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1. INTRODUCTION 

When using Internet sites or intranet sites, most of us have experienced ‘information 

pain’ [Morville & Rosenfeld, 2006] in situations where the required information was 

hard or impossible to find, which sometimes can be just annoying and at other times 

can be the fundamental obstacle to complete a task.  A central factor contributing to 

this problem is poor design of information (in particular the organization and 

labeling of information elements, and navigation through the information structure).  

Indeed, Nielsen [2009] reports that the information architecture of websites is the 

most important remaining factor causing usability problems for site users. 
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1.1 Information architecture 

Information architecture is an important area of contemporary research [Jacob & 

Loehrlein, 2009] in psychology and computer science.  Although no single accepted 

definition exists, the main aim of information architecture is to provide effective 

access to relevant online information resources (usually delivered through a website).  

Information architecture focuses on systems for the organization, labeling and 

navigation of information [Morville & Rosenfeld, 2006] for the benefit of end-users 

who need to find and use information.  The role of an information architecture is to 

provide the design of information for building a website, but does not address 

information presentation in a site in terms of, for example, layout and the use of color 

and graphics. 

The success of online information systems will therefore to a large extent be 

positively influenced by the extent to which their information architectures support 

end-users in finding and using information.  This requirement demands a new 

research effort into information architecture, as online information systems are 

increasingly being used as a mechanism to enhance human task performance and are 

accessed by a variety of end-users; moreover, information architecture may influence 

users’ web navigation in different ways. 

Organization.  Exact organization schemes (e.g., alphabetical, chronological and 

geographical) are useful when users know exactly what they are looking for [e.g., 

name, date or geographical location; Rosenfeld & Morville, 2006] and can make an 

exact match between their goal (e.g., information need) and major headings or links.  

Otherwise and in most cases, ambiguous schemes [e.g., topic, task, audience and 

metaphor; Rosenfeld & Morville, 2006] can be useful.  In these schemes items are 

grouped in meaningful ways.  Organization by topic requires that items are arranged 

in a conceptual structure matching that of target users, so users can determine 

whether or to what extent particular items match their information need, based on 

the users’ conceptual structures.  Organization by task has a similar requirement, 

but now the procedural structure needs to match that of target users.  McDonald et 

al. [1990] give examples of creating a topic-based organization scheme from users’ 

conceptual structures and task-based organization scheme from users’ procedural 

structure in the same domain.  Organization structures include hierarchy (top-down) 

and database model (bottom-up) [Rosenfeld & Morville, 2006].  Because a top-down 

structure is deliberately designed, users’ success in finding information will depend 

on the extent to which the structure matches users’ conceptual structures.  A bottom-

up structure is not always visible in a website with this underlying structure.  

However, information items are tagged with controlled vocabulary metadata to 

support searching and browsing.  As a result, this approach is most useful when 

content is relatively homogeneous.  In this case, the challenge is to make sure that 

the metadata match the users’ semantic knowledge of the domain.  Note that 

organization concerns the grouping of content, irrespective of the exact language 

(labeling) that is used.  

Labeling.  All (linguistic) elements (e.g., headings, links) of an information 

architecture need to be labeled.  The requirement here is to make sure that labels 

match content that they represent are differentiated according to their content and 

are meaningful, all according to the users’ semantic knowledge.  Existing research 

[e.g., Blackmon et al., 2002] has examined how labeling of headings and links affects 

web navigation. 

Navigation.  Embedded navigation systems are integrated with website content.  

In a typical website, the global navigation system may be a set of links in the top 

menu bar of every web page in a site, giving direct access to major areas or functions 
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in a conceptual hierarchy.  The local navigation system may be a set of links in the 

left menu bar, with specific links depending on the choice made in the global 

navigation system, giving access to lower-order areas.  Contextual navigation system 

may consist of various links in the content area (below the top menu bar and to the 

right of the left menu bar), giving access to specific related content at the lowest level 

of the conceptual hierarchy.  These three navigation systems may reinforce the 

organization structure; therefore, as with organization structure, it is important that 

the conceptual structure represented by these systems matches the conceptual 

structure of target users.  Supplemental navigation systems reside outside content 

pages.  (Large) websites that lend themselves to hierarchically organization can 

benefit from a sitemap, showing this organization (typically at two or more levels) as 

a conceptual structure, which should match that of target users. For other websites 

an index can be appropriate, consisting of alphabetically presented keywords or 

phrases organized on only one or two levels.  An index can be effective for users who 

can exactly articulate their information need(s) in terms of the item(s) to find on a 

particular website.  Therefore, the design of an effective index requires an accurate 

description of information needs in terms that target users would use. 

Existing research using cognitive computational modeling in relation to 

information architecture has mostly focused on relatively small websites that may 

appear to lack realism in representing real-world sites that serve large populations of 

end-users.  In terms of the organization of information, research has focused on, for 

instance, the trade-off between depth (number of hierarchical levels of information) 

and breadth (number of information items per level) of information hierarchies 

without considering the most appropriate scheme for organizing the information (e.g., 

organization by time, place or a particular theme) to start with [e.g., Parush & 

Yuviler-Gavish, 2004].  Furthermore, the creation of comparable alternative 

organization schemes for the same information may have arguably led to artificial 

information hierarchies that may not generalize to information architectures in the 

real world.  Given the disparate and patchy nature of existing information-

architecture research and shortcomings reviewed above, our program of research set 

out to develop a body of knowledge about effective information architecture for large 

websites, with at least one hundred web pages, for end-users. 

1.2 Cognitive computational modeling for information architecture 

The use of established empirical psychological techniques for eliciting information 

structures, labeling schemes and navigation structures (e.g., card-sorting and rating) 

has been proposed to inform the information-architecture design of sites [e.g., 

Katsanos et al., 2008], but their use becomes unwieldy and impractical, and therefore 

does not scale up, for large information architectures.  Reasons for this are the 

immense cognitive complexity of the elicitation tasks (in the case of card-sorting) not 

matched by humans’ limited information-processing capacity and the massive 

amount of time humans would require to complete these tasks (both card-sorting and 

rating).  Therefore, cognitive computational techniques with a cognitive-psychological 

basis to mimic human capabilities to process the information contained in large 

websites should be explored to analyze and assist in the analysis and design of the 

information architecture of large websites.  For example, Latent Semantic Analysis 

(LSA) is an established machine-learning technique with a strong psychological basis, 

corroborated by the results of experiments in various areas of cognitive psychology 

[e.g., Landauer, 2007].  LSA analyzes large volumes of text.  Extracted text is 

represented in matrix format.  Singular value decomposition is first performed, 
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resulting in a more compact representation with hundreds rather than thousands of 

dimensions.  The condensed representation is then used to calculate the similarity 

between represented words, short texts (e.g., sentences and phrases) and whole texts, 

expressed as a cosine value.  For example, when words are very similar, their cosine 

value is close to 1, but when words are very dissimilar the value close to 0.  Existing 

research has addressed how redesigned information architecture for mainly 

relatively small sites based on psychological models, using LSA, can improve users’ 

performance on these sites [e.g., Blackmon et al., 2005]. 

Our research therefore uses cognitive computational techniques to aid in the 

analysis and design of information architectures for large websites.  The intended 

beneficial effect of the use of these techniques on users’ task performance is then 

tested.  The knowledge and guidelines produced by this research can help software 

developers to analyze and design websites that support end-users better in finding 

information. 

1.3 Current study 

In relation to cognitive computational modeling, Blackmon et al. [2002] distinguish 

two types of analysis: goal-specific and non-goal-specific.  The first involves the 

simulation of web navigation by users in pursuit of particular goals (“information 

about a users’ understanding of their tasks and underlying motivation”, p. 463).  The 

second involves the analysis of the familiarity of web page elements (e.g., headings 

and links), the distinctiveness of elements that need to be distinct in meaning (e.g., 

links under a particular heading need to be distinct) and of the similarity of elements 

that need to be similar in meaning (e.g., a link under a particular heading needs to be 

similar to the heading).  This paper focuses on goal-specific analysis, while other 

work addresses non-goal-specific analysis [e.g., Blackmon et al., 2002; Muzahir, 2013].  

This research builds on existing work on computational cognitive modeling of web 

navigation that focuses on labeling as a crucial element of information architecture 

[Blackmon et al., 2002, 2003, 2005; Van Oostendorp & Juvina, 2007].  Other work 

may address the organization system and navigation system as other elements of 

information architecture.  For example, research may study how human perception of 

semantic similarity is related to human comprehension of the structure/organization 

of the website [e.g. Resnick & Sanchez, 2004]. 

We favor a usability engineering approach to the application of models of web 

navigation, based on two related ideas: (1) perfect knowledge is neither possible nor 

necessary (any model is an imperfect representation) to create useful results [Cudeck 

& Henley, 2003; Nielsen, 1993] and (2) imperfect knowledge that can be used to make 

predictions for improving the outcomes of web navigation is sufficient.  The first aim 

of this paper is to provide automated cognitive computational goal-specific analysis of 

the information architecture of large websites, as a basis for improvement.  The 

second aim is to validate this analysis through experiments with end-users.  Novel 

aspects of this work include the automated analysis of large real-world websites with 

an enhanced web navigation model and, crucially, the separation of a website from 

its persistent representation through a database-oriented approach.  The paper is 

organized as follows.  Section 2 presents an enhanced model for goal-specific analysis 

and a novel implementation of the model.  In Sections 3 and 4 this implementation is 

applied to analyze two large websites and experiments are reported to validate the 

model results.  Section 5 provides a general discussion of this work and directions for 

future work. 
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2. ENHANCED GOAL-SPECIFIC ANALYSIS AND NOVEL IMPLEMENTATION 

2.1 Models of web navigation and the role of spatial ability 

According to Pirolli and Card [1999], users take into consideration the cost and value 

of choosing a particular action on a web page such as clicking on a link.  In doing so, 

they select an element having the highest value of information scent [Chi et al., 2000, 

p. 162]: “Foragers use these proximal cues (snippets; graphics) to assess the distal 

content (page at the other end of the link).  Information scent is the imperfect, 

subjective, perception of the value, cost, or access path of information sources 

obtained from proximal cues, such as Web links, or icons representing the content 

sources.”  More narrowly, information scent has been described as “the degree of 

semantic similarity between representative user goal statements [100-200 words] 

and heading/link texts on each web page” [Blackmon et al., 2002, p. 463]  Several 

cognitive models of web navigation have been developed [e.g., CoLiDeS, Kitajima et 

al., 2000, 2005; CoLiDeS+, Van Oostendorp & Juvina, 2007; SNIF-ACT, Fu & Pirolli, 

2007; and MESA, Miller & Remington, 2004; for a review see Katsanos et al., 2010], 

motivated by the concept of information scent. 

The two most important models of web navigation are SNIF-ACT and CoLiDeS.  A 

strength of SNIF-ACT is that its origins lie in information foraging theory and ACT-

R.   CoLiDeS and its successors has the advantage of the more faithful and detailed 

representation of human comprehension, including comprehension of the high-level 

organizational structure of a text according to Kintsch’s [1998] construction-

integration theory.  For example, the attention phase and the action selection phase 

in CoLiDeS are inspired by Kintsch’s construction phase and integration phase, 

respectively. 

Existing research on web navigation has established that spatial ability is an 

influential factor in web navigation.  For example, Juvina and Van Oostendorp [2006] 

theoretically argue and report empirical evidence for the idea that spatial ability is a 

strong positive predictor of task performance in web navigation.  Therefore, although 

the focus of the current research is on information architecture, spatial ability was 

studied as an additional factor in web navigation to allow for the main effects of both 

factors and their potential interaction effect to be analyzed. 

2.2 Limitations of existing models 

A limitation of models such as MESA and SNIF-ACT and, consequently, tools that 

are based on these models [e.g. CogTool; Teo & John, 2008] is the way they address 

the concept of information scent; when a semantic or literal match of the goal 

statement against individual elements is attempted, context (e.g., headings, in 

addition to links) and the history of links chosen is ignored.  However, research 

demonstrates that users’ navigation decisions take into consideration the relevance 

of links encountered in previous steps (navigation history), which help reaching the 

current page [Howes et al., 2002].  This limitation is addressed by the 

Comprehension based Linked model of Deliberate Search (CoLiDeS), taking into 

account both headings and links in web navigation [e.g., Kitajima et al., 2000], and 

CoLiDeS+, taking into account navigation history [e.g., Van Oostendorp & Juvina, 

2007]. 

According to CoLiDes, web navigation takes place in three steps.  In Step 1 (goal 

formation), a goal to meet a particular information need is formed.  In Step 2 

(attention phase), the current web page is parsed into subregions.  The action of 

attending to a subregion having the highest information scent (semantic similarity of 
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heading with goal statement) is selected.  In Step 3 (action-selection phase), elements 

in the selected subregion are elaborated.  A link is selected, having the highest 

information scent, and traversal to the linked page occurs.  Steps 2 and 3 are 

repeated on subsequent web pages until the desired information matching the goal 

statement is found on a page or the navigation process stops without success.  In 

CoLiDeS and CoLiDeS+, information scent is calculated as the LSA cosine, a 

measure of similarity between two texts (e.g., the goal statement and a link label). 

CoLiDeS+ addresses CoLiDeS’ limitation of not taking into account navigation 

history; CoLiDeS+ augments CoLiDeS with the concept of path adequacy, the 

semantic similarity between goal statement and link labels on a navigation path.  

Therefore, path adequacy represents the goal relevance of selected links on previous 

pages leading to the current page, whereas information scent captures goal relevance 

of elements on the current page.  According to CoLiDeS+, users take into account 

both information scent and path adequacy in selecting a link on the current page.  

CoLiDeS+ accounts for backtracking (going back to the last visited page), which 

occurs if neither information scent nor path adequacy increase.  However, CoLiDeS+ 

ignores the intermediate scent emitted from heading label and links without heading 

(e.g., links in top menu bar, side bar and bottom bar) and only takes into account 

links with heading. 

2.3 Overcoming limitations 

The research reported here extends CoLiDeS [Kitajima et al., 2000] and CoLiDeS+ 

[Juvina & Van Oostendorp, 2006, 2008] by proposing an enhanced combined 

CoLiDeS/CoLiDeS+ (abbreviated as CoLiDeS/+).  The novel implementation of the 

enhanced model automates the manual simulation process and therefore scales up 

the analysis process to large websites.  A database-oriented approach for 

implementing the model is used, separating websites from their persistent database 

representation, thereby facilitating goal-specific (and non-goal-specific) analysis on 

large sites. 

Building on CoLiDeS and CoLiDeS+, this work can be used to improve a website’s 

information architecture, based on the simulation of a human user’s cognitive 

processes and behavior as a software program.  If, according to enhanced CoLiDeS/+ 

simulation, web navigation for a particular goal fails, the headings and/or links on 

the path leading to the goal in the website can be improved (reworded) and the 

simulation program run again to establish if a user with this particular goal would be 

able to successfully navigate the site after improvement. 

Until recently, few published automated simulations of CoLiDeS or CoLiDeS+ 

existed.  However, an attempt has been made to develop a software prototype of 

CoLiDeS [Kitajima et al., 2005; Karanam et al., 2011], but this work has several 

limitations (Online Appendix A, Section A1).  Thus, although Kitajima et al.’s work is 

significant in its attempt to automatically analyze a large website (online 

encyclopedia), there is a need for a better implementation of CoLiDeS and CoLiDeS+.  

This research proposes an enhanced goal-specific analysis with a novel database-

oriented approach to simulate web navigation. 

2.4 Enhanced goal-specific analysis 

A recursive algorithm was developed comprising of the following six steps; the 

algorithm selects web elements on the basis of the highest cosine similarity with the 

goal statement in forward search and allowing backtracking when forward search 

fails (for details, see Online Appendix B), building on CoLiDeS and CoLiDeS+. 
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Step 1: segment page. 

Step 2: select region. 

Step 3: segment region. 

Step 4: check if region contains the target of goal statement. 

Step 5: select action (link). 

Step 6: process next page. 

This algorithm was implemented as software to support automated goal-specific 

analysis of websites.  The following are enhanced features of this work. 

2.4.1. Paragraphs as basis of goal-directed search. According to Brown [2005], “… a user 

goal statement … should be 100-200 words in length, and it should represent the 

user's main goal and sub goal” (p. 27).  Instead of manually compiling a set of 

realistic user-goals by the analyst as proposed by Blackmon et al. [2002], in our work 

paragraphs identified by <p>-tag in HTML source code on web pages are selected as 

goals.  Paragraphs with the length of 1400 characters (200 words) or more are 

considered as potential user-goals in simulations.  Pages containing the text of these 

goals become destination pages.  This approach adds an element of practicality in 

selecting representative goals, constrained by the available content in a particular 

website. 

2.4.2. Accounting for links without heading. In order to overcome limitations of 

CoLiDeS/CoLiDeS+ (Online Appendix A, Section A2), in enhanced CoLiDeS/+, 

parsing is achieved by dividing the page into sections with headings and a set of 

headingless sections of links (all links from the top bar, the side bar and the bottom 

bar).  Identified elements are links with heading, paragraphs with heading, and 

images with heading.  Other elements are links without heading and images without 

heading. 

Enhanced CoLiDeS/+ selects the link having the highest cosine with the goal 

statement from the section having the highest heading cosine with the goal 

statement on a particular web page.  Enhanced CoLiDeS/+ identifies this link and 

also selects the link having the highest cosine with the goal statement from all links 

without heading on the same page.  The algorithm then selects from these two the 

link having the highest cosine value.  This link is then traversed because it has the 

highest information scent on a particular web page and thus is more likely to be 

selected by a user.  If neither of these two identified links has an increasing cosine 

value then the algorithm returns to the previous page and checks the next link on 

that page in descending cosine order. 

Modeling headingless links and including these in simulations is an advance over 

previous research using CoLiDeS and CoLiDeS+ and necessary for many present-day 

information architectures in which such links are present.  This advance should be 

seen as a first step towards more sophisticated work that may differentiate 

frequently used links in the top bar from those in the left sidebar and less frequently 

used links in the bottom bar. 

2.4.3. Including heading label in the evaluation of link label. Theories of human text 

comprehension [Kintsch, 1998; Rapp & Van den Broek, 2005] provide a motivation 

for adding heading text to link text when computing the scent of links nested within 

a region with a heading.  For example, according to the landscape model [Rapp & 

Van den Broek, 2005], through subsequent cycles in the reading process residual 

information from the preceding cycle (among other factors) influences the activation 

of concepts.  Therefore, in the case of web navigation the heading labels that were 
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processed in previous cycles would influence the activation of concepts in the current 

cycles.  Consequently, enhanced CoLiDeS/+ includes heading label along with link 

label in calculating a cosine between the link under a heading and the goal statement.  

Thus, the text of a particular link under heading now becomes heading label + the 

link label.  As links under a heading should extend the meaning of heading label, this 

is a way to enhance the scent of links under a heading.  As a result, when the scent of 

link labels is evaluated in a simulation, the cosine will be at least as high as it would 

be without the heading label included.  Therefore, all else being equal, the simulation 

would be more likely to succeed on a particular goal. 

2.4.4. Selecting link with cosine higher than heading cosine. In contrast to CoLiDeS+ 

(Online Appendix A, Section A3), in enhanced CoLiDeS/+, at every stage when the 

focused-on area is a link under a heading, the heading cosine value is set as a cut-off 

value for all the links under that heading.  Therefore, the cosine of link label 

(heading label + link label; see previous section) should be higher than, or at least as 

high as, the cosine of its corresponding heading. 

2.4.5. Automated reporting of entire traversed path. Enhanced CoLiDeS/+ reports the 

entire path followed to reach the target page after any backtracking, when the 

simulation terminates matching a particular goal statement with the web page 

content.  Moreover, this traversed navigated path is presented for comparison with 

the shortest path to the target page. 

2.5 Novel implementation 

For flexibility, control, efficiency of analysis and extensibility, it was important to 

separate a to-be-analyzed website from the representation of its information 

architecture.  This was achieved by taking a database-oriented approach to create a 

persistent representation.  In terms of flexibility, this allows the creation and 

comparative goal-specific analysis of numerous information architecture versions of 

the same website without actually building different website versions.  By contrast, 

the information architecture of a live website, rather than its representation as a 

persistent database, that is analyzed will normally change over time and is not 

subject to experimental control by researchers; therefore, different analyses will, in 

fact, analyze different versions of the same information architecture without 

experimental control.  In terms of efficiency, the approach avoids overhead of parsing 

web pages1 during simulation in goal-specific analysis; moreover, various other types 

of analysis have been developed [e.g., non-goal-specific analyses; Muzahir, 2013] or 

can be developed (see Section 5.2), all using the same database.  In terms of 

extensibility, the approach allows for other aspects of web page design to be 

represented and analyzed (e.g., images). 

A database schema was designed consisting of tables for (a) a website’s 

information architecture and (b) goal-specific analysis.2  For (a) there were tables for 

the following entities: web page, heading, text paragraph, link with heading, link 

without heading, headingless section of links, image with heading, image without 

heading, modified heading, modified link with heading and modified link without 

heading.  For (b) there were additional tables for the following entities: heading 

cosine, path-adequacy cosine for heading, cosine for link under heading, path-

 
1 Parsing (of a particular website) is done once and the resulting representation is stored in a database 

for further use in any analysis of the represented website.  Any improvements made to the website’s 

labeling system can be stored in the database without the need for further parsing. 
2 Additional tables were also created for non-goal-specific analysis (Muzahir, 2013). 



Automated Computational Cognitive-Modeling: Goal-Specific Analysis for Large Websites xx:x 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

adequacy cosine for link under heading, cosine for link without heading, path-

adequacy cosine for link without heading, text paragraph cosine, solution path and 

simulation success. 

The algorithm (Online Appendix B) was implemented in Visual C#.NET using 

Visual Studio 2008.  Data were stored in Microsoft SQL Server and accessed using 

SQL Server Management Studio for manual access and using Subsonic 3.0 (as Object 

Relational Mapper) for access through the C# code.  The implementation was coded 

using a Windows form application.  Enhanced CoLiDeS/+ simulation used the 

AutoCWW2 LSA tools (http://autocww2.colorado.edu/HomePage.html, in particular 

http://autocww2.colorado.edu/OneToMany.html) to calculate cosines.  The semantic 

space for first-year college (http://lsa.colorado.edu/spaces.html) was used, in 

agreement with participants’ education level in the two studies that are reported 

here (see also Section 3.1.1).  The simulation was implemented on Windows 7 

Enterprise, using 2 dual-core processors of 2.53 GHz each with 12 GB of RAM on a 

64-bit operating system. 

3. STUDY 1: LARGE INTERNET SITE 

3.1 Goal-specific analysis and improvement 

3.1.1. Simulation (original information architecture). A university Internet site was 

captured, the 11000 web pages were parsed and the site was recreated and stored as 

a database model [Muzahir, 2013].  Because of extremely large requirements of 

memory (estimated 40-45 GB RAM) and processing power, for the purpose of goal-

specific analysis, a subsite (300 pages) for one of the academic schools was randomly 

selected.   In the simulation, LSA cosines were computed using the first-year-college 

semantic space (TasaALL) in both studies.  In terms of reading level, this was 

deemed to be the most appropriate available semantic space for users of the websites.  

However, a limitation is that the space is based on American English, although the 

research used British English websites and users.  Moreover, in common with other 

semantic spaces, the space does not represent proper names (see also Section 3.1.2).  

Another shortcoming of TasaALL is that it is likely neologisms (such as ‘Twitter’ and 

‘Facebook’) are not included.  Enhanced CoLiDeS/+ simulation was run on the subsite 

with the original information architecture for 41 goals that had the required length 

(100-200 words; see Section 2.4.1), with two possible outcomes: success (the 

simulation finds the correct page matching the goal) or failure (the simulation does 

not find the correct page).  Twenty-two goals (54%) succeeded and 19 (46%) goals 

failed. 

3.1.2. Improvement of original information architecture. Various factors that influence 

users’ success in finding information have been identified in the labeling of web page 

elements [e.g., Swierenga et al., 2011].  According to Nielsen [2000], clear and 

elaborate labels help users to precisely predict the information on following pages.  

Spool et al. [1999] demonstrated that a positive correlation exists between the length 

of link labels (7-12 words) and success rates in finding information.  A possible 

reason to this is that lengthy link labels generally carry more information and are 

less confusable than short labels. 

According to Olston and Chi [2003], browsing cues (link labels) have a limited 

scent and should be improved.  Users can experience difficulty while browsing due to 

low information scent of web elements.  This limitation can be attributed to at least 

three causes.  “First, poor link labeling can lead to inappropriate cues.  Second, since 
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each web page tends to contain a large number of potential destinations, the cues are 

typically short and thus cannot convey a large amount of information.  Third and 

most importantly, browsing cues are usually not customized based on each user’s 

information goal” (p. 182). 

The approach used in this research was to improve the labeling system of an 

information architecture in such a way that the cosine of correct labels of headings 

and links would increase in relation to the goal.  As a result, when the scent of 

heading labels and link labels is evaluated in a simulation both will be increased; the 

scent of link labels benefits even more because their scent is calculated as the scent 

of the combined heading and link labels.  Therefore, all else being equal, the 

simulation would be more likely to succeed on a particular goal.  The labels of 

competing goal-specific links were reworded to degrade their cosine values.  

Degrading the goal-link cosine value of incorrect links may improve success rate on 

one task but could also reduce success rate on other tasks.  However, our results of 

Study 1 show no evidence of such a reduction and in Study 2 only for 1 task was 

there an adverse effect. 

We applied Blackmon et al.’s [2003] approach to identifying goal-specific 

competing links, based on the following compound criterion: the competing link label 

(1) must be under the same heading as the correct link, (2) must have a goal-link 

cosine value that equals at least 80% of the goal-link cosine for the correct link label 

and (3) should not be judged by the analyst as a false alarm, in other words, a link 

that real users would probably not select.   

Furthermore, as a relaxation of the principle of increasing information scent along 

the navigation path to the destination page [Juvina & Van Oostendorp, 2007], a 

strictly non-decreasing-cosine strategy for rewording was accomplished for web page 

elements on the navigation path to the target page.  This was important, as it was 

observed some of the analyzed web pages on the path to the destination page did not 

have an increasing cosine, but the cosine remained unchanged.  Accordingly, 

enhanced CoLiDeS/+ was adapted by allowing page traversal with non-decreasing, 

rather than strictly increasing, cosine value.   

For increasing similarity (cosine value) of goal statement with heading- and link 

labels, the most common type of improvement made for goals that failed in the 

simulation was the elaboration (expansion) of heading and link labels.  Specifically, 

in many cases link labels consisted of proper names that had to be elaborated to 

make them meaningful; in a similarity evaluation, proper names will have cosines of 

0 (complete lack of similarity), as they have no intrinsic meaning and are therefore 

not part of the LSA corpus.  Note that elaboration is not the only or always the best 

strategy for improvement. Some individual words carry clear meaning for a heading 

compared to long strings of words that may be more diffuse in meaning, and users 

are more likely to read heading labels containing 1-3 words than heading labels 

containing 5 or more words.  Therefore, ‘less can be more’. 

Changes were made manually by editing the modified tables in the database for 

the simulation to access the data representing the improved information architecture 

of the subsite from the database automatically.  These changes were then reflected in 

an improved version of the subsite by editing the HTML code manually. 

3.1.3. Simulation (improved information architecture. After improvements had been made 

to the information architecture, enhanced CoLiDeS/+ simulation was run again.  Of 

the 41 goals 36 (88%) succeeded and 5 (12%) failed; all goals that succeeded with the 

original information architecture also succeeded with the improved information 

architecture (see Table I).  Analysis of the results from the two simulations (original 
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versus improved information architecture) shows a positive effect of information 

architecture on successful navigation, phi = 0.38, p < 0.001, with improved 

architecture resulting in more goals that succeeded.  In a subsequent experiment, 

simulation results were validated. 

3.2 Validation 

3.2.1. Method.  Design.  Given that the simulation had demonstrated theoretically 

that navigation would be more successful with improved information architecture, 

the aim of the experiment was to empirically demonstrate that actual navigation by 

users was also more successful employing the site with improved information 

architecture.  Therefore, (3 practice and 31 main) tasks (see Table I) were selected for 

which, according to the simulation results, navigation failed with the original 

information architecture, but succeeded with the improved information architecture.  

In the experiment, the independent variable was information architecture, with two 

levels: original and improved.  The dependent variables were task completion, 

correctness of answers, length of navigation (number of page loads), time-on-task, 

perceived disorientation [an important indicator of problematic web navigation; Van 

Oostendorp et al., 2009], and task performance [logarithmically transformed 

correctness/time; Van Oostendorp & Juvina, 2007].  Spatial ability was a potential 

covariate, as this is a predictor of task performance in web navigation [Ahmed & 

Blustein, 2006; Van Oostendorp & Juvina, 2007]. 

Participants.  There were 94 participants (22 female; 92 university students), with 

mean age of 27.86 years (SD = 8.36).   They received £10 for taking part.  Forty-six 

used the subsite with original information architecture (control group) and 48 with 

modified information architecture (experimental group).  All participants had 

experience using the Web and the vast majority had been using websites for more 

than two years.  None had experience with using the site that was tested. 

Materials and equipment.  A bespoke software program to run the experiment was 

developed and coded as a Windows Form Application using Visual Basic.  The 

experiment used two locally saved site versions (original and improved; see Section 

3.1 and Figure 1). 

The experiment ran on personal computers (Intel(R) Core(TM)2 Duo CPU, 3GHz 

processing power, 2 GB RAM, Microsoft Windows 7 Enterprise, 32-bit operating 

system).  The screen dimensions were 12801024 with a refresh rate of 75Hz.  Each 

monitor had an active-matrix TFT LCD Screen with a 19-inch viewable image.  

Contrast and brightness were set to optimal levels. 

Participants completed Ahuja and Webster’s [2001] disorientation scale on screen 

as a measure of disorientation; internal-consistency reliability was good, Cronbach’s 

alpha = 0.81; therefore, an average disorientation score was calculated per 

participant.  A mental-rotation test was used to measure spatial ability; this 

consisted of 3 practice- and the first 10 main problem items from Vandenberg and 

Kuse’s [1978] version of the Shepard and Metzler [1971] three-dimensional rotation 

test.  Each item consisted of a target figure, two correct alternatives (rotations of the 

criterion), and two incorrect figures or ‘distracters’.  Participants had to identify the 

two correct figures matching the target.  Each response to the mental-rotation test 

was scored as correct (score = 1) if two correct figures were chosen and as an incorrect 

(score = 0) otherwise.  The scores were summed to create an overall spatial-ability 

score.   
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Table I. Simulation results 

a. Study 1  

  Set of 41 randomly selected and analyzed goals 

 Simulation result after rewording  Total 

Simulation result before rewording Failure Success  

Failure 5 17 22 

Success 0 19 19 

Total 5 36 41 

Goals used in validation (experiment), all successfully simulated after rewording  

Simulation result before rewording Practice Main Total 

Failure 2 15 17 

Success 1 16 17 

Total 3 31 34 

        

b. Study 2    

All goals not targeted by rewording 

  Simulation result after rewording  Total 

Simulation result before rewording Failure Success  

Failure 39 16 55 

Success 1 18 19 

Total 40 34 74 

All goals targeted by rewording 

 Simulation result after rewording  Total 

Simulation result before rewording Failure Success  

Failure 7 26 33 

Success 0 0 0 

Total 7 26 33 

Goals used in validation (experiment)   

Simulation result after rewording Practice Main Total 

Failure 0 3 3 

Success 3 10 13 

Total 3 13 16 
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b 

 
Fig. 1. Web pages, Study 1 (a, c original; b, d improved). 
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Fig. 1 (continued). 
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Procedure.  The experiment ran in a computer lab with 10 to 12 participants 

working independently and randomly allocated to one of the two site versions.  

Participants first undertook the spatial-ability test, with a time limit of three 

minutes for the 10 main problems.  They then completed a series of information 

retrieval tasks.  Finally, participants completed the disorientation scale and 

answered demographic questions.   

In each information retrieval task, participants first completed a practice run of 3 

trials.  The main trials followed with a maximum of a 31 further trials.  In every trial, 

a paragraph containing 100-200 words of text (representing a goal; see Section 2) was 

presented at the top of the screen.3  Once participants had read the paragraph they 

had to click a button labeled ‘Show Website’.  The homepage appeared on the screen 

and they had to look for the paragraph in the site.  Participants were told to take the 

most direct route possible to locate the paragraph in the site.  Once they found the 

paragraph, they clicked on a button labeled ‘Your answer’, which opened a dialog box 

at the bottom of the screen.  In this answer box, participants had to type the title of 

the web page containing the paragraph.  They were instructed to type “Not found” in 

the answer dialog box if they had not found the paragraph after searching for five 

minutes.  After clicking on ‘OK’ they moved to next trial. The experiment took 

approximately 55 minutes to complete. 

3.2.2. Results.  Initial analysis showed that, although the groups had been 

randomly allocated to experimental conditions, the groups differed statistically 

significantly on spatial ability, t (92) = -3.08, p < 0.01, r = 0.31 (mean [SD] = 2.37 

[2.30] for the control group and 4.10 [3.09] for the experimental group).  

Consequently, the assumption of independence of the independent variable 

(information architecture) from the potential covariate (spatial ability) was violated; 

thus, data analysis through analysis of covariance was precluded.  Therefore, the 

data were analyzed by blocking [recommended by Tabachnick & Fidell, 2001] on 

spatial ability (with low and high spatial ability, respectively), using a median split. 

Descriptives (Table II; Figure 2) indicated that the experimental group was 

superior on outcome measures.  The results of 2-by-2 analysis4 of variance (ANOVA) 

(Table III) demonstrate that the experimental group outperformed the control group 

statistically significantly on task completion, correctness per completed task, time-

on-task, task performance (logarithmically transformed correctness/time) and 

number of page loads, with effect sizes ranging from moderate to very large 

(according to conventions for effect size for estimates of explained variance for each 

tested effect5); the effect on perceived disorientation was approaching significance. 

There was a significant effect of spatial ability on time-on-task; the effect was 

approaching significance on task completion, time-on-task (for correctly completed 

tasks) and task performance; the effect sizes were small to moderate.  The interaction 

effect was not significant. 

 
3 In the subsite, destination pages with text paragraphs matching the goal statement were located 1, 2 

or 3 levels deep from the homepage.  
4 Sample sizes were 31 for original/low spatial ability, 19 improved/low spatial ability, 15 original/high 

spatial ability and 29 improved/high spatial ability. 
5 0.01 for small, 0.059 for moderate and 0.138 for large (Clark-Carter, 2009), which Clark-Carter 

converted from Cohen’s (1988) recommendations for effect-size measure f 
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Table II. Descriptives as a function of information architecture and spatial ability (Study 1) 

  

Information architecture 

  

Original Modified 

Outcome measure Spatial ability Mean SD Mean SD 

Task completion (pct) Low 12.70 6.97 24.62 13.61 

 High 18.71 8.11 26.92 12.59 

Correct/complete (pct) Low 45.41 29.78 76.78 20.76 

 High 42.29 22.92 83.09 12.05 

Time (average) (s) Low 241 97 180 102 

 High 193 99 151 62 

Task performance Low 0.0022 0.0018 0.0051 0.0022 

 High 0.0027 0.0020 0.0063 0.0024 

Page loads (average) Low 24.12 16.09 14.11 9.61 

 High 19.11 7.35 16.63 10.19 

Disorientation Low 3.66 0.91 3.04 1.28 

  High 3.59 1.40 3.33 1.33 

Note.  Low: spatial-ability score  2.  High: spatial-ability score  3.  Task performance: ln(correct/time). 

Correct/complete: percentage of tasks with correct answers out of completed number of tasks. 

 

A detailed analysis was conducted for tasks by simulation success (for full details 

see Online Appendix C).  For each task, success was higher with the improved 

information architecture.  Furthermore, the success rate by participants on the site 

with the original information architecture was 24% of that on the site with the 

improved information architecture over the tasks for which the simulation on the site 

with the original information architecture succeeded and 32% over the tasks for 

which the simulation failed.  These results show that task success was relatively low 

for participants with the original information architecture compared to the improved 

information architecture.  The results also demonstrate the advantage of the 

improved information architecture (shown in the previous results over all tasks) in 

the results per task and even more so when the simulation failed on the original 

information architecture. 

Participants’ written comments about positive and negative aspects of the site 

were categorized in relation to information scent or layout and other aspects.  The 

site with the original information architecture received 10 positive and 22 negative 

comments on scent, but the site with the improved information architecture received 

25 positive and 5 negative comments, a statistically significant pattern of findings, 

phi = 0.52, p < 0.001.  The original information architecture received 23 positive and 

18 negative comments on layout and other aspects, but the improved architecture 

received 25 positive and 35 negative comments, a statistically non-significant pattern 

of findings, phi = -0.15, p > 0.15.  These results indicate that the improved 

information architecture was experienced as having significantly better information 

scent than the original architecture, but was not experienced as being significantly 

worse on layout and other aspects. 
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Table III. Testing the effect of information architecture on outcome measures (Study 1) 

Outcome  

measure Source df SS MS F p 2 

Task  IA 1 2179 2179 19.32 < 0.001 0.16 

completion SA 1 372 372 3.30 .073 0.02 

 IA  by SA 1 74 74 0.66 .420 0.00 

 Error 90 10148 113      

Correct/ IA 1 28001 28001 55.04 < 0.001 0.37 

complete  SA 1 54 54 0.11 .745 0.00 

task IA  by SA 1 479 479 0.94 .335 0.00 

 Error 90 45786 509      

Time IA 1 55944 55944 7.04 .009 0.06 

(average) SA 1 32264 32264 4.06 .047 0.03 

 IA  by SA 1 1981 1981 0.25 .619 0.00 

 Error 90 714986 7944      

Task  IA 1 0.000228 0.000228 51.16 < 0.001 0.35 

Perform-

ance 

SA 1 0.000015 0.000015 3.41 0.068 0.02 

 IA  by SA 1 0.000002 0.000002 0.46 0.500 0.00 

 Error 90 0.000401 0.000004      

Page loads  IA 1 840 840 5.77 0.018 0.05 

(average) SA 1 34 34 0.23 0.633 0.00 

 IA  by SA 1 305 305 2.10 0.151 0.01 

 Error 90 13096 146      

Disorient- IA 1 4.18 4.18 2.87 0.094 0.02 

ation SA 1 0.27 0.27 0.19 0.668 0.00 

 IA  by SA 1 0.74 0.74 0.51 0.479 0.00 

  Error 90 131.16 1.46       

Note.  Correct/complete: percentage of tasks with correct answers out of completed number of 

tasks.  IA: information architecture.  SA: spatial ability. 

 

3.2.3. Discussion.  The results of the experiment with the large Internet subsite 

demonstrate that improved information architecture, based on the findings of 

enhanced CoLiDeS/+ simulation, resulted in better outcomes of information retrieval 

in terms of task completion, correctness, speed, efficiency, task performance and 

experience of information scent.  Both those with low and high spatial ability 

benefitted from improved information architecture. 

4. STUDY 2: LARGE INTRANET SITE 

The rationale for designing Study 2 is one of replication [Hornbæk et al., 2014], 

within our paper, in a different domain (restricted information-oriented intranet 

website for staff in Study 2 versus public higher-education Internet site in Study 1).  

Note that, because the original websites in the two studies were real-world live 

website and not created as part of an experiment, the websites will have differed in 

various ways, not only in terms of the domain. 
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Fig. 2. Mean values (rescaled as a percentage) as a function of information architecture and spatial ability (Study 1) 

 

Note.  Low: low spatial ability. High: high spatial ability. TC:  task completion.  C/CT: correct/completed task.  TP: task performance.  Tm: time (average).  PL: 

page loads.   DIS: disorientation. 
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4.1 Goal-specific analysis and improvement 

4.1.1. Simulation (original information architecture).  A university intranet site was 

captured, the 33000 web pages were parsed and the site was recreated and stored as 

a database model [Muzahir, 2013]. 6,7  Because of extremely large requirements of 

memory (estimated 40-45 GB RAM) and processing power, for the purpose of goal-

specific analysis, a subsite (500 pages) of the university intranet site for one of the 

departments was randomly selected.  CoLiDeS/+ simulation was run on the site with 

the original information architecture for the 107 goals that had the required length 

(100-200 words; see Section 2).  The results showed that 19 goals (18%) succeeded 

and 88 (82%) goals failed. 

4.1.2. Improvement of original information architecture.  The same approach to making 

improvements was followed as in Study 1.  In order to increase similarity (cosine 

value) of goal statement with heading- and link labels, the following common types of 

improvement (or combinations of these) were made for goals that failed in the 

simulation.  Domain-specific abbreviations were written in full.  Heading and link 

labels were elaborated (expanded).  Non-specific link labels (e.g., ‘Click here’) were 

made specific. 

4.1.3. Simulation (improved information architecture).  After improvements had been 

made to the information architecture, enhanced CoLiDeS/+ simulation was run again.  

Of the 107 goals 60 (56%) succeeded and 47 (44%) failed and only 1 goal that 

succeeded with the original information architecture did not with the improved 

information architecture (see Table I).  Analysis of the results from the two 

simulations (original versus improved information architecture) shows a positive 

effect of information architecture on successful navigation, phi = 0.40, p < 0.001, with 

improved architecture resulting in more goals that succeeded.  In a subsequent 

experiment, simulation results were validated. 

4.2 Validation 

4.2.1 Method.  Design.  There were 64 participants (university students; 18 female), 

with mean age of 26.95 years (SD = 9.61).   They received £10 for their participation.  

Thirty-two used the site with original information architecture (control group) and 

another 32 with modified information architecture (experimental group).  All 

participants had experience using the Web and the vast majority had been using 

websites for more than two years.  None had experience with using the site. 

Design, materials and equipment, and procedure.  The same design, materials and 

equipment, and procedure were used as in Study 1, with the following exceptions.  

The disorientation scale was reliable, Cronbach’s alpha = 0.91. The experiment used 

two locally saved site versions (original and improved; see Section 4.1 and Figure 3).  

(Three practice and 13 main) tasks (see Table I) were selected for which, according to 

the simulation results, navigation failed with the original information architecture, 

but succeeded with the improved information architecture.8  Participants had to type 

the page number as their answer in each information retrieval task. 

 
6 As much of the content of this website did not reside in web pages, but linked content files (e.g., in 

.html, .cfm, .doc, .docx or .pdf formats), these files were captured and represented as text paragraphs. 
7 Non-goal-specific was conducted on the entire website and is reported elsewhere (Muzahir, 2013).   
8 In the subsite, destination pages with text paragraphs matching the goal statement were located 2, 3, 

4 or 6 levels deep from the homepage. 
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4.2.2. Results.  Initial analysis showed that, although the groups had been 

randomly allocated to experimental conditions, the groups differed statistically 

significantly on spatial ability, t (62) = 3.64, p < 0.001, r = 0.42 (mean [SD] = 2.53 

[1.68] for the control group and 4.56 [2.68] for the experimental group).  Therefore, as 

in Study 1, the data were analyzed by blocking on spatial ability (with low and high 

spatial ability, respectively), using a median split. 

Descriptives (Table IV; Figure 4) indicate that the experimental group was 

superior on outcome measures.  The results of 2-by-2 ANOVA9 (Table V) demonstrate 

that the experimental group outperformed the control group statistically significantly 

on task completion, correctness per completed task, time-on-task and task 

performance (logarithmically transformed correctness/time), with effect sizes ranging 

from moderate to very large; the effect on perceived disorientation was approaching 

significance. 

There was a significant interaction effect on correctness per task (completed or 

not), correctness per completed task and task performance.  Because of the three 

significant interaction effects, simple-effect tests were conducted as follow-up.  The 

effect of information architecture was significant for each of these outcome measures 

for both low- and high-spatial-ability participants, with p < 0.001; the effect sizes 

were somewhat higher for high- (r = 0.81, 0.85 and 0.71, respectively) than for low-

spatial-ability (r = 0.68, 0.65 and 0.68, respectively) participants. 

A detailed analysis was conducted for tasks by simulation success for full details 

see Online Appendix D).  For each the task success was higher with the improved 

information architecture.  Furthermore, the success rate by participants on the site 

with the original information architecture was 6% of that on the site with the 

improved information architecture over the tasks for which the simulation on the site 

with improved information architecture succeeded and 5% over the tasks for which 

the simulation failed.  These results show that task success was relatively low for 

participants using the original site compared to the improved site.  The results also 

show that the advantage of the improved site shown in the previous results over all 

tasks was reflected in the results per task. 

The site with the original information architecture received 6 positive and 24 

negative comments on scent, but the site with the improved information architecture 

received 25 positive and 12 negative comments, a statistically significant pattern of 

results, phi = 0.47, p < 0.001.  The original information architecture received 19 

positive and 13 negative comments on layout and other aspects, but the improved 

architecture received 7 positive and 21 negative comments, a statistically significant 

pattern of results, phi = -0.35, p < 0.01.  These results indicate that the improved 

information architecture was experienced as having significantly better information 

scent than the original architecture, but was also experienced as being significantly 

worse on layout and other aspects. 

4.2.3. Discussion.  The results of the experiment with the large intranet subsite 

demonstrate that improved information architecture, based on the findings of 

enhanced CoLiDeS/+ simulation, resulted in better outcomes of information retrieval 

in terms of task completion, correctness, speed, task performance and experience of 

information scent.  Both those with low and high spatial ability benefitted from 

improved information architecture, but the effect of information architecture on 

 
9 Sample sizes were 23 for original/low spatial ability, 12 improved/low spatial ability, 9 original/high 

spatial ability and 20 improved/high spatial ability. 
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correctness and task performance was stronger for high-spatial ability users and 

there was a trend approaching significance for high-spatial-ability users to benefit 

more from improvement in terms of overall page loads. 

5. DISCUSSION 

5.1 Main results and limitations 

In relation to Aim 1 (automated cognitive computational goal-specific analysis of the 

information architecture of large websites), the current research successfully 

automated the simulation of web navigation by implementing an enhanced model 

combining CoLiDeS and CoLiDeS+, with several advances on these models (Online 

Appendix E).  Goal-specific analysis was conducted by automated simulation on the 

information architecture of two large real-world Internet- and intranet subsites 

(consisting of hundreds of web pages).  Improvements made to the information 

architecture were demonstrated by higher success rate in simulation results for both 

subsites.  In general, there is no guarantee that the ‘improvement strategy’ is 

guaranteed to always monotonically improve all paths to all targets (and not just 

some at the expense of others).  However, our results for Study 1 show that in our 

goal-specific analysis no improvements for particular targets were at the expense of 

others.  Furthermore, in Study 2, only 1 of the intended improvements was at the 

expense of another target. 

A crucial factor in realizing the automated analysis of large real-world sites with 

improved web navigation was the separation of website from its persistent 

representation by way of a database-oriented approach, conferring benefits of 

flexibility, control, efficiency and extensibility.  In contrast, previous work using 

automated tools analyzed live websites without a database-oriented approach [e.g., 

Chi et al., 2003] and therefore could not achieve these benefits.  For example, in 

order to evaluate the positive effect of improvements made to the information 

architecture of a website based on simulation results, the actual live website would 

have to be altered, which would be more labor-intensive and might practically be 

impossible if the analyst had no control over the website.  Our approach allows for 

many types of further automated analysis, by ‘interrogating’ the database, that are 

beyond the scope of the work reported here.  The enhanced CoLiDeS/+ 

implementation considers links without heading, but could also easily accommodate 

images without or with heading.  Similarly, the analysis could be extended with 

other types of non-text medium. 
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Fig. 3.  Web pages, Study 2 (a, c original; b, d improved) 
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Fig. 3.  (continued) 
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Table IV. Descriptives as a function of information architecture and spatial ability (Study 2) 

  

Information architecture 

  

Original Modified 

Outcome measure Spatial ability Mean SD Mean SD 

Task completion (pct) Low 35.33 24.03 51.04 22.90 

 High 40.28 31.11 63.75 13.39 

Correct/completed (pct) Low 11.01 18.60 50.26 29.03 

 High 2.78 8.33 68.44 22.22 

Time (average) (s) Low 264 131 226 104 

 High 273 100 180 46 

Task performance Low 0.0005 0.0008 0.0026 0.0015 

 High 0.0001 0.0004 0.0042 0.0023 

Page loads (average) Low 29.69 22.38 32.62 23.68 

 High 41.25 37.69 23.48 10.90 

Disorientation Low 4.32 1.26 3.54 1.57 

  High 4.35 1.68 3.77 1.64 

Note.  Low: spatial-ability score  3.  High: spatial-ability score  4.  Task performance: ln(correct/time).  

Correct/complete: percentage of tasks with correct answers out of completed number of tasks. 

 

In relation to Aim 2 (validation of automated analysis through experiments with 

end-users), improvements of the information architecture, according to simulation 

results, were incorporated in locally saved sites, and tested; we found empirical 

evidence for the improvements in experiments with end-users against original sites 

without improvements.  Our results are consistent with those of Blackmon et al. 

[2002, 2003, 2005], showing that a model-based approach using CoLiDeS can be 

employed to improve websites with measurably better navigation outcomes for users.  

However, Blackmon and colleagues analyzed experimental websites that worked like 

the full version but with fewer terminal-node web pages, whereas we analyzed large 

real-world websites and subsites of similar size.  Both users with low spatial ability 

and users with high spatial benefitted from improved information architecture.  The 

effect information architecture was equally strong on most measures in both studies 

and stronger for high-spatial-ability users on correctness and task performance in 

Study 2.  Therefore, in contrast to Van Oostendorp and Juvina’s [2007] findings of 

their Study 1, our low-spatial ability users did not benefit more on the task 

performance measure.  The difference in findings may be explained by the following 

difference between our experiments and their work: they provided users with 

navigation support (suggesting which link to select), whereas we provided improved 

information scent without this type of support.  
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Table V. Testing the effect of information architecture on outcome measures (Study 2) 

Outcome  

measure Source df SS MS F p  2 

Task  

completion 

IA 1 5334 5334 10.80 .002 0.13 

 SA 1 1083 1083 2.19 .144 0.02 

 IA  by SA 1 209 209 0.42 .518 0.00 

 Error 60 29621 494    

Correct/ 

complete 

IA 1 38223 38223 85.51 < 0.001 0.56 

 SA 1 344 344 0.77 .384 0.00 

 IA  by SA 1 2424 2424 5.42 .023 0.03 

 Error 60 26819 447    

Time  

(average) 

IA 1 59573 59573 5.80 .019 0.07 

 SA 1 4634 4634 0.45 .504 0.00 

 IA  by SA 1 10904 10904 1.06 .307 0.00 

 Error 60 616435 10274    

Task  

performance 

IA 1 0.00013 0.00013 54.83 < 0.001 0.44 

 SA 1 0.00001 0.00001 2.21 .142 0.01 

 IA  by SA 1 0.00001 0.00001 5.78 .019 0.04 

 Error 60 0.00015 0.00000    

Page loads  

(average) 

IA 1 764 764 1.49 .227 0.01 

 SA 1 20 20 0.04 .843 0.00 

 IA  by SA 1 1487 1487 2.89 .094 0.03 

 Error 60 30816 514    

Disorient- 

ation 

IA 1 6.47 6.47 2.86 .096 0.03 

 SA 1 0.24 0.24 0.11 .747 0.00 

 IA  by SA 1 0.15 0.15 0.07 .796 0.00 

  Error 60 135.87 2.26       

Note.  Correct/complete: percentage of tasks with correct answers out of completed number of tasks. 
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Fig. 4.  Mean values (rescaled as a percentage) as a function of information architecture and spatial ability (Study 2). 

 

Note.  Low: low spatial ability. High: high spatial ability. TC:  task completion.   C/CT: correct/completed task.  TP: task performance.  Tm: time (average).  PL: 

page loads.   DIS: disorientation. 
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More detailed analysis per task showed, as expected, that in Study 1 participants’ 

odds of task success were higher when the simulation succeeded on the improved 

information architecture and specific improvements in information scent for the 

particular task had been made.  However, perhaps surprisingly, the odds were also 

higher in the site with improved information architecture for which no improvements 

had been made (because of simulation success with the original information 

architecture).  Nevertheless, in Study 2 detailed analysis per task showed, as 

expected, that when with improved information architecture the simulation passed, 

the odds of task success were higher than when improvements had been made but 

the simulation failed.  However, perhaps surprisingly, the latter odds were still 

relatively high compared to those on the original site where the simulation failed.  

Collectively, these results lead to the conjecture, to be explored in the future, that the 

context provided by the results of task performance on previous tasks may affect 

performance on the current task.  In particular, in the situation were an information 

architecture has poor information scent for some tasks and better for others (as 

opposed to an information architecture with good information scent for almost all 

tasks), poor scent apparently also (negatively) affects performance on tasks for which 

scent is better (Study 1).  Moreover, if the information architecture has poor 

information scent for some tasks and better for others, performance on tasks for 

which scent is worse may still be better than when information scent is poor for all 

tasks (Study 2).  Similar types of sequential context effect, where experience or 

judgment on previous trials influences what happens on the next trial, have been 

observed in web navigation [David et al., 2007], psychophysics [Lockhead, 2004] and 

frequency estimation [Kusev et al., 2011].  For example, David et al. [2007] found 

evidence for a ‘virtuous cycle’ in web navigation.  The successful execution of 

information-seeking goals in one cycle enhanced self-efficacy.  As a result, perceived 

difficulty of information goals in the following cycle is reduced.  Moreover, as a result 

of self-efficacy from previous cycles, more challenging goals are formulated in 

subsequent cycles.  Similarly, in our work, better information architecture for some 

tasks, and consequently more successful web navigation, apparently ‘carries over’ to 

more successful navigation on tasks on for which information architecture is poorer. 

Although goal-specific analysis was successfully only conducted on subsites 

(consisting of hundreds of pages), because of extremely large requirements of memory 

and processing power, goal-specific analysis of entire large websites (consisting of 

thousands of pages) was precluded.  Nevertheless, non-goal-specific analysis was 

successfully conducted on entire large websites [consisting of thousands of pages; 

Muzahir, 2013].  However, with increasing memory capacity and processing power, 

automated goal-specific analysis of sites is expected to become increasingly feasible 

for larger websites. 

Our approach of using content (here, text paragraphs) as potential user-goals in 

simulations is important because it is necessary that all goals for which information 

is available in a website can be found by a user.  These goals represent all the 

information needs that the site can meet, whether these goals are representative of 

‘users’ goals in the wild’ or not.  Although we do not assume that these are the only 

goals that users may have, it is essential that the available information can be found 

by users who may have needs that this information meets.  Of course, other research 

may complement this work by focusing on users’ goals in the wild, which may 

uncover new information needs that a particular website currently does not meet.  

However, this work will then be addressing two issues at the same time.  The first is 

whether users can find available information in a website which meets their 

information needs.  The second is whether the site does not meet users’ particular 



xx:x Van Schaik et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

information needs; by definition then, users will not be able to find that information.  

Our work focuses on the first of these issues. 

5.2 Future work 

5.2.1. Support for global design decisions.  As shown in this paper, simulation results 

can be used as a basis for detailed design work improving the information 

architecture of a site.  However, the results may also be used to decide whether or not 

the labeling system of a website’s information architecture should be redesigned from 

scratch.  A cut-off point (e.g., 90% successful simulation results) may be set to decide 

whether it is worth ‘repairing’ the site.  If the cut-off is achieved or exceeded then 

making improvements to the existing information architecture and otherwise a 

complete redesign may be considered.  Based on our work and related research [e.g., 

Blackmon et al., 2002, 2003, 2005] guidelines for designing a new information 

architecture are presented in Online Appendix F. 

As all of a website’s information-architecture-related information is stored in a 

database, our database-oriented approach can easily facilitate further analyses, in 

addition to goal-specific analysis (this paper) and non-goal-specific analysis [Muzahir, 

2013].  For example, this allows evaluation of the extent to which a real-world 

information architecture is balanced, that is having little variation in the level of 

depth of pages with content (text paragraphs or other).  This is important, as content 

on pages at extreme depth from the homepage will be exceedingly prone to 

navigation errors in reaching these pages [Van Schaik & Ling, 2012].  A balanced 

information architecture would spread the risk of navigation errors more evenly.  The 

results of a balance analysis may be used to decide whether or not the organization 

system of a website’s information architecture should be redesigned from scratch.  

Again a cut-off point may be set to decide whether it is worth ‘repairing’ the site.  

Similarly, another analysis could evaluate the navigation system of an information 

architecture in terms of the degree of connectedness of individual pages, as a basis 

for decisions on improving parts of this system or redesign from scratch. 

5.2.2. Cognitive computational modeling beyond information architecture.  Given that the 

information architecture of websites is the most important remaining source of 

usability problems [Nielsen, 2009], the current research builds on existing work by 

analyzing the information architecture of websites.  Therefore, other aspects of web 

page design, such as web page layout are not addressed.  Questions then arise 

regarding (1) the extent to which the automated analysis of large websites would 

benefit from modeling additional aspects of web design, in particular page layout, 

and (2) the feasibility of this additional work.   

First, Teo and John [2008] demonstrate that, in the case of a two-column layout, 

including layout in the modeling of web navigation improves the prediction of page 

loads and correct first page loads.  However, this work did not compare identical 

layouts with different labeling schemes (problematic and improved) and only studied 

two-column layouts.  Moreover, in other research, Blackmon [2012] found that “the 

distribution of attention among available information patches was strongly 

determined by the rank ordering of semantic similarity between user goal but was 

not [emphasis added] influenced by website designs with very different visual layouts” 

(p. 3).  In particular, most of the variance in human performance on websites is 

caused by the pattern of semantic similarity of a user’s goal with headings 

(information patches).  Specifically, when the user is pulled by high semantic 
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similarity to focus on links nested under the correct heading, the task is easy, but 

users flounder and often encounter task failure when high goal-heading semantic 

similarity pulls the user towards an incorrect heading(s) rather than the correct 

heading.  In the current research, both heading labels and link labels were improved.  

The purpose was not to establish the independent contributions of heading labels and 

link labels to the enhancement of web navigation [but see Resnick & Sanchez, 2004].  

Future work may examine these separate contributions. 

Furthermore, Resnick and Sanchez [2004] found no advantage of either of two 

organization schemes as long as link labels were not poor.  In addition, attempts 

have been made to include images in modeling of web navigation [CoLiDeS+ Pic; Van 

Oostendorp et al., 2012], but this work has not studied large websites and has not 

developed automated support.   

Second, as part of the modeling of web navigation, Teo and John [2008] 

automatically created a device model representing two-column web page layouts from 

imported web pages [see also Teo et al., 2012].  However, the automatic capture of 

more complex layouts and identical page layouts created with different coding 

techniques or (combinations of) coding languages (HTML, JavaScript, style sheets) 

may not be trivial.  In addition, visual aspects such as the use of color and animation 

on web pages may also affect web navigation.  In sum, in order to establish the 

feasibility and benefits of including other aspects of web page design than 

information architecture in computational cognitive modeling of web navigation for 

large websites further work seems to be needed. 

Our results show that some improvements in information architecture are not 

without downsides, as in both studies with improvements the number of negative 

comments was higher for layout than without improvements. This suggests that 

changes to information architecture to improve information scent can be at odds with 

subjective evaluations of layout, despite improvements in task performance. This is 

an interesting and unique finding worthy of further exploration. 

5.2.2. Cognitive computational modeling for personal information architecture.  Personal 

information management is an important area of contemporary research in 

psychology and computer science: “an activity in which an individual stores his/her 

personal information items in order to retrieve them later on” [Bergman, 2012, p. 55].  

An important aspect of this management is personal information architecture, 

information architecture created, maintained and used by the same individual.  As 

presumably all people (whether they are computer users or not) create and use their 

own personal information architecture and may suffer information pain in our 

personal information management, personal information management affects us all. 

Given the nature of personal information management, the success of us using our 

own (personal) information architectures will to a large extent be positively 

influenced by the extent to which they support this activity.  This demand is not new, 

but research into personal information management is relatively sparse and 

dispersed.  Moreover, there appears to be a lack of work that approaches personal 

information management from the perspective of information architecture, where 

both human cognition and computational modeling can be crucial. 

On the one hand, personal-information management research has studied 

empirical information-finding [e.g., Bergman, 2012] and computational tools to 

support personal information management [e.g., Jones & Anderson, 2011] of personal 

information collections.  Increasingly, these collections can reside in various types of 

system, including standalone and intranet file systems, e-mail, Web-based systems 



xx:x Van Schaik et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

and mobile-based systems [Jones & Anderson, 2011].  On the other hand, information 

architecture research has focused on navigation in websites through computational 

cognitive modeling and usability engineering, including non-goal-specific and goal-

specific analysis [e.g., Blackmon et al., 2002, 2003, 2005].  In the case of large 

websites, this work becomes feasible by automating the capture, modeling and 

analysis, where a database-oriented approach is advantageous (this paper).  

Although the application of cognitive computational modeling to personal 

information management and personal information architecture appears to be 

lacking, this application would seem to hold great promise.  However, the problem in 

website analysis that the labels of headings and links could be proper names rather 

than words (this paper) would be compounded by naming conventions using non-

word labels (e.g., abbreviations, initials and dates) in the analysis of personal 

information architectures.  Words, but not non-word labels, are included in the 

semantic space that represents a particular language; therefore, only words can be 

used in non-goal-specific and goal-specific analysis.  Thus, analysis of personal 

information architectures that relies on non-word labels would be incomplete if 

conducted the same way as the analysis of a website’s information architecture.  

However, a database-oriented approach still seems indispensable, as this allows 

analysts to ‘interrogate’ the information architecture efficiently through database 

queries, relate characteristics of computer users’ information architectures to their 

strategy for creating, maintaining and retrieving information from it, and define 

information retrieval tasks to be used in experiments. 

6. CONCLUSION 

The work reported here demonstrates the feasibility of automating cognitive 

computational analysis of the information architecture of large websites, as a basis 

for improvement, and the validity of analysis results through experiments with end-

users.  With further advances in computing technology in terms of internal and 

external memory, and processing power this work is likely to scale up allowing the 

analysis of increasingly larger sites.  Our flexible database-oriented approach allows, 

for example, goal-specific analysis, non-goal-specific analysis, modeling of non-text 

media content, and analysis of the organization and navigation systems of 

information architectures.  We look forward to future work exploiting this approach 

in usability engineering, as a basis for improving web navigation. 

ELECTRONIC APPENDIX 

The electronic appendix for this article can be accessed in the ACM Digital Library. 
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MIKE LOCKYER, Teesside University 

A. SOME LIMITATIONS OF COLIDES AND COLIDES+ 

A1 Implementation of CoLiDeS 

Kitajima et al.’s [2005] implementation of CoLiDes has several limitations.  It is not 

clear whether or how pages are parsed and modeled.  Modeling does not use a 

separate attention phase and separate action phase, in other words does not 

distinguish between headings and links, and therefore not between links without 

headings and links with headings.  Although backtracking is included in the 

modeling of task sequence length, but without the use of path adequacy, 

backtracking is not included in the modeling of usability problems.  The 

implementation does not seem to model information architecture or goal-specific 

analysis in a persistent database, so every analysis would have to start from scratch.  

Moreover, the reported research does not provide a comparison of simulation results 

with the empirical results of web navigation.  Furthermore, this work models a 

system with restricted information architecture, having three fixed levels.  In 

addition, it is not explained how exactly link labels are repaired (e.g., by elaboration 

or another technique). 

Karanam et al.’s [2011] software prototype of CoLiDeS has various shortcomings.  

This starts with the homepage and a goal statement, and predicts the link on each 

page that a user would select.  This approach to implementing CoLiDeS is incorrect, 

or at least incomplete, as it does not consider the headings on a page before choosing 

a particular link.  Besides, it elaborates the hyperlinks using near-neighbor analysis 

before computing the semantic similarity between a user-goal and a hyperlink text.  

However, not every user can necessarily elaborate all links correctly.  Elaborating a 

text using a near-neighbor strategy before LSA analysis ignores the possibility that 

users will ignore difficult-to-understand text [Blackmon et al., 2002, 2003, 2005].  

Furthermore, no details are provided regarding the stop condition and navigation 

history is not taken into account. 
A2 Only accounting for links with heading 

In CoLiDeS/CoLiDeS+, functioning on a single web page screen object, navigation is 

regarded as the outcome of a multi-step process algorithm that divides any given 

page in four processes [Kitajima et al., 2000]:  “parsing, focusing on, comprehension, 

and selection” (p.  3). A shortcoming of this model is that it takes into consideration 

only the headings and links with heading. 
A3 Not taking into account headings 

CoLiDeS+ does not take into consideration the headings under which links are 

organized.  This implies that users do not take into account the scent of the 

corresponding heading when evaluating the scent of a particular link.  To overcome 
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this limitation in a simulation, on each selection, the cosine value of the to-be-

selected element against the goal statement should increase. 
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B. ALGORITHM OF ENHANCED COLIDES/+ 

Input 
Description of goal and start web page 

Algorithm 

Step 1: segment page 

Determine the regions on the page 

Each region is defined by its heading, except the set of headingless sections of links, which is 

treated as a separate ‘headingless’ region. 

Step 2: select region 

Calculate cosine of the heading of each region with goal statement 

IF highest cosine ≥ previously highest cosine 

THEN 

Select region with heading with the highest cosine 

Add heading of selected region to path 

ELSE 

Calculate path-goal relevancy for each region/heading  

IF highest path-goal relevancy ≥ previously highest path-goal relevancy  

THEN  

Select the region with the highest path-goal relevancy 

Add heading of selected region to path  

END IF 

END IF 

Step 3: segment region 

IF region selected 

THEN  

Identify elements of selected region – page elements under the heading defining the 

region 

END IF 

Step 4: check if region contains the target of goal statement 

IF region selected  

THEN 

Calculate cosine of the each element of the selected region with goal statement.   

END IF 

IF highest cosine ≥ 0.85 is found  

THEN  

Stop 

Report path to solution and matching target 

END IF 

Step 5: select action (link) 

Calculate cosine of each link without heading 

Identify maximum of highest cosines from Step 4 (links with heading) and Step 5 (links without 

heading) 

IF maximum ≥ previously highest cosine 

THEN 

Select the link with the highest cosine 

Add selected link to path 

ELSE 

Calculate path adequacy for each link 

IF highest path adequacy ≥ previously highest path adequacy  

Select the link with the highest path adequacy 

Add selected link to path 

ELSEIF there are still remaining regions 

Remove last heading from path 
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Select region with second-highest goal relevancy  

Add heading of selected region to path 

Go to Step 3 

ELSE (impasse – decreasing cosine) 

IF previous page exists 

THEN 

Go back to previous page 

Go to Step 2 

ELSE 

Stop 

Report: “no matching goal statement with a target” 

END IF 

 END IF 

END IF 

Step 6: process next page 

Identify next page by following the selected link 

Go to Step 1 

 

The implementation of the algorithm of enhanced CoLiDeS/+ is available at the following 

location: 

https://github.com/pvschaik/CoLiDeS-slash-plus 
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C. Success per task in Validation Experiment (Study 1) 

Original information architecture 
Practice Task Simulation success, website 

with original information 

architecture 

Pct  

correct [C] 

Pct  

incorrect 

[IC] 

Pct not  

completed 

Pct  

completed 

1 fail 39 61 0 100 

2 pass 30 70 0 100 

3 fail 70 30 0 100 

Main Task           

1 pass 61 39 0 100 

2 fail 59 35 7 93 

3 fail 4 72 24 76 

4 fail 46 13 41 59 

5 pass 17 33 50 50 

6 pass 2 35 63 37 

7 pass 7 11 83 17 

8 pass 7 2 91 9 

9 fail 4 0 96 4 

10 pass 2 2 96 4 

11 fail 2 0 98 2 

12 pass 2 0 98 2 

13 fail 

    
14 pass 

    
15 pass 

    
16 pass 

    
17 pass 

    
18 fail 

    
19 fail         

Main mean, pass, Tasks 1-12 13.98   

  
  mean, fail, Tasks 1-12 23.04       

Practice mean, pass 30.43 

   
  mean, fail 54.35       
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Improved information architecture 
Practice Task Simulation success, website 

with original information 

architecture 

Pct  

correct 

[C] 

Pct  

incorrect 

[IC] 

Pct not  

completed 

Pct  

completed 

1 fail 75 25 0 100 

2 pass 90 10 0 100 

3 fail 90 10 0 100 

Main Task           

1 pass 96 4 0 100 

2 fail 83 15 2 98 

3 fail 88 8 4 96 

4 fail 81 6 13 88 

5 pass 77 4 19 81 

6 pass 25 50 25 75 

7 pass 21 40 40 60 

8 pass 48 0 52 48 

9 fail 35 4 60 40 

10 pass 13 23 65 35 

11 fail 13 10 77 23 

12 pass 17 0 83 17 

13 fail 10 4 85 15 

14 pass 6 2 92 8 

15 pass 8 0 92 8 

16 pass 6 0 94 6 

17 pass 2 2 96 4 

18 fail 2 0 98 2 

19 fail 2 0 98 2 

Main mean, pass, Tasks 1-12 42.26   

  
  mean, fail, Tasks 1-12 60.00       

Practice mean, pass 89.58 

   
  mean, fail 82.29       
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Original (O) versus improved (I) information architecture 
Practice Task Simulation success, website 

with original information 

architecture 

Odds (pct correct, O/I)   

1 fail 0.52 

  
2 pass 0.34 

  
3 fail 0.78 

  
Main Task         

1 pass 0.64 

  
2 fail 0.70 

  
3 fail 0.05 

  
4 fail 0.56 

  
5 pass 0.23 

  
6 pass 0.09 

  
7 pass 0.31 

  
8 pass 0.14 

  
9 fail 0.12 

  
10 pass 0.17 

  
11 fail 0.17 

  
12 pass 0.13 

  
13 fail 

   
14 pass 

   
15 pass 

   
16 pass 

   
17 pass 

   
18 fail 

   
19 fail 

   
Main mean, pass, Tasks 1-12 0.24     

  mean, fail, Tasks 1-12 0.32     

Practice mean, pass 0.34 

  
  mean, fail 0.65     
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D. Success per task in Validation Experiment (Study 1) 

Original information architecture 
Practice Task Simulation success, website 

with improved information 

architecture 

Pct correct 

[C] 

Pct incorrect 

[IC] 

Pct not 

completed 

Pct 

completed 

1 pass 3 97 0 100 

2 pass 25 75 0 100 

3 pass 16 84 0 100 

Main Task           

1 fail 3 97 0 100 

2 pass 22 41 38 63 

3 pass 0 47 53 47 

4 pass 3 34 63 38 

5 pass 0 25 75 25 

6 pass 0 13 88 13 

7 fail 0 6 94 6 

8 pass 0 3 97 3 

Main mean, pass, Tasks 1-7 5 

   
  mean, fail, Tasks 1-7 10       

Practice mean, pass 15       

Improved information architecture 
Practice Task Simulation success, website 

with improved information 

architecture 

Pct correct 

[C] 

Pct incorrect 

[IC] 

Pct not 

completed 

Pct 

completed 

1 pass 59 41 0 100 

2 pass 88 13 0 100 

3 pass 84 16 0 100 

Main Task           

1 fail 63 38 0 100 

2 pass 94 3 3 97 

3 pass 53 44 3 97 

4 pass 59 16 25 75 

5 pass 13 50 38 63 

6 pass 16 13 72 28 

7 fail 0 13 88 13 

8 pass         

Main mean, pass, Tasks 1-7 47 

   
  mean, fail, Tasks 1-7 31       

Practice mean, pass 77       
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Original (O) versus improved (I) information architecture 
Practice Task Simulation success, website 

with improved information 

architecture 

Odds (pct correct, 

O/I) 

      

1 pass 0.05 

   
2 pass 0.29 

   
3 pass 0.19 

   
Main Task           

1 fail 0.05 

   
2 pass 0.23 

   
3 pass 0.00 

   
4 pass 0.05 

   
5 pass 0.00 

   
6 pass 0.00 

   
7 fail 

    
8 pass 

 

  

  
Main mean, pass, Tasks 1-7 0.06 

 

    

  mean, fail, Tasks 1-7 0.05       

Practice mean, pass 0.17       
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E. Comparison of Enhanced CoLiDeS/+ Model with CoLiDeS and CoLiDeS+ 

E1 Similarities 

CoLiDeS, CoLiDeS+ and CoLiDeS/+ share the following characteristics. 
1 The models are based on Kintsch's theory of text comprehension. 

2 In the models, processing takes place in two phases: parsing the page into regions followed by 

focusing attention on the region selected because it is semantically most similar.  

3 While focusing on the selected region, the models evaluate the links within that region and 

select an action (link) in that region. 

E2 Differences 
Criteria CoLiDeS/+ CoLiDeS CoLiDeS+ 

Considers heading, link with heading and link without 

heading, along with link relevance (cosine) 

Yes No No 

Uses heading label to elaborate link label is forward search Yes No No 

Checks that link cosine higher than heading cosine Yes No No 

Increasing (or at least non-decreasing) similarity in path to 

solution 

Yes No Yes 

Backtracking (in case of impasse) Yes No Yes 

Automated and simulated implementation Yes No No 

Predicts correct path Yes No No 

Automated goal statement identification Yes – uses 

paragraphs 

(100-200 

words long)  

No No 

Simulated path and shortest analysis for comparison Yes No No 

Outputs all paths to reach target web page Yes No No 
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F. Guidelines for Designing Information Architecture 

The information architecture of a website can be defined as the structure of its 

organization and navigation, and its labeling scheme [Morville & Rosenfeld, 2006] for 

the benefit of end-users who need to find and use information.  Here, we present a 

small but powerful set of guidelines for improving the information architecture of 

websites, irrespective of size.  Although it is possible to apply these guidelines 

without specific tool support, their application can be more effective when 

appropriate tools are used (for example tools that compute cosine10 and term-vector 

length11).  The guidelines do not replace other credible guidelines for web design.  

Moreover, guidelines in general (including these) are not a substitute for, but rather 

complement, usability-testing of websites with target users. 

Goal-specific analysis and design per goal. For each piece of content (for example 

text12, image, audio clip, video clip) as a goal, define its goal statement [Blackmon et 

al., 2002].  Make sure that information scent (the similarity of the goal statement 

with each web page element leading to the destination page) is sufficient for target 

users [Blackmon et al., 2003]. 

Non-goal-specific analysis and design per web page. 
1 Make sure that each heading label has a distinct meaning for target users [Blackmon et al. 

2002, 2003]. 

2 Under each heading on each page, make sure that each link label has a distinct meaning for 

target users [Blackmon et al. 2002, 2003]. 

3 Make sure that the label of each link that in a headingless region has a distinct meaning for 

target users. 

4 Make sure that the meaning of each link label under a particular heading has sufficient 

similarity with that of the heading label, and enhances the sense and meaning of its heading 

for target users13. 

5 Make sure that the meaning of each heading label is familiar to target users [Blackmon et al., 

2002]. 

6 Make sure that the meaning of each link label is familiar to target users [Blackmon et al., 

2002]. 

7 Make sure that the meaning of each image label or its 'alternate' text is familiar to target users. 

 
10 https://autocww2.colorado.edu/OneToMany.html 
11 https://autocww2.colorado.edu/unfamiliar.html 
12 paragraphs of text on a web page 
13 and the meaning of the heading label enhances the sense and meaning of its links for target users 




