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Abstract  
Environmental concerns combined with the liberalisation of the energy markets has led to the 
emergence of small to medium-scale decentralised generation equipment embedded within transmission 
and distribution networks. Commonly, such plant is operated by small to medium private enterprises 
and dispatched independently from centralised resources. The liberalisation of energy markets has also 
brought about the rise of variable wholesale electricity markets, in the form of the spot (day-ahead) 
market and the balancing (intra-day) markets across the EU and beyond. As such, there is much interest 
in how decentralised generation equipment can be most profitably operated in this context. This paper 
focuses on short-term forecasting of both heat and electrical loads, along with unit commitment 
scheduling and economic dispatch optimisation, for a small/medium scale decentralised combined heat 
and power (CHP) plant. In the work presented the plant is assumed to be equipped with local heat and 
electricity storage and operating in the presence of fluctuating wholesale energy prices and local loads. 
The approach adopted builds on recent research employing Mixed Integer Linear Programming (MILP) 
models and non-linear boiler efficiency curves, and extends this work into a rolling horizon context. 
Results are presented which demonstrate the efficiency of the proposed approach and investigate the 
sensitivity of the results with respect to CHP model accuracy and load prediction accuracy. The results 
indicated that profit is much more sensitive to the accuracy of load predictions than indicated by 
previous work in the area. The findings also challenge those of recent work in the field, which suggest 
that a strategy of interacting with the spot (day-ahead) market only is the most profitable for 
small/medium scale decentralised energy producers. The results presented in this paper indicate that 
when load prediction inaccuracies are also considered in the CHP optimisation framework, a strategy 
interacting with both the spot (day-ahead) market and the balancing (intra-day) market is significantly 
more profitable than a strategy interacting with the spot market only.  
 
Keywords: Short term heat and electricity load forecasting; Decentralised Combined Heat and 
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Nomenclature  
 
Indices 
 

Name Description (units) 
t Discrete-time step index (hours) 
i Index of slack variables (-) 
j Index of co-efficient in polynomials (-) 
k Step-ahead index for predictions (-) 

 
Parameters 
 

Name Description (units) 
 Forgetting factor of recursive least-squares identifier (-) 
AB Co-efficient of boiler efficiency function (-) 
BB Co-efficient of boiler efficiency function (-) 
CB Co-efficient of boiler efficiency function (-) 
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AE Autoregressive polynomial for electricity demand prediction (-) 
BE Exogenous input polynomial for electricity demand prediction (-) 
CE Moving average polynomial for electricity demand prediction (-) 
AH Autoregressive polynomial for heat demand prediction (-) 
BH Exogenous input polynomial for heat demand prediction (-) 
CH Moving average polynomial for heat demand prediction (-) 
ahj Coefficient j of  polynomial AH (-) 
bhj Coefficient j of  polynomial BH (-) 
chj Coefficient j of  polynomial CH (-) 
aej Coefficient j of  polynomial AE (-) 
bej Coefficient j of  polynomial BE (-) 
cej Coefficient j of  polynomial CE (-) 
E Electrical efficiency of CHP plant (-) 
H Thermal efficiency of CHP plant (-) 
Max Maximum heat-to power ratio (-) 
Min  Minimum heat-to power ratio (-) 
CE Equivalent electrical store holding efficiency (-) 
CE Equivalent electrical store holding efficiency (-) 
CF CHP plant unit fuelling cost (€ per unit of fuel/hour) 
CFmin Minimum fuelling constraint for CHP plant (€ per unit of fuel/hour) 
CH Thermal store hourly holding efficiency (-) 
CH Thermal store conversion efficiency (-) 
COff Cost savings per time step when CHP plant is switched off (€) 
CSS Startup/shutdown costs of the CHP plant (€) 
C Unit commitment horizon (time steps) 
faj Coefficient fa of cost function affine segment j (-) 
fbj Coefficient fb of cost function affine segment j (-) 
H Dispatch horizon (time steps) 
M Prediction model horizon (time steps) 
PQMax Maximum limit of combined power (electrical and thermal) generated by CHP plant (kW) 

 
Variables 
 

Name Description (units) 
(t) Heat-to power ratio at time step t (-) 
CE(t) Charge/discharge power of equivalent electrical energy store at time step t (kW) 
CH(t) Charge/discharge power of thermal energy store at time step t (kW) 
Q(t) Thermal power generated by CHP plant at time step t (kW) 
CE(t) Equivalent amount of electrical energy held in storage at time step t (kWh) 
CH(t) Thermal energy held in storage at time step t (kWh) 
CHB(t) Price for buying thermal energy at time step t (€ per kWh) 
CHS(t) Price for selling thermal energy at time step t (€ per kWh) 
CEB(t) Price for buying electrical energy at time step t (€ per kWh) 
CES(t) Price for selling electrical energy at time step t (€ per kWh) 
DE(t) Measured electrical demand at time step t (kW) 

)|(ˆ tktDE   k–step ahead prediction of electrical demand made at time step t (kW) 
DH(t)  Measured thermal demand at time step t (kW) 

)|(ˆ tktDH   k–step ahead prediction of thermal demand made at time step t (kW) 
eH(t) Value of white noise sequence in heat demand prediction model at time step t 
eE(t) Value of white noise sequence in electricity demand prediction model at time step t 
I(t) Plant On/Off indicator variable at time step t (-) 
J(t) Weighted sum of quadratic electricity and thermal prediction errors up to time step t (-) 
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P(t) Electrical power generated by CHP plant at time step t (kW) 
PQ(t) Combined power (electrical and thermal) generated by CHP plant at time step t (kW) 
T(t) Average ambient temperature at time step t (C) 

)|(ˆ tktT   k–step ahead prediction of ambient temperature made at time step t (C) 
XEB(t) Amount of electrical energy bought at time step t (kWh) 
XES(t) Amount of electrical energy sold at time step t (kWh) 
XHB(t) Amount of thermal energy bought at time step t (kWh) 
XHS(t) Amount of thermal energy sold at time step t (kWh) 
zi(t) Slack variable i at time step t (-) 

 
Functions 
 

Name Description (units) 
B(L) Boiler efficiency (%) at load L (%) 
F(PQ) Approximate fuelling cost function for combined CHP plant output level PQ 

 
 
1 Introduction 
 
1.1 Context  
Traditionally, for economic and safety reasons, the two most commonly consumed worldwide forms of 
energy – heat and electricity – have been generated by large fossil-fuelled generators and transported 
to consumers via one-way transmission and distribution networks (typically through hot water or steam 
pipe work and copper wires) [1]. Typically generation has been distributed over several large generating 
stations operating in parallel, with transmission interconnections possibly spanning several countries. 
For electrical grids with these generators and interconnections have been under the control of a small 
number of public and private bodies [1, 2]. However the liberalisation of the energy markets - combined 
with environmental concerns and the need for a low-carbon economy - has forced a rethink in the way 
that energy is generated and distributed to consumers [2]. In particular, the emergence of small and 
medium scale generation equipment (typically driven by renewable or alternative forms of energy 
conversion) embedded within transmission and distribution networks is becoming increasingly 
commonplace. In addition, technological improvements to Energy Storage Systems (ESSs) are enabling 
an increase in their use and capacity. ESSs provide an effective means to help supply meet demand with 
unpredictable daily and seasonal variations, and offers additional energy arbitrage opportunities: buying 
or generating energy when it is comparatively inexpensive, and reselling it at a later time at a higher 
price [3, 4]. 
 
In the above context this paper presents a timely and novel approach to the repetitive cost-optimal 
balancing of supply with forecasted demand for a decentralised small/medium-scale Combined Heat 
and Power (CHP) cogeneration plant (typically of rating 10 ~ 50 MW [5]), along with experiments to 
explore the sensitivity of key configuration parameters on the achievable economic costs.  
 
1.2 Technology Overview 
Cogeneration systems can be broadly defined as the coincident (parallel) generation of multiple forms 
of energy from a single fuel source: for CHP, the energy produced is the combined production of electric 
power and useable heat [7]. Cogeneration using CHP is an increasingly important component of energy 
production technology in Europe and other continents [7, 8]. Combined generation via CHP is highly 
efficient (typically  80%) when compared to a traditional power-only steam generator (typically  35% 
- 40%), and plant may be fired using a variety of sustainable low-carbon fuels, such as biomass [7].  
 
A CHP plant is normally one of two distinct types of construction: a backpressure unit or extraction-
type unit [10, 16, 22, 23]. The former typically has a fixed ratio  of thermal power generation (Q) to 
electrical power generation (P), and operates by reclaiming heat from the steam exiting the turbine. The 
heat/power ratio  is approximately constant over the majority of its working operating range. The 
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latter, however, allows some independence in the levels of heat and electricity generated by allowing a 
varying level of high-pressure steam extraction. This gives a variable heat/power ratio which is 
adjustable over a prescribed operating range. For the large majority of CHP units the allowed operating 
region is a convex polytope, and this can be captured in a model using inequalities connecting its 
extreme points [16, 22]. 
 
A variety of models including linear, mixed-integer linear and non-linear have been developed to model 
the economic costs for short-term optimisation of CHP plant [10, 16]. Although non-linear and mixed-
integer models give more accurate results, extensive investigation has found that the optimality gap 
between the two is very small, typically  3% in representative cases [10]. Linear models – whilst 
producing less accurate solutions than fully non-linear models – are more computationally efficient and 
less sensitive to input parameter changes [10]. The loss of accuracy is quite small and mainly occurs 
due to poor modelling of efficiency loss in the low-load region of boiler operation, typically < 30% full 
load. A typical efficiency curve for a medium-scale CHP plant (reproduced from [10]) is shown in 
Figure 1 (left). The relationship is concave, increasing to a maximum efficiency of typically 90% – 
95%. From Figure 1 (right), it can be seen that this produces a sigmoidal relationship between the 
required input fuelling rate (and hence the fuelling costs) and the load, both shown as a percentage. The 
upper part of the relationship is convex, while the lower part of the relationship (for loads less than  
30%) is concave. 
 

 
Figure 1.  (Left): Boiler efficiency as a function of load, (Right): required fuelling as a function of 

boiler load in black 
 
The relationship between load and fuelling cost is sometimes modelled as a single linear function with 
the efficiency of the boiler assumed constant over the load range [10]. With such a simplified model, 
the plant is then assumed to be operable efficiently at very low load which is not the case in reality; 
minimum load constraints can be employed to enforce operation in the efficient boiler regions, but the 
CHP plant is then forced to operate continuously in the model regardless of the need for power. Both 
assumptions lead to inaccuracies [10].  
 
In reality, there are numerous operational and legislative reasons why CHP boiler units are constrained 
to operate with some minimum fuelling or loading constraints. This can be for operational and safety 
reasons, such as the need to maintain combustion of the fuel bed and ensure adequate circulation of 
steam and water in the boiler drum [10, 24]. Most boilers for the size of plant considered have an 
operational lower load of  20% - 30% full load [5, 10]. There are also legislative constraints, such as 
the need to maintain flue gas temperatures at minimum levels to comply with emissions regulations. In 
addition fiscal incentives often require a threshold boiler efficiency level (typically 70%) is achieved as 
a precursor to acquiring a ‘CHP quality index’ [25]. For a modern CHP plant with a  co-ordinated 
control system for the boiler, turbine and heat exchanger, operation at low output power and heat levels 
is nevertheless achievable with a steam bypass valve [24]. A co-ordinated control system can use such 
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a valve to allow some of the generated steam to bypass the turbine/extractor and divert it straight to the 
condenser (or cooling stack), such that at very low output levels the boiler fuelling is held at the 
minimum required level. 
 
In the studies presented, it is assumed that the CHP plant is equipped with technology allowing thermal 
and electrical energy to be stored (directly or indirectly) and a gas fired boiler for peak load handling. 
As there is no efficient technology allowing the direct storage of electrical energy at the current time, it 
is assumed that Battery Energy Storage Systems (BESS), Compressed Air Energy Storage (CAES) or 
flywheels allow indirect storage of electricity, i.e. electrical energy is converted into another form 
(chemical or mechanical) and stored over short to medium time periods, and later converted back to 
useable electrical energy [3,4]. The approach adopted in this paper employs a MILP model 
incorporating a non-linear boiler efficiency curve for the main plant which uses piecewise 
approximations in a similar manner to the work of Milan [6], extending this work into a rolling horizon 
context. In the simulations presented it is assumed that the plant is serving a local load (heat and 
electricity) and operating in the presence of a wholesale de-regulated energy market with fluctuating 
energy prices.  
 
1.3 Related Work 
Rolfsman [9] considered the optimisation of CHP plant with heat storage and secondary boilers in the 
presence of a deregulated electricity market. In this work, time is divided into discrete 3 hour periods 
and two optimisation strategies for dealing with unknown market prices are compared to a baseline case 
in which all prices are assumed to be accurately known. Simulation results obtained over the course of 
a year indicated the strategy interacting with both the spot (day-ahead) market and the balancing (intra-
day) market strategy was significantly less profitable than the strategy interacting with the spot market 
only, by a value of approximately 1.4 MSEK ( €150,000 using recent conversion rates). These findings 
suggested that additional costs incurred from interaction with the balancing market are enough to render 
the storage valueless and therefore the latter (simpler) strategy is preferable. The study assumed that 
both heat and electricity demand are explicitly and accurately known beforehand, and that the CHP 
plant has a fixed (constant) efficiency at part load. Neither of which are the case in a real world situation.  
 
Ommen et al [10] in 2014 investigated CHP plant non-linearities within the context of a rolling horizon 
short-term optimisation framework, using representative district heating data from Copenhagen and 
surrounding district. This work explores cost, optimal solution structure and computation time for 
simple linear, non-linear and mixed integer models for economic dispatch and unit commitment. The 
findings suggest that although differences in the structure of the optimal solutions were found 
(especially related to the part-load operation of generators), cost differences are low, typically < 3%. In 
the simple linear model, fixed CHP plant efficiency is assumed over the full load range; in the Mixed 
Integer Linear Programming (MILP) model, a fixed efficiency is considered over a partial load range 
( 30% - 100%), with the plant not capable of low-load operation and needing to be switched off.  
 
More detailed modelling of non-linear efficiency curves within a MILP framework is considered by 
Milan et al. [6].  They develop and compare two solver strategies for the resulting model. The focus in 
this work is on medium-term planning of required plant capacity, as opposed to short-term operational 
optimisation [6]. 
 
Wang et al. [11] consider the economic dispatch optimisation of a CHP and boiler-based district heating 
system with renewable electricity generation and both heat and electricity storage [11]. The optimisation 
is formulated as a Linear Programming (LP) model over a planning horizon of one month in hourly 
steps. Non-linear (convex) characteristics of CHP units are piecewise linear modelled. The length of 
the planning horizon employed by Wang et al [11] is markedly longer than in other research in the field. 
This allows both capacity and operations planning to be considered in a single detailed framework. Unit 
commitment for the CHP plants within this framework is not considered by Wang et al. [11] due to the 
excessive numbers of binary variables that would be required for the Mixed Integer LP (MILP) model 
[11]. The LP model employed by Wang et al [11] is utilised in a computational study based upon 
multiple CHP plant, boilers and solar thermal collectors located in the south of Finland. Again, the 
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results of this study assume both heat and electricity demand is explicitly and accurately known. 
Nevertheless, the conclusions indicate that amongst other things, heat storage is utilised in proportion 
to the level of daily load variability.  
 
Gadd and Werner [12] examine daily and seasonal heat load variations in 20 Swedish district heating 
systems. They found that variations in the daily load are typically 3% – 5% of the average daily heat 
delivered with significant differences between seasons. This study found peak-to-peak variation and 
average demand are at their lowest during summer months and at their highest during winter months, 
although midday drops in demand are largest and most pronounced during autumn and spring months. 
Taken together with the conclusions of Wang, et al. [11], discussed earlier, this suggests that to 
eliminate variations, total daily volumes of heat stored would need to be at their highest during the 
winter months and at their lowest during summer months. Although, the rate of daily heat store loading 
and unloading will be at its largest during the autumn and winter months. 
 
Gruber [13] describe and test a two-stage receding horizon optimisation problem for building energy 
management. The focus here is principally upon electrical energy management in the building.  The 
main decision variables considered in the optimisation are controllable loads (both deferrable and 
proportionally controllable), dispatchable generation, battery storage and grid power exchange. A novel 
feature of Gruber’s [13] work is the separation of the optimisation problem into two distinct phases and 
timescales to enable consideration of a longer horizon (24 hour) with high temporal resolution (5 
minutes). In the first phase a rough-grained optimisation is solved over a 24 hour ahead period using an 
hourly time resolution. In the second phase, the results of the first step of the first phase are employed 
to initialise a second fine-grained optimisation over a 1-hour ahead period using a 5-minute time 
resolution. The first phase is repeated hourly, and the second phase repeated every 5 minutes. Both 
optimisation problems are formulated as MILPs and the strategy is validated using power-hardware-in-
the-loop experiments. The two-stage approach are  shown to be an effective means to consider longer 
optimisation horizons with relatively high temporal resolutions, and the computational overheads are  
shown to be low (< 1 second per phase) using a modern numerical solver on a modern PC. Gruber [13] 
states that prediction accuracy has an impact on the quality of the optimisation, but does not provide a 
solution as to how to obtain the required demand predictions.  
 
Clearly, future load and demand information is not known accurately and any receding horizon 
optimisation strategy must employ predictions for these unknown quantities. Therefore reliable 
forecasting is required to provide predictions for the plant heat and electricity load allowing the 
scheduling and economic dispatch to take place. Previous work on prediction of electricity loads is 
numerous and a large variety of strategies are reported in the literature. Taylor [14] compares various 
models and strategies for day ahead prediction of half-hourly electricity loads for both British and 
French national grids (of typical daily load ≈ 40 GW and ≈ 50 GW) and reports MAPE levels between 
1.5% and 6%. There are comparatively much fewer studies related to prediction of district heating loads. 
Dotauzer [15] reports MAPE figures of 10.90% and 9.85% for predictions of hourly heat loads for two 
district heating systems (of typical daily Winter load ≈ 700 MW and ≈ 300 MW) in Stockholm, Sweden, 
and reports that these error levels are commensurate with those obtained using commercial prediction 
software. Combined prediction of both heat and electricity loads using a unified model structure does 
not seem to have been considered. 
 
1.4 Contributions 
In the light of the previous work discussed above, three novel contributions to the area of study are 
presented in this paper.  
 
First, mathematical models and supporting software components for load prediction that enable the 
operator of a CHP plant to automatically generate hourly load predictions of both heat and electricity 
using a unified model structure with minimum intervention. The load forecasting mechanisms have a 
linear structure of varying complexity and are adaptive in nature. They employ Exponentially Weighted 
Extended Recursive Least Squares (EWE-RLS) to obtain minimum variance parameter estimates and 
track any environmental changes that would otherwise require manual model re-calibration. The models 
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have an adjustable number of parameters represented by a model horizon, allowing the possibility to 
reduce computational overheads and fine-tune the prediction accuracy. Based upon extensive 
experiments, it is shown that even when a large number of parameters are included, the overheads are 
small, and the proposed models seem to be competitive with - and in some cases may even be superior 
to - existing linear methods and commercial prediction software in terms of prediction accuracy. 
 
Secondly, mathematical models and supporting software components for CHP plant optimisation in a 
rolling horizon framework. The MILP model incorporates non-linear boiler efficiency curves using 
piecewise approximations in a similar manner to those used in [6], extending this work into a rolling 
horizon context. The optimisation model also has an adjustable number of binary variables representing 
the plant on/off states represented by a unit commitment horizon, allowing the possibility to reduce 
computational complexity and fine-tune the optimisation overheads while using a longer horizon for 
economic dispatch. Based upon extensive experiments, the results indicate that the introduction of 
separate horizons for economic dispatch and unit commitment is more effective in terms of costs and 
solution structure than considering heuristics over a longer horizon. The suggested approach provides 
a useful alternative to [13] when considering trade-offs between complexity and horizon length in 
rolling-horizon energy optimisation problems, and provides a useful contribution to this area. In 
addition, the results obtained suggest that the optimisation problem is significantly harder to solve 
during Summer months than in Winter months due to the increased chance of the plant being un-
committed. This provides useful addendum to the results of [11] and [12], and suggests that future work 
aimed at testing the efficiency of CHP optimisation should focus configurations to include plentiful 
data corresponding to these months. 
 
Thirdly, a sensitivity analysis using a typical configuration of plant is carried out. In this sensitivity 
analysis, the impact of model accuracy and load predictions on the results of the optimisation strategy 
are investigated. The results indicated that, although increasing accuracy in the plant model leads to 
increased profit, diminishing returns are seen; in addition, the latter is much more sensitive to the 
accuracy of load predictions. In addition, the results also indicated that when load prediction 
inaccuracies are considered in the CHP optimisation framework, from a financial perspective a strategy 
interacting with both the spot (day-ahead) market and also the balancing (intra-day) market strategy is 
significantly better than a strategy interacting with the spot market only, and in fact leads to cost 
reductions of approximately €70,000 over the course of the year. This differs from conclusions drawn 
in previous work [9] which considered perfect load predictions, and can be attributed to the fact that 
shorter-term predictions are inherently more accurate than longer-term predictions. Without interaction 
in a balancing market, the updated strategy based upon these improved predictions cannot be put into 
place effectively; as the system state evolves and more reliable or accurate information is revealed or 
acquired, the results of the rolling horizon optimisation must be acted upon accordingly [16, 17, 18]. 
 
The paper concludes that the software components presented, when used in conjunction with other 
freely-available open-source software (e.g. SCADA database management) and web services (e.g. 
weather forecast APIs), could enable a plant operator to assemble a fully integrated environment for 
decentralised CHP plant management and optimisation at very little cost. The findings also suggest that 
this approach for CHP plant management can reduce the relative cost of acquiring energy which 
translates into significant financial savings over the course of a year. 
 
The remainder of this paper is structured as follows. Section 2 presents the methodology employed. It 
describes an overview of the rolling horizon optimisation concept for a decentralised CHP plant, an ICT 
framework for its implementation, discusses the forecasting methods and models for heat and electricity 
load prediction, and presents the compact dispatch and unit commitment optimisation models. Section 
3 describes a case study consisting of a prototype implementation of the proposed components, their 
integration into a test platform and an experimental configuration that has been employed along with 
representative source data to enable detailed investigations of the proposed methodology to take place. 
Section 4 presents the results obtained from these investigations and provides detailed discussions. 
Conclusions and a summary are given in Section 5. 
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2 Methodology 
 
2.1 Rolling Horizon Optimisation for CHP Plant 
The emergence of generation equipment embedded within energy transmission and distribution 
networks has helped to push forward the concept of the smart grid: an energy distribution network that 
not only allows for the physical transfer of energy but also features heavy automation and ICT support 
[2]. This ICT infrastructure offers many opportunities for improved monitoring, control and 
optimisation of energy generation and distribution when compared to a traditional grid. One such 
improvement is the optimal economic balancing of energy supply with demand, as defined for a CHP 
plant as in the previous Section. Costs for purchasing and installing equipment such as the CHP plant 
itself are considered as sunk costs which cannot be optimised. The economic dispatch problem for a 
decentralised CHP plant must necessarily employ predictions for unknown loads and prices, and must 
also be reactive in the sense that when the state of the system evolves from one hour to the next and 
more reliable information is revealed, this information must be employed to update the previous 
dispatch plan to a new one. As such, the concepts of adaptive control (to track and adapt to changing 
conditions and supply/demand trends) [17] and receding-horizon predictive control (to re-calculate 
cost-optimal corrective strategies) [18] can be employed.  
 
It is assumed that time is indexed by the non-negative integer t which counts the number of elapsed 
time units since system switch-on. The time units will typically have a one-hour, half-hour or quarter 
hour resolution. For the remainder of this paper an hourly resolution for time units is assumed as this is 
commonly used in wholesale energy markets. At hour t, a dispatch optimisation problem and 
(optionally) a related unit commitment problem are to be solved considering a future planning horizon 
of H hours. In other words, the decisions which are possible for each hour in the range [t, t+H) are 
optimised using the knowledge available at time t. The optimal decisions for the hour t are then applied. 
At time t+1, the optimisation is then repeated for the time range [t+1, t+H+1) using the knowledge 
available at time t+1, and this process repeats indefinitely.  
 
In a typical short-term energy market, there are three types of prices for the purchase and sale of energy: 
day-ahead (spot) prices, intra-day (real-time) prices and regulation prices. In this paper, it is assumed 
that the plant may actively operate in both the day-ahead and intra-day markets and is subject to 
retrospective regulation charges for deviations from planned commitments. At any point in time, only 
the intra-day (real-time) prices can be accurately known before market closure, as they are advertised 
electronically in the exchange. It is assumed that transactions can be taken in this market until some 
fixed time before actual delivery (typically one time step, but often can be less), but not during the same 
time step as delivery. It is assumed that spot prices are fixed once the market has closed around 12 hours 
before first delivery, and that regulation prices are set retrospectively by the area TSO. Price prediction 
is not the focus of the current paper, and it is assumed that existing forecasting methods may be 
employed for these spot prices and regulation charges [19, 20]. A generic structure for such a CHP plant 
optimisation framework is as shown in Figure 2 below: 
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Figure 2:  Prediction and optimisation architecture 

 
As illustrated in Figure 2, the data flow is periodic; the operations highlighted require data acquisition 
to enable the prediction phase. In the data acquisition phase, measurements of the current state of the 
system (e.g. aggregated loads) and related data (e.g. weather forecasts) are first acquired, either locally 
and/or remotely (e.g. via a SCADA system, Web Services, email or SMS). The current and historical 
state measurements are then employed to predict the future energy demand evolution across the horizon 
along with the future wholesale market prices. During the optimisation phase, the optimal corrective 
strategy to balance supply and demand across the horizon using the available options for generating, 
storing, buying or selling energy are determined. During the post-processing phase, data extraction and 
post-processing is carried out and decision support information is then distributed locally and/or 
remotely (e.g. via a SCADA system, Web Services, email or SMS). Key input and output data flows 
are indicated in the Figure; descriptions of the data and how they are obtained is contained in subsequent 
Sections. Descriptions of a suitable underlying PC- and Internet-based ICT platform to support such an 
optimisation may be found in related work by the authors [8]. The platform essentially comprises of 
software components to support communications such as SCADA and Web services, along with 
components for data management/visualisation and a generic optimisation solver support. Aspects of 
each of these main components are discussed below. 
 
2.1.1 Web Services/HTTP 
A Web service is a software system designed to support interoperable machine-to-machine interaction 
over a network. It provides a network address over the Web, and in its simplest form is a Website 
providing an Application Programming Interface (API). A Web API is a programmatic request-
response interface using a standard method of encoding structured information such as XML. Web 
services can be accessed using simple HTTP client interfaces, which are supported as standard (along 
with email) in most operating systems. As shown in Figure 1, the main information requirements for 
forecasting models (in addition to historic data) are typically weather forecasts. Predictions of hourly 
temperatures and wind speeds are often the main aspects required: in the absence of specialised weather 
forecast information, free-to-use Web services for forecasting can be used (e.g. www.yrno.api and 
similar sites). 
 
2.1.2 SCADA 
A SCADA (supervisory control and data acquisition) system is an industrial communication system 
which provides telemetry and tele-control services, typically between a central Control Centre (CC) and 

http://www.yrno.api/
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a number of field devices such as remote terminal units (RTUs), Programmable Logic Controllers 
(PLCs) and other embedded controllers, and also Human Machine Interfaces (HMIs) such as operator 
displays. In the context of the current paper, the central CC is the main prediction and optimisation 
platform, and the main RTUs in the field are the local co-ordinated control system of the CHP plant and 
the energy storage unit local controllers. Given that the CC may be located in offices some distance 
from the CHP plant itself, a SCADA system is required to provide the connectivity needed to send the 
dispatch commands from the CC to the plant and to send aggregated loads and other measured data 
(such as outdoor temperature) and alarms from the plant to the CC.  
 
Although many SCADA protocols have been developed, each with particular advantages and 
disadvantages with respect to electrical and thermal plant automation, the Modbus protocol is one of 
the most popular [21]. The Modbus-RTU application protocol was originally designed as a simple, 
flexible and open Master-Slave protocol that can be used over serial communication links such as RS-
232. Due to its popularity and widespread use, more recently it has been mapped for use with the Internet 
Protocol using a Client-Server model, leading to Modbus TCP/IP. Many local CHP controller and ESS 
controllers support Modbus-TCP/IP (either directly or through a TCP/IP-RTU gateway). An ICT 
infrastructure for CHP plant management may make use of one of the many commercial or open-source 
components which are available for this protocol (e.g. the open source library available from 
http://libmodbus.org/ or similar) for interaction with the plant and ESSs. 
 
2.1.3 Data Management and Visualisation 
Database functionality is required to store and access both historic data associated with plant operation 
and the configuration settings for the plant and its environment. Since the configuration settings are 
either static or very infrequently changed, they are best handled using simple storage in a flat-file or 
structured XML file. The data related to plant operation however, consists of potentially very large 
arrays of numbers. These arrays are indexed by the time variable t and include hourly energy prices, 
hourly heat and electricity loads and average hourly temperatures. As such they fall into the category 
of time series data, and although it can be managed by traditional relational database software, this is 
not very efficient and a time series database (TSDB) is a preferred (optimised) solution. A TSBD is 
often a core component of an operational historian, which also features functionality for compressing 
the data, recording summary statistics over receding timelines and data visualisation. An ICT 
infrastructure for CHP plant management may make use of one of the many commercial or open-source 
TSDB/operational historian components and environments which are available (e.g. openTSDB 
available from http://opentsdb.net/ or similar). 
 
2.1.4 Optimisation Software 
In terms of generic support for optimisation, many commercial or open-source optimisation components 
and environments are available for solving the Linear Programs (LPs), Mixed Integer LPs, Quadratic 
Programs (QPs) and Mixed Integer QPs that typically arise in power system dispatch problems. In the 
context of the research presented, the CHP economic dispatch problem is formulated as a MILP. An 
ICT infrastructure for CHP plant management may make use of one of the many commercial or open-
source optimisation components and environments for LP and MILP which are available (e.g. the open 
source LP Solve available from http://lpsolve.sourceforge.net/5.5/ or similar).  
 
Having outlined the systems architecture in this Section, the following Section describes the adaptive 
models suitable for load forecasting of both electricity and heat loads and CHP optimisation models for 
use with such an ICT infrastructure. 
 
2.2 Load Forecasting 
Research suggests that for short-term heat and electricity prediction, simple but well-calibrated model 
structures often perform almost as well as complex models (e.g. see [14, 15]), and strong load 
correlations with temperature can normally be found. Simpler models require less computational effort 
and data requirements are easier to manage. A principal goal was therefore to keep the load prediction 
model structure very simple and to employ temperature as the only fundamental model input. In 
addition, to remove the need for extensive calibration and re-calibration of the model, a secondary goal 

http://libmodbus.org/
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was to use recursive adaptive parameter estimation for model parameter identification. The structure of 
the load prediction model is presented below. 
 
2.2.1 Load prediction models 
Let the variable DH(t) represent the load (demand) for heat (in kW) during time slot t, and the variable 
T(t) represent the average ambient temperature for the hour starting at time t, where t is a non-negative 
integer variable. Assuming that the demand has Auto-Regressive Integrated Moving-Average 
(ARIMA) white-noise ‘dynamics’ with temperature as an exogenous input, the model structure below 
is obtained: 
 


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In this model eH(t) is a zero-mean white noise sequence, z-1 is the backshift (delay) operator,  = 1-z-1 
(i.e. the differencing operator), AH(z), BH(z) and CH(z) are polynomials in z-1 with both AH and CH monic. 
The integrated white sequence implies that the load is effectively experiencing unknown disturbances 
that are akin to Brownian motion or a random walk. In particular, this provides resilience against non-
constant means (which demand data seems to exhibit). Let the variable DE(t) represent the demand for 
electricity (in kW) during the time slot t. Then an Equation analogous to (1) may also be written for 
electricity demand, replacing DH(t) with DE(t), eH(t) with eE(t) and the polynomials AH(z), BH(z) and 
CH(z) with polynomials AE(z), BE(z) and CE(z). In a separate study of representative data [8] for hourly 
heat and electrical loads from Sweden and the UK, plus hourly electricity loads from the US, it was 
found that the load at hour t was mainly correlated to the previous short term hourly loads, i.e. t-1, t-2, 
t-3, …, however the correlation weakens over the course of the previous day before increasing once 
more at hour t-24, i.e. one full day before. In addition, a correlation was also found at t-168, i.e. one full 
week before. The correlations with the short term load history along with seasonal behaviours are 
consistent with the findings of previous studies [14]. Although it has been suggested that there may also 
be monthly and/or yearly seasonal correlations in load data [14], these were omitted from the current 
models for the sake of simplicity; in addition, as will shortly be described the adaptive parameter 
estimation employed removes the need for including long term load correlations. In terms of the 
temperature correlations, it was found that in the heat data, the load at hour t is inversely correlated with 
the short-term average ambient temperature in the hour t and previous hours, i.e. t-1, t-2, t-3, … , 
however the correlation weakens for increasing time shifts. For electricity, the situation is similar but 
correlations are positive. M parameters are included in the model to capture the effects of the short term 
load history, temperature effects and moving-average errors. Setting DH(t) = DH(t) – DH(t-1) and T(t) 
= T(t) – T(t-1) as the first difference of the heat demand and temperature respectively, incorporating the 
M parameters and seasonal behaviours in the AH, BH and CH polynomials allows (1) to be written in a 
more convenient incremental form; for example, in the case that M = 3, we may write: 
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(2) 

 
Where ahj is the jth coefficient of the AH polynomial, bhj is the jth coefficient of the BH polynomial and 
chj is the jth coefficient of the CH polynomial. Since the error terms are assumed zero-mean, at time t it 
holds that E[eH(t+1)] = 0 and as DH(t+1) = DH(t) + DH(t+1), the one-step head prediction equation for 
heat demand using all information available up to and including time t becomes: 
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Where a hat upon a variable indicates its predicted value is to be used. A two-step ahead prediction can 
be formed from recursion upon (3): 
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Similarly, k-step ahead predictions across the full horizon are obtained by recursion upon the known 
and predicted load and load increments obtained up to step k-1, plus the forecasted temperature 
increments and estimates of the previous errors. In the model, at step t an estimate of the error eH(t) can 
be obtained as the difference between the measured and predicted change in load, i.e.: 
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Prediction Equations of a similar form to (3), (4) and (5) may also be written for the electricity demand, 
replacing DH(t) with DE(t), eH(t) with eE(t) and the polynomials AH(z), BH(z) and CH(z) with polynomials 
AE(z), BE(z) and CE(z) as needed. 
 
2.2.2 Adaptive parameter updating 
Since the distribution of eH(t) and eE(t) become approximately Gaussian for large sample sizes due to 
the Central Limit Theorem, unknown model parameters may be estimated on-line using minimum-
variance (least squares) techniques. At each time step t, when the actual loads from step t-1 become 
known, before predictions are formed the parameters are first updated online in an identification step to 
minimise the following objective function J (the final weighted quadratic error): 
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With 0 <   1 acting as an exponentially receding weighting factor known as the forgetting factor. The 
objective function in (6) contains two separable squared error sums, one related to heat demands and 
one related to electricity demands; hence the problem may be separated into two distinct weighted least 
squares problems. The parameter estimation to optimally solve these weighted least squares problems 
and hence minimize J(t) at each time step can be efficiently carried out using the method of EW-ERLS 
as described by Astrom and Wittenmark [17], with a complexity that is quadratic in the number of 
estimated regression parameters. Following the regression updates to estimate the unknown model co-
efficients at time t using the available measured data, the predictions for both heat and electricity 
demands required for optimisation are then carried out recursively as detailed above. The ‘model 
horizon’ M has an influence on both the computational complexity and predictive performance of the 
method. Computational experiments to explore the influence of this configuration parameter are 
described in a later Section. 
 
2.3 Optimisation Models 
 
2.3.1 CHP plant 
In this paper we assume that the heat to power ratio  is adjustable on an hourly basis, and during hourly 
time step t let (t) denote the employed ratio which is assumed to satisfy the relationship Min  (t)  
Max [22]. Let P(t) and Q(t) be the electrical and thermal power outputs during hour t respectively, and 
let PQ(t) be the combined plant output during hour t. The constant PQMax represents the maximum 
output of the plant at full boiler load. In addition to the basic constraints that P(t)  0 and Q(t)  0, the 
following two inequalities are sufficient to describe the convex region of plant operation:  
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For a backpressure unit with fixed , we may simply set Min = Max=  in the above. With respect to 
fuelling costs, it is well known that for a suitable choice of the constants AB, BB, and CB the relationship 
between boiler load L (expressed as % of full scale) and boiler efficiency B(L) (expressed as %) is well 
modelled by a quadratic equation of the form [10, 23]: 
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As discussed in the introduction, this efficiency curve produces a sigmoidal relationship between the 
required input fuelling rate (and hence the hourly fuelling costs) and the load. The upper part of the 
relationship is convex, and since hourly fuelling costs should be minimized may be approximated by 
piecewise affine functions. In addition, there are numerous reasons why CHP boiler units are 
constrained to operate with some minimum fuelling or loading constraints, and a modern CHP plant 
with co-ordinated control system for the boiler, turbine and heat exchanger can operate at low output 
power and heat levels using a steam bypass valve. As such it is proposed to approximate the hourly 
fuelling costs as a function of the combined plant output PQ with three piecewise affine functions as 
follows: 
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Such that fb3  fb2  fb1 to ensure convexity. The first affine function has a slope of zero and enforces a 
minimum fuelling and boiler loading. The second is drawn from the point of maximum efficiency 
tangential to the lower part of the cost curve, while the third connects the point of maximum efficiency 
with the point of full load. In Figure 3 below, the convex fuelling costs as shown in Figure 1 (right) are 
approximated by 3 such piecewise affine sections. 
 

 
Figure 3:  Piecewise approximation of fuelling costs 

 
The fuelling function may then be modelled in the LP by using a slack variable z1(t) plus the following 
three inequalities for each considered hour t: 
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For the cost curve shown in Figure 2 (right), the resulting approximation using a minimum fuelling 
constraint of 25% (to ensure boiler load > 20% and efficiency > 75%) is obtained with {faj, fbj} values 
as: {25.00, 0.000}, {7.200, 0.865} and {-12.000, 1.120}. The piecewise approximation has an average 
absolute error of 1.20 % over the working range of the boiler. Defining the unit hourly fuelling cost as 
CF, then the term z1(t) CF is incorporated into the cost function to represent the hourly economic costs 
of the CHP plant. 
 
While the operation at low and zero output levels can be modelled, it is relatively inefficient to do so 
(in both the model and in reality), and it is also beneficial to be able to shut down the plant when it is 
economically justified. In the optimisation model this allows the ‘unit commitment’ scheduling problem 
to be integrated with the CHP economic dispatch problem. To facilitate such operations, the model 
includes, hourly binary indicator variables I(t)[0, 1] with the interpretation that for I(t) = ‘1’, the plant 
is switched on for hour t and for I(t) = ‘0’ the plant is switched off. By modifying constraint (6) to the 
following form: 
 

0)()(  MaxPQtItPQ  (12) 
 
Then both the electrical power and rate of heat transfer are forced to zero when I(t) = 0. The latter is 
ensured as when I(t) = 0 the condition PQ(t)  0 must hold, with both terms also being non-negative. 
In terms of operating costs, let the savings that occur when the plant is switched off (e.g. due to reduction 
in labour cost) be denoted as COff, and let the minimum fuelling costs be denoted as CFmin = CF af1. 
Adding the terms: 
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Into the cost function ensures that when I(t) = ‘0’ the operating cost is driven to zero, and when I(t) = 
‘1’ the cost is equal to COff plus that incurred for the fuel used. If costs of CSS are incurred every time 
the plant is shutdown or started up, then since the plant state at the previous time step is represented by 
I(t-1), this can be modelled by using the slack variable z2(t) and by adding the following constraints: 
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(14) and (15) ensure that when I(t)  I(t-1), z2(t) is forced to ‘1’ and zero otherwise; the term z2(t) CSS is 
then incorporated into the cost function. The final aspects to be considered are those related to hourly 
constraints on the rate at which the combined power output of the plant can be changed. As the 
combined output of the plant at time t is given by PQ(t), the hourly rate of change of the combined 
output of the plant is given by: 
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Assuming that the maximum and minimum rate limits on the combined output are PQMax and PQMin 
respectively, constraints of the form: 
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Ensure that the hourly change in output adheres to the physical constraints. The overall model for each 
hour of CHP plant operation is summarized in Table I below (note that since PQ(t) = P(t) + Q(t), PQ(t) 
has been eliminated to reduce the number of required constraints and variables). The efficiencies of the 
turbine / generator and heat exchanger (E and H respectively) are not explicitly included, and should 
be added as factors in additional constraints related to energy balances. Before such constraints are 
considered, models for energy storage are discussed in the next Section. Note that if unit commitment 
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scheduling is not required, the I(t) variables can be fixed to ‘1’ and effectively eliminated from the 
representation to leave a basic LP.  
 

Table I: Summary of CHP model 
 

Costs: z1(t) CF + z2(t) CSS + I(t) (COff  + CFmin) - CFmin; 
Decision Variables:  P(t), Q(t), I(t); 
Slack Variables:  z1(t),  z2(t); 

Constraints: P(t)  0, Q(t)  0,  z1  0, z2  0, I(t)[0, 1] and integer; 
z1(t)  faj + fbj (P(t) + Q(t)), j = 1, 2, 3; 
P(t) + Q(t)  I(t) PQMax; 
P(t)Min  Q(t)  P(t)Max; 
z2(t)  (I(t) - I(t-1)), z2(t)  -(I(t) - I(t-1)); 
PQMin  (P(t) + Q(t)) – (P(t-1) + Q(t-1))  PQMax; 

 
2.3.2  Linear storage and additional model elements 
To address the issue of linear storage it is assumed that the energy stored in the heat accumulator at 
hour t is denoted as CH(t), and the (equivalent) amount of electrical energy ‘stored’ at hour t is denoted 
as CE(t). It is acknowledged that the latter is a slight abuse of notation as there is no efficient technology 
allowing the direct storage of electrical energy at the current time. However as discussed in the 
introduction, technologies such as BESS, CAES and flywheels allow electrical energy to be converted 
into another form (chemical or mechanical) and stored over short to medium time periods, and later 
converted back to useable electrical energy. Let the charging/discharging power of the heat accumulator 
at hour t be denoted as CH(t), and the charging/discharging power of the equivalent electrical store at 
hour t be denoted as CE(t), with the convention in both cases that positive values imply storage 
(charging) and negative values imply extraction (discharging). It is assumed that there is an energy 
conversion (efficiency) loss associated with each store, and also a leakage (discharge) loss of energy 
associated with each store over time. It is assumed that the limits of thermal energy storage and the 
limits of charging/discharging are constrained to be as follows: 
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And similarly for the equivalent electrical energy store: 
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An auto regressive model with controlled input [23] is assumed to describe the evolution of the energy 
content of each of the storage facilities at hour t, such that the following relationships hold: 
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Where the parameters CH  (0, 1] and CE  (0, 1] represent the capacitive loss factors of the store. 
To capture the net effect of charging and discharging losses, let CH  (0, 1] and CE  (0, 1] represent 
the conversion loss factors of the stores: a proportion of energy is assumed lost during both the storage 
and retrieval processes. Two additional slack variables z3(t) and z4(t) are employed along with the 
following constraints: 
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The constraints are configured such that when CH(t) is positive, the net charging power that is required 
is equivalent to CH(t)/CH ; but when CH(t) is negative, the net discharging power that is available is 
equivalent to CH(t)CH. A similar relationship is used to relate CE(t) and CE. The overall model for 
each hour of operation of the energy stores is summarised in Table II. 
 

Table II: Summary of storage models 
 

Decision Variables:  CH(t), CE(t); 
Slack Variables:  CH(t), CE(t), z3(t), z4(t); 
Constraints: CH(t) = CH CH(t-1) + CH  CH(t), CE(t) = CE CE(t-1) + CE  CE(t); 

0  CH(t)  CHMax, 0  CE(t)  CEMax; 
CHMin  CH(t)  CHMax,  CEMin  CEMax  CEMax; 
z3(t)  1/CH  CH(t); z3(t)  CH  CH(t); 
z4(t)  1/ CE CE(t); z4(t)  CE  CE(t); 

 
Considering the above, the constraints related to the area electrical and thermal power balances can be 
written. Let the (predicted or known) demands for heat and electricity during hour t be denoted as DH(t) 
and DE(t), and the associated (predicted or known) prices for buying/selling heat and electrical energy 
during hour t be denoted as CHB(t), CHS(t), CEB(t) and CHS(t) respectively. Let the amount of heat and 
electrical energy that is to be bought/sold by the plant operator during hour t be denoted as XHB(t), XHS(t), 
XEB(t) and XHS(t). Then for each hourly time step t the following additional costs and constraints in Table 
III are employed in the optimisation to ensure that both electrical and heat supply and demand are 
balanced. 
 

Table III: Summary of power balance models 
 

Costs: CHS(t) XHS(t) + CES(t) XES(t) – CHB(t) XHB(t) + CEB(t) XEB(t); 
Decision Variables:  XHB(t), XHS(t), XEB(t), XHS(t); 
Constraints: XHB(t) > 0, XHS(t) > 0, XEB(t) > 0, XHS(t) > 0; 

Q(t)H + XHB(t) – XHS(t) - z3(t) = DH(t); 
P(t)E + XEB(t) – XES(t) - z4(t) = DE(t); 

 
The complete model as presented above has 15 H decision variables (of which H are binary) and 34 H 
constraints (of which 10 H are simple non-negativity of variables). Further constraints such as limits on 
the amount of imported/exported power due to line thermal limitations can be added in the optimisation 
model as required. The full optimisation model is constructed at time t by first forming the objective 
function cost coefficients for each hour and adding the hourly constraints. The known energy storage 
levels CH(t-1) and CE(t-1), plus the CHP plant electrical and thermal power outputs P(t-1) and Q(t-1) 
along with on/off status of the plant I(t-1) are employed to initialise those constraints which are 
temporally linked between successive time-steps. Note that in a case in which the time step t is not equal 
to an hour, small scaling adjustments are required to relate stored and traded quantities of energy 
(expressed in kWh) to power (kW). 
 
 
3 Case Study 
In this Section, a prototype implementation of the methods and models proposed for CHP plant 
management described in the previous Section is described.  
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3.1 Prediction and Optimisation Modules 
The procedures described for adaptive load prediction and plant optimisation have been coded as 
modular, configurable C++ libraries. The prediction models and related adaption code is implemented 
as a code library. The EWE-RLS algorithm is implemented as a sub-library, and is based upon a 
standard Kalman-filter style algorithm to recursively update the underlying weighted least squares 
expression [17]. To implement the optimisation software, the open-source linear optimisation solver 
software package LP Solve was employed. The package can be included into the host software as a 
linkable library implementing the LP/MILP solver and associated header file [26]; an additional code 
library to define and implement the optimisation models described in the previous Section was created. 
The structure of the software environment is as shown in Figure 4. The main configuration parameters 
(such as the lengths of prediction and model horizons H and M, etc) are set using definitions in the 
prediction and optimisation header files. 
 

 
Figure 4: Library structure of the developed software components. 

 
The MILP solver employed in LP Solve uses the Branch and Bound (B&B) algorithm as the core 
solving procedure [26]. For unit commitment optimisation, the employed solver configuration in this 
work branches on the most fractional binary variable, and is ‘warm started’ by first rotating the optimal 
settings for the indicator variables found in the previous step. The new indicator variable entering the 
horizon is assumed to have the same state as in the previous time step. This gives an initial integer-
feasible solution of reasonable quality to assist in pruning the search tree - initial testing indicated this 
approach gave promising results. Nevertheless the B&B algorithm can still be forced (in the worst-case) 
to explore the full search tree given by the binary variables, with O(2H) leaf nodes; the optimisation 
horizon H has a strong influence on the computational overheads of the method.  
 
Motivated by the fact that in constrained predictive control schemes, an effective means to reduce 
computational overheads that is often employed is to enforce certain constraints over only an initial 
portion of the ‘control horizon’, the following scheme was considered: supposing that economic 
dispatch is to be optimised over the entire horizon H, a separate horizon of C  H steps for unit 
commitment can be employed. In this approach the first C indicator variables are free to be optimised 
by the solver, with the remaining (H – C) variables fixed at ‘1’ to relax the problem and consider 
dispatch only. This allows the complexity to be reduced at the expense of possible loss of optimality; 
the extreme case is to set C = 0, and solve only the economic dispatch problem. 
 
One further option to reduce complexity is the use of a heuristic instead of the full MILP solution. The 
heuristic considered in this paper takes C = H, and first solves the master LP at the root node of the 
B&B tree. Subsequently, the heuristic greedily fixes the largest fractional binary variable to either ‘0’ 
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or ‘1’ based upon the estimated change in the final objective function that occurs in each case. Once a 
variable is fixed, a corresponding equality is added to the LP which is then re-solved; the search 
terminates at the first feasible solution found. Since at most H LPs are required to be solved, a fixed 
bound on the computation time can be achieved but again this is at the expense of possible loss of 
solution optimality. Results of computational experiments to explore the influence of the configuration 
parameter C, and also the performance of the heuristic, are described in Section 4. 
 
3.2 Test Platform 
The above libraries for CHP plant management have been integrated, along with a simple graphical 
interface, into a test software package to be run on a standard IBM PC. In the experiments described in 
the next Section, a PC with 4 cores running at 2.0 GHz with 3 GB RAM was employed in all cases. The 
Borland C++ Builder© Environment was employed to compile the executable. 
 
For experimental purposes, an anonymised set of data have been obtained for the hourly thermal load 
on a district heating system located in Angelholm, Sweden along with hourly ambient temperature 
measurements for the area for the entire year 20091 [27]. Summarising the data and the details presented 
in [27], the average hourly demand over the course of the year is 24 MW and the peak demand is 70 
MW. There are approximately 2,000 buildings connected to the district heating system, the majority of 
which are one- or two-dwelling buildings, with multi-dwelling buildings, small industrial 
manufacturing units and commercial / public administration buildings making the remainder. Electricity 
demands were also obtained for the Sweden SW4 control area (in which Angelholm resides) from the 
Nordpool spot website. This latter data is publically available. The electricity data for the whole control 
area have been scaled such that the average demand for heat and electricity matches an assumed plant 
capacity of 42 MW, which is typical of a medium sized CHP plant [5]. The electricity and heat demand 
data time series are visualised in Figure 5 below. For both cases, daily and weekly cycling effects can 
be observed along with seasonal variations. Of particular note is that the demand for heat drops to a 
very low base load level during the main Summer months (June, July and August) and peaks during the 
main Winter months (December, January and February), which is a typical feature of heat demands in 
this part of Europe [12]. A similar, but much less pronounced, effect can be observed in the electricity 
demand data. Simple flat-file storage was used for data management in this test platform. 
 

                                                 
1 It must be noted that a very small number (< 10) of samples were either omitted or invalid (outliers due to 
system-wide faults) in the dataset. Interpolation of values between the nearest neighbours was employed to 
restore these samples. 
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Figure 5: Visualisation of load data. Black/dashed: Electricity demand profile, Red/Solid: Heat 

Demand profile 
 
In terms of the CHP plant configuration, it was assumed that the heat to power ratio satisfies 0.4  (t) 
 0.8 and the accurate efficiency curve (c.f. the piecewise approximation) in Figure 2 (scaled to the 
maximum plant output) was used to calculate actual operating cost in the cost model. Constraints on 
the rate of change of the combined heat and power output were set to 25% of capacity per hour. Fuel 
cost was taken at 0.016 € per unit of fuel/hour, assuming a biomass type of fuel. A fast boiler start-up / 
shutdown sequence was assumed available [24][25], incurring net fuel and labour costs of 100 €. For 
computational efficiency, the efficiencies E and H are both taken to be unity. Local heat storage in 
the form of a 40 MWh capacity lagged tank with a maximum rate of charge/discharge of 10 MW is 
assumed available. Electricity storage in the form of a 10 MWh battery bank with a maximum rate of 
charge/discharge of 2.5 MW is assumed available. Holding efficiencies of these stores is taken as CH 
= 0.95 and CE = 1, with conversion loss factors taken as CH = 1 and CE = 0.85. The price of natural 
gas to produce additional heat is taken to be 0.055 € / kWh for every hour of the day. The selling of 
heat is assumed not to be an option. The hourly price to purchase electricity is taken as 110% of the 
corresponding spot price, and the hourly price to sell electricity taken as 90% of the corresponding spot 
price. Post-hoc regulation charges for electricity imbalances were taken as 150% of the corresponding 
spot price for both up and down regulation, which is a representative assumption [20].  
 
Using this test platform and experimental configuration, a series of detailed experiments has been 
performed to investigate aspects of the proposed methodology. The results of these experiments is 
described in the next Section. 
 
 
4  Experimental Results 
The procedures for prediction and optimisation, described in the previous Sections, have several 
adjustable parameters and configuration options which can influence the performance and run-time 
complexity of the software component implementation. For the software components to be of practical 
use within a rolling-horizon framework, they must be able to produce meaningful results within 
appropriate timescales relative to the base time units employed. In addition, the configuration of the 
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optimisation and its sensitivity to key perturbations such as prediction and cost function accuracy 
requires investigation. This Section describes computational experiments and results carried out to 
determine the impact and influence of these parameters, to assess the suitability of the components in 
these respects, and to explore the sensitivity of the optimisation and how configuration choices impact 
upon performance and economic costs. The experiments described below were all performed using the 
test facility configuration as described in Section 3 of the paper.   
 
4.1 Prediction Model Experiments 
A detailed series of investigations were performed to investigate the influence of the prediction model 
horizon M upon the Mean Absolute Prediction Error (MAPE) across the optimisation horizon and also 
the average CPU execution time required for a full adaption/prediction step update. Execution times 
were recorded using the CPU performance counter. A total of 23 experiments were performed, using a 
full year of data in each case. In each experiment, the prediction horizon H was set to 24 hours and the 
exponential forgetting factor  was set to 0.994.This value of  was given to ensure that the regression 
in each step is based upon approximately one month of previous data. In the experiments, M is varied 
between 1 and 23 and the MAPE for electricity and heat load was recorded for each prediction step 
value k between 1 and 24, i.e. between one hour ahead and one day ahead prediction. In each case the 
first month of predictions are not included in the MAPE calculations to allow time for the estimator to 
converge. Figure 5 displays the average values of MAPE obtained across the prediction horizon as M 
was varied in the specified range. Figure 6 displays the corresponding average CPU execution times (in 
microseconds) obtained (note that the worst-case execution time was commensurate with this average, 
as the code does not have major conditional branches). 
 

 
Figure 6: Left: Comparison of Model Horizon M and MAPE across the horizon; Right: Comparison of 

Model Horizon M and CPU execution time. 
 
From Figure 6, it can be observed that the increase in model complexity has a beneficial effect on both 
heat and electricity prediction errors, as may be expected. However the effect of increased model 
complexity on heat errors is much more pronounced than that of electricity errors; the error reduces 
steadily from 7.85 % to 4.67 % in the former case, and from 3.38 % to 2.76 % in the latter. This is 
indicative that the heat load benefits more from introducing additional parameters in the underlying 
model, and the electricity load experiences diminishing returns. Nevertheless, some improvement is 
still evident in the electricity load case, and even small improvements may translate into potentially 
large savings over time. Hence it is worthwhile to examine the increase in CPU load that results from 
increasing M.  
 
Consulting Figure 6 again it is evident that the rise in computational demand is quadratic in the number 
of parameters which increases linearly in M. However one may observe that even in the most complex 
case for M = 23, the overheads are still < 160 s for a full prediction step, including updating the EWE-
RLS algorithm and calculating the predictions recursively over the full horizon. As such, it is evident 
that the additional overheads resulting from utilising the more complex model are justified in terms of 
the potential reduction in MAPE in both heat and electricity loads on a standard PC-based platform. For 
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other computing platforms (e.g. small resource—constrained processors) this overhead increase may 
not be acceptable, and a trade-off between accuracy and overhead will have to be made. In this respect, 
Figure 7 shows a plot of the recorded MAPE vs model complexity M for each individual step along the 
horizon for heat load predictions (a similar - but less pronounced - effect was observed for electricity 
and the details are omitted for space reasons). 
 
From these data it can be observed that for less complex model structures, the MAPE is first rising in k 
and then falling; it seems inherently more difficult to predict the load at points around 12-19 hours 
ahead. As the model complexity increases, the effect is to gradually flatten the peak of the prediction 
errors. At the point when M = 23, the MAPE rises to a value ≈ 5 % at the 5 hours ahead point and 
remains approximately constant thereafter. This is indicative that, if a reduced complexity model is 
required, then adding additional seasonal components around the 12-19 hours ahead point to the simpler 
model structure may be beneficial. In addition, the forgetting factor may have an additional influence 
upon the MAPE. These points suggest a need for future work to further explore these issues. Finally, 
although direct comparisons to previous works are clearly difficult to make, it is observed that Dotauzer 
[15] reports MAPE figures of 10.90 % and 9.85 % for predictions of hourly heat loads for two district 
heating systems (of typical daily load in Winter ≈ 700 MW and ≈ 300 MW) in Stockholm, Sweden, and 
reports that these error levels are commensurate with those obtained using commercial prediction 
software. Taylor [14] compares various models for day ahead prediction of half-hourly electricity loads 
for both British and French national grids (of typical daily load ≈ 40 GW and ≈ 50 GW) and reports 
MAPE levels between 1.5 % and 6 %. Therefore our models seem to be competitive with - and in some 
cases may even be superior to – existing methods and commercial prediction software based upon linear 
models in terms of predictive accuracy.  
 
However, it must be cautioned that non-linear models and methods such as neural networks have been 
applied successfully to short-term load prediction for both electrical and thermal systems [28, 29]. 
Although non-linear methods inevitably lead to larger computational overheads and possess more 
complex calibration requirements, the achievable performance can be significantly better than their 
linear model counterparts. For example lower one-step-ahead MAPE figures than those reported in this 
paper have been reported by Eriksson [29] when predicting district heating demands using data of a 
similar profile to that considered in this paper (MAPE figures for further than one-step predictions were 
not reported in [29], but may be reasonably expected to be also smaller). Any choice of load prediction 
method should factor this aspect into account. 
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Figure 7: Illustration on the effect of model horizon M on heating prediction errors 

 
4.2 Optimisation Model Experiments 
To explore the effects on the quality of the solutions found and computational overheads when using 
the heuristic version (HEUR) of the optimisation software and the full (MILP) version of the software 
with various values for the commitment horizon C were conducted. In each experiment, the solver ran 
for each and every hour of the full year of data, using the load prediction models with M = 23 to obtain 
the demand forecast over the prediction horizon of H = 24 hours at each step. This approach follows 
previous work on short-term co-generation dispatch planning, which investigated the impact of different 
choices of H on the optimal objective function value when optimising a district heating system with 
multiple power plant and heat storage in Denmark [10]. In this earlier work it was found that a 24 hour 
horizon leads to an almost negligible (≈ 0.01 %) impact on optimal objective function value in 
comparison to a ‘perfect’ (i.e. infinite) horizon [10]. In addition to considering the case C = 0 
(corresponding to dispatch only, DISP), the cases C = 24 (MILP24), C = 12 (MILP12) and C = 8 
(MILP8) were considered to explore the impact of varying the length of the unit commitment horizon. 
The resulting solution in each case was applied for the next hour, and the net costs calculated (including 
regulation charges) and added to a running total. Solver execution times were recorded using the CPU 
performance counter at each step. Table IV displays summary statistics for each solution method. The 
relative cost increase is defined as the percentage cost increase incurred with the concerned method 
(MILP24, MILP12, MILP8, HEUR or DISP) over the optimal cost found by the MILP24 solver. Also 
reported as the absolute cost increase (in €) that this corresponds to, and the average cost for acquiring 
(generating or buying) one unit (kWh) of energy incurred by each method. The number of times the 
plant was shut down (uncommitted) during the course of the experiment is also listed for each method, 
along with the obtained average and worst-case solver times, in seconds.  
 

Table IV: Comparative summary of the solution results 
 

Metric MILP24 MILP12 MILP8 HEUR DISP 
Relative Cost Increase (%) 0.000 0.004 0.009 0.362 0.552 
Absolute Cost Increase (€) 0.000 430.4 848.3 34,994.0 53,355.8 

Net Acquisition Cost (€ / kWh) 0.026259 0.026260 0.026261 0.026354 0.026404 
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Shutdown Events (#) 115 109 102 35 0 
Ave Solver Time (s) 3.316 0.301 0.172 0.150 0.128 
Max Solver Time (s) 156.896 1.894 0.495 0.477 0.410 

 
From Table IV, it can be observed that the optimal consideration of plant commitment by the MILP24 
approach has a measurable effect on the cost of acquiring one unit of energy over the course of the year, 
when compared to economic dispatch (DISP) approach only. Whilst the increase is relatively small in 
percentage terms, this nevertheless translates into savings of over €53,355 over the course of the year; 
a not insignificant figure which could impact upon profit margins and/or the price charged to end 
consumers for energy. Under optimal commitment with C = 24, it can be observed that the savings 
made are due to the plant being shut down 115 times during the course of the year (and remaining  off 
for an average of 4 hours each time, with longest shut down being 6 hours). The cost savings that this 
scheduling bring about are at the expense of increase in average- and worst-case computational effort 
by the solver: the average case sees an almost 25 fold increase, while the worst-case sees a 380-fold 
increase. This is not surprising given the added complexity of the introduction of additional binary 
variables in the model. Although these large increases may be observed, all optimal results were 
delivered in less than 160 seconds by the MILP24 B&B solver over the course of the year. This is a 
good indication that the model proposed is efficient and has a reasonably tight LP relaxation. 
 
Considering the Heuristic (HEUR) solution, it can be seen that in this case the plant is shut down only 
35 times during the course of the year (again remaining off for an average of 4 hours each time), leading 
to a cost increase of nearly €34,994 over the full MILP24 approach. However this still represents a cost 
reduction of over €18,361 compared to the consideration of dispatch only; consideration of average- 
and worst-case solver times reveals that there is an almost negligible increase ( 17%) in overheads 
between the HEUR and DISP methods; the cost savings are achieved at almost no cost.  
 
For the MILP12 and the MILP8 approaches, the influence of the reduction in unit commitment horizon 
can be observed in the data. For the MILP12 approach, the plant was shut down 109 times during the 
course of the year (again remaining off for an average of 4 hours each time, with longest plant shut 
down 6 hours). This lead to a negligible cost increase of just over €430 when compared to the MILP24 
approach; average- and worst-case solver times were reduced by considerable factors (over 10-fold and 
80-fold respectively). In the case of the MILP8 approach, the plant was shut down 102 times during the 
course of the year (again remaining off for an average of 4 hours each time, with longest plant shut 
down 6 hours). This lead to a slightly larger, but still practically negligible cost increase of just over 
€848 when compared to MILP24 approach; average- and worst-case solver times were reduced by even 
bigger factors (over 19-fold and 315-fold respectively). Both choices gave considerable reductions to 
the CPU overhead (< 1 second) at almost negligible cost; this gives an indication of the effectiveness 
of the approach. The choice of C = 8 seems to be a particularly good trade-off between overheads and 
cost impact. Observing that that the average- and worst-case solver times are only marginally larger 
than the HEUR case (see Table IV), it would seem that the commitment horizon approach is potentially 
a better approach. Although further investigations into improved heuristics for plant commitment will, 
no doubt, enable further cost reductions in the HEUR case, these results strongly indicate that it is 
preferable to consider the exact optimisation of a smaller unit commitment horizon than the heuristic 
optimisation of a larger one. Again, there is a need for future work to further explore the issue further. 
Although commitment is not considered in the DISP approach, it can be noted that there were 17 hours 
during the course of the experiments in which the commanded plant heat and power was zero in the 
optimal dispatch. This suggests that, in the absence of any further guidance, a plant operator may use a 
simple lower load threshold on the optimal dispatch to assist with manual commitment decisions. 
 
From the obtained data, it may be observed that there is a comparatively much larger gap between the 
average-case and worst-case overheads incurred by the MILP24 solver, which is indicative of high 
variance in solving times over the course of the year. To investigate this aspect in more depth Figure 8 
displays the corresponding CPU execution times (in seconds) obtained for each hour over the course of 
the year for this method. In which it can be observed that, the MILP24 approach has a similar 
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computational overhead to that of the other approaches for around three quarters of the simulated year. 
This time period corresponded to the Winter and most of the Spring and Autumn months. During this 
time the plant is mostly committed and is fully operational, and the optimal solution is quickly 
discovered and verified in the B&B solver. The remaining times – most notably during the Summer 
months when there is a lack of heat demand – the plant is not required to be fully committed and a 
comparatively much larger time is spend fathoming the optimal commitment and dispatch plan in the 
solver. Comparing Figures 5 and 8 directly, the inverse relationship between heat demand and problem 
complexity (as indicated by the required solver time) is easy to observe. Nevertheless, during these 
times of higher problem complexity, as mentioned optimal solutions were delivered within a timescale 
of 160 seconds in each and every case. These data do suggest, however, that the CHP optimisation 
problem is significantly harder to solve during Summer months than in Winter months, and suggests 
that future work aimed at testing the efficiency of such optimisation platforms should focus test 
configurations to include plentiful data corresponding to these months. 
 
 

 
Figure 8: Evolution of CPU execution times over the course of the simulated year 

 
Overall the additional overheads resulting from utilising the more complex MILP model in the solver 
on a standard PC-based platform are justified in terms of the potential reduction in costs that may be 
obtained; however the results also suggest that the approach making use of a reduced horizon for 
optimal unit commitment combined with optimal economic dispatch over the remaining time steps has 
a negligible impact upon the achievable costs and a potentially large impact upon the computational 
overhead. When combined with the overheads incurred from updating the prediction models, as 
discussed in the previous Section, the combined computation time for a full prediction-optimisation 
step using the MILP8 approach remained at the sub-one second level on our test setup. 
 
It can be commented that the use of commercial MILP software along with specialised solving 
techniques such as cutting planes and delayed column generation would likely see further decreases on 
the computational overheads of MILP24 approach. However, as the main concern in this paper is with 
the use of open source components running on typical PC hardware in standard configurations, only the 
relevant benchmarks for this are presented. Of course, it must be cautioned that changes to the proposed 
cost, plant and storage models and solver configuration will likely lead to slightly different results in 
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each case. Nevertheless, these results provide a useful indication of the likely performance for a typical 
realistic plant configuration running on a standard PC-based computing platform. Using the MILP8 
model, two further sets of experiments were considered to explore the sensitivity of the solution to both 
model and prediction accuracy.  
 
4.3 Sensitivity Analysis 
In the first set of additional experiments, the investigations of [9] were reconsidered; however using 
predictions in place of assumed (known) demand data. Results were obtained considering a strategy 
interacting with only the spot (day-ahead) market, and a deterministic ‘baseline’ case in which 
optimisation was carried out using exactly known future demand data for both heat and electricity. This 
data was compared to the previous MILP8 result, which corresponds to the strategy interacting with 
both a spot and balancing market. Results are as shown in Table V below. 
 

Table V: Comparative summary of optimisation strategies using MILP8 solver 
 

Metric Deterministic Spot/Balance Spot Only 
Relative Cost Increase (%) 0.000 1.943 2.864 
Absolute Cost Increase (€) 0.000 184110.4 271409.2 

Net Acquisition Cost (€ / kWh) 0.025671 0.026261 0.026499 
 
From the results obtained, it can be observed that - as expected - the deterministic case (with perfect 
load predictions) can reduce the net acquisition costs over the other two cases by significant factors. 
This is in general agreement with the previous work [9]. However, a relative reduction in cost of over 
32% can now be observed in the strategy interacting with both the balancing market as well as the spot 
market, translating to savings of over €87,298 over the course of the year. This is not in agreement with 
previous work [9]. Observing Figure 6, this can be attributed to the fact that shorter-term predictions 
are inherently more accurate than longer-term predictions, and without interaction in a balancing 
market, the updated strategy based upon these improved predictions cannot be put into place as system 
evolves and more reliable or accurate information is acquired. Interestingly, these result also show that 
despite having heat and electricity predictions as accurate as those obtainable with commercial load 
prediction software (as reported in the previous Section), the most favourable solution (i.e. interacting 
with both spot and balancing markets) leads to cost increases in excess of €184,110. Since this is well 
in excess of the difference reported in the previous Section between the MILP24 and the MILP8 
solutions, it suggests that model accuracy may not be as important as load prediction accuracy. 
 
In the second set of experiments, this aspect was explored further, and results were obtained considering 
two further optimisation models acting upon exactly known future demand data for both heat and 
electricity. In these models, the number of affine sections comprising the approximation of the cost 
function (10) was varied in the approximation of the boiler cost curve shown in Figure 1 (right). A 
constraint horizon C = 8 was employed in both cases. In the first model (P2MILP8), a minimum fuelling 
constraint of 25% was employed, however now the boiler efficiency was assumed constant over the 
entire load range and hence only two line segments were employed to model the fuel costs. The 
following {faj, fbj} values were employed: {25.00, 0.000}, {3.993, 0.960}. This piecewise 
approximation had an average absolute error of 3.43 % over the working range of the boiler. In the 
second model (P4MILP8), a minimum fuelling constraint of 25% was employed, and four line segments 
were employed to model the fuel costs. The following {faj, fbj} values were employed: {25.00, 0.000}, 
{5.662, 0.885}, {-2.396, 0.992}, {-23.545, 1.235}. This piecewise approximation had an average 
absolute error of 0.43 % over the working range of the boiler. This data was again compared to the 
deterministic MILP8 results described in the previous Section (having three line segments employed to 
model the fuel costs, denoted as P3MILP8). Comparison of the costs achieved gives an indication of 
the sensitivity of the model accuracy on achievable economic costs. Results are as shown in Table VI 
below. The table indicates the accuracy of the fuel cost functions over the boiler working range in each 
case, the relative and absolute cost increases over the cheapest case, and three indications of the optimal 
solution structure. 
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Table VI: Comparative summary of cost sensitivity 

 
Metric P2MILP8 P3MILP8 P4MILP8 

Model Average Error (%) 3.43 1.20 0.43 
Relative Cost Increase (%) 0.089 0.034 0.000 
Absolute Cost Increase (€) 8309.7 3192.5 0.00 

Shutdown Events (#) 63 79 80 
Plant Uptime (%) 96.815 96.073 96.027 

Average Output (%) 72.813 73.483 73.547 
 
From the results obtained, it can be observed that the P4MILP8 model having four segments in the cost 
approximation gave the lowest costs over the course of the year, which is as expected given the 
increased accuracy over the others. Using either two or three segments in the cost approximation lead 
to cost increases of over €8,309 or €3,192 over the course of the year. Other interesting observations 
that can be made relate to the optimal solution structure; as the accuracy of cost function approximation 
improved, the plant experienced more shutdown events, operated with a lower uptime and also with an 
average out when switched on. The results suggest that improving accuracy of the cost functions 
employed in the optimisation leads to improved results, and that decreasing the average error in the cost 
function from 3.43 % to 0.43 % over the working range of the boiler reduced the economic costs over 
the course of the year by over €8,309. This is, however, a very small improvement considering that a 
reduction of load prediction errors across the prediction horizon from  5.00 % to 0 % led to a decrease 
in costs of over €184,110. 
 
4.4 Discussion and Implications 
 
Key findings are that CHP solver overheads increased 380-fold during low heat load periods, but 
solving times at the sub-second level were regained by considering a shorter unit commitment horizon 
than economic dispatch; this approach had an almost negligible impact upon achievable economic costs. 
The findings also illustrate that cost reductions of just under one third were observed through balancing 
market interaction when load prediction inaccuracies were present. Economic costs were significantly 
more sensitive to the accuracy of load predictions than the accuracy of the plant fuelling cost 
approximation in the experiments presented.  
 
These finds have obvious implications for the potential profitability of CHP powered district heating 
and increasing the efficiency of operation of CHP plant. Cost reductions of almost a third on the 
potential payback period for investments in CHP and associated district heating networks also have 
implications related to the penetration and uptake of CHP. Current payback following plant investment 
varies significantly, with major influences including the site requirements, technology, type of fuel and 
level of demand for the heat produced [30]. However for a medium or large scale CHP and district heat 
network currently they are greater than five years [30]. This is often problematic when the investment 
is not considered core business, as typically it is necessary to meet much tougher financial hurdles [31]. 
In this context the ability to reduce running costs by a third, and therefore the payback period by a third, 
has significant implications for increasing local governments’ and the utilities industries abilities and 
likelihood to invest in CHP powered district heating: as it offers the potential to reduce payback to a 
level which is more realistic in the current economic climate. Since distributed CHP plants are often 
fuelled by low emission, sustainable fuels such as biomass, this in turn has the potential to help 
contribute towards carbon emission reductions.  
 
 
5 Summary and Conclusions 
In this paper, open software components that enable a CHP plant operator to obtain reliable load 
predictions and efficiently optimise the short-term dispatch and unit commitment of the plant are 
presented. Extensive computational studies are described, and the effectiveness of the software 
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components is validated using one year of representative data; a typical configuration with low 
overheads and minimal impact on solution structure has been suggested. The obtained results are 
indicative that, when used in conjunction with open-source SCADA and timeseries database software, 
the proposed software components can enable a plant operator to assemble an integrated environment 
for decentralised CHP plant management at virtually no cost. The findings of a representative case study 
also suggest that this approach for CHP plant management can reduce the relative cost of acquiring 
energy, which translates into significant financial savings over the course of a year. The findings also 
suggest that future work should emphasise improvements to load predictions over that of model 
accuracy, as the former had a comparatively larger impact upon the economic costs than the latter. 
Future work in this area will concentrate upon further refinements to the components to increase 
performance and efficiency. 
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