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ABSTRACT A single-stranded DNA (ssDNA) virus is presented from a metagenomic
data set derived from Alphaproteobacteria-infected hepatopancreatic tissues of the
crab Eurypanopeus depressus. The circular virus genome (4,768 bp) encodes 14 hypo-
thetical proteins, some similar to other bacteriophages (Microviridae). Based on its
relatedness to other Microviridae, this virus represents a member of a novel genus.

Microviridae is a viral family with two subfamilies and 6 genera (1). It contains
viruses that infect prokaryotes exclusively. Metagenomic techniques have un-

earthed the diversity of this family through evaluations of environmental, culture stock,
and animal specimens (1–3). Microviruses have not been identified from Rickettsiales
endosymbionts of Crustacea. Other bacteriophages isolated from crustacean micro-
biomes/pathobiomes show potential for phage therapy, avoiding the overuse of
antibiotics in aquaculture (4). Few models exist to easily test this scenario in the laboratory.

We obtained DNA using a Zymo kit (D4070) on homogenized hepatopancreatic
tissues of Eurypanopeus depressus (n � 1), a panopeid crab from meso- and euryhaline
locations across the Gulf of Mexico and Atlantic North America. The specimen was
collected from a euryhaline site in North Carolina (Hoop Pole Creek, Atlantic Beach) in
December 2018. A total of 1 �g of DNA was used to prepare a NEBNext Ultra DNA
library for Illumina HiSeq (10�) sequencing (NEB, USA) with a PE150 cartridge. This
resulted in 11 million reads (50 to 150 bp) that were assembled using SPAdes v.3.13.0
(using default parameters and k-mer lengths of 21, 33, 55, 77, 99, and 127) (5) from
trimmed reads using Trimmomatic (LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36) (6). This resulted in 523,047 contigs (�500 bp) (N50, 2,133; N75, 1,340; L50,
100,989; L75, 211,827). The genome (4,768 bp) of a Microviridae sp. was identified based
on high coverage (�1,000�), with a GC content of 33% and 14 hypothetical open
reading frames (ORFs) (Fig. 1 and Table 1). The genome was annotated using ExPASy
(standard genetic code) (7) and GeneMarkS (virus) (8). The relatedness of the genes and
their function was identified using BLASTP (E value � 10) and InterProScan (9). Phyloge-
netics were conducted using IQ-Tree (10) after MAFFT alignment (11) of the capsid
protein (ORF-1). The virus is genetically related to the Gokushovirinae subfamily of the
Microviridae and represents a basal member to the three genera Bdellomicrovirus,
Chlamydiamicrovirus, and Spiromicrovirus, as well as multiple other undescribed isolates
associated with bacterial endosymbionts of tortoises, marine invertebrates, and insects
(Fig. 1).

Of the 14 hypothetical ORFs, 5 showed similarity to other proteins in GenBank
(Table 1). The proteins included a major capsid protein, DNA pilot protein, and the
replicator initiator protein, which showed 32 to 44% amino acid similarity to other
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Microviridae (Table 1). One virus was from an environmental sphagnum peat soil sample
(12), and two viruses derived from the intestinal tract of Ciona robusta (Tunicata)
(marine) (2). Two genes showed closest similarity to hypothetical bacterial genes
(Table 1). Seven ORFs were identified internally to other ORFs, indicating the presence
of putative overlapping genes recently discovered for the Microviridae (13). Based on its
relatedness to known Microviridae, this genome might represent a novel genus (sug-
gested, Microviridae: Gokushovirinae: Jodiemicrovirus).

To conclude, we present the genome of a bacteriophage likely to infect an unde-
scribed member of the Anaplasmataceae which parasitizes the host hepatopancreas,
identified via histology, electron microscopy, and genomics (our unpublished data). It
may constitute a useful model system for understanding the effect of phage therapy
relative to an intracellular bacterium causing disease in crustaceans.

FIG 1 Circular genome of Jodiemicrovirus 1, consisting of 4,768 bp, and phylogenetic comparison to other Microviridae using the
capsid protein (ORF-1). The genome contains 14 hypothetical open reading frames. The chart at the bottom identifies the read
coverage across the circular genome, representing 934,456 reads mapped to the genome, providing �1,000� coverage using
CLC Genomics Workbench. The phylogenetic comparison included the MAFFT-aligned (11) capsid protein (716 positions) from
multiple Microviridae. The maximum likelihood tree was inferred from 36 Microviridae spp. and was developed with the
LG�F�G4 evolutionary model and 1,000 bootstraps in IQ-Tree (10). The final consensus tree (shown) had a log likelihood of
�28,362.192 and scale of 0.7 units. The accession numbers used were AXL15123, AXQ65957, QCS36953, AXH77578, AXL15643,
AZL82997, AZL82921, AXL14929, YP_009218802, AYQ58216, AXL14945, AZL82910, AZL82729, AZL83022, AZL83017, QCS36934,
QCS36961, QCS37361, AZL82956, AZL82992, AZL82871, YP_009551424, AZL82946, QCQ84972, AZL82926, QCS37201, QCQ84913,
AZL82717, AZL82837, YP_512416, YP_512796, AII27899, NP_073538, NP_044312, and NP_598320.

TABLE 1 Similarity and predicted function of the 14 hypothetical ORFs found in Jodiemicrovirus 1a

ORF Predicted function Closest hit (accession no.) Similarity (%) Coverage (%) E value

1 Viral capsid Microviridae sp. (AXL15123) 43.06 96 4e�138
2 Transmembrane — — — —
3 Signal peptide Acidimicrobiaceae (MBB33698) 55.56 84 2.9
4 Unknown — — — —
5 Transmembrane — — — —
6 Unknown — — — —
7 Unknown — — — —
8 Unknown — — — —
9 DNA pilot protein Microviridae sp. (YP_009160339) 33.33 40 1e�7
10 Unknown — — — —
11 Transmembrane — — — —
12 Signal peptide — — — —
13 Replication initiator protein Microviridae sp. (AXL15534) 32.00 72 3e�28
14 Unknown Bacteria (EKD64965) 40.38 41 6.6
a The coding orientation is positive in all cases. Data were analyzed using InterProScan and BLASTP. —, lack of significant protein similarity to any other known
sequence data.
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Data availability. The complete genome, annotation, and associated forward and

reverse reads for this novel virus can be found under accession number MN335165,
BioProject number PRJNA574411, and BioSample number SAMN12567204.
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