
How Do API Selections Affect the Runtime
Performance of Data Analytics Tasks?

Yida Tao1, Shan Tang1, Yepang Liu2, Zhiwu Xu1,*, and Shengchao Qin3

1College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
{yidatao,tangshan2018,xuzhiwu}@szu.edu.cn

2Department of Computer Science & Engineering, Southern University of Science and Technology, Shenzhen, China
liuyp1@sustech.edu.cn

3School of Computing & Digital Technologies, Teesside University, UK, s.qin@tees.ac.uk

Abstract—As data volume and complexity grow at an un-
precedented rate, the performance of data analytics programs
is becoming a major concern for developers. We observed that
developers sometimes use alternative data analytics APIs to im-
prove program runtime performance while preserving functional
equivalence. However, little is known on the characteristics and
performance attributes of alternative data analytics APIs. In this
paper, we propose a novel approach to extracting alternative
implementations that invoke different data analytics APIs to solve
the same tasks. A key appeal of our approach is that it exploits
the comparative structures in Stack Overflow discussions to
discover programming alternatives. We show that our approach
is promising, as 86% of the extracted code pairs were validated
as true alternative implementations. In over 20% of these pairs,
the faster implementation was reported to achieve a 10x or more
speedup over its slower alternative. We hope that our study offers
a new perspective of API recommendation and motivates future
research on optimizing data analytics programs.

Index Terms—API selection, data analytics, performance op-
timization, Stack Overflow

I. INTRODUCTION

Data analytics is the process of transforming raw data to
actionable intelligence, and it is becoming increasingly im-
portant in this fast-developing era of AI and Big Data [1]. As
the volume and complexity of data grow at an unprecedented
rate, developers are often challenged by performance problems
in the development of data analytics programs [1]. Although
upgrading hardware or using more computing power could
directly speed up data analytics tasks, such solutions are often
expensive or impractical.

We observed that a more feasible and economic approach
to optimizing data analytics programs is to exploit software
redundancy: for reliability and usability concerns, modern
software often offers multiple ways to complete the same
tasks [2]. For this reason, developers have the opportunity
to boost program performance by replacing the usage of
a library API (or API sequence) with a faster alternative.
Fig. 1 shows a real example. The code fragments at line
7 and line 11 both compute the magnitude of a given list
of vectors (line 4). Yet, they use different APIs of numpy,
a popular Python library for data analytics [3]. The runtime

*Zhiwu Xu is the corresponding author.

1 In [1]: import numpy as np

2

3 # Input data

4 In [2]: a = np.arange(1200.0).reshape((-1,3))

5

6 # Solution 1

7 In [3]: %timeit [np.linalg.norm(x) for x in a]

8 100 loops, best of 3: 4.23 ms per loop

9 Execution time 1

10 # Solution 2

11 In [4]: %timeit np.sqrt((a*a).sum(axis=1))

12 100000 loops, best of 3: 18.9 μs per loop

13 Execution time 2

14

15 # Verify that the two solutions have the same output

16 In [5]: np.allclose([np.linalg.norm(x) for x in a],np.sqrt((a*a).sum(axis=1)))

17 Out[5]: True

Fig. 1. Computing the magnitude of vectors using different numpy APIs (ex-
cerpt from Stack Overflow post 9184560). One implementation is significantly
faster than the other.

difference of these two solutions is tremendous: the one that
uses numpy.ndarray.sum and numpy.sqrt is nearly
224x faster than the one that uses numpy.linalg.norm.

We refer to code fragment pairs like line 7 and line 11 in
Fig. 1 as alternative implementations, which invoke alternative
APIs to solve the same task by producing the same output for
the same task input (see line 16). Developers could leverage
alternative APIs as a cost-effective way to speed up their
data analytics programs. Previous studies have also suggested
that different API usages could affect program performance.
Selakovic and Pradel found inefficient API usage to be the
most common root cause of performance issues in JavaScript
programs [4]. Yang et al. reported that half of the performance
issues in Rails applications can be improved by changing
how the Rails APIs are used [5]. However, these studies
focus on different domains, and their evaluations on inefficient
API usages were carried out manually on a small scale. In
this paper, we propose a novel approach to automatically
identifying alternative data analytics implementations, which
lays the foundation for further studies on the prevalence, char-
acteristics, and runtime performance attributes of alternative
data analytics APIs.

Identifying alternative implementations for practical data
analytics tasks is challenging, since developers typically do
not keep alternative implementations in their code if one

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322327795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implementation is already sufficient for the task. Even if alter-
native solutions are implemented by different developers or in
different contexts, it is hard to determine that they indeed solve
the same tasks. In fact, identifying programming alternatives is
a particular case of determining program equivalence, which is
undecidable in general [6]. Previous work leverages techniques
such as data flow analysis [7] and random testing [6] to detect
functionally similar or equivalent programs.

In this paper, we tackle this problem from a novel perspec-
tive. We observed that alternative implementations are often
discussed on Q&A sites such as Stack Overflow (SO for short),
and such discussions usually involve some sort of comparison
between the alternatives (e.g., Fig. 1 compares the execution
time of two implementations). According to SO guidelines,
users should post answers that directly address the question.
Unconstructive or irrelevant answers might be downvoted or
removed. For this reason, if two implementations are compared
in an SO answer post, it is likely that they are alternative
solutions to the task described in the corresponding question
post. This observation motivates us to exploit the comparative
structures in SO posts to discover alternative implementations.

II. EXTRACTING ALTERNATIVE IMPLEMENTATIONS

A. Extracting from Consecutive Profiling Statements

If a data analytics task has multiple solutions with different
runtime performance, developers may profile these solutions
in the same context in order to select the most efficient one.
Based on this observation, we propose to extract alterna-
tive implementations from consecutive profiling statements,
which can be found in SO code blocks encompassed by
the <pre><code> tag. The type of profiling statements
we search for is the one that executes timeit, which is the
standard Python profiling command that measures execution
time of small code fragments [8]. We match patterns where
timeit is used from the command line, the Python interface,
and from IPython [3]. Based on the respective timeit usage
syntax, we extract the code fragment that is being profiled
and the corresponding execution time, which is typically
reported right after the timeit statement in SO code blocks.
For example, from the code block shown in Fig. 1, we extract
code fragments at line 7 and line 11 since they are being
profiled by timeit consecutively. We also extract 4.23 ms and
18.9 µs as the corresponding execution time.

Note that two profiling statements are consecutive if there
is no non-timeit code statements (i.e., regular code) between
them, since non-timeit code may alter the input data, which
violates the principle of input equivalence in our definition
of alternative implementations. In addition, if there are n
consecutive profiling statements in an SO code block, we
extract all 2-combinations of them.

B. Extracting from Comparative Sentences

In addition to consecutive profiling statements, we also
leverage the comparative structures in natural language to
detect alternative implementations. First, we extract natural
language text from SO answer posts and use the Stanford

NN RBR NN

Semgrex pattern: {word:faster}=anchor >/nsubj/ {word:/codefrag.*/}=entity1 & >/nmod:than/ {word:/codefrag.*/}=entity2

anchorentity1 entity2

nsubj nmod:than

I am iterating through all the rows of the dataframe using codefrag1 which is faster than codefrag2

Fig. 2. An example of extracting alternative implementations using POS
tagging, dependency parsing, and Semgrex matching at the sentence level.

CoreNLP toolkit [9] to split the text into sentences. We then
identify comparative sentences that contain efficiency-related
comparative keywords such as “faster”, “slower”, and “more
efficient”. We proceed to identify the code fragments that are
being compared in the comparative sentences. Following the
common practice on detecting code-like terms from informal
natural language discussions [10], we develop a set of reg-
ular expressions based on the target libraries’ usage syntax.
Contents matching these regular expressions or embedded in
the <code> tag are considered code fragments. Since the
presence of code fragments might negatively affect subsequent
NLP tasks, we replace each detected code fragment with a
unique identifier (e.g., codefrag1), which will be recovered
once all NLP tasks are finished.

Next, we perform Part-of-Speech (POS) tagging and depen-
dency parsing to annotate each sentence with POS tags of each
word (e.g., noun, adjective) and relations among words (e.g.,
nominal subject, conjunct) [9]. We then use Semgrex [11],
a Stanford CoreNLP package that allows users to specify
regular-expression-like patterns based on lemmas, POS tags,
and dependency labels, to extract code fragments that are being
compared. We have developed 49 Semgrex patterns for this
purpose. These patterns use comparative keywords as anchors
and follow certain dependency labels to search for words that
start with codefrag.

Take the sentence “I am iterating through all the rows
of the dataframe using <code>.itertuples()</code> which
is faster than <code>.iterrows()</code>” from SO post
35108263 as an example. This sentence is first identified
as comparative for containing the word “faster”. Contents
inside the <code> tag are replaced with codefrag1 and
codefrag2, respectively. After annotating the sentence using
POS tagging and dependency parsing, we find a matching
Semgrex pattern that has outgoing edges nsubj and nmod:than
from “faster” to codefrag∗ words, which are extracted as
the compared entities (Fig. 2). Finally, we recover the original
code fragments and determine their performance ordering
based on the meaning of the anchor word. In this example,
.itertuples() is identified as a faster alternative to
.iterrows().

III. EMERGING RESULTS

A. Dataset

Our dataset includes 143,452 SO threads tagged with
numpy, pandas and scipy, which are popular data analytics
libraries in the Python data science ecosystem [3]. We used
the official SO data dump released on December 2018 for
data collection. To ensure that the extracted information is
trustworthy, we consider only answer posts that are accepted

TABLE I
DATASET STATISTICS AND THE # OF VALIDATED ALTERNATIVE

IMPLEMENTATION PAIRS FOR EACH LIBRARY.
Library # SO # SO # validated alternative

threads answers implementations
numpy 54,862 64,161 2,359
pandas 89,461 96,669 3,052
scipy 12,762 12,803 32

or have positive scores (i.e., they received more upvotes than
downvotes). Table I shows the number of SO threads and
trustworthy answer posts for each library.1

B. Alternative Implementations

We applied the approach described in Section II on the SO
dataset and extracted 5,575 candidate implementation pairs.
We programmatically validated whether each pair is truly
alternative based on the input and output equivalence. Specif-
ically, for each candidate implementation pair, we constructed
a validation program that executes the pair on the same input
to solve the task described in its SO thread. For most pairs
extracted from consecutive profiling statements, their input
variable definitions were directly extracted from the same code
blocks (e.g., line 4 in Fig. 1). We manually restored the input
definitions for the remaining pairs since those definitions typi-
cally locate in separate code blocks or other posts of the same
SO thread. To determine output equivalence, our validation
program checks the type of execution result and calls the
corresponding object comparison method. For example, if two
outputs of type numpy.ndarray are equivalent, then calling
numpy.allclose() on them will yield to True (line 16
in Fig. 1).

Among the 5,575 extracted candidate pairs, 4,786 pairs
(85.8%) were validated as true alternative implementations.
2 Regarding the extraction methodology, 5,412 candidate
pairs were extracted from consecutive profiling statements
and 4,652 (86%) of them were validated as true alterna-
tives. On the other hand, 163 candidate pairs were extracted
from comparative sentences and 134 (82%) were validated
as true alternatives. This indicates that comparative structures
in SO posts can indeed be leveraged to effectively reveal
programming alternatives. Table II shows two examples of the
extracted alternative implementations.

Table I shows the number of validated alternative imple-
mentations for each target library. The majority of alternative
implementations use APIs of pandas and numpy, whereas
only a few use scipy. Apart from the fact that pandas and
numpy have a larger amount of SO posts, another reason for
this phenomenon is probably because these two libraries are
designed to work with low-level data structures. Specifically,
numpy is used to work with arrays and pandas is used to work
with tabular and time series data. Developers might have more
flexibility when using these two libraries since they would be

1The sum of SO threads for all libraries is larger than 143,452 since a
thread might have multiple tags.

2The sum of validated alternative implementation pairs in Table I is larger
than 4,786 since a pair might invoke APIs of multiple libraries.

105

246

643

400

485

581
2192

0% 10% 20% 30% 40% 50%

≥1000x

100-1000x

10-100x

5-10x

3-5x

2-3x

<2x

% of alternative implementation pairs

ru
n
ti
m

e
 s

p
e
e
d
u

p
 (

x
)

Fig. 3. Performance speedup of alternative implementation pairs.

able to directly manipulate the data. Scipy, on the other hand,
provides high-level algorithmic APIs for commonly used tasks
in scientific computing. Therefore, it may not offer as much
flexibility of using different APIs for the same tasks as pandas
and numpy do.

C. Performance Impact of Alternative Implementations

As described in Section II-A, we extracted an implemen-
tation’s execution time as well when we processed consecu-
tive profiling statements in SO code blocks. These profiling
results allowed us to analyze the performance difference of
the 4,652 alternative implementation pairs extracted from
consecutive profiling statements. Fig. 3 presents the results.
We observed that in 2,192 pairs (47.1%), the faster imple-
mentations improve the task runtime performance by less than
2x. For the remaining 2460 pairs (52.9%), the faster imple-
mentations achieve 2x or more speedup over their alternatives.
In particular, the faster implementations in 13.8% and 5.3%
pairs achieve 10–100x and 100–1000x speedup, respectively.
The faster implementations in 2.3% pairs even achieve more
than 1000x speedup over their slower alternatives.

The results show that alternative implementations using
different data analytics APIs do improve task runtime perfor-
mance, and sometimes the improvement is quite significant.
Hence, we believe that leveraging alternative APIs to optimize
data analytics programs is a promising future direction.

D. Consistency Across Input Data Sizes

Various factors can affect the performance of alternative
implementations. In our experiments, we observed that 10.3%
of the SO posts containing consecutive profiling statements
have compared the same alternative implementation pairs over
different sizes of input data. This indicates that developers
consider input data size to be important when evaluating
the performance difference of alternative implementations. To
further understand this issue, we quantify the performance
difference of the extracted alternative implementations under
five synthesized input data with sizes (i.e., # of rows) ranging
from 100 to 1,000,000. Our experiments were performed on
an Intel Core i9-8950 CPU (2.9GHz) machine with 32GB
memory running 64-bit Windows 10 and Python 3.6.8.

Our preliminary results show that input data size can
dramatically affect the extent of performance improve-
ments. Fig. 4 shows two examples. In the first example,

TABLE II
EXAMPLES OF ALTERNATIVE IMPLEMENTATIONS, THEIR TASK DESCRIPTIONS, AND THE CORRESPONDING ALTERNATIVE API PAIRS.

Task Alternative Implementations Alternative APIs
1 SO post 39132838: >>> df.pivot_table(index=[’id’,’group’],columns= pandas.DataFrame.pivot_table

count the frequency of ’term’,aggfunc=’size’,fill_value=0)
groups >>> pd.crosstab([df.id, df.group], df.term) pandas.crosstab

2 SO post 52145257: >>> np.sum(rr == ’A’) numpy.sum
count the occurrence of >>> np.count_nonzero(rr == ’A’) numpy.count_nonzero
a character in an array

numpy.where and pandas.Series.map are both used
to alter data given a threshold, and numpy.where has a
trivial speedup (∼1.5x) over pandas.Series.map when
the input data is small. However, the speedup becomes signif-
icant (>100x) for input sizes larger than 100K. In the second
example, numpy.ndarray.dot and numpy.tensordot
are both used to compute the dot product of matrices,
and numpy.ndarray.dot exhibits a non-trivial speedup
(∼12x) over numpy.tensordot when the input size is
small. However, their performance gap narrows as the input
size grows. When the input size reaches 1 million, the two
implementations have nearly comparable performance.

We also found cases where an alternative implementation
exhibited both performance improvement and degradation
on different input data sizes. For example, we found that
pandas.read_csv is faster than pandas.read_hdf for
input sizes less than 1K, whereas pandas.read_hdf takes
the lead for larger inputs.

Our results show that input data size can be a critical factor
that affects the outcome of performance optimization using al-
ternative implementations. Specifically, an alternative solution
that is allegedly much faster than the original implementation
according to SO posts may turn out to be alike or even slower
when the input data size varies. We believe that this issue
requires further investigation in order to reduce potential risk
of unintended optimization consequences.

IV. CONCLUSIONS

We have presented a novel idea of leveraging comparative
structures in Stack Overflow discussions to discover alterna-
tive data analytics implementations. Our approach exploits
crowd knowledge and the very nature of comparison to re-
veal programming alternatives, which is essentially different
from conventional approaches that harness program analysis
and testing. The alternative implementations extracted in this
manner appear to have substantial performance difference ac-
cording to the profiling results reported from Stack Overflow.
This further indicates that a technique for detecting faster
API alternatives is desirable. We also found that input data
sizes often affect the performance comparison outcomes of
alternative implementations, which, however, has been rarely
studied in previous research. In the future, we plan to dive into
the characteristics, root causes, and caveats of alternative data
analytics APIs. We hope that our results establish a basis for
developing techniques that automatically and reliably optimize
data analytics programs.

Fig. 4. Cases where an implementation remains faster than its alternative,
but the extent of performance improvements varies dramatically.

ACKNOWLEDGMENTS

This work was partially supported by the National Natural
Science Foundation of China under Grant No. 61772347,
61972260, 61932021 and 61802164.

REFERENCES

[1] C. E. Otero and A. Peter, “Research directions for engineering big data
analytics software,” IEEE Intelligent Systems, vol. 30, no. 1, pp. 13–19,
Jan 2015.

[2] A. Carzaniga, A. Mattavelli, and M. Pezzè, “Measuring software re-
dundancy,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, May 2015, pp. 156–166.

[3] W. McKinney, Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, Inc., 2012.

[4] M. Selakovic and M. Pradel, “Performance issues and optimizations in
javascript: An empirical study,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), May 2016, pp. 61–72.

[5] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How
not to structure your database-backed web applications: A study of
performance bugs in the wild,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York, NY,
USA: ACM, 2018, pp. 800–810.

[6] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09. New York, NY, USA: ACM, 2009, pp. 81–92.

[7] F.-H. Su, J. Bell, G. Kaiser, and S. Sethumadhavan, “Identifying
functionally similar code in complex codebases,” in 2016 IEEE 24th
International Conference on Program Comprehension (ICPC), May
2016, pp. 1–10.

[8] “The Python standard library: Debugging and profiling,” https://docs.
python.org/3/library/debug.html.

[9] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Association for Computational Linguistics (ACL) System
Demonstrations, 2014, pp. 55–60.

[10] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 832–841.

[11] “Semgrex,” https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/
nlp/semgraph/semgrex/SemgrexPattern.html.

https://docs.python.org/3/library/debug.html
https://docs.python.org/3/library/debug.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html

