
Community Detection Based on Modularity and k-Plexes

Jinrong Zhua, Bilian Chena,∗, Yifeng Zengb

aDepartment of Automation, Xiamen University, Xiamen 361005, China.
bSchool of Computing, Teesside University, UK.

Abstract

Community identification is of great worth for analyzing the structure or characteristics
of a complex network. Many community detection methods have been developed, such as
modularity-based optimization models, which are widely used but significantly restricted in
“resolution limit”. In this paper, we propose a novel algorithm, called modularity optimiza-
tion with k-plexes (MOKP), to solve this problem, and this algorithm can identify commu-
nities smaller than a scale. The proposed algorithm uses k-plexes to generate community
seeds from the whole network and assigns the remaining nodes by modularity optimization.
To save computational time, we further propose the improved MOKP algorithm (IMOKP)
by reducing the scale of the network before community seeds generation and adjusting rules
of nodes assignment. Extensive experimental results demonstrate our proposed algorithms
perform better than several state-of-the-art algorithms in terms of accuracy of detected
communities on various networks, and can effectively detect small communities in terms of
a newly defined index, namely small community level, on multiple networks as well.

Keywords:
Community Detection, Modularity, k-Plex, Small Community

1. Introduction

Complex networks are widely used to model different types of relations and processes
in physical, biological, economic, social and information systems. Given the complicated
structure and large scale of networks, community detection, also known as graph clustering,
is crucial for studying the organization of networks. Community detection is described as
segmenting the graph into disjoint parts where nodes (or vertices) are dense in the same
part but sparse between parts. Communities are groups of nodes, wherein the nodes within
a group are more tightly connected to one another than to the rest of the network [34, 37].
Communities also indicate functional entities in a network. For example, in protein–protein
interaction networks, communities represent groups of proteins with a specific function [6, 31];
in social networks, communities are groups of people with similar interests or features [20, 13];
in product co-purchasing networks (e.g., Amazon and eBay), communities correspond to the
categories of products. Moreover, communities are useful in recommendation systems (e.g.,

∗Corresponding author
Email addresses: jinrongzhu@stu.xmu.edu.cn (Jinrong Zhu), blchen@xmu.edu.cn (Bilian Chen),

y.zeng@tees.ac.uk (Yifeng Zeng)

Preprint submitted to Information Sciences November 7, 2019

location, music and film recommendation), i.e., Feng et al. [9] adopted community detection
technique to form collaborative recommendations since members in the same community
share similar interests.

In recent decades, numerous studies have been conducted on identifying communities in
networks, among which, two main approaches are significant and worth mentioning. The
first one is graph partitioning (e.g., normalized cut [35] and spectral partitioning [22]), which
aims to divide a network into several disjoint modules with the same size. The second one
is the modularity-based algorithm [24], which uses an optimization function to define the
community detection problem. Nevertheless, these two approaches have a common serious
drawback, i.e., they both focus on finding communities that are larger than a certain size
rather than small communities. However, small communities usually exist in real-world
networks. Many other types of algorithms are also designed for community detection, e.g.,
ITDC [19], MNDP [14], DNR [44], LPA [28], two-layer RBM [1] and DIR [15]. However, these
algorithms rarely refer to small communities and they are not the tailor for the “resolution
limit” problem from the angle of modularity. Thus, we intend to design a modularity-based
method to solve the problem in our work.

Furthermore, k-plex [32] can help detect both small and large communities of a network.
Topologically, k-plexes (with a small k) are denser than the other parts of a network, and it
is in line with the fact that nodes in a network are dense within communities and sparse in
different communities. Note that a k-plex is a set of nodes in which each node is not adjacent
to at most k − 1 nodes and the nodes in it become much denser when k decreases. Hence,
we can compute numerous different sizes of k-plexes for a given k and then regard them
as candidate communities for further community detection techniques. Under this setting,
several distinct small groups will be found in the network. Xiao et al. [40] proposed a fast
algorithm to compute maximum k-plexes, which performs better than the other state-of-
the-art methods in terms of efficiency. Hence, we will utilize the fast algorithm to detect
k-plexes in our algorithm.

In this work, we propose a novel modularity optimization with k-plexes algorithm (MOKP)
to detect both small and large communities of a network. The algorithm computes k-plexes
of the network as community seeds, and then allocates the remaining nodes to some proper
community seeds by modularity optimization algorithm. To speed up the computation, we
further propose an improved modularity optimization with k-plexes algorithm (IMOKP).
It improves the former algorithm from two sides: one is reducing the scale of the network
by the technique of k-core before conducting community seeds creation, and the other one
is adjusting the order of allocating the remaining nodes from their alphabetical order to
descending order of node degree, and subsequently adding community labels to the node
assignment process. We use three different metrics to evaluate the detected communities
and further propose a new comprehensive metric to measure the quality of detected small
communities. The extensive experimental results show that our algorithms perform better
than several state-of-the-art algorithms on nine networks containing both real-world and
synthetic networks. We also conduct experiments to illustrate the necessity of detecting
communities and even small communities on a real network.

The rest of this paper is organized as follows. Section 2 briefly provides some related
works. Section 3 presents some preliminaries of k-plexes computation and modularity opti-
mization. Section 4 presents our two new algorithms, i.e., MOKP and IMOKP. Experimental

2

evaluations are performed in Section 5. Finally, we make a conclusion and give some sug-
gestions on the future work in Section 6.

2. Related works

Community detection is widely studied and various methods have been proposed thus
far. We mainly discuss disjoint community detection methods and k-plexes computational
methods in this section.

2.1. Disjoint community detection methods

Simon [36] was the first to explore module structural characteristics in a complex system.
Such characteristics are consistent with the nature of a community evolved from graph
partition. Kernighan and Lin [16] designed a heuristic procedure based on gain function
optimization, which is a local graph partition method, for dividing graphs. Thereafter,
global graph partition methods (e.g., spectral clustering [17]) have been proposed, and it has
been found that the global methods perform better than local ones when a graph is divided
approximately into two parts. If the graph has more than two parts, we can use the partition
algorithm repeatedly on subgraphs. Girvan and Newman [11] also proposed GN algorithm
to iteratively split a network by removing edges with high betweenness centrality. These
aforementioned algorithms require a partitioning number of vertices as termination criterion
and it should be set in advance. However, it is not easy to initialize the partitioning number
of vertices, which makes these algorithms impractical for real networks.

To address this issue, Newman and Griven [25] introduced a network division mea-
sure (called modularity) and used it as stopping criterion of their algorithm, resulting in
an objective way for choosing the number of communities. However, the high complexity of
computing modularity in this algorithm cannot be disregarded. Subsequently, Newman [23]
proposed a fast algorithm in which every node is initially a community and then these com-
munities try to merge together in order to optimize modularity. This new algorithm performs
better than GN in terms of running time but worse in terms of accuracy. Hence, Clauset et
al. [8] further improved it in terms of running time by using several shortcuts in the optimiza-
tion problem and more sophisticated data structures. Later on, Blondel et al. [4] proposed
a heuristic method based on modularity optimization. Despite its acknowledged success,
Fortunato and Barthlemy [10] proved that modularity optimization may fail to detect the
community whose size is less than a scale, which depends on the total number nodes of a
network and the degree of the interconnectedness of communities.

Moreover, many other methods that do not suffer from the resolution limit problem
have been proposed. Raghavan et al. [28] proposed a label propagation method. However,
this method is nondeterministic, which indicates that different communities will be detected
when the algorithm is operated repeatedly. Shao et al. [33] viewed a given network as an
adaptive dynamic system to detect communities. In addition, some other methods, such
as Infomap [30], SLPA [41], and DCLP [39], are also available. However, except for the
algorithm proposed in [33], other algorithms provide few descriptions for small community
detection. In this paper, we mainly focus on detecting communities based on the criterion
of modularity, and the effectiveness of finding small communities by using our new methods
is also analyzed.

3

2.2. Computing k-plexes methods

Clique, a subgraph such that every two vertices are adjacent, was first used by Luce and
Perry [21] to model cliques of people who know each other in social networks. Clique is also a
commonly used model for a community, which was studied in [5, 38]. To relax the familiarity
restriction of a clique, Seidman and Foster [32] proposed a relaxation model, namely k-plex.
Each node of a k-plex is not adjacent to at most k − 1 nodes. Computing the maximum
k-plex problem in a graph is crucial but challenging, partly due to the NP-completeness of
obtaining all the maximum k-plexes. A maximum k-plex is the one cannot be induced by
another k-plex. More recently, Xiao et al. [40] developed a fast algorithm for identifying the
maximum k-plexes by exploring structural properties of the community detection problem,
and this method performs better than other state-of-the-art methods in terms of efficiency.

In our perception, a k-plex or several k-plexes can be defined as a community (e.g.,
the CPM algorithm [26]). We take advantage of identifying many k-plexes with various
sizes for a given k in a network, and focus on detecting communities by applying k-plex
to a modularity-based optimization model, which may solve the resolution limit problem
eventually.

3. Preliminaries

In this section, we first present the definition of k-plex proposed by Seidman and Fos-
ter [32] and how to compute the maximum k-plexes problem in a social network [40], which
are both necessary parts for designing our algorithms, and then we introduce modularity
proposed by Newman [24] which is a measure for the quality of detected communities and
is used as an optimized objective function in our algorithms.

3.1. Maximum k-plexes computation

We introduce the definition of k-plex [32] in the following.

Definition 3.1 (k-plex). A subgraph with n nodes is a k-plex if the number of neighbors
for each node in the subgraph is more than n− k. Especially, k-plex is a clique if k = 1.

Computing maximum k-plexes problem is a hot topic in social networks, where a maxi-
mum k-plex represents any k-plex is not a subgraph of itself and hence its size is the largest.
Naturally, it is NP-complete to compute the maximum k-plexes problem. Xiao et al. [40]
gave a Branch-and-Search (BS) algorithm to quickly find the maximum k-plexes of a given
graph G. Each detected maximum k-plex in their algorithm contains a constrained set F ,
where F serves an input and all the nodes in F are arbitrarily selected from the graph G be-
fore operating the BS algorithm. We represent this algorithm as BS(I = (G; k;F); bound),
where I denotes the F -constrained k-plex problem and bound is an integer served as an
input parameter. It intends to find an F -constrained k-plex with a size of at least bound.
The basic process of the BS algorithm is described as follows:

• create a candidate set C that contains vertices of the graph G excluding vertices of the
constrained set F , and initialize a target set T as the constrained set F ;

• reduce graph G by removing reducible vertices from C and removing vertices which
are not satisfying bound;

4

• prune the search tree by branching on dominated vertices, F -vertices and U -vertices,
where U = V \ F and V is the set of vertices of G;

• recursively repeat the 2nd and 3rd procedures till the candidate set C is null.

When the algorithm stops, the target set T is the maximum F -constrained k-plexes, and
the size of each detected k-plex automatically exceeds the integer bound. We also know that
BS runs in σN

k N
O(1) time, where σk < 2, and BS achieves the best performance among other

state-of-the-art algorithms that run in 2NNO(1) time. In the following, we give an example
to show the detailed process on computing maximum k-plex by the BS algorithm.

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

1 4

2 3 5

6

8

7

I=(G\{v2};1;{v1,v3,v4})

I=(G;1;{v1,v3,v4}∪{v2,v5})

I=(G;1;{v1,v3,v4})

I=(G;1;{v1,v3,v4}∪{v2,v6})

v2 is dominated by v5 or v6

v2 and v5 are F-vertices delete v2 and v8

which are not

adjacent to v5

v5 is dominated by v6

v7 and v8 are D-reducible

v6 is F-reducible

add v6 to F

delete v7 and v8

v7 and v8 are D-reducible

delete v7 and v8

v7 is D-reducible

1 4

2 3 5

6

8

7

delete v7

Refer to I=(G;1;{v1,v3,v4}∪{v2,v5})

I=(G\{v5};1;{v1,v3,v4})

I=(G\{v7,v8};1;{v1,v3,v4,v5,v6})
I=(G;1;F∪{v5,v6})

I=(G;1;{v1,v3,v4}∪{v6}) I=(G\{v7,v8};1;{v1,v3,v4,v6})

I=(G\{v7};1;{v1,v3,v4,v5,v6})
I=(G;1;{v1,v3,v4,v5}∪{v6})

I=(G\{v5,v6,v7,v8};1;
{v1,v2,v3,v4})

(a)

(b)

(c)

(d)

(i)
(iii)

1 4

2 3 5

6

8

7

v6 is F-reducible

I=(G\{v2,v8};1;{v1,v3,v4,v5})

add v6 to F

(ii)

Fig. 1. Computing maximum k-plexes by using the BS algorithm.

Example 3.2. Assuming that a network G has 8 nodes and 16 edges, as depicted in Fig. 1(a).
We apply the BS algorithm to compute the maximum k-plex in the network G where k=1,
F={v1, v3, v4} and bound = 5. This process is represented as BS(I = (G;1; {v1, v3, v4}); 5).
We first initialize T = F = {v1, v3, v4} and C = G \ F = {v2, v5, v6, v7, v8}. We then reduce
and prune the graph G by some rules. For node v2 in the set C, v2 is dominated by v5 or v6

since any neighbour of v2 is a neighbour of v5 or v6. Thus, node v2 is either deleted from G
and C (see Fig. 1(b)) or added to T and F (see Fig. 1(c) and (d)). Next, we further operate
the BS algorithm on these three k-plex problems to get the results respectively. Take branch
(c) as an example, v2 and v5 are F -vertices in F because the degrees of v2 and v5 are both
less than VF − k (where VF denotes the number of nodes in F). Hence, we can prune it into
two branches. One is to delete v2 and nodes that are not adjacent to v5 from C and G (i.e.,

5

v8), and the other one is to delete v5 and nodes that are not adjacent to v2 from C and G
(i.e., v6, v7, v8). In branch (i), v6 is F -reducible because its degree is no less than VF − k.
Hence, we add v6 to F and T , see Fig. 1 (ii). In branch (ii), v7 is D-reducible because the
remaining number of nodes in F is large than k after removing neighbors of v7 from F and
T . Furthermore, we delete v7 from C and G, which results in Fig. 1(iii). At this point, C
is null and T = {v1, v3, v4, v5, v6} is 1-plex. In other branches, we can get the results in a
similar way. Finally, the best one is selected from these results as our maximum k-plex.

3.2. Modularity optimization

We use modularity, one measure of the structure of networks, to evaluate the strength of
division of a network into modules (also called groups, clusters or communities). It is the
fraction of the edges that fall within the given communities minus the expected fraction if
edges are distributed at random. Note that a node can be connected to itself when edges
are distributed randomly.

Given an undirected and unweighted graph G = (V,E) including a set of N nodes
V = {vi | i ∈ [1, 2, . . . , N]} connected by a set of M edges E = {eij | i, j ∈ [1, 2, . . . , N]}, let
degG(v) (deg(v) for simplicity) be the degree of v in the graph G, the modularity in general
is computed as

Q(V) =
1

2M

∑
vi,vj∈V

(
Aij −

deg(vi)deg(vj)

2M

)
δsi,sj , (1)

where M = 1
2

∑
i deg(vi), A = [Aij]N×N is the adjacency matrix of G and Aij = 1 if eij ∈ E

and 0 otherwise. Moreover, 1
2M

deg(vi)deg(vj) is the expected number of edges between nodes
vi and vj when edges are distributed randomly. δsi,sj equals to 1 if si=sj where si means
vi belongs to the community s, or 0 if si 6= sj. Eq. (1) can be applicable to a network with
two communities or more. The higher the modularity, the better the quality of community
detection. Furthermore, let

B = Avivj −
deg(vi)deg(vj)

2M
, (2)

which is the so-called modularity matrix. Given a network, modularity matrix is a constant
value.

The modularity is always used in optimization methods for detecting communities in
networks [4, 44]. However, as discussed in [10], modularity optimization methods have
resolution limit in community detection, i.e., the size of every detected community is no less
than

√
N [2]. Therefore, it is unable to detect small communities, whose definition can be

derived from [2].

Definition 3.3 (Small Community). A group of a network G is called a small community
if its number of nodes is less than

√
N , where N is the number of nodes in G.

We will bend ourselves to solve this resolution limit problem while detecting small commu-
nities in Section 4.

6

4. Community detection algorithms

To better identify various sizes of communities, we propose a new method named modular-
ity optimization with k-plexes algorithm (MOKP) to detect both large and small communities
in a network. The proposed MOKP uses k-plexes to form community seeds of the network
and subsequently applies the modularity optimization to find the final community seeds (i.e.,
communities) of the network. However, MOKP is a bit time-consuming, so we further de-
velop another algorithm to improve its efficiency, namely improved modularity optimization
with k-plexes algorithm (IMOKP).

4.1. MOKP algorithm

In this part, we present the MOKP algorithm that contains two main parts: one is
community seeds creation enumerating all the community seeds in the graph, and the other
one is nodes assignment putting the rest nodes of the graph into certain appropriate seeds.

4.1.1. Community seeds creation

To describe the creation of community seeds intuitively, we first give the definition of
community seeds based on maximum k-plexes.

Definition 4.1. Let P (G) = {P1, P2, · · · , Pl} be a set of maximum k-plexes in the graph
G, |Pm| is the number of nodes in the k-plex Pm and |Pm| ≥ bound, m = 1, 2, . . . , l. A
subset CS(G) ⊆ P (G) is called community seeds, if the element in CS(G) simultaneously
satisfies the following three conditions

• csi ∈ P (G), i ∈ {1, 2, . . . , k}, k ≤ l,

• |csi| ≥ z, where z is an integer number such that z ≥ bound, and

• every pair of k-plexes {csi, csj} with i 6= j has no common nodes.

In our setting, z is a lower bound of the size of community seeds. It plays an important
role in creating community seeds because the number of nodes in the community seeds is
closely related to z. If the value of z is small, we can create many community seeds whose
minimum size is small, and vice versa. Hence, it is important to explore the value of z
properly. Note that we have two parameters z and bound in the definition, and z depends on
bound. For implementation, we simply let z equal to bound, and we will discuss the impact
of z on the results of community detection in Section 5.2.1.

To generate community seeds from the graph G, we first use k-plexes computing method
BS [40] to find k-plexes in the network. The detailed procedures are presented in Algorithm
1. We first use the Bron-Kerbosch method (BK) [5] to find the constrained F which serves
as the input of BS (line 3). We then use BS algorithm to detect the maximum k-plex ψ (we
randomly choose one of them as ψ if there are many maximum k-plexes), and consider ψ as
a community seed if |ψ| ≥ z (line 4). We may denote this k-plex as cs1 and add it into the
set of community seeds CS = {cs1} (line 5). After removing the nodes of CS from G (line
6), we use BK and BS again to find the maximum k-plex of the remaining network to get a
community seed cs2 and update CS = {cs1, cs2}. By recursively running the process, we can
create community seeds CS = {cs1, cs2, . . . , csm}, where {1, 2, . . . ,m} are the community

7

Fig. 2. Three different community seeds (nodes colored in red, green and blue, respectively)
are generated after running Algorithm 1.

seed labels. Three different community seeds are intuitively shown in Fig. 2. Remark that
we can also detect distinct small communities by adjusting k and z due to the benefit of
k-plex method, which can help detect small communities as discussed before.

Algorithm 1 CommunitySeeds(G, z, k).

1: Initialize |ψ| = N ,CS = φ;
2: while |ψ| ≥ z do
3: use BK algorithm to find a set of nodes F where every two nodes are adjacent;
4: ψ ← BS(I = (G, k, F), z);
5: Update CS← CS ∪ ψ;
6: Update I ← I(G \ ψ, k, F);
7: end while
8: return CS.

4.1.2. Nodes assignment

After generating community seeds CS, we get a subgraph Ĝ = (V̂ , Ê), where V̂ represents
nodes of V that are not in the set CS and Ê = {eij | i, j ∈ V̂ }. We aim to assign each node of

V̂ into an appropriate community seed through modularity optimization, namely the process
nodes assignment.

Given a node vi ∈ V̂ , we denote Qp(vi) as the modularity of the network after assigning
node vi into a community seed p ∈ {1, 2, · · · ,m}, it computes

Qp(vi) = Q(csp ∪ vi) +Q(V \ (csp ∪ vi)), (3)

where Q(csp ∪ vi) and Q(V \ (csp ∪ vi)) can be derived from Eq. (1). Then, the modularity
increment of node vi is

∆Qp(vi) = Qp(vi)−Q(vi), (4)

where Q(vi) = 1
2M

∑
vj∈V

(
Aij − deg(vi)deg(vj)

2M

)
δsi,sj is the modularity before this assignment.

Therefore, we have to compute the modularity increment O(mN) times, which is not practi-

8

cal in reality. Since the structure of nodes and edges remains unchanged except the distribu-
tion of the communities in the nodes assignment process, the modularity matrix B remains
a constant and δsi,sj varies between 0 and 1. Hence, we rewrite Eq. (4) as

∆Qp(vi) =
∑

vj∈csp

(Avivj −
deg(vi)deg(vj)

2M
)δsi,sj , (5)

where csp ⊆ CS. For each node in Ĝ, we calculate its modularity increment through only the
community seeds rather than the whole network, as depicted in Eq. (5). The computation
of the modularity increment now costs O(mmax

i
|csi|) times, where |csi| � N . Hence, we

greatly improve the computational efficiency via Eq. (5). Whereafter, for the node vi, the
values ∆Q1(vi),∆Q2(vi), · · · ,∆Qm(vi) are generated and the maximum one is the optimal
modularity increment of vi. Suppose ∆Q∗q(vi) is the maximum one, and the corresponding
optimal community seed is cs∗q. Given a threshold ε, we put node vi into the community
seed q if ∆Q∗q(vi) ≥ ε, otherwise we create a new community seed and put vi into it.

We simply describe this process in Algorithm 2. We first input m community seeds CS
generated by Algorithm 1, select one node vi in V̂ by the alphabetical order, and next,
compute the maximum modularity increment and get the corresponding community seed
cs∗q (line 2). We put vi into cs∗q if the modularity increment is larger than ε (lines 3-4). In
contrary, we generate a new community seed csm+1 to put vi into it (line 6), and update
the set of community seeds CS = {cs1, cs2, · · · , csm, csm+1} for assigning other remaining
nodes of V̂ (line 7). We repeatedly utilize Algorithm 2 to assign all the nodes in V̂ into some
proper community seeds, and finally we find the community result (the set CS) of the whole
network.

Algorithm 2 FindCommunity(vi, CS, ε).

1: Initialize m = |CS |;
2: cs∗q ← arg max

csp∈CS

∑
vj∈csp

(Avivj −
deg(vi)deg(vj)

2M
)δsi,sj ;

3: if ∆Q∗q(vi) ≥ ε then
4: Update cs∗q ← cs∗q ∪ vi;
5: else
6: csm+1 ← vi;
7: Update CS← CS ∪ csm+1;
8: end if
9: return CS.

We summarize MOKP in Algorithm 3. First, the empty set CS is initialized to store the
community seeds (line 1). Next, we generate m community seeds by Algorithm 1 (line 2).
Finally, we remove CS from V (line 3) and put the remaining nodes V̂ into some proper
community seeds by Algorithm 2 (lines 4-6). Note that the parameter k is highly related to
datasets, which will be discussed in Section 5.2.2.

4.2. IMOKP algorithm
Operating the MOKP algorithm is a challenging task in terms of its efficiency and com-

plexity, which reflects in community seeds creation and nodes assignment as well. To accel-

9

Algorithm 3 MOKP algorithm.

Input: an unweighted and undirected graph G(V,E), the smallest size z of the community
seeds, the modularity increment threshold ε and parameter k;

Output: the detected communities CS ;
1: Initialize CS = φ;
2: CS ← CommunitySeeds(G, z, k);
3: V̂ ← V \ CS;
4: for each node vi in V̂ do
5: CS ← FindCommunity(vi, CS, ε);
6: end for
7: return CS.

erate the computing speed of MOKP, we improve MOKP from two orientations, one is scale
reduction and the other one is nodes assignment adjustment.

Algorithm 4 KCoreDetect(G, z, k).

1: for each node v with deg(v) ≤ (z − k) do
2: V ← V \ v;
3: for node u ∈ NG(v) do
4: G(V,E)← G(V,E \ (u, v));
5: deg(u)← degG(u)
6: end for
7: end for
8: return G.

Scale reduction is proposed to reduce the scale of a network since the computational
time of the MOKP algorithm increases exponentially as its scale increases. Hence, we try
to reduce the scale of the network before the process of detecting k-plexes. Note that it is
rational to detect k-plexes from (z−k)-core graph because any k-plex with size bigger than z
is an induced graph of the (z−k)-core graph of a given network. There are some (z−k)-core
graph detection methods, e.g., Batagelj and Zaversnik [3] and Xin [27]. We resort to the
latter method to detect the (z − k)-core graph due to its simplicity and efficiency. Since
the complexity of computing (z − k)-core graph is linear, our improved method could save
much computational time. The details are presented in Algorithm 4. Let NG(v) be the set
of neighbors of v in a graph G. When there are nodes whose degree is less than z−k (line 1),
we remove such nodes from V (line 2), the corresponding edges and then update the degrees
of these nodes’ neighbors (lines 3-6).

To further accelerate MOKP, nodes assignment adjustment is proposed to adjust rules
of nodes assignment in two ways. On one hand, we directly label a node as the community
seed c when operating Algorithm 2 under the situation that most of its neighbours are in
the same community seed c. The underlying reason is that nodes in a network are deeply
attracted by their neighbors. Hence, the computation of modularity increment can be largely
reduced if we have already know enough labels of nodes. On the other hand, we modify the
assignment order from alphabetical order into descending order of degree. The detailed

10

Algorithm 5 AssignmentAjustment(Ĝ,CS, ε).

1: while Ĝ do
2: vi = arg max

v
degĜ(v)

3: L← int[N] = 0;
4: for u ∈ NG(vi) do
5: L[l(u)]← L[l(u)] + 1;
6: end for
7: L[r]← max(L);
8: if L[r] ≥ p |NG(vi)| then
9: l(vi)← r;

10: Update csr ←− csr ∪ v and CS←− CS ∪ csr;
11: else
12: CS← FindCommunity(vi,CS, ε);
13: end if
14: Ĝ(V̂ , Ê)← Ĝ(V̂ \ vi, Ê \ (u, vi)) where u ∈ NĜ(vi)
15: end while
16: return CS.

procedures are described in Algorithm 5. For nodes in V̂ , we select a single node vi with the
current largest degree (line 2). Let l(u) ∈ {1, 2, · · · ,m} be the label (also represents node’s
label) of a community seed that node vu belongs to, and L[q] ⊆ L denotes the number of
nodes whose labels are q. We first initialize L to a list with length N of which each item
is 0 (line 3), compute the community label set L for node vi by counting the number of
each community label in its neighbours (lines 4-6) and find the maximum number L[r] of
L (line 7). If L[r] ≥ p |NG(vi)|, where p is a threshold percentage, we put node vi into
the community seed r and update the community seeds set CS (lines 8-10). Otherwise, we
label this node’s community using Algorithm 2 (line 12). After removing the node vi and its
corresponding edges from Ĝ (line 14), we run these steps again to assign the remaining nodes
in Ĝ. The good side of operating these steps several times is that nodes with smaller degree
could naturally be divided into the existing communities without computing modularity
increment.

To summarize the previous discussions, we present the IMOKP algorithm in Algorithm
6. We first initialize a label l(n) for each node n (line 1). Next, we detect the (z − k)-core
graph of the given network (line 2). Based on the structure of the graph, we create the
community seeds (line 3). For each community seed, we randomly select a node of it, and
use this node’s label to update the labels of the other nodes in order to uniform the whole
labels in this community seed (lines 4-9). Hence, the label of the selected node becomes
the label of the community seed. Finally, we assign the remaining nodes of Ĝ by Algorithm
5 (lines 10-11).

5. Empirical study

In this section, we conduct some experiments to compare the effectiveness of the MOKP
algorithm with several state-of-the-art methods on five different networks, and evaluate the

11

Algorithm 6 IMOKP algorithm.

Input: an unweighted and undirected graph G(V,E), the smallest size z of the community
seed, the modularity increment threshold ε, a threshold percentage p and parameter k.

Output: the detected communities CS.
1: Initialize CS = φ, l(n) = n, n = 1, 2, · · · , N ;
2: Gcore ← KCoreDetect(G, z, k);
3: CS← CommunitySeeds(Gcore, z, k);
4: for each seed ϕ in CS do
5: randomly select a node v of ϕ;
6: for each node j in ϕ do
7: l(j)← l(v);
8: end for
9: end for

10: Ĝ← G \ CS;
11: CS ← AssignmentAjustment(Ĝ,CS, ε);
12: return CS.

accuracy of small communities detected by MOKP using our proposed metric on two real-
world networks. We further demonstrate the efficiency and effectiveness of the IMOKP
algorithm on seven various networks. Finally, we illustrate the necessity of detecting com-
munities and even small communities on a real-world network.

We implement our algorithms in the platform of MATLAB R2016b and PYTHON 2.7,
and all the computations are conducted in an Intel Core CPU 3.40GHz 16GB RAM computer.
We set the parameter ε to be 0.015 for the MOKP and IMOKP algorithms, and p to be 0.5
by majority rule for the IMOKP algorithm.

5.1. Datasets and metrics

We choose five real-world networks1 to measure the performance of the proposed MOKP,
i.e., Zarachy [46], Football [11], Email-Eu-Core [45], com-DBLP [42], com-Live Journal [42].
For convenience sake, we sometimes abbreviate com-DBLP and com-Live Journal to DBLP
and Live Journal, respectively. We select four more synthetic networks [18] to compare
the performance of our algorithms, which are constructed by the Lancichinetti-Fortunato-
Radicchi (LFR) method2. These nine networks provide ground-truth community labels that
can be used to assess the accuracy of detected communities. Table 1 summarizes these
networks. The total number of nodes, edges and ground-truth communities (C∗) for each
network are presented. In Table 1, d is the averaged degree, λ denotes the exponent for the
degree distribution, β is the exponent for the community size distribution and µ represents
mixing parameter. Due to the large scale of DBLP and Live Journal, we randomly select a
set of nodes and edges to form a new sub-network to do experiments. We further test the

1http://snap.stanford.edu/
2http://santo.fortunato.googlepages.com/benchmark.tgz

12

performance of the MOKP algorithm on the DM-LC network3,4 [29, 7] to assess the necessity
of detecting communities and even small communities. It is a protein-protein interaction
network with 658 nodes and 1,100 edges, where a node represents a gene. However, this
network does not have the ground-truth community labels.

Table 1 Real-World networks and LFR networks.

Datasets Nodes Edges C* Description

Zarachy 34 78 2
a social network which reflects the friend-
ship between members from a karate club
at a US university in the 1970s

Football 115 613 16
a network of American football games
between Division IA colleges during reg-
ular season Fall 2000

Email-Eu-Core 1005 16706 41
a network generated from the email com-
munication data of a large European re-
search institution

DBLP (Small) 815 2045 27
a collaboration network derived from the
DBLP Computer Science Bibliography

Live Journal 1018 7149 36
a friendship social network is constructed
from a free on-line blogging community

DBLP (Large) 10029 29400 326
a collaboration network derived from the
DBLP Computer Science Bibliography

LFR-1 1000 10232 37 d = 10, λ = 1, β = 1, µ = 0.5
LFR-2 2000 20500 90 d = 20, λ = 1, β = 1, µ = 0.5
LFR-3 1000 20770 41 d = 10, λ = 1, β = 1, µ = 1
LFR-4 2000 40322 87 d = 20, λ = 1, β = 1, µ = 1

We adopt three widely used metrics to quantify the accuracy of detected communities
C. They are normalized mutual information (NMI) [20], F-score similarity and Jaccard
similarity [43], respectively. These three metrics vary from 0 to 1, and 1 indicates the perfect
quality of the detected communities.

• NMI

NMI(C∗, C) =
1

max(H(C∗), H(C))

∑
C∗

i ,Cj

p(C∗i , Cj) log
p(C∗i , Cj)

p(C∗i)p(Cj)
,

where H(C) is the mutual information of C.

• F-score similarity (Jaccard similarity)

F(C∗, C) =
∑

C∗
i ∈C∗

maxCj∈C δ(C
∗, C)

2|C|
+
∑
Cj∈C

maxC∗
i ∈C∗ δ(C∗, C)

2|C∗|
,

3https://www.inetbio.org/wormnet/
4http://networkrepository.com/bio-DM-LC.php

13

where δ(C∗, C) measures the similarity between C∗ and C, which is set to be F-score
similarity (Jaccard similarity).

It is essential to evaluate the quality of detected small communities. Fortunato and
Barthlemy [10] and Ailon et al. [2] mentioned small communities in their papers, while they
did not give methods to evaluate the small communities. Shao et al. [33] evaluated small
communities using three normal metrics, i.e., NMI, adjusted rand index (ARI) and cluster
purity. However, these metrics are not the tailor for small communities. And there are less
work about small communities besides the above. Thus, to measure the quality of detected
small communities on the behalf of ground-truth S∗, we design a comprehensive index, small
community level (SCL), inspired by Jaccard similarity [12]. Suppose that S denotes the
detected small communities, let Si be the i-th small community of S and S∗i be the i-th
small community of S∗, the small community level is defined as

SCL(S∗) =
1

Ω∗

∑
i

SCL(S∗i),

SCL(S∗i) =
1√

|Ω∗ − Ω|

∑
j

|S∗i ∩ Sj|
|S∗i ∪ Sj|

|Sj|∑
j |Sj|

,

where Ω∗ and Ω are the total number of small communities in S∗ and S respectively, and
symbol | · | denotes the number of nodes in a community. Given the small community S∗i ,∑

j
|S∗

i ∩Sj |
|S∗

i ∪Sj | is the total similarity between S∗i and the detected small community Sj, for all

j, each of which computes their Jaccard similarity. Moreover,
∑

j
|Sj |∑
j |Sj | denotes the total

percentage of every detected small community among them and 1√
|Ω∗−Ω|

is the punishment.

The larger the value of SCL, the better the quality of the detected small communities. Note
that there may exist the case that some small communities are detected together as one
single community, then the value SCL should not be large, and therefore the punishment
term is needed to control its value. The larger value of the punishment means the number
of detected small communities is closer to the ground-truth. The punishment achieves 1 if
Ω∗ equals to Ω.

5.2. Parameter sensitivity analysis

Our algorithms require the smallest size z of community seeds and parameter k as part
of the inputs. We explore the sensitivity of these two parameters in the MOKP algorithm
on five real-world networks in terms of NMI, F-score and Jaccard similarity.

5.2.1. Sensitivity analysis on z

To analyze the effect of z, we set k = 1 since each community seed in this circumstance
will be a clique which is intuitively similar to the distinct small community. As discussed in
Section 4.1.1, the value of z has an impact on community seeds creation so as to affect the
detected communities. Consequently, we vary z within 10 (there is no apparent improvement
in resolution limit if z is larger in our experiments) to report its effect on the performance of
MOKP. The results are presented in Fig. 3. From Fig. 3, we know that the performance of
MOKP is sensitive to z as measured by any metric. No matter which metric is used, MOKP

14

1 2 3 4 5 6
z

0.0
0.2
0.4
0.6
0.8
1.0

m
ea

su
re

s
Zarachy

2 4 6 8
z

0.4

0.6

0.8

1.0

m
ea

su
re

s

Football

2 4 6 8 10
z

0.2

0.4

0.6

0.8

m
ea

su
re

s

Email-Eu-Core

1 2 3 4 5 6 7
z

0.2

0.4

0.6

0.8

m
ea

su
re

s

DBLP (Small)

1 2 3 4 5 6 7 8 9
z

0.25

0.50

0.75

1.00
m

ea
su

re
s

DBLP (Large)

0 2 4 6 8 10
z

0.4

0.6

0.8

1.0

m
ea

su
re

s

Live Journal
NMI
F-Score
Jaccard

Fig. 3. Performance of MOKP with various z and k = 1.

achieves its best performance all on the same z on the Zarachy and Football networks, i.e.,
z equals to 4 and 2, respectively. However, this is not the case on the other three networks,
i.e., MOKP performs best on the same z via F-score and Jaccard similarity while it performs
best on another z via the metric NMI. Hence, we adopt the majority voting method to select
the value z as 6, 4, 5 and 6 on the Email-Eu-Core, DBLP (Small), DBLP (Large) and Live
Journal networks, respectively.

5.2.2. Sensitivity analysis on k

In this part, we use the values of z that determined above and analyze the effect of k on
the detected communities. We run the MOKP algorithm on the Football, Email-Eu-Core,
DBLP and Live Journal networks, varying k from 1 to 7. Here we do not test the algorithm
on the Zarachy network because the values of the three metrics have achieved their peak
(i.e., 1) when k = 1 and the size of the Zarachy network is too small to do this experiment.
As shown in Fig. 4, the performance of MOKP is relatively insensitive to k on the Email-Eu-
Core, DBLP (Small), DBLP (Large) and Live Journal networks, and no matter which metric
is, the best performance is reached when k = 6, 4, 5, 1 respectively. However, the effect of
k is obvious when running MOKP on the Football network, and thus we can choose k = 4
on this network. In the following tests, we will choose the values of z and k that MOKP
performs best on these five networks, respectively.

5.3. Performance of MOKP

We compare the MOKP algorithm to the Spectral algorithm (SP) [24], the Fast algo-
rithm (FN) [23], the Label Propagation method (LPA) [28] and the FastUnfolding algorithm
(Louvain) [4] on the five real-world networks. The comparison results are summarized in
Table 2, where the best ones are marked in bold. Table 2 shows that MOKP outperforms

15

0 2 4 6 8
k

0.6

0.8

1.0
m

ea
su

re
s

Football

0 2 4 6 8
k

0.4

0.6

0.8

m
ea

su
re

s

Email-Eu-Core

0 2 4 6 8
k

0.4

0.6

0.8

m
ea

su
re

s

DBLP (Small)

0 2 4 6 8
k

0.4

0.6

0.8

m
ea

su
re

s

DBLP (Large)

0 2 4 6 8
k

0.6

0.7

0.8

0.9

m
ea

su
re

s

Live Journal
NMI
F-Score
Jaccard

Fig. 4. Performance of MOKP with fixed z and various k.

Table 2 Accuracy of detected communities on real-world networks.

Method

Zarachy Football Email-Eu-Core

NMI F-score Jaccard NMI F-score Jaccard NMI F-score Jaccard

SP 0.2258 0.4480 0.3062 0.7145 0.2434 0.1407 0.5760 0.1537 0.0864
FN 0.2322 0.3587 0.2356 0.6530 0.4428 0.3158 0.6036 0.2272 0.1537
LPA 0.4002 0.5930 0.4593 0.8588 0.7524 0.6835 0.5561 0.3627 0.2510
Louvain 0.7435 0.7430 0.6441 0.8693 0.7424 0.6621 0.5569 0.2034 0.1416
MOKP 1.0000 1.0000 1.0000 0.9324 0.8012 0.7265 0.7541 0.5134 0.3938

Method

com-DBLP (Small) com-DBLP (Large) com-Live Journal

NMI F-score Jaccard NMI F-score Jaccard NMI F-score Jaccard

SP 0.7233 0.2908 0.1861 0.8101 0.2775 0.1746 0.7768 0.3505 0.2388
FN 0.8294 0.5187 0.3907 0.8418 0.4869 0.3662 0.9372 0.6449 0.5827
LPA 0.8286 0.5024 0.4003 0.8796 0.5412 0.4169 0.9066 0.5793 0.5000
Louvain 0.8480 0.5254 0.3899 0.8003 0.5326 0.4314 0.9478 0.7093 0.6912
MOKP 0.7713 0.5493 0.4077 0.8446 0.6472 0.5154 0.8396 0.7780 0.7000

most of the other methods except the worse accuracy in terms of NMI on the DBLP and
Live Journal networks. Specifically, the MOKP algorithm absolutely overwhelms other four
algorithms on the Zarachy network, since the values of NMI, F-score and Jaccard similarity
are all achieve 1 using our algorithm while they are less than 0.8 using others. To visually
view part of the results, we show the communities detected by our MOKP algorithm on
the Zarachy and Football networks in Figs. 5 and 6, respectively. In these figures, different
numbers indicate different ground-truth communities, and different colors represent differ-
ent detected communities. We can see that the two communities on the Zarachy network
are completely detected and most of the detected communities on the American Football
network match with the ground-truth very well.

16

1

1

11

1

1

1

1

2

2

1
1

1

1

1

1

1

1

2

2

2

2
2

2

2

2

2

22 2

2

2 2

2

Fig. 5. Detected communities on the Zarachy network.

0

7

3

2

7

3

2

8

8
7

3

10

2

6

6

2

7

9

6

1

9

8

8

7

10

0

6

9

11

1

1

6

2

0

6

1

5

0

6

2

3

7

5

6

4 0

11

2

4

11

10

8

3

11

6

1

9

4

11

10

2 6

9

10

2

9

4

11

8

10
9

6

3

11

3

4

9

8

8

1

5

3

5

11

3

6

4

9

11

0

5

4

4

7

1

9
9

10

3

62

1

3

0

7

0

23

8

0

4

8 4

9

11

Fig. 6. Detected communities on the American Football network.

5.4. Performance of IMOKP

We further use three real-world networks (Email-Eu-Core, DBLP and Live Journal) and
four synthetic networks to evaluate the efficiency of the IMOKP algorithm. Here we set z
and k to be the values that MOKP performs best for the three real-world network discussed
in Section 5.2. While for the four synthetic networks, we set z to be 4, 4, 6, 5 and k to be 4,
4, 6, 5, respectively. The way of determining these values is the same as that in Section 5.2,
which we will not discuss in detail here. The comparison results between MOKP and IMOKP
are shown in Fig. 7. For the accuracy, Fig. 7(a) shows that IMOKP almost performs better
than MOKP measured by any metric on all the datasets, and it is worth mentioning that
the NMI of IMOKP reaches 0.9381 while it is 0.8396 for MOKP on Live Journal, the F-score
of IMOKP is 0.6013 and that of MOKP is 0.5493 on DBLP. For the running time, the ratio
of saved computational effort is presented in Fig. 7(b), which is the difference of the running
time between IMOKP and MOKP divides the running time of MOKP, ranging from 0 to
1. Fig. 7(b) indicates that the IMOKP algorithm significantly reduces community detection
time, e.g., up to 22% improvement over MOKP on LFR-3 and up to 92% improvement on
LFR-2.

17

Email-Eu-Core
DBLP (Small)

DBLP (Large)
Live Journal LFR-1 LFR-2 LFR-3 LFR-4

datasets

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

su
re

s

MOKP-NMI
IMOKP-NMI
MOKP-F-Score
IMOKP-F-Score
MOKP-Jaccard
IMOKP-Jaccard

(a) Accuracy

Email-Eu-CoreDBLP (Small)DBLP (Large)Live Journal LFR-1 LFR-2 LFR-3 LFR-4

datasets

0.0

0.2

0.4

0.6

0.8

1.0

ru
nn

in
g

tim
e

RunTime

(b) Reduction of running time

Fig. 7. Comparison between MOKP and IMOKP in terms of accuracy and running time.

11 1 8 1316 5 101514 2 12 7avg

FN
SP

LPA
Louvain

MOKP

Small Community Level of Football

0.00
0.05
0.10
0.15
0.20
0.25
0.30

24 26 17 21 23 36 34 32 3 16 5 25 1 10 28 30 27 19 31 29 14 35 4 6 7 2 9 avg

FN
SP

LPA
Louvain

MOKP

Small Community Level of Live Journal

0.00
0.01
0.02
0.03
0.04

Fig. 8. Comparison of small community level of detected communities.

18

5.5. Small community analysis

We use our newly defined index SCL to evaluate the detected small communities. Tak-
ing two networks (Football and Live Journal) for example, Fig. 8 demonstrates the small
community level of each small community in detail, where the darker the color, the larger
the value of SCL. Horizontal axis in this figure means the labels of small communities. In
particular, the symbol “avg” denotes the average value of SCL, which is equal to SCL(S∗).
We simultaneously multiply their corresponding averages by 5 for the five algorithms for dis-
tinct display. As observed in Fig. 8, the proposed MOKP outperforms other four algorithms,
which indicates the rationality of small communities detected by MOKP.

5.6. Analysis of the content of communities

B0024.14

F38E9.2

B0025.2

F11C1.6

F55D12.4

F57B9.10

B0035.10

B0207.4
C09G4.5

K01G5.2

K07C11.2

K08H2.6

R06A4.7

T05G5.3

W02D3.9

Y113G7B.17

ZK1236.2

B0035.7

D2096.8

F54C8.2

F58A4.3

K07A1.12

B0035.8

W04A8.7

Y71F9AL.18

B0035.9

C34B7.4

B0041.7

B0205.3
F40G9.3

B0205.7

C33A11.1

K12D12.1
T01G9.6

T22B7.1

ZK546.14

F07B7.5

F08G2.3

F17E9.10

F22B3.2

F45F2.13

F54E12.1

F55G1.2

K06C4.13
K06C4.5

T10C6.13

ZK131.2

ZK131.3

ZK131.7

B0218.3 B0414.7

R03G5.2

B0261.2
Y47D3A.16

B0272.1 C41G7.2

C44B11.3

M01E11.6

R05D3.7

W02B12.7

B0310.2

C16C10.4

F13D11.2

F49E10.5

F54D5.11

W03F9.5

W05B5.3

B0334.8

Y110A7A.10

B0336.6
M79.1

R06C1.3

B0348.4

M01D7.7

R06B10.4

B0410.2
C25F6.2

C27A2.6
C34F11.9

B0414.3
Y48B6A.14

F42G8.3

Y17G9B.5

B0432.5

F32G8.6

ZK909.2

B0464.7

F28B12.3

B0478.1

F29G9.4
F42G10.2F56D12.4

K08A8.1

T24H10.7VZC374L.1

B0511.7
F29F11.6

F56C9.1

B0547.1

Y119C1B.5

B0564.1

T04A8.14

C01B7.4
F11C7.4T26E3.3

C01C7.1
C09G12.8

K03D3.10

C01G10.11

C01G8.5

C01G8.9 C26C6.1

C27H6.2

F01G4.1
Y113G7B.23

C02C6.1Y116A8C.36

C02F4.1
Y106G6E.5

Y41D4B.13

C02F4.2F54E7.7

C03C10.1

C37A5.9

K05C4.6

C03D6.5
C07A9.3

C04A2.3
C08F8.8

C53A5.3

M03F4.2
R10F2.1

T04C12.4

T04C12.5

T04C12.6

C04G2.6

C05B10.1

F43C1.2

C05D2.1C32D5.2 F39G3.8 ZK370.2

C06E1.3

T03D8.1

C06G4.2

F10G7.3

C07E3.1

EEED8.7

K04G7.10
W09C5.2

C07G1.5
Y64G10A.7

C07H6.7C08C3.3

C13G3.3
F31E3.1

ZK792.6

C08B11.3
F30F8.8

C08B11.6

C08B6.9

K12C11.2

W02A11.4

F14F3.1

C08H9.5

F54A5.3

F59G1.5
ZK899.8

C09B8.7

R07G3.1

ZK470.5

C09D8.1
F59F5.6

Y50D4C.1

C10H11.9

C35B8.2

C50B8.2

K03E6.6 R11G1.4

C09G4.3C09H6.2C42D8.8
K02E10.8

C10E2.3F26B1.7

C10G6.1C43G2.2

Y51H4A.3

C12D8.1

C12D8.10

H42K12.1

T01D3.2

C13G5.1

C16A3.9
F17C11.9

F25H5.4

F26D10.3

F26F12.7

F37E3.1

F43D2.1

R08B4.2

T14G8.1

T23G4.1

W06F12.1ZK20.3

C14A4.4
C14A4.5

C14B9.4
C47E8.5

M03D4.1

C14F5.5

F39B1.1

T28F12.3

C15C7.7

C15H11.3
Y71F9AM.5

C17G10.2 Y47D3A.29

C18A3.8
T15H9.3

C18C4.10

ZK1098.10

C18E3.2

C18G1.5

C23H4.6
C24A1.2

C24A8.4T10H10.3

T20F10.1

C25A1.11
F38A6.3

C25D7.6
F34D10.2

R10E4.4

F16B3.1

F26D11.11

F32A6.4

K11E8.1

ZK1321.2

R119.6

C26G2.1

C27A12.10
T27C4.4

C27A12.6

R01H2.6
C27A12.7

C27A12.8

C27A2.1

T23D8.1

W03F11.6

C27B7.8

F28B4.2

C27H6.1

F31E8.2
K02G10.8

T10H9.4

T20B12.2

T22D1.10

C28A5.4

C28G1.3
F53G12.1

T23G7.4

F21H12.4

Y110A2AL.8

ZK675.1
C32F10.2

C37A2.4

F18H3.5

ZK637.7

C32F10.5

F29B9.6

W03H9.4

C33D12.1

C33D12.7

C33H5.12
F53G2.6

C33H5.9

C50F4.7

F07B7.9

F17E9.12
F22B3.1

F45F2.3

F54E12.3
F55G1.11

K03A1.6

K06C4.10K06C4.2

T10C6.14T23D8.5

ZK131.1

ZK131.4

ZK131.8

C36E6.1

R07E5.3
T05A6.1

T05A6.2

ZK507.6

F26E4.1

Y18D10A.5
Y45F10D.13

C37E2.4

F58A3.1

C39E9.13F58F6.4

C40H5.5

DY3.2

T20G5.1

C44B7.8

Y43C5A.6

C44B7.9
C44E4.1

T21H3.3

C45B11.1

C46E10.9

R166.1

C47D12.1
F32A5.1

C47D12.8

F10G8.7
C47E12.4

F26H11.2

F37A4.8

F55G1.8
Y71F9B.7

C48D1.2

Y48E1B.13

F09E5.15 F14H12.4

M7.1

R107.4

Y39G8B.5

C50F4.13

C50F4.5

C51E3.7

T03D8.3

C52A11.4

F09E5.1

F02E9.4

Y51H4A.17

C54D1.5
W03F8.5

C56C10.1
W06B4.3

D1014.3

ZC155.7

D1081.8Y54E10A.15

D2045.6F46A9.4

F46A9.5

ZK287.5

F07B7.10

F07B7.11

F07B7.3

F07B7.4

F08G2.1

F08G2.2

F17E9.13

F17E9.9

F35H10.1

F35H10.11

F45F2.12

F45F2.4

F54E12.4

F54E12.5

F55G1.10

F55G1.3

F56A11.1

H02I12.6

H02I12.7
H20J04.2

K06C4.11

K06C4.12

K06C4.3

K06C4.4

T10C6.11

T10C6.12

T23D8.6
ZK131.10

ZK131.5

ZK131.6

ZK131.9

DY3.7

E01A2.1F37B12.2

E01A2.2
T22A3.5

E01H11.1
F52B10.1

ZK1128.5

ZK616.4

F08F1.8

F08G12.4

F08H9.4

F54E7.3

F09E8.7

Y110A7A.3

F11C3.3
F54E2.3

F13B9.5
Y54E10BL.6

F13D12.7

Y95B8A.5

F13E6.6

F15B9.7

F17E5.1

F17A9.3
Y105E8B.1

F18G5.3

F18H3.3

Y38F1A.5

F20B10.1
ZK270.2

F22B7.5

F22F1.1

F23H11.8

F25B4.2
K09B11.1

F25B5.7

F42A6.7

F26B1.2

F28H6.1

K10B4.3

Y55D5A.5
F26E4.10

M04B2.1

F27D9.1

F56A8.7

F27E11.3
K10B4.6

W01B6.1

F28B3.8F32E10.4 Y53G8AR.3

F28C6.6

F56A8.6

F28F8.3

T10G3.6

Y71G12B.14

ZK593.7

F43D9.4

T27E4.2
T27E4.3

T27E4.8

T27E4.9
Y46H3A.2

Y46H3A.3
Y32H12A.4

F31D4.1

T28F12.2

F31E3.3

F32A5.7

Y73B6BL.32
T08D2.7Y60A3A.12

Y62E10A.16
F33D11.10R09B3.5

F33H1.2K11H3.1

Y17G7B.5

Y39G10AR.14

Y47D3A.28

F35G12.3

F35H12.3

Y53F4B.42

ZC434.6

F35H8.7

F36A4.7
F39H11.3

Y97E10AR.5

F37A4.7
Y87G2A.4

T26A5.8

Y53F4B.3

F38E9.5

F47A4.2

H14E04.5
K08F8.6

F39H12.4
Y54G2A.25

F40E10.4
ZK377.2

F41G4.2
Y73B6BL.6

F42G4.3

T01H8.1

T10H9.2
T22H6.6

Y59A8B.14

Y77E11A.11

F43G9.11

F44G4.8

F45E1.6

F45E12.2

F45G2.6

ZC504.4

K08E7.7

K10B2.1F46F2.2

F47G6.4

F48F7.1

F55A4.4K12H4.8

F52B5.6

F52C12.4

F52D10.3

H39E23.1

Y51A2D.19

F53A3.2ZK675.2

ZK1067.1
W02B12.3Y111B2A.18

M01B2.1

M176.6

M176.7

R09D1.12
T17A3.8

W04G5.6
ZK938.5

F54D5.14

F58G4.1
K12F2.1

R06C7.10

T18D3.4
W04D2.1

F55C10.1

F54F2.1
T22A3.8

F54F2.2

F54F2.8

K01C8.10

F54G8.3
K08C7.3

F55A11.3
Y50E8A.4

F55A12.3
Y17G7B.2

T07D3.7

F55D10.2

Y22F5A.3

F56D1.4

F56F11.3

Y48C3A.8

F58A3.2

F58A4.4W02D9.1
F59A7.4

F59F3.1
Y39A3CL.6F59F3.5

H19N07.2

M106.4

H20J04.8K08D10.3

H21P03.1

H31G24.4

T23G11.5

ZK177.6

M117.2

K01A6.2

T20B12.8ZK1248.11

K02B2.5
Y39E4B.1

M01A10.1
ZK418.9

R10E11.1

R13H4.4

W02B9.1

Y113G7B.18

K06A4.3 K07C5.1

Y71F9AL.16

K07C5.8

K08B12.5

K08B4.1

ZK593.4

K10B3.10
K11C4.3

R31.1

K10B3.7

K10B3.8

T07H6.2

K11D12.2

K11G12.2
K11G12.7

T09F3.3

Y110A7A.16

M02A10.3

ZK1151.1

M163.3

Y37E11AR.2

M7.3
Y54E10A.4

Y73F8A.34

R07E5.14

R08C7.3

Y65B4A.6

T12D8.7

T13H2.5

Y40B1A.4

R12B2.1

R144.7

R144.9

Y104H12D.1

Y57E12AL.5

R160.1

W06H12.1

T01D1.2

Y71A12B.1

T20B5.1

W06H8.1

Y48A6B.5Y73B6BL.3

T05A10.1

W03D2.4

Y43E12A.1

ZC168.4

T08G11.5

T10H10.1

W09B6.2

T17A3.1

T19E10.1

Y37E11B.4

T21E12.4ZK593.5

Y66H1A.6
Y71H10A.1

ZK524.2

T23D8.8
T24C4.5

Y47G6A.6

W05E10.3

Y113G7A.6ZK337.2

Y105E8A.26

Y73B6BL.9

W06B11.2

ZK112.2

W08E3.1

W10D5.3

ZK970.3

Y106G6H.2

Y116A8C.35
Y92C3B.2

Y116A8C.42

ZK632.1

Y48G8AR.1

Y53F4B.22

Y54E5B.1

Y55F3AL.1

ZK546.13

Y65B4BR.4
Y92H12A.2

Y69A2AR.2

Y79H2A.6

Fig. 9. Detected communities of DM-LC network. Labels indicate related gene names.

We tend to illustrate the necessity of detecting communities and even small communities
from two parts. One is to check whether the characteristics of each node in the same
community are similar. We know that members from the same community tend to exhibit
the same characteristics in the real world, hence nodes with similar characteristics could
constitute a community. The other one is to analyze whether the content of each small
community is unique, in order to assure the necessity of small communities in the real world.

Each protein associated with a gene has two functions, i.e., molecular function and bio-
logical process, which refer to attributes in word clouds. The size of an attribute indicates
the number of times it appears in a community, which may imply the characteristics of the
community. We present all the detected communities in Fig. 9 and analyze four of them by
word clouds in Fig. 10. Fig. 9 demonstrates that the DM-LC network detects 70 communi-
ties, among which the largest community contains 60 nodes and the smallest one contains
2 nodes. This phenomenon indicates that our algorithm can detect both large and small

19

(a) biological process@5 (b) molecular function@5 (c) biological process@9 (d) molecular function@9

(e) biological process@10 (f) molecular function@10 (g) biological process@19 (h) molecular function@19

Fig. 10. Word clouds of protein functions of detected communities, including biological
process@n and molecular function@n, where n is the community label.

communities. We can also intuitively see from Fig. 9 that the nodes in the same community
are dense while sparse in different communities. In Fig. 10(a), we observe that attributes
DNA-templated and transcription are symbols of biological process@5, which is consistent
with the fact that Transcription takes DNA as a template. Besides, Fig. 10(b) shows that
most genes have attributes ATP binding, zinc ion binding and sequence-specific DNA bind-
ing, which indicates the feature binding of molecular function for the community 5. Similarly,
in Fig. 10(c-h), the community 9, 10 and 19 show the features of nucleosome, signaling path-
way and carbohydrate metabolism in biological process respectively, and also demonstrate
the features of protein, binding and NAD in molecular function respectively. Communities
5 and 19 (marked in medium blue and dark green respectively in Fig. 9) are small communi-
ties, where the community 19 is related to the attribute NAD. NAD is of great importance
in the respiration and photosynthesis, one of which is essential for any creature. Most of
NADs are merely found in this community, which indicates the importance of detecting small
communities.

6. Conclusion and future work

In this paper, we propose the MOKP algorithm, an algorithm combining the k-plex and
modularity optimization, to solve the resolution limit problem in modularity optimization
methods. It detects communities by creating the community seeds and then assigning the
remaining nodes according to the modularity. With the benefit of the technique of k-plex,
MOKP is able to detect both large and small communities. We further propose the IMOKP

20

algorithm to improve the MOKP algorithm, conducting scale reduction to the community
seeds creation and adjusting rules of nodes assignment. Three common metrics are used to
quantify the accuracy of detected communities and one newly defined index SCL is used to
evaluate the quality of detected small communities on the behalf of ground-truth communi-
ties. Results from extensive experiments reveal best performance of the MOKP algorithm
compared with several state-of-the-art algorithms on various networks. The performance of
IMOKP is almost better than MOKP in term of accuracy and it greatly saves much com-
putational time, both testing on seven different networks. We also analyze the necessity
of detecting communities and even small communities on a protein-protein interaction net-
work. In the future, we may develop more effective techniques to compute the k-plex, which
is an important part of our algorithms. Moreover, we may give a mechanism to select an
appropriate k for computing each k-plex since it directly affects each community seed.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China
(Grants No. 61772442, 61836005 and 11671335).

References

[1] H. A. Abdelbary, A. M. Elkorany, and R. Bahgat. Utilizing deep learning for content-
based community detection. In Science and Information Conference, pages 777–784,
2014.

[2] N. Ailon, Y. Chen, and H. Xu. Breaking the small cluster barrier of graph clustering.
In International Conference on Machine Learning, pages 995–1003, 2013.

[3] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks.
CoRR, cs.DS/0310049, 2003.

[4] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics, 2008(10):155–168,
2008.

[5] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Communications
of the Acm, 16(9):575–576, 1973.

[6] J. Chen and B. Yuan. Detecting functional modules in the yeast protein-protein inter-
action network. Bioinformatics, 22(18):2283–2290, 2006.

[7] A. Cho, J. Shin, S. Hwang, C. Kim, H. Shim, H. Kim, H. Kim, and I. Lee. Wormnet
v3: a network-assisted hypothesis-generating server for caenorhabditis elegans. Nucleic
Acids Research, 42(W1):W76–W82, 2014.

[8] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very
large networks. Physical Review E Statistical Nonlinear and Soft Matter Physics,
70(2):066111, 2004.

21

[9] H. Feng, J. Tian, H. J. Wang, and M. Li. Personalized recommendations based on time-
weighted overlapping community detection. Information and Management, 52(7):789–
800, 2015.

[10] S. Fortunato and M. Barthlemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences of the United States of America, 104(1):36–41,
2007.

[11] M. Girvan and M. E. J. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences of the United States of America,
99(12):7821–7826, 2002.

[12] P. Jaccard. The distribution of the flora in the apline zone. New Phytologist, 11(2):37–50,
1912.

[13] M. Jebabli, H. Cherifi, C. Cherifi, and A. Hamouda. Community detection algorithm
evaluation with ground-truth data. Physica A: Statistical Mechanics and Its Applica-
tions, 492:651–706, 2017.

[14] D. Jin, Z. Chen, D. He, and W. Zhang. Modeling with node degree preservation can
accurately find communities. New Media and Society, 18(7):1293–1309, 2016.

[15] D. Jin, M. Ge, Z. Li, W. Lu, D. He, and F. Fogelmansoulie. Using deep learning for
community discovery in social networks. In IEEE International Conference on TOOLS
with Artificial Intelligence, pages 160–167, 2017.

[16] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307, 1970.

[17] M. Kozdoba and S. Mannor. Community detection via measure space embedding. In
Advances in Neural Information Processing Systems, pages 2890–2898, 2015.

[18] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing com-
munity detection algorithms. Physical Review E Statistical Nonlinear and Soft Matter
Physics, 78(4 Pt 2):046110, 2008.

[19] Y. Li, C. Wu, and Z. Wang. An information-theoretic approach for detecting commu-
nities in networks. Quality and Quantity, 49(4):1719–1733, 2015.

[20] L. Liu, L. Xu, Z. Wangy, and E. Chen. Community detection based on structure and
content: A content propagation perspective. In IEEE International Conference on Data
Mining, pages 271–280, 2016.

[21] R. D. Luce and A. D. Perry. A method of matrix analysis of group structure. Psy-
chometrika, 14(2):95–116, 1949.

[22] F. Mcsherry. Spectral partitioning of random graphs. In IEEE Symposium on Founda-
tions of Computer Science, page 529, 2001.

22

[23] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys
Rev E Stat Nonlin Soft Matter Phys, 69(6 Pt 2):066133, 2004.

[24] M. E. J. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, 2006.

[25] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in net-
works. Physical Review E Statistical Nonlinear and Soft Matter Physics, 69(2):026113,
2004.

[26] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society. Nature, 435(7043):814–818, 2005.

[27] X. Pei. The algorithm to enumerate maximal k-plexes in network and the resume mining
of community in network. PhD thesis, Beijing University of Posts and Telecommunica-
tions, 2008.

[28] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E Statistical Nonlinear
and Soft Matter Physics, 76(3):036106, 2007.

[29] R. Rossi and N. Ahmed. The network data repository with interactive graph analytics
and visualization. In Twenty-Ninth AAAI Conference on Artificial Intelligence, pages
4292–4293, 2015.

[30] M. Rosvall and C. T. Bergstrom. An information-theoretic framework for resolving
community structure in complex networks. Proceedings of the National Academy of
Sciences of the United States of America, 104(18):7327–7331, 2007.

[31] B. Saoud and A. Moussaoui. Node similarity and modularity for finding communities in
networks. Physica A Statistical Mechanics and Its Applications, 492:1958–1966, 2018.

[32] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique concept.
Journal of Mathematical Sociology, 6(1):139–154, 1978.

[33] J. Shao, Z. Han, Q. Yang, and T. Zhou. Community detection based on distance
dynamics. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1075–1084, 2015.

[34] H. W. Shen. Detecting the overlapping and hierarchical community structure in net-
works. In Community Structure of Complex Networks, pages 19–44. Springer, 2013.

[35] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.pattern
Anal.mach.intell, 22(8):888–905, 2000.

[36] H. A. Simon. The architecture of complexity: Hierarchic systems. Proceedings of the
American Philosophical Society, 106(4):183 – 216, 1962.

[37] M. Tasgin and H. O. Bingol. Community detection using preference networks. Physica
A Statistical Mechanics and Its Applications, 495:126–136, 2017.

23

[38] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing, 6(3):505–517, 1977.

[39] Z. H. Wu, Y. F. Lin, S. Gregory, H. Y. Wan, and S. F. Tian. Balanced multi-label prop-
agation for overlapping community detection in social networks. Journal of Computer
Science and Technology, 27(3):468–479, 2012.

[40] M. Xiao, W. Lin, Y. Dai, and Y. Zeng. A fast algorithm to compute maximum k-
plexes in social network analysis. In AAAI Conference on Artificial Intelligence, North
America, pages 919–925, 2017.

[41] J. Xie, B. K. Szymanski, and X. Liu. Slpa: uncovering overlapping communities in social
networks via a speaker-listener interaction dynamic process. In IEEE International
Conference on Data Mining Workshops, pages 344–349, 2012.

[42] J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-
truth. In IEEE International Conference on Data Mining, pages 1–8, 2012.

[43] J. Yang, J. Mcauley, and J. Leskovec. Community detection in networks with node
attributes. In IEEE International Conference on Data Mining, pages 1151–1156, 2013.

[44] L. Yang, X. Cao, D. He, C. Wang, X. Wang, and W. Zhang. Modularity based com-
munity detection with deep learning. In International Joint Conference on Artificial
Intelligence, pages 2252–2258, 2016.

[45] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph clustering.
In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 555–564, 2017.

[46] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33(4):452–473, 1977.

24

	Introduction
	Related works
	Disjoint community detection methods
	Computing k-plexes methods

	Preliminaries
	Maximum k-plexes computation
	Modularity optimization

	Community detection algorithms
	MOKP algorithm
	Community seeds creation
	Nodes assignment

	IMOKP algorithm

	Empirical study
	Datasets and metrics
	Parameter sensitivity analysis
	Sensitivity analysis on z
	Sensitivity analysis on k

	Performance of MOKP
	Performance of IMOKP
	Small community analysis
	Analysis of the content of communities

	Conclusion and future work

