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Abstract—Computational modelling of metabolic processes has
proven to be a useful approach to formulate our knowledge and
improve our understanding of core biochemical systems that are
crucial to maintaining cellular functions. Towards understanding
the broader role of metabolism on cellular decision-making in
health and disease conditions, it is important to integrate the
study of metabolism with other core regulatory systems and omics
within the cell, including gene expression patterns.

After quantitatively integrating gene expression profiles with
a genome-scale reconstruction of human metabolism, we propose
a set of combinatorial methods to reverse engineer gene expres-
sion profiles and to find pairs and higher-order combinations
of genetic modifications that simultaneously optimize multi-
objective cellular goals. This enables us to suggest classes of
transcriptomic profiles that are most suitable to achieve given
metabolic phenotypes.

We demonstrate how our techniques are able to compute
beneficial, neutral or “toxic”” combinations of gene expression
levels. We test our methods on nine tissue-specific cancer models,
comparing our outcomes with the corresponding normal cells,
identifying genes as targets for potential therapies. Our methods
open the way to a broad class of applications that require an
understanding of the interplay among genotype, metabolism, and
cellular behaviour, at scale.

Index Terms—Optimisation, Genome-scale metabolic mod-
elling, Flux balance analysis, Cancer metabolism, Synthetic
lethality.

I. INTRODUCTION

Metabolism, the set of biochemical reactions that transform
various compounds in living cells and organisms, is one of the
core systems responsible for maintaining cellular functions.
Metabolic models (reconstructions) of bacteria have been de-
veloped to facilitate the study and manipulation of biochemical
processes [1], allowing the bio-production of valuable com-
pounds to be optimized through metabolic engineering [2]. The
study of human metabolism, on the other hand, is becoming
increasingly important for biomedical applications as an ap-
proach for understanding health and diseases. This is enabled
by the availability of human metabolic reconstructions [3], [4],

A. Occhipinti is with the Department of Computer Science and Information
Systems, Teesside University, UK

Y. Hamadi is with Uber Elevate, Paris, France

H. Kugler is with the Faculty of Engineering, Bar-Ilan University, Ramat
Gan, Israel

C. M. Wintersteiger and B. Yordanov are with Microsoft Research, Cam-
bridge, UK

C. Angione is with the Department of Computer Science and Information
Systems, and with the Healthcare Innovation Centre, Teesside University, UK

which integrate extensive metabolic information from various
resources.

Achieving detailed kinetic modeling of metabolism is chal-
lenging and requires information about parameters that are
hard to measure experimentally (e.g. kinetic rates and con-
centration of metabolites). Thus, Metabolic Flux Analysis
(MFA) has emerged as a powerful methodology for estimating
the fluxes (flow of material) through different reactions or
pathways in large-scale metabolic networks, which provides
an informative marker of metabolic behavior. A number of
computational MFA techniques have been developed to predict
these fluxes under various conditions (e.g. the availability of
different nutrients) and genetic perturbations (e.g. mutations in
genes associated with the catalysis of certain reactions) using
metabolic models such as Recon [5]. In particular, Flux Bal-
ance Analysis (FBA) [/1] reduces the problem of determining
the metabotype (the fluxes through all reactions in the system)
to a tractable linear program under the assumptions of steady-
state and optimality. Due to its scalability and the informative
results it generates, FBA is widely used, for example to predict
growth phenotypes and adaptation in specific environmental
conditions [6], [7].

Even with state-of-the-art metabolic models (e.g. Recon)
and scalable computational techniques (e.g. FBA), a number
of questions in metabolic systems biology remain open. In
particular, recent evidence suggests that cells adjust their
metabolism to optimize multiple (potentially conflicting) ob-
jectives and ensure flexible adaptation to changes in their
external environments [8]], [9]. However, FBA-based methods
usually consider the optimization of a single objective (e.g.
cellular growth), which is represented as a combined flux
(e.g. biomass) or a linear combination of the fluxes through
several reactions (e.g. a number of biosynthesis processes).
Furthermore, Recon annotates different reactions with infor-
mation about the genes involved in their catalysis, and these
qualitative rules (e.g. a given reaction requires either gene A
or gene B) can be used to study the quantitative effects of gene
expression on metabolism. However, due to the large number
of genes, metabolites and reactions modelled, addressing all
possible combined effects of perturbation remains challenging.
Finally, in both metabolic engineering and disease studies we
often seek the gene expression profiles that could lead to
some desired metabolic state. This amounts to solving the
inverse problem of what is typically addressed through FBA,
but computational methods suitable for such studies are still



lacking [[10].

In this paper, we propose an approach and a pipeline of
methods that address the challenges outlined above. To study
the trade-offs between several metabolic requirements, we
combine Flux Balance Analysis (FBA) with multi-objective
optimization without weighting and without combining the
separate objectives into a single function. To capture the quan-
titative effect of gene expression on metabolism, we adjust the
bounds on reaction fluxes in response to regulation. Combining
these two strategies allows us to study the optimal metabolic
states with respect to all the cellular objectives chosen. To
address the inverse problem, we develop an evolutionary
algorithm that allows us to explore the combinatorial, genome-
wide transcriptomic space in order to identify expression
profiles that lead to optimal metabolic states. We then apply
clustering and statistical approaches to study the similarities
between different optimal expression profiles. Compared to
existing methods for linear Pareto-optimization of metabolic
networks [11], [12], our method based on evolutionary algo-
rithms is able to also capture concavity and discontinuity in
the Pareto front, often present due to the nonlinearity of the
metabolic network.

To gain further insights into the relationship between gene
expression and metabolism, we then explore the combined
effects of multiple-gene perturbations on the metabolic state.
Previously, an FBA-based exhaustive computational explo-
ration of single-gene knockouts has led to the identification of
toxic genes that substantially decrease the biomass flux even
when expressed only basally [13]. However, redundancies and
latent associations in the metabolism might mask such toxi-
city, necessitating multiple-gene perturbation to reveal these
combined effects. Here, using our combinatorial approach we
enable the study of double or higher level gene perturbations,
while preserving the quantitative relation between expression
and metabolism. We show that, while computationally inten-
sive, the exhaustive exploration of pairwise perturbations is
still feasible even for large-scale models such as Recon. Yet,
for three or more genes, such exhaustive approach becomes
intractable (e.g. for the 2194 genes encoded as part of Recon
2, such an approach would require solving more than 1.75
billion linear programs). Therefore, we address this problem
by proposing a method based on an incomplete algorithm.

Overall, our pipeline increases the predictive capability of
Recon and allows assessing the potential of cell metabolism
when pushed to optimize desired functions. Furthermore, it
predicts at genome-scale the gene expression levels required
to ensure pre-defined levels of those metabolic functions. The
set of methods included in our pipeline are summarized in
Figure [I] The code is freely available as a MATLAB toolbox
at https://github.com/claudioangione/PGA_and_C-EDGE.

Our methods can be used for mechanistic prediction of
promising high-order sets of genes, thus potentially com-
plementing the trial and error overexpression task usually
performed by experimentalists. Additionally, our high-order
study of the combined effect of many genes highlights, among
all redundancies in the model, those that actually affect the
biomass. As a side-effect, our method also predicts hidden
genetic interactions, where the combined effect of two or

more genes cannot be measured or predicted from the effects
of the genes alone. Our multi-objective approach suggests
potential changes in the expression profiles with the aim of
changing the phenotype of a cell. Unlike the methods based
on present/absent calls leading to on/off gene knockouts, it
may be used as a prediction tool for the rapidly growing
CRISPR-Cas9 techniques based on genome engineering for
precise overexpression and partial knockdown [14]], [15].

II. METHODS
Flux Balance Analysis

For large biochemical networks, FBA-based approaches are
often preferred to other mathematical modeling techniques
(e.g. ordinary differential equations) as they do not require
enzyme Kkinetic parameters and concentrations of metabolites
in the system.

Let the network be composed of m metabolites with con-
centration x;, ¢ = 1,...,m and n reactions with flux rates
vj, 7 =1,...,n. Let § € R™*" be the stoichiometric matrix
(m rows and n columns). The balance that metabolite concen-
trations x; must satisfy is @; = Y 7_) Sijvj, i=1,...,m,
where S;; is the stoichiometric coefficient of the ith metabolite
in the jth reaction. Under steady-state conditions (homeostatic
assumption) #; = 0, Vi € {internal metabolites}, we obtain a
balance equation for every internal metabolite: Z?Zl Sijv; =
0, or alternatively Sv = 0.

Each metabolite of the metabolic network is associated with
a constraint, while the reaction rates v; represent the variables,
each of which is bounded by a minimum and maximum flux
rate Vf’”" and V™", Since the matrix S is not square and
n > m with rows and columns linearly independent, there
are more variables than constraints, and therefore a plurality
of solutions. A final optimal distribution of fluxes, among all
feasible steady-state flux distributions, is computed after an
objective (i.e. a flux rate) or a linear combination of objectives
is chosen to be maximized, therefore solving the maximization
problem

uTv
Sv =0 (1)

min max .
V; <Swv; SV i =100,

max

such that

where u is an n-dimensional array of coefficients defining the
linear combination of flux rates selected to be maximized.

Bilevel optimisation with transcriptomics

In order to add transcriptomic information to an FBA model
in a quantitative fashion, we model the effect of each gene
expression profile as a change in the lower and upper bounds
of the metabolic reactions, yielding a rerouted flux distribution
across the network. Each enzymatic reaction is facilitated or
impaired according to the enzyme abundance, which depends
on the gene expression values. Although it often represents
a subject of debate, this assumption in human metabolism is
motivated by the recent evidence that, in mammals, the mRNA
level is the main contributor to the overall protein expression
level, with a good correlation between transcript level and
protein abundance [|16]], [[17]]. Furthermore, in most normal and
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Fig. 1.

Analysis of simultaneous gene effects on human metabolism. Starting from an augmented genome-scale human metabolic

reconstruction (Al, see also the Methods section), we substitute Boolean gene-protein-reaction rules (GPR) associations with continuous
associations (A2), therefore obtaining a model able to account for quantitative gene expression levels, associated with the phenotype
through bilevel FBA (A3). Then, we develop a multi-objective parallel genetic algorithm (PGA) (B) to find the gene expression levels
that simultaneously optimize the biomass and the phosphoglycerate dehydrogenase (PHGDH) reaction rate (B1). Further analyses highlight
the difference in gene expression level between these scenarios of high, mid and low biomass (B2). Controllability analysis, multi-dimensional
scaling and co-expression analysis are then executed on the optimal gene expression profiles. Independently, we propose a set-based sensitivity
method, named C-EDGE (C), solved as a single-objective parallel genetic algorithm (soPGA), selecting k-uples of e-expressed and KO genes,
suggesting single genes (C1) and groups of genes (C2) with toxic or beneficial effect on the biomass. Finally, we apply our methods to the
study of cancer metabolism (D). We assess cell-specific gene effects in cancer cells, and we use C-EDGE to compare nine tissue-specific

normal and cancer cells.



cancer cell lines, mRNA and protein levels have been found
to be positively correlated [18].

More specifically, transcriptomic data is mapped to the
Recon model using three maps with real-valued domain and
range, defined by three rules that allow us to further constrain
the model [[19]. Each reaction in the model is controlled by a
single enzyme, by two or more enzymes (enzymatic complex,
represented by a Boolean AND relation), or by different but
equivalent enzymes (isoenzymes, represented by a Boolean
OR relation). We derive the gene set expression data using
the following rules (applied recursively for gene sets where
the AND/OR rules are nested):

gsx(a) = gx(a), a single gene,
gsx(a AND b) = min{gx(a), gx(b)},
gsx(a OR b) = max{gx(a), gx(b)},

a + b enzym. complex,

a, b isoenzymes,
2

where gsx is the gene set expression value, and gx(a) and gx(b)
are the gene expression values (expressed as fold changes) of
two genes a and b, respectively. It is worth mentioning that,
in our pipeline, gx are values generated by the PGA (see the
next subsections).

Standard FBA only takes into account a single objective or
a linear combination of objectives. However, it is now widely
believed that a cell has to perform different, often conflicting
tasks while ensuring a high growth rate [20f], [21]. Trade-off
have also been reported to limit the cellular optimization, e.g.
as a result of evolution or adaptation to a new environment
[22]. As proposed by Costanza et al. [23]], a multi-objective
approach is more realistic than considering only the assump-
tion of maximum growth. Let m be the number of metabolites
and n the number of reactions in the model. The stoichiometric
matrix is § € R™*™ and v € R" is the array of flux rates. We
solve the following two-level maximization problem, which
allows us to associate an expression profile with an objective
vector v of flux rates:

max tTo
such that max uTv
such that Sv =10 3)
gsx] VM <y < gsx] Ve
1=1,..,n

where u and ¢ are n-dimensional arrays of weights associated
respectively with the first and second optimization objectives,
gsx; is the gene set expression of the ith reaction in the
model, derived from gene expression using Eq. (). Through
the parameter v we enable modulation of the strength of
the correlation between gene expression and reaction bounds.
Changing this parameter, for values greater than 1, does
not affect the distribution of gene expression found by the
PGA (see Supplementary Information for further discussion
on 7). Since we couple this bilevel linear program with a
multi-objective optimization algorithm, ¢ and u select a single
objective each. In accordance with the original metabolic
model [24]], the upper and lower bounds (V;** and Vimm)
could also assume negative values, e.g. when a reaction is
reversible.

Genome-scale metabolic model

We illustrate our methods through a study of human
metabolism and by identifying cancer-associated pathways.
We adopt a human metabolic model obtained by merging
Recon 2 [3] (7440 reactions, 5063 metabolites and 2140
genes) with the model by Quek et al. [24]] (7327 reactions,
4962 metabolites and 2169 genes). While the former is a
highly curated but generic metabolic model, the latter provides
a smaller and more specialized model for investigating the
metabolism of human cell lines in culture, with 44 additional
gene-protein-reaction (GPR) associations (listed as Supple-
mentary Information [S8 Table)).

By merging the two models we obtained a fully anno-
tated human metabolic model with additional associations
between genes and reactions (7440 reactions, 5063 metabolites
and 2166 genes). Inconsistencies, duplications of metabolite
names, charges, and annotations were corrected manually. We
also replaced three reactions to satisfy stoichiometric balance,
following PSAMM [25]]. The list of the replaced reactions
is available in The Matlab file of the resulting
metabolic model is available as Supplementary Information.

In the proposed model, we focus on biomass as the first
(inner) objective (i.e., uTv in Eq. (3)), and we study separately
high and low biomass scenarios, corresponding to fast- and
slow-growing cells. For both scenarios, we consider the phos-
phoglycerate dehydrogenase (PHGDH) as a second (outer)
objective (i.e., tTv in Eq. (3)). We select this objective as
PHGDH is the enzyme catalyzing reactions in the serine syn-
thesis pathway, together with phosphoserine aminotransferase
(PSAT), and phosphoserine phosphatase (PSPH). Increased
PHGDH flux, and in general serine synthesis pathway activity,
was initially measured in mouse cancer when compared to
normal tissues [26]]. Increased serine metabolism has been
a target of recent research attention as one of the main
biomarkers of cancer, and inhibition of PHGDH has been
reported to block cancer proliferation [27].

Multi-objective optimization

In many optimization problems, the search process for the
best input or parameters needs to take into account more
than one objective. A common approach is to combine the
objectives into a single objective function (e.g. using a linear
combination with fixed coefficients). The main disadvantage
of this approach is that the definition of coefficients in a linear
combination requires choosing the appropriate weight for each
objective. If these weights are not available beforehand, a
possible solution is to optimize each objective separately
(using single-objective optimization), and then estimate the
trade-offs as a linear combination of the solutions, where the
coefficients can be chosen after visual inspection of the single-
objective solutions. However, this approach does not permit to
recover non-convex sections of the set of optimal solutions.
Furthermore, generally, no prior knowledge is available on
how two or more particular objectives are balanced in a given
cell. Therefore, rather than establishing a weight for each
objective and then combining them into a single objective,
we optimize all the objectives simultaneously through an



evolutionary algorithm, providing the final trade-off curve.
Throughout this paper, we will consider the following two ob-
jectives: (i) biomass, and (ii) phosphoglycerate dehydrogenase
(PHGDH).

In a given multidimensional objective space, the trade-off
solution set, also called the Pareto front, is the set of points
x such that there does not exist any other point dominating
z in all objectives. Formally, let ¢q,..., ¢, be r objective
functions to be maximized or minimized. The multi-objective
optimization problem is the problem of optimizing the vector
function ¢ () = (¢p1(x), p2(z), ..., ¢r(z)), where z € X is the
variable (vector) to be optimized in the search space X C R¥.
For a maximization problem, a Pareto optimal vector z* € X
is a point such that there does not exist any other point x that
dominates z*. A point x would dominate x* if:

¢l(x) Z¢i(x*)?Vi:17"'7T7 and 4
3j € {1,...,r} such that ¢;(z) > ¢;(z") %)

(or, equivalently, for a minimization problem, ¢;(z) <
¢i(x*),Vi = 1,...,r, with at least one j such that ¢;(z) <
¢j(x*)). If at least two objectives ¢; and ¢; are in conflict
with each other (e.g., when an increase in the first objective
requires a decrease in the second), then the Pareto front
contains multiple non-dominated trade-off solutions. In our
case, we consider r = 2 objective functions and N genes,
whose space of expression levels (and more specifically fold
changes) represents the search space.

Multi-objective parallel genetic algorithm (PGA)

Genetic algorithms are advanced heuristic methods that have
been successfully applied to solve hard problems involving
biological optimization of given objective functions in a wide
range of parameter selection and control problems. These
include knockout- or partial knockdown-based metabolic en-
gineering [28], robust systems design [29]], evaluation of
response to cancer treatment [30]], identification of cancer
glioma tumors [31]], or design of chemotherapies [32].

To identify the Pareto optimal vector z* € X C RN,
we employ a multi-objective parallel genetic algorithm (PGA)
inspired by NSGA-II [33]]. This genetic algorithm does not
need weights for the objective functions, which enables us
to seek gene expression profiles corresponding to trade-off
solutions for simultaneous optimization (maximization or min-
imization) of multiple reaction fluxes. Each individual (i.e.
gene expression profile) of the initial population is initialized
as (1,1,...,1) + A € RN, where A € RY is a random uniform
noise in the range (—1;1) to ensure early variability in the
population. Mutations and cross-over are used to generate a
new offspring of gene expression profiles.

Each individual of the PGA population is mapped onto
the model using Eq. (2), therefore creating a population
of contextualised metabolic models, which is the run using
bilevel FBA in Eq. (). Hence, for each gene expression
profile (individual) generated by the PGA, a vector of flux
rates v € R™ is generated, output of the metabolic model
corresponding to that individual. Such output is projected
onto a two dimensional space, therefore mapped onto a point

described as a pair of values (uTv,¢Tv), where uTv is the
first (inner) objective representing the biomass rate, and tTv is
the second (outer) objective representing the phosphoglycerate
dehydrogenase (PHGDH) flux rate. Then, we modify the
population of individuals through mutations and cross-over
using the PGA to run again the FBA and generate another
Pareto optimal front under the new gene expression values.
In this way, we can analyse how the gene expression profiles
affect the rates of biomass and PHGDH as shown in Figure |2
exploring the transcriptomic search space by mapping each
gene expression profile generated by the PGA onto a 2D
metabolic objective space. We set the initial population equal
to 128 individuals and the maximum number of populations
generated equal to 384 (see the Supplementary Information
for more details).

More details on the PGA settings are provided as Supple-
mentary Information. The full Matlab code and the steps to
execute it are at https://github.com/claudioangione/PGA_and
_C-EDGE/. The code has been tested on MATLAB R2018b,
and we suggest running it in parallel on a multi-core CPU
(with the MATLAB parallel toolbox), as it has been fully
parallelised to improve the speed of the PGA.

Controllability analysis

Controllability analysis is a technique to evaluate how
robust a given solution is, when it undergoes small pertur-
bations (e.g., changes in one or more genes of the optimal
expression profile found by the multi-objective PGA). From
a biological standpoint, implementing in vitro an overexpres-
sion/underexpression strategy with low controllability coeffi-
cient ensures that the final result is reached even if small
errors are made during the implementation of the in silico
strategy. Therefore, when implementing a solution found by
the PGA, the number and width of the errors that can be made
without affecting the final cellular outcome can be estimated
by computing the controllability of the solution.

Here, for each solution found by the PGA with a PHGDH
production above the significance threshold pp 4+ 20p (mean
and standard deviation of the PHGDH flux rate across the
space sampled by the PGA), we evaluate the controllability
to gene perturbation. Given a point y = (y1,...,¥,) in the
objective space, corresponding to the profile = (z1,...,xN),
where NN is the number of genes in the model and p the number
of objectives, we define its controllability coefficient P(y) as

_ [jmi, |yj+ — il | PR |y; — | _

Hj:l p lyil

, Ply)” =

,,,,,,,,,,

(6)
where y* = f(z +el), y~ = f(max{0,z — I}), T being
the all-ones vector, and f being the function that associates an
expression profile with an objective vector through the gene-
expression augmented FBA in Eq. (3). Note that the operator
max {-, -} is applied entry by entry on the two arrays. In the
subsequent analyses we perform a perturbation of € = 0.01 in
the gene expression levels.

The controllability index P(y) is a proxy for the relative
instability of a given solution y found by the PGA, and takes
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into account the worst output perturbation obtained as a result
of positive and negative gene perturbation. A zero P(y) index
indicates that the phenotypic outcome of the expression profile
is robust to positive and negative perturbations. The greater the
P(y) index, the less robust the point. The definition in Eq. (6)
measures the outcome of the input perturbation as a percentage
of the output perturbation, therefore taking into account the
initial output value; this is to account for the fact that a strong
output perturbation on a large output value is less noticeable
than the same perturbation on a small output value.

Since in our multi-objective setting we do not weigh the
objectives, our calculation of the distance between two points
y® and y” using Eq. @ in the metabolic space is inspired
from the hypervolume indicator [34]] applied to the first two
coordinates of the point, representing the biomass and the
PHGDH. Formally, the distance is defined as

du (v v%) = [ w5 —v)). (7)
j=1,2

Two points with equal hypervolume may lie in different
regions of the objective space, but they represent an equivalent
choice for a decision-maker, due to the absence of weights
establishing the relative importance of the objectives. If such
weights are provided, the definition of distance between two
points may be modified accordingly, and also ||-||; or [|-||5
(Euclidean) distances can be used.

The EDGE algorithm

The effect of a single gene presence or absence in a
metabolic model can be estimated through the EDGE algo-
rithm [13]]. Formally, the EDGE score of a gene g is defined
as

EDGE(9) = min _f*(Ty.) = f(T,), ()
where f is the objective of the linear program in Eq.
(without loss of generality, we will assume f represents the
biomass); T} is the set of reactions associated with g; j ranges
over the K reactions associated with ¢; min;— g f(Ty, j)
represents the lowest biomass that is obtainable when one
reaction (among the K reactions associated with g) has its flux
rate set to e, while the other reactions are set equal to zero;
the reactions not associated with g are not constrained; f°(7},)
is the biomass when all the flux rates of the K reactions
associated with g are set to zero.

C-EDGE: computing expression-based effect of single-gene
perturbations

The EDGE algorithm can be used to perform a systematic
evaluation of gene effects in a metabolic model to correctly
predict growth phenotypes after gene overexpression [13].
However, one of the main limitations of EDGE is that the
perturbation is applied directly to flux rates, and therefore it
represents a perturbation only when the reaction is controlled
by a single gene.

To overcome this, we develop C-EDGE (Controlled
Expression-Dependent Gene Effects), which considers genes,
rather than reactions, as fundamental units, and assesses the

role of perturbations in gene expression levels. Unlike the
standard EDGE approach, C-EDGE is not a reaction-based
approach. In fact, it allows predicting growth directly related
to gene expression in a more detailed fashion. Therefore, it can
be applied directly to all genes in the model. Unlike EDGE,
it does not need to exclude complex gene sets, including any
combination of enzymatic complexes and isoenzymes. Since
our augmented metabolic model is gene-based, we define our
gene score in C-EDGE; by setting all gene expression levels at
their initial value, while computing the difference between the
biomass when a gene g is e-expressed and when it is knocked
out. This is equivalent to computing the sensitivity analysis of
g in O rather than in its initial value. Formally, we define:

C-EDGE, (g) = f(2®) — f(z(),

®=1,...,1,e1,...,1), 29 =(@1,...,1,0,1,...,1),

(€))
where (), (00 ¢ RN, N being the number of genes in the
model, and f represents the cellular objective, in our case the
biomass flux rate. (Note that £ and O in the gene expression
profiles (¢) and z(°) must be in the location associated with

g in the gene expression profile.)

Therefore, the C-EDGE; algorithm is based on the follow-
ing three steps:

(i) Eq. is used to map the gene expression profiles z(¢)
and z(9) to obtain gsz(z(®)) and gsz(z(0);

(i) The metabolic model is then run twice through Eq. (3),
with gsz(z(®)) and gsz(z(®) to compute f(z(*)) and
f(z(©)) respectively;

(iii) Finally, C-EDGE; (g) is computed using Eq. (9).

Then the next gene is perturbed and steps (i), (ii) and (iii)
are performed to compute the C-EDGE; value of that gene.
Hence, by perturbing one gene at a time, and then running
the model in Eq. (3) after applying our gsx map in Eq. (@),
C-EDGE; allows to investigate the single-gene effect on the
cellular objective.

While the standard EDGE cannot be applied as a difference
between “wild-type plus epsilon” and “wild-type” fluxes due
to difficulty of obtaining internal fluxes for the wild type [35]],
C-EDGE; is suitable for computing the same difference be-
cause it is applied directly to gene values, for which the wild-
type profiling might be easier to perform in vitro. Therefore,
C-EDGE; can be computed starting from any gene expression
profile and performing one-at-a-time e-perturbation of gene
expression, in order to evaluate the difference in the biomass
or any other flux in the model.

C-EDGE}: computing combined effect of high-order gene
perturbations

The prediction of combined gene effects enables the identifi-
cation of potential treatments involving multiple targets (e.g.,
a single multi-target drug or a combination of single-target
drugs). To this end, we generalize Eq. (9) for a set G of k



genes, G C {g1,...,9n}, |G| = k, for which we compute the
simultaneous effect on the objective f of the linear program:

C-EDGE(G) = f(2) — f(=?),

ng) =c if g, €G, xl(,e) =1 otherwise, (10)

xgo) =0 if ¢; € G, xgo) =1 otherwise.

Our idea is therefore to perform a combinatorial evolu-
tionary search in the high-dimensional (k > 3) space of all
possible k-uples of genes, to enable the prediction of those
tuples such that their combined C-EDGE score is different
from the C-EDGE scores of its subsets. The search is guided
by a single objective function that represents the difference
between the C-EDGE of a set of k genes and the C-EDGE
of all its k — 1-subsets. We therefore implemented a single-
objective PGA (soPGA) to explore the discrete search space
(present/absence of a gene in a k-uple), and to perform the
maximization of a single objective function as formalised
below.

The aim of the high-order C-EDGEj, is to highlight those
combinations of k genes whose C-EDGE score is different
from the C-EDGE score of all subsets with £k — 1 genes.
Therefore, given a set of k genes G = {g1,...,9x}, we
designed the following soPGA objective function:

A(G)= ][ IC-EDGE.(G)— C-EDGEx_1(G \ gi)] -

1<i<k
(11)

The sets whose C-EDGE; is different from all the C-
EDGE},_; are those with nonzero A(G). A single objective
optimization algorithm is therefore sufficient in this case. An
equivalent approach would be to cast this problem as a k-
objective optimization problem, where the k objectives are the
maximization of |C-EDGEy(G) — C-EDGE},_ (G \ ¢;)|, and
we are interested in any point not lying on any of the axes, i.e.
with all nonzero coordinates. The advantage of using Eq. (T1)
is that A(G) can be regarded also as the confidence of our
prediction for the peculiarity of the subset G.

For the soPGA underlying the high-order C-EDGE, we
considered only the mutation operator. Cross-over, another
commonly used PGA operator, is not biologically meaningful
in this context, because it would bring together and merge two
different subsets. Conversely, mutations starts from a subset
and tries to modify it until it reaches a better combination for
the C-EDGE.

Without this C-EDGE approach, if £ = 3, evaluating each
triple in Recon 2 would require more than 1.75 billion runs
of the bilevel linear program that simulates the metabolism,
which is in the order of months of CPU time. It is worth
noting that the multi-objective PGA was used to explore the
continuous gene expression search-space in order to find the
optimal Pareto solutions, while the soPGA constituting the C-
EDGE algorithm is used to investigate the effects of presence,
absence or e-expression of sets of genes. Therefore, the search
space exploration carried out by the soPGA contained in C-
EDGE is used to select k-uples of genes that maximise A(G).
As a result, it is a discrete search space (presence/absence of
each gene in the k-uple).

Finally, we remark that in the definition A(G) we only
consider all the subsets with cardinality & — 1. One might
argue that it is worth computing the same type of dif-
ference, say A’(G), comparing C-EDGE(G) with all the
subsets of G, and not only with the subsets with k& — 1
elements. However, A’(G) would not be indicative of the
role of G because we would not detect all cases in which
C-EDGEj, # C-EDGEj,_;. For instance, the A’(G) approach
would fail when C-EDGEj,_o, = C-EDGE},, which would give
A’(G) = 0 (and therefore the k-uple would not be deemed
interesting) even if C-EDGEy, # C-EDGE},_1, and therefore
the k-uple should actually be deemed interesting.

ITI. RESULTS
Multi-objective optimization of biomass and PHGDH

In our augmented Recon model, we use bilevel Flux Balance
Analysis in combination with a Parallel Genetic Algorithm.
In the bilevel formulation in Eq. @, we take as a second-
level objective tTv the minimization/maximization of phos-
phoglycerate dehydrogenase (PHGDH) in the model, with
the maximum/minimum possible biomass (first-level objective
uTv). Both objective functions act as objectives for the PGA.
We then take these objectives and optimize both, finding the
trade-off if the two objectives conflict with each other. For
instance, suppose that v* is a (proposed) solution to the bilevel
linear program in Eq. (3) that maximizes the PHGDH while
minimizing the biomass, therefore estimating the minimum
growth rate achievable by the cell in a given condition. We cast
the optimization problem as a vector minimization problem of
the form min (uTv*, —tTv*), where the maximization of the
PHGDH has been cast as the minimization of its negation.
Then, the genetic algorithm seeks the best gene expression
profiles that, once encoded as constraints and after Eq. (3)
is solved, lead to the optimal trade-off between these two
objectives. We therefore obtain a Pareto front in the biomass-
PHGDH metabolic space, where each point corresponds to a
gene expression profile in the genotypic space (Figure 2p). As
a result, by considering this augmented model in combination
with bilevel FBA, we enable mechanistic evaluation of the
metabotype for any given gene expression profile.

We use the phenotypic space as a means to explore the
regions where the cell can operate, i.e. its metabolic potential
[21]. When all genes are normally active, the model predicts
maximum biomass. Modifying the gene expression values
leads to a reduced or essentially unchanged biomass. Indeed,
a common assumption is that the cell’s expression pattern is
adapted to its external environment, and therefore a change
in its gene expression profile (i.e. change of the external
conditions) causes a reduction in the biomass [|36]. The vector
minimization problem coupled with the FBA simulation allows
us to effectively explore metabolic potentials with low biomass
yield.

The Pareto front represents a set of optimal states that can
be reached by human metabolism. Since a PGA (or, in fact,
any algorithm designed to estimate the Pareto front) cannot
guarantee that better solutions will not be discovered with
more populations or with different settings, the Pareto front



can be thought of as a lower bound of optimal metabolic
behavior.

In order to evaluate the robustness of the solutions, we
used controllability analysis (see Eq. (6). Figure shows
that the metabolic configurations with the highest biomass are
associated with low controllability coefficient (and therefore
high robustness). As a result, the points of the Pareto front
with the largest biomass are suitable candidate solutions for
the decision maker, as their robustness is high compared to
other points in the space. This also suggests that metabolic
configurations of low biomass are highly unstable if compared
with medium and high biomass, the latter being the most stable
configuration for human metabolism. Furthermore, during the
exploration of the solution space by the PGA, the low-biomass
regions were the most difficult to reach through its in silico
genetic engineering, as the Pareto optimization algorithm was
not able to reach areas of negligible biomass and low PHGDH.

Optimization-driven sampling of the metabolic landscape

Starting from the metabolic configurations found by the
PGA, we investigate the average gene expression level in three
scenarios (lowest biomass, highest biomass, and mid-biomass).
To distinguish these scenarios, we extract a low-biomass and
a high-biomass sections from the points sampled by the PGA.
We defined as low-biomass points those whose biomass is
negligible (less than 10719), while as high-biomass points
those whose biomass is more than u; + 203, where p; and
oy are the mean and standard deviation of the biomass values
across all the points sampled.

We ran a three-way analysis of variance [38]] to test whether
there is a difference in the variance of the three distribu-
tions (high, mid and low biomass). The null hypothesis of
equal variance was rejected with p-value = 0.034, therefore
leading us to accept the alternative hypothesis that the three
distributions have different variances, with the high-biomass
configurations showing less standard deviation in their gene
expression levels (Figure [2c). This indicates that the way
to reach high biomass values is not simply overexpressing
all genes to a very high level, as one might expect from
a first analysis of the Recon model. Indeed, increasing the
functioning rate of the biomass-producing machinery also
increases the formation of byproducts, that need to be excreted
within the current capabilities of the metabolic network.

Furthermore, we use a similar lowest/mid/highest biomass
class separation to show the average expression level suggested
by the PGA in the three scenarios (S6 Table). In this way, we
allow the analysis of the expression level of single genes in
all cases. The most overexpressed gene when moving from
the low-biomass to the high-biomass metabolic landscape is
SGMSI1, whose expression is significantly altered in different
types of cancer [39]. Conversely, the gene undergoing the
largest underexpression when moving from the low-biomass
to the high-biomass metabolic landscape is GMDS, whose
decreased activity has been previously linked with resistance
to TRAIL-induced apoptosis, and therefore increased tumor
development and metastasis [40]. For both genes, our results
prove a high sensitivity to changes in the biomass.

Entrez ID Gene name C-EDGE Reactions
51727.1 CMPK 0.1310 40
1717.1 DHCR7 0.0980 3
7298.1 TYMS 0.0764 1
9489.1 PGS1 0.0686 1
10558.1 SPTLCI1 0.0572 1
9517.1 SPTLC2 0.0572 1
259230.1 SGMSI1 0.0572 1

TABLE I

C-EDGE SCORE COMPUTED ON SINGLE GENES BY PERTURBING OF
e = 0.01 ONE GENE EXPRESSION LEVEL AT A TIME. ONLY SEVEN GENES
HAVE NON-NEGLIGIBLE C-EDGE SCORE. DIFFERENT VALUES OF €
CAUSED ONLY CHANGES IN THE VALUES OF THE SCORE, BUT NOT IN THE
MEMBERS OF THE LIST, SHOWING THAT THE METHOD IS FULLY ROBUST
TO CHANGES OF THE PERTURBATION.

Finally, with the goal of estimating the co-regulation of
genes across different regions of the metabolic space (and
specifically high/low biomass), we defined a distance between
genes based on the correlation between their expression levels
across the points sampled by the PGA. If p and ¢ are two
vectors representing the expression levels of two genes across
the points sampled, we define a distance:

(p—D(g—1)

7 12
ol Tl (12

d(paq) =1-

where 1 indicates the all-ones vector, and ||-|| is the Euclidean
norm. This definition allows us to capture the correlation of
two gene expression profiles with respect to the deviation from
the wild-type all-ones expression profile. By repeating this
process for all the pairs of genes, we build a dissimilarity
matrix D,, = d(p,q), and a weighted distance graph with
genes as nodes, and edges (p, ¢) whose weight is the distance
d(p, q). In Figures [S2] and we use the low/high biomass
separation of the metabolic space to perform hierarchical
clustering applied in these two subspaces, therefore highlight-
ing clusters of genes in different metabolic scenarios (see
Supplementary Information for more details).

C-EDGE: effects of single-gene perturbations

C-EDGE enables exact tests of toxicity on pairs, triplets
(or larger sets) of genes. A gene is neutral if the cellular
objective is constant regardless of the gene being KO or forced
to be e-expressed. It is beneficial if the cellular objective is
reduced when the gene is knocked out, while it is toxic if the
cellular objective is increased when the gene is knocked out.
We take into account the biomass as the cellular objective. €
is an infinitesimal perturbation but it cannot be arbitrary due
to the finite precision of the floating-point representation in
Matlab. We took € = 1072 as a gene perturbation, which in
turn produces a perturbation in the order of 10~ for the flux
bounds according to Eq. (3).

By perturbing one gene at a time, and then running the
model using Eq. (3) after applying our gsx map in Eq. (),
we identified seven genes as highly beneficial (Table [). The
most sensitive gene, CMPK, takes part in 40 biochemical
reactions. The genes SPTLC1, SPTLC2 and SGMSI1 are part
of the sphingomyelin biosynthetic process, which has been
previously identified as a target for cancer therapy [41].
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Fig. 2. (a) Full multi-objective optimization procedure. Individuals, corresponding to gene expression profiles, are generated by the parallel genetic algorithm
(PGA). For each individual, a context-specific metabolic model is constructed following the gsx mappings in Eq. @) This model is then run using the bilevel
program in Eq. @) obtaining values for the two objectives (biomass and PHGDH), which therefore allow us to map the model onto a metabolic space. The
value of the objectives is then fed back to the PGA for mutation and cross-over, and drives the generation of new individuals to explore the metabolic space.
(b) Multi-objective optimization of biomass and PHGDH. As well as showing the progress of the genetic algorithm, the plot highlights the portions of the
space where human metabolism is able to operate. For instance, there are only a few flux distributions with medium biomass yield and high PHGDH. Solutions
are denoted by progressively colder colors depending on the PGA population in which they have been generated. From a preventive point of view, the most
interesting points are those with low PHGDH and high biomass, representing the case in which the cell has high biomass but low chance of developing
PHGDH-dependent cancer. Conversely, from a therapeutic standpoint, the key solutions are those with high PHGDH (and therefore potential cancer cells),
but impaired cell growth. Overall, we let the PGA generate 384 populations containing 128 gene expression profiles each. The grey area represents the Pareto
front identified from an alternative multi-optimization model by Budinich et al. [37]]. The plot shows that [37] covers a smaller area in the biomass-PHGDH
metabolic space. In particular, all the solutions in the grey Pareto front are dominated by the solutions identified by the method proposed here, showing that
our approach is able to explore a larger area of the solution space. The nonzero controllability coefficients R are shown (in log-scale) from lowest (LC) to
highest (HC) with “stems” above each point in the bottom panel. The points with lowest nonzero controllability, and therefore high robustness to perturbations,
are also the ones with the highest biomass yield.

(c) Highest, lowest and mid-biomass scenarios. Average of gene expression levels across the three regions of the Pareto front. To distinguish the highest,
lowest and mid-biomass scenarios, we extract a low-biomass and a high-biomass sections from the points sampled by the PGA, defining the remaining points
as mid-biomass. More specifically, the low-biomass points are those whose biomass is negligible (less than 10~ 10), while the high-biomass points are those
whose biomass is more than pp + 20, where 1, and oy, are the mean and standard deviation of the biomass values across all the points sampled. The x-axis
shows the fold change of each gene compared to its control value, which is encoded as the baseline value of 1 within the model. In each region, we also
show the box plots with lines indicating 9%-91% probability mass. To test whether there is a difference in the variance of the three distributions (highest,
lowest and mid-biomass) we run a three-way anova test. The null hypothesis of equal variance was rejected with p-value = 0.034, therefore leading us to
accept the alternative hypothesis that the three distributions have different variances, from the largest (low-biomass) to the smallest (high-biomass).

C-EDGE;y: effects of high-order gene perturbations

Using C-EDGEj, we investigate the combined effect of
high-order sets of gene perturbation on the metabolism. First,
we tackle the problem of computing the combined effect
of pairs of genes by defining a new single-objective PGA
(soPGA, with objective function A(G), see Methods). Specif-
ically, we are interested in those sets of pairs of toxic genes
that become non-toxic if activated together. Among these pairs
of genes, three pairs are found by the soPGA to have a sur-

prising behavior of e-activation; namely, they are remarkably
beneficial if e-activated as a pair, but both genes are slightly
toxic if e-activated one at a time. These three pairs detected by
our method are the only pairs showing this behavior, as proved
by the extensive computation of C-EDGEs that we perform in
[S2 Tablel

In Figure 3] we show the behavior of the first pair of
genes (DTYMK, SLC25A19) in the human metabolic path-
ways, extracted from the BiGG database [42]. An e-gene
expression of both genes causes a decrease in the biomass.



This interaction is due to the fact that dTDP needs to be
produced and then transported into the mitochondrion from
the cytosol. If both reactions are impaired, the metabolism is
not able to compensate and the production of mitochondrial
DNA is impaired, causing a decrease of biomass to 0.61
h~!. In Figure E[, we show the behavior of the pair (GUKI,
SLC25A19). The interaction between these genes is due to
the shared metabolite dGDP. The lack of both enzymes also
affects mitochondrial DNA, in a more severe way with respect
to the first pair. The biomass is decreased to 0.22 h~!. Finally,
the third pair (DEGS1.1, DEGS1.2), shown in Figure |'S_T|, is a
pair of transcriptional variants of the same gene DEGS1. This
kind of interaction is due to the fact that the conversion of
dihydroceramide into N-acylsphingosine is key for the growth
of the cell, and at least one of the two reaction branches must
be active.
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Fig. 3. C-EDGE> detects long-range pathway interactions. DTYMK is
responsible (alone) for dTMP kinase and nucleoside-diphosphatase (dUDP).
SLC25A19 is responsible (alone) for 64 transport reactions, including the
dUDP reaction associated with DTYMK. The products and reactants in
common between the reactions controlled by DTYMK and those controlled
by SLC25A19 are ADP, dTDP, ATP (here both reactions are reversible,
therefore the terms reactant and products are interchangeable). A further
analysis on the topology of the network justifies this behavior found by C-
EDGEg3: if the expression of both genes is epsilon, there is (i) e-production
and (ii) e-transport (SLC25A19 is a deoxynucleotide transporter) of dTDP
into the mitochondrion from the cytosol, thus impairing mitochondrial DNA
replication. In the absence of mitochondrial DNA, the biomass production is
severely impaired. If at least one of them is fully working, the biomass is not
impaired, irrespective of the expression level of the other gene of the pair.
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Finally, we applied C-EDGE to identify sets of genes whose
over- or underexpression impedes cell proliferation (“toxic”
genes), and those sets of genes whose activation is highly ben-
eficial for the biomass. With the C-EDGE algorithm applied
to sets of three genes (S4 Table), we were able to suggest
sets of genes where the C-EDGE3 score of the set is different
from all the three C-EDGE; scores of the sub-pairs. Interest-
ingly, we found some sets of genes (e.g. {SLC7A10,FUCAI,
SLC40A1}) that are toxic as a set, although the three sub-pairs
are beneficial to the biomass.

To check consistency between the results obtained through
optimization and those obtained with C-EDGE, we ap-
plied multi-dimensional scaling to the low-biomass and high-
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Fig. 4. C-EDGE: detects short-range pathway interactions. GUK1 is
responsible (alone) for deoxyguanylate kinase (dGMP:ATP) and guanylate
kinase (GMP:ATP). SLC25A19 is responsible (alone) for 64 transport re-
actions, including dATP, where the ATP is associated with GUKI. In this
case, C-EDGEx> retrieved a nontrivial relation between two pathways. dGDP
is involved in both reactions, as well as ATP and ADP. While this behavior
requires further experimental validation, we can speculate that the key role
is played by dGDP, since ADP and ATP are widely diffused metabolites and
can therefore be easily replenished by alternative reactions.
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biomass section of the Pareto front (see Supplementary Infor-
mation, also Figure [S4), also highlighting the position of the
seven genes with the highest C-EDGE; score. As expected,
the seven highly beneficial genes are more central in the high-
biomass case. We finally carried out further statistical analysis
on the Pareto front to highlight its relationship with C-EDGE
(see Supplementary Information).

As shown in Figures 3] @] and [S1] our method proves useful
to infer lethal combinations of reactions that are not directly
related, and are not part of the same pathway, as well as
crucial isozymes for the production of biomass. As a result,
C-EDGE; and higher order C-EDGE, are able to compute the
coupled robustness of pathways with respect to the overall cell
metabolism, and to identify hidden lethal interactions between
pathways that impair the production of biomass.

We remark that these results are unlikely to be found by
chance or with a visual inspection of the metabolic map. While
the first pair (Figure[3) shares key metabolites for the biomass,
and it may therefore seem straightforward to attribute a key
role for the pair, a large number of reactions also share the
same metabolites. For instance, the number of reactions in
which the ATP is involved in the cytosol is 335, which means
that, assuming one gene per reaction, up to (335) = 55,945
pairs of genes could be strong candidates for showing the same
surprising behavior we found for this pair.

For k > 3, systematically exploring the space of all possible
combinations of genes and evaluating the effect of their
perturbation on the metabolism would be generally infeasible
due to combinatorial explosion. C-EDGE would still require a
relatively large amount of CPU time but, as shown with k = 3,
it can dramatically decrease the time needed to explore this
Boolean search space, also by proposing k—uples as soon as



they are found during the generation of the populations within
the soPGA.

Differential analysis of nine tissue-specific cancer models

In order to test C-EDGE on various cancer models, we use
our framework to perform comparative metabolic analysis in
the same tissue and across different tissues for cancer and
normal cells. We use the genome-scale models of nine tissue-
specific cancer models by Nam et al. [43]], obtained from
Affymetrix and Illumina Hiseq RNA-seq platforms, where the
affy package and GIMME were used to generate each model.
Table reports the details of each model including the
number of reactions, metabolites and genes.

By considering tissue-specific models as a case-study of
C-EDGE, we provide hypotheses on the molecular basis of
cancer for nine tissue-specific metabolic models, obtained
using gene expression profiles of primary cancer cells and the
corresponding normal cells [43]. Importantly, the method we
propose seeks information on genes taking into account only
the effect of their expression level on the metabotype, and not
the expression level itself.

In Tables [STI] and we list the genes detected as
beneficial (positive C-EDGE score), neutral (zero C-EDGE
score) or toxic (negative C-EDGE score) for each of the nine
metabolic models in cancer and normal configurations. C-
EDGE computes the metabolic effect of the perturbation of
single genes in the model.

We find that the gene CRLSI1, controlling cardiolipin syn-
thase, is the only gene with positive C-EDGE score in all nor-
mal cells and in all cancer cells. Cardiolipin is a phospholipid
at the heart of mitochondrial metabolism. It is found mostly
in the inner mitochondrial membrane and plays a pivotal role
in ensuring mitochondrial function. Our finding is confirmed
by studies that correlate changes in cardiolipin content or
composition with most cancers [44]]. More specifically, this
correlation is due to the fact that energy metabolism is
impaired in most, if not all, cancer cells, independent of
tissue origin. Moreover, tumourrelated metabolism and the
mitogenactivated protein kinase (MAPK) signaling pathways
were found to be enriched with CRLS1-coexpression genes.
CRLSI1 has also been classified as novel tumor suppressor
involved in regulating lipid and selenoamino acid metabolism
in the tumour microenvironment [45].

From the comparison of the nine models, CMPK resulted as
a neutral gene for the normal liver cell, while is always with
positive C-EDGE score in most of the other models. Cytidine
monophosphate kinase (CMPK), a member of the nucleoside
monophosphate kinase family, plays an important role in
the biosynthesis of nucleoside metabolism and tumour de-
velopment. Furthermore, knock-down of CMPK significantly
inhibits cancer cell proliferation, migration and invasion [46].

Phosphatidylglycerophosphate synthase (PGS1) is in six
cases neutral for cancer cell, but negative for the normal cell; it
catalyzes the first step in the biosynthesis of the mitochondrial
phospholipid cardiolipin (finalized by CRLS1). PGS1 has been
classified as a potential target that prevents cell growth, which
also supports our findings [47].

The sphingomyelin synthase 1 gene (SGMS1) has been
classified by the model as beneficial for all types of cancer.
Indeed, SGMS1 is one of the genes, whose expression is
often altered in cancer [39]. It plays a crucial role in cancer
since it controls the inhibition of the proliferative signaling
pathways in cancer cells. In addition, it has been shown
that the activation of SGMSI increases saturated fatty acids
incorporated in a number of cancer cells [48]].

Finally, biotinidase (BTD) was identified as beneficial for
breast, kidney, liver and lung cancer cells. This is supported by
several studies that report BTD as novel marker in cancer [49]],
[S0]. Our pipeline can also offer routes to predict gene targets
for potential drug development. For instance, in both the breast
cancer cell and in the lung cancer cell (adenocarcinoma),
an overexpression of MLYCD was correctly detected to be
beneficial for the cancer cell, while being toxic for the normal
cell. This result has been experimentally proven by other in
silico experiments [51f], therefore suggesting MLYCD as a key
target to inhibit in order to selectively impair proliferation in
cancer cells while not affecting normal cells.

Comparisons with previous approaches

We compared the biomass and PHGDH flux rates reported
in Figure with those obtained by running the method
proposed by Budinich et al. [37]]. The latter is based on bilevel
optimization and it is carried out using BENSOLVE [52],
which computes a set of directions and points describing the
image of the efficient points. This algorithm provides exact
solutions by calculating the objective space and identifying
the vertices, which corresponds to Pareto optimal points. We
ran the model proposed in [[37] in exactly the same setting and
on the same metabolic model adopted in our approach. First,
we used Bensons algorithm for multi-objective flux balance
analysis (MO-FBA). Then, we ran the BENSOLVE solver to
investigate the solution space.

The grey area in Figure 2b shows the search space covered
by the method presented in [37]. The points in the Pareto
front obtained using the method proposed by Budinich et
al. [37] are all dominated by the Pareto front calculated by
the methodology proposed here, which also includes biomass
optima that are not reached by Budinich et al. Although this
indicates that the method proposed in Budinich et al. does
not cover the whole area of the Pareto front identified by our
method, the computational cost is considerably lower than our
PGA approach. Hence, it provides a highly effective solution
for a fast estimation of a lower bound of the Pareto front
in cases of low computational capacity or limited available
computational time.

Our method is also different from previous works that con-
sider multi-objective optimization with single-gene knockout
[L1]-[13]] since it allows to explore double or higher level
gene perturbations with a non-linear approach providing new
insights into pathways interactions (Figures [3HST). This is due
to the integration of the PGA and C-EDGE with metabolic
modelling, which allows us to identify optimal solutions for
simultaneous non-linear optimization problems.

Finally, to show the added value of C-EDGE compared to
the standard EDGE, we also ran the original EDGE algorithm



[13] on the augmented Recon 2 model (Table S1). The EDGE
algorithm identified only two non-negligible genes: CRLS1
and SGMSI1, which are involved in only one reaction. Both
genes were also detected by C-EDGE in the augmented Recon
2 model (Table[I) or in the cancer-specific application (Tables
[STI). Furthermore, the standard EDGE was not able to detect
two of the genes involved in more than one reaction (i.e.
CMPK involved in 40 reactions and DHCR?7 involved in 3
reactions), which were all detected in our C-EDGE approach.
This is due to the fact that the EDGE algorithm cannot be
run at gene-level on isozymes or enzymatic complexes since
it is based on flux rates’ perturbations. Hence, it represents a
single-gene perturbation only when the reaction is controlled
by a single gene. Conversely, C-EDGE takes genes, rather than
reactions, as fundamental units. In this way, we can assess the
role of perturbations directly at gene level.

IV. CONCLUSION

Despite often being recognized as a consequence of the
state of a cell, metabolism is now widely accepted to play
a central role in deciding the cell behavior [43], [53]. Recent
evidence suggests that complex biological outcomes, including
onset of diseases, are often the result of the simultaneous
regulation of multiple genes. To this end, in this work we
took a multi-perturbation and multi-objective perspective. We
proposed a pipeline of methods for optimization and analysis
of gene expression and its effects on human metabolism.
We used a manually curated and improved version of the
human metabolic model Recon 2, augmented with quantitative
transcriptional regulation. Our method can be used for the
mapping of gene and protein expression onto the metabolism
in a continuous fashion, without the need of thresholds for the
Boolean status of low/high protein abundance [54]].

Within the same pipeline, we proposed C-EDGE, a method
based on a single-objective genetic algorithm to detect toxic,
neutral, or beneficial sets of genes in the global metabolic
model and in its tissue-specific versions. Previous methods for
gene overexpression or knockout involved only single genes
(e.g. the ASKA library [55]]), pairs of genes (e.g. double
knockout analysis [56] or synthetic genetic arrays [57]]) with
time-consuming procedures due to combinatorial explosion.

Existing experimental methods to predict the effect of the
simultaneous perturbation of a set of genes are labor-intensive
tasks. The main problem faced by these techniques is the
scalability to sets of genes, becoming extremely challenging
in three-wise gene analyses. In fact, although computational
approaches for pairs of genes have been proposed [30], even
studying synthetic lethality for three genes becomes compu-
tationally intractable. Our high-order C-EDGE can therefore
dramatically improve predictions of cancer genes in cell-
specific metabolic models. It can easily be applied to identify
synthetic lethality and synthetic dosage lethality for high order
k-uples of genes, from a gene-based perspective rather than
from a reaction-based perspective [S§].

Using the high-order C-EDGE on nine tissue-specific cancer
and normal models, we found that the importance of a pertur-
bation of a single gene can vary from cancer to cancer, and

also at different stages of the same type of cancer [43]. The
genetic modifications and the highly toxic and beneficial genes
were not consistent across different cancer types. We remark
that all our C-EDGE computations are performed directly on
genes rather than on reaction fluxes. Therefore, compared to
similar approaches [13]], [43]], we are able to analyze reactions
controlled by isoenzymes or enzymatic complexes. We also
showed how C-EDGE5 and the high-order C-EDGE}, are able
to detect cases where a combined effect of different genes can
lead to lethal consequences for the cell.

Our approach can be used on normal/cancer pairs of models
to predict environmental or transcriptomic states that may
reduce the proliferation rate of cancer cells. For instance, one
can evaluate the cancer and normal metabotype associated
with gene expression profiles in various conditions. With a
multi-objective optimization algorithm, this allows seeking the
environmental conditions that minimize the growth of cancer
cells, while also minimizing the effect on normal cells. Further
applications of our method are discussed in Supplementary
Information.

Manipulating genome and regulating gene expression finds
applications in the reconstruction of engineered biological
systems, with possible applications to drug development and
human gene therapy [59]. We are able to quantitatively predict
the combined effects of any set of genes (toxic, beneficial or
neutral), which are not predictable from the analysis of the
effects of the single genes on the growth rate. Pairwise and
higher-order (k > 3) detection of combined gene effects is a
desired feature in drug discovery, as it enables the investigation
of treatments effective for multiple targets (e.g., a single
multi-target drug or a combination of single-target drugs).
This is especially useful in cancer therapeutics, where the
target is an optimal dosage from a multiobjective standpoint,
which maximizes efficacy and minimizes toxicity (therefore,
multi-optimal solutions ensure high therapeutic index). Most
importantly, we are able to identify high-order overexpression
combinations of k genes whose effect on the phenotype is
different from that of all subsets with £ — 1 genes.

The field of transcription modulation is experiencing a fast
growth phase due to the recent advances in the CRISPR-Cas9
technology, which can be repurposed for regulation of the
gene expression profile of a cell. Methods to find knockout
strategies are successfully guiding metabolic engineering [60],
[61], and general recent advances in mammalian cell engi-
neering have been reviewed elsewhere [[62[]-[|64]]. Likewise,
computational biology will soon need to address the lack of
methods to guide genetic modulations of expression, where
the considerably larger search space will likely require using
metabolic modelling in combination with advanced machine
or deep learning methods [65]. Our method may offer a
route to find the best gene modulations (overexpression or
partial knockdown) to carry out on multiple genes and towards
multiple cellular objectives. For instance, expression vectors
found with our method can be potentially used as a guide
for CRISPR-Cas or CombiGEM systems [66]], which have al-
ready proven successful in editing and modulating expression
simultaneously across the genome [[67]], [68]], e.g. to prioritize
therapeutic targets in cancer cells [69].



ACKNOWLEDGMENT

HK is supported by the ISRAEL SCIENCE FOUNDATION
(grant No. 190/19). CA would like to acknowledge the support
from UKRI Research England’s THYME project.

[1]

[3]
[4]
[5]

[7]

[8]

[9

—

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

REFERENCES

B. @.Palsson, Systems Biology: Constraint-Based Reconstruction and
Analysis. Cambridge University Press, 2015.

H.Lu et al., “Modular metabolic engineering for biobased chemical
production,” Trends in biotechnology, 2018.

L.Thiele er al., “A community-driven global reconstruction of human
metabolism,” Nature biotechnology, vol. 31, no. 5, pp. 419-425, 2013.
N.Swainston et al., “Recon 2.2: from reconstruction to model of human
metabolism,” Metabolomics, vol. 12, no. 7, pp. 1-7, 2016.

E.Brunk et al., “Recon3d enables a three-dimensional view of gene
variation in human metabolism,” Nature biotechnology, vol. 36, no. 3,
p- 272, 2018.

C.Angione et al., “A hybrid of metabolic flux analysis and Bayesian
factor modeling for multi-omics temporal pathway activation,” ACS
Synthetic Biology, vol. 4, no. 8, pp. 880-889, 2015.

L. J.Dunphy and J. A.Papin, “Biomedical applications of genome-
scale metabolic network reconstructions of human pathogens,” Current
opinion in biotechnology, vol. 51, pp. 70-79, 2018.

O.Shoval et al., “Evolutionary trade-offs, pareto optimality, and the
geometry of phenotype space,” Science, vol. 336, no. 6085, pp. 1157-
1160, 2012.

C.Angione, “Human systems biology and metabolic modelling: a review
- from disease metabolism to precision medicine,” BioMed Research
International, 2019.

V.Sridhara et al., “Predicting growth conditions from internal metabolic
fluxes in an in-silico model of E. coli,” PloS one, vol. 9, no. 12, p.
e114608, 2014.

PZakrzewski et al., “Multimeteval: comparative and multi-objective
analysis of genome-scale metabolic models,” PLoS One, vol. 7, no. 12,
p. e51511, 2012.

Y.-G.Oh et al., “Multiobjective flux balancing using the nise method for
metabolic network analysis,” Biotechnology progress, vol. 25, no. 4, pp.
999-1008, 2009.

A.Wagner et al., “Computational evaluation of cellular metabolic costs
successfully predicts genes whose expression is deleterious,” Proceed-
ings of the National Academy of Sciences, vol. 110, no. 47, pp. 19 166—
19171, 2013.

P.Eisenhut et al., “A crispr/cas9 based engineering strategy for overex-
pression of multiple genes in chinese hamster ovary cells,” Metabolic
engineering, 2018.

X.-L.Li et al., “Highly efficient genome editing via crispr—cas9 in human
pluripotent stem cells is achieved by transient bcl-x1 overexpression,”
Nucleic acids research, 2018.

J. JLi et al, “System wide analyses have underestimated protein
abundances and the importance of transcription in mammals,” PeerJ,
vol. 2, p. €270, 2014.

M.Jovanovic et al., “Dynamic profiling of the protein life cycle in
response to pathogens,” Science, vol. 347, no. 6226, p. 1259038, 2015.
L.Kosti et al., “Cross-tissue analysis of gene and protein expression in
normal and cancer tissues,” Scientific reports, vol. 6, p. 24799, 2016.
C.Angione, “Integrating splice-isoform expression into genome-scale
models characterizes breast cancer metabolism,” Bioinformatics, vol. 34,
no. 3, pp. 494-501, 2018.

A.Bordbar et al., “Constraint-based models predict metabolic and asso-
ciated cellular functions,” Nature Reviews Genetics, vol. 15, no. 2, pp.
107-120, 2014.

R.Schuetz et al, “Multidimensional optimality of microbial
metabolism,” Science, vol. 336, no. 6081, pp. 601-604, 2012.
I.Rabbers et al., “Metabolism at evolutionary optimal states,” Metabo-
lites, vol. 5, no. 2, pp. 311-343, 2015.

J.Costanza et al., “Robust design of microbial strains,” Bioinformatics,
vol. 28, no. 23, pp. 3097-3104, 2012.

L.-E.Quek et al., “Reducing Recon 2 for steady-state flux analysis of
HEK cell culture,” Journal of biotechnology, vol. 184, pp. 172-178,
2014.

J. L.Steffensen et al., “Psamm: A portable system for the analysis of
metabolic models,” PLoS Comput Biol, vol. 12, no. 2, p. e1004732,
2016.

[26]

[27]

(28]

[29]

(33]

(34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

K.Snell, “Enzymes of serine metabolism in normal, developing and
neoplastic rat tissues,” Advances in enzyme regulation, vol. 22, pp. 325—
400, 1984.

C.Frezza, “Cancer metabolism: Addicted to serine,” Nature chemical
biology, vol. 12, no. 6, pp. 389-390, 2016.

C.Angione and P.Li6, “Predictive analytics of environmental adaptability
in multi-omic network models,” Scientific Reports, vol. 5, p. 15147,
2015.

C.Angione et al., “A design automation framework for computational
bioenergetics in biological networks,” Molecular BioSystems, vol. 9,
no. 10, pp. 2554-2564, 2013.

J. S.Lee et al., “Harnessing synthetic lethality to predict the response to
cancer treatment,” Nature Communications, vol. 9, no. 1, p. 2546, 2018.
S.He et al., “Cooperative co-evolutionary module identification with
application to cancer disease module discovery,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 6, pp. 874-891, Dec 2016.
M.Villasana and G.Ochoa, “Heuristic design of cancer chemotherapies,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 6, pp. 513—
521, Dec 2004.

K.Deb et al., “A fast and elitist multiobjective genetic algorithm: Nsga-
ii,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2, pp.
182-197, 2002.

J.Bader and E.Zitzler, “Hype: An algorithm for fast hypervolume-based
many-objective optimization,” Evolutionary computation, vol. 19, no. 1,
pp. 45-76, 2011.

P. F.Suthers et al., “Metabolic flux elucidation for large-scale models
using '3C labeled isotopes,” Metabolic engineering, vol. 9, no. 5, pp.
387-405, 2007.

A.Brandes et al., “Inferring carbon sources from gene expression profiles
using metabolic flux models,” PloS one, vol. 7, no. 5, p. 36947, 2012.
M.Budinich et al., “A multi-objective constraint-based approach for
modeling genome-scale microbial ecosystems,” PloS one, vol. 12, no. 2,
p. 0171744, 2017.

O. J.Dunn et al., Applied statistics: analysis of variance and regression.
Wiley New York, 1987.

A.Rozhkova et al., “Expression of sphingomyelin synthase 1 (sgmsl)
gene varies in human lung and esophagus cancer,” Molecular Biology,
vol. 48, no. 3, pp. 340-346, 2014.

K.Moriwaki et al., “Gdp-mannose-4, 6-dehydratase (gmds) deficiency
renders colon cancer cells resistant to tumor necrosis factor-related
apoptosis-inducing ligand (trail) receptor-and cd95-mediated apoptosis
by inhibiting complex ii formation,” Journal of Biological Chemistry,
vol. 286, no. 50, pp. 43 123-43 133, 2011.

D. E.Modrak et al., “Sphingolipid targets in cancer therapy,” Molecular
cancer therapeutics, vol. 5, no. 2, pp. 200-208, 2006.
J.Schellenberger et al., “Bigg: a biochemical genetic and genomic
knowledgebase of large scale metabolic reconstructions,” BMC bioin-
formatics, vol. 11, no. 1, p. 213, 2010.

H.Nam et al., “A systems approach to predict oncometabolites via
context-specific genome-scale metabolic networks,” Plos Computational
Biology, vol. 10, no. 9, p. e1003837, 2014.

M. A Kiebish et al., “Cardiolipin and electron transport chain abnormal-
ities in mouse brain tumor mitochondria: lipidomic evidence supporting
the warburg theory of cancer,” Journal of lipid research, vol. 49, no. 12,
pp. 2545-2556, 2008.

H.-M.Feng et al., “Expression and potential mechanism of metabolism-
related genes and crls1 in non-small cell lung cancer,” Oncology letters,
vol. 15, no. 2, pp. 2661-2668, 2018.

D.Zhou et al., “Cytidine monophosphate kinase is inhibited by the tgf-5
signalling pathway through the upregulation of mir-130b-3p in human
epithelial ovarian cancer,” Cellular signalling, vol. 35, pp. 197-207,
2017.

G.Bidkhori et al., “Metabolic network-based identification and prioriti-
zation of anti-cancer targets based on expression data in hepatocellular
carcinoma,” Frontiers in physiology, vol. 9, p. 916, 2018.

V.Llado et al., “Regulation of the cancer cell membrane lipid composi-
tion by nacholeate: effects on cell signaling and therapeutical relevance
in glioma,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.
1838, no. 6, pp. 1619-1627, 2014.

A. K.-C.So et al., “Biotinidase is a novel marker for papillary thyroid
cancer aggressiveness,” PloS one, vol. 7, no. 7, p. e40956, 2012.
U.-B.Kang et al., “Differential profiling of breast cancer plasma pro-
teome by isotope-coded affinity tagging method reveals biotinidase as a
breast cancer biomarker,” BMC cancer, vol. 10, no. 1, p. 114, 2010.
K.Yizhak er al., “Phenotype-based cell-specific metabolic modeling
reveals metabolic liabilities of cancer,” eLife, vol. 3, p. e03641, 2014.
A.Lohne, “Bensolve-a solver for multi-objective linear programs.”



[53] A.Achreja et al., “Exo-mfa—a 13c metabolic flux analysis to dissect
tumor microenvironment-secreted exosome contributions towards cancer
cell metabolism,” Metabolic Engineering, 2017.

[54] S.Vijayakumar et al., “Seeing the wood for the trees: a forest of methods
for optimization and omic-network integration in metabolic modelling,”
Briefings in bioinformatics, vol. 19, no. 6, pp. 1218-1235, 2017.

[55] M.Kitagawa et al., “Complete set of orf clones of Escherichia coli ASKA
library (a complete set of E. coli K-12 ORF archive): unique resources
for biological research,” DNA research, vol. 12, no. 5, pp. 291-299,
2006.

[56] Y. A.Goldstein and A.Bockmayr, “Double and multiple knockout simu-
lations for genome-scale metabolic network reconstructions,” Algorithms
for Molecular Biology, vol. 10, no. 1, p. 1, 2015.

[57] G.Butland et al., “eSGA: E. coli synthetic genetic array analysis,” Nature
methods, vol. 5, no. 9, pp. 789-795, 2008.

[58] W.Megchelenbrink et al., “Synthetic dosage lethality in the human
metabolic network is highly predictive of tumor growth and cancer
patient survival,” Proceedings of the National Academy of Sciences, vol.
112, no. 39, pp. 12217-12222, 2015.

[59] C.Fellmann et al., “Cornerstones of crispr-cas in drug discovery and
therapy,” Nature Reviews Drug Discovery, 2016.

[60] K.Jensen et al., “Optcouple: Joint simulation of gene knockouts, inser-
tions and medium modifications for prediction of growth-coupled strain
designs,” Metabolic Engineering Communications, p. €00087, 2019.

[61] P.Schneider and S.Klamt, “Characterizing and ranking computed
metabolic engineering strategies,” Bioinformatics, 2019.

[62] J. B.Black et al., “Mammalian synthetic biology: Engineering biological
systems,” Annual Review of Biomedical Engineering, vol. 19, no. 1,
2017.

[63] H.Yin et al., “Crispr—cas: a tool for cancer research and therapeutics,”
Nature Reviews Clinical Oncology, p. 1, 2019.

[64] C. A.Lino et al., “Delivering crispr: a review of the challenges and
approaches,” Drug delivery, vol. 25, no. 1, pp. 1234-1257, 2018.

[65] G.Zampieri et al., “Machine and deep learning meet genome-scale
metabolic modeling,” PLoS computational biology, vol. 15, no. 7, 2019.

[66] L.Koch, “Genetic screens: Combigem-crispr: a creative combination,”
Nature Reviews Genetics, vol. 17, no. 4, pp. 194-194, 2016.

[67] R. Jlhry et al., “Genome-scale crispr screens identify human
pluripotency-specific genes,” Cell Reports, vol. 27, no. 2, pp. 616-630,
2019.

[68] H.Zhou et al., “In vivo simultaneous transcriptional activation of mul-
tiple genes in the brain using crispr—dcas9-activator transgenic mice,”
Nature Publishing Group, Tech. Rep., 2018.

[69] F. M.Behan et al., “Prioritization of cancer therapeutic targets using
crispr—cas9 screens,” Nature, p. 1, 2019.

Annalisa Occhipinti is a Lecturer in Data Analytics
at Teesside University. She holds a PhD in Computer
Science from the University of Cambridge, and a
BSc and MSc in Mathematics from the University
of Catania. Annalisa’s research is mainly focussed
on computational biology and cancer research. She
applies machine learning and data analytics to cancer
data to detect new cancer markers and investigate
genes networks. As part of her commitment to in-
spire young generations to pursue a career in STEM,
Annalisa is also involved in many outreach activities
to teach young students about applications of Mathematics and Computer
Science in cancer research.

[] Youssef Hamadi’s research is set at the intersec-
tion of Optimization and Artificial Intelligence. He
completed his PhD at the University of Montpellier,
devising new algorithms for Distributed Constraint
Solving. In 2013, he defended his Habilitation on
the concept of Autonomous Search at the University
of Paris Sud. In 2003, he created the Constraint
Reasoning Group at Microsoft Research, pushing the
limits of Parallel Satisfiability and large-scale Opti-
mization, while transferring mathematical modeling
and algorithms into several Microsoft products. In
2006, Youssef started to work on the relationships between mathematical
programming and Sustainability, creating jointly with CNRS the first European
research project on Optimization for Sustainable Development. He joined Uber
Elevate in 2019 to work on Autonomous aircrafts.

Hillel Kugler is a faculty member at the faculty
of Engineering, Bar-Ilan University in Israel since
2015. Hillel’s research interests are in modeling and
analyzing complex systems using formal reasoning
and synthesis methods. His research interests also
include the application of visual languages to model
the behavior of reactive systems, and the develop-
ment of new computational methods and tools to-
wards enabling a deeper understanding of biological
computation and biological devices. Before joining
the faculty of Engineering at Bar-Ilan Hillel was a
researcher at Microsoft Research in Cambridge. Previously he was a postdoc
at the Biology Department in New York University and a member of the
the Analysis of Computer Systems Group, Department of Computer Science,
Courant Institute, New York University. He did his PhD at the Weizmann
Institute of Science in Israel.

Christoph M. Wintersteiger is a Senior Research
Software Development Engineer at Microsoft Cam-
bridge, UK. He holds a Masters degree from the JK
University of Linz, Austria, and a PhD in computer
science from ETH Zurich, Switzerland. He has been
with Microsoft since 2010 and works on formal
reasoning techniques and applications thereof in
industry.

Boyan Yordanov received a BA in biochemistry and
computer science from Clark University in 2005 and
a PhD in Biomedical Engineering from Boston Uni-
versity in 2011. He was a post-doctoral researcher
within the Mechanical Engineering Department at
Boston University in 2011. He joined the Biological
Computation Group at Microsoft Research as a post-
doctoral scientist and became a Microsoft research
scientist in 2014. His research is focused on accel-
erating the design and construction of biochemical
circuits and improving the understanding of biolog-
ical computation through computational methods for the analysis, verification
and synthesis of dynamical systems.

Claudio Angione is a Reader in Computer Sci-
ence at Teesside University, where he co-leads the
“Computational Systems Biology and Data Analyt-
ics” research group. He currently also holds two
Visiting Professor positions at the University of
Bari, Italy, and at KMUTT, Thailand. He holds a
PhD in Computer Science from the University of
Cambridge, a BSc in Applied Mathematics and an
MSc in Mathematics from the University of Catania.
He has published more than 50 peer-reviewed papers
in leading international conferences and computa-
tional biology journals, and has received several awards for his academic
contributions in the community. His research group works at the intersection of
computer science, mathematics and biology. Research topics include genome-
scale metabolic modelling, multi-objective optimisation, computational sys-
tems biology, machine and deep learning.



	Introduction
	Methods
	Results
	Conclusion
	References
	Biographies
	Annalisa Occhipinti
	Youssef Hamadi's
	Hillel Kugler
	Christoph M. Wintersteiger
	Boyan Yordanov
	Claudio Angione


