that the perturbation in A is not too large (||A-1|| ||ΔA|| << 1) to preserve rank of (A + ΔA). The 

condition number κ(A) gives a norm-wise bound on the sensitivity of the solution vector with respect to these 

perturbations as follows [21]: 
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When the perturbation to A is large, then (5) must be modified accordingly, but the condition number remains 

a key factor in the perturbation sensitivity [21]. In an MPC implementation, A is formed from (GTG+λI) and 

the vector b is formed from = GTe(t). In practical situations the dynamic matrix G will contain some 

measurement uncertainty due to noise and modelling errors (which will be inevitable even after the 

application of system identification techniques) and the predicted error vector e(t) will be corrupted by 

measurement noise at run-time (which is unavoidable in practice). In addition, numerical round-off may affect 

accuracy when the controller is implemented, especially in a microcontroller or other embedded computing 

platform with limited CPU resources. Equation (5) shows that the amplification of these perturbations and 

their relative effect on the computed control increments at each time step is largely controlled by κ(GTG+λI): 

this condition number is directly influenced by move suppression as described above. The smaller this 

condition number is made, the smaller the norm-wise amplification of modelling errors and measurement 

noise: hence the larger the robustness of the controller. 

 

3.2 Exact Calculation 

Supposing that a certain condition number C = κ(GTG +λI) > 1 is desired, then following some simple algebra 

on (3) an exact expression for the required value of the move suppression parameter is found as: 
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Where non-negativity is taken in (6) as a negative value computed from the re-arrangement of (3) would then 

imply the condition number is already lower than that required without any additional regularization. For most 
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suggested MPC configurations this is an unlikely (but possible) case, typically occurring for small M. 

Equation (6) is a very simple calculation to implement, but implies that the extreme Eigenvalues μmax and μmin 

of the unregularised Gramian of the dynamic matrix are exactly known. Its simplicity suggests the following 

methodology to exactly obtain the optimal value of move suppression to achieve a required condition number. 

Suppose that instead of computing the left pseudo-inverse of G, an Eigen decomposition of the 

(unregularized) matrix A = GTG as A = Q Σ QT is obtained, where Σ is an M-by-M diagonal matrix consisting 

of the Eigenvalues of A and the columns of the M-by-M matrix Q contain the (orthogonal) Eigenvectors. Such 

an Eigen decomposition is always obtainable for A real and symmetric, and efficient implementation 

algorithms (with cubic or better rates of convergence) exist [17]. Since the Eigenvalues are exposed along 

the diagonal of Σ, obtaining μmax and μmin required for the calculation of (6) is trivial. Suppose that application 

of (6) yields the exact move suppression coefficient λ. Then due to the uniform shifting of the Eigenvalues, 

matrix (GTG+λI)-1 may be directly formed as Q (Σ+λI)-1 QT. Since Σ+λI is diagonal, its inverse is trivial to 

obtain. Interestingly, for MPC implementations, this also implies that if run-time changes to λ for on-line 

performance tuning need to be catered for, this can be achieved without resorting to full online matrix 

inversions; one need only store Q and the diagonal of Σ, and re-calculate Q (Σ+λI)-1 QT wherever a new value 

of λ is to be employed, requiring only scalar divisions and a matrix multiplication. 

 

3.2 Approximate Calculation 
Although the method outlined in the above sections is well suited to off-line MPC designs, it is not well suited 

for adaptive situations in which identification of the process model and generation of the step coefficient 

matrix G is computed on-line. A full Eigen decomposition - although efficiently implemented by most 

numerical software packages such as Matlab© - induces significantly more overhead and complexity, lending 

it not well suited to a real-time application in an embedded computing system. Therefore, one may ask if the 

methodology thus outlined may be simplified in order to obtain an approximate value of λ. An accurate upper 

bound is generally desired, i.e. one which gives a guarantee that the achieved condition number κ(GTG+λI) 

is ≤ C. From (2), it may be observed that the condition number of a matrix may be upper bounded if the 

spread of the Eigenvalues is known to lie within a range [μ-, μ+], such that 0 ≤ μ- ≤ μmin ≤ μmax ≤ μ+. In this 

case: 
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In general obtaining a useful upper bound on μmax is (relatively) straightforward, but lower bounds on μmin are 

more challenging; it is difficult to obtain bounds which are always positive even for symmetric positive definite 

matrices [18]. Nevertheless, in MPC applications one may make two observations: (i) due to the way in 

which M and P are often configured (typically, P is set equal to the setting time of the process and M ≈ P/4 

[3]), μmin tends to be relatively small as the columns of G lose their linear independence as P increases 

[14][15] and (ii) since A has non-negative Eigenvalues, after regularization with a move suppression 

coefficient of λ the smallest Eigenvalue is at least as big as the employed value of λ. 
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One way to obtain bounds on the maximal Eigenvalues of a symmetric M-by-M matrix A which are relatively 

easy to compute involves computing only the trace of the matrix A and its square [18]. Define the quantities: 

 

)/)((

/)(
22 μσ

μ

−=

=

MAtr

MAtr  (8)

 

Since tr(A) equals the sum and tr(A2) equals the sum-of-squares of the Eigenvalues, ū represents their mean 

value; σ represents the standard deviation of their spread [18]. The extreme Eigenvalues then satisfy the 

following relationships [18]: 
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Where the max operation in the calculation of μ- follows as a symmetric positive definite matrix cannot have 

negative Eigenvalues. Using (7), an easily computable upper bound on the required value of λ can be 

obtained by substituting μ- for μmin and μ+ for μmax, where μ+ and μ- are as given by (9). This yields the 

following inequality: 
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By setting (10) as equality and taking negative values to be zero, a simple expression to calculate a sufficient 

value for λ is obtained. In terms of its calculation, noting that as A is an M-by-M and symmetric, tr(A2) can be 

obtained directly from the elements of A in just M(M+1) calculations: 
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The method is simple enough to be implemented on-line as part of an adaptive strategy or in off-line cases 

when the use of an Eigendecomposition algorithm is not desired or practical. For the case M = 2, (9) and (11) 

are equalities, i.e. the bounds are exact [18]. The method proposed above needs no trial and error 

configuration, simply the specification of the required condition number C; by utilizing the off-diagonal 

elements of A as well as its trace, a concrete guarantee that the conditioning of (GTG+λI) is at or just below 

the specified level is obtained. As will be seen in the next section, the developed bound is usually very tight 

for typical MPC configurations. 

 

4. Evaluation 
4.1 Off-line MPC Design 
In order to evaluate the proposed techniques in terms of an off-line MPC design, two example processes 
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which have been employed for validation purposes by Shridhar & Cooper [6] and subsequently considered 

by others (e.g. [15]) are considered. The two process dynamic models were as follows: 
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The first process is 2nd order with a time delay and inverse response dynamics, and the second process is 4th 

order with a time delay and sluggish sigmoidal response due to the pole multiplicity. Both are typical of those 

found in the chemical and process industries [6]. For both processes move suppression coefficients were 

calculated for four different configurations of a DMC controller considering different sample times T (in 

seconds) and lengths of control horizon M. In each case, the length of the prediction horizon P was set 

according to the settling time of the process, as is typically suggested. Move suppression coefficients λ and 

the resulting condition number κ of the regularized system matrices GTG+λI were calculated using the 

methodology proposed by Shridhar & Cooper (SC), along with the exact (EX) and approximate (AP) methods 

outlined in the previous section. The target condition number in each case was 500 as suggested in [6]. The 

SC method for calculating move suppression was implemented as suggested in [6]: from a FOPDT fit to the 

process (giving gain K, time constant τ and delay d), the equation below was employed: 
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Results are tabulated for process one (equation (12)) in Table 1, and for process two (equation (13)) in Table 

2. Also shown are the maximum and minimum Eigenvalues (μmax and μmin) of the un-regularized system 

matrix GTG in each configuration. 

 

Table 1. Comparison of Move Suppression Coefficients and Condition Numbers for process model one. 

 

T 8 8 24 24 

P 115 115 39 39 

M 2 6 2 6 

μmax 147.8920 431.3925 50.5994 138.9746 

μmin 0.0107 4.5007E-05 0.0312 2.5385E-04

λSC 0.1500 0.4300 0.0500 0.1400 

κSC 921.3323 1004.1000 623.8796 991.8773 

λEX 0.2857 0.8645 0.0702 0.2783 

κEX 500.0000 500.0000 500.0000 500.0000 

λAP 0.2857 0.8646 0.0702 0.2785 

κAP 500.0000 499.9738 500.0000 499.5359 
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In each of the four cases in process model one, the obtained condition number for the SC method is 

significantly higher than that required (500). The average absolute error in the condition number over the four 

cases is 77.059%, with the best case being case 3 having an error of 24.776%. The exact (EX) method 

obtains equalities in the obtained and required condition number for all cases, as expected. Turning now to 

the approximate AP cases, one sees a much better ability to obtain close to the required condition number. In 

each case, the estimates of the required move suppression are very slight overestimates and the obtained 

condition numbers are slightly lower than that required, with an average absolute error over the four cases of 

only 0.025%. The best cases occur when M = 2, in which the EX and AP methods coincide. Similar 

differences in the levels of error may be observed between the obtained values of move suppression, with 

the SC method underestimating the exact required move suppression value by an average of 44.057%, with 

the AP method overestimating it by an average of only 0.021%. Figures 1 and 2 display the obtained process 

step response and applied control signal for the configuration T = 8, P = 115 and M = 2 using the EX value 

for move suppression. 

 

 
Fig. 1. Process model one: closed-loop step response. 
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Fig. 2. Process model one: applied control signal. 

 

In each of the four cases in process model two, the obtained condition number for the SC method is again 

significantly higher than that required (500). The average absolute error in the condition number over the four 

cases is 82.777%, with the best case again being case 3 having an error of 29.441%. The exact (EX) 

method again obtains equalities in the obtained and required condition number for all cases, as expected. 

Turning now to the approximate AP cases, one again sees a much better ability to obtain close to the 

required condition number. 

 

Table 2. Comparisons of Move Suppression Coefficients and Condition Numbers for process model two. 

 

T 6 6 19 19 

P 120 120 38 38 

M 2 6 2 6 

μmax 151.7796 443.1055 48.1188 131.6408 

μmin 0.0077 4.5087E-11 0.0244 1.9690E-07

λSC 0.1500 0.4300 0.0500 0.1300 

κSC 963.2368 1031.5000 647.2055 1013.6000 

λEX 0.2964 0.8880 0.0720 0.2638 

κEX 500.0000 500.0000 500.0000 500.0000 

λAP 0.2964 0.8881 0.0720 0.2639 

κAP 500.0000 499.9990 500.0000 499.9924 
 

In each case, the estimates of the required move suppression are only slight overestimates and the obtained 

condition numbers are slightly lower than that required as with process one, with an average absolute error 

over the four cases of only 0.004%. The best cases occur when M = 2, in which the EX and AP methods 

coincide. Similar differences in the levels of error may be observed between the obtained values of move 

suppression, with the SC method underestimating the exact required move suppression value by an average 
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of 45.561%, with the AP method overestimating it by an average of only 0.012%. Figures 3 and 4 display the 

obtained process step response and applied control signal for the configuration T = 6, P = 120 and M = 2 

using the EX value for move suppression. 

 

From these results, one may observe that the SC method – whilst satisfactory for obtaining rough ‘ball park’ 

estimates of the required move suppression – is not particularly accurate, and tends to produce 

underestimates of the required move suppression. This results in larger than expected condition numbers, 

and hence the SC method does not ensure that the condition number is always bounded from above by a 

fixed low value, as is desired [6]. Both the EX and AP methods proposed in this paper achieve significantly 

better results, with the AP method in particular being easy to apply and providing a guarantee that the 

condition number is always bounded from above by a desired low value. Turning now to the obtained closed-

loop step responses, comparing Figures 1 and 3 one sees that both responses share similar trends and 

possess similar settling times. Comparing Figures 2 and 4, one may observe that the generated control 

actions are smooth and also display very similar trends despite the differences in the open-loop dynamics. 

There are some small, but subtle, differences between the obtained step responses between the tunings of 

the proposed method for λ and that obtained by the SC method. This is best illustrated by examining the 

largest applied control moves for each of the configurations for both processes, as shown in Tables 3 and 4 

below (comparing the largest obtained control move Δu(t) for both the SC and EX methods - the differences 

between the EX and AP methods was small enough to be neglected). From these tables, it may be observed 

that the proposed method produces less variance in the obtained maximum applied control moves, and 

keeps them within the suggested range of 2-3 times the applied set change of reference. The applied control 

moves exceed this range for two configurations using the SC tuning. 

 

 
Fig. 3. Process model one: closed-loop step response. 
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Fig. 4. Process model two: applied control signal. 

 

Table 3. Largest applied control moves for process model one. 

T 8 8 24 24 
P 115 115 39 39 
M 2 6 2 6 

Max Δu (SC) 1.9305 1.6772 3.2632 1.8473 
Max Δu (EX) 1.3022 1.1332 2.7247 1.4347 

 

Table 4. Largest applied control moves for process model two. 

T 6 6 19 19 
P 120 120 38 38 
M 2 6 2 6 

Max Δu (SC) 1.9514 1.8229 3.4880 1.9878 
Max Δu (EX) 1.2817 1.1742 2.8209 1.5288 

 

 

4.2 Perturbation Analysis 
In order to examine further the links between conditioning and robustness, a series of experiments were 

carried out using process model one (12). In these experiments, a DMC controller was first designed for the 

nominal plant using the configuration T = 8, P = 115 and M = 6 using both the SC and the EX values for 

move suppression coefficient. Next, perturbations (of +/- 10% in each case) were made to the nominal 

process gain (1.0), the nominal time constant (100 seconds) and the nominal time delay (10 seconds). The 

closed loop step response of the process along with the applied control increments are displayed in Figures 

5, 6 and 7 below for both SC and EX move suppression. Two additional experiments were also carried out 

using the nominal process model, in which a pseudo-random zero-mean additive Gaussian noise sequence 

was added to the process output during the simulation to emulate measurement noise and disturbances. 
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Noise variance levels of 0.01 and 0.05 were used, and the step reponses of the SC and EX move 

suppressed controllers was recorded. Responses and control increments for noise variance 0.05 is shown in 

Figure 8.  

 

 
 

Fig. 5. Output step responses (top) and applied control increments (bottom) following perturbations of 

process gain with EX move suppression (left) and SC move suppression (right). Black/solid: Nominal 

gain, Red/Dashed +10% Gain, Blue/Dash-Dot -10% Gain. 
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Fig. 6. Output step responses (top) and applied control increments (bottom) following perturbations of 

process time constant with EX move suppression (left) and SC move suppression (right). Black/solid: 

Nominal time constant, Red/Dashed +10% Gain, Blue/Dash-Dot -10% time constant. 

 

 
Fig. 7. Output step responses (top) and applied control increments (bottom) following perturbations of 

process time constant with EX move suppression (left) and SR move suppression (right). Black/solid: 
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Nominal time delay, Red/Dashed +10% Gain, Blue/Dash-Dot -10% time delay. 

 

 
Fig. 8. Output step responses (top) and applied control increments (bottom) following the injection of 

measurement noise with variance 0.05 into the process output with EX move suppression (left) and 

SC move suppression (right). Black/solid: Nominal, Red/Dashed: Noisy. 

 

Figures 6-8 give a graphical illustration of the effects of perturbations on the controller performance. In all 

cases there are observable changes in both output responses and applied controls, but the level of severity 

is variable; in order of severity the parameter with the largest impact is the time constant, followed by the 

process gain, introduction of noise and change in the time delay. Visibly it can be observed that the SC 

method seems more sensitive to these perturbations in terms of the deviation away from the nominal 

responses. To give a quantitative measure of the impact of perturbations and the influence of choice of 

mover suppression, the norm of the deviation from the nominal response relative to the norm of the nominal 

response was calculated for both the output response ||ey||/||y|| and input control increments ||edu||/||du|| in 

each case. The obtained results are as summarised in Table 5 below; the ratio of norm changes in the SC 

and EX methods is also reported. In terms of the relative change in applied control increments, in all cases 

the EX method produced smaller changes in relative norm (indicating an increase of relative robustness) by 

a factor in the range 1.88 to 2.38. In terms of the relative change in output, in all cases but that of process 

gain perturbations, the EX method produced smaller changes in relative norm (indicating an increase of 

relative robustness) in the range 1.01 to 1.14. It is interesting to note that in the case of process gain 

perturbations, the higher move suppression coefficient employed in the SC method produced a small 

decrease in the relative norm change in the process output. This is logical given that larger changes in the 

control increments can be expected in the presence of disturbances due to model mismatch; in the case of 
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process gain mismatch these larger changes give a small improvement in performance. However this 

performance improvement due to increased control activity comes with an additional robustness cost; the 

breakdown increase in process gain which leads to instability of the closed loop is smaller in the SC case 

(2.178) than in the EX case (2.215). Although both controllers aim to achieve the same conditioning, the 

respective gain margins are 6.76 dB and 6.90 dB, indicating additional robustness of the EX design. 

 

Table 5. Relative changes in norm for process model perturbations for both SC and EX methods. 

EX (λ = 0.8645) SC (λ = 0.4300) 
Model ||ey||/||y|| ||edu||/||du|| ||ey||/||y|| ||edu||/||du|| Ratio (EX/SC) 

Nominal 0.0000 0.0000 0.0000 0.0000 - - 
K+ 10% 0.0379 0.0350 0.0374 0.0660 0.9880 1.8835 
K- 10% 0.0393 0.0324 0.0387 0.0611 0.9847 1.8893 

Tau+ 10% 0.0451 0.0503 0.0457 0.0976 1.0147 1.9424 
Tau- 10% 0.0541 0.0752 0.0561 0.1486 1.0375 1.9756 
d+ 10% 0.0047 0.0097 0.0053 0.0230 1.1188 2.3660 
d- 10% 0.0047 0.0096 0.0052 0.0228 1.1212 2.3766 

Noise 0.01 0.0029 0.0653 0.0032 0.1379 1.1374 2.1126 
Noise 0.05 0.0148 0.3283 0.0165 0.6947 1.1132 2.1162 

 

In summary, these results indicate that when perturbations are considered on average there is a 6.4% 

increase in the norm of the output variation and a 108.3% increase in the norm of the input variation between 

the SC and EX methods. The doubling of the condition number (c.f. column 2 in Table I) of the controller 

used in SC method results in an approximate doubling of perturbation sensitivity, as would be expected given 

Equation (4). Therefore having tighter control of the achieved condition number regardless of the process 

model dynamics (as allowed by the method proposed in this paper) leads to better perturbation robustness 

and corresponding increase in relative stability measures such as the gain margin. 

 

4.3 On-line MPC Design 
In order to evaluate the proposed techniques in terms of a more demanding on-line adaptive MPC design, 

two further example process which have been employed for validation purposes by Clarke & Mohtadi [19] 

and Clarke et al. [5] are considered. The two process dynamic models were as follows: 
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The first process is double–integrating with inverse response dynamics, and is typical of a plant found in 

some electromechanical positioning applications (such as a linear approximation of a ball on a flexible beam). 

The second process is a double oscillator plant. A high-performance control method such as GPC is needed 
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in both cases, as they are both difficult to control and the double–integrator / double oscillatory dynamics 

render the application of DMC unsuitable. In addition, in both cases the basic method to set the move 

suppression parameter in [6] – or even its subsequent extension to single-integrating processes in [8] – 

cannot be applied. There are, in fact, very few guidelines as to setting move suppression in adaptive/self-

tuning MPC. Several previous works have recommended to scale λ according to the relations involving the 

trace of (GTG), or based upon estimates of the process static gain using empirically selected (trial and error) 

constants tuned to give ‘good’ initial performance [3][13]. The length of the horizon P has also been 

suggested as the main tuning parameter to control the aggressiveness of the controller [13]. Increasing this 

horizon has the effect of detuning the controls, but this is at the expense of conditioning and hence 

robustness as the columns of the system matrix loose independence. The approximate method to calculate 

move suppression, however, gives a possible means to automatically adjust move-suppression on-line 

despite any adjustments to the horizons M and P, or even changes to the sampling time T. 

 

Simulations were carried out to examine the application of a self-tuning GPC algorithm equipped with the 

proposed AP method on these processes, using a standard Recursive Least Squares (RLS) procedure with 

forgetting factor 0.99 for system identification [20]. A sampling time T = 0.5 was employed along with a target 

condition number C = 1000 in both cases. A simple first-order reference trajectory was also used to shape 

the closed-loop response subject to the conditioning of the inverse problem remaining at the desired level. 

The reference trajectory r(t+k) for k ≥ 0 was implemented as follows: 
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In which w(t) is the measured setpoint at time t, and α ∈ (0, 1) a coefficient controlling the time constant of 

the reference. The target trajectory aims to move the process output from it last measured state of y(t) to the 

current setpoint w(t) with an exponential response. In the simulation, the target closed-loop time constant α 

was computed as α = exp(T/τ), with τ = 10 seconds the time constant expressed in process time units. 

 

For process model three (15), the chosen configuration was a control horizon M = 4 and prediction horizon P 

= 20. Application of an Eigendecomposition gives the largest and smallest Eigenvalues as μmax = 7932.1 and 

μmin = 0.0997; the resulting condition number of the unregularized system matrix was 7.95 x 104, indicating a 

problem which is more ill-conditioned as compared to the problems considered in the last section. The wide 

spread in the extreme Eigenvalues can be linked to the step response coefficients increasing in an 

unbounded fashion due to the double integrator dynamics. Note that even in this case, μmin still has a quite 

small value. Application of the EX method results in regularization of the system dynamic matrix with λ = 

7.8402 required to achieve the desired conditioning. 

 

Figures 9-11 display the performance of the adaptive GPC equipped with the proposed AP method to 

estimate λ. Note that all figures show the initial tuning phase of the controller, for completeness. Figure 9 
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shows the obtained process output when tracking a square wave input. Figures 10 and 11 display the control 

signal and the evolution of the estimate of λ respectively. As can be seen from Figure 9, the setpoint is 

tracked with excellent closed-loop performance; although there is some deviation due to the inverse 

response, the desired reference trajectory is tracked almost perfectly following the convergence of the RLS 

algorithm. Figure 10 indicated that the generated control actions are also smooth once the RLS has 

converged. From Figure 11, it can be seen that after around 10 samples the process coefficients have been 

identified by RLS and the adaptive algorithm converges upon a move suppression of λ = 7.9401. This value 

results in a condition number of 987.58. 

 

 
Fig. 9. Output response for process three. 

 

 
Fig. 10. Applied controls for process three. 
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Fig. 11. Evolution of λ for process three. 

 

For process model four (16), the chosen configuration was a control horizon M = 8 and prediction horizon P 

= 14. Application of an Eigen decomposition gives the largest and smallest Eigenvalues as μmax = 236.01 and 

μmin = 1.84 x 10-7; observe that again μmin has a quite small value. The resulting condition number of the 

unregularized system matrix was 1.28 x 109, indicating a problem which is very ill-conditioned. As noted by 

Clarke et al. [5], for this process excessive ringing in the control signal occurs for GPC when M > 4 and a 

non-zero value of λ is required to ‘fine-tune’ the response. However, no means of selecting λ is suggested. 

Application of the EX method proposed in this paper results in regularization of the system dynamic matrix 

with λ = 0.2362 required to achieve the desired conditioning. 

 

Figures 12-14 display the performance of the adaptive GPC equipped with the proposed AP method to 

estimate λ. All figures again show the initial tuning phase of the controller, for completeness. Figure 12 

shows the obtained process output when tracking a square wave input. Figures 13 and 14 display the control 

signal and the evolution of the estimate of λ respectively. As can be seen from Figure 12, the setpoint is 

tracked with excellent closed-loop performance; there is little deviation from the desired reference trajectory 

following the convergence of the RLS algorithm. Figure 13 indicates that the generated control actions are 

smooth once the RLS has converged. 
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Fig. 12. Output response for process four. 

 

 
Fig. 13. Applied controls for process four. 

 

 
Fig. 14. Evolution of λ for process four. 



Article accepted for publication in ISA Transactions, Novermber 2016 
 

 

21

 

From Figure 14, it can be seen that after around 30 samples the process coefficients have been identified by 

RLS and the adaptive algorithm converges upon a move suppression of λ = 0.2389. This value results in a 

condition number of 988.71. Comparing Figures 12 and 13 with the responses and applied controls obtained 

by Clarke et al. for this process under GPC with M > 4, (ref [5], p. 153, Fig. 2], one may observe that the 

excessive ringing observed in the control signal shortly after a step change in the setpoint has been 

eliminated by the converged value of λ. 

 

Given that the exact method in both cases required an off-line Eigen decomposition, the ability of the 

proposed technique to quickly converge upon the values obtained is obviously advantageous, especially as 

the method is trivial to implement and no restriction is placed upon the underlying model structure. In an 

adaptive situation, the results give an indication that selection of λ via the AP method guarantees that the 

chosen condition number is respected as a constraint to maintain numerical stability and smoothness of 

control actions while tracking the reference trajectory. 

 

Again, additional examples using a variety of process models and combinations of M, P, T and C have been 

considered over those reported in these tests; results were again consistent and similar. Overall, this may be 

linked to the observations regarding the smallest un-regularized Eigenvalue obtained in each case of the 

above cases as their small magnitudes are evident. This, along with the tightness of the largest Eigenvalue 

bound, seem the reason that the AP method proves to be so close to the exact EX: as most recommended 

MPC configurations result in smallest Eigenvalues of similar magnitudes, the methods presented in this 

paper seem to generalize well, and the results presented in this section seem to be representative of those 

that would be obtained for a wide class of typical systems. 

 

5. Conclusion 
This paper has considered two methods to analytically calculate the value of the move suppression 

coefficient λ which guarantees a certain condition number for the regularized system matrix is achieved. Both 

methods calculate the move suppression directly from the unregularized system matrix and do not require 

any simplified process models to be utilized. The proposed methods are suitable for offline and online use 

with popular MPC schemes such as DMC and GPC, and are fully compatible with existing MPC tuning 

recommendations with respect to selection of the sampling time and the control/prediction horizons. 

Simulation studies and perturbation analysis have verified the improved ability to guarantee the conditioning 

of the controller and improvements to robustness. In summary, the proposed exact and approximate 

methods seem a useful adjunct to existing work in the area of off-line and on-line (adaptive) MPC 

configuration. 
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Appendix: Analysis of the Results of Iglezias et al. [14] 
In reference [14], Iglezias et al. utilize several examples to illustrate that the SC method often underestimates 

the required value of move suppression. The first simulation example considered in [14] (p. 94) is a situation 

where the actual process model is FOPDT, and hence the method of SC should be accurate. However under 

simulation the step response under DMC with move suppression computed from SC is shown ([14], Figure 2, 

p. 95) to oscillate significantly and require over 15 seconds to settle. The process model utilized in their 

example was as follows: 
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Application of the SC method results in a sampling time T = 0.1s, prediction horizon P = 52 samples, control 

horizon M = 5 samples and a value of the move suppression coefficient λ = 0.0875. Note that formula (4) and 

(5) for calculating λ as given on p.90 in [14] contains a typographical error: the calculation of λ = 0.0875 

reported for the example is, nevertheless, accurate. For this configuration of DMC, the closed-loop unit step 

response of the process (as determined with Matlab©) as obtained by this author is as shown in Figure A1 

below. From this figure, a smooth response with around 5% overshoot can be observed. There is no 

evidence of sustained oscillations of the kind displayed in [14], Figure 2, and it is clear that the setting time is 

of the order 2 seconds. Figure A2 displays the applied controls in this case, which can be seen to be smooth 

with no chattering present. 

 

 
 Fig. A1. Closed Loop Step Response under DMC for Example 1 in [14]. 
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Fig. A2. Applied Controls under DMC for Example 1 in [14]. 

 

One possibility for the disparity could be that no specific prediction horizon P was specified in [14] (the S-C 

formula is independent of this parameter). Therefore further step responses were obtained by fixing T, M and 

λ and varying P. In no cases were oscillations of the kind displayed in [14] encountered. For reference, the 

limiting case when P = M = 5 produces the most aggressive behaviour and is shown in Figure A3 below. 

 

 
Fig. A3. Closed Loop Step Response under DMC for Example 1 in [14], with P = M = 5. 

 

A similar inability to replicate the oscillatory responses observed for Example 2 in [14] (p. 96/97) was 

encountered, with the move suppression resulting from application of SC again giving smooth controls and 

step responses. This indicates the possibility of a systematic error in the results presented in [14] and also in 

the subsequent methods employed to obtain the proposed tuning formulae for λ (equation 7, p. 93). It is 

recommended that this tuning formula should therefore be used with caution until further investigations 

performed. 

 


