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Abstract

In this paper, we study the number of equilibria of the replicator-mutator dynamics for
both deterministic and random multi-player two-strategy evolutionary games. For deter-
ministic games, using Decartes’ rule of signs, we provide a formula to compute the number
of equilibria in multi-player games via the number of change of signs in the coefficients of a
polynomial. For two-player social dilemmas (namely, the Prisoner’s Dilemma, Snowdrift, Stag
Hunt, and Harmony), we characterize (stable) equilibrium points and analytically calculate
the probability of having a certain number of equilibria. For multi-player games, by employing
techniques from random polynomial theory, we compute the expected or average number of
internal equilibria. In addition, we perform extensive simulations by sampling and averaging
over a large number of possible payoff matrices to compare with and demonstrate analyti-
cal results. Numerical simulations also suggest several interesting behaviour of the average
number of equilibria when the number of players is sufficiently large or when the mutation is
sufficiently small. In general, we observe that introducing mutation results in a larger average
number of internal equilibria than when mutation is absent, implying that mutation leads to
larger behavioural diversity in dynamical systems. Interestingly, this number is largest when
mutation is rare rather than when it is frequent.

1 Introduction

The replicator-mutator dynamics has become a powerful mathematical framework for the
modelling and analysis of complex biological, economical and social systems. It has been em-
ployed in the study of, among other applications, population genetics [Had81], autocatalytic re-
action networks [SS92], language evolution [NKN01], the evolution of cooperation [IFN05] and
dynamics of behavior in social networks [Olf07]. Suppose that in an infinite population there are
n types/strategies S1, · · · , Sn whose frequencies are, respectively, x1, · · · , xn. These types undergo
selection; that is, the reproduction rate of each type, Si, is determined by its fitness or average
payoff, fi, which is obtained from interacting with other individuals in the population. The in-
teraction of the individuals in the population is carried out within randomly selected groups of d
participants (for some integer d). That is, they play and obtain their payoffs from a d-player game,
defined by a payoff matrix. We consider here symmetric games where the payoffs do not depend
on the ordering of the players in a group. Mutation is included by adding the possibility that
individuals spontaneously change from one strategy to another, which is modeled via a mutation
matrix, Q = (qji), j, i ∈ {1, · · · , n}. The entry qji denotes the probability that a player of type Sj
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changes its type or strategy to Si. The mutation matrix Q is a row-stochastic matrix, i.e.,

n∑

j=1

qji = 1, 1 ≤ i ≤ n.

The replicator-mutator is then given by, see e.g. [KNN01, Kom04, KL10, PCNeL12]

ẋi =

n∑

j=1

xjfj(x)qji − xif̄(x) =: gi(x), i = 1, . . . , n, (1)

where x = (x1, x2, . . . , xn) and f̄(x) =
∑n
i=1 xifi(x) denotes the average fitness of the whole

population. The replicator dynamics is a special instance of (1) when the mutation matrix is the
identity matrix.

In this paper we are interested in properties of equilibrium points of the replicator-mutator
dynamics (1). These points are solutions of the following system of polynomial equations

{
gi(x) = 0, i = 1, . . . , n− 1,∑n
i=1 xi = 1.

(2)

The second condition in (2), that is the preservation of the sum of the frequencies, is due to the term
xif̄(x) in (1). The first condition imposes relations on the fitnesses. We consider both deterministic
and random games where the entries of the payoff matrix are respectively deterministic and random
variables. Typical examples of deterministic games include pairwise social dilemma and public
goods games that have been studied intensively in the literature, see e.g. [HDMHS02, SPL06,
HPL17, WKJT15, PJR+17]. On the other hand, random evolutionary games are suitable for
modelling social and biological systems in which very limited information is available, or where
the environment changes so rapidly and frequently that one cannot describe the payoffs of their
inhabitants’ interactions [FH92, GRLD09, GF13]. Simulations and analysis of random games
are also helpful for the prediction of the bifurcation of the replicator-mutator dynamics [KNN01,
Kom04, PCNeL12]. Here we are mainly interested in the number of equilibria in deterministic
games and the expected number of equilibria in random games, which allow predicting the levels
of social and biological diversity as well as the overall complexity in a dynamical system. As in
[KNN01, Kom04, PCNeL12], we consider an independent mutation model that corresponds to a
uniform random probability of mutating to alternative strategies as follows:

qij =
q

n− 1
, i 6= j, qii = 1− q, 1 ≤ i, j ≤ n. (3)

The parameter q represents the strength of mutation and ranges from 0 to 1 − 1
n . The two

boundaries have interesting interpretation in the context of dynamics of learning [Kom04]: for
q = 0 (which corresponds to the replicator dynamics), learning is perfect and learners always end up
speaking the grammar of their teachers. In this case, vertices of the unit hypercube in Rn are always
equilibria. On the other hand, for q = n−1

n , the chance for the learner to pick any grammar is the
same for all grammars and is independent from the teacher’s grammar. In this case, there always
exists a uniform equilibrium x = (1/n, . . . , 1/n) (cf. Remark 2.1). Equilibrium properties of the
replicator dynamics, particularly the probability of observing the maximal number of equilibrium
points, the attainability and stability of the patterns of evolutionarily stable strategies have been
studied intensively in the literature [BCV97, Bro00, GT10, HTG12, GT14]. More recently, we
have provided explicit formulas for the computation of the expected number and the distribution
of internal equilibria for the replicator dynamics with multi-player games by employing techniques
from both classical and random polynomial theory [DH15, DH16, DTH18, DTH19]. For the
replicator dynamics, that is when there is no mutation, the first condition in (2) means that all the
strategies have the same average fitness which is also the average fitness of the whole population.
This benign property is no longer valid in the presence of the mutation making the mathematical
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analysis harder. In a general d-player n-strategy game, each gi is a multivariate polynomial of
degree d + 1, thus (2) is a system of multivariate polynomial equations. In particular, for a
two-player two-strategy game, which is the simplest case, (2) reduces to a cubic equation whose
coefficients depend on the payoff entries and the mutation strength. For larger d and n, solving (2)
analytically is impossible generally according to Abel’s possibility theorem. Nevertheless, there has
been a considerable effort to study equilibrium properties of the replicator-mutator dynamics in
deterministic two-player games, see for instance [KNN01, Kom04, KL10, PCNeL12]. In particular,
with the mutation strength q as the bifurcation parameter, bifurcations and limit cycles have been
shown for various classes of fitness matrices [KL10, PCNeL12]. However, equilibrium properties
for multi-player games and for random games are much less understood although in the previously
mentioned papers, random games were employed to detect and predict certain behaviour of (1).

In this paper, we explore further connections between classical/random polynomial theory
and evolutionary game theory developed in [DH15, DH16, DTH18, DTH19] to study equilibrium
properties of the replicator-mutator dynamics. For deterministic games, by utilizing Decartes’ rule
of signs and its recent developments, we are able to fully characterize the equilibrium properties
for social dilemmas. In addition, we provide a method to compute the number of equilibria
in multi-player games via the sign changes of the coefficients of a polynomial. For two-player
social dilemma games, we calculate the probability of having a certain number of equilibria when
the payoff entries are uniformly distributed. For multi-player two-strategy random games, we
obtain explicit formulas to compute the expected number of equilibria in multi-player games
by relating it to the expected number of positive roots of a random polynomial. Interestingly,
due to mutation, the coefficients of the random polynomial become correlated as opposed to the
replicator dynamics where they are independent. The case q = 0.5 turns out to be special and
needs different treatment. We also perform extensive simulations by sampling and averaging
over a large number of possible payoff matrices, to compare with and demonstrate analytical
results. Moreover, numerical simulations also show interesting behaviour of the expected number
of equilibria when the number of the players tends to infinity or when the mutation goes to zero. It
would be challenging to analyze these asymptotic behaviours rigorously and we leave it for future
work.

The rest of the paper is organized as follows. In Section 2 we study deterministic games.
In Section 3 we consider random games. Finally, we provide further discussions and outlook in
Section 4.

2 Properties of equilibrium points: deterministic games

In this section, we study properties of equilibrium points of deterministic games. We first
focus on social dilemmas. Then by employing Decartes’ rule of signs and its recent improvement
we derive a formula to compute the number of equilibria of multi-player games.

2.1 Two-player games

We first consider the case of two-player games. Let {ajk}nj,k=1 be the payoff matrix where j is
the strategy of the focal player and k is that of the opponent. Then the average payoff of strategy
j and of the whole population are given respectively by

fj(x) =

n∑

k=1

xkajk and f̄(x) =

n∑

j=1

xjfj(x) =

n∑

j,k=1

ajkxjxk. (4)

Substituting (4) into (1) we obtain

ẋi =

n∑

j,k=1

qjixjxkajk − xi
n∑

j,k=1

ajkxjxk. (5)
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In particular, for two-player two-strategy games the replicator-mutator equation is

ẋ = q11a11x
2+q11x(1−x)a12+q21x(1−x)a21+q21a22(1−x)2−x

(
a11x

2+(a12+a21)x(1−x)+a22(1−x)2
)
,

(6)
where x is the frequency of the first strategy and 1− x is the frequency of the second one. Using
the condition (3) for n = 2 we obtain:

q11 = q22 = 1− q, q12 = q21 = q.

Thus, equation (6) becomes

ẋ =
(
a12 + a21 − a11 − a22

)
x3 +

(
a11 − a21 − 2(a12 − a22) + q(a22 + a12 − a11 − a21)

)
x2

+
(
a12 − a22 + q(a21 − a12 − 2a22)

)
x+ qa22. (7)

Properties of equilibrium points for the case q = 0 has been well-understood, see e.g. [GT14].
Thus we consider 0 < q ≤ 1/2. In addition, equilibria of (7) and their stability for the case
a11 = a22 = 1, a12 ≤ a21 ≤ 1 has been studied in [KL10].

Remark 2.1. In this remark we show that in the case q = n−1
n the point x = (1/n, . . . , 1/n) is

always an equilibrium regardless of the type of games and the payoff functions. In fact, we have

gi(x) =
q

n− 1

n∑

j=1

xjfj(x)− xif̄(x)

=
q

n− 1
f̄(x) + (1− q)xifi(x)− q

n− 1
xifi(x)− xif̄(x)

=
q

n− 1
f̄(x)− qn

n− 1
xifi(x) + xifi(x)

︸ ︷︷ ︸
=0

−xif̄(x)

= (1/n− xi)f̄(x).

Thus the replicator-mutator dynamics always has an uniform equilibrium x = (1/n, . . . , 1/n), see
[PCNeL12] for the bifurcation analysis of this equilibrium point for the case d = 2 and n ≥ 3.

The following lemma is an elementary characterization of stability of equilibrium points of a
dynamical system where the right hand side is a polynomial.

Lemma 2.2. Consider a dynamical system ẋ = P (x) = anx
n+ . . .+a1x+a0 where a0, . . . , an are

real coefficients. Suppose that P has n real roots x1 < x2 < . . . < xn. Then the stability of these
equilibrium points is alternatively switched, that is for all i = 1, . . . n− 1, if xi is stable then xi+1

is unstable and vice versa. In particular, consider the dynamics ẋ = P (x) = Ax3 +Bx2 +Cx+D.
Suppose that P (x) has three real roots x1 < x2 < x3. Then

(i) If A > 0 then x2 is stable; x1 and x3 are unstable.

(ii) If A < 0 then x2 is unstable; x1 and x3 are stable

Proof. We prove the general case since the cubic case is a direct consequence. Since P has n real
roots x1, . . . , xn, we have P (x) = an

∏n
i=1(x− xi). Thus

P ′(x) = an

n∑

i=1

∏

j 6=i

(x− xj).

Therefore for any i = 1, . . . , n, we obtain

P ′(xi) = an
∏

j 6=i

(xi − xj).
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Since x1 < . . . < xn, we have for any i = 1, . . . , n− 1,

sign(P ′(xi)) = sign
(
an(−1)n−i

)
and sign(P ′(xi+1)) = sign

(
an(−1)n−i−1

)
= −sign(P ′(xi)),

which implies that P ′(xi) and P ′(xi+1) have alternative signs. Thus their stability is alternative
switched.

The following lemma specifies the location of roots of a quadratic equation whose proof is
omitted.

Lemma 2.3. Consider a quadratic equation f(x) = ax2 + bx+ c. Define ∆ = b2 − 4ac. Then

(i) Exactly one of the roots lies in a given interval (m1,m2) if f(m1)f(m2) < 0.

(ii) Both roots are greater than a given number m if

∆ ≥ 0, − b

2a
> m and af(m) > 0.

(iii) Both roots are less than a given number m if

∆ ≥ 0, − b

2a
< m and af(m) > 0.

(iv) Both roots lie in a given interval (m1,m2) if

∆ ≥ 0, m1 < −
b

2a
< m2, af(m1) > 0 and af(m2) > 0.

Two-player social dilemma games We first consider two-player social dilemma games. We
adopt the following parameterized payoff matrix to study the full space of two-player social
dilemma games where the first strategy is cooperator and second is defector [SPL06, WKJT15],
a11 = 1; a22 = 0; 0 ≤ a21 = T ≤ 2 and −1 ≤ a12 = S ≤ 1, that covers the following games

(i) the Prisoner’s Dilemma (PD): 2 ≥ T > 1 > 0 > S ≥ −1,

(ii) the Snow-Drift (SD) game: 2 ≥ T > 1 > S > 0,

(iii) the Stag Hunt (SH) game: 1 > T > 0 > S ≥ −1,

(iv) the Harmony (H) game: 1 > T ≥ 0, 1 ≥ S > 0.

Note that in SD-game: S + T > 1, in SH-game: S + T < 1. By simplifying the right hand side
of (7), equilibria of a social dilemma game are roots in the interval [0, 1] of the following cubic
equation

(
T + S − 1

)
x3 +

(
1− T − 2S + q(S − 1− T )

)
x2 +

(
S + q(T − S)

)
x = 0. (8)

It follows that x = 0 is always an equilibrium. If q = 1
2 then the above equation has two solutions

x1 = 1
2 and x2 = T+S

T+S−1 . In PD, SD and H-games, x2 6∈ (0, 1), thus they have two equilibria

x0 = 0 and x1 = 1
2 . In the SH-game: if T+S < 0 then the game has three equilibria x0 = 0, x1 = 1

2
and 0 < x2 < 1; if T + S ≥ 0 then the game has only two equilibria x0 = 0, x1 = 1

2 .

We consider q 6= 1
2 . For non-zero equilibrium points we solve the following quadratic equation

h(x) := (T + S − 1)x2 + (1− T − 2S + q(S − 1− T ))x+ S + q(T − S) := ax2 + bx+ c = 0. (9)

Note that we have h(1) = −q < 0 for all the above games. In the SD-game, since T + S − 1 > 0
and h(0) = S + q(T − S) = qT + S(1 − q) > 0, h is a quadratic and has two positive roots
0 < x1 < 1 < x2. Thus the SD-game always has two equilibria: an unstable one x0 = 0, and a
stable one 0 < x1 < 1. For the H-game,
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(i) If S + T = 1 then h becomes h(x) = −(2Tq + 1 − T )x + (2qT + 1 − T ) − q and has a root
x = 1− q

2Tq+1−T . If q(1− 2T ) < 1− T then x ∈ (0, 1) and the game has two equilibria: an

unstable one x0 = 0, and a stable one 0 < x1 < 1. If q(1− 2T ) ≤ 1− T then x < 0 and the
game has only one equilibrium x = 0.

(ii) if S + T > 1, then since h(0) = S + q(T − S) = qT + S(1 − q) > 0, h has two roots
0 < x1 < 1 < x2; thus the game has two equilibria: an unstable one x0 = 0, and a stable one
0 < x1 < 1.

(iii) if S + T < 1 then since h(0) = S + q(T − S) = qT + S(1 − q) > 0, h has two roots
x2 < 0 < x1 < 1; thus the game has two equilibria: an unstable one x0 = 0 and a stable one
0 < x1 < 1.

Thus the H-game has either 1 equilibrium or 2 equilibria. The analysis for the SH-game and the
PD-game is more involved since we do not know the sign of h(0).

SH-game. Since T + S < 1, h is always a quadratic polynomial. Define

∆ = (1− T − 2S + q(S − 1− T ))2 − 4(T + S − 1)(S + q(T − S)), (10)

m := − b

2a
=
T + 2S − 1− q(S − T − 1)

2(T + S − 1)
= 1 +

1− T + q(T + 1− S)

2(T + S − 1)
. (11)

Since T +S− 1 < 0 and 1−T + q(T + 1−S) > 0, we have m < 1. Applying Lemma 2.3, it results
in the following cases:

(i) If ∆ < 0, then the game has only one equilibrium x0 = 0 which is stable if S + q(T − S) < 0
and is unstable if S + q(T − S) > 0.

(ii) If ∆ ≥ 0 and h(0) > 0, then the game has two equilibria: an unstable one x0 = 0 and a
stable one 0 < x1 < 1.

(iii) If ∆ ≥ 0 and h(0) < 0 and − b
2a > 0 then the game has three equilibria x0 = 0 < x1 < x2 < 1

where x0 and x2 are stable while x1 is unstable.

(iv) If ∆ ≥ 0 and h(0) < 0 and − b
2a < 0 then the game has only one stable equilibrium x0 = 0.

PD-game. It remains to consider the PD-game. If S + T = 1 then h becomes h(x) =
−(2Tq + 1− T )x+ (2qT + 1− T )− q and has a root x̄ = 1− q

2Tq+1−T . Thus the game has only

one equilibrium x0 = 0 if x̄ 6∈ (0, 1) and has two equilibria if x̄ ∈ (0, 1). If S + T 6= 1, then h is a
quadratic polynomial. Let ∆ and m be defined as in (10)-(11). According to Lemma 2.3, we have
the following cases:

(i) If ∆ < 0 then h has no real roots. Thus the game only has one equilibrium x0 = 0.

(ii) If ∆ ≥ 0 and h(0) = qT + S(1− q) > 0 then h has exactly one root in (0, 1). Thus the game
has two equilibria.

(iii) If ∆ ≥ 0, 0 < T+2S−1−q(S−T−1)
2(T+S−1) < 1, ah(0) = (T+S−1)(qT+S(1−q)) > 0, and ah(1) =

−q(T + S − 1) > 0 then h has two roots in (0, 1). Thus the game has three equilibria.

(iv) In other cases, h has two roots but do not belong to (0, 1). Thus the game has only one
equilibrium at x0 = 0.

For comparison, we consider the case q = 0. Equation (8) becomes

(T + S − 1)x3 + (1− T − 2S)x2 + Sx = x(1− x)(S − (T + S − 1)x) = 0,

which implies

x0 = 0, x1 = 1, x2 =
S

T + S − 1
.
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The condition 0 < x2 < 1 is equivalent to

S(S + T − 1) > 0 and (1− T )(S + T − 1) < 0,

which is satisfied in the SD-game and the SH-game but is violated in the PD-game and the H-
game. In SD-game S + T > 1 and 0 = x1 < x2 < 1 = x1, thus x2 is stable and x0 and x1 are
unstable. In SH-game, S + T < 1 and 0 = x1 < x2 < 1 = x1, thus x2 is unstable, x1 and x3 are
stable. The PD-game and the H-game have only two equilibria: for PD-game x0 = 0 (stable) and
x1 = 1 (unstable), for H-game: x0 = 0 (unstable) and x1 = 1 (stable).

General games Now we consider a general two-player two-strategy game where there is no
ranking on the coefficients. An equilibrium point is a root x ∈ (0, 1) of the cubic on the right-hand
side of (6)

(
a12 + a21 − a11 − a22

)
x3 +

(
a11 − a21 − 2(a12 − a22) + q(a22 + a12 − a11 − a21)

)
x2

+
(
a12 − a22 + q(a21 − a12 − 2a22)

)
x+ qa22 = 0

We define t := x
1−x . Dividing the above equation by (1− x)3 and using the relation 1

1−x = 1 + t,
the above equation can be written in t-variable as

P3(t) = −a11qt3+(a12−a21+q(a21q−a11−a12))t2+(a12−a22+q(a21+a22−a12))+a22q := at3+bt2+ct+d.
(12)

The number of equilibria of the 2 × 2-game is equal to the number of positive root of the cubic
P3. Applying Sturm’s theorem we obtain the following result

Lemma 2.4. Let s1 and s2 be respectively the number of changes of signs in the following sequences

{
d, c,

bc− 9ad

a
, a
(
18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

)}
,

{
a,
b2 − 3ac

a
, a
(
18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

)}
.

Then P3 has exactly s1 − s2 number of positive roots. As consequences

(i) P3 has three distinct real positive roots (thus the game has 3 equilibria) if and only if





∆ > 0,

ab < 0,

ac > 0,

ad < 0.

(ii) If there is no change of sign in the sequence of polynomial’s coefficients then there is no
positive root. That is if 




ab > 0

bc > 0

cd > 0

then P3 has no positive root (thus the game has no equilibria).

2.2 Muti-player games

In this section, we focus on the replicator-mutator equation for d-player two-strategy with a
symmetry mutation matrix Q = (qji) (with j, i ∈ {1, 2}) so that

q11 = q22 = 1− q and q12 = q21 = q,
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for some constant 0 ≤ q ≤ 1. Let x be the frequency of S1. Thus the frequency of S2 is 1−x. The
interaction of the individuals in the population is in randomly selected groups of d participants,
that is, they play and obtain their fitness from d-player games. Let ak (resp., bk) be the payoff of
an S1-strategist (resp., S2) in a group containing k S1 strategists (i.e. d− k S2 strategists). Here
we consider symmetric games where the payoffs do not depend on the ordering of the players. In
this case, the average payoffs of S1 and S2 are, respectively

f1(x) =

d−1∑

k=0

ak

(
d− 1
k

)
xk(1− x)d−1−k and f2(x) =

d−1∑

k=0

bk

(
d− 1
k

)
xk(1− x)d−1−k. (13)

The replicator-mutator equation (1) then becomes

ẋ = xf1(x)(1− q) + (1− x)f2(x)q − x(xf1(x) + (1− x)f2(x))

= q
[
(1− x)f2(x)− xf1(x)

]
+ x(1− x)(f1(x)− f2(x)). (14)

Note that when q = 0 we recover the usual replicator equation (i.e. without mutation). In contrast
to the replicator equation, x = 0 and x = 1 are no longer equilibrium points of the system for
q 6= 0. In addition, according to Remark 2.1 if q = 1

2 then x = 1
2 is always an equilibrium point.

Equilibrium points are those points 0 ≤ x ≤ 1 that make the right-hand side of (14) vanishes,
that is

q
[
(1− x)f2(x)− xf1(x)

]
+ x(1− x)(f1(x)− f2(x)) = 0. (15)

Using (13), Eq. (15) becomes

q

[ d−1∑

k=0

bk

(
d− 1
k

)
xk(1− x)d−k −

d−1∑

k=0

ak

(
d− 1
k

)
xk+1(1− x)d−1−k

]

+

d−1∑

k=0

βk

(
d− 1
k

)
xk+1(1− x)d−k = 0, (16)

where βk := ak− bk. Now setting t := x
1−x then dividing (16) by (1−x)d+1 and using the relation

that (1 + t) = 1
1−x , we obtain

q(1 + t)
[ d−1∑

k=0

bk

(
d− 1
k

)
tk −

d−1∑

k=0

ak

(
d− 1
k

)
tk+1

]
+

d−1∑

k=0

βk

(
d− 1
k

)
tk+1 = 0. (17)

By regrouping terms and changing the sign, we obtain the following polynomial equation in t-
variable

P (t) :=

d+1∑

k=0

ckt
k = 0, (18)

where the coefficient ck for k = 0, · · · , d+ 1 is given by

ck :=





−qb0 for k = 0,

(q − 1)(a0 − b0)− q(d− 1)b1 for k = 1,

qak−2

(
d− 1

k − 2

)
+ (q − 1)(ak−1 − bk−1)

(
d− 1

k − 1

)
− qbk

(
d− 1

k

)
for k = 2, . . . , d− 1,

(q − 1)(ad−1 − bd−1) + qad−2(d− 1) for k = d,

qad−1 for k = d+ 1.

(19)
Thus the number of equilibria of d-player two-strategy games is the same as the number of positive
roots of the polynomial P . We utilize Decartes’ rule of signs to count the later. In [PLN14],
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the author has employed a similar approach to study the number of equilibria for the standard
replicator dynamics, in which P turns out to be a Bernstein polynomial and many useful properties
of Bernstein polynomials were exploited. However, for the replicator-mutator dynamics, P is no
longer a Bernstein polynomial. Let c := {c0, c1, . . . , cd+1} be the sequence of coefficients given in
(19). Applying Decartes’ rule of signs we obtain the following result.

Lemma 2.5. The number of positive roots of P , which is also the number of equiliria of the
d-player two-strategy mutator-replicator dynamics, is equal to the number of sign changes of c or
less by an even amount.

For a (real) polynomial P we denote by S(P ) the number of changes of signs in the sequence
of coefficients of P disregarding zeros and by R(P ) the number of positive roots of P counted with
multiplicities. Decartes’ rule of signs only provides an upper bound for R(P ) in terms of S(P ).
Recently it has been shown that R(P ) can be computed exactly as S(PQ) for some polynomial Q
or as a limit of S((t+ 1)nP (t)) as n tends to infinity.

Theorem 2.6. [An10] Let P be a non-zero real polynomial.

(i) There exists a real polynomial Q with all non-negative coefficients such that S(PQ) = R(P ).

(ii) The sequence S((t+ 1)nP (t)) is monotone decreasing with limit equal to R(P ).

The polynomial Q in Part (i) involves all the roots of P (even the imaginary ones), which are
not known in general, hence Part (i) is practically inefficient. The sequence {S((t + 1)nP (t))}n
can be easily computed, but it only can be used for approximating R(P ). Note that for P (t) =
cd+1t

d+1 + . . .+ c1t+ c0, we have

(t+ 1)nP (t) =

n∑

j=0

d+1∑

i=0

ci

(
n
j

)
ti+j =

n+d+1∑

k=0

d+1∑

i=0

ci

(
n

k − i

)
tk.

Thus thus k-th coefficient of (t+ 1)nP (t) is

akn =

d+1∑

i=0

ci

(
n

k − i

)
. (20)

Corollary 2.7. Let sn be the number of changes of signs in the sequence {akn}n+d+1
k=0 defined in

(20). Then the number N of equlibria of a d-player two-strategy game is

N = R(P ) = lim
n→∞

sn. (21)

Corollary 2.7 provides us a simple method to calculate the number of equilibria, N , for a
given d-player two-strategy game. In Figure 1 we show a number of examples. The value of n
such that sn reaches N varies significantly for different games and is usually (very) large. It would
be an interesting problem to find the smallest value of n satisfying sn = N . An upper-bound for
such n is also helpful. This is still an open problem [An10]. However, in the particular case when
P has no positive root, we have the following theorem.

Theorem 2.8. [PR01] Let P (t) = cd+1x
d+1+ . . .+c1t+c0. If R(P ) = 0 then S((t+1)n0P (t)) = 0

where

n0 =




(
d+ 1

2

) max0≤i≤d+1

{
ci/

(
d+ 1
i

)}

minλ∈[0,1]
{

(1− λ)d+1f( λ
1−λ )

} − d− 1



.

Corollary 2.9. If S((t+ 1)n0P (t)) ≥ 1 then R(P ) ≥ 1.
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Figure 1: Plot of sn for some randomly chosen payoff matrices (we adopted q = 0.1 in
all cases). We indicate the number players d in the game, the payoff matrix used for small d (for
the sake of representation given large sizes of the payoff matrices for large d), and the number
of internal equilibria, N . For sufficiently large n, sn decreasingly converges to the corresponding
value of N .
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3 Properties of equilibrium points: random games

In this section we study random games. For two-player social dilemma games, we calculate
the probability of having a certain number of equilibria when S and T are uniformly distributed.
For multi-player games, we compute the expected number of equilibria when the payoff entries are
normally distributed.

3.1 Probability of having a certain number of equilibria in social dilemma
games

We consider two-player social dilemma games in Section 2.1 but T and S are now random
variables uniformly distributed in the corresponding intervals. According to the analysis of Section
2.1, all of the games has at least one equilibrium at the origin. In addition, the SD-game always
has two equilibria, that is

pSD1 = pSD3 = 0, pSD2 = 1.

We also knew that the H-game has either 1 or 2 equilibria. The probability that it has 1 equilibrium
is smaller than the probability that S + T = 1. Since S + T has continuous density function, it
implies that pH1 = 0. Thus we also have

pH1 = pH3 = 0, pH2 = 1.

For the SH-game and PD-game, we are able to calculate the probability of having two equilibria
explicitly since its condition on T and S is simple which depends only on a convex combination
of T and S. The conditions on S and T for these games to have 1 equilibrium or 3 equilibria are
much more complex since they involve ∆ defined in (10), which is a nonlinear function of S and
T .

SH-game. Suppose that S ∼ U([−1, 0]), T ∼ U([0, 1]). Then

qT ∼ U([0, q]), fqT (x) =

{
1
q if 0 ≤ x ≤ q,
0 otherwise

;

(1− q)S ∼ U([q − 1, 0]), f(1−q)S(y) =

{
1

(1−q) if q − 1 ≤ y ≤ 0,

0 otherwise.

We now compute pSH2 explicitly. Probability that the SH-game has two equilibria, pSH2 , is the
probability that h(0)h(1) < 0. Since h(1) < 0 we have

pSH2 = Prob(h(0) > 0) = Prob(qT + S(1− q) > 0) =

∫ ∞

0

fSHZ (x) dx, (22)

where fSHZ is the probability density function of the random variable Z := qT + (1− q)S, which
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is given by

fSHZ (x) = (fqT ∗ f(1−q)S)(x) =

∫ ∞

−∞
fqT (x− y)f(1−q)S(y) dy

=
1

1− q

∫ 0

q−1
fqT (x− y) dy

(∗)
=

1

1− q





∫ x
q−1

1
q dy if q − 1 ≤ x ≤ 2q − 1,∫ x

x−q
1
q dy if 2q − 1 ≤ x ≤ 0,∫ 0

x−q
1
q dy if 0 ≤ x ≤ q,

0 otherwise

=
1

1− q





x+1−q
q if q − 1 ≤ x ≤ 2q − 1,

1 if 2q − 1 ≤ x ≤ 0,
q−x
q if 0 ≤ x ≤ q,

0 otherwise.

Note that to obtain (∗), we use the fact that fqT (x−y) is 1/q if 0 ≤ x−y ≤ q and is zero otherwise.
Thus the domain of integral is restricted to

D = {(x, y) : q − 1 ≤ y ≤ 0 & 0 ≤ x− y ≤ q},

which gives rise to the cases in (∗). Substituting the formula of fZ into (22) we obtain

pSH2 =

∫ ∞

0

fSHZ (x) dx =
1

1− q

∫ q

0

q − x
q

dx =
q

2(1− q) .

It follows that q 7→ pSH2 is an increasing function. We plot this function in Figure 2.

PD-game. Suppose that T ∼ U([1, 2]) and S ∼ U([−1, 0]). Then

qT ∼ U([q, 2q]), fqT =

{
1
q if q ≤ x ≤ 2q,

0 otherwise;

(1− q)S ∼ U([q − 1, 0]), f(1−q)S(y) =

{
1

(1−q) if q − 1 ≤ y ≤ 0,

0 otherwise.

Similarly as in (22) we have

pPD2 =

∫ ∞

0

fPDZ (x) dx,

where fPDZ is the probability density function of Z = qT +(1− q)S. To calculate this function, we
need to consider two different cases 0 < q ≤ 1/3 (hence q−1 ≤ −2q ≤ −q < 0) and 1/3 ≤ q ≤ 1/2
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Figure 2: Probability of having two equilibrium points for Prisoner’s Dilemma (PD)
and Stag Hunt (SH) games, according to analytical results obtained in Section 3. Both
functions are increasing; pPD2 is always bigger than pSD2 ; the maximum of pPD2 is 1 while the
maximum of pSD2 is 1/2. These results also corroborate the simulation results using samplings in
Figure 3.

(hence −2q ≤ q − 1 ≤ −q < 0). For 0 < q ≤ 1/3 we have

fPDZ (x) = (fqT ∗ f(1−q)S)(x) =

∫ ∞

−∞
fqT (x− y)f(1−q)S(y) dy

=
1

1− q

∫ 0

q−1
fqT (x− y) dy

=
1

1− q





∫ x−q
q−1

1
q dy if 2q − 1 ≤ x ≤ 3q − 1,∫ x−q

x−2q
1
q dy if 3q − 1 ≤ x ≤ q,∫ 0

x−2q
1
q dy if q ≤ x ≤ 2q,

0 otherwise

=
1

1− q





x+1−2q
q if 2q − 1 ≤ x ≤ 3q − 1,

1 if 3q − 1 ≤ x ≤ q,
2q−x
q if q ≤ x ≤ 2q,

0 otherwise

Hence for 0 ≤ q ≤ 1/3, we have

pPD2 =

∫ ∞

0

fPDZ (x) dx =

∫ q

0

fPDZ (x) dx+

∫ 2q

q

fPDZ (x) dx =
1

1− q
(∫ q

0

1 dy +

∫ 2q

q

2q − x
q

dy
)

=
3q

2(1− q) .

For 1/3 ≤ q ≤ 1/2, we have
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Figure 3: Probabilities of observing a certain number of equilibrium points for each
social dilemma game, for different mutation strengths, q. S and T are drawn from
uniform distributions. The results are averaged over sampling 106 pairs of S and T drawn from
the corresponding ranges in a social dilemma. All results are obtained using Mathematica.
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fPDZ (x) =
1

1− q

∫ 0

q−1
fqT (x− y) dy

=
1

1− q





∫ x−q
q−1

1
q dy if 2q − 1 ≤ x ≤ 3q − 1,∫ x−q

x−2q
1
q dy if 3q − 1 ≤ x ≤ q,∫ 0

x−2q
1
q dy if q ≤ x ≤ 2q,

0 otherwise

=
1

1− q





x+1−2q
q if 2q − 1 ≤ x ≤ 3q − 1,

1 if 3q − 1 ≤ x ≤ q,
2q−x
q if q ≤ x ≤ 2q,

0 otherwise

Hence for 1/3 ≤ q ≤ 1/2, we have

pPD2 =

∫ ∞

0

fPDZ (x) dx =

∫ 3q−1

0

fPDZ (x) dx+

∫ q

3q−1
fPDZ (x) dx+

∫ 2q

q

fPDZ (x) dx

=
1

1− q
(∫ 3q−1

0

x+ 1− 2q

q
dy +

∫ q

3q−1
1 dy +

∫ 2q

q

2q − x
q

)

= 3− 1

2q(1− q) .

In summary, we obtain

pPD2 =

{
3q

2(1−q) if 0 < q ≤ 1/3,

3− 1
2q(1−q) if 1/3 ≤ q ≤ 1/2.

It follows that q 7→ pPD2 is also increasing. We also plot this function in Figure 2. Moreover, in
Figure 3, we numerically compute the probability of having a certain number of equilibria for each
game by averaging over 106 samples of T and S. The numerical results are in accordance with the
analytical computations. In the H-game: p2 = 1 (hence p1 = p3 = 0) for all values of q. In the
SD-game: when q = 0, p3 = 1 (hence p1 = p2 = 0) but p2 = 1 (hence p1 = p3 = 0) for all q > 0.
In the PD-game: when q = 0, p2 = 1 (hence p1 = p3 = 0) but when 0 < q < 1/2 all p1, p2, p3
are positive although p3 is very small; p2 is increasing and attains its maximum 1 at q = 1/2.
In the SH-game: when q = 0, p3 = 1 (hence p1 = p2 = 0). When 0 < q < 1/2, the picture is
more diverse: all p1, p2 and p3 are non-negligible; p2 is increasing and attains its maximum 1/2 at
q = 1/2. Moreover, note that for q > 0, there is at least one equilibrium (x = 0) in all cases, where
the remaining ones are internal equilibria. To the contrary, when q = 0, PD and H games always
have two non-internal equilibria (at x = 0 and x = 1) while SH and SG games have three equilibria
(two non-internal and one internal). With mutation (q > 0), x = 1 is no longer an equilibrium in
all cases. Therefore, the SD-game has the same number of internal equilibria (one) while it gains
one more internal equilibrium in H game. In the PD-game, the probability of having at least one
internal equilibrium increases with q. In the SH-game, the probability of having two internal (i.e.
gaining one more compared to the no mutation case) is high. In short, except for the SD game,
introducing mutation leads to the probability of gaining an additional internal equilibrium (thus
increasing behavioural diversity) in all social dilemmas. This probability is 100% in the H-game,
increases with q in the PD-game (reaching 100% when q = 0.5) and is roughly 40-60% in the
SH-game.

3.2 Expected number of equilibria of multi-player two strategy games

We recall that finding an equilibrium point of the replicator-mutator dynamics for d-player
two-strategy games is equivalent to finding a positive root of the polynomial (18) with coefficients
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given in (19). In this section, by employing techniques from random polynomial theory, we provide
explicit formulas for the computation of the expected number of internal equilibrium points of the
replicator-mutator dynamics where the entries of the payoff matrix are random variables, thus
extending our previous results for the replicator dynamics [DH15, DH16, DTH19, DTH18]. We
will apply the following result on the expected number of positive roots of a general random
polynomial.

Theorem 3.1. [EK95, Theorem 3.1] Consider a random polynomial

Q(x) =

n∑

i=0

αkx
k,

where {αk}0≤k≤n are the elements of a multivariate normal distribution with mean zero and co-
variance matrix C. Then the expected number of positive roots of Q is given by

EQ =
1

π

∫ ∞

0

( ∂2

∂x∂y

(
log v(x)TCv(y)

)∣∣
y=x=t

) 1
2

dt, (23)

where

v(x) =




1
x
...
xn


 , v(y) =




1
y
...
yn


 .

Defining

H(x, y) =

n∑

i,j=0

Cijx
iyj , M(t) = H(t, t), A(t) = ∂2xyH(x, y)|y=x=t, B(t) = ∂xH(x, y)|y=x=t,

then EQ can be written as

EQ =
1

π

∫ ∞

0

√
A(t)M(t)−B(t)2

M(t)
dt. (24)

We now apply Theorem 3.1 to the random polynomial P given in (18) and obtain formulas for the
expected number of equilibria of the replicator-mutator dynamics for d-player two-strategy games.
It turns out that the case q = 0.5 needs special treatment since it is degenerate in the sense that
the density integrand in (24) is zero at t = 1.

3.2.1 The case q 6= 0.5

Suppose that ak and bk are independent standard normally distributed random variables.
Then, for q 6= 1

2 , the random vector c = {c0, . . . , cd+1} defined in (19) has a (symmetric) covariance
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matrix C = (Cij)0≤i,j≤d+1 given by

Ckk =





q2 for k = 0,

2(q − 1)2 + q2(d− 1)2 for k = 1,

q2

(
d− 1

k − 2

)2

+ 2(q − 1)2

(
d− 1

k − 1

)2

+ q2

(
d− 1

k

)2

for k = 2, . . . , d− 1,

2(q − 1)2 + q2(d− 1)2 for k = d,

q2 for k = d+ 1;

Ckk+1 =





q(q − 1) for k = 0,

q(q − 1) + q(q − 1)(d− 1)2 for k = 1,

q(q − 1)

(
d− 1

k − 1

)2

+ q(q − 1)

(
d− 1

k

)2

for k = 2, . . . , d− 2,

q(q − 1)(d− 1)2 + q(q − 1) for k = d− 1,

q(q − 1) for k = d;

Cij = 0 for 0 ≤ i < j ≤ d+ 1 : j − i ≥ 2.

Using the convention that whenever k < 0 or k > n then

(
n
k

)
= 0, we can simplify C as

Ckk = q2
(
d− 1
k − 2

)2

+ 2(q − 1)2
(
d− 1
k − 1

)2

+ q2
(
d− 1
k

)2

for k = 0, . . . , d+ 1, (25)

Ckk+1 = q(q − 1)

(
d− 1
k − 1

)2

+ q(q − 1)

(
d− 1
k

)2

, for k = 0, . . . , d, (26)

Cij = 0 for 0 ≤ i < j ≤ d+ 1 : j − i ≥ 2. (27)

Applying Theorem 3.1 we obtain the following result.

Proposition 3.2. Suppose that ak and bk are independent standard normally distributed random
variables and that q 6= 0.5. We define

H(x, y) =

d+1∑

k=0

Ckkx
kyk +

d∑

k=0

Ckk+1(xkyk+1 + xk+1yk),

M(t) = H(t, t), A(t) = ∂2xyH(x, y)
∣∣
y=x=t

, B(t) = ∂xH(x, y)
∣∣
y=x=t

,

where the coefficient Cij , 0 ≤ i, j ≤ d + 1 are given in (25), (26) and (27). Then the expected
number of equilibria of a d-player two-strategy replicator-mutator dynamics is given by

E =
1

π

∫ ∞

0

√
A(t)M(t)−B2(t)

M(t)
dt.

3.2.2 The case q = 0.5

The case q = 0.5 needs to be treated differently since in this case, according to Remark 2.1,
x = 1/2 is always an equilibrium. Thus the density f is degenerate at t = 1. Other equilibria
points are roots of the average fitness of the whole population f̄(x) = 0, that is

0 = f̄(x) = xf1(x)+(1−x)f2(x)
(13)
=

d−1∑

k=1

ak

(
d− 1
k

)
xk+1(1−x)d−1−k+

d−1∑

k=1

bk

(
d− 1
k

)
xk(1−x)d−k.
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Figure 4: (Left panel) Analytical vs. simulation sampling results of the average number of internal
equilibrium points for varying q and for different values of d. The solid lines are generated from
analytical (A) formulas of E. The solid diamonds capture simulation (S) results obtained by
averaging over 106 samples of the payoff entries (normal distribution). Analytical and simulations
results are in accordance with each other. (Right panel) Plot of E for increasing d and for different
values of q. In general we observe that E increases with d. E is always larger when q > 0 than
when q = 0. Also, E is largest when q is close to 0 (i.e. rare mutation). All results are obtained
using Mathematica.

Since x = 1 is not a solution, by dividing the right-hand side of the above equation to (1 − x)d,
and let t := x

1−x then we obtain the following equation

P (t) =

d−1∑

k=1

ak

(
d− 1
k

)
tk+1 +

d−1∑

k=1

bk

(
d− 1
k

)
tk

=

d∑

k=0

[
ak−1

(
d− 1
k − 1

)
+ bk

(
d− 1
k

)]
tk

=:

d∑

k=0

ckt
k,

where

ck = ak−1

(
d− 1
k − 1

)
+ bk

(
d− 1
k

)
.

Suppose that ak and bk are independent standard normally distributed random variables. Then
the random vector c = {c0, . . . , cd+1} has a (symmetric) covariance matrix C = (Cij)0≤i,j≤d+1

given by

Cij =

((
d− 1
k − 1

)2

+

(
d− 1
k

)2
)
δij ,

where δij is the Kronecker delta. Applying Theorem 3.1 and noticing that x = 1/2 is always an
equilibrium, we obtain the following result.

Proposition 3.3. Suppose that ak and bk are independent standard normally distributed random
variables and that q = 0.5. We define

H(x, y) =

d∑

k=0

((
d− 1
k − 1

)2

+

(
d− 1
k

)2
)
xkyk,

M(t) = H(t, t), A(t) = ∂2xyH(x, y)
∣∣
y=x=t

, B(t) = ∂xH(x, y)
∣∣
y=x=t

,
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Figure 5: Plot of log(E)/log(d+ 1) for varying d. We observe that for different values of q, this
quantity converges to the same value. All results are obtained using Mathematica.

Then the expected number of equilibria of a d-player two-strategy replicator-mutator dynamics is
given by

E = 1 +
1

π

∫ ∞

0

√
A(t)M(t)−B2(t)

M(t)
dt.

In Figure 4 we show that the results obtain from analytical formulas of E corroborate with
those obtained from numerical simulations by averaging over a large number of randomly generated
payoff matrices. Figure 4 also reveals that the expected number of equilibria exhibits several
interesting behaviours. We will elaborate more on this point in Section 4.

4 Conclusion and outlook

Understanding equilibrium properties of the replicator-mutator dynamics for multi-player
multi-strategy games is a difficult problem due to its complexity: to find an equilibrium, one
needs to solve a system of multivariate polynomials. In this paper, by employing techniques from
classical and random polynomial theory, we studied the number of equilibria for both deterministic
and random games. For deterministic games, by utilizing Decartes’ rule of signs and its recent
developments, we provided a method to compute the number of equilibria via the sign changes of
the coefficients of a polynomial. For two-player social dilemma games, we compute the probability
of observing a certain number of equilibria when the payoff entries are uniformly distributed. For
multi-player two-strategy random games, we obtained explicit formulas to compute the expected
number of equilibria by relating it to the expected number of positive roots of a random polynomial.
We also performed numerical simulations to compare with and to demonstrate our analytical
results. In general, we observe that E is always larger in the presence of mutation (i.e. when
q > 0) than when mutation is absent (i.e. when q = 0), implying that mutation leads to larger
behavioural diversity in a dynamical system (see again Figure 4). Interestingly, E is largest when
q is close to 0 (i.e. rare mutation), rather than when it is very large. Numerical simulations also
suggest a number of open problems that we leave for future work.

Asymptotic behaviour of the expected number of equilibria when the number of players tends
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to infinity. In [DH16], we proved that

lim
d→∞

lnE(d)

ln(d− 1)
=

1

2
, (28)

where E(d) is the expected number of internal equilibria of the replicator dynamics for d-player
two-strategy games where the payoff entries are randomly distributed. To obtain (28), we utilized

several useful connections to Legendre’s polynomials. In Figure 5, we plot lnE(q,d)
ln(d+1) , where E(q, d)

is the expected number of equilibria for the replicator-mutator dynamics, as a function of d for
various values of q. We observe that they all converge to the same limit as d tends to infinity,
but in different manner: for q = 0, it increasingly approaches the limit while for q > 0 sufficiently
small, at first they are decreasing and then for sufficiently large d, they also increasingly approach
to the limit. Thus it is expected that there is a phase transition. Proving this rigorously would
be an interesting problem. The method used in [DH16] seems not to be working since there is no
direct connections to Legendre’s polynomials.

Asymptotic behaviour of the expected number of equilibria when the mutation tends to zero.
The classical replicator dynamics is obtained from the replicator-mutator dynamics by setting the
mutation to be zero. Thus it is a natural question to ask how a certain quantity (such as the
expected number of equilibria) behaves when the mutation tends to zero. Both Figures 4 and 5
demonstrate that the expected number of equilibria changes significantly when the mutation is
turned on. In addition, using explicit formulas of the probability of observing two equilibria for
the SH-game and the PD-game obtained in Section 3, we clearly see a jump when q approaches
zero:

lim
q→0

pq,SH,PD2 = 0 6= 1 = p0,SH,PD2 .

Both these suggest that these quantities exhibit singular behaviour at q = 0. Characterizing this
behaviour would be a challenging problem for future work.

Bifurcation phenomena of the replicator-mutator dynamics for multi-player games.
In [PCNeL12], the authors proved Hopf bifurcations for the replicator-mutator dynamics with
d = 2 and n ≥ 3 and characterized the existence of stable limit cycles using an analytical derivation
of the Hopf bifurcations points and the corresponding first Lyapunov coefficients. In addition, they
also showed that the limiting behaviors are tied to the structure of the fitness model. Another
interesting topic for further research would be to extend the results of [PCNeL12] to multi-player
games.
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[PCNeL12] D. Pais, C. Caicedo-Núnẽz, and N. Leonard. Hopf bifurcations and limit cycles
in evolutionary network dynamics. SIAM Journal on Applied Dynamical Systems,
11(4):1754–1784, 2012.

[PJR+17] M. Perc, J. J. Jordan, D. G. Rand, Z. Wang, S. Boccaletti, and A. Szolnoki. Statistical
physics of human cooperation. Physics Reports, 687:1–51, 2017.
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