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Abstract 

This paper presents a new, multi-objective method of analysing and optimising the 

energy processes associated with window system design in office buildings. The 

simultaneous consideration of multiple and conflicting design objectives can make the 

architectural design process more complicated. This study is based on the fundamental 

recognition that optimising parameters on the building energy loads via window system 

design can reduce the quality of the view to outside and the received daylight – both 

qualities highly valued by building occupants. This paper proposes an approach for 

quantifying Quality of View in office buildings in balance with energy performance and 

daylighting, thus enabling an optimisation framework for office window design. The study 

builds on previous research by developing a multi-objective method of assessment of a 

reference room which is parametrically modelled using actual climate data. A method of 

Pareto Frontier and a weighting sum is applied for multi-objective optimisation to 

determine best outcomes that balance design requirements. The Results reveal the 

maximum possible window to wall ratio for the reference room. The optimisation model 

indicates that the room geometry should be altered to achieve the lighting and view 

requirements set out in building performance standards. The research results emphasise 
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the need for window system configuration to be considered in the early design stages. 

This exploratory approach to a methodology and framework considers both building 

parameters and the local climate condition. It has the potential to be adopted and further 

refined by other researchers and designers to support complex, multi-factorial design 

decision-making. 

Keywords: 

Multi-objective Optimisation; Quality of views; Window design; Daylight; Building energy 
usage; Office Design 
 

Highlights: 

• Multi-objective optimisation of energy performance associated with window 

design  

• Simultaneous and conflicting objectives are considered helping simpler 

comparisons  

• A framework for numerical assessment of view in office environments is 

proposed 

• View, energy performance and daylighting are considered as optimisation 

objectives 

• The best model found has highest view and daylight, and medium energy 

consumption. 
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1. Introduction 

Artificial lighting contributes to a large proportion of electricity consumption in 

commercial buildings across the globe. For example, in the US, artificial light lighting 

contributes to one-third of electricity consumption in commercial buildings [1]. In the UK, 

this sector accounts for almost 24 million tons of carbon dioxide per year (equal to 47% 

of the CO2 emission of the UK) [2]. In Iran, artificial lighting is responsible for 25% of 

electricity usage in office buildings [3]. This level remains relatively high despite Iran 

having a high daylight availability during working hours (Tehran has an average of 8.5 

sunshine hours per day). In light of a global recognition of the importance of more 

sustainable and efficient building performance, it is therefore important to develop 

methods to minimise the electricity usage for lighting through best practice design 

decisions. One efficient method is to utilise the natural daylight in indoor areas more 

effectively. To achieve this, a considered design approach to the placement and size of 

windows in office buildings is imperative.  

Several studies have examined the effect of daylight on occupant behaviour [4], 

increasing productivity [5] and also job satisfaction of employees [6] and their health 

conditions [7]. Studying the lighting conditions in office types shows strong relationships 

between the illuminance at eye level and the health parameters, namely fatigue and sleep 

quality [8]. It was concluded that even the colour temperature of light has significant 

correlation with the performance and alertness of office workers [9]. It has been shown 

that not only daylight has direct physical effects on occupants, but also physiologically it 

is an efficient energiser to human visual and circadian systems [10]. However, daylight 

can also cause visual discomfort through glare and distraction [5]. Hence, the 

productiveness of the daylight for visual efficiency depends on how it is delivered, and it 

is recommended that direct sunlight should be avoided in areas in which visual activities 

are required [11]. The views and perspectives provided by windows have been shown to 

impact both the visual performance and the comfort of workers [12]. The positive effects 

of a pleasant or attractive view in the workplace include reduced physical and 

psychological discomfort, enhanced sleep quality [13] and eye health [14] and increase 

job satisfaction [15].   
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As such, the optimisation of window design, especially in commercial buildings, 

involves the careful balancing of three main objectives: maximising energy efficiency 

through natural lighting, while providing the best possible view and optimum visual 

comfort. Many efforts have considered window type, size, and glazing in their calculations 

to optimise various objectives as life cycle cost and life cycle environmental impact [16], 

energy efficiency and occupant's comfort [17], and retrofit actions [18] However, this 

approach provides architects with restricted information, and many other design 

objectives might be compromised. To address this issue, several researchers focused 

only on daylighting and thermal efficiency [24] considering window glazing [19], external 

shading [20] and window size, orientation, and wall reflectance [21], some others 

investigated visual comfort and energy performance together focusing on the orientation 

of windows [22], window size [23], exterior components [24] and whole building 

characteristics [25]. Iommi [26] evaluated daylighting performance and visual comfort in 

specific buildings. However, these interdependent factors have not been simultaneously 

considered in the building design. One reason for this is the subjectivity of assessing 

visual comfort, which is a case-based quality based on a person’s individual experience 

of architecture [27]. Another barrier has been the need to consider of all objectives and 

the resultant increase in complexity of the design decision-making. 

To address the challenge mentioned above, this study proposes a framework for 

evaluation of Quality of View (QV) in office buildings and applies a multi-objective 

optimisation method to minimise the energy consumption and maximise the daylight and 

visual comfort (absence of glare). The objectives of minimisation of energy consumption 

and Annual Sun Exposure (ASE) and also maximisation of daylight are assessed using 

simulation software, whilst the target values of the objective of QV are input using the 

proposed framework. This research applies the framework to a case study of a typical 

office building located in Tehran city, Iran, to determine the most appropriate window 

dimensions and positions.  

The paper is structured as follows; first, a review of previous studies and issues with 

building windows design in the optimisation of energy efficiency, daylighting and visual 

comfort is presented. This is followed by explanation of the proposed methodology along 
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with the developed framework for the analysis of view quality. The results from the 

application of the suggested multi-objective optimisation method in the studied case are 

then reported, followed by a discussion of the criteria for selection of the best solution 

from the generated Pareto front. The final section summarises the article and contains 

highlights of the main knowledge contributions and recommendations on the future works. 

2. Background and Motivation 

This study aims to develop a protocol for the optimisation of office window design 

(position and area), which targets the minimisation of energy usage and the optimisation 

of daylight and visual performance. Criteria to asses these objectives are broadly 

discussed in the seminal literature. Therefore, the first part of the literature review in this 

paper is dedicated to the review of studies that have developed evaluation indices for the 

optimisation process to enhance integrated building design. The second part discusses 

the body of evidence that addresses the optimisation of window design and challenges 

within the field. 

2.1. Performance goals and building design indices 

Building openings, windows [19], and doors or generally all key elements of building 

façades [28], allow for daylighting, visual connection to the outside and also heat 

penetration. Windows directly contribute to building energy usage in two ways. Firstly, 

heating, from direct sunlight through windows, imposes high cooling loads in warm 

seasons. Secondly, in cold seasons, the heat loss from windows is significant, because 

of the high thermal transmittance of glazing (represented as a higher U-value) when 

compared to (non-glazed) walls. Hence, a critical factor in the design of energy-efficient 

buildings is the design of a window system that takes into consideration the impact of high 

thermal transmittance of glazing [29]. User comfort is another factor to be considered in 

estimating energy performance, using various indexes and prognostic methods [30, 31]. 

Ochoa et al. investigated the suitability of combined optimisation criteria on window sizing 

methods for low energy consumption focusing on user visual comfort and performance 

[23]. Ghaffarianhoseini et al. investigated the ability of vegetation [32] or unshaded 

courtyards[33] for contributing to outdoor thermal comfort based on various design 
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configurations and scenarios. Rupp et al. revealed that there is a gap in thermal comfort 

studies in relation to interdisciplinary research, and a connection with other related fields 

such as psychology, physiology, and sociologists could be of great asset for the 

development of an integrated research approach aiding a better understanding about 

perception and thermal comfort and its physiological and psychological dimensions [34]. 

Khatami and Hashemi investigated the influences of decreasing internal heat gain and 

introducing automated ventilation strategies into lightweight open-plan offices to improve 

energy performance thermal comfort and indoor air quality [35]. 

There are a number of methodological approaches to predict and model the thermal 

behaviour of buildings. One way is by using a simplified physical model [36] based on 

thermodynamic laws, heat transfer and thermodynamic variables. The ‘degree days’ 

approach is another method which uses a measure of local outside temperature over time 

to calculate energy consumption required to heat or cool buildings [37].  

A number of sustainable certification systems [including Building Research 

Establishment Environmental Assessment Method (BREEAM) [38] and Leadership in 

Energy and Environmental Design (LEED)] have been developed to continually assess 

energy performance across all life stages of a building, and have been designed to 

incentivise better design and analysis of low energy-consuming building systems, 

whether by classical [39] or even machine learning [40, 41] methods. The analysis of 

indoor daylight performance is generally performed using software simulation calculating 

a range of metrics e.g. Daylight Illuminance (DI), Daylight Factor (DF), Daylight 

Coefficient (DC), Daylight Autonomy (DA) [42] and ASE [43]. The metrics of Spatial 

Daylight Autonomy (sDA) and ASE are the most common daylight indices used in the 

LEED 4 rating.  

Daylight Illuminance (DI) is the most common daylight performance measure, which 

designates the brightness of the daylight in illuminating the indoor environment. The unit 

for DI is lux. Based on the application of each environment, the recommended illuminance 

level might be different. For instance, an illumination level higher than 500 lux is 

suggested for an office [44] and a range between 200 to 500 lux for a classroom [45]. 
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DF is determined as the ratio of the daylight illuminance at an indoor point to the 

illuminance at the same outdoor point under the sky. DF is a traditional approach to 

evaluate the daylight illuminance inside a building and mostly used due to simplicity [48]. 

Nonetheless, using DF metrics may lead to an inaccurate calculation because the ratio 

of internal to external illuminance diversifies considerably in a real situation. Moreover, 

the impact of direct sunlight is ignored in this method [46]. DC approach was developed 

to propose a more practical measure in comparison with the DF.  It considers dynamic 

changes in the luminance of the sky elements under various sky conditions and solar 

positions [47]. The assumption is that the sky is divided into several patches, contributing 

to the internal illuminance level at a point [48]. Hence, the calculations are time-

consuming and complicated [49]. 

DA which is also referred to as dynamic daylight metric is a climate-based metrics, 

determined as the percentage of annual daytime hours of the year, when a specific 

illuminance threshold is achieved, by daylight alone [50]. The assessment of sixty 

architecture students works revealed that DA is the most accurate daylight measurement. 

The continuous DA (cDA) and DAmax are two modified versions of DA. The former metric 

assigns the partial participation of daylight to illuminance when it is lower than the 

minimum threshold. Whereas, the second one indicates the percentage of the time when 

daylight illuminance is ten times the recommended illuminance; beyond which condition 

the risk of glare from direct sunlight patch would rise [51]. 

sDA describes the annual amount of self-sufficiency in the environment, in terms of the 

amount of daylight received in the interior, and is the ratio of the analysed space, with the 

minimum received brightness defined for the desired activity during working hours of a 

year. According to the simulator's opinion, analysis can only include the working area, but 

usually, the total space is considered. Assume a grid of N points, and assign a function 

ST(i) whose value becomes one for every point i in the grid getting the minimum required 

illuminance for more than the given fraction of total occupancy time, the sDA can be 

represented as: 

𝑠𝐷𝐴 =  
∑ 𝑆𝑇(𝑖)𝑁

𝑖=1

𝑁
 𝑤𝑖𝑡ℎ 𝑆𝑇(𝑖) = {

1: 𝑠𝑡𝑖 ≥ 𝜏𝑡𝑦

0: 𝑠𝑡𝑖 ≤ 𝜏𝑡𝑦
 (1) 
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Where 𝑠𝑡𝑖 denotes the occurrence count of exceeding the sDA illuminance threshold at 

point i, 𝑡𝑦 is the annual timestamp count and 𝜏 represents the temporal fraction threshold.  

Illuminating Engineering Society (IES), which introduced the idea of the sDA [43], set 

the minimum illumination of 300 lux for 50% of the year when the zone was occupied 

(from 8 am to 6 pm), which is written as sDA300/50%. IES also has provided two categories 

for sDA [43]. In order to have preferred daylight sufficiency in space, at least 75% of the 

analysed points should receive more than 300 lux in at least 50% of the year when it is 

occupied (3 points). Nominally accepted, the brightness of more than 300 lux in 50% of 

the time of the year is considered for at least 55% of points (2 points) [43]. These 

recommendations are based on the comparison of occupants' opinions with the results of 

daylight simulations [52]. The most important advantage of the DA family compared to 

the other daylighting indices is that the annual daylight performance assessing is done, 

with regards to the sun and sky condition based on meteorological climatic data. These 

indices help designers understand the overall conditions of daylight in buildings over a 

period of one year. Given the fact that these data are recorded continuously (prediction 

is based on continuous daytime measurements), it is often difficult to assess the 

instantaneous light situation with the DAs. Also, DAs are based on the percentage of 

occupied space per year and do not take into account the changes in hourly light, which 

is one of the most important aspects of building design. Where the sDA index is estimated 

to be the same for different models, a more accurate analysis can be made using the 

DAave.  

ASE is the ratio of analysed space that receives more than a certain amount of direct 

sunlight in a number of specific hours of the year. Both factors determination (number of 

hours and amount of radiation) in the index definition is required. IES Recommendation 

is ASE1000, 250h, which is the percentage of space in which in more than 250 hours of the 

year, the direct exposure of the sun is more than 1,000 lux. Similar to sDA, ASE can be 

mathematically represented as: 

𝐴𝑆𝐸 =  
∑ 𝐴𝑇(𝑖)𝑁

𝑖=1

𝑁
 𝑤𝑖𝑡ℎ 𝐴𝑇(𝑖) = {

1: 𝑎𝑡𝑖 ≥ 𝑇𝑖

0: 𝑎𝑡𝑖 ≤ 𝑇𝑖
 (2) 
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Where 𝑎𝑡𝑖 is the occurrence count of exceeding the ASE illuminance threshold at the 

point i and 𝑇𝑖 represents the annual absolute hour threshold. 

  

The LEED ver.4 requires the attention of designers to the ASE and sDA to score 2 to 

3, respectively by reaching 55-75% of the area of the occupied spaces. To achieve this 

goal, designers using annual computer simulations need to show that the annual direct 

solar radiation of ASE1000, 250h is received in less than 10% of the space. It is necessary 

that simulation run based on sDA300/50%. 

Among all the window-related properties, the most appealing and challenging one is 

the view to outdoor. In the property market, there is a direct relationship between the 

value of the high-rise building [53] or a neighbourhood [54] and the pleasant outdoor view. 

There is also evidence that views can positively impact on eye health [55], wellbeing [56] 

and comfort [57]. Being able to see natural landscapes from inside a workplace building 

has a significant impact on reducing stress and increasing individual attention. 

Researchers’ studies demonstrate that the relationship between view and daylight in 

contemporary facades is less perceptible, and the indices and studies related to view are 

very limited [58]. Interestingly, only the LEED v4, the Chartered Institution of Building 

Services Engineers (CIBSE), as well as the New European Daylighting Standard EN 

17037, have introduced design guidelines for achieving a desired view to outdoor. 

The basis of LEED v4 [59] for meeting QV needs, is to provide a direct view through 

the view glazing for 75% of the occupied space and seeks to enhance the connection 

between the perimeter environment and the building occupants. In addition to having 75% 

of the occupied space in the index, these parts must also provide at least two of the 

following four view types. View type 1 is the horizontal and vertical viewing angles of at 

least 90 degrees to the view glazing. View type 2 is the viewing content of the two of the 

following three objects: the visibility of flora, fauna, or sky or movement. View type 3 is 

the distance from the window, which is less than three times the height of the window 

from the floor. View type 4 is a view factor (VF) of 3 or more. VF is categorised from zero 

to five based on the minimum horizontal and vertical angle of each point of occupied 

space than the window (user is sitting on chair and height of the eye is 1.2 meters). If this 
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view angle is more than 50 degrees, the rate of 5 is granted (table 4). VF of 3 and higher 

means a view angle of at least 11 degrees [43].  

The UK-based CIBSE provides methods for assessing view based on the position of 

the observer in space[60]. This standard evaluates the quality of view based on four 

factors: window width, the distance of the view, view layers (sky, landscape, and 

foreground) and environmental information (contents). The view quality is rated based on 

four levels: unacceptable/acceptable/good/excellent. The New European Daylighting 

standard EN 17037 has recently introduced three general principles of horizontal viewing 

angles, distances and visibility levels, which is similar to the standard of the CIBSE. 

According to its categorisation, the horizontal angle of at least 14 degrees as a minimum, 

more than 28 degrees is average, and the angle more than 54 degrees is maximum. Also, 

the window distance from the obstacle of more than 6 meters is minimum, more than 20 

meters is medium and more than 50 meters is maximum. Visible layers could be the sky, 

landscape, or earth, and if at least one of them is visible, the minimum score is achieved. 

The average score is for the view to two layers, and if all layers can be covered, a 

maximum score will be obtained[61]. 

Therefore, view angles, view contents, a distance of the view and observer position are 

some indices considered in recent regulations. Among these indices, simulating some of 

them are very difficult or impossible due to differences in the models, such as view content 

simulation or view layouts and also environmental information. As such, this paper 

focused on other measurable indices.  

To date, there is no tool that simulates view based on these indicators. For example, 

recent versions of DIAL+ software, built to assess the new daylight requirements of EN-

17037[52], do not optimise the objectives of standard and perform view simulations that 

assess only one of the three conditions of the standard. Therefore, there is an opportunity 

to develop a tool to simulate the view based on the LEED v4 guidelines. 

2.2. Related Studies 

There is an established body of evidence which has built around optimising the design 

of window systems for a range of outcomes and objectives, some isolated single 
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objectives, others combined objective optimisation. Lee et al. [62] investigated different 

types and characteristics for the window systems, to optimise energy usage. This study 

was limited to assessing energy performance in isolation, however, did consider a specific 

climate in the proposed approach. Futrell et al. [63] examined a process of optimising the 

thermal and lighting performance of a typical classroom and investigated the orientation 

of windows. The results revealed that thermal and lighting performance was strongly 

conflicting in a north orientation, (research based in the United States – northern 

hemisphere). Mangkuto et al. [21] also investigated different characteristics of window 

systems including a Window to Wall ratio (WWR), wall reflectance, and window 

orientation on daylight metrics and lighting electricity consumption. Mangkuto’s research 

studied an office room in a tropical climate and was one of the first to demonstrate the 

possibility of incorporating the view/visual aspects of window systems into an optimisation 

process.  

Ochoa et al. [23] also employed an optimisation approach to identify the window size 

while optimising energy consumption and visual comfort. Vanhoutteghem et al. [64] 

discovered the suitable window solution for various room sizes by assessing the impact 

of the window design variables on the thermal performance and comfort as well as 

daylighting using a contour plot. 

Liu et al. [65] studied the feasibility of an optimisation workflow for the cooling and 

heating load of a residential building with changing in spatial form and building envelope 

parameters. They verified the optimisation results achieved by Octopus comparing with 

the average objective values and also did correlation analysis between design 

parameters and performance. 

Fang et al. [66] optimised simple building geometry, window and skylight size and 

placement for energy and daylighting performance. The genetic algorithm utilised to 

increase more than 28% in daylight performance and decrease more than 17% in energy 

consumption in different climates. Dino et al. [67] developed a design optimisation tool to 

support high-performance building design and employed it to buildings’ energy and 

daylighting performance optimisation in different layout designs and building openings.  
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Zhai et al. [68] applied a multi-objective optimisation algorithm to minimise the energy 

use and to improve the visual and thermal comfort of a reference office room by finding 

the most appropriate parameters for the window system. These factors include WWR, 

outer and inner glass metrical and the filling gas. Although the recommendations show 

remarkable improvements in the target values, the results are very restricted, as it ignored 

the climate and orientation.  

Hiyama et al. [38] proposed a method to reduce the number of required simulation for 

optimisation of the window geometries and electric energy usage, by creating response 

surfaces, between those targets and likening DF and cDA. 

As well as being incorporated into optimisation processes, the outside view has been 

considered in the proposed decision-making tool, for early design phases in adaptive 

façade[69] or developing an automated shading control[70]. However, most of these 

works only considered quantitative measures for this objective (i.e. achieving maximised 

WWR). As indicated by seminal works, an assessment tool for simulating view 

performance is a valuable addition to properly design a window system – and one that is 

currently lacking in the evidence. The lack of integration of outside view as a measure in 

optimisation of window system designs is a gap that has been identified in the literature, 

especially in office environments. 

2.3 Research Gap 

Designing modern buildings requires consideration of many different trade-off factors. 

Whilst there is an expectation that buildings should provide comfort and support the well-

being of their users, buildings must also perform sustainably throughout their life-cycle, 

and the minimisation of energy use is one of a range of factors that are increasingly valued 

and expected, a value reflected in building regulations and requirements.  

Architects and decision-makers need decision-making tools to be enabled to effectively 

balancing competing factors. Window design is a particularly complex optimisation task 

due to its contribution to building energy performance, daylighting and QV, particularly in 

office spaces. As the survey of literature in this section shows, there are ample researches 
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optimising a combination of the two objectives, which are mostly daylighting and energy 

usage. QV is notably absent as a window design objective being measured or considered. 

Based on the literature, a comprehensive optimisation approach faces two main 

challenges: lack of a method to properly evaluate QV as numerical values and the 

interoperability of assessing tools. This paper, therefore, lays out a widely-applicable 

framework to assess the QV in the office environment and an approach to consider three 

main factors in designing windows.  

3. Research Methodology 

This study applies a multi-objective optimisation method with the aim of maximising the 

energy performance, daylighting and the quality of view to outside of an office 

environment, across different window system scenarios. The following paragraphs outline 

the research methodology, optimisation algorithm, as well as the studied and utilised 

tools. 

3.1 Multi-objective optimisation 

Multi-objective optimisation differs from a single objective enhancement primarily in its 

increased complexity, a direct result of the complicated nature of simultaneously 

satisfying several goals, often with competing outcomes. In order to accurately optimise 

multiple objectives, a set of circumstances that define the optimal solutions must be 

defined, and a Pareto frontier generated. Within these set of circumstances, all points 

within this set (also called non-dominated or feasible solutions), are logically valid and 

result in various values of the objectives. Generally, in most applications, including 

building design, only one best solution is required by decision-makers.  

The criteria to select the final point, from the non-dominated points, differs for each 

application. The representations for describing different objectives under the investigation 

can be related to the maximum or minimum functions. However, the two extreme points 

can be transferred to each other, by the following formula: 

 max{𝑓(𝑥)}  ⇔ min {−𝑓(𝑥)} (3) 

Then, mathematically a multi-objective optimisation problem can be expressed as: 
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Minimise: 

 𝐹(�⃗�) =  [𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑚(�⃗�)]𝑇 (4) 

Subject to 

𝑔(�⃗�) ≤ 0 

ℎ(�⃗�) = 0 

where 

𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥 (𝑖 =  1,2, … , 𝑛) 

𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ 𝛩 

𝑦 =  [𝑦1, 𝑦2, … , 𝑦𝑚]𝑇 ∈ ψ 

Here m is the number of objective functions, which is three in the case of the problem 

investigated in this study. Φ is the search space with n dimensions and identified by upper 

and low bounds of the decision variable 𝑥𝑖(𝑖 = 1,2, . . , 𝑛). 

 𝑥𝑚𝑎𝑥 =  [𝑥1
𝑚𝑎𝑥, 𝑥2

𝑚𝑎𝑥, … , 𝑥𝑛
𝑚𝑎𝑥]𝑇 (5) 

 𝑥𝑚𝑖𝑛 =  [𝑥1
𝑚𝑖𝑛, 𝑥2

𝑚𝑖𝑛, … , 𝑥𝑛
𝑚𝑖𝑛]

𝑇
 (6) 

Ψ is the m-dimensional vector space of objective functions and is defined by Θ and the 

objective function f(x). 𝑔𝑗(�⃗�) ≤ 0(𝑗 = 1,2, . . , 𝑝) and ℎ(�⃗�) = 0(𝑗 = 1,2, . . , 𝑞) denotes p and 

q which are respectively the number of inequality and equality constraints. If both p and 

q are equal to zero then the problem is simplified as an unconstrained optimisation 

problem. 

Figure 1 presents an example of a Pareto frontier for the optimisation of two 

simultaneously conflicting objectives. The Pareto solutions have been surrounded by a 

vector of an ideal solution and a vector of dominated solutions, determining the upper and 

the lower bounds of optimal solutions. An ideal or utopia point is a hypothetical concept 

with reference to a perfect target in which each objective is optimised without paying 

attention to the satisfaction of the others. 
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Multi-objective optimisation algorithms attempt to generate solutions that are as close 

to the Pareto optimal front with a possible uniform distribution. When the non-dominated 

solutions are identified, decision-makers choose from this set a final resolution according 

to the particular problem and personal preferences. 

A hypervolume-based evolutionary optimisation (HypE) algorithm is utilised in this 

study, due to its effectiveness compared to other multi-objective optimisation 

techniques[71]. HypE is an evolutionary multi-objective algorithm which features 

hypervolume indicator[72], non-dominated sorting, and a fast search method based on 

Monte Carlo simulation [73]. 

The optimisation method is applied using Octopus [74], a plug-in of Grasshopper [75], 

which is used for creating models for energy performance simulation analysis. The 

hypervolume indicator of a point set is determined as the volume of the region dominated 

by the point set and bounded by a reference point. Hence, it is crucial to carefully define 

this reference point. If this point is too close to the Pareto front, it will cause incomplete 

cover of the non-dominated set, and if it is too far from the Pareto front, it will lead to low 

accuracy in Monte Carlo simulation. The HypE algorithm developed in Octopus uses a 

dynamic reference point based on normalisation and slight changes in objective values.  

 

Figure 1- An example Pareto frontier of a multi-objective optimisation. 



16 

 

3.2. Application to a case study 

3.2.1 The studied case for the simulation model 

A reference office room for the case study is adapted from a standardised specification 

defined in a previous research paper [76] which consists of single-zone working space, 

with dimensions of 3.9 m × 8.5 m × 2.8 m (Figure2). The room is located in the middle 

floor of a multi-story building, with an approximate area of 2300 m2. It is enclosed by other 

office rooms, except for the façade which is faced to the south (Figure 2). Hence, the 

façade is considered diabatic and the rest of the wall as adiabatic. The input parameters 

for this case study are summarised in Table 1. 

Table 1- Input parameters of the research base model 

parameter value 

interior wall thickness 0.15 m 

floor to floor distance 3.10 m 

occupied period 8 am to 6 pm 

heating and cooling setpoints 20 and 26 °C 

heating and cooling Setback 15 and 30 °C 

peak occupant load 7.38 m2/ppl 

lighting power density per area 10.1 W/m2 

peak plug loads* 8 W/m2 

infiltration rate per area** 0.0006 m3/s-m2 

ventilation per area 0.00045 m3/s-m2 

*: one Energy Star-rated LCD monitor and laptop per occupant present 

**: according to ASHRAE recommendation for Leaky building and poor construction details in the research context 
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The Heating, Ventilation, and Air Conditioning (HVAC) system for such a building is 

considered packaged rooftop VAV (Variable air volume), with reheat based on ASHRAE 

90.1 [77] recommendations. In this system, fan control is Variable Air Volume (VAV), the 

cooling type is chilled water and heating type is hot-water fossil fuel (natural gas) boiler. 

The annual mean Coefficient Of Performance (COP) for this system is considered 3.02 

for the cooling system and 0.8 for natural gas boiler and 1.0 for conventional electric 

resistance for >70kW and <223kW cooling capacity based on ASHRAE/USGBC/ANSI 

189.1[78]. 

The walls are finished in white plaster, the floor is covered with grey tiles, and ceilings 

are white. Exterior Walls layers are, out to in, Mortar 0.03 m, Hollow brick 0.15 m, EPS 

(Expanded Polystyrene) 0.10 m, Plaster 0.03 m. Other materials characteristics are 

shown in Table 2. These materials are considered common construction materials in 

buildings in Tehran's official buildings. The total U-value is for the exterior wall is 0.329 

W/m2K and the reflectance is 50% inside and 35% outside. The interior wall reflectance 

is considered 50%. The reflectance of the ceiling and floor is 80% and 20% respectively. 

All surfaces except one on façade, are considered adiabatic. 

Glazing consists of double clear glass with air in the middle based on ASHRAE 169 

[79] for cities in climate zone 3B. The SHGC, U-Value, and VT for such glazing are 0.25, 

0.65 W/m2K and 0.45, respectively.  

Figure 2- research model and other multiple reference offices stacked to it. 
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Table 2-Characteristics of construction materials in research. 

Material Name Roughness 
Conductivity Density Specific heat Thermal 

emittance 

Solar 

absorptance 

Visible 

absorptance W/m.k kg/m3 J/kg-K 

Mortar Medium rough 1.0 1800 1840 0.9 0.6 0.6 

Hollow brick Medium rough 0.5 1300 840 0.9 0.7 0.7 

Plaster Smooth 0.4 900 1100 0.7 0.6 0.6 

EPS Medium rough - 15 1340 0.9 0.6 0.6 

3.2.1 Description of the climate regions 

Geographically, the B category (dry) in the Köppen climate classification, accounts for 

82.28% of Iran. In this research, Tehran is selected as an example of this climatic range. 

It has a dry climate with a little precipitation throughout most of the year. Actually, this is 

a hot semi-arid climate and receives a little more precipitation than the arid (desert) 

climate. This climate receives this precipitation from the ITCZ (inter-tropical convergence 

zone) or from mid-latitude cyclones. The weather files used in this research is for 

Mehrabad International AirPort with Latitude of 35.683 and Longitude of 51.317, located 

in elevation of 1190.0 meters. The file is available to download from the EnergyPlus 

website[80]. The climate parameters are summarised in Table 3. 

Table 3- Tehran climate parameters influencing research objectives. Data were 
sourced from the weather file provided by the EnergyPlus database for Tehran. 

Whether data unit 
Hourly average monthly 

Average Max Min Max Min 

Dry-bulb temperature C 17.27 40 -5 30.07 3.88 

Relative humidity % 40.57 99 3 62.99 21.92 

Dew point temperature C 1.61 18.5 20.0 6.78 -3.5 

Wind speed m/s 2.71 16.3 0 4.25 1.67 

Direct normal radiation Wh/m2 206.98 775 0 299.97 120.21 

Diffuse horizontal radiation Wh/m2 121.15 540 0 177.11 64.73 

Global horizontal radiation Wh/m2 244.25 1069 0 364.24 117.26 

Horizontal infrared radiation Wh/m2 340.58 489.0 229.0 409.04 274.93 

Total sky cover tenth 4.44 9.0 0.0 4.60 4.24 

Barometric pressure Pa 87943.21 98300.0 86900.0 88416.26 87419.58 
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3.3 Optimisation objectives and simulation tools 

The objective functions for the window system design problem are building energy 

loads for lighting, daylighting and view to the outside. For the simulation of the office room, 

the 3D graphics software Rhinoceros[81] and Grasshopper plug-in are employed to 

control the parameters. Parametric models are useful for design exploration in complex 

and dynamic design settings[82] which are window location and dimension in this study.  

 To quantify and evaluate annual daylighting performance, sDA and ASE metrics are 

utilised. These indices are contradictory to each other and it is not possible to calculate 

one metric for representing daylight. The Energy Use Intensity (EUI) metric is also used 

for assessment of the electricity usage, which represents the office energy consumption 

as a function of its conditioned floor area. So, EUI in this study is the sum of normalised 

heating, cooling, electric equipment and electric lighting load in a year (Kwh/m2/y). 

 The view to the outside is assessed using the proposed QV metric (refer to Section 

3.4). Hence, our optimisation process will consider four different functions are considered 

in our optimisation process. 

The daylight and energy metrics, which were elaborated in Section 2.1 are calculated 

using Grasshopper plug-ins, namely Ladybug and Honeybee[66]. These simulation tools 

use EnergyPlus[67] and Open Studio[68] engines for energy simulations. To simulate the 

integrated daylight and energy simulation, lighting schedule has now been updated 

according to annual daylight luminance. Afterwards, this schedule (red arrow in figure 6) 

is imported into the energy model to incorporate the electrical lighting energy requirement 

differences due to daylighting. For the calculation of ASE, an extra algorithm is developed 

in Grasshopper, to use EnergyPlus weather file of Tehran and determine the direct 

illuminance in the horizontal plane, which is recorded at the end of each hour. Then the 

average illuminance for each hour is calculated. In the next phase, sun vectors are plotted 

for the hours, which is more than 1000 lux. Using these sun vectors, the hours in which 

the sunlight hits the test surface (similar to the one used in daylighting analysis) are 

simulated. With the number of hours of direct sunlight received by each of the test points 

in the test surface, the portion of the space below 250 annual hours is calculated. 
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As mentioned in Section 2, the view performance has been under-investigated in 

previous studies, therefore, this study is the first to develop a framework for quantification 

of this objective. The framework is elaborated in the next subsection. 

The following optimisation objective function extended fitness functions that were 

introduced [83] and applied [84] earlier, in using the weighting method to accurately find 

the optimum solution in Pareto front solutions. 

 𝐹𝐹𝑖 = (𝑠𝐷𝐴𝑖 − 𝑠𝐷𝐴𝑚𝑖𝑛)𝐶1 − (𝐴𝑆𝐸𝑖 − 𝐴𝑆𝐸𝑚𝑖𝑛)𝐶2 − (𝐸𝑈𝐼𝑖 − 𝐸𝑈𝐼𝑚𝑖𝑛)𝐶3

+ (𝑄𝑉𝑖 − 𝑄𝑉𝑚𝑖𝑛)𝐶4 
(7) 

Where: 

i= result of iteration 

Min= minimum value of optimisation set 

Max= maximum value of optimisation set 

𝐶1 =
100

𝑠𝐷𝐴𝑚𝑎𝑥 − 𝑠𝐷𝐴𝑚𝑖𝑛
 (8) 

𝐶2 =
100

𝐴𝑆𝐸𝑚𝑎𝑥 − 𝐴𝑆𝐸𝑚𝑖𝑛
 (9) 

𝐶3 =
100

𝐸𝑈𝐼𝑚𝑎𝑥 − 𝐸𝑈𝐼𝑚𝑖𝑛
 (10) 

𝐶4 =
100

𝑄𝑉𝑚𝑎𝑥 − 𝑄𝑉𝑚𝑖𝑛
 (11) 

Here, min and max values presents each objective’s minimum and maximum values 

appeared in the solutions generated by the optimisation algorithm.  

The fitness function was calculated for all Pareto front solutions, which results in 

diversity in EUI, daylight and view values. It should be noted that the equation (7) is 

different from the weighting method that converts multi-objective optimisation to single 

objective one. The difference is that in the latter the algorithm only optimises one function, 

but here, first four different objectives are optimised and then the fitness function is 

calculated over Pareto front to rank the solutions and conclude the best one [85].  
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3.4 Metrics for the view to the outside 

To simulate QV in this research, a Python [86] based plugin for Grasshopper is used. 

The developed plugin is able to evaluate and visualise five view types based on observer 

positions throughout the space. To define the viewer positions, a user-defined grid on a 

view analysis surface is constructed. The view analysis surface is located at eye-height 

of a seated user and is shown with the blue dash line in perspective and also in room 

section in Figure 4. 

The evaluated view types are view access, view angles, VF and view depth. With the 

results of these evaluations for the viewpoints, view quality could be assessed in two 

steps as per the LEED approach. 

For N points on the view analysis surface, in the first step, view access is determined. 

In the second step, other view types are evaluated for each point passing the last step 

threshold. Finally, the viewpoints, which passed the first step and also 2 out of 3 other 

view type thresholds, are considered as points with the QV. Figure 3 shows the QV 

assessment process for each point (i) on the view analysis surface. Therefore, the QV 

value in this research is the percentage of viewpoints which pass these two steps (j).  
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As discussed in Section 2.1, each view type must pass its own threshold. The minimum 

acceptable rate for the view access is 75% of all viewpoints. To pass the vertical and 

horizontal view angle evaluation, it should be more than 90 degrees for both angles. To 

achieve the VF of 3 or greater, both horizontal and vertical view angles should be more 

than 11 degrees. To pass the effective view depth evaluation, viewpoints should be 

located in a specific area near the window. In this area, the maximum distance of the 

viewpoints from the window could be three times the window head height. These 

thresholds are based on the LEED v.4 parameters to evaluate view to outdoor. 

Figure 3- QV assessment flowchart for viewpoints. N is the number of 
viewpoints considered to study. 
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The view access is the percentage of the 360° horizontal view band visible from each 

viewpoint in the room (Figure 4, plan). This view type aim acknowledges the finding that 

a view to the outdoor is a highly valued quality of a window [87] and demonstrates the 

amount of regularly occupied spaces that has a direct line of sight to the outside.  

View angles are affected by the viewer’s location, eye height and also the size and 

location of the window on the façade and affect the user’s judgments of minimum 

acceptable window size [88]. In this study, the eye height of the viewer was set at 1.2 m 

above the floor as a seated observer [89] and horizontal and vertical angles for each point 

were defined, as illustrated in Figure 4.  

The VF is based on a technical report of "Windows and Offices Report"[90], focusing 

on productivity in interior environments. The report presents the results of a statistical 

study into the relationship between the indoor office environment and worker 

performance. Having a high VF is strongly and positively correlated to having a ‘large size 

window view’, ‘interesting’ and/or a ‘relaxing’ view. The VF for each viewpoint is rated 

from 0 to 5 based on both view angles in Table 4. The minimum value of both vertical 

Figure 4- Illustration of studied parameters in QV evaluation. The α and β are the 
vertical and horizontal view angles respectively. The minumum α and β values are 
used to calculate the VF rating for each viewpoint. X is used to determine the view 

depth. 
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angles (α) and horizontal angles (β) for each viewpoint was considered to modify VF. It is 

assumed that the views assessed in this study had no vegetation content.    

Table 4- View Factor rating table based on the both view angles. The smaller of the 
vertical and horizontal view angle values used to define the VF for each viewpoints. 

View Factor degrees 

1 1-5 

2 5-11 

3 11-20 

4 20-50 

5 50-90 

The largest VF rating of a 5 was defined as filling the seated observer’s field of view. 

This was empirically determined to be at least a 50-degree viewing angle for both the 

vertical and horizontal view angles, which almost completely filled the visual field. Each 

subsequent lower category represented about one half of the previous angle. 

Research shows that a view depth or user’s distance from the window affects a viewer’s 

judgment about the minimum width of an acceptable window [11] and also their 

satisfaction with the view [91] and comfort perception [13]. In this research, to have a QV 

according to LEED 4, viewer position should be located at a distance of 3 times the head 

height of the window. This distance actually defines the acceptable view depth in a room. 

In Figure 4, X is the distance to head-height of window and used to determine the view 

depth. View access is shown in the diagram as equal to 3X. 

In this study, a grid size of 0.75 m was overlaid onto the view analysis surface, and 119 

points were defined. Each view type evaluation and QV result (the area enclosed with a 

black line on view access analysis figure) was visualised in the upper part of each model 

diagram (Figure 9, 13 & 18).  



25 

 

3.5 Optimisation criteria 

In the next step, the algorithm of location and dimensions of the window opening is 

defined, considering the limitations of the sill height and head height of 0.76 m and 2.28 

m, respectively. The window parameters applied in this research are window width and 

height, window sill and head height and also distance of window edges from façade 

edges. The illustrated parameters in Figure 5 are described in Figure 3.  

These window parameters could change with an increase of 20 cm (table5). With this 

method, more than 12,000 diverse openings in the range from 0.2 m to 1.52 m in height 

and 0.2 m to 3.60 m in width could be generated and evaluated. The largest possible 

window is also used as the base research model. An electrical load of 20.88 kWh/m2 is 

considered for the equipment in all models; however, this load is removed from energy 

usage objective function, in order to achieve a better comparison. 

Table 5- Research parameters detail and range. 

Parameters Description Base model 

value 

Lower 

limit 

Upper 

limit 

increment 

meters 

WinW Window width 3.60 0.6 3.60 0.20 

WinH Window height 1.52 0.20 1.52 0.20 

WinHH Window head height 2.28 0.95 2.28 0.20 

WinSH Window sill height 0.76 0.76 1.71 0.20 

WDis Distance from the western edge of the window to the western wall 0.15 0.15 1.95 0.20 

EDis Distance from the eastern edge of the window to the eastern wall 0.15 0.15 1.95 0.20 

Figure 5-illustration of the research parameters. 
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3.6 Optimisation procedure 

The overall procedure of optimising the window system is illustrated in Figure 6. When 

the simulation of the optimisation objectives is finished, the optimisation phase begins. In 

this phase, two processes are performed. In the first process, the research parameters 

are evaluated, by a back and forth process, ensuring a reasonable trade-off between the 

objectives (using Octopus software). Octopus settings are presented in Table 6. By 

producing different generations, the Pareto front is drawn and optimal solutions are 

extracted.  

In the second process, after the end of the previous process, and not improving the 

overall optimisation result in the last generation in Octopus, the analysis of the research 

findings determines the optimum result. This is done by importing the parameters and 

objectives into the Excel, extracting the smallest values of objectives, then placed in 

applying the weighting fitness function. Using the fitness function presented in Section 

3.3, the function value for each model is calculated, and the absolute optimum genome, 

as well as the fittest genomes in each objective, are found. The optimisation process took 

a week, on a desktop computer with Intel(R) Core(TM) i5-4460 CPU @3.20 GHz 

processor and 4.00 GB ram. During this optimisation process, about 2900 simulations 

were separately conducted for each objective, and 28 generations of genomes were 

produced. About 1500 generated models were duplicated and removed, so 1400 unique 

genomes were investigated.  
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Table 6- Optimisation settings in Octopus.  

Elitism 
Mutation 

Probability 
Mutation Rate Crossover Rate Population Size Max Generation 

Max Evaluation 

Time 

0.5 0.1 0.5 0.8 100 None None 

 

Figure 6- Research workflow. The red arrow in performance simulation is 
updated lighting schedule. 
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3.7 Optimisation deviation 

A similar method of calculating standard deviation is used to check the adequacy of the 

number of generations and iterations. In statistics, the standard deviation is a measure of 

the amount of variation or dispersion of a set of values. A low standard deviation indicates 

that the values tend to be close to the mean of the set, while a high standard deviation 

indicates that the values are spread out over a wider range.  

In the proposed method of this research, the mean value is replaced by the value of 

the optimal absolute genome and the distance between the parameters/objectives and 

the optimal genome in each iteration is calculated. 

The formula for the optimisation deviation is 

 σ𝑜𝑝𝑡 = √
∑ (𝑥𝑖 − 𝑥𝑜𝑝𝑡)2𝑁

𝑖=1

𝑁
 (12) 

where {𝑥1, 𝑥2, … , 𝑥𝑛} are the values of the parameters/objectives in a generation, 𝑥𝑜𝑝𝑡 

is the value of the same parameter/objective in the absolute optimum genome, and N is 

the number of population in a studied generation. 

The lower these values, the greater the convergence of the optimisation process. The 

results of these optimisation deviations (𝜎𝑜𝑝𝑡) for each parameter or objective are shown 

in Table 7. The yellow highlighted numbers represent the least amount of distance from 

the optimal genome in different generations. 

The lowest values tended to be obtained in the 23rd generation and the WDis values 

were carefully examined in the 28th generation. The trend line in Figure 7 shows that the 

distance between the WDis in each population with the optimal WDis has generally 

decreased compared to previous generations. Trend lines of other parameters/objectives 

also behave similarly to WDis. Since the lowest value for research optimisation deviation 

is reported in the 28th generation, the results of subsequent generations have not been 

reported.  
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Table 7- Results of 𝜎𝑜𝑝𝑡 for parametrs and objectives of 28 generations. Yellow 

highlighted have the least values in each column. 

Optimisation generations 

W
in

W
 

W
in

H
 

W
W

R
 

W
in

H
H

 

W
in

S
H

 

W
D

is 

E
D

is 

A
S

E
 

sD
A

 

Q
V

 

E
U

I 

G01 2.080 0.924 36.303 0.511 0.412 0.693 0.804 34.751 40.106 62.500 11.901 

G02 2.046 0.866 35.134 0.420 0.446 0.760 0.810 33.475 38.630 59.493 11.534 

G03 1.880 0.859 34.169 0.431 0.427 0.650 0.786 32.761 35.966 56.292 11.479 

G04 1.774 0.807 32.940 0.334 0.473 0.714 0.736 32.383 33.788 53.233 11.317 

G05 1.626 0.773 31.564 0.253 0.521 0.574 0.780 31.131 30.747 50.023 11.084 

G06 1.618 0.771 31.821 0.249 0.522 0.630 0.820 31.727 31.326 50.107 11.149 

G07 1.498 0.783 31.149 0.325 0.458 0.540 0.718 30.030 30.159 49.392 11.094 

G08 1.310 0.768 29.140 0.285 0.483 0.542 0.536 29.408 26.108 47.393 10.323 

G09 1.390 0.690 28.622 0.203 0.486 0.562 0.636 28.458 25.125 42.645 9.971 

G10 1.516 0.693 29.722 0.260 0.433 0.518 0.742 27.988 27.579 44.661 10.572 

G11 1.486 0.682 29.122 0.200 0.483 0.506 0.616 29.366 26.520 44.737 9.975 

Figure 7- Results of 𝜎𝑜𝑝𝑡 for research objectives in 28 generations. Downward trend 

line shows the convergence of the optimization process. 
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G12 1.344 0.695 28.166 0.182 0.513 0.530 0.602 28.307 23.999 43.939 9.815 

G13 1.424 0.764 30.193 0.262 0.502 0.496 0.700 30.551 27.134 46.527 10.094 

G14 1.362 0.610 27.223 0.173 0.437 0.478 0.716 26.946 23.654 39.292 9.271 

G15 1.650 0.768 31.215 0.239 0.528 0.494 0.720 30.979 30.747 48.569 10.505 

G16 1.492 0.747 29.992 0.217 0.530 0.500 0.696 30.231 27.453 45.997 9.963 

G17 1.464 0.705 28.483 0.247 0.458 0.496 0.636 28.021 26.284 43.762 9.785 

G18 1.464 0.617 28.003 0.160 0.458 0.586 0.602 27.601 24.806 39.149 9.699 

G19 1.432 0.752 29.854 0.241 0.511 0.536 0.608 29.946 27.402 46.939 10.088 

G20 1.426 0.598 27.214 0.198 0.401 0.518 0.716 26.475 23.873 38.351 9.478 

G21 1.456 0.657 28.593 0.245 0.412 0.512 0.672 27.719 25.411 41.535 10.146 

G22 1.452 0.680 28.546 0.184 0.496 0.540 0.688 26.853 26.015 42.275 9.653 

G23 1.260 0.583 26.431 0.175 0.408 0.570 0.506 25.156 22.536 38.519 9.287 

G24 1.514 0.610 28.638 0.182 0.427 0.568 0.606 27.996 25.402 40.233 9.857 

G25 1.440 0.726 29.624 0.207 0.519 0.582 0.578 30.458 26.025 44.132 9.906 

G26 1.376 0.673 27.996 0.228 0.445 0.574 0.602 26.820 25.470 41.653 9.683 

G27 1.448 0.777 30.954 0.255 0.522 0.504 0.616 30.299 28.982 49.140 10.482 

G28 1.456 0.709 29.411 0.236 0.473 0.460 0.600 28.299 27.696 46.653 9.929 

4. Results 

This section presents the results of parametric optimisation of daylight, energy, and 

view to outdoor. Initially, the base model for the optimisation algorithm is defined and the 

model simulation results are derived, for the purpose of comparison, with the 

recommended solutions from the proposed algorithm. The HypE algorithm mutates the 

model to create new generations, which are evaluated and returned to the optimisation 

algorithm. To find the most optimum solution, the weighted-sum function is introduced 

and ultimately, optimised solutions are introduced and discussed.  
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4.1. Base model simulation 

According to the ASHRAE 90.1 standard[77], the maximum WWR is selected for the 

base model (Figure 8). Table 8 presents the detail of input parameters and calculated 

objectives. 

Figure 8- Base model elevation and parameters values. 

Table 8- parameters and objective functions for the base case. 
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m m m m m m % % % % % kWh/m2 

Base 3.60 1.52 2.28 0.76 0.15 0.15 45.26 38.66 52.94 52.01 80.67 81.27 82.26 

 

Figure 9 illustrates the view diagrams and monthly energy usage chart generated from 

Grasshopper. The large window size allows for sufficient light transmission to the interior 

to provide natural lighting. In this case, more than 50% of room space receives a mean 

of 300 lux, with daylight during the working hours throughout the year. On the other hand, 

aggregation of annual 250 hours of direct sunlight with 40% in the south face and the 

absence of a shading device, the base model fails to meet the minimum requirement set 

by the LEED v4. 

View performance in the base model satisfied the proposed conditions, as all of the 

space has view access. Evaluation of view performance conditions reveals that 82% of 

the grid points are located at the distance of three times the window head height (view 
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depth), 15% are in a viewing angle of more than 90°, and the VF for 80% of them are 

more than three. Therefore, considering the majority of points that have passed the two 

out of three secondary conditions, 80% of the office room has satisfactory quality 

performance.  

 

Figure 9- simulation results for the base case. Up: view analysis. Down: Daylight and 
energy consumption analysis. 

The energy consumption for the base model is obtained, as 81.27 kWh/m2. Figure 9 

(down right), demonstrates the monthly distribution of EUI separated by the cooling, 

heating and electricity load. The cooling, heating and electrical lighting loads account for 

48, 13 and 14 percent of total EUI, respectively. Accordingly, because Tehran is in a warm 

and dry climate, the priority of a design strategy should be to reduce the cooling load and 

preventing the sunlight penetration in summer. 

4.2. Pareto frontiers solutions 

Figure 10 illustrates the benchmarking Pareto fronts and the relationship between the 

four optimisation objectives. Due to a higher number of the objectives than the number of 

possible axes in a 3D chart, the fourth objective values (ASE) are demonstrated in the 
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blue- yellow colour spectrum. The optimisation algorithm explained in section 3.1 and also 

weighting sum approach in section 3.3, identified the yellow spheres as the most fitted 

solutions in the optimisation process. As it is demonstrated in Figure 10, while these 

spheres have the highest QV and sDA and the least EUI; their value of ASE are 

undesirably high. Although the optimisation is set to reduce the value of ASE, this has led 

to considering the same weight for all objectives. There are other solutions with ASE less 

than 10% (section 5.4) which could be chosen in the proposed framework, but these 

models with low WWR, have lower performance in the other objectives. In addition, in the 

base model, no devices considered to control the glare. It seems that using glare control 

tools such as shadings can reduce ASE and increase the window size as long as 

performance improvement in other objectives. 

Because it was difficult to understand the four-dimensional diagram, the values of the 

objectives were demonstrated and studied, in four 2D-dimensional diagrams in Figure 11. 

In this Figure 11, the base model is also shown as a green square, compared to other 

models. Besides, the top-ten genomes based on the fitness function, introduced in section 

3-3, are highlighted. Their detailed characteristics are also presented in Table 9. Since 

the coordination centre point represents the best theoretical solution, the best solutions 

should be near the origin of the coordinates.  

So each diagram has its own Pareto front and optimum genomes. In diagrams of 1, 2, 

4 and 5 in Figure 11, the top ten optimum genomes are matched the optimum genomes 

of each diagram, but this is not in diagrams of 3, 6 and 7. It is notable with respect to 

Pareto front, although the whole space of objective values and correlation between them 

have not been of the interest of this research, the Multi-Objective-Optimisation algorithm 

sought optimisation of all functions. A good instance of this is apparent in Figure 11 

(graphs 2 and 7), which demonstrates plots of sDA vs QV and highlights other objectives 

using colour codes. In this figure, Pareto solutions are found within intervals of (40, 53) 

for sDA and (60, 83) for QV. Inside this box, there is no correlation between these two 

objectives, nor with others, as it is obvious that high and low values of EUI and ASE exist 

in this space. Same applies to graph 1, where inside the box of QV (60, 83) and EUI (79, 

84), it is not possible to regress the variables; likewise for sDA vs EUI. As the solutions 
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get closer to the Pareto front, the conflict of the objective functions increases, where the 

algorithm has to find non-dominated cases. 

As the optimum genomes are introduced by the research optimisation algorithm, as 

mentioned earlier, the reason for high value of ASE in these models is the same weight 

of the research objectives. In addition, the formula 7 in section 3.3 also confirms the 

optimality of these models. In the top ten optimised models, the algebraic sum of the three 

values of sDA, EUI and QV has been so high relative to the other models that the effect 

of ASE has virtually disappeared. In this kind of circumstances, for having models with 

acceptable ASE values, models can be restricted to ASE less than 10%, or glare control 

tools be added to the research models configuration. 

 

As shown in Figure 11, since the base model has the largest possible window, no 

further improvements in sDA nor QV in other genomes are found. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 10- 4D chart of simulated models in optimization 
process. ASE values is illustrated by colour. The yellow 

spheres are elite-solutions. 



35 

 

Figure 11- Genomes produced in Octopus. Normally the most optimum genomes are closest to the origin coordinates. 
Green point is the base model. 
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Because of the contradictory relationship between energy performance and view to 

outside, as well as energy and daylight, there are many genomes that show high 

performance in one objective, but not in others. When genome generations are produced, 

each generation contains genomes that are fitter than the genomes of previous 

generations. As shown in Table 8, the fitness function value for the base model was 82.26.  

The best solution was found in the 22nd generation and its fitness function value 

represents the highest in this study, equal to 96.48. Its fitness function value improved by 

3% compared to the base model. In later generations, no better genome was found, and 

the density of solutions increased in the range of origin of the coordinates. The number 

of generations of each of the top-ten solutions in which is produced is given in Table 9. 

For instance, the fifth and sixth solutions (genomes 1172 and 1088), produced in the 11th 

and 10th generations, and the genome 2806 produced in the 28th generation. Finding 

genomes with better fitness function continued until the 28th generation, and no better 

genome found in later generations. As such, although the optimisation for the further six 

generations continued, just the first 28 generations' results are reported in research. 

Table 9- optimised genomes with their parameters and objective functions. The best 
single objective genomes among top-ten are highlighted and bordered with solid lines. 
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2264 22 1 3.40 1.52 2.28 0.76 0.35 0.15 42.75 38.66 52.94 81.51 79.52 96.48 

1290 13 2 3.60 1.33 2.28 0.95 0.15 0.15 39.60 38.66 52.94 70.59 79.05 86.32 

2552 25 3 3.20 1.52 2.28 0.76 0.15 0.55 40.23 36.13 52.94 81.51 81.79 85.91 

2028 21 4 2.00 1.33 2.28 0.95 0.55 1.35 22.00 26.05 41.18 68.91 81.15 78.81 

1172 12 5 3.60 1.14 2.28 1.14 0.15 0.15 33.95 35.29 52.94 58.82 79.36 77.93 

1088 11 6 3.00 1.52 2.28 0.76 0.35 0.55 37.72 35.29 47.90 81.51 81.90 77.71 

1294 13 6 3.00 1.52 2.28 0.76 0.55 0.35 37.72 35.29 47.90 81.51 81.90 77.71 

2806 28 7 2.80 1.52 2.28 0.76 0.15 0.95 35.20 34.45 47.06 81.51 82.84 71.28 

2446 24 8 1.60 1.33 2.28 0.95 0.75 1.55 17.60 17.65 36.13 68.91 83.88 70.49 

1476 14 9 3.00 1.52 2.28 0.76 0.15 0.75 37.72 34.45 49.58 81.51 83.70 69.54 

1490 15 10 3.00 1.33 2.28 0.95 0.35 0.15 33.00 34.45 47.90 69.75 81.46 68.46 
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In all 2910 generated models the minimum values, maximum values, average values 

and standard deviations of the total objectives are presented in Table 10. A lower 

standard deviation in EUI and ASE indicates that these objective values tend to be close 

to the average of their sets in the optimisation process, while a higher standard deviation 

in sDA and QV indicates that their values are spread out over a wider range. So the fitness 

difference among the optimised objectives and the rest of the models are suitably large. 

Table 10- Objectives Information and Range.   

 ASE (%) sDA (%) QV (%) EUI (kWh/m2) 

Min 0.84 6.72 5.88 79.05 

Max 38.66 52.94 81.51 92.34 

average 5.80 17.13 24.14 90.91 

Standard deviation 9.89 13.91 21.19 1.96 

4.3. Optimised solutions 

Table 9 shows the ten optimum solutions obtained as the Pareto front. Among all 

solutions, only the first three genomes have a fitness function value greater than the base 

model.  

Because of the antagonistic relation among sDA and EUI or QV and EUI, many 

solutions are found that consume more energy, while receiving less daylight. These 

solutions share similar parameters as demonstrated in Table 11. These similarities 

include low WWR, an aspect ratio of 3:1 to 6:1 and the lowest possible position of the 

window. Due to low WinHH in these models, on average only 22% of the room receives 

enough light in 50% of the occupied hours in a year, and more than 20% of the room 

receives more than 1,000 lux over 250 hours per annum. In addition, the low position of 

the window, in spite of the high aspect ratio, restricts the view to the sky comparing to the 

base model. To investigate the cause of increases in EUI, the model 1524 was compared 

to the base model. Table 12 shows a significant increase of more than 130% in the electric 

lighting energy consumption, whilst it’s cooling, and heating load only decreased by 9% 

and increased by 1.5%, respectively. Thereby, the lack of sufficient daylight in this model 

leads to an increase in electrical lighting load and subsequently, a higher total energy 

consumption.  
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On the other hand, there are solutions posing higher sDA and QV values but less 

energy usage, such as solutions 2264, 1290 and 2552 (Table 12). The main difference 

between models having high EUI and lower sDA and QV, is the larger WWR, about 40% 

on average. The WinHH is maximum so that the daylight penetration and view to the 

outside are increased, and the WinSH is enlarged to 1.5 meters to reduce the possibility 

of sunlight penetration.  

Table 11- Genomes with highest EUI and lowest sDA & QV: parameters, objectives 
and fitness values. 
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1524 3.00 0.57 1.33 0.76 0.35 0.55 14.14 21.01 23.53 27.73 92.34 -77.27 

1771 3.00 0.57 1.33 0.76 0.15 0.75 14.14 21.01 22.69 26.05 92.33 -80.90 

873 2.60 0.57 1.33 0.76 0.15 1.15 12.26 17.65 19.33 26.05 92.32 -78.49 

1599 2.00 0.76 1.52 0.76 0.55 1.35 12.57 15.97 19.33 37.82 92.31 -59.28 

1006 3.00 0.76 1.52 0.76 0.55 0.35 18.86 28.57 29.41 39.50 92.30 -70.69 

 

Table 12- Energy consumption comparison among some selected models and the 
base model.  

Model 

Cooling 

Load 

Heating 

Load 

Electrical 

Lighting 

Load 

Electrical 

Equipment 

Load 

Total 

Thermal 

Load 

kWh/m2 

1524 35.29 ↓ 10.79 ↑ 25.39 ↑ 20.88 92.34 ↑ 

Base model 38.78 10.63  10.99 20.88 81.26 

2264 36.37 ↑ 10.86 ↑ 11.41 ↑ 20.88 79.52 ↓ 

2264-mirrored 39.20  ↑ 10.60  ↓ 12.37  ↑ 20.88 83.04  ↑ 

1290 35.92  ↓ 11.11  ↑ 11.14  ↑ 20.88  79.05↓ 

 

5. Selection of the Best Model 

In this section, the selection of the best models, based on the different objectives are 

elaborated. A comparison between the Pareto front solutions is performed, with the base 
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research model, to show how different parameters affect building performance, and what 

effect this has on improving the efficiency of the genomes. 

5.1. The best optimum genomes 

The best optimum solution at the Pareto front is defined as a balance between daylight 

performance, energy consumption, and QV. The best fitness value is achieved for the 

model 2264 (Figure 12), by 96.47. The energy consumption of the model is 79.52 Kwh/m2 

with 2% reduction compared to the base model. The annual energy distribution is shown 

for the best optimum model, on the right-hand side of Figure 13. Because of the lower 

WWR than the base model, the penetration of the solar radiation and the adequate 

distribution of natural light is decreased, which results in a 2.16, and 4% increase in 

heating and electrical light loads and a 6.62% reduction in cooling load (Table 12). 

However, due to the nature of Tehran’s hot climate, the total energy consumption is 

decreased. 

The daylight simulation of the best optimum genome in the bottom left-hand side of 

Figure 13 shows that the sDA and ASE are the same as the based model with values of 

52.94 and 38.66, respectively. For better comparison, DAave was calculated, given that 

the sDA is a spatial index and does not give information about light distribution (Table 

13). In the optimum model, DAave falls 2% (50.88%), which means that, in less than 2% 

of occupancy hours, there was less daylighting. Due to the smaller WWR, this decrease 

seems natural and justifies the increase in electric lighting consumption. 

Figure 12- absolute optimum genome elevation and parameters values 
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In the best optimum genome, 81% of the points in the office room have quality views, 

which is 1% higher than the base model. By comparing the analysis of the three conditions 

of QV in Figures 12 and 9 it is revealed that in both models there are limited points that 

had a view angles of 90 degrees or more. In addition, the points that located in the 

distance of three times, the WHH were the same. Therefore, an effective factor, which 

led to a difference in QV between the two models is the VF.  

To analyse the effect of EDis and WDis, on the best optimum genome, a new mirrored 

model was generated, with the reverse dimensions. This model is not among the Pareto 

front solutions and consequently, it is individually simulated. The result of this simulation 

(presented in Table 13) indicates that these two models are similar, in terms of ASE, sDA, 

and QV, and they deviate only in EUI and DAave values. In the mirrored model, the DAave 

dropped by only 0.08%, yet its electric lighting load increased by 8%. The heating load in 

this model decreased by 2% and the cooling load increased by 7%. As mentioned earlier, 

due to the greater sensitivity of the cooling load, the total energy consumption increased 

by about 4%. For this reason, it was concluded that in a window of a specific size, it is 

likely to be better to place a window near the eastern wall in this research climate. 

Figure 13- simulation results for the absolute optimum genome. Up: view 
analysis. Down: Day light and energy analysis. 



41 

 

Table 13- Parameters and objectives of the absolute optimum genome.  
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2264 1 
3.40 1.52 2.28 0.76 

0.35 0.15 
42.75 38.66 52.94 

50.88 
81.51 

79.52 96.47 

2264-mirrored - 0.15 0.35 50.80 83.04 69.94 

5.2. The energy optimum model 

Figure 14 shows the optimum energy consumption genome (model 1290). This model 

holds the same sDA and ASE as the best optimum model and the base model, however, 

in terms of DAavg value, it stands between those two models (Table 14). Since the WWR 

is smaller than theirs, the DAavg is 0.83% lower than the base model, nevertheless, as a 

result of the lower EDis as well as its symmetry, light distribution is more uniform and 

about 0.3% higher than the best optimum model. 

QV in the optimum energy model is also 2.7% and 4.8% less than the base and best 

optimum models, due to the reduced WinSH and VF. The energy optimum genome shows 

7.4% and 1.2% decline in cooling load, in comparison to the base and the best models, 

respectively; and 4.5% and 2.3% increase in heating loads. Furthermore, as a result of 

the reduction in WWR (by 5.7% and 2.7%, against the base and the best optimal models), 

the possibility of solar radiation penetration in the summer and winter declined, which 

justifies those changes in thermal loads. At the same time, the interstitial state of this 

Figure 14- Energy optimom genome elevation and parameters values 
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model in daylight, relatively to the base and the best optimal models, has a consistent 

effect on the lighting energy consumption, and its electrical load is 1.4% higher than the 

base and 2.4% lower than the best optimal model (Table 14). Although this model has a 

higher heating load than the other two, and the corresponding electrical lighting load is 

larger than the base model, the impact of the cooling load on the energy consumption is 

higher; and accordingly, the total energy consumption is lower.  

Table 14 - Parameters and objectives of the energy optimum genome .   
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1290 2 3.60 1.33 2.28 0.95 0.15 0.15 39.60 38.66 52.94 51.18 70.59 79.05 86.32 

5.3. The best sDA genome 

Amongst the 2910 models investigated in the optimisation process, four models were 

found fitter than the others (Figure 15). These four models had equally the highest sDA 

values (52.9%). The average sDA is 29.5% with a standard deviation of 13.91 (table 10), 

so the sDA values are spread out over an acceptable range. Parameters and objectives 

of some randomly generated models are presented in Table A.1.  

In these models, possessing different parameters, almost 53% of the room has enough 

daylight at all occupied hours. These genomes are among the top-5 solutions, with the 

highest fitness function value.  

The models in which the sDA value is maximised represent the three highest possible 

values for WinH and WinW. DAavg is calculated for comparison of the options. As shown 

in Table 15, Model 1290, which is the second optimum model, has the highest average 

annual gain (more than 300 lux), which is 0.83% lower than the base model. 

It is perceived that the high WinW and the symmetry of the model result in gaining more 

daylight than the models 2264 and 2552. In addition, model 1290 has a better fitness 

function than model 1172, due to the lower WinSH and the higher WinH. Figure 15, also 
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illustrates the higher brightness of the back position of the room, in this model, in 

comparison with other models. In the last row of the grid, there are points that in 9-27% 

of the year had daylight more than 300 lux. Such points are rare in the best optimal model 

and do not exist in models 2552 and 1172. 

None of the four fitting models, having the best sDA, as well as the base model (with 

the largest possible WWR and sDA=52.94%) meet the LEED needs. As the sDA has a 

spatial definition, one of the ways to qualify for its LEED point, is reducing the depth of 

the room. Calculations show that if the simulated room has a maximum of 5.8 meters 

depth, the maximum points in daylighting is attainable.  

  

Figure 15-Daylight Autonomy in optimum genumes of SDA. Model 1290 has the 
highest DAavg. Areas with sDA300/50% is demonstrated by black lines. The back of 

the room is brighter in model 1290 than others. 
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Table 15- Parameters and objectives of sDA optimum genome 
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2264 1 3.40 1.52 2.28 0.76 0.35 0.15 42.75 38.66 52.94 50.88 81.51 79.52 96.47 

1290 2 3.60 1.33 2.28 0.95 0.15 0.15 39.60 38.66 52.94 51.18 70.59 79.05 86.32 

2552 3 3.20 1.52 2.28 0.76 0.15 0.55 40.23 36.13 52.94 49.61 81.51 81.79 85.91 

1172 5 3.60 1.14 2.28 1.14 0.15 0.15 33.95 35.29 52.94 49.93 58.82 79.36 77.93 

5.4. The best ASE genome 

As stated in the literature review, less than 10% of the work plane should have more 

than 250 hours of direct sunlight in excess of 1,000 lux, in order to meet the LEED 

requirements. Among the generated models, 1033 models met these specifications. This 

was reduced further as 107 models (with average WWR of 1.22%), in which sDA is equal 

to zero, were removed. Among the remaining solutions, the model 2154 with ASE of 8.40, 

achieved the highest fitness function value. Whilst there were ten models with higher ASE 

(9.24), these had lower fitness function values. 

 Among these top-ten models, model 723 scored the highest fitness function of 10.79. 

Among the models with the lowest ASE (zero), the model 2426 has the highest fitness 

function of 28.99. In the top-ten genomes, the model 2446 with the fitness function of 

70.49 had the best ASE with 17.65% (Table 16). Figure 16 shows a comparison between 

the ASE of all these models. 

Model 723 and 2426 both have the same WinW, WinH, WWR, and location. However, 

higher WinSH and lower WinHH in model 723, cause a reduction in ASE. It is observed 

that the high WinW of the model 2154, the decrease in the WinSH, and the increase in 

the WinHH of the model 2446, lead to an increase in ASE. Comparison of model 2154 

(the ASE optimum model with ASE less than 10% and the highest fitness function) with 

other models show that if high WinW is recommended (to improve other objective function 

values), it increased WinSH can reduce solar penetration and glare. 
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There are 707 models with zero ASE among the investigated models. The standard 

deviation for WinW, WinH, WinHH and WinSH parameters of these models are 0.8, 0.3, 

0.4 and 0.3, respectively. Given that the lower the standard deviation, the less dispersion 

of data, so it indicates the high impact of architectural design parameters on the loss of 

glare. 

 

 

 

 

 

Table 16- Parameters and objectives of ASE optimum genomes 
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Figure 16- sunlight hour analysis of the best ASE optimum genomes. Areas with ASE 
more than 250 hour with more than1000 lux annually is demonstrated by black lines. 
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2446 8 1.60 1.33 2.28 0.95 0.75 1.55 17.60 17.65 36.13 NA 68.91 83.88 70.49 

2154 1250 3.20 0.76 2.28 1.52 0.55 0.15 20.12 8.40 44.54 NA 38.66 85.53 59.96 

2426 22 1.40 0.95 2.28 1.33 0.95 1.55 11.00 0.00 29.41 27.43 49.58 90.55 28.99 

723 92 1.40 1.14 2.09 0.95 1.15 1.35 13.20 9.24 30.25 NA 57.14 91.26 10.79 

 

Figure 17 shows the optimum ASE genome. Model 2426, has the rank of 22nd in the 

list of the best genome. Although this genome was less likely to have glare than the 

absolute optimal genome, it still did not receive enough daylight in 24% of the room, and 

32% of the rooms had no QV (a major change occurred in VF), as well as 14% more 

energy consumption (Figure 18). Due to the smaller WWR, the cooling load decreased 

by 12% and 6%, relative to the basic model and the absolute optimum.  

 

 

 

 

 

 

 

In winter, due to the decrease in received solar radiation, the heating load increased by 

11% and 9%, relative to the basic model and absolute optimum. In this model, due to 

Figure 17- Annual sunlight exposure optimom genome 
elevation and parameters values 
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reduced daylight, the electrical lighting load doubled (116% and 112%, respectively, 

relative to the absolute optimal model and base model). 

5.5. The best quality views genomes 

In all solutions, 14 models have the highest QV of 82%, which are more than 1% higher 

than the base model. To find the QV optimum model, more accurate simulations are 

performed by having the grid size and doubling the grid points (Table 17). The comparison 

shows that among parameters, just the view angles are effective, and the other 

parameters have constant values. Although the view angles do not influence the final 

outcome of the QV in this study, it helps to determine the optimum QV genome among 

those 14 models. 

Figure 18- Simulation results for the annual sunlight exposure optimum genome. 
Above: view analysis. In view access analysis figure, areas with QV is demonstrated by 
black lines. Below: Daylight and energy analysis. In daylight autonomy figure, areas with 
sDA300/50% is demonstrated by black lines. There is no area in "sunlight hours analysis" 

figure which have more sunlight more than than 250 hours. 
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Table 17- view simulation results with a smaller grid size. The 5 best view genomes of 
table 15 and also the base model are comparable.  

Model in the 

optimisation 

process 

View depth View angles VF >= 3  View access QV 

2264 79.41 13.73 80.98 100.00 79.41 

2552 79.41 11.76 80.78 100.00 79.41 

Base 79.41 15.10 80.78 100.00 79.41 

2806 79.41 9.02 80.39 100.00 78.82 

1476 79.41 10.59 80.39 100.00 79.02 

1060 79.41 7.84 80.20 100.00 78.82 

The view angles are the same for some models due to the fixed WinW, WinH and 

changing WDis and EDis. Naturally, this change, regardless of the view content, should 

have an impact on the view to outdoor. 13% of the room in model 2264 and 2552 had 

more than 90˚ horizontal and vertical view angles. These models were the first and third 

best ranks of the optimum QV solutions. 

In all of these 14 solutions, the WinW, WinHH, and WinSH were fixed, and just WinW, 

WDis, and EDis were changing. The WinSH and WinHH had minimum and maximum 

possible values, respectively, and therefore, the WinH had the highest possible value. By 

decreasing the WinW, the number of points in a room, with view angles of more than 90˚, 

decreased. 

Although the model 2264 differed in WinW from the model 2552, the number of points 

obtained with the view angles of more than 90˚ were the same for both models. To better 

understand the reasoning behind this, the grid size was reduced to half the size (0.25 m), 

and the simulation was rerun for these models. With a smaller grid and more precise 

simulation, it was clear that the model 2264 had approximately 2% more points with view 

angles of more than 90˚, and approximately 1% had a VF value greater than 3. As shown 

in Figure 19, the points at the room end in model 2552 had less view access.  

Results of simulation with a precise grid size in Table 18 showed that the two optimum 

models of 2264 and 2552 had the same QV. The view angles reduced with a drop in 

WinW, resulting in lower view angles compared to the base model. The model 2264 had 

the highest VF among the three models. Consequently, since the base model had the 
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maximum possible QV, during the optimisation process this value remains constant and 

it attempts to stabilise its other improved objectives. 

 

Figure 19- View comparison among the optimum view genomes 
and base model. Down: view access. The points with quality views 
are demonstrated by black line. Middle: view angles analysis with 
default grid size. Up: view angles analysis with smaller grid size. 



50 

 

Table 18- Parameters and objectives of view optimum genomes.  
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2264 1 3.40 1.52 2.28 0.76 0.35 0.15 
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5 
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40.2

3 

36.1

3 

52.9

4 
82.35 12.61 81.51 100 

81.5

1 
81.79 

85.9

1 

2806 8 2.80 1.52 2.28 0.76 0.15 0.95 
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5.6. Improvement in the optimisation process 

In this section, the objective results of the best optimum genome are compared with 

the objective results of the base model and the objective average values to demonstrate 

the improvement in the optimisation process and also to evaluate meeting the 

requirement of LEED rating system. 

The average QV of the studied models is 24.14% (Table 10). This objective was 

significantly improved in the best optimum genome (81.51%; Table 9). Thus, the QV in 

the optimal model is more than 2.3 times higher than the average which also meets the 

view requirements specified in LEED. The QV in the optimum genome is increased by 

about 1% in comparison to the base model. 

Energy consumption of the studied models has the lowest standard deviation among 

other objectives (Table 10). It represents that the difference between the minimum and 

maximum EUI is just 13 kWh/m2/y. Although with the average EUI of 90.91 kWh/m2/y, 

these low differences could not make a difference in meeting the LEED requirements, in 

the optimisation process, EUI in the optimum genome is decreased by about 2% in 

comparison to the base model. 

Although both daylight indices rose significantly compared to an average of 

themselves, there is no significant change in these indices compared to the base model. 

sDA in the optimum genome (52.94%) increased more than 2 times than the sDA average 

value (17.13%), therefore, the chance of getting the minimum score of daylighting in 

LEED has increased. ASE value in the best optimum genome (38.66%) is equal to the 

highest found values, more than 5 times higher than the average.  

Given that the ASE average value (5.80%) is less than 10%, it is apparent that the 

optimisation process has reduced the amount of this objective to meet the needs of the 

LEED. However, since the weight of each objective in the method used in Section 3.3 

was the same for all the objectives of this study, the found best optimum genome with the 

highest fitness function has no acceptable ASE value. The authors suggest that in such 

projects, in order to find models that can meet LEED requirements in the daylighting 

alongside the other objectives, the weight of the ASE in Formula 7 should be increased. 
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Because of the relatively large size of the window used in the base model, the 

optimisation process did not change the LEED credits of this specific model. However, 

the model’s ability to maintain the positive aspects of a larger window while reducing the 

negative impacts, are clearly observable. With no change in daylighting, the best optimum 

genome has a more quality view and consumes less energy than the base model. 

Certainly, a greater impact on the result of the optimisation could be achieved by choosing 

a smaller base model.   

6. Conclusion 

The research presented in this paper addresses the theoretical and methodological gap 

in configuring window systems for the design of office buildings. The design of window 

systems directly affects aspects of a building’s quality and performance, including building 

energy performance, daylight gain, and visual comfort. As is evident in the reviewed 

literature, a reliable method for assessment of the Quality of View (QV) has not been 

introduced. The evidence on the optimisation of window system design has focused on 

energy performance and daylight aspects of windows. The few studies concentrating on 

outside view tended to present qualitative methods to maximise WWR. This paper 

developed a framework for quantitative evaluation of QV by considering several factors 

including view access, view angles, VF and view depth.  

This framework provides a foundation method to evaluate the QV for office 

environments. A multi-objective optimisation method was also introduced in this research 

design as a decision-making tool to assist building designers and engineers to achieve 

an optimised window system. This tool considers three optimisation objectives, namely: 

energy usage received daylight and quality of the view. The aim was to minimise energy 

usage while maximising received daylight and quality of the view. The optimisation 

framework utilised Rhinoceros software for modelling the building, Grasshopper 

environment with two plugins (Ladybug and Honeybee) to calculate the energy usage 

and daylight and a Python-based plugin to evaluate the QV. The optimisation algorithm 

(HypE), which is a hypervolume-based evolutionary algorithm, is applied using Octopus 

(a Grasshopper plugin).  
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The optimisation operation was applied to a case study, which was a reference room 

in an office building based on a room specification defined for standardizing dynamic 

evaluations in office environments [87]. After validating the energy and daylighting 

simulation results with that specified room (Reinhart reference room), the location 

changed to Tehran city, Iran. The results of the proposed optimisation procedure were 

provided as a set of optimum solutions. Further to the obtained values for the optimisation 

objectives, a fitness function was introduced to better evaluate the performance of each 

configuration by weighting different objectives. The solution packages provide the 

decision-makers with potential options to select based on their expectations. The 

optimisation results showed that the suggested research framework can improve the 

daylighting and QV results more than times in comparison to theses average optimisation 

values. As for the EUI, this improvement was about 12%.The optimum solutions proved 

the efficiency of the optimisation framework in finding the best window system, for 

satisfying all studied objectives. It was revealed that it is possible to provide a satisfactory 

QV performance, for more than 80 percent of the reference room points, while minimising 

the energy usage, and maximising the daylight. 

It was determined that in order to meet official standards set for office buildings as they 

relate to view, room geometry must be within the set of optimisation variables. The low 

complexity of the reference building may introduce other difficulties in satisfying the 

predefined standards. Similarly, additional building elements such as blinds, shades, and 

glazing play a role in controlling solar radiation, light amounts, and glare and therefore 

must be considered.  

There is an opportunity for further studies to investigate the impact of shading and light 

control strategies on the studied optimisation objectives. Adding shading devices to 

facades provides an opportunity for simultaneous reduction in radiation transmission and 

heat gain energies, as well as a higher capability of controlling day-lighting [92]. However, 

the effects of such devices (e.g. blinds, screens, and shutters to the glazed surfaces, as 

well as implementing control strategies) on the quality of the view to outside have been 

under-researched.  
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Future research could also explore variations in the external environment of the building 

and to understand the resulting impact on the triple analysis of daylight, visibility, and 

energy. The view indices examined in this research design were internal, and external 

indices such as view content and external distance haven’t been considered in the 

presented study in this paper. In future research, these could be considered when 

assessing the quality of view and result in more precise contextual results. 
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Appendix A:  

 

Table A.1- Parameters and objective values of random models.  
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5 1.60 0.76 1.71 0.95 1.75 0.15 10.06 8.40 17.65 33.61 91.91 -45.21 

61 1.00 1.14 1.90 0.76 1.15 1.75 9.43 9.24 18.49 46.22 91.99 -30.56 

102 1.40 1.33 2.28 0.95 1.15 1.35 15.40 13.45 34.45 68.91 90.61 27.50 

170 1.60 0.38 1.33 0.95 1.35 0.95 5.03 0.84 10.08 13.45 91.75 -63.95 

251 2.00 0.76 1.52 0.76 0.95 0.95 12.57 16.81 21.85 39.50 92.14 -53.35 

405 2.60 0.38 1.33 0.95 0.15 1.15 8.17 7.56 17.65 13.45 92.00 -68.90 

486 1.20 0.76 1.71 0.95 0.35 1.55 7.54 1.68 13.45 31.09 91.93 -38.99 

591 2.60 1.52 2.28 0.76 0.55 0.75 32.69 34.45 47.06 81.51 87.21 38.37 

649 1.40 0.38 1.14 0.76 0.55 1.95 4.40 1.68 7.56 11.76 91.75 -72.99 

734 2.20 0.76 1.52 0.76 0.95 0.75 13.83 19.33 24.37 39.50 92.20 -55.56 

867 3.00 0.57 1.52 0.95 0.55 0.35 14.14 21.85 27.73 27.73 91.87 -67.95 

992 1.80 1.14 2.28 1.14 1.75 0.35 16.97 12.61 35.29 56.30 90.33 17.59 

1205 1.80 0.95 2.09 1.14 0.75 1.35 14.14 10.92 31.93 49.58 91.21 0.56 

1385 1.20 1.33 2.28 0.95 0.35 1.55 13.20 7.56 23.53 52.94 89.32 11.79 

1570 2.80 1.14 2.28 1.14 0.95 0.15 26.40 26.05 47.06 58.82 84.33 53.37 

1907 1.80 0.95 2.28 1.33 1.75 0.35 14.14 2.52 30.25 47.06 86.41 52.10 

2117 2.60 1.14 2.28 1.14 0.55 0.75 24.52 26.89 47.06 58.82 85.27 44.12 

2377 2.20 0.76 1.71 0.95 0.75 0.95 13.83 19.33 27.73 39.50 91.92 -47.10 

2595 2.40 0.19 0.95 0.76 0.55 0.95 3.77 1.68 7.56 6.72 91.70 -78.96 

2879 3.60 0.57 2.28 1.71 0.15 0.15 16.97 1.68 39.50 27.73 87.39 40.16 

 

 


