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 Abstract—In this paper, processor speedup analysis is used to 
strengthen recent results regarding the sub-optimality of 
uniprocessor non-preemptive Earliest Deadline First (npEDF) 
scheduling. The sub-optimality of npEDF is defined as the 
minimum amount of increase in the processor speed that is 
needed to guarantee the npEDF schedulability of any feasible 
task set. We show that any preemptively schedulable task set that 
is not schedulable by npEDF will become schedulable on a 
processor speeded up by a factor of not more than one plus the 
value of the largest execution requirement divided by the shortest 
relative deadline of any task. This reduces the pessimism 
compared to the best previous bound by factor of at least two. In 
addition, for the case of non-preemptive Fixed Priority 
scheduling, we also show that twice this speedup bound is enough 
to guarantee the schedulability of any feasible task set.  
 

Index Terms—Non-preemptive scheduling, processor speedup 
factor, resource augmentation, scheduling, sub-optimality. 

I. INTRODUCTION 
UB-OPTIMALITY refers to the quantification of the 
capability of a non-optimal algorithm to successfully 

schedule feasible task sets. A task set is said to be feasible if it 
can be scheduled by an optimal scheduling algorithm. For 
uniprocessor scheduling, preemptive EDF is known to be 
optimal while preemptive Fixed Priority (FP) and non-
preemptive scheduling schemes are not optimal [1][2]. It was 
shown in [3] and [4] that non-idling, non-preemptive EDF 
(npEDF) is optimal among non-preemptive uniprocessor 
scheduling algorithms for sporadic task systems or periodic 
task systems without specified start times. This is in the sense 
that npEDF can schedule any such task set for which a non-
idling, non-preemptive schedule exists. If inserted idle-time is 
allowed and the tasks are periodic with specified start times, 
the exact scheduling problem is strongly NP-hard [3][4]. In 
this paper, like previous work, we do not consider the exact 
analysis of these latter task systems. In previous works 
resource augmentations, specifically processor speedup 
measures have been proposed in order to quantify the sub-
optimality of non-optimal scheduling algorithms. Quantifying 
the sub-optimality of FP scheduling was first investigated in 
[1] and [2], which showed that any feasible implicit deadline 
task set is also schedulable by FP if the speed of the processor 
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is increased by factor of not more than 1.44270. This work 
was extended for constrained deadline task sets, and a speedup 
factor not more than 1.76322 was found to be required [5]. For 
arbitrary deadline task sets, it was shown that 2 is the upper 
bound on the processor speedup factor needed to guarantee 
schedulability with FP [6]. Quantifying the sub-optimality of 
non-preemptive Fixed Priority (npFP) scheduling was 
investigated in [7]. It was shown that 2 is the upper bound of 
the processor speedup factor needed to guarantee that any 
npEDF schedulable task set is also npFP schedulable [7]. 
Recently, Thekkilakattil et al. [8][9] quantified the sub-
optimality of npEDF scheduling compared to EDF; any 
preemptively schedulable task set is also schedulable by 
npEDF with a processor speed not more than (4	ܿ௠௔௫ ݀௠௜௡⁄ ) 
times faster, where ܿ௠௔௫ represents the largest execution 
requirement of the task set and ݀௠௜௡	is the shortest relative 
deadline. However, it was later shown that this bound does not 
hold in the general case; a corrected representation was 
subsequently presented in [10] and given by: 

																														ܵ =
۔ۖۖەۖۖ
ۓ 8																 ∶ 														 ݀௠௜௡ܿ௠௔௫ ≥ 24																	 ∶ 						1 ≤ ݀௠௜௡ܿ௠௔௫ < 24 ܿ௠௔௫݀௠௜௡ 							 ∶ 						0 < ݀௠௜௡ܿ௠௔௫ < 1ۙۘۖۖ

ۖۗۖ																										 
Where S is the bound on the speedup factor. In this paper, a 

tighter upper bound on the processor speedup factor needed to 
guarantee npEDF schedulability of any feasible task set is 
introduced. This upper bound is simple in form and valid for 
periodic and sporadic task sets with arbitrary deadlines. 
Furthermore we show that this bound - along with the bound 
presented in [7] - can be used to quantify the sub-optimality of 
npFP scheduling with respect to EDF, again with a very 
simple expression.  

The remainder of the paper is organized as follows. Section 
II describes the system model and the key previous results of 
npEDF schedulability analysis. Section III presents the main 
contributions of the paper, the processor speedup algorithm 
and the upper bound of the processor speedup factor for 
npEDF scheduling. Conclusions are given in section IV. 

II. SCHEDULABILITY ANALYSIS OF NON-PREEMPTIVE EDF 
In this section, the previous work on the non-idling npEDF 

schedulability analysis of uniprocessor real-time task sets is 
described. The processor speed is denoted by ܵ and included 
throughout this analysis; it must be noted that in many 
previous works, the speed was not explicitly considered as a 
unit-speed processor was implicitly assumed (S = 1). 
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A. System Model  
It is assumed that the system is implemented on a single-

processor platform and the application software consists of a 
set ܶ of ݊ real-time periodic/sporadic tasks. Each task in this 
set is parameterized as		߬௜ = ,௜݌) ܿ௜ௌ, ݀௜), in which ݌௜	represents 
the period of periodic tasks (or equivalently, the minimum 
inter-arrival separation of sporadic tasks), ܿ௜ௌ	represents the 
worst-case computation requirement of the task when 
executed on a processor with speed S>0, and		݀௜ is the task 
relative deadline. It is assumed that pi and di are both positive; 
however there is no restriction on the relation between the 
period and the relative deadline of each task; the latter may be 
smaller than, equal to or larger than the former. Note that the 
task computation time is assumed inversely proportional to the 
processor speed S, and a linear relationship is assumed. Task 
periods and deadlines remain unaffected by the processor 
speed as they are related to an external time reference. 

B. Schedulability Analysis 
Let the processor utilization of the task set at a processor 

speed ܵ	is defined as ܷ௦and given by	ܷ௦ = ∑ ௜ܷ௦௡௜ୀଵ , where ௜ܷ௦ 
represents the utilization of a task ߬௜	executing on a processor 

at speed	ܵ. Hence		 ௜ܷ௦ = ௖೔ೞ௣೔. Following the worst-case arrival 

pattern of all tasks at t =0 (synchronous), the worst-case 
computational demand placed on the CPU by the task set 
during a time interval [0,  can be	at a processor speed ܵ (ݐ
denoted as ℎ௦(ݐ) and given by [9][11][13]: 																						ℎ௦(ݐ) 	= 	෍max ൜0,1 + ඌݐ − ݀௜݌௜ ඐൠ . ܿ௜௦௡

௜ୀଵ 																											(1) 
Let the worst-case blocking due to non-preemption during 

the time interval [0, (ݐ)ܾ௦																																															 and given by [12] [13]: (ݐ)at a processor speed ܵ be denoted as ܾ௦	(ݐ = maxௗೕவ௧൛ ௝ܿ௦ൟ																																									(2) 
Based upon results of [8][9][12] a task set with arbitrary 

deadlines is schedulable under non-idling npEDF at processor 
speed ܵ	if and only if		ܷ௦ ≤ 1 and: 																										ℎ௦(ݐ) + ܾ௦(ݐ) ≤ ,ݐ∀			,ݐ ݀௠௜௡ ≤ ݐ <  (3)																								ܮ

Where ܮ		is the end point of a sufficiently long testing 
interval and is finite when ܷଵ ≤ 1 when considering speedup 
factors S ≥ 1. dmin is the smallest relative deadline among the 
tasks. Note that the schedulability conditions captured in (1), 
(2) and (3) are simple extensions of standard, known results to 
explicitly model the speedup factor S [8-13]. Various methods 
are known to bound L based upon the parameters of the task 
set, [13] provides a good discussion. In this paper, an 
adaptation of the bound derived for preemptive EDF 
scheduling in [14] is employed, with a trivial extension to 
include the effects of blocking: ܮ = max ቊ(݀ଵ − ,(ଵ݌ … , (݀௡ − ,	(௡݌ ܿ௠௔௫௦ + ∑ ௜݌) − ݀௜) ௜ܷ௦௡௜ୀଵ(1 − ܷ௦) ቋ		(4) 

Although all absolute deadlines in the interval [݀௠௜௡,  (ܮ
potentially need to be checked, the ‘QPA’ algorithm described 
in [14] can be employed to significantly reduce the number of 
deadlines to be evaluated in the average case.  

III. QUANTIFYING THE SUB-OPTIMALITY OF NON-PREEMPTIVE 
EDF SCHEDULING 

In this section, we derive an upper bound on the processor 
speedup factor required to guarantee npEDF scheduling of 
unit-speed feasible task sets. This bound is valid for sporadic 
and periodic task sets with implicit, constrained, and arbitrary 
deadlines. We start with a general result: 
Theorem 1: The processor speed ܵ that guarantees the non-
idling npEDF schedulability of any task set is given by: 																															ܵ = 	 maxௗ೘೔೙ஸ௧ழ௅ ቊℎଵ(ݐ) + ܾଵ(ݐ)ݐ ቋ																																(5) 
Where, ℎଵ(ݐ)	and	ܾଵ(ݐ) are the processor demand (1) and 
worst-case blocking (2) at unit processor speed (S =1). 
Proof: Let us assume that the task set is initially executing on 
a processor of unit-speed (݅. ݁.		ܵ = 1) and that the execution 
requirements of each task in the set ܶ	scale linearly with the 
processor speed. In this case, we have that: 																																									ܿ௜௦ = ܿ௜ଵܵ , ∀݅, 0 < ݅ ≤ ݊																													(6) 

The task set under npEDF on the processor speed S = 1 is 
deemed not schedulable if at any time ݐ	during a time interval [݀௠௜௡,  the processor demand function plus worst-case (ܮ
blocking exceeds the value of		:ݐ 																																															ݐ	 < 	 ℎଵ(ݐ) + ܾଵ(ݐ)																																					(7) 

In order to guarantee the schedulability of the task set, the 
right hand side of (7) should be decreased below		ݐ, which can 
be achieved by increasing the processor speed. From (6) we 
see that at speed S the task set is schedulable if: 																								ݐ ≥ ℎଵ(ݐ) + ܾଵ(ݐ)ܵ 		 , ,	ݐ∀		 ݀௠௜௡ ≤ 	ݐ <  (8)																					ܮ
Rearranging this condition in terms of S gives: 																												ܵ	 ≥ ℎଵ(ݐ) + ܾଵ(ݐ)ݐ 	 , ,	ݐ∀		 ݀௠௜௡ ≤ 	ݐ <  (9)																		ܮ
Taking the maximum over all t in the test interval gives the 
required result: 																												ܵ = maxௗ೘೔೙ஸ௧ழ௅ ቊℎଵ(ݐ) + ܾଵ(ݐ)ݐ ቋ 																															█ 

Thus, if ܵ ≤ 1	then the task set is schedulable without pre-
emption on a unit-speed processor. A value of 	ܵ > 1	occurs 
when a deadline is missed (i.e.	ℎଵ(ݐ) + ܾଵ(ݐ) >  Therefore .(ݐ
the above theorem can be used to state the non-preemptive 
schedulability of the task set. Consequently, we derive an 
upper bound on the processor speedup factor required to 
guarantee the schedulability of a feasible task set for npEDF 
scheduling. A similar approach to that employed in [8][9][10] 
is taken, however a tighter bound is achieved. 
Theorem 2: The processor speedup factor S that is needed to 
guarantee the schedulability of any feasible task set with 
arbitrary deadlines under npEDF scheduling is upper-bounded 
by the quantity: 																																																	ܵ	≤	1 + ܿ௠௔௫݀௠௜௡ 																																										(10) 
Proof: In order to ensure the non-preemptive schedulability of 
any unit-speed feasible task set, the speed S must be set such 
that the slack time t – hS(t) must be at least as big as the non-
preemptive blocking bS(t) for all values of t >= dmin. Since 
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hS(t)=h1(t)/S and bS(t)=b1(t)/S this can be expressed as the 
condition below: 																								∀ݐ	, ݀௠௜௡ ≤ ݐ < ;ܮ ݐ		 − ℎଵ(ݐ)ܵ  ≥ ܾଵ(ݐ)ܵ 																				(11) 
Solving for S gives: 																									∀ݐ	, ݀௠௜௡ ≤ ݐ < ;ܮ 	ܵ ≥ 	ℎଵ(ݐ) + ܾଵ(ݐ)ݐ 																					(12) 

As the task set is assumed to be feasible, the maximum 
value of the processor demand at unit-speed 	ℎଵ(ݐ) is equal 
to		ݐ. In addition, it follows from (2) that the maximum value 
of ܾଵ(ݐ)	is		ܿ௠௔௫ଵ . Substituting this information into (12): 																																					ܵ ≥ 	 ݐ + ܿ௠௔௫ଵݐ = 	1 + ܿ௠௔௫ଵݐ 																														(13) 

Maximizing the right hand side of (13) over t, subject 
to	ݐ ∈ [݀௠௜௡,  results in setting t to the shortest task relative (ܮ
deadline dmin. Substituting t = dmin into (13) gives the upper 
bound on the required S which completes the proof.    ■ 

The value of the bound on S is plotted in Fig. 1. As seen 
from equation (10) and Fig. 1, this bound dramatically 
increases as dmin goes below cmax and approaches to one as the 
value of dmin becomes greater than cmax. If time is restricted to 
be discrete and task parameters are taken to be integer (as is 
often the case), then limits in the value of the bound 	can be 
obtained independently of dmin. From equation (10) the 
maximum value of S is at the minimum value of dmin. 
Assuming discrete time, the minimum dmin is one; the blocking 
factor can also be reduced to cmax-1 [13]. Using this 
information in (10), we get the upper limit	ܵ	≤	ܿ݉ܽݔ. For the 
lower limit on S it is well known that any feasible task set 
having cmax = 1 can be scheduled non-preemptively without the 
need to speed up the processor, hence trivially	ܵ	≥	1. 

 
Fig. 1.  Upper bound of the processor speedup. 

Next, we show that the bound in (10) is tighter than the 
previous one presented in [8] [9] [10]. We prove this by 
showing that the limits of this bound is less than the bound 
presented in [10]. This is done by evaluating the limits of (10) 
for the same three extreme cases considered in [8], [9] and 
[10]. Proceeding: 
CASE 1: The speed S that guarantees npEDF schedulability of 
any feasible task set is upper-bounded by 1.5 if		ௗ೘೔೙ୡౣ౗౮భ ≥ 2. 

Proof: Evaluating the limits of (10) at	݀௠௜௡ = 2ܿ௠௔௫ଵ , we get: 																												ܵ ≤ 	1 + ܿ௠௔௫ଵ݀݉ ݅݊ = 1 +	 ܿ௠௔௫ଵ2ܿ௠௔௫ଵ = 1.5																									(14) 
According to the equation (10) and as seen from (14) the value 

of S decreases as the value of dmin increases, i.e. S is less than 
1.5 if	݀௠௜௡ > 2ܿ௠௔௫ଵ , hence the value of S is bounded by 1.5 
if		ௗ೘೔೙௖೘ೌೣభ ≥ 2.                             ■ 

CASE 2: The speed S that guarantees npEDF schedulability of 
any feasible task set is upper-bounded by 2, if	1 ≤ ௗ೘೔೙ୡౣ౗౮భ < 2. 

Proof: Evaluating the lower limit of this case, i.e. 
when	ܿ௠௔௫ଵ = dmin, we get: 																											ܵ ≤ 	1 + ܿ௠௔௫ଵ݀݉ ݅݊ = 1 +			ܿ௠௔௫ଵܿ௠௔௫ଵ = 2																														(15) 
Clearly the bound is linearly decreasing for increasing dmin. At 
the upper limit of this case, i.e. when	ܿ௠௔௫ଵ = 2dmin, CASE 1 
has shown that S ≤ 1.5 Accordingly 2 is a valid upper-bound 
for S when	1 ≤ ௗ೘೔೙ୡౣ౗౮భ < 2.                 ■                     

CASE 3: The speed S that guarantees npEDF schedulability of 
any feasible task set is upper-bounded by	ଶ	ୡౣ౗౮భௗ೘೔೙ , if 0< ௗ೘೔೙ୡౣ౗౮భ <1. 
Proof: In this case		݀௠௜௡ < ܿ௠௔௫ଵ , and supposing the processor 
speed has been increased to		ܵᇱ = ௖೘ೌೣభௗ೘೔೙, then the value 

of	ܿ௠௔௫ௌᇱ = ௖೘ೌೣభௌᇲ = ݀௠௜௡. According to CASE 2 the upper 
bound on the processor speed will then be 2 (as now 
dmin=cmax). Since the processor speed has been already 
increased by	௖೘ೌೣభௗ೘೔೙, the upper bound on the actual speed ܵ 

is		ଶ	௖೘ೌೣభௗ೘೔೙ .                      ■ 

Based on these three cases the upper bound of the processor 
speedup factor can also be presented in the form given in [10]: 

																					ܵ =
۔ۖۖەۖۖ
ۓ 1.5														 ∶ 															 ݀௠௜௡ܿ௠௔௫ ≥ 22																			 ∶ 								1 ≤ ݀௠௜௡ܿ௠௔௫ < 22 ܿ௠௔௫݀௠௜௡ 											 ∶ 								0 < ݀௠௜௡ܿ௠௔௫ < 1ۙۘۖۖ

ۖۗۖ 																		(16) 
Comparing this bound with the previous, one observes that 

each case is tighter by at least a two-fold factor. Fig. 2 shows a 
comparison between both bounds as the ratio dmin/cmax 
increases. The improvement in the current bound is due to the 
observation that both the processor demand and the worst-case 
blocking due to non-preemption can be scaled with the 
processor speed, as when the processor speed 
increases/decreases, the execution time of all tasks is assumed 
to decrease/increase in proportion - including that of the task 
with the index satisfying the worst-case blocking function (2). 

 
Fig. 2.  Previous and new upper-bounds of the processor speedup. 
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Theorem 2 can also be used to drive a useful upper bound 
on the required processor speedup if all deadlines of the task 
set are implicit (i.e. ݀௜ = ,	௜݌ ∀݅	, 0 < ݅ ≤ ݊). 
Theorem 3: The minimum processor speedup factor needed 
to guarantee the schedulability of a feasible implicit deadline 
task set under npEDF scheduling is upper-bounded by: 																																																	ܵ ≤ ܷଵ + ܿ௠௔௫ଵ݀݉ ݅݊ 																																								(17) 
Proof: Applying the same arguments as in Theorem 2, the 
speed S which guarantees schedulability satisfies the 
conditions of (12). For feasible implicit deadline task sets, the 
maximum value of the processor demand at unit-speed is 
bounded by the utilization factor, i.e.	ℎଵ(ݐ)	≤	ܷଵݐ. Substituting 
this in (12) along with	ܾଵ(ݐ)	≤	ܿ௠௔௫ଵ : 																																	ܵ ≥ ܷଵ. ݐ + ݐ1ݔܽ݉ܿ	 = ܷଵ + ݐ1ݔܽ݉ܿ	 																								(18) 
As before, maximizing the right hand side of (18) over t 
subject to	ݐ ∈ [݀௠௜௡,  gives the upper bound on the required (ܮ
speedup S: 																																												ܵ ≤ ܷଵ + ܿ௠௔௫ଵ݀௠௜௡ 																																													(19) 

■ 
The effect of utilization in the case of an implicit-deadline 

task set is illustrated in the above, in that if the unit-speed 
CPU utilization is lowered without altering the key task 
parameters c1

max and d1
min, the required speedup factor may be 

reduced. The above theorems can also be used, along with key 
previous results, to determine simple upper bounds on the 
processor speedup factor required for npFP. 
Corollary 1: The minimum processor speedup factor that is 
needed to guarantee the schedulability of a feasible arbitrary 
deadline task set under npFP with optimal priority assignment 
is upper-bounded by: 																																																		ܵ	≤	2 + 2ܿ௠௔௫݀௠௜௡ 																																								(20) 
Proof: It has been shown in [7] that the minimum amount of 
the processor speedup factor needed to guarantee npFP 
scheduling (with an optimal priority assignment [15]) of any 
npEDF schedulable task set is not more than 2. Suppose that ௡݂௣ is defined as the upper bound of the processor speedup of 
npEDF and is given as in equation (10).  

Elaborating in the result of theorem 2, any task set which is 
schedulable by EDF is also schedulable by npEDF if the 
processor speed has been increased by	 ௡݂௣, and based on [7] 
any task set schedulable by npEDF is also schedulable by 
npFP if the processor speed has been increased by 2. 
Accordingly the upper bound of the processor speedup factor 
which is needed to guarantee the schedulability of a feasible 
task set under npFP is given as: 																																																		ܵ = 	2	 ௡݂௣																																																	(21) 

Substituting the value of ௡݂௣ from equation (10) in the 
equation above completes the proof.                                       ■ 

IV. CONCLUSION 
In this paper, resource augmentation measures have been 

used to evaluate the upper bound on the required processor 
speedup factor needed to guarantee npEDF scheduling of 
arbitrary deadline feasible task sets. We have shown that the 
processor speedup factor is not more than	1 + ௖೘ೌೣௗ೘೔೙. It has 

been proven that this bound is tighter than the previous one 
which is presented in [10] and also has a simpler form. For 
implicit deadline task sets a potentially tighter bound was also 
obtained. We also derived a simple but useful expression 
which quantifies the sub-optimality of npFP scheduling for 
feasible task sets having an optimal priority assignment. 
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