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The problem of promoting the evolution of cooperative
behaviour within populations of self-regarding individuals
has been intensively investigated across diverse fields of be-
havioural, social and computational sciences (Nowak, 2006;
Perc et al., 2017). In most studies, cooperation is assumed to
emerge from the combined actions of participating individ-
uals within the populations, without taking into account the
possibility of external interference and how it can be per-
formed in a cost-efficient way. However, in many scenar-
ios, cooperative behaviours are advocated and promoted by
an exogenous decision maker, who is not part of the sys-
tem (e.g. the United Nation interferes in political systems
for conflict resolution or the World Wildlife Fund organ-
isation interferes in ecosystems to maintain biodiversity).
Thus, a new set of heuristics capable of engineering a de-
sired collective behaviour in a self-organised multiagent sys-
tem is required. Here we summarize our recent works to
bridge this gap, in which we employ theoretical analysis and
computer simulations based on evolutionary game theory
(Nowak, 2006), to study cost-efficient interference strate-
gies for enhancing cooperation in the context of cooperation
dilemma games, for both well-mixed (Han and Tran-Thanh,
2018) and square-lattice structured populations (Han et al.,
2018).

We consider finite populations (of size N ) of individuals
who interact with each other through the one-shot Prisoner’s
Dilemma game (PD) (Nowak, 2006), where in each inter-
action two players simultaneously choose either to cooper-
ate (C) or defect (D). Mutual cooperation (mutual defection)
yields the reward R (penalty P ) and unilateral cooperation
gives the cooperator the sucker’s payoff S while the defec-
tor the temptation T . A PD is characterized by the ordering
T > R > P > S. In a well-mixed population, each player
interacts with all others in the population while in a square
lattice the player interacts with its four immediate neighbors.
A player’s fitness is its averaged payoff over all its inter-
actions, which is then used for strategy update. Namely, a
player A with fitness fA chooses to copy the strategy of a
randomly selected player in the population (well-mixed) or
randomly selected neighbor (structured) with a probability

given by the Fermi function, (1 + eβ(fA−fB))−1, where β
represents the intensity of selection (Traulsen et al., 2006).
When β = 0 corresponds to neutral drift while β → ∞
leads to increasingly deterministic selection. Weak or even
close to neutral selections (small β) are abundant in nature,
while the strong selection regime has been reported as pre-
dominant in social settings. As an alternative to this stochas-
tic update rule, one can also consider a deterministic update
in which agents copy, if advantageous, the most successful
player in their neighbourhood.

An interference strategy or scheme can be generally de-
fined as a sequence of decisions about which C players in
the population to invest in (i.e. reward the player an amount,
denoted by θ), in order to achieve the highest level of coop-
eration while minimising the total cost of investment. These
decisions can be made by considering different aspects of
the population such as its global statistics and/or its struc-
tural properties. In the context of a well-mixed population,
an interference scheme solely depends on its composition
(i.e. how many C and D players there are at the time of deci-
sion making). In this case, we have derived analytical condi-
tions for which a general interference scheme can guarantee
a given level of cooperation while at the same time minimis-
ing the total cost of investment (for rewarding cooperative
behaviours), and show that the results are highly sensitive to
the intensity of selection by interference. Moreover, we have
studied a specific class of interference strategies that make
investments whenever the number of C players reaches a cer-
tain threshold, denoted by t (∀t ∈ {1, . . . , N −1}), showing
that there is a wide range of t that it outperforms standard
institutional incentive strategies—which unconditionally in-
terfere into the system regardless of its composition, cor-
responding to t = N − 1 (Chen et al., 2015). Figure 1a
shows the optimal threshold of t for varying the intensity
of selection, β, where the minimal expected cost of inter-
ference is obtained while guaranteeing at least ω-frequency
(0 ≤ ω ≤ 1) of cooperation. We can observe that, when β
is sufficiently small (weak selection), an intermediate value
of t would lead to most cost-efficient interference strate-
gies, while for a sufficiently strong selection, it is best to
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Figure 1: a) In a well-mixed population (size N = 100), the optimal threshold of t where a minimal expected cost of interference is obtained
while guaranteeing at least ω-frequency of cooperation, which increases with the intensity of selection (Other parameters: T = 2; R =
1; P = 0; S = −1; θ = 5); b) In a square lattice population (size N = 1002), neighborhood-based (local) interference strategies are
more cost efficient in ensuring high cooperation (≈ 100%) than population-based (population cooperation level) ones. Other parameters:
T = 1.8; R = 1; P = 0; S = 0 (weak PD); deterministic update was used but results are robust for stochastic update (Han et al., 2018).

always interfere, meaning that standard institutional incen-
tive strategies (i.e. t = N − 1) would be most effective.

With a structured population, individuals (even of the
same strategy) might reside in different kinds of neighbor-
hood (with different cooperativeness levels), and therein lo-
cal information might be useful to enhance cost-efficiency
and cooperation. To this end, we test several interference
paradigms (Han et al., 2018) that make investment deci-
sions based on a player’s current cooperativeness level (the
number of C players in the neighborhood), and compared
their efficiency with the population-based strategies (as in
the well-mixed case). Our systematic analysis reveals a sim-
ple strategy that invests when there is at least one D player
in the neighborhood and does not invest otherwise, is highly
cost-efficient in promoting cooperation (see Figure 1b). Fur-
thermore, when additional information regarding the fitness
levels (i.e. individual income information) of players in a
neighbourhood is accessible, further improvement can be
made by more accurately influencing D neighbours for be-
havioural change (to become cooperators).

Future works include analysis of other types of popula-
tion structures such as the scale-free ones and their vari-
ants (Cimpeanu et al., 2019) and more complex interference
strategies such as those vary the cost of investment over time
or combine different forms of incentives (Chen et al., 2015;
Han, 2016).

In short, we have studied how cooperation can be pro-
moted in a cost-efficient way from an external decision
maker’s perspective. It provides new insights regarding
heuristics capable of engineering a desired collective be-
haviour in a self-organised complex system, not only in so-
cial and biological contexts, but also Artificial Life scenarios

such as swarm-based and multi-robots systems (Bonabeau
et al., 1999; Han et al., 2012).
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