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Abstract

Data deduplication, a data reduction technique that efficiently detects and eliminates redundant data chunks
and files, has been widely applied in large-scale storage systems. Most existing deduplication-based storage
systems employ content-defined chunking (CDC) and secure-hash-based fingerprinting (e.g., SHA1) to re-
move redundant data at the chunk level (e.g., 4KB/8KB chunks), which are extremely compute-intensive
and thus time-consuming for storage systems. Therefore, we present P-Dedupe, a pipelined and parallelized
data deduplication system that accelerates deduplication process by dividing the deduplication process into
four stages (i.e., chunking, fingerprinting, indexing, and writing), pipelining these four stages with chunks
& files (the processing data units for deduplication), and then parallelizing CDC and secure-hash-based fin-
gerprinting stages to further alleviate the computation bottleneck. More important, to efficiently parallelize
CDC with the requirements of both maximal and minimal chunk sizes and inspired by the MapReduce model,
we first split the data stream into several segments (i.e., “Map” ), where each segment will be running CDC
in parallel with an independent thread, and then re-chunk and join the boundaries of these segments (i.e.,
“Reduce”) to ensure the chunking effectiveness of parallelized CDC. Experimental results of P-Dedupe with
eight datasets on a quad-core intel i7 processor suggest that P-Dedupe is able to accelerate the deduplication
throughput near linearly by exploiting parallelism in the CDC-based deduplication process at the cost of
only 0.02% decrease in the deduplication ratio. Our work provides contributions to big data science to
ensure all files go through deduplication process quickly and thoroughly, and only process and analyze the
same file once, rather than multiple times.

Keywords: Content-defined chunking, data deduplication, backup storage systems, performance evaluation

1. Introduction

A recent report from IDC [1] suggests that the total size of worldwide digital information is about
4.4 7B in 2013, and that size will be about 44 ZB in 2020. As an efficient data reduction technique, data
deduplication has been wildly used as a system-level data reduction technology to improve storage and
network efficiency [2-5]. Data deduplication removes duplicate data by storing only one physical instance
and other duplicate data refers to it. Specifically, deduplication adopts a secure hash function (i.e., the
cryptographically secure hash signature, such as SHA-1) to calculate a fingerprint (i.e., hash digest) [2, 6], to
uniquely and globally represent data regions (e.g., 8KB data chunks) and thus detect & eliminate duplicates
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in storage systems. Storage workload studies from Microsoft [7, 8] and EMC [9, 10] suggest that deduplication
technique detects about 50-85% of the duplicate data in their production systems, respectively.

The chunk-level deduplication strategy detects more duplicates than its file-level counterpart, and thus
is most widely used in the existing deduplication systems [7]. The chunk-level deduplication efficiently elim-
inates the redundancy in storage systems but requiring more processing time, which will be the bottleneck
in the write path for deduplication-based storage systems [11-16]. The reason is that the deduplication
process, that typically consists of four stages: (S1) content-defined chunking (CDC), (S2) fingerprinting,
(53) looking up the fingerprint index, and (S4) storing the data chunks and metadata, are time-consuming,
especially the chunking and fingerprinting steps occupy large amount of CPU resources. More specifically,
the chunking (i.e., content-defined chunking [17]) and fingerprinting (e.g., SHA1) tasks all need to compute
the hash signatures, which are time-consuming in the write path in deduplication-based storage systems
14, 15, 18, 19].

With multicore/manycore processors becoming increasingly more popular, the current computer sys-
tems are able to offer a much powerful parallel computing power for any cpu-intensive tasks [13, 16, 20].
Meanwhile, our observation of data deduplication tasks (see Section 2.3) suggests that the data deduplica-
tion tasks to be organized and viewed by data units (i.e., data chunks and files) and functional units (e.g.,
content-defined chunking, fingerprinting, and indexing), are mutually independent. Therefore, it is able to
take advantage of the abundant computing power in modern CPUs for deduplication by maximally paral-
lelizing the computation functional units (i.e., CDC and fingerprinting) that are then fed by the indexing
and storing stages for the data units, such as data chunks.

Finally, we present P-Dedupe, a pipelined and parallelized data deduplication system that fully mines
parallelism of deduplication tasks to alleviate the hash calculation bottleneck. By dividing the deduplication
process into four stages (i.g., chunking, fingerprinting, indexing, and writing), P-Dedupe first pipelines these
four independent stages. To fully exploit parallelism in P-Dedupe, we then propose the parallel CDC &
fingerprinting approaches to maximize the computation efficiency for deduplication. More specifically, to
efficiently parallelize CDC' and inspired by the MapReduce model [20], we first split data stream into several
data segments (i.e., “Map”), where each segment will be running CDC in parallel with an independent
thread, and then re-chunk & join the boundaries of the adjacent segments (i.e., “Reduce”) to ensure that
the chunking effect of parallelized CDC will be nearly identical to that of the conventional sequential CDC.
In addition, we analyze and demonstrate in-depth on the effectiveness of P-Dedupe running the classic CDC
approach with the requirements of both maximal and minimal chunk sizes.

Therefore, by fully exploiting parallelism of deduplication process, P-Dedupe greatly accelerate the hash
calculation tasks for deduplication and alleviate the computation bottleneck in deduplication-based storage
systems. Extensive experiments of P-Dedupe on a quad-core intel i7 processor, tested on the eight datasets,
suggest that fully exploiting parallelism for chunking & fingerprinting can accelerate the throughput of CDC
based deduplication by a factor of 3~4 while only decreasing the deduplication ratio by about 0.02%, on all
the three studied content-defined chunking algorithms, namely, Rabin [17], Adler [21], and Gear [22].

In the rest of the paper, Section 2 introduces necessary background, related work, and motivation for
P-Deupe. Section 3 elaborates the detailed design and techniques of P-Dedupe system. Section 4 presents
and discusses experimental results of P-Dedupe. Section 5 concludes P-Dedupe and the future work.

2. Background, Related Work, and Motivation

2.1. Background and Related Work

Recently, chunk-level data deduplication becomes one of the most popular data reduction method in
storage systems for improving storage and network efficiency. It splits a file into several contiguous chunks
and removes duplicates by computing and indexing hash digests (or called fingerprints, such as SHA-1) of
chunks [2, 3, 6, 23]. In the past ten years, data deduplication technique has been demonstrated its space
efficiency functionality in the large-scale production systems of Microsoft [7, 8] and EMC [9, 10]. As detailed
in Table 1, several published papers from both industry and academia indicate that data deduplication (at
the 8KB chunk level) is able to detect duplicates of about 68%, 90%, and 27% over the total logical storage
space in primary storage [7], backup storage [9, 10], and HPC data centers [24], respectively.
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Table 1: Summary of recently studies on data deduplication of large-scale real-world datasets.

’ Institutes H Workloads \ Before deduplication \ After deduplication ‘
| Microsoft [ 857 desktop computers [7] | 162 TB | 52 TB |
ver 1 roduction
EMC © back%gosoy;ems o 682 TB 89 TB
6 large backup datasets [10] 33 TB 2.7 TB
’ Mainz Univ. H Four HPC data centers [24] ‘ 1213 TB ‘ 886 TB ‘

Because of the great space saving efficiency, deduplication techniques have been widely applied for
data reduction in the backup storage systems [23, 25, 26], primary storage systems [5, 8, 14, 27], visual
machines [28], cloud storage [29], and other emerging applications [4, 30]. Such as, CAFTL [11] and CA-
SSD [12] schemes employ deduplication techniques to eliminate duplicate writes and remove duplicate data
blocks and thus finally improves space efficiency and write performance.

For the chunk splitting methods used in data deduplication systems, many studies have been also investi-
gated the efficiency of Fix-Sized Chunking (FSC) [6, 31-33], Content-Defined Chunking (CDC) [2, 7, 34-36].
Generally, CDC-based approaches can address the “boundary-shift” problem (see Section 2.3) and thus de-
tect more duplicates than FSC-based approaches when using similar average chunk size. A recent study
[7] from Microsoft suggests that CDC-based approaches detect about 12% more redundant data than the
FSC-based approaches in Microsoft production storage workloads of about 162TB.

One challenge facing data deduplication is the scalability of the fingerprints indexing, which faces the
on-disk index-lookup performance bottleneck when the size of fingerprints exceed the RAM space. DDFS
[23] exploits the inherent backup stream locality to maximize the hit ratio of the fingerprints cache and thus
reduce accesses to on-disk fingerprints index for inline deduplication. ChunkStash [25] uses SSDs instead of
HDDs to store fingerprints for deduplication indexing and thus improves the index-lookup performance, and
employs Cuckoo hash as data structure to organize the KV-store in memory while exploiting backup-stream
locality.

Another challenge facing data deduplication is that the high I/O throughput performance required by
the storage systems while the inline data deduplication processing is time-consuming because of the frequent
hash computation of CDC and fingerprinting.

Currently, two kinds of methods are proposed to improve efficiency of the hash calculating process and
thus alleviate the computation bottleneck: hardware-based and software-based approaches. The hardware-
based approaches refer to using GPGPU or a dedicated coprocessor to reduce the time overheads for chunking
and hashing calculations and thus minimize the storage I/Operformance degradation induced by deduplica-
tion. Two typical work, namely, StoreGPU [13, 19] and Shredder [15] take advantages of GPGPU’s great
computing power to speed up the computation tasks (e.g., hashing, erasure coding, etc.) in storage systems.

The software-based approaches make full use of the parallelism in deduplication tasks instead of introduc-
ing additional hardware devices for fast computing. Guo et al. [37] present an event-driven, multi-threaded
client-server interaction model to boost the throughput of the FSC-based deduplication system. It also pro-
pose methods of “progressive sampled indexing” and “grouped mark-and-sweep” to improve performance
and scalability of deduplication systems. Ma et al. [38] introduce an adaptive pipelining model for the
compute-intensive sub-tasks of fingerprinting, compressing, etc. in Fix-Sized Chunking based deduplication
system. Liu et al. [39] parallelize fingerprinting calculation for deduplication by first dividing each data
chunk into several pieces, then fingerprinting concurrently of these pieces, and finally combining the finger-
prints as the chunk’s. However, the above mentioned solutions only focus on Fix-Sized Chunking (FSC)
based approach. Due to the internal content-dependency as discussed in Section 2.2, it is challenging for
the CDC-based deduplication to fully parallelize the computation tasks.

2.2. Independence and Dependence
Recently, the bandwidth of storage hardware devices grows steadily while the computing power of one
single core stagnates [13, 19], the CDC and fingerprinting stages of the deduplication process are computa-
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Figure 1: An example of the sliding window scheme used in the Content-Defined Chunking (CDC). Hash value of the sliding
window, f, is calculated using the Rabin hash [2]. If the lowest logaD bits of the hash value meets the pre-defined requirement
(i.e., fmodD = r), the current position is marked as a “cut-point” (i.e., chunk boundary) for CDC. Otherwise, the sliding
window will move forward byte-by-byte to find the correct chunk boundary.

tionally very expensive. Our experimental observations (running on Ubuntu 12.04.2 and CPU 2.8GHz Intel
i7 quad-core) show the throughputs of running Rabin-based CDC, SHA1-based fingerprinting, and SHA256-
based fingerprinting on a single core are 245MB/s, 345MB/s, and 150MB/s respectively. Since the hash
calculations (e.g., Rabin, SHA1, and SHA256) are dependent on the contents of deduplication-processed
data streams/files, it remains a challenge to speed up the CDC and fingerprinting calculations.

Literature review from real-world CDC-based deduplication systems described above show that data
deduplication subtasks are actually running independently. Generally, CDC-based deduplication process
can be divided into four stages of content-defined chunking, fingerprinting, indexing, and storing.
The storing stage includes writing the non-duplicate data and system metadata accordingly. All of the
above mentioned deduplication subtasks can be viewed independent since they are serially processed on
each independent data unit (i.e., chunk). Specifically, the content-defined chunking of the chunk A, can be
running concurrently with the stages of fingerprinting, indexing, and storing of its previous chunk A;. Hence,
the four stages of deduplication (i.e., chunking, fingerprinting, indexing, and storing) could be pipelined to
fully utilize the computing power of the multicore/manycore processors.

2.8. Challenge of Parallelizing Content-Defined Chunking

Content-Defined Chunking (CDC) scheme is introduced to address the known “boundary-shift” issue
[2]: if the insertion or deletion operation happens in one chunk of a file (e.g., the chunk C5 in Figure 1),
it will affect its subsequent (CDC-calculated) chunks, which can reduce the deduplication efficiency of the
Fix-Sized Chunking (FSC) based approaches. As shown in Figure 1, CDC scheme employs a technique of
the sliding window to run forward on the byte content and determine the chunk boundary once the hash
value of the current sliding window meets the pre-defined condition. Hence, as shown in Figure 1, for the
modified file V5 (over file Vi, where the chunk Cj is changed), CDC scheme is able to obtain the right
cut-points of data chunks C's and Cy whose content remains unmodified.

To verify the duplicate detection effects of the CDC and FSC approaches, we use eight datasets for
evaluations (the detailed experiment environment and datasets characteristics can be referred to in Section
4.1), which represent the workloads of source code repository, virtual machine hosting, and database images
respectively. Figure 2 shows the numbers of duplicate detection with the chunking approaches of CDC and
FSC, which demonstrates that CDC-based approach detects 7-80% more redundant data than FSC-based
approach. It is worth to note that CDC works best on the Redis dataset, this is because modifying some
fields of the Redis database images head will affect its subsequent chunks according to our observation.

As the CDC-based deduplication detect much more duplicates than the FSC-based approaches especially
when files are frequently modified and stored multiple copies [7, 34, 40], many production deduplication
systems use the CDC-based schemes [23, 26]. Nevertheless, the CDC calculation is time-consuming, which
seriously degrades the write throughput of inline-deduplication-based storage systems. Therefore, fully
exploiting parallelism of CDC and other compute-intensive tasks are one of hottest research topics for
deduplication-based storage systems.

Parallelizing the CDC task, however, is challenging and can not be easily parallelized as parallel fin-
gerprinting. As described in Figure 1, the Rabin-based CDC employs the sliding window technique that is
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Figure 2: The duplicate detection effects of the content-defined chunking (Rabin-based CDC) and the fix-sized chunking (FSC)
running on the eight datasets with average chunk size of 8KB.

heavily dependent on the data content, which is difficult to be parallelized. In particular, Rabin’s hash

value for a sliding window (e.g., bytes sequence By, Ba, ..., By ), is defined as below:
Rabin(By, By, ..., Ba) = { | Bxp® "}modD (1)
=1

where « is the length of the sliding window and D is the expected average chunk size. The Rabin-based
CDC is a rolling hash that can calculate the hash value in an incremental manner. In particular, for the
sliding window that move forward byte-by-byte on data content, the hash value is able to be calculated
incrementally according to the last one as detailed below:

RCLbZ?’L(BZ, B7,'+17 veey BﬁLa,l) =
{[Rabin(Bi_l, ceey Bi+a—2) — Bi_lpa_l]p + Bi+a—1}m0ds

(2)

Therefore, the CDC process can not be running concurrently on one data chunk, because the chunk
boundaries (i.e., “cut-points” ) always remain uncertain until the current CDC process for this chunk is
finished. As a result, such strong data dependence makes it very difficult to parallelize the CDC process.
To make the things worse and complicated, the conventional CDC approaches employ the maximum and
minimum chunk size requirements to eliminate the edge cases of generating extremely large or small chunks
by CDC [2, 7, 26, 36, 40, 41]. For example, they impose minimum and maximum chunk size of 2KB and
64KB respectively when chunking the data stream with 8KB average chunk size.

But, according to the independence among the deduplicated chunks and files, as well as the tasks of
chunking and fingerprinting as discussed in Section 2.2, it is possible to first pipeline the deduplication
tasks and then further parallelize CDC and fingerprinting, and fully utilize the computing power of multi-
core/manycore processors in computer systems, as analyzed below.

Given the time overhead consumed by the content-defined chunking, fingerprinting, indexing, and storing
stages, denoted by T¢, T, T;, and T, respectively. Here D denotes the deduplication factor (the ratio of the
data size before/after deduplication), then T,, /D represents the time of writing the amount of non-duplicate
data. The write throughput can be estimated as below (without deduplication):

Xput = 1/Toy (3)
The write throughput with traditional serial deduplication’s can be calculated as below:
Xput = 1/(To 4+ Tj + T, + T,/ D) (4)
The write throughput with the pipelined deduplication can be derived as below:
Xput = 1/Max(T,,T¢,T;,T,/D) (5)
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Figure 3: P-Dedupe system architecture.

When we further parallelize the chunking and fingerprinting tasks with IV parallel threads, the throughput
can be derived as below:

Xpue = 1/Masl52, 2,72, ) (©
As the previous studies [25, 26, 42, 43] suggest that the indexing throughput for deduplication tends to be
very fast by effectively exploiting redundant data locality, about several hundreds of Megabits or Gigabytes
per seconds, which is faster than the commonly-known speeds of chunking and fingerprinting. Hence, if
hash-computation parallelism makes “T,,/N” and “Ty/N” < “T,,/D”, the write throughput will be about D
times faster than that without deduplication. Therefore, fully exploiting parallelism of deduplication tasks is
able to greatly improve the deduplication throughput and significantly alleviate the computation bottleneck
in deduplication-based storage systems.

3. Design and Implementation

3.1. System Architecture Overview

P-Dedup aims to provide high throughput for deduplication-based storage systems. This section first
provides an overview of P-Dedupe system, which finally focuses on pipelining and parallelizing hash calcu-
lation tasks, such as CDC and fingerprinting. As shown in Figure 3, P-Dedupe is made up of several system
components as below:

e User Interface refers to the data/file access interface (e.g., write, read, etc.) in deduplication-based
storage systems.

e File Services manages file metadata and name space, where the file metadata needs to be further
updated when chunk-level deduplication is complete.

e Deduplication Services offer the pre-processing functions of data deduplication, including parallelized
content-defined chunking, parallelized secure-hash based fingerprinting, etc. Deduplication Services
fully utilize the abundant computing power of modern CPUs to accelerate the CDC and fingerprinting
process (detailed in Sections 3.2, 3.3, and 3.4).

e Deduplication Manager is in charge of managing the chunk-fingerprint index for deduplication. Note
that as this paper aims to maximally accelerate hash calculation for data deduplication, we put all the
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Figure 4: Data structure of the file recipe in the P-Dedupe system.

the fingerprints (i.e., fingerprint indices) in the RAM for simplification. Other deduplication systems
[23, 26, 42] that provides high-performance fingerprint indexing by exploiting locality in cache (called
locality cache) can be employed here for managing and indexing fingerprints between RAM and disks.

e Storage Manager includes File Store, Recipe Store, and Container Store. File Store is responsible for
storing file metadata. Container Store is responsible for storing non-duplicate chunks using a fixed-size
structure (e.g., 4MB) [23]. Recipe Store establishes the mapping relations (called file recipe [44-46])
between File Store and Container Store after chunks deduplicated.

To put things into perspective, we provide a general workflow of the P-Dedupe system process. A data
stream goes through User Interface to the File Services layer and then stores the corresponding file metadata,
while entering the P-Dedupe system. Deduplication Services use by content-defined chunking technique to
split the input data stream into several chunks and then calculate the chunks’ fingerprints. Deduplication
Manager look up the chunks’ fingerprints in the index database to determine the duplicate chunks. Finally,
for the non-duplicate chunks, the chunk data and the metadata will be updated in Container Store, File
Store, and Recipe Store accordingly. For the duplicate chunk, only the metadata (the mapping information
points to the duplicate chunks) will be recorded.

For the read operation, the client initiates it through User Interface and File Services layer. Deduplication
Manager gets the chunk-to-file mapping relationship from Recipe Store based on the metadata in File
Store. The chunks will then be obtained from Container Store according to the mapping relationship and
reconstructed into a file with its the metadata. Note that for file modification, the metadata of the modified
(new) chunks in the file recipe will be updated. For the file deletion, garbage collection will be required for
reclaiming the storage space of the deleted chunks in Container Store, which has been exploited in many
studies [37, 43, 45, 46].

Figure 4 depicts the data structure of Recipe Store, which efficiently builds the mapping relations between
the deduplicated chunks and files in P-Dedupe. To give an example, when the chunk C5 (logically belongs
to Files as shown in Figure 4) is detected to be duplicate to the chunk C; (logically belongs to Fiile;) that is
already stored in Container Store, P-Dedupe only needs to record Cy’s mapping relationship (that points to
the physical address of chunk C5) in Recipeps in Recipe Store. Therefore, the system is able to reconstruct
Filey according to Recipeps’s chunk-to-file mapping information.

3.2. Pipelining Deduplication

As discussed in Section 2.3, by utilizing the abundance of computing power of the modern CPUs, thus it
is able to improve the deduplication system throughput by exploiting parallelism pf the computation tasks
accordingly.

As shown in Figure 5, P-Dedupe’s pipelining technique divides the deduplication process into four stages:
(S1) content-defined chunking (CDC), (S2) secure-hash-based fingerprinting, (S3) looking up the finger-
prints, and (S4) storing chunk data and metadata (such as file recipe in Figure 4). Since deduplication
process runs on chunk-by-chunk, the pipeline can be designed to run with the data unit of chunks in the w-
hole deduplication process. As a result, as illustrated in Figure 5, the compute-intensive stages (i.e., S1 and
S52) are separated from the I/O-intensive stages (i.e., S3 and S4) in the chunk-based deduplication pipeline.
This pipelined technique greatly reduces the waiting time on the chunking and fingerprinting stages and
thus maximize the computation efficiency in P-Dedupe.
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Figure 6: The parallel CDC runs concurrently with two threads. The CDC task is “mapreduced”: the data stream is mapped
to two segments A and B and then the boundaries of segments A and B are re-chunked for correction.

In addition to the aforementioned chunk-level deduplication pipeline, the file metadata updating can be
also considered into the deduplication pipeline (see stage S4 in Figure 5), especially when there are many
input small files. Thus P-Dedupe can get operating file metadata right after deduplication. This greatly
improves the pipeline efficiency.

Although P-Dedupe’s pipeline scheme is designed for the CDC-based systems|[17], it can be also applied
for any data deduplication systems using Fix-Sized Chunking (FSC), where the stage S1 “chunking” in the
above pipeline in Figure 5 would be removed.

3.83. MapReduce Content-Defined Chunking

The main challenge for parallel deduplication in P-Dedupe lies in the Content-Defined Chunking (CDC),
which employs a sliding window technique running byte-by-byte on the input data stream (see Figure 1).

Inspired by the Phoenix project [20] that uses the MapReduce model to accelerate computation tasks on
multi-core and multiprocessor systems, we propose a “mapreduced” CDC approach to parallelize the content-
defined chunking on several divided but contiguous substreams, also called data “segment”, of the same
data stream of appropriate length (e.g., IMB or 2MB) that may generate chunks following the CDC rules.
Specifically, P-Dedupe first splits a data stream into many fix-sized data segments (i.e., “Map”) and the size
of each segment should be much larger than the pre-defined maximum chunk size for CDC. Then the CDC
is running on the data segments concurrently. After the CDC of these segments are finished individually,
the boundaries among those segments will be slightly corrected accordingly (i.e., “Reduce”). This is because
the ends of each segments are automatically determined as the chunk “cut-points” in P-Dedupe, which does
not strictly follow the the CDC rules.

Figure 6 provides an example of parallel CDC: two segments A and B are running CDC concurrently to
generate chunks A;~A,, and By~ B, respectively, then the last chunk in segments A, A,,, may be determined
as a “tentative chunk” since the last “cut-point” may not strictly meet the CDC rule as shown in Figure 1

8
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in Section 2.3. The correct “cut-point” for chunk A, may be located inside B;, and we need to re-chunk
them (i.e., A, and B;) for correction as the 2"? step of parallelizing CDC as shown in Figure 6.

As discussed in Section 2.3, most of CDC-based deduplication systems use mazximum and minimum chunk
sizes to eliminate the pathological cases of many extremely large and small chunks [2, 7, 26, 36, 40, 41]. Thus
in this paper, we mainly discuss how to re-chunk the two chunks in the segment boundaries with requirements
of the maximum/minimum chunk sizes for CDC. When maximum/minimum chunk sizes are not required,
P-Dedupe only needs to re-chunk the regions of two CDC sliding windows on the two adjacent chunks in
the segment boundary while achieving the same chunk positions as the sequential CDC approach [47].

Figure 7 gives an example of re-chunking the two chunks (i.e., A, and B;) in the segment boundary
after parallel chunking of data segments A and B when the average, minimum, and maximum chunk sizes
are configured to 8KB, 2KB, and 64KB respectively, the same as LBFS [2]. Here we assume the re-chunked
position between chunks A, and By is located at O, and the next chunked position after the chunk XO is
located at O'. Thus if P-Dedupe gets the same chunked positions as the sequential CDC approach at the
cut-points O and O!, it means that P-Dedupe does not sacrifice the deduplication ratio while efficiently
parallelizing content-defined chunking on each segment. But according to our observation, when P-Dedupe
re-chunks A4,, and Bj, there will be five cases of locations of O and O! as follows.

e Case 1: O € [Y, Y], O' = Z. In this case, chunks A,, and B; (i.e., XY and Y Z in Figure 7) will be
re-chunked into chunks XO and OZ, which will be the same case as the sequential CDC approach.

e Case 2: O € [Y, Y], O! € (Z, N]. This case happens when P-Dedupe finds the re-chunked position
O between [V, Y] but the OZ is smaller than the minimum chunk size of 2KB (thus the position Z
would not be an effective cut-point for rechunking).

e Case 3: O € (Y1, Z), Ot = Z. This case happens when P-Dedupe does not find the chunked position
between [V, Y], the X Z is greater than the maximum chunk size of 64KB (thus the position Z would
not be an effective cut-point as “O” for rechunking), and OZ is greater than the minimum chunk size
of 2KB.

e Case 4: O € (Y1, Z), O' = (Z, N]. This case happens when P-Dedupe does not find the chunked
position between [Y, Y], the X Z is greater than the maximum chunk size of 64KB, but OZ is smaller
than the minimum chunk size of 2KB (thus the position Z would not be an effective cut-point for
rechunking).

e Case 5: O = Z. This is the best case, and we only need to merge the chunks A, and B; into a new
chunk (i.e., XZ2).

In Cases 1, 3, and 5, P-Dedupe achieves the same chunking effect as the sequential CDC but does not
in Cases 2 and 4 by only re-chunking the chunks A,, and B in the segments boundary. Now we further
analyze Cases 2 and 4. As shown in Figure 8, our experimental observation and mathematic analysis suggest
that cumulative distribution of chunk size X in Rabin-based CDC approach with average chunk size of 8KB
(no configuration of the max/min chunk sizes) follows the exponential distribution as below:

P(X<z)=F(z)=(1—e 592),2>0 (7)
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Figure 8: Chunk-size distribution of Rabin-based CDC approach with 8KB average chunk size and without maximum/minimum
chunk size requirements. “Rabin” denotes our experimental observation of chunk-size distribution and “Math” denotes the
theoretical exponential distribution of the Equation (1).

It is worth noting that this theoretical exponential distribution of Equation (1) is based on the assumption
that data content and its calculated hash values of content (for chunking) follow the uniform distribution.
The chunk-size distribution shown in Figure 8 demonstrates that the predictive results based on Equation
(7) are totally identical to our experimental observation of distributions, which provide convincing results
for our further analysis of Cases 2 and 4.

Equation (7) and Figure 8 suggest that the probability of chunk size > 64KB is equal to e(=® ~
0.000335, which means Case 3 happens at an extremely low probability. Meanwhile, the probability of
chunk size z < 2K B is equal to (1 — e(7925) ~ 0.2212, which means the events of Cases 1 and 2 (O €
[Y, Y]) happen at the probability of about 0.2212. The probability that Cases 2 and 4 happen can be
calculated as blow:

e (Case 2 is equal to the event that two sequential chunks are both smaller than 2KB, whose probability
is about 0.049.

e (ase 4 is equal to the event that the first chunk is greater than 64KB and the next chunk is smaller
than 2KB, whose probability is about 0.000074.

e Cases 1, 3, and 5 happens at the probability of (1 - 0.049 - 0.000074) = 0.959926.

Cases 2 and 4 results in a bad situation where the chunked position O' needs to be re-chunked. In the
worst case, all the subsequent chunks positions O?~O™ will need to be re-calculated. Here we argue that
we just simply consider the chunked position Y (from parallel segment-chunking) as the O in Cases 2 and
4, to minimize the overhead of boundary jointing in P-Dedupe. Even though the Cases 2 and 4 happen,
their subsequent chunked positions O?~O™ will be identical to the sequential CDC approach at a very high
probability (the same situation as Cases 1, 8, and 5).

To put things more clearly, the chunks whose boundaries are not identical to the sequential CDC ap-
proach, we called “dirty” chunks in P-Dedupe. Base on the above discussions of the five cases, the “dirty”
chunk is a rare event only existing in the Case 2 and Case 4. Specifically, the expected ratio of “dirty”
chunks in each segment generated by Case 2 could be calculated as below:

10KB+n x 2KB

SegmentSize

Bogsez = »_0.2211™7 x 0.7789 x
n=1

_ 0.6258KB

= SegmentSize
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As Case 4 happens at a probability that about 1/1000 of Case 2, the expected ratio of dirty chunks
generated by Cases 2 and 4 are nearly equal to the result shown in Equation (8), which means that less than
0.1% of chunks are dirty chunks in P-Dedupe when using data segment of 1MB for parallelizing chunking.

Therefore, P-Dedupe achieves nearly the same chunking effect of the sequential CDC approach by only
re-chunking the two chunks in the segment boundaries after parallel chunking. Meanwhile, P-Dedupe linearly
speedups the deduplication throughput via this parallel chunking scheme, as evaluated and demonstrated in
Section 4. It is noteworthy that the chunking of the files smaller than the segments size (e.g., 1IMB) could
be easily be parallelized by allocating one chunking thread for one file since the chunking processes among
different files are totally independent thus could be running in parallel. And our work focus on parallelizing
the content-defined chunking of the large files, which are the main sources for deduplication [7, 42].

3.4. Parallelizing Fingerprinting

As P-Dedupe pipelines the deduplication sub-tasks and parallelizes the time-consuming content-defined
chunking, the fingerprinting will be the next bottleneck for P-Dedupe as shown in Figure 5. As discussed
in Section 2.3, the time waiting for fingerprinting can be also reduced by exploiting parallelism since the
different data chunks, the subjects of fingerprinting, could be running independently. Hence, P-Dedupe can
directly parallelize fingerprinting on data chunks generated from parallelized CDC (i.e., Stage S3 in Figure
5) by allocating one thread for fingerprinting each chunk with the technique of thread pool [48].

The challenge facing parallel fingerprinting is that the output sequence of chunks’ calculated fingerprints
must follow the input sequence (i.e., the sequence of chunks in a file) in order to feed into the indexing and
writing stages in the pipeline correctly as shown in Figure 5 in Section 3.2. Take an example of the parallel
fingerprinting three chunks with the sequence of X —Y —Z may generate an out-of-sequence completion (e.g.,
X—-Z—-Y orY—X —Z) because of the dynamic runtime conditions of CPUs and the various sizes of data
chunks generated by CDC. Therefore, the synchronization of the parallel fingerprinting threads is considered
into the P-Dedupe pipeline, so that the chunks’ fingerprints are fed to the following stages S8 € S4 in the
pipeline in the correct sequence, which outputs the same results as the traditional sequential CDC-based
deduplication approach. For synchronization of parallel fingerprinting, the functions of pthread_mutez_lock()
and pthread_cond_wait() of thread pool [48] are used to wait for the fingerprinting of chunks running in
the sequential order as the input. According to our observation, the overhead of this synchronization is
negligible since the most of the chunks are of the similar size after chunking and the parallel chunking and
fingerprinting are running faster in P-Dedupe.

4. Performance Evaluation

4.1.  FEzxperimental Setup

Experimental Platform. P-Dedupe system is evaluated on the Ubuntu 12.04.2 with a quad-core and
eight-thread Intel i7 processor running at 2.8GHz, 64 GB RAM, and two 1TB 7200RPM hard disks.
Configurations for Data Reduction. We configure the Rabin and SHA-1 algorithms for CDC and
fingerprinting respectively in P-Dedupe. The maximum, average, and minimum chunk sizes for P-Dedupe
are set 64KB, 8KB, and 2KB respectively, which is also used in LBFS [2]. We parallelize the chunking
and fingerprinting tasks of both 4 threads in P-Dedupe, and parallel threads is managed by the
thread pool in our implementation. In addition, we also test other content-defined chunking algorithms,
namely, Gear-based chunking [22] and Adler-based chunking [21] to further evaluate P-Dedupe’s parallel
chunking approach. The fingerprint index is all put into RAM to maximally examine the deduplication
throughput accelerated by P-Dedupe via exploiting parallelism for chunking and fingerprinting. The thread
pool technique [48] is used for programming and managing multi-threads in P-Dedupe.

Evaluation Metrics. Deduplication ratio (DR) is measured in terms of the percentage of duplicate data
eliminated by deduplication. Deduplication throughput (DT) is measured by the processing throughput
at which the input files/data is processed by deduplication. We run each experiment for many times to
get the stable and average results of the deduplication throughput. Since high-bandwidth fiber channel
adapters and storage device (e.g., PCM) are fairly expensive, we instead use a RAMdisk-driven emulation
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Table 2: Workload characteristics of eight datasets used in our evaluation, the dedupe ratio is calculated by the sequential
CDC based deduplication at the average chunk size of 8KB.

Datasets H Versions/Images \ Size \ Dedupe Ratio
SciLab 15 5.92 GB 56.04%
GCC 43 15.9 GB 40.75%
Linux 39 16.4 GB 40.92%
Centos 23 40.8 GB 50.02%
Fedora 18 46.9 GB 33.97%
Freebsd 24 27.1 GB 24.05%
Redis 30 162 GB 91.74%
Bench 20 107 GB 86.92%
Baseline Baseline Baseline

B P-Dedupe wio joint P-Dedupe w/ joint B P-Dedupe wio joint P-Dedupe w/ joint

100% 7 7 7 N
NAN NN
o5%] NN

90%-
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Figure 9: Deduplication ratio as a function of different parallel data segment size among the approaches of Baseline, P-Dedupe
with and without segment boundary jointing.

in our testbed (to ensure the transferring and storing stages would not be performance bottlenecks) to
experimentally validate the deduplication throughput of P-Dedupe, which is as the same as that in the
Shredder [15] and StoreGPU [13, 19] research. To better evaluate P-Dedupe, we implement the traditional
serial deduplication as the “Baseline” approach (i.e., without pipelining and parallelizing the deduplication
tasks) for comparison.

Evaluation Datasets. Table 2 introduces the workload characteristics of eight evaluated datasets, which
is also detailed as below:

e SciLab, GCC, and Linux datasets are three open-source projects representing workloads of the large-
scale code datasets, and are publicly downloadable [49-51]. Each version of these software projects is
tarred together to simplify and speedup the backup process [9].

e Centos, Fedora, and Freebsd datasets are VM images of three well-known OS release versions from
the same website [52]. These three datasets represent workloads of hosting virtual machine images.

e RDB dataset is collected from a running Redis database [53]. The dump.rdb files are backed up as the
snapshots of Redis database. Finally, 20 versions are backed up to represent a typical deduplication
workload of the database datasets.

e Bench refers to a benchmark dataset that is collected from a personal cloud storage benchmark
[54]. The frequently used filesystem operations of creating, deleting, and modifying are simulated (as
suggested by Tarasov et al. [55]) on the snapshots of this benchmark to get 20 backups.
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Figure 10: Deduplication throughput as a function of different parallel data segment size among the approaches of Baseline,
P-Dedupe with and without segment boundary jointing on the three typical datasets.
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Figure 11: Percentage of duplicate not eliminated by P-Dedupe (with segment boundary jointing).

4.2. Sensitivity Study of P-Dedupe

This subsection presents evaluation of P-Dedupe with several important design factors, such as the data
segment size (i.e., the parallel chunking unit) and the average chunk size. Since the segment boundary
jointing is also important for the deduplication ratio in the P-Dedupe system as discussed in Section 3.3,
we evaluate both the approaches of P-Dedupe with and without segment boundary jointing (P-Dedupe w/
joint and w/o joint for short). Thus P-dedupe w/o joint is simple and easy to implement,and is similar to
the parallel CDC approach proposed in Shredder [15]. The results shown in Figures 9, 10, 11 are all tested
with 8KB avg. chunk size for CDC.

Parallel Data Segment Size. Figure 9 shows the deduplication ratio of P-Dedupe that is normalized
to the Baseline approach (i.e., the traditional serial deduplication) with different data segment sizes. As
shown in Figure 9, the deduplication ratio of P-Dedupe w/o joint increases as a function of the increase
of data segment size. This is because the events of Cases 2 and 4 can be reduced by increasing the data
segment size as discussed in Section 3.3. Figure 9 also shows the segment boundary jointing algorithm
significantly improves the deduplication ratio of P-Dedupe, which achieves nearly the same deduplication
ratio of the Baseline approach. Note that the segment size for parallel chunking in deduplication system
can be configured by users accordingly. The detailed considerations about the segment size include thread
numbers, file sizes, the data container size (i.e., the storage unit) [23], the rewriting scheme (for better
restore performance) [3].
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Figure 12: Deduplication ratio of the P-Dedupe and Baseline approaches as a function of the average chunk size.
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Figure 13: Deduplication throughput of the P-Dedupe and Baseline approaches as a function of the average chunk size.

Figure 10 shows the deduplication throughput of Baseline and P-Dedupe approaches with different data
segment sizes. Deduplication throughput of Baseline remains the same (about 130MB/s on average) while
that of P-Dedupe increases in proportion to the size of the data segment. This is because the larger the
segment size is, the more parallelism can be exploited for chunking and fingerprinting. This figure also shows
P-Dedupe with the segment boundary jointing achieves nearly the same deduplication throughput as that
without boundary jointing.

Figure 11 further studies the relationship between deduplication ratio and parallel segment size. Here
the “Math” curve denotes the estimated duplicate data not eliminated by P-Dedupe according to Equation
(2) in Section 3.3. This figure shows that the deduplication-ratio curves of the Linux and Redis datasets are
nearly identical to the curve of “Math”. But the FreeBSD dataset detects less duplicates than the estimated
value of “Math”. This is because Equation (2) assumes that the data content for content-defined chunking
is random (it follows the uniform distribution), while virtual machine images contains a large amount of
uninitialized content (such as zero blocks [31]), which results in generating many chunks of the configured
maximal chunk size after CDC. However, the trend shown in Figure 11 the three real-world datasets is
consistent with our analysis of Equation (2). P-Dedupe achieves nearly the same deduplication ratio of the
Baseline approach while greatly parallelizing the tasks of CDC and fingerprinting for data deduplication.

Average Chunk Size. Figures 12 and 13 show the deduplication performance of Baseline, P-Dedupe
w /o joint, and P-Dedupe w/ joint using different average chunk sizes and parallel segment size of IMB. These
two figures suggest that P-Dedupe achieves nearly the same deduplication ratio and about 3-4 times higher
deduplication throughput than the Baseline approach regardless of the average chunk size. In addition, the
deduplication ratio decreases with the average chunk size, which is generally consistent with the previous
studies [7, 9]. But the larger the average chunk size is, the higher the deduplication throughput of both
the Baseline and P-Dedupe approaches is. This is because that the smaller chunk translates into a larger
number of chunks, thus consuming more time for the operations of chunking, fingerprinting, indexing, etc.
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Table 3: Deduplication ratio of P-Dedupe under eight datasets.

P-Dedupe P-Dedupe || P-Dedupe
w/o joint w/ joint missed
SciLab 56.04% 55.67% 56.01% 0.0365%
GCC 40.75% 40.54% 40.74% 0.0083%
Linux 40.92% 40.80% 40.92% 0.0054%
Centos 50.02% 49.64% 49.97% 0.0481%
Fedora 33.97% 33.70% 33.95% 0.0187%
Freebsd 24.05% 23.89% 24.04% 0.0123%
Redis 91.75% 91.33% 91.74% 0.0102%
Bench 86.92% 86.53% 86.90% 0.0136%

Dataset || Baseline

[IBaseline
B Pipeline
P-Dedupe

Deduplication throughput (MB/sec)

Datasets

Figure 14: Deduplication throughput of the approaches of Baseline, Pipeline, and P-Dedupe.

4.8. Deduplication Performance of P-Dedupe

This subsection evaluates the overall performance of P-Dedupe for the eight datasets. We configure
P-Dedupe with average chunk size of 8KB and data segment size of 4MB for higher deduplication ratio.

Table 3 shows deduplication ratio achieved by the approaches of Baseline, P-Dedupe w/ joint and P-
Dedupe w/o joint. Actually, the percentage of duplicates not detected (missed) by P-Dedupe with the
segment boundary jointing is only 0.05% less than the Baseline approach, which means that P-Dedupe
achieves nearly the same deduplication ratio as Baseline. Meanwhile, P-Dedupe runs about 4 times faster
than the Baseline approach, about 2 times faster than the Pipeline approach as shown in Figure 14, where
“Pipeline” denotes the approach of pipelining the four stages of deduplication as shown in Figure 5. Note
that the Pipeline approach obtains the same chunking effect as Baseline thus deduplication ratio results of
the former are omitted in Table 3. In all, P-Dedupe achieves about 99.98% deduplication ratio of the Baseline
approach for all eight datasets while maximally parallelizing CDC and fingerprinting for data deduplication.

4.4. Other Chunking Algorithms

This subsection evaluates the deduplication performance of the P-Dedupe approach combined with the
Adler- and Gear-based chunking algorithms. As two known rolling hash algorithms, Adler [21] and Gear [22]
also provide the robust chunking efficiency in CDC based deduplication system, and can be used as alterna-
tives for Rabin in CDC-based deduplication. To better illustrate their differences, Table 4 shows the pseudo
code implementation of the three CDC approaches, namely, Rabin, Adler, and Gear. They all compute the
rolling hash values in an incremental manner but with different hashing schemes.

In order to comprehensively evaluate the efficiency of P-Dedupe’s pipelining and parallelizing scheme,
Adler- and Gear-based chunking schemes are tested to replace Rabin-based chunking in the P-Dedupe
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Table 4: Illustration of three CDC approaches: Rabin [2], Adler [21], and Gear [22]. Here ‘a’ and ‘b’ refer to the value of the
first and last byte in the sliding window respectively, ‘N’ refers to the length of the sliding window for CDC, and ‘U’, ‘“T”, ‘A’,
‘G’ refer to the predefined arrays for each CDC approaches [2, 21, 22].

Name Pseudocode

Rabin  hash=((hash"U(a))<<8)[b"T[hash>> N|
Adler Sl+:A(b);SQ+:Sl;hGSh:(SQ << 16)‘51,
Gear  hash = (hash << 1) + G(b)

Table 5: Deduplication performance of P-Dedupe with Adler-based chunking.

Deduplication ratio Deduplication throughput
Baseline P-Dedupe Baseline P-Dedupe

SciLab 56.67% 56.63% || 133 MB/s 459 MB/s
GCC || 42.81%  42.80% | 120 MB/s 500 MB/s
Linux | 41.30%  41.38% | 131 MB/s 491 MB/s
Centos 50.28% 50.24% | 134 MB/s 506 MB/s
Fedora 34.16% 34.13% || 133 MB/s 504 MB/s
Freebsd | 24.45%  24.44% || 135 MB/s 503 MB/s
Redis 91.76% 91.75% || 130 MB/s 497 MB/s
Bench 86.93% 86.93% || 130 MB/s 496 MB/s

Dataset

system. Here, we also configure the P-Dedupe and Baseline approaches with average chunk size of 8KB and
data segment size of 4MB. Note that since the Gear-based chunking runs much faster than SHA-1 based
fingerprinting, we configure chunking and fingerprinting with 3 and 5 threads respectively in Gear-based
P-Dedupe system. For Adler-based P-Dedupe system, we still parallelize chunking and fingerprinting with
both 4 threads (the same as the above Rabin-based P-Dedupe).

Tables 5 and 6 show that the deduplication ratio and throughput of P-Dedupe with Adler- and Gear-
based chunking respectively. These two tables suggest that the Baseline approaches with Adler- and Gear-
based chunking achieve the similar deduplication ratio of that with Rabin-based chunking, and the P-Dedupe
approach also achieve the same deduplication ratio of the Baseline approach. Meanwhile, P-Dedupe achieves
about 3~4 times higher deduplication throughput than the Baseline approach by its pipeline and parallel
scheme. Therefore, the results shown in Tables 5 and 6 demonstrate that P-Dedupe well parallelizes content-
defined chunking for deduplication without sacrificing the deduplication ratio no matter which CDC approach
is actually used.

Table 6: Deduplication performance of P-Dedupe with Gear-based chunking.

Deduplication ratio | Deduplication throughput
Baseline P-Dedupe Baseline P-Dedupe

SciLab 56.32% 56.25% || 172 MB/s 586 MB/s
GCC || 43.21%  43.15% || 162 MB/s 590 MB/s
Linux 41.67% 41.67% || 168 MB/s 585 MB/s
Centos 50.40% 50.29% || 172 MB/s 588 MB/s
Fedora || 34.34%  34.27% | 167 MB/s 603 MB/s
Freebsd || 26.75% 26.72% || 172 MB/s 583 MB/s
Redis 91.79% 91.76% || 168 MB/s 612 MB/s
Bench 86.92% 86.89% || 169 MB/s 594 MB/s

Dataset
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4.5. Our research contributions and comparison with other work

We sum up our research contributions as follows. First, we present the P-Dedupe, a parallel deduplication-
based storage system, to accelerate the CDC and fingerprinting computation process. We demonstrate the
theories, design and implementation to justify our pioneering approach. Second, we test different large
datasets on P-Dedupe. Results of performance evaluation show that deduplication ratio can be maintained
high and the execution time can be reduced due to P-Dedupe’s acceleration. Compared to one recent work
[56], the deduplication can be used combining with encryption algorithms to ensure the original authenticity
of the files. In our case, deduplication process can ensure no duplicate data files exist while performing
experiments for large datasets, thus increasing the system efficiency. In addition, we argue that the work
of P-Dedupe provides an important step when we work on machine learning, and big data analytic science,
since we only process, study, and analyze the same file once, rather than multiple times.

5. Conclusion and Future Work

To alleviate the hash computation bottleneck in data deduplication systems, we present P-Dedupe that
fully exploits parallelism of the CDC-based deduplication tasks in deduplication systems. P-Dedupe first
pipelines the four stages of the deduplication tasks with the processing units of chunks and files, and then
further parallelizes content-defined chunking and secure-hash-based fingerprinting to maximally alleviate the
hash computation bottleneck for deduplication. To ensure the chunking effectiveness of parallelizing CDC,
P-Dedupe first split the data stream into several segments, each segment will be running CDC in parallel
with an independent thread, and then uses a segment-boundary jointing approach to quickly re-chunk and
joint the two chunks at the boundaries of the adjacent segments. In addition, we analyze and demonstrate
in-depth on the deduplication efficiency of P-Dedupe running the classic CDC with the requirements of
both maximal and minimal chunk sizes. Evaluation results suggest that P-Dedupe effectively parallelizes
the content-defined chunking for deduplication only at the cost of slightly decreasing the deduplication ratio
while accelerating the deduplication throughput nearly linearly with the number of CPU cores.

As P-Dedupe’s idea of pipelining deduplication and then further parallelizing chunking & fingerprinting
is also applied to deduplication systems with the GPGPU devices. We plan to study P-Dedupe with more
thread-level parallelism on GPGPU devices and solve more potential challenges for P-Dedupe due to much
higher processing throughput in the GPGPU devices.
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