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Abstract: Increased deployment of intermittent renewable energy plants raises concerns about energy
security and energy affordability. Capacity markets (CMs) have been implemented to provide
investment stability to generators and secure energy generation by reducing the number of shortage
hours. The research presented in this paper contributes to answering the question of whether
batteries can provide cost effective back up services for one year in this market. The analysis uses
an equivalent circuit lithium ion battery model coupled with two degradation models (empirical
and semi-empirical) to account for capacity fade during battery lifetime. Depending on the battery’s
output power, four de-rating factors of 0.5 h, 1 h, 2 h and 4 h are considered to study which de-rating
strategy can result in best economic profit. Two scenarios for the number of shortage hours per year in
the CM are predicted based on the energy demand data of Great Britain and recent research. Results
show that the estimated battery profit is maximum with 2 h and 1 h de-rating factors and minimum
with 4 h and 0.5 h. Depending on the battery degradation model used, battery degradation cost can
considerably impact the potential profit if the battery’s temperature is not controlled with adequate
thermal management system. The empirical and semi-empirical models predict that the degradation
cost is minimum at 5 ◦C and 25 ◦C respectively. Moreover, both models predict degradation is
minimum at lower battery charge levels. While the battery’s capacity fade can be minimized to make
some profits from the CM service, the increased shortage hours can make providing this service not
economically viable.

Keywords: battery degradation; degradation cost; capacity market; Li-ion battery; de-rating capacity

1. Introduction

Decarbonizing the electricity sector is a key to meeting climate change goals for many countries.
Global renewable energy capacity reached (2351 GW) in 2018 compared to (1650 GW) in 2014 [1].
Similarly, the share of the UK’s electricity generation from renewable sources reached 35.5% in 2019 [2].
Energy security and system balance issues are likely to arise due to the intermittent nature of many
clean energy sources such as wind and solar as they begin to make up a significant part of the energy
generation mix [3,4]. Several methods have been used to ensure power system resiliency while
allowing high share of renewable energy resources such as demand side management [5], smart grid [6],
energy storage [7] and capacity markets (CM) [8].

Capacity markets (CMs) are energy markets created to optimise the duration of blackouts in the
electricity networks by providing regular payments to new or existing generation plants for energy
backup services. They have been implemented in many countries including Britain [9], USA [10],
Germany [11], France [12], and Spain [13] to secure energy generation, provide investment stability in
new generation plants thus reducing energy cost for customers. Recent research [14] modelled the
long and short-term CMs and concluded that they could reduce the number of electricity peak hours
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along with the energy cost for customers. It has been found that batteries can provide capacity services
equivalent to a traditional generator in the CM, which reduces the need for investment in new carbon
intensive energy generation plants [15].

Lithium ion batteries (LIBs) have higher power density, energy density, and cycle life compared
to other battery types [16]. Therefore, they provide several grid storage services such as energy
arbitrage [17], voltage support [18], peak shaving [19], frequency control [20], and energy reserve [21]
which could play a vital role in supporting the CM and energy security [22]. It is found that batteries
cannot only enhance its business case by participating in the CM but also reducing the cost of electricity
to customers by reducing the shortage hours [23]. Other study found that batteries that are providing
reserve services could triple their revenue by participating in the British electricity market [24].

However, since energy delivery in the CM can be requested at any time during the contract,
batteries are required to remain in a fully-charged status for a long period to be able to discharge when
a system stress event (SSE) occurs. This can increase battery capacity losses over time and is regarded
as one of the main barriers for the business case for battery storage in CMs [25]. Moreover, if the
battery capacity is fully discharged before the end of the SSE, the provider may incur a substantial
fine. Several domestic batteries are aggregated to provide grid services including back up service
to the CM in [26]. However, this work does not consider battery degradation. The authors in [27]
examined the effect of battery degradation on multiple services offered by energy storage based on
stochastic principles. They optimised storage to provide multiple services such as energy arbitrage and
frequency response to the balancing and energy markets while considering battery degradation due to
capacity decrease over time. However, their work does not consider the CM and their degradation
modelling is based on stochastic methods without accurate battery model that considers the internal
battery parameters. Recent research [28] has found a difference by 175% in the accuracy of calculating
degradation cost between the simplest and most accurate battery models thus significantly affect
battery’s business case. The operating cost of the LIB system, which mostly stems from its degradation
cost, is a key factor in determining its operational planning [29]. A model that takes into account the
degradation processes due to battery operations is therefore critical to account for battery degradation
cost. As such, there is a need to assess the business case for batteries participating in the CM considering
battery degradation using realistic models. This assessment needs also to account for the several
de-rating factors a battery can get in this market [30].

To address these challenges, this paper provides a degradation cost analysis for LIB in the
CM considering Great Britain as case study and using equivalent circuit battery cell model (ECM)
coupled with two degradation models. Four capacity de-rating factors of 0.5 h, 1 h, 2 h and 4 h are
also considered. Battery degradation models used in this study are empirical and semi-empirical.
The empirical models [31,32] are easy to use for predicting battery life cycle and accurate for some
battery applications. However, they require a lifetime analyses within a time scope of more than 10 years,
which is unrealistic and can be considered obsolete [33]. The semi-empirical models [34,35] develop
on the empirical models by mathematically representing some of the LIB complex electrochemical
phenomena thus can extrapolate some of the future conditions of battery behaviour based on
theoretical basis. This work compares between both degradation models in the CM context because
first, each degradation model has its own benefits/drawback. Second, the lifetime of the battery
strongly depends on its usage and there are many degradation mechanisms with each influenced by
different usage patterns which may affect the overall economic assessment [36]. Beyond the scope of
this work is a physics based battery degradation models where capacity fade is modelled due to a
side reaction that leads to solid electrolyte interphase layer growth, crack growth in the electrodes,
active material loss, and lithium plating amongst few others [37–40]. These models, therefore, offer an
extensive understanding of the concurrent aging mechanisms that could enable testing a wide range of
operating conditions and inform control strategies which leads to better battery design.
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The rest of the paper is organised as follows: Section 2 presents the CM fundamentals, Section 3
presents the methods used in this study, Section 4 presents and analyses the results, Section 5 discusses
the results and the limitations of this study and Section 6 presents concluding remarks.

2. The Necessity for a Capacity Market

In energy-only markets, generators depend on revenues collected when exporting electricity to
the grid to cover their costs. With the entrance of more intermittent renewable energy plants to the
market, the energy demand increase, and the phase-out of carbon-intensive generators, the market
faces a challenge to ensure energy supply adequacy. However, energy-only market neglects the energy
adequacy problems because it is a price-based approach which assumes that the market always clears
(quantity supplied = quantity demanded) [41,42]. This market failure along with many others resulted
in the development of CMs [43]. Also, during blackouts, energy-only market is inefficient [44]. If there
is a blackout in the electricity network, its duration relies on the generation capacity built to avert
them. The incentive to invest in new generation capacity depends on the scarcity prices paid during
blackouts. Since scarcity prices are normally capped at low price by regulators, generators may not
earn sufficient revenue to recover their fixed cost and invest in building new capacity. This create the
‘missing money’ problem [45]. The other failure mechanism is that the high inelastic nature of the
demand side makes customers cannot see the real-time price of electricity nor they can respond to
them [46].

The missing money problem is illustrated in Figure 1 where the relationship of the spot price in
the market and the utilised energy capacity as a function of time is governed by a price duration curve.
This curve reflects the price change with time according to different levels of supply and demand.
Peakers are operating in area A thus earning higher prices (P3 and above) but for a relatively short
period of time. The mid-range generators operate for longer duration and receive the payment in areas
A + B to cover the larger fixed and investment cost. The base load generators receive the payment
for A + B + C. The high prices received in area A is needed to compensate all generators not just the
peakers. However, the highest price in area A is normally capped low thus creating the missing money.
This price cap is introduced due to administrative/regulatory procedures to protect customers from
price volatility and prevent generators from exercising market power [47].
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Figure 1. The missing money problem for generators in energy-only markets.

Many solutions were adopted to mitigate the missing money problem including a quantity based
approach or CMs [44]. In CMs, the system operator needs to determine the optimal capacity (Cop) that
could reduce/eliminate the shortage hours in the system. Then, an auction is held to determine the
scarcity price needed by bidders to secure Cop. By comparing the marginal production cost with the
scarcity price during the auction, bidders can decide whether to remain in or be out of the market.
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In effect, the auction discovers the value of the price cap needed to inform investors to build new
capacity corresponding to the optimal capacity Cop.

The key here to effective CM is determining the number of expected shortage hours that correspond
to (Cop). This is determined based on defining a reliability standard that optimises the loss of load
expectation (LOLE) per year to 3 or 4. However, many energy regulators including OFGEM have
deemed this reliability standard as inadequate in determining the real number of shortage hours or
LOLE [48]. It is found in [49] that LOLE can reach 62.6 h/year in the presence of high share of renewable
energy sources. Moreover, within the current market scarcity prices, it is found that LOLE can reach up
to 83.3 h/year [14]. Considering the aforementioned studies, this work considers two main scenarios
for LOLE to determine the battery cycling profile along the CM contract period. The first and second
scenarios assume nearly 20 and 90 SSEs with different periods of 0.5 h, 1 h, 2 h and 4 h as shown in
Figure 2. The distribution of the SSEs considers the peak demand periods in the recent years of Great
Britain’s CM which are in quarter 1 and 4 of each year [50]. It also takes into account the probability of
the duration of each shortage hours (i.e., 4 h SSE is less probable than 2 h) as presented in [30].
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Figure 2. The number of stress events in the capacity market used in this study (a) scenario 1;
(b) scenario 2.

3. Methods

3.1. Problem Setup

In this study, the LIB is used to provide reserve services for the CM assuming 1-year contract
and it cycles according to the profiles of cycling in Figure 2. During the contract’s period, the battery
experiences both calendar and cycling aging that leads to capacity fade which in turn results in
degradation cost. The task of a battery operator who wishes to exploit this market is to nominate a
suitable capacity de-rating strategy for the battery between 0.5 h and 4 h+ [30] that can maximize
revenue and minimize degradation cost. This study utilizes the LIB to get 0.5 h, 1 h, 2 h and 4 h
de-rating factor as shown in Table 1. It should be noted that the battery capacity is in Ah multiplied
by the nominal voltage to get the battery capacity in MWh. The connection capacity is the power in
MW in which the battery asset owner can deliver to the grid. This setup is in agreement with the
current batteries participating in the CM [51]. The parameters values used in this study are given in
Appendix A.

Table 1. Capacity market battery de-rating factors used in this study.

Battery Capacity (MWh) Connection Capacity (MW) Duration (h)

2 2 0.5
2 2 1
2 1 2
2 0.5 4
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The total revenue of the battery (R), the energy losses due to degradation (Elost) and the capacity
obligation required during each SSE Co(i) are given in Equations (1)–(8).

R = Cde × λcl × f + Rov − p (1)

Cde = Pc × kde (2)

Pc = Ib ×Vb ×N (3)

p =
n∑

i=1

Cun(i) × λcl (4)

Rov =
n∑

i=1

Cov(i) × λcl (5)

Elost = Clost( j) × λdegr ×N (6)

Co(i) =
n∑

i=1

(
Cde ×Dp(i)

)
−Cb(i) (7)

Dp(i) =
Dsse

p(i)

Cauc
(8)

• Cde is the de-rated capacity and kde is the de-rating factor
• λcl and λdegr are the CM auction clearing price and the battery degradation cost respectively

• f is a factor used to reward slightly more payment in peak demand months
• Rov is the CM overpayment as a result of battery discharging more than its obligation
• p is the CM penalty
• Pc is the battery connection capacity which is function of the battery current, voltage and the

number of cells (Ib,Vb, N)
• Cun(i) and Cov(i) are the undelivered and over delivered capacity of the obligation during settlement

period (i)
• Clost( j) is the capacity lost as a result of battery degradation for model j

• Dp(i) is the peak electricity demand during the SSE (Dsse
p ) divided by the total CM contracted

capacity through the CM auction (Cauc)

The meanings of the formulas are as follows:

• Equation (1) calculates the total revenue for a battery in the CM including any overpayment
and penalties

• Equation (2) obtain the de-rating capacity based on the battery output power in Equation (3) and
the chosen de-rating strategy (i.e., 0.5 h, 1 h etc.)

• Equation (4) calculates the penalty of the battery by multiplying any undelivered capacity
obligation by the CM’s auction clearing price. The amount of undelivered capacity is calculated
based on the battery’s State of Charge (SoC) at the end of any SSE.

• Equation (5) calculates the overpayment similar to (4)
• Equation (6) calculates the battery capacity degradation cost by multiplying the cell degradation

by the cost of degradation along with the number of cells
• Equation (7) calculates the capacity obligation that must be delivered by the battery considering

the duration of the SSE(i) and peak demand in Equation (8) minus any delivered balancing
services capacity



Electronics 2020, 9, 90 6 of 19

3.2. Equivalent Circuit Battery Model

One LIB cell with a capacity of 53 Ah is simulated by using equivalent circuit battery model
(ECM) as shown in Figure 3. The 53 Ah cell then scaled to 2 MWh battery that contain 10,080 cells.
Both the revenue and degradation cost are then multiplied by the number of cells. This assumes a
high-quality cell balancing and battery management system in which all cells behave equally such that
each cell is controlled individually as in [20,52,53]. The purpose of the battery model is to update the
capacity of the battery continuously after the cycling to get accurate SoC value to estimate the CM
penalties (p). The model may be not needed for such analysis if the battery tested online and was fed
into the degradation model to obtain the lifetime analysis. In this model, Ro is the ohmic resistance
that represents charge/discharge energy losses. R1 and C1 describe the charge transfer resistance and
double layer capacitance respectively while R2 and C2 are used to capture battery diffusion effects.
A detailed presentation and discussion of the model can be found in [54–56].
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The electrical behavior of the battery is expressed in (9)–(12):

diR1

dt
= −

1
R1C1

iR1(t) +
1

R1C1
ib(t) (9)

diR2

dt
= −

1
R2C2

iR2(t) +
1

R2C2
ib(t) (10)

dz(t)
dt

= z(to) −
η

3600CN

∫
ib(t) (11)

v(t) = OCV(z(t)) − v1(t) − v2(t) −Roib(t) (12)

Since the ECM uses a coulomb counting method for SoC estimation in (11) which suffers from
errors if the initial capacity was not correctly determined, the battery capacity was continuously
updated by the degradation model similar to [57]. The battery parameters are presented in Table 2
which are fitted based on the experimental data in [58] using nonlinear least square algorithm. Figure 4
shows the simulation results for battery current and voltage taking SoC steps from 0 to 1 which
accurately corresponds to the data presented in [58].
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Table 2. Battery model parameters for Li-ion NMC cell at T = 20 ◦C.

SoC OCV (V) R0 (mΩ) R1 (mΩ) C1 (kF) R2 (mΩ) C2 (kF)

0 3.5136 9.6145 4.944 9.792 0.746 27.958
0.1 3.579 9.3483 4.928 12.621 0.572 38.512
0.2 3.623 9.5188 4.925 14.635 0.507 37.631
0.3 3.662 9.4834 4.90 15.301 0.498 26.237
0.4 3.694 9.4206 4.878 13.912 0.270 20.286
0.5 3.727 9.3673 4.899 11.905 0.0032 18.975
0.6 3.813 9.356 4.890 14.256 0.2385 15.288
0.7 3.899 9.3326 4.889 14.488 0.556 16
0.8 3.991 9.3847 4.884 13.775 0.288 18.763
0.9 4.092 9.240 4.822 15.166 0.659 18.454
1 4.21 9.351 4.885 12.889 0.490 12.412
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3.3. Degradation Models

LIB’s capability to store energy decreases over time resulting in capacity fade, power fade or
both. This is as a result of complex electrochemical and mechanical processes inside the battery that
can take place simultaneously [40]. These degradation mechanisms are influenced by the operating
conditions. During battery cycling, the degradation rate is influenced by C-rate, cycle depth effect
(DoD), and temperature [59]. In storage condition, the degradation rate is influenced by temperature,
idle time and SoC [60]. The purpose of battery degradation models, therefore, is to predict the battery
lifetime considering these influencing parameters. Both battery degradation models below as well as
the ECM model use the same battery chemistry (NMC) [33].

The power fade results in the battery’s resistance increase which in turn leads to capacity decrease.
However, because there is not a quantifiable measure that link resistance increase to capacity decrease
for cost modelling purposes, we assumed that the battery resistance increase is an indicative factor to
degradation and eventually the capacity decrease will be used to quantify the nominal capacity in
this paper.

3.3.1. Empirical Model

In this model, a large set of battery degradation experimental data is interpolated by empirical or
parametric functions. In the experimental study presented by Schmalstieg et.al. [61], 42 LIB cells were
stored for 500 days at different temperatures and voltages (SoCs) to increase reproducibility and the
accuracy of the calendar aging model. Similarity, 22 cycle aging tests with different DoDs and mean
SoC were tested to produce cycling aging model. Then the experimental data was mathematically
fitted in several steps to represent a lifetime degradation model. For the calendar aging model,
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the capacity reduction (Ccal) over the number of days (d) is represented by a (d0.75) function with a
degradation fitting parameter (α) as in (13). Then α is used to capture the SoC dependency (V) via a
linear relationship (14) and temperature dependency (T) via Arrhenius Equation (15). The resultant
(α) is given in (16) [61].

Similarly, the cycling aging model captures the capacity reduction (Ccyc) over the number of
equivalent full cycles (Nc) based on (t0.5) function with a degradation fitting paramter (β) as in (17).
Then β is used to capture cycle depth effect (DoD) and the average voltage (Vav). Therfore, the total
cycling and calendar aging model used in this study is given in (18) [61].

Ccal = α · d0.75 (13)

αv(v) = a + b ·Vb(t) (14)

αT(T) = a1 · exp (
−EA
RT

) (15)

α(T, V) = (7.543 ·Vb(t) − 23.75) · 106
· e
−6976

T (16)

Ccyc = β ·Nc0.5 (17)

Clost1 =

α(Vb(t), T) · d0.75 + β(DoD, Vmean(t)) ×

√∫
2Ib(t)

 (18)

3.3.2. Semi-Empirical Model

Semi-empirical models develop on the empirical ones by including theoretical basis for some
degradation mechanisms. For instance, this model can capture the battery cycling temperature
dependency which was not captured in the empirical mode. Therefore, they partly reduce the need for
gathering considerable amount of experimental data needed in the empirical models [62]. One example
of such models is developed by Smith et.al [63] in which 12 LIB cells were tested at different SoCs,
DoDs, and temperatures. In this model, three degradation mechanisms inside a LIB cell are represented
in Figure 5. First, it is assumed that some lithium particles at the interphase between the electrolyte
and the negative electrode are prevented from contributing to the main chemical reaction due to the
formation of solid electrolyte interphase (SEI) layer. This SEI layer grows with time and together with
the mechanical fracture occurred due to minimum battery cycling results in capacity fade (QSEI) as in
(19). In (19), d0T(t) captures the battery temperature dependency based on Arrhenius formula for all the
mechanisms. Then, the first term in (19) captures SEI layer growth with time, the second term captures
the battery loss with mild cycles and the third term captures the beginning of capacity loss in the first
cycle/day. With more expansion and contraction of electrode materials during charging/discharging,
the negative electrode particles face increased stress that lead to mechanical fracture which results
in active material loss (QAM) in (20). Equation (20) assumes that there is a negative electrode active
material loss with every cycle (Nc). Third, at the cell’s beginning of life, the positive electrode storing
capability (Qpos) will slightly increase because it is found that temperature is the main controlling
factor in the first few cycles leading to an increased Ah throughput in (21). The total capacity loss is
governed by (22) and all model parameters are from [63] which are given in MATLAB code with the
Supplementary Materials.

QSEI = d0T(t) (b0 − b1(T(t), SoC(t, T), DoD)·d0.5
− b2(T(t), OCV(t, T), DoD)

·Nc − b3(T(t)·(1− exp(−d/τb3)
(19)

dQAM

dNc
= −

c1(T(t), DoD)

QAM
(20)
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Qpos = d0T(t) + (d3·

(
1− exp (−

∫
2Ib(t)
228

)

)
(21)

Clost2 = min
(
QSEI, QAM, Qpos

)
(22)

Electronics 2020, 9, x FOR PEER REVIEW 8 of 19 

 

𝛼(𝑇, 𝑉) = (7.543 ∙ 𝑉௕(𝑡)) − 23.75) ∙ 10଺ ∙ 𝑒ି଺ଽ଻଺்  (16) 

𝐶௖௬௖ = 𝛽 ∙ 𝑁𝑐଴.ହ (17) 

𝐶௟௢௦௧ଵ = ቌ𝛼(𝑉௕(𝑡), 𝑇) ∙ 𝑑଴.଻ହ + 𝛽(𝐷𝑜𝐷, 𝑉௠௘௔௡(𝑡)) × ඨන 2𝐼௕(𝑡)ቍ     
(18) 

3.3.2. Semi-Empirical Model 

Semi-empirical models develop on the empirical ones by including theoretical basis for some 
degradation mechanisms. For instance, this model can capture the battery cycling temperature 
dependency which was not captured in the empirical mode. Therefore, they partly reduce the need 
for gathering considerable amount of experimental data needed in the empirical models [62]. One 
example of such models is developed by Smith et.al [63] in which 12 LIB cells were tested at different 
SoCs, DoDs, and temperatures. In this model, three degradation mechanisms inside a LIB cell are 
represented in Figure 5. First, it is assumed that some lithium particles at the interphase between the 
electrolyte and the negative electrode are prevented from contributing to the main chemical reaction 
due to the formation of solid electrolyte interphase (SEI) layer. This SEI layer grows with time and 
together with the mechanical fracture occurred due to minimum battery cycling results in capacity 
fade (𝑄ௌாூ) as in (19). In (19), 𝑑0்(௧)captures the battery temperature dependency based on Arrhenius 
formula for all the mechanisms. Then, the first term in (19) captures SEI layer growth with time, the 
second term captures the battery loss with mild cycles and the third term captures the beginning of 
capacity loss in the first cycle/day. With more expansion and contraction of electrode materials during 
charging/discharging, the negative electrode particles face increased stress that lead to mechanical 
fracture which results in active material loss (𝑄஺ெ) in (20). Equation (20) assumes that there is a 
negative electrode active material loss with every cycle (𝑁௖). Third, at the cell’s beginning of life, the 
positive electrode storing capability (𝑄௣௢௦) will slightly increase because it is found that temperature 
is the main controlling factor in the first few cycles leading to an increased Ah throughput in (21). 
The total capacity loss is governed by (22) and all model parameters are from [63] which are given in 
MATLAB code with the supplementary materials. 

++ +

+ + +

+ + +

+++

Positive Electrode

Load
Discharge Charge

Seperator

--- - - -

Negative Electrode

Electrolyte

+
+

+

+

+

+

+

Active material 
gained 

+

+

+

+

+

+

+

SEI layer

+

mechanical fracture

 
Figure 5. Degradation mechanisms considered in the semi-empirical model. Figure 5. Degradation mechanisms considered in the semi-empirical model.

3.4. Degradation Cost

Although the general trend of battery pack cost is decreasing, there is no unified way for estimating
battery pack cost precisely for any system because the cost is rarely disclosed publicly [64]. Moreover,
the cost would depend on the owner’s preference for battery chemistry, lifetime, power electronics
equipment, thermal management system, the quality of battery management system amongst other
factors. As such, the battery pack cost is subject to great uncertainty. Some studies assumed a battery
pack cost of 125 $/kWh by 2022 [65]. Other study found that the minimum battery pack price is
220 €/kWh in 2018 [66]. This study considers Bloomberg analyses for battery pack price of 176 $/kWh
in 2019 [67] which we assumed that it includes the cost of all BMS components such as the thermal
management system reviewed in [21]. As such, the degradation cost is set to 0.5 £/Ah by assuming a
constant average voltage of 3.65 V similar to [28].

4. Results

4.1. Accuracy of Battery Degradation Models

The calendar and cycle degradation for the empirical model as predicted by (18) along with the
corresponding experimental data are presented in Figure 6a,b. Figure 6a shows the calendar aging
results at different temperatures and SoCs where degradation is exacerbated by increasing temperature
and SoCs. The model shows good accuracy when compared by the same experiment data sets provided
by [61]. It also corresponds well to the calendar experimental data for the NMC battery cell provided
by [68] which is presented here. This shows that the calendar aging results may be valid outside the
operating conditions firstly tested using t0.5 or t0.75 functions [69]. Figure 6b shows the cycling results
at different C-rates and DoDs where capacity loss is high at higher DoD and C-rate.
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the required capacity obligation which is enough for fully charging the battery [30]. 

Figure 6. Simulated (line) and measured (marker) remaining capacity for empirical model (a) calendar
aging at various SoC values and temperatures with the experimental data from [68]; (b) cycling aging
at various DoD windows (in brackets) and currents at T = 35◦C with experimental data from [61].

Figure 7a,b shows the calendar and cycle degradation for the semi-empirical model as predicted by
(22) along with the corresponding experimental data. Figure 7a shows that this NMC cell experienced
minimum degradation at 30 ◦C, 100%SoC and 45 ◦C, 65%SoC. The 55 ◦C, 100%SoC cell experienced
severe and nonlinear degradation which indicate the higher temperature can lead to unexpected battery
behaviour. When it is needed to perform a reference capacity testing for the 55 ◦C, 100%SoC cell, it was
cycled above the recommended temperature set by the manufacturer thus the reference performance
tests were done at 45 ◦C which explains the divergence of the results compared to the model [63].
Figure 7b shows increased capacity fade at higher DoD. It shows also that maximum degradation is at
0 ◦C, 80%DoD in which the cell starts at 81% of its capacity without any degradation. The reduction in
capacity at very low temperatures may be related to changes of the electrode materials and separator
structures [70] or to the difference in pressure experienced by negative and positive electrodes [71].
Table 3 shows the maximum root mean square error for the simulations of Figures 6 and 7.
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Table 3. Maximum root mean square error [%] for both empirical and semi-empirical models.

Degradation Type Empirical RMSE [%] Semi-Empirical RMSE [%]

Calendar 3.4 4.9
Cycle 1.7 1.1

4.2. Revenue and Degradation Cost in the Capacity Market

This section presents the revenue and degradation cost for each battery at 0.5 h, 1 h, 2 h and 4 h
de-rating factors. Here the cycling is according to scenrario1 in Figure 2a. Since the cycling in the CM
is generally low, we assumed that once the SSE occurs, the battery will be fully charged based on the
present SoC (i.e., if the battery is left at 50%SoC to reduce calendar aging, then it should be charged to
100%SoC). This assumption consider the fact that the battery in the CM has 4 h notice to deliver the
required capacity obligation which is enough for fully charging the battery [30].

4.2.1. Revenue and Degradation Cost for Different Temperatures

The revenue and the degradation cost for the four batteries along 1 year CM contract are depicted
in Figures 8 and 9. The capacity fade calculation uses the empirical model (18) and the semi-empirical
model (22) in Figures 8 and 9 respectively. In Figure 8, in general, the degradation cost increases
by increasing the temperature from 5 ◦C to 45 ◦C. At 5 ◦C, The battery with the 2 h de-rating factor
receives the highest profit (revenue–degradation cost) because it discharges its de-rated capacity with
a lower current rate (0.5) and receives a relatively high de-rating factor. Therefore, it is recommended
in this case to optimise the battery to get 2 h de-rating factor with 5 ◦C storing temperature.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 19 

 

4.2.1. Revenue and Degradation Cost for Different Temperatures 

The revenue and the degradation cost for the four batteries along 1 year CM contract are 

depicted in Figures 8 and 9. The capacity fade calculation uses the empirical model (18) and the semi-

empirical model (22) in Figures 8 and 9 respectively. In Figure 8, in general, the degradation cost 

increases by increasing the temperature from 5 °C to 45 °C. At 5 °C, The battery with the 2 h de-rating 

factor receives the highest profit (revenue–degradation cost) because it discharges its de-rated 

capacity with a lower current rate (0.5) and receives a relatively high de-rating factor. Therefore, it is 

recommended in this case to optimise the battery to get 2 h de-rating factor with 5 °C storing 

temperature.  

   

    

Figure 8. Revenue and degradation cost for 0.5 h - 4 h batteries for several temperatures at 100%SoC. 

* means a penalty is applicable on this battery at this time. Capacity fade is predicated by Formula 

(18). 

Figure 9 shows slightly higher revenues for all the batteries due increased battery capacity (𝑄𝑝𝑜𝑠) 

predicted in the first days/cycles. It also shows, in contrast to Figure 8, that degradation cost is 

maximum at T = 5 °C and minimum at T = 25 °C. This is because unlike the empirical model, the semi-

empirical model assumes that the SEI layer formation occurs not only because calendar aging but 

also accounts for mild cycles (see Section 3.3.2). At T = 25 °C, the 1 h battery shows the highest profit. 

The semi-empirical model predicts lower capacity fade per temperature if compared to the empirical 

model. For instance, the degradation cost can reach up to £6000 for all the batteries in Figure 8 while 

it is nearly 4000 £ in Figure 9. 

Two general trends can be noticed in both Figures 8 and 9. First, the number of the incurred 

penalties for the 4 h battery is high because the remaining battery capacity will not be sufficient to 

account for the capacity obligation predicted by (7) in all of the 4 h SSE. Second, the 1 h and 2 h 

batteries receive the highest revenue respectively because they discharge high de-rated capacity and 

receive less penalties compared to the 0.5 h and 4 h batteries. 

 

Figure 8. Revenue and degradation cost for 0.5–4 h batteries for several temperatures at 100%SoC.
* means a penalty is applicable on this battery at this time. Capacity fade is predicated by Formula (18).



Electronics 2020, 9, 90 12 of 19

Electronics 2020, 9, x FOR PEER REVIEW 12 of 19 

 

4.2.2. Revenue and Degradation Cost for Different SoCs 

Figures 10 and 11 show the revenue and degradation cost for different SoCs with the 

temperature is constant at 25 °C for all the batteries. This assumes that the battery asset owner can 

control the temperature using thermal management system. Then, the battery can get charged when 

the 4-h notice from the system operator is received. The capacity fade calculation uses the empirical 

model (18) and the semi-empirical model (22) in Figures 10 and 11 respectively. The general trend in 

both figures is that the higher the SoC the lower the overall profit. Therefore, the battery should be 

maintained at lower SoC to reduce capacity fade in the CM. However, if the battery is contracted to 

deliver other balancing services while a SSE occurs at the same time, this may compromise the 

contract or make the battery capacity insufficient to deliver its CM obligation. Moreover, both figures 

show the 2 h battery generally offer the highest overall profit amongst the four batteries if all the SoC 

range (20–100%) is taken on average. 

 

  

Figure 9. Revenue and degradation cost for 0.5 h - 4 h batteries for several temperatures at 100%SoC. 

* means a penalty is applicable on this battery at this time. Capacity fade is predicated by Formula 

(22). 

4.3. Increased Battery Cycling Effects 

The total profit of the four batteries at the end of the CM contract for both scenarios in Figure 2 

is shown in Figure 12. This assumes an ideal case for both empirical (T = 5 °C) and semi-empirical 

models (T = 25 °C). It can be clearly shown that with increased cycling or increased SSEs, providing 

CM services is not economically viable for all batteries. Increasing the LIB capacity can be one of the 

solutions to make providing longer term backup service to the grid cost effective. However, this 

presents also an opportunity to other longer-duration energy storage technologies such as flow 

batteries which has longer cycle life than LIB to increase grid resiliency [72]. 

 

Figure 9. Revenue and degradation cost for 0.5–4 h batteries for several temperatures at 100%SoC.
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Figure 9 shows slightly higher revenues for all the batteries due increased battery capacity
(Qpos) predicted in the first days/cycles. It also shows, in contrast to Figure 8, that degradation cost
is maximum at T = 5 ◦C and minimum at T = 25 ◦C. This is because unlike the empirical model,
the semi-empirical model assumes that the SEI layer formation occurs not only because calendar aging
but also accounts for mild cycles (see Section 3.3.2). At T = 25 ◦C, the 1 h battery shows the highest
profit. The semi-empirical model predicts lower capacity fade per temperature if compared to the
empirical model. For instance, the degradation cost can reach up to £6000 for all the batteries in
Figure 8 while it is nearly 4000 £ in Figure 9.

Two general trends can be noticed in both Figures 8 and 9. First, the number of the incurred
penalties for the 4 h battery is high because the remaining battery capacity will not be sufficient to
account for the capacity obligation predicted by (7) in all of the 4 h SSE. Second, the 1 h and 2 h batteries
receive the highest revenue respectively because they discharge high de-rated capacity and receive less
penalties compared to the 0.5 h and 4 h batteries.

4.2.2. Revenue and Degradation Cost for Different SoCs

Figures 10 and 11 show the revenue and degradation cost for different SoCs with the temperature
is constant at 25 ◦C for all the batteries. This assumes that the battery asset owner can control the
temperature using thermal management system. Then, the battery can get charged when the 4-h notice
from the system operator is received. The capacity fade calculation uses the empirical model (18) and
the semi-empirical model (22) in Figures 10 and 11 respectively. The general trend in both figures is
that the higher the SoC the lower the overall profit. Therefore, the battery should be maintained at
lower SoC to reduce capacity fade in the CM. However, if the battery is contracted to deliver other
balancing services while a SSE occurs at the same time, this may compromise the contract or make the
battery capacity insufficient to deliver its CM obligation. Moreover, both figures show the 2 h battery
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generally offer the highest overall profit amongst the four batteries if all the SoC range (20–100%) is
taken on average.Electronics 2020, 9, x FOR PEER REVIEW 13 of 19 
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4.3. Increased Battery Cycling Effects

The total profit of the four batteries at the end of the CM contract for both scenarios in Figure 2
is shown in Figure 12. This assumes an ideal case for both empirical (T = 5 ◦C) and semi-empirical
models (T = 25 ◦C). It can be clearly shown that with increased cycling or increased SSEs, providing
CM services is not economically viable for all batteries. Increasing the LIB capacity can be one of
the solutions to make providing longer term backup service to the grid cost effective. However,
this presents also an opportunity to other longer-duration energy storage technologies such as flow
batteries which has longer cycle life than LIB to increase grid resiliency [72].Electronics 2020, 9, x FOR PEER REVIEW 14 of 19 
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semi-empirical models assuming ideal temperatures.

5. Discussion

Two policy recommendations arise from this work. First, degradation cost either needs to be
remunerated or accounted for in the CM regulations in such a way to reduce the exposure to penalties.
This is because by using all models and scenarios, degradation cost can substantially reduce the overall
profit in the CM. For instance, if an ideal case is used by assuming the battery’s temperature is at T = 5
◦C and 20%SoC, then the empirical model predicts that the degradation cost account for nearly 53% of
the overall revenue in 1 year. Also, the semi-empirical model predicts the ideal case will result in 9%
degradation cost of the overall revenue in 1 year. However, to the best of our knowledge, no CM in
the world remunerates the battery degradation cost but at the same time penalize battery owners for
any shortage in the capacity obligation. Second, CMs should provide the necessary overpayments for
batteries. The current CM regulations provide overpayment—in case the battery discharged more
than its capacity obligation—only if there are penalties collected from different CM units that did not
deliver. However, since the capacity obligation always takes into account the de-rated capacity as in (7)
which in most cases lower than the original battery capacity, the battery will always over deliver as it is
required to fully discharge the battery once the SSE occur. For these previous reasons along with fuel
neutrality in the CM, the current CMs design may be ill suited to incentivize low carbon resources and
secure energy supply [73].

Three limitations also arise from this study. First, degradation models can be outdated because
all degradation models need to be fitted based on the experimental battery data which has changed
hugely over the years due to the advancement in battery materials. For example, the capacity fade in a
more recent work for the NMC battery cell can be only around 7% after 4500 cycles and less than 1%
after 450 day [74]. Second, a battery asset owner can utilise the battery to provide many other different
ancillary services which is not considered in this study. Third, both empirical and semi-empirical
models either underestimate or overestimate the total degradation at 5◦C. The experimental data at
T = 5 ◦C for the same NMC cell shows that the calendar degradation is minimum at 5 ◦C while the
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cycling degradation is maximum [68]. This necessitates the need for a high fidelity physics based
degradation model in order for the degradation cost analysis be more accurate. The computational cost
for such models depends on many factors such as the final application requirements, the assumptions
used to reduce the model order, and the number of degradation mechanisms considered. For a lifetime
cost study that is done offline then the computational cost will not be a problem and the overall goal
becomes to inform the cost–benefit analysis before the actual battery opts for a service contract. In the
CM application and since the battery owner has 4 h to discharge, then if it needed to check the state
of health of the battery online, it is essential that the computational cost be less than 4 h. In other
balancing services for example that requires response within 10 minutes’ notice, then a simplification
of the physics model is required as in [37]. Detailed discussion about the computational efficiency for
physics based model are presented in [75].

6. Conclusions

In this work, an equivalent circuit battery model with a capacity of 2 MWh coupled with empirical
and semi-empirical degradation models was used to provide backup service in the CM along one year.
The accuracy of the battery model and the degradation models were tested by comparing them with
the corresponding experimental data. Then by controlling the battery’s output power, this battery
is utilised to get four capacity de-rating factors of 0.5 h, 1 h, 2 h and 4 h to study which strategy can
maximize the overall revenue. During the CM contract, the battery experiences both cycle and calendar
capacity fade which result in a degradation cost. To account for the number of shortage hours in one
year in the CM, two battery cycling scenarios were created based on the historical energy demand data
in Great Britain and earlier research.

The results illustrate that the 2 h and 1 h batteries get the highest revenue in all the simulated
scenarios. Also, degradation cost can significantly impact the potential profit by using each de-rating
strategy if the battery storing temperature is not correctly controlled. The empirical degradation model
predicts that battery degradation is minimum at lower temperatures such as 5 ◦C. The semi-empirical
model predicts that battery degradation is minimum at the standard temperature 25 ◦C. This is because
each model quantify degradation differently. Moreover, by using both degradation models, keeping the
battery at lower charge levels results in less capacity fade. While providing CM service may be
economically viable when the number of shortage hours per year are low, it becomes not profitable if
these shortage hours increase.

The impact of battery degradation on other services profitability together with the CM could be
studied in the future using physics-based battery degradation model that can mitigate the limitation of
the empirical and semi-empirical model especially at lower temperatures such as 5 ◦C.
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The parameters used in this study is given in Table A1 below.
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Table A1. Parameter values used in this study.

Parameter Value Unit Ref

f −4.66910−4d5 + 0.0155d4
− 0.1829d3 + 0.9375d2

− 2.255d + 11.34 -

λcl 19.4 £/kW/year [76]

Cauc 49258 MW [76]

Cb(i) Cb(i = odd settlement period) = 0.2, Cb(even) = 0 MWh

Dsse
p(i)

For i = 1, 2, . . . 8
MW

−2463× i + 4.68× 104

N 10080 -

j 1 for empirical, 2 for semi-empirical

η 0.99 [55]

CN 53 Ah

kde
For y = 0.5, 1, 2, 4 -

−4.934y2 + 43.44y + 1.233

β 7.384× 10−3(V(t)mean − 3.667)2 + 7.6× 10−4 + 4.081× 10−3
× ∆DoD - [61]
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17. Pandžić, H.; Wang, Y.; Qiu, T.; Dvorkin, Y.; Kirschen, D.S. Near-Optimal Method for Siting and Sizing of
Distributed Storage in a Transmission Network. IEEE Trans. Power Syst. 2015, 30, 2288–2300. [CrossRef]

18. Wang, L.; Liang, D.H.; Crossland, A.F.; Taylor, P.C.; Jones, D.; Wade, N.S. Coordination of Multiple Energy
Storage Units in a Low-Voltage Distribution Network. IEEE Trans. Smart Grid 2015, 6, 2906–2918. [CrossRef]

19. Gayme, D.; Topcu, U. Optimal power flow with large-scale storage integration. IEEE Trans. Power Syst. 2013,
28, 709–717. [CrossRef]

20. Engels, J.; Claessens, B.; Deconinck, G. Techno-economic analysis and optimal control of battery storage for
frequency control services, applied to the German market. Appl. Energy 2019, 242, 1036–1049. [CrossRef]

21. Hesse, C.H.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of
Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017,
10, 2107. [CrossRef]

22. Goebel, C.; Hesse, H.; Schimpe, M.; Jossen, A.; Jacobsen, H. Model-Based Dispatch Strategies for Lithium-Ion
Battery Energy Storage Applied to Pay-as-Bid Markets for Secondary Reserve. IEEE Trans. Power Syst. 2017,
32, 2724–2734. [CrossRef]

23. Khan, A.S.M.; Verzijlbergh, R.A.; Sakinci, O.C.; De Vries, L.J. How do demand response and electrical energy
storage affect (the need for) a capacity market? Appl. Energy 2018, 214, 39–62. [CrossRef]

24. Staffell, I.; Rustomji, M. Maximising the value of electricity storage. J. Energy Storage 2016, 8, 212–225.
[CrossRef]

25. Castagneto Gissey, G.; Dodds, P.E.; Radcliffe, J. Market and regulatory barriers to electrical energy storage
innovation. Renew. Sustain. Energy Rev. 2018, 82, 781–790. [CrossRef]

26. Rappaport, R.D.; Miles, J. Cloud energy storage for grid scale applications in the UK. Energy Policy 2017, 109,
609–622. [CrossRef]

27. Perez, A.; Moreno, R.; Moreira, R.; Orchard, M.; Strbac, G. Effect of Battery Degradation on Multi-Service
Portfolios of Energy Storage. IEEE Trans. Sustain. Energy 2016, 7, 1718–1729. [CrossRef]

28. Reniers, J.M.; Mulder, G.; Ober-Blöbaum, S.; Howey, D.A. Improving optimal control of grid-connected
lithium-ion batteries through more accurate battery and degradation modelling. J. Power Sources 2018, 379,
91–102. [CrossRef]

29. Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of Lithium-Ion Battery Degradation
for Cell Life Assessment. IEEE Trans. Smart Grid 2018, 9, 1131–1140. [CrossRef]

30. National Grid. Duration-Limited Storage De-Rating Factor Assessment—Final Report; National Grid: London,
UK, 2017. Available online: https://bit.ly/2pFRw7K (accessed on 3 February 2019).

31. Koller, M.; Borsche, T.; Ulbig, A.; Andersson, G. Defining a degradation cost function for optimal control of a
battery energy storage system. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France,
16–20 June 2013; pp. 1–6.

32. Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.;
Finamore, P. Cycle-life model for graphite-LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [CrossRef]

33. Thompson, A.W. Economic implications of lithium ion battery degradation for Vehicle-to-Grid (V2X) services.
J. Power Sources 2018, 396, 691–709. [CrossRef]

34. Purewal, J.; Wang, J.; Graetz, J.; Soukiazian, S.; Tataria, H.; Verbrugge, M.W. Degradation of lithium ion
batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide
positives: Part 2, chemical-mechanical degradation model. J. Power Sources 2014, 272, 1154–1161. [CrossRef]

35. Smith, K.; Earleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A. Comparison of Plug-In Hybrid Electric Vehicle
Battery Life across Geographies and Drive Cycles; SAE International: Warrendale, PA, USA, 2012.

36. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.;
Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281.
[CrossRef]

37. Sankarasubramanian, S.; Krishnamurthy, B. A capacity fade model for lithium-ion batteries including
diffusion and kinetics. Electrochim. Acta 2012, 70, 248–254. [CrossRef]

38. Safari, M.; Morcrette, M.; Teyssot, A.; Delacourt, C. Multimodal Physics-Based Aging Model for Life
Prediction of Li-Ion Batteries. J. Electrochem. Soc. 2009, 156, A145–A153. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2007.01.023
http://dx.doi.org/10.1109/TPWRS.2014.2364257
http://dx.doi.org/10.1109/TSG.2015.2452579
http://dx.doi.org/10.1109/TPWRS.2012.2212286
http://dx.doi.org/10.1016/j.apenergy.2019.03.128
http://dx.doi.org/10.3390/en10122107
http://dx.doi.org/10.1109/TPWRS.2016.2626392
http://dx.doi.org/10.1016/j.apenergy.2018.01.057
http://dx.doi.org/10.1016/j.est.2016.08.010
http://dx.doi.org/10.1016/j.rser.2017.09.079
http://dx.doi.org/10.1016/j.enpol.2017.07.044
http://dx.doi.org/10.1109/TSTE.2016.2589943
http://dx.doi.org/10.1016/j.jpowsour.2018.01.004
http://dx.doi.org/10.1109/TSG.2016.2578950
https://bit.ly/2pFRw7K
http://dx.doi.org/10.1016/j.jpowsour.2010.11.134
http://dx.doi.org/10.1016/j.jpowsour.2018.06.053
http://dx.doi.org/10.1016/j.jpowsour.2014.07.028
http://dx.doi.org/10.1016/j.jpowsour.2005.01.006
http://dx.doi.org/10.1016/j.electacta.2012.03.063
http://dx.doi.org/10.1149/1.3043429


Electronics 2020, 9, 90 18 of 19

39. Ploehn, H.J.; Ramadass, P.; White, R.E. Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells.
J. Electrochem. Soc. 2004, 151, A456–A462. [CrossRef]

40. Reniers, J.M.; Mulder, G.; Howey, D.A. Review and Performance Comparison of Mechanical-Chemical
Degradation Models for Lithium-Ion Batteries. J. Electrochem. Soc. 2019, 166, A3189–A3200. [CrossRef]

41. Chao, H.; Lawrence, D.J. How capacity markets address resource adequacy. In Proceedings of the 2009 IEEE
Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–4.

42. Hogan, M. Follow the missing money: Ensuring reliability at least cost to consumers in the transition to a
low-carbon power system. Electr. J. 2017, 30, 55–61. [CrossRef]

43. Hogan, W.W. Electricity Scarcity Pricing Through Operating Reserves. Econ. Energy Environ. Policy 2013, 2,
65–86. Available online: https://ideas.repec.org/a/aen/eeepjl/2_2_a04.html (accessed on 1 September 2019).

44. Cramton, P.; Ockenfels, A.; Stoft, S. Capacity Market Fundamentals. Econ. Energy Environ. Policy 2013, 2,
27–46. [CrossRef]

45. Billimoria, F.; Poudineh, R. Market design for resource adequacy: A reliability insurance overlay on
energy-only electricity markets. Util. Policy 2019, 60, 100935. [CrossRef]

46. Peter Cramton, S.S. The Convergence of Market Designs for Adequate Generating Capacity with Special Attention to the
CAISO’s Resource Adequacy Problem; University of Maryland: College Park, MD, USA, 2006. Available online:
https://drum.lib.umd.edu/handle/1903/7056 (accessed on 13 September 2019).

47. Hogan, W.W. Virtual bidding and electricity market design. Electr. J. 2016, 29, 33–47. [CrossRef]
48. THEMA Consulting Group. Capacity Adequacy in the Nordic Electricity Market; Norden: Oslo, Norway, 2015.

Available online: https://www.nordicenergy.org/wp-content/uploads/2015/08/capacity_adequacy_THEMA_
2015-1.pdf (accessed on 12 August 2019).

49. Bhagwat, P.C.; Iychettira, K.K.; Richstein, J.C.; Chappin, E.J.L.; De Vries, L.J. The effectiveness of capacity
markets in the presence of a high portfolio share of renewable energy sources. Util. Policy 2017, 48, 76–91.
[CrossRef]

50. BEIS. Supply and Consumption of Electricity; UK Government: London, UK, 2019. Available online: https:
//www.gov.uk/government/statistics/electricity-section-5-energy-trends (accessed on 3 October 2019).

51. National Grid. Capacity Market Registers. 2019. Available online: https://www.emrdeliverybody.com/CM/

Registers.aspx (accessed on 6 June 2019).
52. Ma, Z.; Zou, S.; Liu, X. A Distributed Charging Coordination for Large-Scale Plug-In Electric Vehicles

Considering Battery Degradation Cost. IEEE Trans. Control Syst. Technol. 2015, 23, 2044–2052. [CrossRef]
53. Frost, D.F.; Howey, D.A. Completely Decentralized Active Balancing Battery Management System. IEEE Trans.

Power Electron. 2018, 33, 729–738. [CrossRef]
54. Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating

state-of-charge of lithium-ion batteries. Electrochim. Acta 2018, 259, 566–577. [CrossRef]
55. Plett, G. Battery Management Systems, Volume I: Battery Modeling; Artech House: London, UK, 2015.
56. Xu, Y.; Hu, M.; Fu, C.; Cao, K.; Su, Z.; Yang, Z. State of Charge Estimation for Lithium-Ion Batteries Based on

Temperature-Dependent Second-Order RC Model. Electronics 2019, 8, 1012. [CrossRef]
57. Petit, M.; Prada, E.; Sauvant-Moynot, V. Development of an empirical aging model for Li-ion batteries and

application to assess the impact of Vehicle-to-Grid strategies on battery lifetime. Appl. Energy 2016, 172,
398–407. [CrossRef]

58. Huria, T.; Ceraolo, M.; Gazzarri, J.; Jackey, R. High fidelity electrical model with thermal dependence
for characterization and simulation of high power lithium battery cells. In Proceedings of the 2012 IEEE
International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–8.

59. Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing
mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [CrossRef]

60. Hahn, S.L.; Storch, M.; Swaminathan, R.; Obry, B.; Bandlow, J.; Birke, K.P. Quantitative validation of calendar
aging models for lithium-ion batteries. J. Power Sources 2018, 400, 402–414. [CrossRef]

61. Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. A holistic aging model for Li(NiMnCo)O2 based 18650
lithium-ion batteries. J. Power Sources 2014, 257, 325–334. [CrossRef]

62. Park, J.; Appiah, W.A.; Byun, S.; Jin, D.; Ryou, M.-H.; Lee, Y.M. Semi-empirical long-term cycle life model
coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries.
J. Power Sources 2017, 365, 257–265. [CrossRef]

http://dx.doi.org/10.1149/1.1644601
http://dx.doi.org/10.1149/2.0281914jes
http://dx.doi.org/10.1016/j.tej.2016.12.006
https://ideas.repec.org/a/aen/eeepjl/2_2_a04.html
http://dx.doi.org/10.5547/2160-5890.2.2.2
http://dx.doi.org/10.1016/j.jup.2019.100935
https://drum.lib.umd.edu/handle/1903/7056
http://dx.doi.org/10.1016/j.tej.2016.05.009
https://www.nordicenergy.org/wp-content/uploads/2015/08/capacity_adequacy_THEMA_2015-1.pdf
https://www.nordicenergy.org/wp-content/uploads/2015/08/capacity_adequacy_THEMA_2015-1.pdf
http://dx.doi.org/10.1016/j.jup.2017.09.003
https://www.gov.uk/government/statistics/electricity-section-5-energy-trends
https://www.gov.uk/government/statistics/electricity-section-5-energy-trends
https://www.emrdeliverybody.com/CM/Registers.aspx
https://www.emrdeliverybody.com/CM/Registers.aspx
http://dx.doi.org/10.1109/TCST.2015.2394319
http://dx.doi.org/10.1109/TPEL.2017.2664922
http://dx.doi.org/10.1016/j.electacta.2017.10.153
http://dx.doi.org/10.3390/electronics8091012
http://dx.doi.org/10.1016/j.apenergy.2016.03.119
http://dx.doi.org/10.1016/j.jpowsour.2013.05.040
http://dx.doi.org/10.1016/j.jpowsour.2018.08.019
http://dx.doi.org/10.1016/j.jpowsour.2014.02.012
http://dx.doi.org/10.1016/j.jpowsour.2017.08.094


Electronics 2020, 9, 90 19 of 19

63. Smith, K.; Saxon, A.; Keyser, M.; Lundstrom, B.; Ziwei, C.; Roc, A. Life prediction model for grid-connected
Li-ion battery energy storage system. In Proceedings of the 2017 American Control Conference (ACC),
Seattle, WA, USA, 24–26 May 2017; pp. 4062–4068.

64. Safoutin, J.M.; McDonald, J.; Ellies, B. Predicting the Future Manufacturing Cost of Batteries for Plug-In
Vehicles for the U.S. Environmental Protection Agency (EPA) 2017–2025 Light-Duty Greenhouse Gas
Standards. World Electr. Veh. J. 2018, 9, 42. [CrossRef]

65. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2016, 16, 16. [CrossRef]
66. Ioannis, T.; Dalius, T.; Natalia, L. Li-Ion Batteries for Mobility and Stationary Storage Applications; Publications

Office of the European Union: Brussels, Belgium, 2018. Available online: https://bit.ly/2Nbc6WZ (accessed on
20 September 2019).

67. Bloomberg. A Behind the Scenes Take on Lithium-Ion Battery Prices; Bloomberg: New York, NY, USA, 2019.
Available online: https://bit.ly/32bjNAH (accessed on 23 July 2019).

68. Dane, S. MAT4BAT Advanced Materials for Batteries Project. 2017. Available online: https://cordis.europa.
eu/project/rcn/109052/reporting/en (accessed on 20 July 2019).

69. Bloom, I.; Cole, B.W.; Sohn, J.J.; Jones, S.A.; Polzin, E.G.; Battaglia, V.S.; Henriksen, G.L.; Motloch, C.;
Richardson, R.; Unkelhaeuser, T.; et al. An accelerated calendar and cycle life study of Li-ion cells.
J. Power Sources 2001, 101, 238–247. [CrossRef]

70. Ouyang, D.; He, Y.; Weng, J.; Liu, J.; Chen, M.; Wang, J. Influence of low temperature conditions on lithium-ion
batteries and the application of an insulation material. RSC Adv. 2019, 9, 9053–9066. [CrossRef]

71. Moretti, A.; Carvalho, V.D.; Ehteshami, N.; Paillard, E.; Porcher, W.; Brun-Buisson, D.; Ducros, J.-B.; de
Meatza, I.; Eguia-Barrio, A.; Trad, K.; et al. A Post-Mortem Study of Stacked 16 Ah Graphite//LiFePO4 Pouch
Cells Cycled at 5 ◦C. Batteries 2019, 5, 45. [CrossRef]

72. García-Quismondo, E.; Almonacid, I.; Cabañero Martínez, Á.M.; Miroslavov, V.; Serrano, E.; Palma, J.; Alonso
Salmerón, P.J. Operational Experience of 5 kW/5 kWh All-Vanadium Flow Batteries in Photovoltaic Grid
Applications. Batteries 2019, 5, 52. [CrossRef]

73. Mays, J.; Morton, D.P.; O’Neill, R.P. Asymmetric risk and fuel neutrality in electricity capacity markets.
Nat. Energy 2019, 4, 948–956. [CrossRef]

74. Harlow, J.E.; Ma, X.; Li, J.; Logan, E.; Liu, Y.; Zhang, N.; Ma, L.; Glazier, S.L.; Cormier, M.M.E.; Genovese, M.;
et al. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks
for New Battery Technologies. J. Electrochem. Soc. 2019, 166, A3031–A3044. [CrossRef]

75. Northrop, P.W.C.; Suthar, B.; Ramadesigan, V.; Santhanagopalan, S.; Braatz, R.D.; Subramanian, V.R.
Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation.
J. Electrochem. Soc. 2014, 161, E3149–E3157. [CrossRef]

76. National Grid. Final Auction Results T-4 Capacity Market Auction. 2014. Available online: https:
//bit.ly/32BpxUu (accessed on 23 March 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/wevj9030042
http://dx.doi.org/10.1038/nmat4834
https://bit.ly/2Nbc6WZ
https://bit.ly/32bjNAH
https://cordis.europa.eu/project/rcn/109052/reporting/en
https://cordis.europa.eu/project/rcn/109052/reporting/en
http://dx.doi.org/10.1016/S0378-7753(01)00783-2
http://dx.doi.org/10.1039/C9RA00490D
http://dx.doi.org/10.3390/batteries5020045
http://dx.doi.org/10.3390/batteries5030052
http://dx.doi.org/10.1038/s41560-019-0476-1
http://dx.doi.org/10.1149/2.0981913jes
http://dx.doi.org/10.1149/2.018408jes
https://bit.ly/32BpxUu
https://bit.ly/32BpxUu
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Necessity for a Capacity Market 
	Methods 
	Problem Setup 
	Equivalent Circuit Battery Model 
	Degradation Models 
	Empirical Model 
	Semi-Empirical Model 

	Degradation Cost 

	Results 
	Accuracy of Battery Degradation Models 
	Revenue and Degradation Cost in the Capacity Market 
	Revenue and Degradation Cost for Different Temperatures 
	Revenue and Degradation Cost for Different SoCs 

	Increased Battery Cycling Effects 

	Discussion 
	Conclusions 
	
	References

