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Studying the Effect of Acidic and Basic Species on the Physiochemical 
Properties of Polymer and Biopolymer at Different Operational Conditions 

Kamal Elyasi Gomari, Sina Rezaei Gomari* , Meez Islam, David Hughes 

School of Computing, Engineering & Digital Technologies, Teesside University, UK   

Abstract  

This paper describes an investigation and analysis of the physiochemical properties of 

polymer and biopolymer, namely interfacial tension (IFT) and viscosity, at elevated 

temperature and salinity. The methodology applied entails the testing and evaluation of the 

two surface-active components stearic acid and quinoline, which represent acidic and basic 

components respectively, in n-decane as a model oil in contact with polymeric solutions. The 

polymeric solutions contain Polyacrylamide (PAM) or Xanthan Gum (XG) in water at 

different saline levels. The results indicate that the effectiveness of polymer and biopolymer 

were significantly affected by the acidic or basic medium. Acidic systems have been found to 

be more active than basic systems in the reduction of IFT at room temperature. It is also 

noted that changing the water base from distilled water to seawater had no significant impact 

on IFT impact. Furthermore, an analysis at temperatures of 80±5oc was conducted which 

indicated that there is an increase in IFT for all systems compared to at low temperature for 

both polymer and biopolymer systems. In respect to the effect of ageing time at high 

temperature, IFT increased slightly in the presence of polymer systems. However, in the case 

of biopolymer, IFT decreased with time at high temperature. 

A study of rheological properties of these systems shows that the viscosity of polymer or 

biopolymer solutions decreased, with a subsequent increase in shear rates. Average values of 

viscosity of 45-100 cP at a low shear rate of 3 rpm and 5-9 cP at the high shear rate of 600 

rpm were observed for both polymer and biopolymer systems. Acidic and basic components 

do not affect the viscosity of the solutions at ambient temperature, whereas the addition of 

seawater results in a slight decrease in viscosity.  On the other hand, the application of higher 

temperature leads to a significant decrease in viscosity. As such, the highest reduction in 

viscosity was observed over time when surface-active components and seawater were used.   

Keyword: Polymeric solutions; Polyacrylamide (PAM); Xanthan Gum (XG); Rheological behaviour; 

IFT; Acidic and basic oil  

1. Introduction  
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Despite significant increases in energy generation from renewable resources, fossil fuel is 

still one of the most important energy sources for our societies [1-2]. Mature reservoirs play 

an important role in the world’s daily oil production. However, the main concern for the oil 

industry is how the production of oil from such reservoirs can be enriched. Therefore, 

employing efficient enhanced oil recovery (EOR) approaches could be effective in increasing 

the recovery of oil from mature reservoirs in the future [3].   

The rate of success or failure of an EOR process can be determined in terms of its 

microscopic/macroscopic displacement efficiency in porous media. Over the last few 

decades, various methods have been adopted to improve microscopic and macroscopic 

displacement efficiency via the reduction of IFT at the oil-water interface and the mobility 

ratio of moving phases respectively. Surfactant and polymer flooding or newly developed 

bio-surfactant/bio-polymer flooding methods are considered to be effective in reducing the 

IFT between oil and water and in enhancing fluid mobility if they employed appropriately in 

hydrocarbon reservoirs [4]. In the first instance, the levels of oil and water composition are 

important parameters which influence the effectiveness of such methods. The composition of 

crude oil refers to the surface-active (polar) components, which have been mainly categorised 

as acidic, basic, or other components [5-8]. It has been proven that carboxylic acids 

(naphthenic acids) and nitrogen derivatives representing acidic and basic components 

respectively are vital in crude oil, which can strongly interact with water-additives hence 

affecting the interfacial properties of oil/water [9-11]. It should be noted that polymers can 

also influence interfacial tension. SiTu et al. [12] and Ma et al. [13] have both found that IFT 

increases with polymer concentration.  

Although polar components in crude oil reduce interfacial tension, the presence of salts and 

changes in temperature have also been proposed by several authors as factors affecting 

interfacial properties. For instance, Lashkarbolooki et al. [14] examined the effect of salts on 

the interfacial activity of asphaltenic crude oil and the results indicated that MgSO4 can 

reduce the IFT to a lesser extent than other salts such as MgCl2. 

The effect of temperature on the IFT at the crude oil-brine interface under anaerobic and 

aerobic conditions was studied by Hielmeland and Larrondo. Their results revealed that as 

temperature increases IFT also increases in anaerobic conditions, whereas in aerobic 

conditions IFT decreases with temperature [15].  The oil and water composition as well as 

temperature not only affect the interfacial activities of oil/water, but also they influence the 

rheological properties of water additives [16-18].  Lewandowska [19] examined the influence 

of salinity and temperature on the rheological properties of PAM and HPAM and the results 
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indicated that salinity and temperature have a drastic impact on the viscosity of polymer 

solutions. Similar observations were reported for changes in viscosity when biopolymer 

(xanthan gum) was used [20, 21]. Despite the above research performed on this topic, there is 

still some uncertainties about the impact of acidic and basic components on 

polymer/biopolymer and surfactant/bio-surfactant performance at reservoir conditions.   

The aim of this study is to determine the effect of acidic and basic components in crude oil on 

the physiochemical properties of water additives which can be used to control the mobility 

ratio of moving phases in the reservoirs. The selected water additives are Polyacrylamide 

(PAM), and Xanthan Gum (XG) as a polymer and biopolymer respectively. Experiments 

were performed at both ambient and 80±5oC temperatures on model oil consisting of n-

decane with stearic acid and quinoline as acidic and basic oil respectively and seawater or 

deionised water as the aqueous phase.    
 

2. Materials and methods  

2.1 Materials  

In this work, two types of water-soluble polymers were used: Polyacrylamide (PAM), and 

Xanthan Gum (XG). Stearic acid and quinoline were used to represent acidic and basic 

components in oil respectively. n-decane was used to represent the oil.  The acidic and basic 

components were then mixed into n-decane to create a model oil resembling crude oil. The 

source, purity, molecular weight and structural formula of the chemicals used in this work are 

listed in Table 1. The seawater was prepared based on Kester’s recipe as presented in Table 

2 in terms of both gravimetric and volumetric salts. In addition, the crude oil was also used in 

this work to validate the results. The crude oil was supplied by Equinor (Norway) and the 

source of the crude oil is the North Sea. The crude oil has an API gravity of 37.50o with acid 

number of 0.3 mg KOH/g. 

Table 1. Chemicals and surface-active components used for experiments 

Material Supplier Purity Molecular weight Structural formula 
Polyacrylamide (polymer) Sigma-Aldrich - 2 million g/mol (C3H5NO)n 
Xanthan gum (biopolymer) Sigma-Aldrich - 5-6 ×106 g/mol (C35H49O29)n 
Stearic acid (acid) Sigma-Aldrich ≥98.5 % 284.48 g/mol C18H36O2 
Quinoline (base) Sigma-Aldrich ≥97 % 129.16 g/mol C9H7N 
n-decane  Sigma-Aldrich ≥94 % 142.28 g/mol CH3(CH2)8CH3 

 

 

 

Table 2. Gravimetric and Volumetric salts [22] 
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Salt Molecular weight g/l solution 
Sodium chloride (NaCl) 58.44 23.926 
Sodium sulfate (Na2SO4) 142.04 4.008 
Potassium chloride (KCl) 74.56 0.677 
Sodium bicarbonate (NaHCO3) 84.00 0.196 
Magnesium chloride (MgCl2.6H2O) 203.33 10.831 
Calcium chloride (CaCl2.2H2O) 147.03 1.5199 

2.2 Methods  

2.2.1 Solution preparation and mixing procedure   

PAM and XG in powder form were first added to distilled water (DW) or seawater and mixed 

using a mixer at a speed of 1000 rpm for 1.5 hours at room temperature to acquire a 

homogeneous solution. Subsequently, the prepared solution was then added to the model oil 

and mixed for 1 hour. In this study, concentrations of 5000 and 1500 ppm were used for the 

polymer and biopolymer respectively. The reason for selecting these concentrations was 

related to the time separation of the two phases (n-decane/DW), where for higher 

concentrations a longer separation time would be required. Figure 1 shows the phase 

separation time for DW and model oil at ambient conditions. As can be seen from the figure, 

with concentrations above 5000 ppm for PAM and 1500 ppm for XG in water, the phase 

separation time increases, especially for the biopolymer, which makes IFT measurements 

extremely difficult.  

 

Figure 1: Phase separation time (Distilled water/n-decane) @ 25±2oC 

For the polymer systems, 10 min was enough to separate the n-decane from the DW, while 

approximately 180 min was taken for the biopolymer systems. Despite these different 

separation times for polymer and biopolymer systems, all measurements were taken 4 hours 

after preparing the solutions. The measurements were performed at room temperature 
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conditions (20±2oC) and at 80±5oC for different ageing times of 0, 1, 10, and 20 days. Table 

3 lists all of the polymer/biopolymer solutions used in this work. 

Table 3. Polymer and biopolymer/n-decane solutions 

Polymer/n-decane solution Biopolymer/n-decane solution 
PAM + DW/n-decane  XG + DW/n-decane 
PAM + DW/Acidic n-decane XG+ DW/Acidic n-decane 
PAM + DW/Basic n-decane XG+ DW/Basic n-decane 
PAM + Seawater/Acidic n-decane  XG+ Seawater/Acidic n-decane  
PAM + Seawater/Basic n-decane  XG+ Seawater/Basic n-decane  

 

2.2.2 Interfacial tension (IFT) measurements  

Measurements of interfacial tension (IFT) were conducted using a Kruss Digital Tensometer 

model K9. Initially, 25 ml of oil sample and 75 ml of either polymer or biopolymer solution 

were prepared in a small beaker. After suitable times for mixing and phase separation, the 

beaker was placed into a plastic holder within the IFT device. Subsequently, a platinum circle 

ring was used to measure the IFT between the two liquid phases (n-decane and DW). This 

procedure was repeated three times for each sample to ensure the accuracy of the results, and 

the average was then assigned as the IFT measurement.  
2.2.3 Viscosity measurements  

All viscosity measurements were carried out using a Fann model 35 viscometer with the 

rotor-bob-torsion spring combination of R1-B1-F1. For the measurements, 250 ml of oil 

sample and 750 ml of either polymer and biopolymer solutions were prepared. After 

observing the two separated phases, 350 ml of the polymer or biopolymer solution was 

collected in a syringe and deposited into a cup, which was then placed on the viscometer.  

Figure 2 presents the details of the applied procedure for IFT and viscosity measurements in 

this study. 
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Figure 2: Schematic of applied procedure for viscosity and IFT measurements 

The viscosity of various solutions (see Table 3) as a function of shear rate were measured 

over the range of 5.109 to 1021.8 s-1. 

3. Results and Discussion  

3.1 Interfacial tension (IFT) measurements for reference point  

Table 4 shows the results of IFT measurements for the reference point of pure n-decane with 

distilled water and IFT measurements for both DW and seawater with n-decane in the 

presence of acidic and basic components.   
Table 4. IFT measurements for reference solutions 

Solution IFT (mN/m) 
DW + n-decane 38.2 
DW+ Acidic n-decane 12.5 
DW+ Basic n-decane 26.4 
Seawater + n-decane 22.2 
Seawater + Acidic n-decane 11.5 
Seawater + Basic n-decane 21 

 

As can be seen from this table, the presence of acidic and basic components in model oil 

results in IFT reduction. This reduction is more pronounced for acidic components than basic 

components. Moreover, a higher degree of reduction was observed in the presence of salts 

where, for instance, the IFT between DW/basic n-decane at 26.4 mN/m was reduced to 21.0 

when the water phase was changed from distilled water to seawater. Similar observations 

with regards to the impact of polar components in the oil phase as well as water phase 

composition on IFT have been reported [23–25]. Rudin and Wasan [23] studied the effect of 

acid concentration on IFT and the results indicated that it was reduced to 11 and 24 mN/m 
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respectively when using concentrations of acid of 101 and 102 mol/m3.  Standal et al. [24] 

examined the effect of the three surface-active components quinoline, 5-indanol and 1-

naphtoic acid on the IFT between oil and water solutions. They concluded that 1-naphtoic 

acid had no effect on IFT, whereas a 5-indanol/oil/water solution caused a reduction. In 

addition, use of the quinoline/oil/water system leads to slight reductions in interfacial tension 

compared to 5-indanol/oil/water.  

 
3.1.1 Effect of acidic/basic components and salinity on IFT between polymeric solution and model oil 

Usually the acidity and basicity of crude oil are identified by acid and base numbers. If the 

acid number of crude oil is higher than its base number this means the oil is more acidic and 

vice versa [26, 27]. Acid and base components are always present in oil and so it is important 

to understand their impact when brought into contact with other solutions. Figure 3 shows 

the effectiveness of the acidic and basic components on IFT with polymeric solution (PAM or 

XG) and distilled water at ambient temperature.  

 

Figure 3. Effect of acidic/basic components and salinity on IFT by adding polymer and biopolymer @ 20 ± 2°C. 

With comparison to the reference point, it can be seen that PAM led to a significantly higher 

reduction in IFT compared to XG. In fact, by adding PAM to the distilled water there was a 

significant drop of 34.2 mN/m in IFT, while there was a reduction of only 15 mN/m when 

adding XG. This difference in IFT for PAM and XG can be attributed to their hydrolysis in 

water which leads to an increase of carboxylic molecules in the solution [28]. Figure 4 

presents the molecular structures of PAM (Figure 4a) and XG (Figure 4b) and their 

interactions with water. As can be seen in this figure, the amide group in the PAM structure 

releases the carboxylic group (RCOOH) through chemical transformation between RCOO- 

from PAM and H+ from water when dissolved in water. The formation of carboxylic 

molecules (in situ surfactant formation) and their affinity towards interface causes a 

significant drop in IFT for PAM solution. In contrast to PAM solution, XG with tri-
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saccharide side acid chain attached to glucose backbone produces carboxylic acid (pyruvic 

acid) when associated in water. The latter acid has high solubility in water and less affinity 

towards interface, hence the IFT reduction is lower than that of PAM.    

 

a: Interaction of Polyacrylamide (PAM) with water and release of carboxylate ions   
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b: Interaction of Xanthan gum (XG) with water and release of Pyruvate ion ( carboxylate ion type )   

O

OH H2O H3OO 

O

--

 

c: Interaction of stearic acid with water  

N

 _
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NH

OH

 

d: Interaction of quinoline with water  

Figure 4: Structure of PAM (a) , XG (b), stearic acid (c), quinoline (d) and their interaction with water. 

The addition of basic and acidic components to the n-decane resulted in further reductions in 

IFT where, for instance, including stearic acid into the system reduced the IFT to 1 mN/m for 

PAM solution and to 11.9 mN/m for XG solution which is equivalent to 75% and 48% 

reduction, respectively. The lesser reduction of IFT for XG can be ascribed  to the presence 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

9 
 

of Na + /K+ ions in the side chain structure of XG molecule which can be dissociated and in 

turn interacted with the carboxylate ions (RCOO-) in water solution. The latter interaction 

produces sodium/potassium acetate which results in reduction of available carboxylic acids at 

interface, therefore a lesser reduction in IFT was observed for XG. The interaction between 

acid/base components with water are also presented in Figure 4c and Figure 4d. The 

interfacial activities of produced molecules (carboxylic and amino acids) and ionic species 

(carboxylate and amino) show that the added natural surfactant (stearic acid) or in situ 

formation of surfactant from PAM/XG solution in water dominating the IFT reduction. In 

general, surfactants are amphiphilic molecules containing both hydrophobic chain and 

hydrophilic head that have the ability to adsorb to the oil and water interface [30]. Depending 

on the length of hydrophobic chain the concentration of surfactant at interface changes where 

the longer length results in higher adsorption hence higher reduction in IFT. It is clear that 

when polymer is mixed with water, the process of hydrolysis can be happened which activate 

the functional groups. The released functional group of RCOO- interacts with H+ creating the 

carboxylic acid (in situ surfactant formation). This process can happened for XG as well but 

the generated carboxylic acid (Pyruvic acid, see figure 4b) has higher affinity towards water 

which results in lesser concentration at interface. Moreover, it should be noted that 

minimization of interfacial energy by the surfactant is functional in holding the polymer at 

oil-aqueous interface [31]. The obtained IFT results in Figure 3 reflect clearly the difference 

between these two polymers. 

 Similar results were observed when basic components were used but these were not as 

effective as the acidic system. The nitrogen in quinoline reacts with a hydrogen in water to 

form a covalent bond with nitrogen and hydrogen which leaves a charged R-(NH+) group 

known as amino acid. The decrease in IFT is mainly due to presence of amino group (NH+) 

but due to lack of significant carboxylic group (COOH) in the solution, this reduction is not 

significant as stearic acid. In fact, stearic acid can act as surfactant and reduce IFT 

significantly [32] which is not the case for quinoline.   

Additionally, it can been seen from Figure 3 that the change in IFT was almost constant 

when salt was added to the systems. The present results are in line with those of previous 

studies [33-34] on the effect of organic acids and salinity on the interfacial tension of n-

decane/water systems, in which the addition carboxylic acids was found to reduce the IFT by 

up to 22–26 mN/m compared to the pure water system. In addition, their conclusions 

confirmed that salinity did not significantly affect IFT measurements.  
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3.1.2 Effect of temperature on IFT 

Figure 5 shows the effect of temperature on IFT with different systems for PAM (Figure 5a) 

and XG (Figure 5b). Based on these results, as temperature increases IFT also increases. For 

both polymer and biopolymer, minimal values of IFT of 1 and 11.9 mN/m were achieved at 

20±2°C in the system of acidic n-decane, which increased to 8.7 and 17.8 mN/m respectively 

at 80±5°C. Ye et al. [35] studied the influence of temperature on the IFT at the crude oil-

gemini surfactant interface. Their results indicated that, by increasing the temperature up to 

70oC, the IFT gradually declined. However, further increases in temperature increased the 

IFT.  The critical temperature in this effect was called the phase inversion temperature (PIT). 

The adsorption of surfactant at the interface increased before the PIT, resulting in a decrease 

in IFT, while after the PIT an inverse effect was observed in which the desorption of 

surfactant from the interface into the oil phase led to increased IFT.  

 

 
Figure 5. Effect of temperature on IFT (a) polymer (b) biopolymer’s solutions 

 

To shed more light on the effect of temperature on IFT between model oil and polymeric 

solutions, the IFT measurements were conducted for more temperature points between 25o C 

to 80o C and results are presented in Figure 6.  
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Figure 6: Identification of Phase Inversion Temperature (PIT) for PAM and XG solutions. 

As can be seen in this figure, the phase inversion temperature (PIT) for XG and PAM 

solutions were found to be around 50oC and 40oC, respectively. The observed IFT trend for 

both polymeric solutions are in-line with hydrolysis of polymer against temperature reported 

by recent study by Godwin Uranta et al. [29] where they reported that higher temperature was 

favourable for more hydrolysis of polymers in water which in turn was favourable for more 

carboxylic acid formation (surfactant) in the solutions. Due to increase in formation of 

surfactant into the solution, the IFT reduces with the temperature, however as temperature 

exceeded the PIT, the solubility of surfactant in water increases which results in reduction of 

adsorbed surfactant at interface hence the IFT increases[36]. 

Another study by Rezaei Gomari et al. revealed that, by increasing temperature from 25oC to 

50oC, the value of IFT dropped from 4.7 mN/m to 2.8 mN/m, while it increased to 4.1 mN/m 

by increasing the temperature further to 70oC [37].  It is noticed that by increasing 

temperature to 80±5oC, the increase in IFT in the PAM/n-decane was much higher than that 

of XG/n-decane. For instance, the IFT increased by 13.9 mN/m in the system of 

polymer/seawater/acidic n-decane, whereas there was a rise of only 6.1 mN/m in the 

XG/seawater/acidic n-decane system.  
 

3.1.3 Effect of aging time on IFT 

Figure 7 illustrates the effect of ageing time on IFT for different systems at temperatures of 

20±2°C (Figure 7a) and 80±5oC (Figure 7b). It can be seen from Figure 7a that there is a 

direct link between time and increasing IFT. In fact, as time goes on, the IFT increases. 

During the period covered in Figure 7a, there was a slight rise in IFT for the systems of 

acidic n-decane. However, the IFT increased significantly over the period without and with 

basic n-decane systems. For example, from 0 to 20 days, there was a rise of 2.3 mN/m in IFT 
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from 1 to 3.3 mN/m for the PAM/acidic n-decane system. Meanwhile the IFT increased up to 

9.4 mN/m and 11.3 mN/m in the PAM/basic n-decane and PAM/n-decane systems 

respectively. It is known that the reduction in IFT occurs due to the adsorption and 

accumulation of surface- active components at the oil-water interface; however according to 

Saha et al. [38], the increase in IFT over time could be due to a reduction in levels of surface-

active components at the oil-water interface which caused by the development of a higher 

concentration gradient.  Another study by Okasha [39] on the effect of temperature and 

pressure on IFT, where they observed that IFT increased significantly over time, supports the 

present results.  

In respect to the effect of ageing time at high temperature (see Figure 7b), the same trends as 

with low temperature were observed for the PAM systems (except for the polymer/acidic 

system). Although the IFT increased slightly during the first 10 days, there was a minor drop 

in the IFT of up to 1.3 mN/m between days 10 and 20. However, in the case of the XG 

systems, the IFT increased marginally from 0 to 1 day, and after that it began to decrease 

between 1 and 20 days.   

 

 

Figure 7. Effect of aging time on IFT (a) 20±2°C (b) 80±5oC 
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The impact of polymeric solutions in DW was also examined with crude oil and results are 

presented in Figure 8.  As it is shown in this figure, the IFT between DW/Crude oil is 

reduced from 28.7 mN/m to 2.3 and 10.2 when PAM and XG were added to the solution, 

respectively. These results are in line with the observed results for model oil where 

significant reduction of IFT was recorded for PAM solution than that of XG solution. The 

impacts of aging time and temperature were also shown a similar results which confirm the 

findings of this research with the model oil.  

 

Figure 8. Impact of polymeric solutions (PAM and XG) on IFT between polymeric solutions and crude oil with respect of 
ageing time and temperature @ 20±2°C and 80±5oC.  
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It is observed that the viscosity of XG is almost twice that of the PAM at the low shear rate 

(Figure 10a), while at the high shear rate the viscosity of the PAM is slightly higher than that 

of XG (Figure 10b).  

The results show no changes in the viscosity of the solutions under the influence of acidic or 

basic components. However, the viscosity decreased slightly after the addition of seawater up 

to 10cP and 5cP at low shear rate and 1cP at high shear rate for both XG and PAM systems 

respectively. In the literature, the majority of water-soluble polymers are described as having 

an -OH group. Once the polymer is exposed to water molecules, hydrogen bonds are formed. 

As salt is introduced into the solution, the hydrogen bonds between the polymer and water 

molecules become weak so that the viscosity of the solution will decrease. In fact, the force 

between a water hydrogen atom and a polymer oxygen atom is dependent on the dielectric 

constant of the medium, where a higher constant means stronger bonding. The dielectric 

constant decreases by adding salts to the solution, thus reducing its viscosity [41]. Sveistrup 

et al. [42] studied the effect of salinity on XG at 25oC and the results revealed that the 

viscosity of XG decreases as a result of the 

addition of salt to the system.  

 
Figure 9. Effect of (a) acidic (b) basic components and seawater on viscosity with added polymer and biopolymer @ 20±2°C 
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Figure 10. Effect of (a) low and (b) high shear rates on viscosity with different solutions @ 20±2°C 
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the low temperature required longer time to become separated (transparent). Moreover, 

Mahdavi et al. [45] have observed a similar trend for viscosity and temperature and they 

attributed this to the increasing incidence of polymer chain collisions and reduced average 

intermolecular forces resulting in the reduction of the viscosity of the solution at high 

temperature. 

The percentage changes in viscosity of PAM and XG between temperatures of 20±2oC and 

80±5oC are shown in Figure 13 for the two shear rates of 3 and 600rpm. According to Figure 

13a, the seawater/acidic n-decane system exhibited the highest reductions in viscosity of 50% 

and 22.2% for XG and PAM respectively, while distilled water/basic n-decane system 

showed the lowest reductions in viscosity. It is noticed that the loss of viscosity in the case of 

the addition of polymer was approximately constant for all systems, whereas biopolymer 

solutions showed varying percentage reductions. In contrast, at the high shear rate (Figure 

13b) similar results were observed, where seawater/acidic n-decane system had the highest 

reduction in viscosity. In addition, it was discerned that the percentage reduction in viscosity 

for polymer systems was slightly higher than 

that for biopolymer systems. 

 
Figure 11. Effect of acidic/basic components and seawater on viscosity with added polymer and biopolymer @ 80±5oC 
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Figure 12: Visual observation of changes in polymeric solutions @ 25oC (a) and 80oC (b) with aging time.  
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Figure 13. Effect of temperature on the reduction of viscoity from 20 ± 2oC to 80 ± 5oC at shear rates of 3 rpm (A) and 600 
rpm (B) 

 

3.2.3 Effect of aging time on viscosity of polymeric solutions in presence acidic and basic components  

To investigate the influence of ageing time on viscosity, PAM and XG solutions at a shear 
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Table 5. Viscosity of polymer (PAM) @ 0 day 
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Table 6. Viscosity of biopolymer (XG) @ 0 day 

 

 

 

 

 

 

 
Figure 14. Percentage loss of polymer (PAM) viscosity against ageing time at 80±5oC 

 

 

 Figure 15. Percentage loss of biopolymer (XG) viscosity against ageing time at 80±5oC  
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(PAM) and biopolymer (XG) have been reported. The results indicate that by adding polymer 

or biopolymer to the solutions, the IFT between n-decane and distilled water can be reduced. 

However, the effectiveness of polymer on the reduction in IFT was much higher than that of a 

biopolymer. The addition of basic and acidic components to the n-decane reduced the IFT 

between water and polymeric solutions further, and the highest reductions in IFT were 

observed for the acidic component. However, it would appear that seawater does not have a 

significant impact on IFT. A polymer and a biopolymer were used to increase the viscosity of 

the solution. The presence of acidic and basic components does not change the viscosity of 

solutions, while the presence of seawater leads to decreased viscosity. The results show that 

increased temperature had undesirable effects on viscosity over time, especially in the 

presence of acidic components. The same conclusion was observed for IFT at high 

temperature, while in the case of the biopolymer its value was reduced with ageing. 
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HIGHLIGHTS  

 Impacts of acidic/basic species on physiochemical properties of polymeric 
solutions. 

 Acidic species showed a greater impact on rheological properties of PAM and 
XG.  

 The effectiveness of PAM on the reduction in IFT was much higher than XG. 
 Temperature showed undesirable effect on rheological properties of PAM/XG 

over time. 
 More reduction in viscosity observed with acidic species at elevated 

temperatures.  
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