
IEEE EMBEDDED SYSTEM LETTERS, 2015.

1

 Abstract—In this paper, processor speedup analysis is used to
strengthen recent results regarding the sub-optimality of
uniprocessor non-preemptive Earliest Deadline First (npEDF)
scheduling. The sub-optimality of npEDF is defined as the
minimum amount of increase in the processor speed that is
needed to guarantee the npEDF schedulability of any feasible
task set. We show that any preemptively schedulable task set that
is not schedulable by npEDF will become schedulable on a
processor speeded up by a factor of not more than one plus the
value of the largest execution requirement divided by the shortest
relative deadline of any task. This reduces the pessimism
compared to the best previous bound by factor of at least two. In
addition, for the case of non-preemptive Fixed Priority
scheduling, we also show that twice this speedup bound is enough
to guarantee the schedulability of any feasible task set.

Index Terms—Non-preemptive scheduling, processor speedup
factor, resource augmentation, scheduling, sub-optimality.

I. INTRODUCTION
UB-OPTIMALITY refers to the quantification of the
capability of a non-optimal algorithm to successfully

schedule feasible task sets. A task set is said to be feasible if it
can be scheduled by an optimal scheduling algorithm. For
uniprocessor scheduling, preemptive EDF is known to be
optimal while preemptive Fixed Priority (FP) and non-
preemptive scheduling schemes are not optimal [1][2]. It was
shown in [3] and [4] that non-idling, non-preemptive EDF
(npEDF) is optimal among non-preemptive uniprocessor
scheduling algorithms for sporadic task systems or periodic
task systems without specified start times. This is in the sense
that npEDF can schedule any such task set for which a non-
idling, non-preemptive schedule exists. If inserted idle-time is
allowed and the tasks are periodic with specified start times,
the exact scheduling problem is strongly NP-hard [3][4]. In
this paper, like previous work, we do not consider the exact
analysis of these latter task systems. In previous works
resource augmentations, specifically processor speedup
measures have been proposed in order to quantify the sub-
optimality of non-optimal scheduling algorithms. Quantifying
the sub-optimality of FP scheduling was first investigated in
[1] and [2], which showed that any feasible implicit deadline
task set is also schedulable by FP if the speed of the processor

Manuscript received December 16, 2014; accepted April 7, 2015. Date of
publication 00/00/0000; date of current version 00/00/0000. This manuscript
was recommended for publication by

The authors are with the Electronics and Control Group, Teesside
University, Middlesbrough, UK (e-mail: f.abugchem@tees.ac.uk;
m.short@tees.ac.uk; d.xu@tees.ac.uk)

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LES.2015.

is increased by factor of not more than 1.44270. This work
was extended for constrained deadline task sets, and a speedup
factor not more than 1.76322 was found to be required [5]. For
arbitrary deadline task sets, it was shown that 2 is the upper
bound on the processor speedup factor needed to guarantee
schedulability with FP [6]. Quantifying the sub-optimality of
non-preemptive Fixed Priority (npFP) scheduling was
investigated in [7]. It was shown that 2 is the upper bound of
the processor speedup factor needed to guarantee that any
npEDF schedulable task set is also npFP schedulable [7].
Recently, Thekkilakattil et al. [8][9] quantified the sub-
optimality of npEDF scheduling compared to EDF; any
preemptively schedulable task set is also schedulable by
npEDF with a processor speed not more than (4	ܿ௠௔௫ ݀௠௜௡⁄)
times faster, where ܿ௠௔௫ represents the largest execution
requirement of the task set and ݀௠௜௡	is the shortest relative
deadline. However, it was later shown that this bound does not
hold in the general case; a corrected representation was
subsequently presented in [10] and given by:

																														ܵ =
۔ۖۖەۖۖ
ۓ 8																 ∶ 														 ݀௠௜௡ܿ௠௔௫ ≥ 24																	 ∶ 						1 ≤ ݀௠௜௡ܿ௠௔௫ < 24 ܿ௠௔௫݀௠௜௡ 							 ∶ 						0 < ݀௠௜௡ܿ௠௔௫ < 1ۙۘۖۖ

ۖۗۖ																										
Where S is the bound on the speedup factor. In this paper, a

tighter upper bound on the processor speedup factor needed to
guarantee npEDF schedulability of any feasible task set is
introduced. This upper bound is simple in form and valid for
periodic and sporadic task sets with arbitrary deadlines.
Furthermore we show that this bound - along with the bound
presented in [7] - can be used to quantify the sub-optimality of
npFP scheduling with respect to EDF, again with a very
simple expression.

The remainder of the paper is organized as follows. Section
II describes the system model and the key previous results of
npEDF schedulability analysis. Section III presents the main
contributions of the paper, the processor speedup algorithm
and the upper bound of the processor speedup factor for
npEDF scheduling. Conclusions are given in section IV.

II. SCHEDULABILITY ANALYSIS OF NON-PREEMPTIVE EDF
In this section, the previous work on the non-idling npEDF

schedulability analysis of uniprocessor real-time task sets is
described. The processor speed is denoted by ܵ and included
throughout this analysis; it must be noted that in many
previous works, the speed was not explicitly considered as a
unit-speed processor was implicitly assumed (S = 1).

A note on the sub-optimality of non-preemptive
real-time scheduling

 Fathi Abugchem, Michael Short, and Donglai Xu

S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322328533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE EMBEDDED SYSTEM LETTERS, 2015.

2

A. System Model
It is assumed that the system is implemented on a single-

processor platform and the application software consists of a
set ܶ of ݊ real-time periodic/sporadic tasks. Each task in this
set is parameterized as		߬௜ = ,௜݌) ܿ௜ௌ, ݀௜), in which ݌௜	represents
the period of periodic tasks (or equivalently, the minimum
inter-arrival separation of sporadic tasks), ܿ௜ௌ	represents the
worst-case computation requirement of the task when
executed on a processor with speed S>0, and		݀௜ is the task
relative deadline. It is assumed that pi and di are both positive;
however there is no restriction on the relation between the
period and the relative deadline of each task; the latter may be
smaller than, equal to or larger than the former. Note that the
task computation time is assumed inversely proportional to the
processor speed S, and a linear relationship is assumed. Task
periods and deadlines remain unaffected by the processor
speed as they are related to an external time reference.

B. Schedulability Analysis
Let the processor utilization of the task set at a processor

speed ܵ	is defined as ܷ௦and given by	ܷ௦ = ∑ ௜ܷ௦௡௜ୀଵ , where ௜ܷ௦
represents the utilization of a task ߬௜	executing on a processor

at speed	ܵ. Hence		 ௜ܷ௦ = ௖೔ೞ௣೔. Following the worst-case arrival

pattern of all tasks at t =0 (synchronous), the worst-case
computational demand placed on the CPU by the task set
during a time interval [0, can be	at a processor speed ܵ (ݐ
denoted as ℎ௦(ݐ) and given by [9][11][13]: 																						ℎ௦(ݐ) 	= 	෍max ൜0,1 + ඌݐ − ݀௜݌௜ ඐൠ . ܿ௜௦௡

௜ୀଵ 																											(1)
Let the worst-case blocking due to non-preemption during

the time interval [0, (ݐ)ܾ௦																																															 and given by [12] [13]: (ݐ)at a processor speed ܵ be denoted as ܾ௦	(ݐ = maxௗೕவ௧൛ ௝ܿ௦ൟ																																									(2)
Based upon results of [8][9][12] a task set with arbitrary

deadlines is schedulable under non-idling npEDF at processor
speed ܵ	if and only if		ܷ௦ ≤ 1 and: 																										ℎ௦(ݐ) + ܾ௦(ݐ) ≤ ,ݐ∀			,ݐ ݀௠௜௡ ≤ ݐ < (3)																								ܮ

Where ܮ		is the end point of a sufficiently long testing
interval and is finite when ܷଵ ≤ 1 when considering speedup
factors S ≥ 1. dmin is the smallest relative deadline among the
tasks. Note that the schedulability conditions captured in (1),
(2) and (3) are simple extensions of standard, known results to
explicitly model the speedup factor S [8-13]. Various methods
are known to bound L based upon the parameters of the task
set, [13] provides a good discussion. In this paper, an
adaptation of the bound derived for preemptive EDF
scheduling in [14] is employed, with a trivial extension to
include the effects of blocking: ܮ = max ቊ(݀ଵ − ,(ଵ݌ … , (݀௡ − ,	(௡݌ ܿ௠௔௫௦ + ∑ ௜݌) − ݀௜) ௜ܷ௦௡௜ୀଵ(1 − ܷ௦) ቋ		(4)

Although all absolute deadlines in the interval [݀௠௜௡, (ܮ
potentially need to be checked, the ‘QPA’ algorithm described
in [14] can be employed to significantly reduce the number of
deadlines to be evaluated in the average case.

III. QUANTIFYING THE SUB-OPTIMALITY OF NON-PREEMPTIVE
EDF SCHEDULING

In this section, we derive an upper bound on the processor
speedup factor required to guarantee npEDF scheduling of
unit-speed feasible task sets. This bound is valid for sporadic
and periodic task sets with implicit, constrained, and arbitrary
deadlines. We start with a general result:
Theorem 1: The processor speed ܵ that guarantees the non-
idling npEDF schedulability of any task set is given by: 																															ܵ = 	 maxௗ೘೔೙ஸ௧ழ௅ ቊℎଵ(ݐ) + ܾଵ(ݐ)ݐ ቋ																																(5)
Where, ℎଵ(ݐ)	and	ܾଵ(ݐ) are the processor demand (1) and
worst-case blocking (2) at unit processor speed (S =1).
Proof: Let us assume that the task set is initially executing on
a processor of unit-speed (݅. ݁.		ܵ = 1) and that the execution
requirements of each task in the set ܶ	scale linearly with the
processor speed. In this case, we have that: 																																									ܿ௜௦ = ܿ௜ଵܵ , ∀݅, 0 < ݅ ≤ ݊																													(6)

The task set under npEDF on the processor speed S = 1 is
deemed not schedulable if at any time ݐ	during a time interval [݀௠௜௡, the processor demand function plus worst-case (ܮ
blocking exceeds the value of		:ݐ 																																															ݐ	 < 	 ℎଵ(ݐ) + ܾଵ(ݐ)																																					(7)

In order to guarantee the schedulability of the task set, the
right hand side of (7) should be decreased below		ݐ, which can
be achieved by increasing the processor speed. From (6) we
see that at speed S the task set is schedulable if: 																								ݐ ≥ ℎଵ(ݐ) + ܾଵ(ݐ)ܵ 		 , ,	ݐ∀		 ݀௠௜௡ ≤ 	ݐ < (8)																					ܮ
Rearranging this condition in terms of S gives: 																												ܵ	 ≥ ℎଵ(ݐ) + ܾଵ(ݐ)ݐ 	 , ,	ݐ∀		 ݀௠௜௡ ≤ 	ݐ < (9)																		ܮ
Taking the maximum over all t in the test interval gives the
required result: 																												ܵ = maxௗ೘೔೙ஸ௧ழ௅ ቊℎଵ(ݐ) + ܾଵ(ݐ)ݐ ቋ 																															█

Thus, if ܵ ≤ 1	then the task set is schedulable without pre-
emption on a unit-speed processor. A value of 	ܵ > 1	occurs
when a deadline is missed (i.e.	ℎଵ(ݐ) + ܾଵ(ݐ) > Therefore .(ݐ
the above theorem can be used to state the non-preemptive
schedulability of the task set. Consequently, we derive an
upper bound on the processor speedup factor required to
guarantee the schedulability of a feasible task set for npEDF
scheduling. A similar approach to that employed in [8][9][10]
is taken, however a tighter bound is achieved.
Theorem 2: The processor speedup factor S that is needed to
guarantee the schedulability of any feasible task set with
arbitrary deadlines under npEDF scheduling is upper-bounded
by the quantity: 																																																	ܵ	≤	1 + ܿ௠௔௫݀௠௜௡ 																																										(10)
Proof: In order to ensure the non-preemptive schedulability of
any unit-speed feasible task set, the speed S must be set such
that the slack time t – hS(t) must be at least as big as the non-
preemptive blocking bS(t) for all values of t >= dmin. Since

IEEE EMBEDDED SYSTEM LETTERS, 2015.

3

hS(t)=h1(t)/S and bS(t)=b1(t)/S this can be expressed as the
condition below: 																								∀ݐ	, ݀௠௜௡ ≤ ݐ < ;ܮ ݐ		 − ℎଵ(ݐ)ܵ ≥ ܾଵ(ݐ)ܵ 																				(11)
Solving for S gives: 																									∀ݐ	, ݀௠௜௡ ≤ ݐ < ;ܮ 	ܵ ≥ 	ℎଵ(ݐ) + ܾଵ(ݐ)ݐ 																					(12)

As the task set is assumed to be feasible, the maximum
value of the processor demand at unit-speed 	ℎଵ(ݐ) is equal
to		ݐ. In addition, it follows from (2) that the maximum value
of ܾଵ(ݐ)	is		ܿ௠௔௫ଵ . Substituting this information into (12): 																																					ܵ ≥ 	 ݐ + ܿ௠௔௫ଵݐ = 	1 + ܿ௠௔௫ଵݐ 																														(13)

Maximizing the right hand side of (13) over t, subject
to	ݐ ∈ [݀௠௜௡, results in setting t to the shortest task relative (ܮ
deadline dmin. Substituting t = dmin into (13) gives the upper
bound on the required S which completes the proof. ■

The value of the bound on S is plotted in Fig. 1. As seen
from equation (10) and Fig. 1, this bound dramatically
increases as dmin goes below cmax and approaches to one as the
value of dmin becomes greater than cmax. If time is restricted to
be discrete and task parameters are taken to be integer (as is
often the case), then limits in the value of the bound 	can be
obtained independently of dmin. From equation (10) the
maximum value of S is at the minimum value of dmin.
Assuming discrete time, the minimum dmin is one; the blocking
factor can also be reduced to cmax-1 [13]. Using this
information in (10), we get the upper limit	ܵ	≤	ܿ݉ܽݔ. For the
lower limit on S it is well known that any feasible task set
having cmax = 1 can be scheduled non-preemptively without the
need to speed up the processor, hence trivially	ܵ	≥	1.

Fig. 1. Upper bound of the processor speedup.

Next, we show that the bound in (10) is tighter than the
previous one presented in [8] [9] [10]. We prove this by
showing that the limits of this bound is less than the bound
presented in [10]. This is done by evaluating the limits of (10)
for the same three extreme cases considered in [8], [9] and
[10]. Proceeding:
CASE 1: The speed S that guarantees npEDF schedulability of
any feasible task set is upper-bounded by 1.5 if		ௗ೘೔೙ୡౣ౗౮భ ≥ 2.

Proof: Evaluating the limits of (10) at	݀௠௜௡ = 2ܿ௠௔௫ଵ , we get: 																												ܵ ≤ 	1 + ܿ௠௔௫ଵ݀݉ ݅݊ = 1 +	 ܿ௠௔௫ଵ2ܿ௠௔௫ଵ = 1.5																									(14)
According to the equation (10) and as seen from (14) the value

of S decreases as the value of dmin increases, i.e. S is less than
1.5 if	݀௠௜௡ > 2ܿ௠௔௫ଵ , hence the value of S is bounded by 1.5
if		ௗ೘೔೙௖೘ೌೣభ ≥ 2. ■

CASE 2: The speed S that guarantees npEDF schedulability of
any feasible task set is upper-bounded by 2, if	1 ≤ ௗ೘೔೙ୡౣ౗౮భ < 2.

Proof: Evaluating the lower limit of this case, i.e.
when	ܿ௠௔௫ଵ = dmin, we get: 																											ܵ ≤ 	1 + ܿ௠௔௫ଵ݀݉ ݅݊ = 1 +			ܿ௠௔௫ଵܿ௠௔௫ଵ = 2																														(15)
Clearly the bound is linearly decreasing for increasing dmin. At
the upper limit of this case, i.e. when	ܿ௠௔௫ଵ = 2dmin, CASE 1
has shown that S ≤ 1.5 Accordingly 2 is a valid upper-bound
for S when	1 ≤ ௗ೘೔೙ୡౣ౗౮భ < 2. ■

CASE 3: The speed S that guarantees npEDF schedulability of
any feasible task set is upper-bounded by	ଶ	ୡౣ౗౮భௗ೘೔೙ , if 0< ௗ೘೔೙ୡౣ౗౮భ <1.
Proof: In this case		݀௠௜௡ < ܿ௠௔௫ଵ , and supposing the processor
speed has been increased to		ܵᇱ = ௖೘ೌೣభௗ೘೔೙, then the value

of	ܿ௠௔௫ௌᇱ = ௖೘ೌೣభௌᇲ = ݀௠௜௡. According to CASE 2 the upper
bound on the processor speed will then be 2 (as now
dmin=cmax). Since the processor speed has been already
increased by	௖೘ೌೣభௗ೘೔೙, the upper bound on the actual speed ܵ

is		ଶ	௖೘ೌೣభௗ೘೔೙ . ■

Based on these three cases the upper bound of the processor
speedup factor can also be presented in the form given in [10]:

																					ܵ =
۔ۖۖەۖۖ
ۓ 1.5														 ∶ 															 ݀௠௜௡ܿ௠௔௫ ≥ 22																			 ∶ 								1 ≤ ݀௠௜௡ܿ௠௔௫ < 22 ܿ௠௔௫݀௠௜௡ 											 ∶ 								0 < ݀௠௜௡ܿ௠௔௫ < 1ۙۘۖۖ

ۖۗۖ 																		(16)
Comparing this bound with the previous, one observes that

each case is tighter by at least a two-fold factor. Fig. 2 shows a
comparison between both bounds as the ratio dmin/cmax
increases. The improvement in the current bound is due to the
observation that both the processor demand and the worst-case
blocking due to non-preemption can be scaled with the
processor speed, as when the processor speed
increases/decreases, the execution time of all tasks is assumed
to decrease/increase in proportion - including that of the task
with the index satisfying the worst-case blocking function (2).

Fig. 2. Previous and new upper-bounds of the processor speedup.

IEEE EMBEDDED SYSTEM LETTERS, 2015.

4

Theorem 2 can also be used to drive a useful upper bound
on the required processor speedup if all deadlines of the task
set are implicit (i.e. ݀௜ = ,	௜݌ ∀݅	, 0 < ݅ ≤ ݊).
Theorem 3: The minimum processor speedup factor needed
to guarantee the schedulability of a feasible implicit deadline
task set under npEDF scheduling is upper-bounded by: 																																																	ܵ ≤ ܷଵ + ܿ௠௔௫ଵ݀݉ ݅݊ 																																								(17)
Proof: Applying the same arguments as in Theorem 2, the
speed S which guarantees schedulability satisfies the
conditions of (12). For feasible implicit deadline task sets, the
maximum value of the processor demand at unit-speed is
bounded by the utilization factor, i.e.	ℎଵ(ݐ)	≤	ܷଵݐ. Substituting
this in (12) along with	ܾଵ(ݐ)	≤	ܿ௠௔௫ଵ : 																																	ܵ ≥ ܷଵ. ݐ + ݐ1ݔܽ݉ܿ	 = ܷଵ + ݐ1ݔܽ݉ܿ	 																								(18)
As before, maximizing the right hand side of (18) over t
subject to	ݐ ∈ [݀௠௜௡, gives the upper bound on the required (ܮ
speedup S: 																																												ܵ ≤ ܷଵ + ܿ௠௔௫ଵ݀௠௜௡ 																																													(19)

■
The effect of utilization in the case of an implicit-deadline

task set is illustrated in the above, in that if the unit-speed
CPU utilization is lowered without altering the key task
parameters c1

max and d1
min, the required speedup factor may be

reduced. The above theorems can also be used, along with key
previous results, to determine simple upper bounds on the
processor speedup factor required for npFP.
Corollary 1: The minimum processor speedup factor that is
needed to guarantee the schedulability of a feasible arbitrary
deadline task set under npFP with optimal priority assignment
is upper-bounded by: 																																																		ܵ	≤	2 + 2ܿ௠௔௫݀௠௜௡ 																																								(20)
Proof: It has been shown in [7] that the minimum amount of
the processor speedup factor needed to guarantee npFP
scheduling (with an optimal priority assignment [15]) of any
npEDF schedulable task set is not more than 2. Suppose that ௡݂௣ is defined as the upper bound of the processor speedup of
npEDF and is given as in equation (10).

Elaborating in the result of theorem 2, any task set which is
schedulable by EDF is also schedulable by npEDF if the
processor speed has been increased by	 ௡݂௣, and based on [7]
any task set schedulable by npEDF is also schedulable by
npFP if the processor speed has been increased by 2.
Accordingly the upper bound of the processor speedup factor
which is needed to guarantee the schedulability of a feasible
task set under npFP is given as: 																																																		ܵ = 	2	 ௡݂௣																																																	(21)

Substituting the value of ௡݂௣ from equation (10) in the
equation above completes the proof. ■

IV. CONCLUSION
In this paper, resource augmentation measures have been

used to evaluate the upper bound on the required processor
speedup factor needed to guarantee npEDF scheduling of
arbitrary deadline feasible task sets. We have shown that the
processor speedup factor is not more than	1 + ௖೘ೌೣௗ೘೔೙. It has

been proven that this bound is tighter than the previous one
which is presented in [10] and also has a simpler form. For
implicit deadline task sets a potentially tighter bound was also
obtained. We also derived a simple but useful expression
which quantifies the sub-optimality of npFP scheduling for
feasible task sets having an optimal priority assignment.

REFERENCES
[1] C.L Liu and J. W. Layland, ‘‘Scheduling Algorithm for

Multiprogramming in a Hard Real-Time Environment,’’ J. ACM, vol.
20, no. 1, pp. 40-61, 1973.

[2] M.L. Dertouzos ,‘‘Control Robotics: The Procedural Control of Physical
Processes,’’ Proc. Int Federation for Information Processing (IFIP)
Congress, pp. 807-813, 1974.

[3] K. Jeffay, D.F. Stanat and C.U. Martel, ‘‘On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks,’’ In Proceedings of the
IEEE Real-Time Systems Symposium, pp. 129-139, 1991.

[4] L. George, P. Muhlethaler, N. Rivierre, ‘‘Optimality and Non-
Preemptive Real-Time Scheduling Revisited’’ Rapport de Recherche
RR-2516, INRIA, Le Chesnay Cedex, France, 1995.

[5] R. I. Davis, T. Rothvoß, S. K. Baruah, A. Burns, ‘‘Exact Quantification
of the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive
Scheduling.’’ Real-Time Systems, vol. 43, no. 3, pp. 211-258, 2009.

[6] R. I. Davis, T. Rothvoß , S.K. Baruah, A. Burns, ‘‘Quantifying the Sub-
optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for
Sporadic Task sets with Arbitrary Deadlines,’’ In proceedings of Real-
Time and Network Systems (RTNS'09), pp. 23-31, 2009.

[7] R. Davis, L. George, P. Courbin, ‘‘Quantifying the Suboptimality of
Uniprocessor Fixed Priority Non-Pre-emptive Scheduling,’’ In 18th
International Conference on Real-Time and Network Systems, 2010.

[8] A. Thekkilakattil, “Resource Augmentation for Performance Guarantees
in Embedded Real-Time Systems,” PhD Thesis School of Innovation
Design and Engineering, Malardalen University Sweden, 2012.

[9] A. Thekkilakattil, R. Dobrin, S. Punnekkat, “Quantifying the Sub-
optimality of Non-preemptive Real-time Scheduling,’’ In: Proc. of 25th
Euromicro Conference on Real-Time Systems, Paris, France, 2013.

[10] A.Thekkilakattil, S. Baruah, R. Dobrin, and S. Punnekkat, “The Global
Limited Preemptive Earliest Deadline First Feasibility of Sporadic Real-
time Tasks”, In: Proceedings of the 26th Euromicro Conference on Real-
Time Systems (ECRTS), Madrid, Spain, 8-11 July 2014.

[11] S. K. Baruah, A. K. Mok, L. E. Rosier, “Preemptively Scheduling Hard-
Real-Time Sporadic Tasks on One Processor,’’ In Proc. RTSS, pp. 182-
190, 1990.

[12] L. George, N. Rivierre, M. Spuri, “Preemptive and Non-Preemptive
Real-Time UniProcessor Scheduling,’’ INRIA Research Report, No.
2966, September 1996.

[13] J. A. Stankovic, M. Spuri, K. Ramamritham, G. C. Buttazzo, “Deadline
Scheduling for Real-Time Systems: EDF and Related Algorithms,’’
Kluwer Academic Publishing, 1998.

[14] F. Zhang, A. Burns, “Schedulability Analysis for Real-Time Systems
with EDF Scheduling,’’ IEEE Transactions on Computers, Vol. 58, No.
9, pp. 1250-1258, 2009.

[15] N. C. Audsley “On priority assignment in fixed priority scheduling,’’
Information Processing Letters, 79(1): 39-44, May 2001.

