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Abstract— In this paper, we revisit model predictive con-
trol (MPC) for the classical wheeled mobile robot (WMR)
navigation problem. We prove that the reachable set based
hierarchical MPC (HMPC), a state-of-the-art MPC, cannot
handle WMR navigation in theory due to the non-existence of
non-trivial linear system with an under-approximate reachable
set of WMR. Nevertheless, we propose a virtual linear leader
guided MPC (VLL-MPC) to enable HMPC structure. Different
from current HMPCs, we use a virtual linear system with an
under-approximate path set rather than the traditional trace
set to guide the WMR. We provide a valid construction of
the virtual linear leader. We prove the stability of VLL-MPC,
and discuss its complexity. In the experiment, we demonstrate
the advantage of VLL-MPC empirically by comparing it with
NMPC, LMPC and anytime RRT* in several scenarios.

I. INTRODUCTION

The wheeled mobile robot (WMR) navigation problem
considered in this paper is to drive a nonlinear dynamical
WMR governed by a discrete difference equation, from its
initial state to the goal state by on-line real-timely tuning its
control input, in a continuous state and input space. When
there is no available reference path, a successful navigation
must ensure the WMR can converge to the goal state, referred
to as stability. Meanwhile, the real-time nature requires the
computation as promptly as possible, referred to as efficiency.

An intuitive solution to the problem is to combine the
methods of trace planning and trace tracking as a whole.
Unfortunately, the distinctive nature of the problem prevents
many mutual techniques from being applied. Due to the
continuity of state space, traditional heuristic-search based
techniques designed for the planning problem of discrete
space, such as A* like methods [1], [2] are not applicable.
The off-line planning [3], [4] and tracking techniques [5],
[6] cannot satisfy the efficiency requirement enforced by
the online planning. Besides, the approaches for systems
of ordinary differential equations (ODE) [7] are unable to
handle a WMR as the property of universal trace following
no longer holds for discrete systems.

Current approaches solve this problem by extending the
off-line planning and tracking to the online, which mainly
fall into two categories: anytime rapidly exploring random
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tree (anytime RRT) and model predictive control (MPC).
Anytime RRT is the online version of RRT [8], [9] for
trace planning. Along with the trace techniques [5], [6], it
can be used to solve robot navigation problem. However,
regardless of the current result that even the off-line RRT
cannot ensure the probabilistic stability for nonlinear robots
with common settings [10], there is currently no theoretical
stability guarantee on anytime RRT.

MPC is one of the main stream methodologies in robotics
community for the navigation/control problem of various
systems [11], [12], [13], [14], [15], [16]. Its main idea is
at each instant t, to predict the behavior of a system, over
finite future steps, namely, prediction horizon, by solving
a programming problem based on the dynamic model and
collision avoidance specification, and only apply the first
predicted action. This procedure will repeat at the next
control instant until a certain convergent criteria is met.
Basic MPC approach for WMR is to directly encode all the
nonlinear constraints (NMPC) and jointly generate the trace
and inputs [17]. Due to the intrinsic complexity of nonlinear
programming, NMPC is time consuming.

In recent years, hierarchical MPC (HMPC) as one of
the advanced MPC, receives more attention. HMPCs adopt
a two-level structure. In the upper level, a simple linear
dynamic system is used to help plan the trace by linear MPC,
and then the original system tries to follow the trace in the
lower level. Such hierarchical treatment has shown a great
advantage on efficiency for linear/piecewise affine systems
[18], [19], [20]. The key of HMPC is to guarantee the linear
system has a “smaller” state reachable set than the original
system, such that any trace planned by the linear system is
achievable for the original system. It is known as the under-
approximation problem [21], [22].

However, in this paper, we show that the traditional
state reachable-set based HMPCs are inapplicable for WMR
navigation due to the nonlinearity introduced by the state
variable θ, denoting the direction. On one hand, we prove that
there exists one and only one trivial linear system that has an
under-approximate reachable set of the WMR, but can only
steer in place (see Theorem 1). On the other hand, simply
linearizing the WMR dynamic to make classical HMPCs
(LMPC) applicable will inevitably introduce approximation
error as a disturbance and is unable to ensure stability either.

In order to leverage the high efficiency of HMPC, a
novel Virtual Linear Leader guided Model Predictive Control
(VLL-MPC) is proposed for WMR navigation. In the prob-
lem, the target state consists of both the target position and
the target direction. Following the philosophy of successive
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approaching, it is possible to firstly drive a WMR to a point
very near to the target position, and then guide it to the
final state by setting the speed and the angular velocity
properly (see Proposition 1). As a result, the navigation
problem can be safely converted into the problem of finding a
path convergent to the final position. The advantage coming
from such conversion is that the direction variable θ can
be safely ignored in the planning stage such that it is easy
to build a linear system (VLL) under-approximating the
reachable set of the WMR. As the key step of VLL-MPC,
the construction of the VLL for the dynamic of WMR
is elaborated whose validity is strictly proved. Benefiting
from the HMPC structure, VLL-MPC’s stability and high
efficiency can be theoretically assured.

In the paper, we make the following contributions:
• We prove that reachable set based HMPCs cannot

handle WMR navigation in theory;
• We propose a novel VLL-MPC to enable the HMPC

framework for the WMR navigation and give a con-
struction of the virtual linear leader, which is the core
of VLL-MPC;

• We give a sufficient condition to theoretically ensure
the stability of VLL-MPC and discuss the complexity;

• We demonstrate the performance of VLL-MPC in sev-
eral scenarios and show its advantages empirically by a
comparison with NMPC, LMPC and anytime RRT*.

II. PROBLEM FORMULATION

A WMR follows the discrete dynamic model [23], [5]:
x(t+ 1) = x(t) + v(t) cos θ(t)∆T

y(t+ 1) = y(t) + v(t) sin θ(t)∆T

θ(t+ 1) = θ(t) + ω(t)∆T

where x and y denote the position under Cartesian coor-
dinate, θ denote the direction, v and ω are the forward
and steering velocity respectively. This model can be also
represented in a compact form:

q(t+ 1) = f(q(t), u(t)), (1)
where q = [x, y, θ] is the state variable, u = [v, ω] is the
input variable, t denotes the t-th sampling instant and ∆T is
the sampling period. Due to the limit of the engine power,
the velocity is bounded by the input constraint:

u ∈ U , |v| ≤ Vbound. (2)

The WMR’s behavior is either defined by a trace or a path
[24], [25]. A trace of W, denoted as trW (q), is a finite state
sequence {q(t)}tft=0 satisfying Constraint (2), derived from
f , while q(0) = q and tf is an arbitrary natural number. A
path ρW (q) only considers the position part of a trace, i.e.
{[x(t), y(t)]}tft=0. TrW (q) and PW (q) denote the set of all
traces and paths from q, respectively.

Such a robot needs to navigate in a dynamical environ-
ment, including both moving and stationary obstacles. We
consider the linear convex space, that is, the overall state
space of the environment can be described as a polytope Q:

q ∈ Q , P × [−π, π]. (3)

where P represents the position space for [x, y].
We assume that there are n obstacles with linear dynamics,

and the state qi of the i-th obstacles include its position

[xi, yi]:
qi(t+ 1) = fi(qi(t)), i = 1, · · · , n. (4)

Let qe = [q1, · · · , qn]. We use the following compact form
to represent the environment dynamic:

qe(t+ 1) = fe(qe(t)); (5)
The distance between the WMR and any obstacle should not
be over a given dsafe to avoid collision:

‖[x, y]− [xi, yi]‖∞ ≥ dsafe, i = 1, · · · , n. (6)

Subsequently we formulate the WMR navigation problem
based on the above model of WMR and environment:

Problem 1 (WMR Navigation). Given a WMR W, where
• the dynamic model is Equation (1) and its input con-

straint described as Constraint (2);
• an initial state is q(0) = [x(0), y(0), θ(t)];
• a goal state is q′ = [x′, y′, θ′],

an environment E, where
• the dynamic model is Equation (5);
• an initial state is qe(0);

the collision avoidance specification described as Con-
straint (6) and a convergence error bound ε, the WMR
navigation problem is to find a control strategy to determine
a path ρW (q0) by on-line generating a control sequence
{u(t)}∞t=0 such that W can reach Bq′(ε) without collision,
where Bx(r) denotes a ball around x with radius r.

Two key properties stability [26] and efficiency are defined
as follows.

Definition 1 (Stability). A control scheme is stable for a
WMR navigation problem 1, iff starting from the initial state
q(0), the path ρW (q0) of computed by the control scheme
reaches Bq′(ε).

Definition 2 (Efficiency). The efficiency of an on-line control
scheme is defined as its average computation time at each
sampling instant.

III. REVISIT MPCS FOR WMR NAVIGATION

Let us first revisit MPCs, including NMPC and the state-
of-the-art HMPC for WMR navigation from an unified
perspective of reachable set [27], [28] to motivate our idea.

Definition 3 (Reachable set). The reachable set of W from
q after the next sampling period is defined as ReachW (q) =
{q′|∃u ∈ U, q′ = f(q, u)}. Specially, a set ReachW (q) ⊆
ReachW (q) is called an under-approximate reachable set.

In NMPC, at each sampling instant t, an optimization
problem needs to be solved online to predict the behavior
of the robot, which involves the robot dynamic and all
the relevant constraints. Figure 1 shows an example of
how NMPC works at each sampling instant t. In NMPC,
the original nonlinear dynamic is directly encoded in the
optimization problem, which indicates the exact reachable set
(irregular black shape) is implicitly considered. The yielded
nonlinear programming makes NMPC time consuming.

Remark 1. Notably in practice, rather than computing the
reachable set, NMPC only finds a (optimal) feasible point,



𝑡 1|𝑡 2|𝑡 3|𝑡

Fig. 1: Methodologies of NMPC and LMPC at sampling instant t:
The blue rectangle is the state space. Black and red shape represent
the exact and linear-approximate reachable set. The purple points
denote the predicted trace in the next three steps. The symbol
i|t, i = 1, 2, 3 denotes the i-th step predicted at t.

which has lower computation complexity. Here, we leverage
reachable set to provide a mathematical intuition of NMPC.
In Section V, we will elaborate the computation complexity.

A naive idea is to explore if we can find a linear system
with an under-approximate reachable set of the WMR, such
that the WMR can reach every state planned within the
under-approximate reachable set. Then such linear system
can be used to plan the trace in the upper level by MPC,
while the actual input of the WMR is then computed to
drive the WMR to follow the trace. This idea is also
known as hierarchical MPC (HMPC) and adopted in recent
works for linear/piecewise affine systems [18], [19], [20].
Intuitively, the system that only does pivot steering meets
such requirement:
x(t+ 1) = x(t), y(t+ 1) = y(t), θ(t+ 1) = A3θ(t) + u3.

However, it cannot be used for trace planning and thus we
call it trivial. Unfortunately, we find that there exists no non-
trivial linear under-approximation for WMR:

Theorem 1. For a WMR with dynamic model (1) and input
constraint (2), there exists no linear system with an under-
approximate reachable set, except for the trivial one.

Proof. Assume there exists such a system and WLOG, its
dynamic is:

x(t+ 1) = A1x(t) + u1, y(t+ 1) = A2y(t) + u2,

θ(t+ 1) = A3θ(t) + u3.

where Ai and ui are the coefficient and input for each
dimension respectively. Consider the special case q(t) =
[0, 0, 0]. Recall the dynamic of WMR, we know

ReachW (q(t)) = [−Vbound∆T,−Vbound∆T ]× {0} × [−π, π].

To meet the under-approximation requirement, we have
0 = y(t+ 1) = A2y(t) + u2 = u2

Similarly, when q(t) = [0, 0, π/2], we can obtain that u1 =
0. Thus this system is trivial.

We may simply linearize the nonlinear WMR dynamic
and use the linear dynamic for planning to enable HMPC
structure, ignoring the requirement of under-approximation.
It will lead to the linear approximate reachable set with the
linearization error (red polytope). To differ it from the typical
HMPC, we name it LMPC. However, such linearization is
precise only locally around the given point. Since one cannot
“predict” the linearization of the system at future steps, the
linearization error will inevitably accumulate over time and
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Fig. 2: Relation between the position and input variables: The
position of the WMR at t + 1 is determined by the direction θ(t)
and the linear velocity v(t), while θ(t) is determined by ω(t− 1).
Thus, the position at t+ 1 is determined by v(t) and ω(t− 1).

makes the robot system unpredictable (See Figure 1).

IV. VLL-MPC

Our idea is based on an interesting observation that once
WMR’s position is very closed to the goal position, we can
always let the overall state also close to the goal state:

Proposition 1. If ‖[x(t), y(t)]− [x′, y′]‖ ≤ ε, then let v(t) =
0, ω(t) = (θ′ − θ(t))/∆T , we have ‖q(t+ 1)− q′‖ ≤ ε.

Thus the original problem can be converted into determin-
ing a convergent path.

Based on Proposition 1, we propose a virtual linear
leader based model predictive control (VLL-MPC) scheme
to enable HMPC structure. We construct a virtual robot R
with state variable qR, which has linear dynamic and the
smaller path set from any state q than the WMR W , that is
PR(q) ⊆ PW (q). We refer to R as a virtual linear leader.
Then following the HMPC manner, we online plan the path
based on the dynamic of R by linear MPC. With a larger
path set, the WMR is able to strictly follow the planned
path. Thus, we can make W converge to the goal state q′ by
letting R converge to q′R = [x′, y′]. In the following, we first
introduce the construction of the virtual linear leader. Then
the detailed VLL-MPC will be given.

A. Construct a Virtual Linear Leader
Observing the dynamic of W as Equation (1), we can find

that the position at instant t+1 is determined by the forward
velocity v(t) and steering velocity ω(t−1) (See Figure 2). It
motivates us to construct a virtual linear leader R as follows:
x(t+ 1) = x(t) + v1(t)∆T, y(t+ 1) = y(t) + v2(t)∆T,

or in a compact form:
qR(t+ 1) = fR(qR(t), uR(t)), (7)

where qR = [x, y] is the state, uR = [v1, v2] is the input. The
input constraint is:

|v1|, |v2| ≤
√

2

2
Vbound, v1(0) = v2(0) = 0. (8)

Now we point out the validity of our construction R.

Theorem 2. For a WMR W with the dynamic model (1)
and the input constraint (2), and the virtual linear leader
R with the dynamic model (7) and the input constraint (8),
∀q(0) = [x(0), y(0), θ(0)] ∈ Q, let qR(0) = [x(0), y(0)],
then we have PR(qR(0)) ⊆ PW (q(0)).



Proof. Given any path
ρR(qR(0)) = {[x(0), y(0)], · · · , [x(t′), y(t′)]} ∈ PR(q(0)),

where t′ is the terminal instant. Let
∆x(t) , x(t+ 1)− x(t), ∆y(t) , y(t+ 1)− y(t),

∆D(t) ,
√

(∆x(t))2 + (∆y(t))2,

γ(t+ 1) = arcsin
∆y(t+ 1)

∆D(t+ 1)
, if ∆D(t+ 1) 6= 0.

We construct the input sequence of W as
µ = [v(0), ω(0)], · · · , [v(t′ − 1), ω(t′ − 1)],

where
v(t) = ∆D(t)/∆T, t = 0, · · · , t′ − 1

ω(t)=


0, ∆D(t+1)=0, t<t′−1

(γ(t+1)−θ(t))/∆T, ∆x(t+1)≥0, t<t′−1

(π−γ(t+1)−θ(t))/∆T, ∆x(t+1)<0, t<t′−1

(θ′−θ(t′−1))/∆T, t=t′−1

(9)

It is easy to check that v(t) is valid in terms of Constraint
(2) and the path ρW (q(0)) of W generated by µ equals
ρR(qR(0)).

Remark 2. Note that ω(t′ − 1) does not affect the es-
tablishment of Theorem 2, thus can be arbitrary. However,
when qR(t′) approaches the goal position, according to
Proposition 1, our assignment of ω(t′ − 1) can let θ(t′) be
the goal direction.

B. Control Scheme

As indicated by Figure 2 and Equation (9), W ’s input at t
is computed based on the states of R at both t+1 and t+2,
thus we need to compute the planned path two steps ahead,
which is significantly different from the current HMPC.

In detail, at each sampling instant t, the WMR W knows
its current state q(t), while the virtual linear robot R knows
its state qR(t + 1). the control scheme consists of two
successive steps:
Compute the planned state at t+ 2: The controller tries to
plan a goal state qR(t+ 2) for R at t+ 2 by linear MPC:

min
q̃R(H|t+1)

H−1∑
k=0

∥∥qR(k|t+1)−q′R
∥∥
∞+lH(qR(H|t+1))

s.t.



qR(k|t+1) = fR(qR(k−1|t+1), uR(k−1|t+1)), 1≤k≤H,
|uR(k−1|t+1)|≤[

√
2

2
Vbound∆T,

√
2

2
Vbound∆T ], 1≤k≤H,

qR(k|t+1)∈Q, 1≤k≤H,
qe(t+k+1)=fe(qe(t+k)), 1≤k≤H,
‖qR(k|t+1)−qi(k|t+1)‖∞≥dsafe, 1≤i≤n, 1≤k≤H,
qR(H|t+1)∈Pf , qR(0|t+1) = qR(t+1).

(10)
where H is the prediction horizon, the notation (·)(k|t+ 1)
denotes the predictive value at the (t+1+k)-th collaboration
instant computed at time t + 1, q̃(H|t + 1) , qR(1|t +
1), · · · , qR(H|t + 1) denotes the decision variables, and
lH(qR(H|t + 1)) , c ‖qR(H|t+ 1)− q′‖∞ is the terminal
cost and c is an user-defined coefficient. Pf is the terminal
constraint set. lH and Pf are both used to ensure stability.
Let q∗R(1|t+ 1), ..., q∗R(H|t+ 1) denote the optimal solution.
The first sample q∗R(1|t+1) will be used as the desired state
qR(t+ 2) for R at the instant t+2:

qR(t+ 2) = q∗R(1|t+1). (11)

The VLL R then moves to qR(t+ 2).

Compute the input: The controller then derives the input of
the WMR W based on the state qR(t+ 1) and qR(t+ 2) of
R. That is, compute u(t) = [v(t), ω(t)] according to the state
qR(t+1) and qR(t+2) by (9) and apply it on W by (1) such
that W reaches q(t+1), where [x(t+1), y(t+1)] = qR(t+1).

This procedure will be repeated at the next sampling
instant t+1 based on until the q(t) meets the convergence
criteria ε.

Remark 3. Note that an obstacle here can be either uncon-
trollable (e.g. a building) or controllable (e.g. a robot with
linear dynamics). Specially, when handling a controllable
robot obstacle, our approach can be naturally integrated with
existing distributed MPC schemes [18], [33].

V. ALGORITHM ANALYSIS

[Stability] Theorem 2 ensures that the path planned based
on R can be achieved by W . Thus the stability of VLL-MPC
is determined by the linear MPC law (10), (11).

Lemma 1. VLL-MPC scheme stabilizes the WMR W iff the
MPC law (10), (11) stabilizes the virtual linear leader R.

In the theory of linear MPC, the terminal constraint set and
cost function methods are widely used to ensure the stability
by properly choosing its stable parameters, a terminal cost
lH , a terminal constraint set Pf and a controller function
κ(·) [26], [29], [30]. We adopt the strategy of parameter
configuration in [29] and give the following theorem:

Theorem 3. ∀H ∈ N+, c ∈ R+, such that Pf = {q′R}, then
the VLL-MPC scheme stabilizes the WMR W .

Proof. The MPC law (10), (11) stabilizes the virtual linear
leader R with this parameter configuration [29]. According
to Lemma 1, it is equivalent to that VLL-MPC scheme
stabilizes the WMR W .

[Complexity] Observe the control scheme of VLL-MPC.
The overall computation consists of solving the optimization
problem (10) and computing the input (9). It is obvious that
Equation (9) is an elementary function with fixed number
of operations, which means that computing Equation (9)
takes constant time. Thus, the time complexity of overall
VLL-MPC scheme is determined by the optimization (10).
Based on the current works, we show the advantage of VLL-
MPC on efficiency compared with NMPC in theory by the
following conclusion on complexity.

Theorem 4. NMPC is NP-hard. VLL-MPC is NP-complete
in general. Specially, VLL-MPC is of polynomial time if no
obstacle exists.

Proof. NMPC needs to solve a nonlinear programming
(NLP). It has been shown in [31] that solving a NLP with
quadratic objective and non-convex constraints is NP-hard.
In general, the optimization problem (10) is a mixed integer
programming (MILP), which is NP-complete. If there is no
obstacle, (10) degenerates to a linear programming, which is
of polynomial time.
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(d) Free Space: Anytime RRT*
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(e) Stationary Obs: VLL-MPC
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(h) StationaryObs: Anytime RRT*
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(i) Moving Obs: VLL-MPC
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(l) Moving Obs: Anytime RRT*

Fig. 3: Robot traces in different scenarios

[Sub-optimality] Note that in Equation (10), we restrict
the behavior of W to a linear dynamic system with under-
approximate path set. Thus, the obtained control scheme
is only optimal with respect to the linear model, but sub-
optimal for the original nonlinear model. We believe it is a
fair cost of the efficiency improvement and maintaining the
stability.

VI. SIMULATION

We compare our VLL-MPC method with state-of-the-
art navigation control algorithms, including NMPC [32],
LMPC [23] and anytime RRT* [8]. As mentioned previously,
NMPC has theoretical guarantee on the stability under certain
pre-conditions [26], LMPC cannot ensure stability due to the
introduction of additional disturbance (approximation error),
while anytime RRT* no longer maintains the probabilistic
stability. We empirically demonstrate it by simulation.

A. Experimental Setup

We consider a practical scenario, autonomous parking
scenario, where the parameters of WMR are set as Vbound =
2, ∆T = 1. We carefully choose three typical scenarios,
which are named Free Space scenario, Stationary Obstacle
scenario, and Moving Obstacle scenario, to demonstrate the

pros and cons of each approach. Details on scenario setting
are described as follows:
[Free Space Scenario]: Free Space scenario is the simplest
case, where there is no constraint on robot position and no
obstacle in the environment. The WMR can move freely on
the plane. The initial state of the robot is [3, 47, 0] and the
goal state is [36, 25, 1.5π]. We set the prediction horizon
H=30, c=1. With respect to anytime RRT*, we allow it to
execute no longer than 10 seconds at each sampling instant.
[Stationary Obstacle Scenario]: Stationary Obstacle sce-
nario is more close to a real parking lot than Free Space
scenario, with constraints on robot positions and stationary
obstacles in the environment. The whole parking lot is a
[0, 56]× [0, 50] rectangle area. There are 15 parking spaces
in the parking lot, which arrange into three rows. Some of
the parking spaces have already been occupied by WMRs.
The concerned WMR needs to reach the goal parking space
from the entrance without entering any other parking space
or going out of the parking lot area. The initial state and the
goal state are the same as in Free Space Scenario. We set
the prediction horizon H=30, c=1. Considering the all the
possible situations, we conservatively set dsafe = 6.25. The
maximal execution time for anytime RRT* is 20 seconds.
[Moving Obstacle Scenario]: Moving Obstacle scenario is
further close to a real parking lot than Stationary Obsta-



cle one. There are still position constraints and stationary
obstacles. However, except for the WMR 1 we concern,
there is another WMR, WMR 2, in the environment. WMR
1 needs to reach the goal parking space as in Stationary
Obstacle scenario, while WMR 2 wants to achieve that
state [3, 3, π], denoting the exit, from the current parking
space [28, 39, 1.5π]. One WMR should avoid to collide with
another during the process. In this case, a robot needs to
act by guessing another robot’s behavior. As mentioned in
Remark 3, we therefore integrate each MPC with a standard
distributed control method proposed in [33] to tackle it. We
set H=60, c=1, dsafe = 6.25. The maximal execution time
for anytime RRT* in this scenario is 60 seconds.

All the simulations were performed on a computer
equipped with 8 GB RAM and an Intel Core i5 4570 CPU
under Windows. The LP and MILP problems were solved
by the Gurobi solver [34]. NLP problems encountered in the
NMPC were solved by Tomlab toolbox [35].

B. Result Analysis

The traces computed by various algorithms are shown in
Fig 3. In all the sub-figures, a WMR is drawn as a rectangle,
where the short purple edge denotes the back and the red
point denotes the center. The blue and green *’s denote
the initial position and the goal positions respectively. The
white space denotes the permitted moving area for WMRs.
In the scenarios with obstacles (Fig 3e-3l), the parking lot is
drawn as a large rectangle with red edges, the yellow areas
denote the parking spaces and the blue rectangles denote
the stationary WMRs. Observing Fig 3a, 3e, 3i, VLL-MPC
completed the navigation task in all the scenarios.

NMPC also finished the simulation (see Fig 3b, 3f, 3j). It is
worthy noting robots moved slowly at some points in Moving
Obstacle scenario. The reason is that the performance of non-
linear solvers relies heavily on the initial guess of decision
variables while solving NLP problems. In complicated cases,
it is difficult to find an appropriate initial value. When the
default initial value cannot lead to a solution satisfying the
sufficient condition of stability, we will randomly pick an
initial value in the neighborhood of the current state.

LMPC did not finish any scenario (See Fig 3c, 3g, 3k).
As mentioned in Section III, linearization is precise only
locally around the given equilibrium point. Since one cannot
“predict” the linearization of the system at future steps, the
linearization error will will inevitably accumulate over time
and make the robot dynamic uncontrollable. As a result,
the robot was going to leave the default observable area in
Figure 3c, while in Figure 3g and 3k, the WMR just moved
chaotically around the initial position.

Notably there exists randomness in RRT-based methods,
therefore we ran Anytime RRT* 10 times for each scenario,
where Fig 3d, 3h, 3l show the best results. Anytime RRT*
succeeded in the Free Space scenario but failed in other
two. More specifically, the robot stuck for a long time from
a certain instant in the Stationary and Moving Obstacle
scenarios. In fact, there is currently no explicit theoretical
result on the stability of anytime version of RRT or RRT*.

TABLE I: Comparison on Effiency (Average Compu-
tation Time at Each Instant in Seconds)

Free StationaryObs MovingObs
VLL-MPC 0.165 0.768 2.310

NMPC 1.463 36.64 131.5
LMPC 0.129 0.671 2.563

Anytime RRT*1 10.00 20.00 60.00
1 Considering the characteristics of sampling based algo-

rithms, we give a computation time bound for the anytime
RRT* in each scenario. Such a setting allows the anytime
RRT* to sample at least 800, 1500, 4200 points each time
on our platform in Free space, Stationary Obstacle and
Moving Obstacle scenarios respectively.

In [8], only the situations with the pre-specified reference
trace were discussed in the experiments. A possible reason
is that at each instant, the number of sampling is small due to
the limited computation time and results at previous instants
are dropped, which makes the sampling set not dense in the
state space and probabilistic stability no longer hold. Even
though RRT based approaches show the great advantage in
off-line motion planning, it still needs more effort to ensure
the stability for on-line planning.

Table I shows the efficiency, i.e. the average computation
time at each instant, of all the algorithms in terms of different
scenarios. In the following, we explain the table in detail.
• Compare with NMPC: VLL-MPC achieved at least

88.7% improvement, and the computation time of
NMPC grew rapidly with the complexity of scenarios.
The result fitted well our theoretical conclusion in
Section V.

• Compare with LMPC: Due to that the optimization
problems involved in our VLL-MPC and LMPC are
both linear programming and of the same scale, it is
not surprised that they share the similar efficiency.

• Compare with Anytime RRT*: Anytime RRT* has a
high chance to fail the experiment, even though it is
1 order-of-magnitude longer than the time required by
VLL-MPC. It is worthy noting that we may let it stable
by specifying a sufficient large time bound. However,
such a setting makes anytime RRT* degenerate to the
traditional off-line version.

VII. CONCLUSION

In this paper, we show reachable set based HMPC, one of
the advanced MPC techniques for robot control, cannot han-
dle WMR navigation. Then we propose VLL-MPC to enable
HMPC structure to improve the efficiency compared with
NMPC while maintaining stability. Future work includes the
integrating VLL-MPC with RRT for off-line path planning.
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