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Abstract

Whilst unavoidable, inspections, progress monitoring, and comparing as-
planned with as-built conditions in construction projects do not readily add
tangible intrinsic value to the end-users. In large-scale construction projects,
the process of monitoring the implementation of every single part of build-
ings and reflecting them on the BIM models can become highly labour in-
tensive and error-prone, due to the vast amount of data produced in the
form of schedules, reports and photo logs. In order to address the men-
tioned methodological and technical gap, this paper presents a framework
and a proof of concept prototype for on-demand automated simulation of con-
struction projects, integrating some cutting edge I'T solutions, namely image
processing, machine learning, BIM and Virtual Reality. This study utilised
the Unity game engine to integrate data from the original BIM models and
the as-built images, which were processed via various computer vision tech-
niques. These methods include object recognition and semantic segmenta-
tion for identifying different structural elements through supervised training
in order to superimpose the real world images on the as-planned model. The
proposed framework leads to an automated update of the 3D virtual environ-
ment with states of the construction site. This framework empowers project
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managers and stockholders with an advanced decision-making tool, high-
lighting the inconsistencies in an effective manner. This paper contributes
to body knowledge by providing a technical exemplar for the integration of
ML and image processing approaches with immersive and interactive BIM
interfaces, the algorithms and program codes of which can help replicability
of these approaches by other scholars.

Keywords: Construction Management, Progress Monitoring, Building
Information Modelling, Image Processing, Virtual Reality, Machine learning

1. Introduction

The complexity of the construction projects and the individualistic ap-
proach to every building project result in delays and errors. Majority of
construction management and monitoring processes are still conducted tra-
ditionally with the use of 2D drawings, reports, schedules and photo logs,
making the process complicated and inefficient. The impact of Information
and Communication Technology (ICT) integration on progressive improve-
ment in the construction is undeniable [1} 2, [3]. Different technologies and
systems have been recently implemented on construction sites to improve
project communication, coordination, planning and monitoring, including
web-based technologies, cloud computing, Building Information Modelling
(BIM), and tracking technologies [4, [5]. These novel applications are usu-
ally used in different technological combinations to improve the construction
monitoring and allow for comparison of the as-planned and as-built mod-
els [6]. BIM capabilities are no longer limited to geometry representation
(i.e. 3D virtual objects), and enhance many other aspects of construction
projects, such as information management (through semantically rich mod-
els), inbuilt intelligence and analysis (via active knowledge-based systems
and simulation), as well as collaboration and integration (through digital
data exchange) [7].

BIM has been widely used in construction projects for improving commu-
nication among various parties during different phases of design and project
delivery [8, [0]. However, due to the myriad of issues such as the unpre-
dictable pace of works, continually changing site environments, and the need
for constant synchronisations, BIM use has been hindered in the monitoring
of construction projects. This is despite the fact that adopting on-demand
data acquisition techniques in conjunction with BIM models to compare the



state of the sites with the as-planned models has been suggested by many
researchers [10] [11), 12| 13], because of the time-consuming and error-prone
nature of these activities. Nonetheless, the interoperability between the tools
and systems has been identified as the main obstacle, which is presently hard
to overcome [14].

For addressing this methodological and technical gap, this study devel-
oped a framework and a proof-of-concept prototype, facilitating bilateral
coordination of information flow between construction sites and the BIM
models. In this framework, computer vision and machine learning (ML)
techniques are proposed to help prepare and compose site photographs with
the as-planned BIM models. The interoperability and integration of these
techniques are facilitated by the aid of Virtual Reality (VR) game engines,
such as the Unity engine. The proposed hybrid application of image process-
ing and BIM is expected to enable facilitation of on-demand as-built model
update for construction progress tracking. The integration performed in the
VR environment (VRE) with the use of a game engine is to enable users
to actively participate in the progress evaluation as well as highlighting and
reporting the inconsistencies

This paper first outlines an overview of existing technologies for auto-
mated construction monitoring, focusing on image processing and visualisa-
tion methods. Then, the proposed framework for integration of BIM, ML
and VR is discussed, followed by the details of prototype design, applied
techniques and algorithms, development strategies, and system architecture
of the game like VRE. Finally, the conclusion is presented by wrapping up
the work done thus far and describing future research opportunities for im-
provement of the developed system.

2. Related Studies

2.1. Qverview of Real-Time Data Collection Technologies

The data collection technologies for construction project monitoring can
be divided into three main categories: a) enhanced information technologies,
such as multimedia, emails, voice, and hand-held computing, b) geospatial
technologies, like Geographic Information System (GIS), Global Position-
ing System (GPS), barcoding and Quick Response (QR) coding, Radio Fre-
quency Identification (RFID) and Ultra Wide Band (UWB) tags, and c)
image-based technologies, including photogrammetry, videogrammetry and
laser scanning [15].



GPS and GIS are commonly used automated asset tracking systems,
which can be used for the analysis of construction site equipment operations
[16]. Location information of the construction elements is used to identify
and track the equipment activity and compile the safety information to im-
prove the decision-making and site management processes [17]. When GIS
is integrated with BIM, it can help construction managers identify the best
spaces for tower cranes and represent the material progress in supply chain
management [18].

Barcoding allows for product identification and is considered as one of
the most cost-effective construction tool monitoring methods. However, it
is time-consuming, due to the required reading to the tag proximity, and
there is a restricted quantity of information contained in each barcode label.
Barcode technology is also considered to be unreliable as the tags are prone
to damage in the harsh construction environment, or can be lost [15]. QR, on
the other hand, provides more information, and it is commonly exploited due
to the increasing popularity of mobile phones and tablets utilisation onsite
with the available QR code reading applications. The implementation of QR
codes has been suggested in conjunction with BIM technology to improve
communication on-site and to increase health and safety [19].

RFID incorporates the use of radiofrequency waves instead of light waves,
allowing for overcoming the distance issue [15]. This technology has widely
been used in conjunction with BIM for leveraging control and monitoring of
construction projects [20] as well as productivity optimisation and improving
health and safety [2I]. UWB signals can be reliable, even beyond walls
or any other obstruction that may be faced and are known as one of the
most accurate systems for distance positioning, monitoring and tracking,
consuming considerably low energy [22].

Laser scanning technology allows for 3D object scanning and data collec-
tion for existing environments. The data is generally stored in the form of
a 3D point cloud, which can be used for the creation of a digital twin of a
building [23], 24]. The primary factors that make the scan-to-BIM method
less practical are the required expensive equipment and the time-consuming
process for data collection and BIM model creation, which itself is error-prone
[25]. Although this method is mainly used for documentation and renovation
projects, there is a potentiality for automating construction progress moni-
toring, which can be achieved through a combination of 3D point cloud ac-
quisition and three-dimensional object recognition to categorise construction
elements and 3D models associated with construction schedule [26]. Fur-
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ther to laser scanning, light detection and ranging (LiDAR) technology has
been proposed for monitoring construction projects by employing robotics
and creating 3D modelling [27].

All these cutting-edge technologies offer several benefits, yet pose spe-
cific drawbacks, specifically in supporting monitoring of construction sites
for inconsistencies [28]. However, capturing site images is still considered
as the easiest and least labour intensive method of gathering information
from construction sites [I5]. The advent of new photo shooting technologies,
such as cheap camera drones and depth image cameras has further facilitated
and promoted the construction scene recording actions. The next section is
dedicated to reviewing technologies processing construction site photos for
monitoring purposes.

2.2. Machine Learning-Based Image Processing for Construction Progress
Monitoring

ML techniques found their applications in buiding energy filed early on
1990’s [29], however, their use in the field of construction monitoring is very
new, and their advantage has not been fully exploited. Automatic image-
based modelling techniques for progress monitoring and defects detention has
been in the area of interest of many researchers, in both construction and
computer science domains [30, BT, B2]. Integration of as-built photographs
with 4D modelling using time-lapsed photos was proposed for construction
progress monitoring [33]. Later, the same group [34] suggested an auto-
mated monitoring system for employing daily construction images and an
Industry Foundation Classes (IFC) model-based BIM. In their study, visual-
isation was achieved through the creation of a 4D as-built model from point
cloud images and performing an image classification for progress detection
and an as-planned model from BIM. This work was then followed by [35],
performing an automated comparison of the actual state and planed state of
construction through photometric methods, in order to detect discrepancies
and adjustment of the construction schedules.

Kim et al. [36] proposed a methodology based on image processing
for automated update of 4D models via incorporating (Red-Green-Blue)
RGB colour image acquisition, in accordance with specific instructions. The
progress identification was also performed by applying 3D-CAD based image
filters [37]. Roh et al. [11] integrated as-planned BIM models with as-built
projects data extracted from the site photographs, which was then overlaid



in a 3D walkthrough environment to help estimate the delays in the con-
struction progress.

As manually site photography is time-consuming and challenging in some
sections, many researchers have suggested the use of Unmanned Aerial Vehi-
cles (UAVs) for this purpose [38], 89, 40]. Golparvar-Fard et al. [34] developed
an ML method for detection of the ongoing progress of construction. They
utilised an image data set, including progress and no-progress predefined pho-
tos and trained a classification model to be used for prediction of new images.
Image classification was also used for the detection of construction materials
and building a BIM model to support automated progress monitoring [41].

It was argued that employing image synthesis methods can help improve
the accuracy of classifiers. Soltani et al. [42] demonstrated the efficiency
of synthetic images in training vision detectors of construction equipment.
Rashidi et al. [43] compared three different classification models for mate-
rial detection and managed to automatically detect concrete, oriented strand
board and red brick from the still images. Kim and Kim [44] used the his-
togram of oriented gradient visual descriptor for training a set of synthetically
created images to help facilitate site equipment detection.

2.3. Virtual and Augmented Reality for Construction Project Monitoring

Initially used in the gaming industry, VR applications have long since
entered the architecture and construction industries, allowing better visu-
alisation and simulation of various scenarios [45]. Kim and Kano [46] ad-
vocated the superiority of related VR images over the ordinary photographs
taken from the construction sites for progress monitoring. It has been argued
that VR images can provide a realistic location and condition of structure
elements comparable to 3D CAD models [47]. VR technologies have widely
been used for design and construction prototyping by modelling and visu-
alising different activates, in order to identify potential risks and optimise
construction process [48], also to help effectively manage design alterations
and improve communications with clients[49]. Retik et al. [50] developed a
hybrid VR interface integrated with telepresence and video communication
systems allowing remote construction monitoring.

AR has been getting more attention in the construction industry because
of its ability to superimpose virtual objects on real world scenes. Several
research works have used AR for providing more accurate interactive site vi-
sualisation [51], construction worksite planning [52], underground infrastruc-
ture planning and maintenance [53], comparison of as-built and as-planned
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images on construction sites [54], and visualisation of equipment operation
and tasks [55]. The effectiveness of using AR tools in supporting decision-
making and conveying the sophisticated knowledge to the parties engaged in
construction has also been overtly advocated [54].

Kopsida and Brilakis [56]proposed a method to enhance inspection and
progress monitoring for interior activities, using HoloLens. The application
projected 3D as-planned model on the real-world scene, for identifying in-
consistencies with actual construction. Ratajczak et al. [57] integrated AR
with BIM and location-based management system, as a mobile application to
facilitate the progress monitoring and communication of construction project
parties. The app is supported by Tango ready smartphones and displays the
3D BIM model overlaid onto as-built images. It also delivers information on
construction tasks and materials technical data.

2.4. Summary of Progress Monitoring Methods

The various methods used for construction progress monitoring is sum-
marised in Table [1} highlighting the limitations and advantages of each.
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2.5. Research Gap

Although there have been tools including geospatial and imaging tech-
niques to enhance progress tracking of construction projects, these appli-
cations are not yet able to effectively identify the inconsistencies between
as-built and as-planned models. Moreover, there is a need for a decision
support system for project monitoring to support effective communication
among the involved parties. The reviewed literature shows that there has
been a great success in employing VR and AR applications for supporting
decision-making at design stages and handling complicated tasks in facilities
management. However, this great potential has not been fully utilised in the
construction phase for enhancing project progress monitoring and reporting,
mainly due to specific conditions of construction sites which make them dif-
ferent from any other environment. It was mentioned that previous studies
have been successful in integrating AR and BIM models to provide a tool
for construction progress inspection. However, these tools heavily rely on
the accuracy of utilised AR tools, and thereby prone to error. On the other
hand, the use of such solutions for proper communications among construc-
tion parties requires the presence of contributors on construction sites. This
issue is one of the main raising challenges in construction management. The
use of VR to tackle this problem has been very limited as it requires multidis-
ciplinary cooperation to realise the interoperability of it with 3D information
modelling and advanced AI methods.

The framework and prototype presented in this paper aim at integrat-
ing ML, artificial intelligence, image processing, VR and BIM technologies
aligned with gamification approaches in order to address this particular re-
search gap. Unlike previous attempts that utilised ML and BIM directly
as a means for identifying work progress or diagnosing particular problems,
this framework benefited from those technologies for the preparation of an
interactive virtual environment to be manipulated by a game engine. There-
fore, this tool allows effective utilisation of these technologies in order to
support selective examination of various building characteristics at different
times and by different people, hence making the system more usable for all
professionals involved in the project.

3. Project Framework

The core component of the hybrid system described in this article is a
game-like VRE, providing integration between ML-based image processing

9



and BIM. As such, the developed system architecture in this study consists
of four major elements: 1) image capturing, 2) image processing, 3) BIM
authoring, and 4) VR game authoring and object linking. Overall, the study
proved the concept that the integration of computer vision, image process-
ing, BIM and VR can facilitate the automatic update of a digital model,
storage of the data in a standard file format, and display of project progress
information in a structured manner. This paper posits that this can be used
as an effective tool for communicating with different parties involved in con-
struction projects and decision-making.

Despite the fact that laser scanning and photogrammetry are the leading
methods for collecting special and geometric information, still image photog-
raphy method was adopted in this study, as an inexpensive and hassle-free
method, that has become the industry standard for gathering construction
site progress information.

Figure [1] demonstrates the schematic diagram of the proposed system ar-
chitecture. Interoperability and flawless information exchange were seen as a
significant driver in this research; therefore, Autodesk Naviswork (NWD) file
format and IFC as standard file format were used throughout this research.
First, entities from BIM IFC model links to the unity to create the VR model.
From this model, a dataset of synthetic RGB-D images is generated. Then,
Neural networks are trained using the created data enriched with real-world
depth images to create classifier models.

Construction site images were captured every day using a depth camera,
then regenerated by copying the same camera settings and location (localisa-
tion) within the BIM model. These images were stored in cloud-based stor-
age along with the BIM model. ML classification technique, Convolutional
Neural Network (CNN), was applied to the aforementioned photographs to
detect and identify different objects and building components. Image pro-
cessing was then utilised to remove unwanted objects from the scenes for
further clarity.

Recognised and classified elements were linked to the related actionable
tasks from the time schedules linked to the BIM model. The extracted de-
tails were then overlaid onto the as-planned BIM models for the purpose of
comparison.

The superimposed construction status data was transferred to the game
engine through scripting or exporting IFC into an Autodesk FilmBoX (FBX)
format, then integrated with the virtual environment. This provided the
system with a higher level of immersion, improved visualisation and enhanced
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interaction. The VRE contained both as-planned and as-built models for the
purpose of comparison and identification of potential discrepancies.
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Figure 1: Flowchart of the proposed framework for construction progress monitoring using
BIM, VR and image processing technologies.

The proposed techniques will be elaborated in the following sections by
providing detail of prototype development.
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4. Prototype Development

The prototype of the application incorporating ML-based image process-
ing, BIM and VR were implemented in order to showcase the feasibility and
potential of the proposed conceptual framework. The research selected the
new leisure and sports complex of the University of Strathclyde located in
Glasgow city centre. The structural design of this building was exported to
Autodesk Naviswork (NWD) file format, and the architectural model was
saved in IFC format which made it suitable for unobstructed data exchange
between different BIM authoring software applications, used in the building
industry by various parties. Figure 2| (a) and (b) respectively, present archi-
tectural and structural BIM models of the mentioned building from the same
perspective.

4.1. Image Processing

For the purpose of this prototype, this study developed an optimised
approach to ML-based image processing for the automatic detection and
recognition of the main constructional and structural elements. In order to
support a neater virtual environment, the study also developed a method for
removing unwanted objects from the scenes. The developed image process-
ing method starts with a depth camera acquiring multiple overlap RGB-D
(colour+depth) images as system inputs for object detection and identifica-
tion. The primary method we used for object detection and image segmen-
tation is based on ML.

Image segmentation, which partitions a set of pixels into multiple groups,
was employed to designate building elements in the image coordinates. This
method is widely investigated in many practical applications, such as video
surveillance, image retrieval, medical imaging analytics, object detection and
location, pattern recognition, etc. [64].

By using a 2D BIM image/video, physical coordinates can be estimated,
and point cloud or depth image can be generated via structure from motion
(SfM) technique [65,66]. In the BIM model, a pre-defined 3D data is provided
as the prior knowledge, which can supervise the machine to recognise BIM
objects via ML algorithms, such as support vector machine (SVM), random
forests (RF) and CNN.

A carefully designed dataset is required for training a robust classifier.
Image processing for pose estimation [67] and semantic segmentation of the
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scene (Song et al., 2017), includes labelling each pixel within the depth im-
age with an object associated category to supervise the ML algorithm and
learning the voxel features of the object. In BIM projects, it is a practi-
cal approach to use a pre-defined 3D model for simulating depth images in
various viewpoints, thus generating as many labelled depth images as pos-
sible for building a dataset prior to the commencement of the construction
work. The details of generating data for training the network using virtual
photogrammetry are presented in the next section.

Taking daily construction activity planning into consideration, a deep
neural network seems a proper option, as it can automatically tune the pa-
rameters [68], 69], based on the new given data. Therefore, it can effectively
learn a new representation of an object along with the progress of a BIM
project instead of retraining a new classifier on a daily basis.

Due to the diverse nature of predictions for semantic segmentation and
recognition of unwanted objects in the construction scenery, training a single
model to perform both tasks accurately is rather difficult. Moreover, the
utilised dataset for training a model for image segmentation which includes
synthetic images does not include those intended objects, such as human or
machinery. As such, this study first applied a separate network for recogni-
tion of these objects. This procedure guarantees the precision of both models
by utilisation of individual training sets. It is possible to train one model
for both purposes, using a comprehensive dataset. However, preparation of
such dataset is very laborious as it requires a graphical mixture of environ-
ment and objects, both in the form of synthetic and real images. Moreover,
obtaining adequate negative data is another hurdle for creating a recogni-
tion model. It should be noted that the negative samples are as valuable as
positive records in training an accurate model that requires identifying the
desired objects precisely as well as rejecting the false detections.

4.1.1. Object removal

Taking photos from a construction site is the first step in creating an as-
built model for the purpose of comparison between the current state and the
as-planned model. Construction scenes consist of many tools and materials,
which are considered as unwanted objects in the construction progress mon-
itoring application. Furthermore, the presence of these objects will lead to
faulty detection of construction elements related to the BIM model. Gener-
ally, it is not practical to move all these objects while shooting photos. This
study proposed an automated two-stage object removal method in order to
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address this challenge. The first step was using the supervised object recog-
nition technique for identifying unwanted objects, and the second step was
to fill the area of the detected object in a visually plausible way.

Many approaches for filling a part of an image or inpainting have been
developed by the previous studies. However, as the images used in the study
contained depth information, it was posited that a suitable region filling
method should be able to estimate the depth filling pixels. This study em-
ployed an exemplar-based method developed by [70] as a suitable means to
address this requirement. First, these elements were recognised and seg-
mented using the pre-trained CNN, then the boundary of the target region
was identified, a patch was chosen to be inpainted, and the source area was
queried to find the best-matching spot via an appropriate error metric. This
study noted that the main advantage of this method over the other inpainting
methods was its ability to propagate the texture into the target region.

Gupta et al. [71] trained a large CNN on RGB-D images to recognise
objects and applied a semantic segmentation to infer object masks. For the
purpose of demonstration, this study trained CNN to detect humans in the
construction scene. For training data, the study selected 3200 positive im-
ages [72] and 7500 negative images [72]. Figure [3[ shows the detail of the
method for recognition of objects using RGB-D images and presents how
RGB-D images make it possible to calculate the depth and average gradi-
ents. This detail is then combined with a fast edge detection approach to
generate enhanced outlines. The contours are used to create 2.5D region
candidates through processing characteristics on the depth and colour im-
age. The depth-map is encoded with various channels at each pixel, namely
horizontal disparity, height over ground, and the angle the pixel’s local sur-
face. Then the CNNs which are trained on RGB-d images detect intended
objects in 2.5D region candidates. Each CNN begins with a set of region pro-
posals, and calculate features on them. The box proposals are then classified
using a linear support vector machine.

Figure [4] shows the original image and with a depth-map, taken from the
construction site. Figure 5| presents the output of applying object recognition
with the trained CNN.

When the unwanted object is recognised, the filtered image is passed to
the object removal procedure to eliminate it from the scene and fill the gap
in both RGB and depth space. The outcome of applying this algorithm in
Figure 4 is demonstrated in Figure[6] The depth-map of the generated image
is illustrated in Figure[f] (b).
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(a) (b)

Figure 6: (a) A photo taken from the construction site and (b) it’s depth-map.

4.1.2. Building elements identification

The next step in the preparation of the taken depth images for being used
in the VRE was to apply a semantic segmentation method to identify the
various building elements. In this step, the pixels are directly labelled, to
create the segments using a trained CNN. The training data for this network
is generated from the BIM model, adding depth information and pixel labels.
The use of synthetic images with the aim of semantic segmentation has been
widely reported [73| [74, [75], however, due to perfection of those images,
the networks may fail to learn all characterisation of the noisy real photos.
Moreover, as mentioned before, there was already a need for training another
network for the detection of unwanted objects.

For building scene segmentation, this study adopted the FuseNet algo-
rithm [76], as a fully fusion-based CNN developed for semantic segmentation
of RGB-D images. After training the ML model with the generated dataset,
the model was applied to the image resulted from object removal. Figure
[7] demonstrates the architecture of the network for semantic segmentation.
The network contains encoders for obtaining features from RGB and depth
images and a decoder which maps the feature into the original input resolu-
tion. Afterwards, the elements from the depth encoders are fused into the
feature-maps of the RGB part.

Figure 8| presents the outcome of the segmentation with the coloured areas
indicating different building elements.
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4.2. Linking the IFC' Model and the Unity Game Engine

This study used the Unity game engine [77] as the main platform of
integration of various technologies, i.e. BIM, ML-based image processing and
VR. For ease of communication, in the remaining pars of this paper Unity
game engine will be referred to as Unity. This study adopted a previously
developed method of linking a digital model [14] to support the integration
of the information contained in the BIM model. The method was established
based on the use of IFC file format and the incorporation of programming
with C#.

Entities from IFC models were linked to Unity through procedurally gen-
erated regular expressions, where there are no families. They were, how-
ever, combined with spatial localisation, where families are present. The
primary challenge in this process was due to the geometric representation
characteristics and Unity equivalents. This required a supporting planar ge-
ometry intermediary library linking Unity’s plain ignorant, mixed Cartesian
and barycentric coordinate systems with coplanar, relative Cartesian coordi-
nate systems. To tackle this issue, the system mixed ambivalent interactions
with geometry and took advantage of the game engine, in order to optimise
interactions with the environment.

Naming conventions between IFC model, FBX, and Unity environment
models are found to differ unpredictably depending on the applied export-
to-import processes and the source application. Several characteristics of the
naming convention in Unity, typically swapped delimiters, replaced, removed
and amended characters, and varied in case sensitivity retention which pre-
vented direct one-to-one linking or effective character-by-character compari-
son. This issue was resolved using procedurally generated regular expressions
and iterative searching over the entity recordset. The model was extended
to include a top-level record array with records either without parents, omit-
ting representation layers, or entities presumed to be physical entities which
significantly reduced the processing search set. This subsequently reduced
processing time.

However, families presented two additional challenges for linking. This
was partially due to categorical naming returning a set of candidates, whereas
familyless comparisons returned single associations. It was also because of the
need to naming family-named entities, hierarchically, which required stepped
iteration through nested game objects for full name generation. Nevertheless,
due to failing to identify a non-spatial attribute to filter candidates, identi-
fication of the appropriate representation relied on localisation. This task
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was achieved by using bounding box centre points, which were generated by

Unity during mesh construction and lazily evaluated by the IFC Library.
Figure [J illustrates the procedure of integrating BIM to VR and linking

segmented photos and the flow of information between each step.
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Figure 9: Flowchart of creating VRE from BIM model and overlying real world images.

4.8. Virtual photogrammetry for NN training

Point cloud generation in the real world has several notable forms includ-
ing LiDAR, laser scanning and Structure-from-Motion (SfM). Each method
produces a vector map of points representing the physical elements and pixel
information from the device’s point of capture. Virtual worlds in terms of
physical representations discrete interval scale and rendering definition, are
not meaningfully different from the real world. This enables the application of
many traditional and contemporary photogrammetry methods with varying
levels of algorithmic complexity. However, while many would be transferable
to the virtual world, the real world techniques can rely on imperfections in
the collected images. For example, in a large zone in a virtual world rendered
with acrylic paint, there may be few if any identifying features, instead of a
featureless image with constant colour pixels. Although this is rarely a case
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in virtual models, a method needs to work with everything or nothing. This
reduces the potential for SEM. Similarly, implementations of real world tools
in a virtual world are often significantly different from how they function in
reality. LiDAR, for example, uses omnidirectional pulses. If this were im-
plemented literally in the virtual world, a countable but impractical number
of ray casts would be required which would bring the engine to a halt for a
long time.

Instead, at point of triggering the function in the virtual world, the trig-
gering objects that reside and interrogate a physical object database would
step out of the world. For instance, in the case of a game with human agents,
rather than raycast in every direction, the script would locate all players in
the database then separate the (x,y) and (z) dimensions. Using the (x,y)
boundaries, a simple rectangle would be created around the agent, and an
intersection calculation would be carried out for each line until a horizontal
intersection occurs; otherwise, the play is ignored. Assuming it is identified,
in the next stage, a vertical intersect assertion would be made. The simplest
solution at this point may ray cast only within the boundaries of the box.
A more complex solution may use relative coordinate systems and spatial
caching to reduce further the number of cases required. For example, for
any given intersect the boundary box method may be applied to infer points
which do not merit raycasting.

In order to avoid a complicated algorithm based on existing techniques
used in the real world, this study facilitated virtual photogrammetry using
a simple application of the game engine’s physics component and its camera
class functionality. Using the Camera class’s camera point to virtual world
coordinate translation function, each pixel’s relative location in the virtual
world is identified. A raycast is sent from that location, matching the base
orientation of the camera then attempts to intersect with any object with
a MeshCollider. Upon successfully hitting an object, a struct is created
containing the 2D and 3D coordinate system locations, an extension to the
default Mesh class which accommodates binding of external data, such as [FC
and the triangle on the mesh which was hit. The latter implicitly linking a
Barycentric coordinate system to the struct. As mentioned in the planar
geometry system, triangular meshes are translated into planar surface sets.
This set is already bound with the mesh, and each plane constituents mesh
triangles. Each point struct is added to the point cloud dictionary, which
may then be exported for producing composite images, or helping scalable
discrete reconstruction.
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The library is susceptible to two issues common with other forms of pho-
togrammetry, i.e. nonuniform intervals and point density. However, in con-
trast to the real world, the process is reproducible and does not require an
additional journey through the model. At any point, where the cloud lacks
integrity, a camera can be spawned to collect additional data with partially
controlled precision. Partial is used here as a caveat for the inherent limita-
tions of casting a finite number of times on varying distance surfaces.

Figures 10| (a) and (b) show the camera view and spatial linking between
image pixels and mesh continuous spatial information from the localised cam-
era and BIM model. Every pixel represents an object containing 3D coordi-

nates, and existing and mapped colouring. .

(b)

Figure 10: (a) Camera and (b) spatial distance heat mapped (depth) views.

Figure[IT]demonstrates applying discrete spatial constraints on virtual en-
vironment translation. Spatial data was decoupled into continuous, discrete
and photogrammetric vectors, representing the real position of the object in
the virtual environment, interval equivalent of that object, and its position
as it appeared in the primitive reconstruction.
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Figure 11: Discrete distance Heat-mapped view.

Synthetic image data is collected primarily using the virtual photogram-
metry methods demonstrated in images [10]and [11], and procedurally generat-
ing random camera locations in spaces or near the objects of interest. Using
the floor perimeter, the camera location boundaries can be obtained, and the
number of floor elements can be used as a proxy. Cameras are first spawned
around human height, enabling initial data collection regarding the current
space, primarily making ceiling height identification and partially identifying
zone boundaries. Once these have been identified, a camera can store an im-
age and use the learned spatial boundaries to choose a new camera location
within the space. The virtual photogrammetry and camera movement in the
space can then be iteratively applied to the partial mapping, ceiling height
and farthest surface distance to constrain camera angle.

The virtual photogrammetry is then used to bind pixels to their con-
stituent entities in the virtual world, and if bound, to update IFC repre-
sentations. Their material, entity type and where relevant, the families are
extracted from the IFC schema. This is bound to the raw image data included
UV and ARGB. Pixels are grouped by the entity that they are associated
with. Entities with pixel adjacencies can have surface poly-boundary points
check for coplanarity with surfaces on the other entity. The relationships
are tested in each imaging set, ensuring most are encaptured. As shown in
Figure entities can be turned off such that the surrounding hidden (or
partially hidden) entity surfaces can be mapped. If necessary, this could also
be used to identify which entities are present in the space, but occluded.

Data is then split into its constituent sets and inserted into a database
or tracked in an image relations file. The former interrogated via SQL and
the latter parsed into the PixelRelation class of the VP library. Splicing in
a localised real-world image now has a truth network for training real-world
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Figure 12: Category-mapped scene view.

classifiers and segmentation models, where the data in the virtual world is
appropriate mostly for producing inference networks. The significance of the
former is that project like ImageNet are massive human endeavours. People
manually segment images and classify objects. Since the virtual world has
already segmented virtual representations, these can be used to estimate
confidence in classifications. Using depth from the real-world and virtual-
world relative scale can be used to refine the expectations. If something
seems right, but not linked between both, other profiles from virtual images
can be scaled and compared. If an object is still not identified, a case for
propagating a specialist classifier for that type of object exists. The family
or entity’s related images can then be used to train a model looking for those
exclusively.

4.4. Integration with the Game Engine

Autodesk Revit viewed and amended the original BIM model of the
Strathclyde Sports Centre. The digital model was imported into the Unity
game engine to allow for the development of VR simulation. The Unity game
creation engine was the primary platform for creating the application, using
the C# as the main programming language. The IFC BIM model was ex-
ported in the FBX file through a TwinMotion plug-in for Revit. The plug-in
was incorporated in the workflow, since the export of the FBX file through
Revit would result in loss of the textures defining the materials during the
transition to Unity. This method allowed flawless export of the BIM model
with the textures assigned. The use of TwinMotion was proved to be very
beneficial and contributed to achieving a high-quality asset in Unity. Specific
optimisations were made to the BIM model to correct the existing errors in
the geometry. The size of the model caused a sort of issues since the entire
model and all the objects were rendered at the same time.
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The HTC Vive was the primary VR headset used for this work. The
Vive comes equipped with two controllers, and two wall or tripod mountable
scanners that allow the user to move around extensively within their per-
sonal real world space. A Windows gaming laptop with an Intel i7 processor
and NVidia GTX 1070 graphics card was the machine used to create the
application.

4.5. Overlaying the Segmented Images

When the virtual environment was built in the Unity engine, the final
step to complete the monitoring tool was to overlay as-built images over the
as-planned model. The elaboration of the method as a set of rules was as
follows:

e Where no high-precision camera location information was known, but
the entities of interest were identified, they may have been highlighted
entirely via the Colour property of the primary material. Changing
this property would highlight the desired objects, so that when the
user brought them into view, they would have been able to identify
whether or not they were of interest.

e Where camera location was known, but orientation and field of view
weren’t, faces could be identified via generation of a FaceSet through
the UnityIFC library, which could create the planes to define the entity.
In this case, the script needed to effectively raycast to the centre of the
closest triangle on the largest two faces. Once the face was identified,
the barycentric coordinate systems needed to be used to determine
which triangle is associated with that specific raycast. The triangle
point list direction which informed the user as to whether the triangle
is visible or not rendered. If the triangle is rendered, then the face is
that the user should see; otherwise, the other largest face is that of
interest. The identified face’s primary material colour would then need
to be changed to the highlighting colour.

e Where all the above (including the field of view) were known, the sys-
tem would provide an indication of entities which were not entirely in
place. That is not to say the system has definitely identified erroneously
positioned columns. However, they might have been highlighted, where
a re-measure with a laser distance meter (as Leica Disto) would have
been worthwhile. There were two options for achieving this goal: 1) by
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using superimposing the segmented image over an n-dimensional image
created with the library designed for this project, or 2) by applying a
similar process for direct raycasting from the superimposed segments.
In the case of the former, the screen or secondary camera resolution
needed to be adjusted to match the metadata on the picture; or if not
possible, up to a proportional scale. It should, however, be noted that
in this case, additional control for pixel scale would have been required
as well as including buffering the AND failure area to accommodate
the larger pixels. Pixels from each then needed to be first compared
with an AND operation to identify where expected pixels overlie with
the segmented sections from the image processor.

Where the AND failed, there was a potential misalignment of the en-
tities, and each should have been highlighted appropriately using two
distinctive colours to demonstrate where the segment and virtual face
were out with the boundary of the other.

Figure illustrates the overall proposed procedure for overlaying the
segmented images on the BIM model in the VRE. Figure [14] shows the result
of superimposing the segmented image over BIM model in VR environment,
where the columns are selected for the investigation.
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Figure 13: Procedure flowchart of overlaying segme
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Figure 14: Superimposing the columns in the VR environment.

Camera localisation has several meaningful opportunities depending on
the information of entities captured within the view and segmentation. The
methods appropriate for this paper primarily rely on segmentation and BIM
localisation. Depth segmentation is mostly excluded here, but confidence
in its results can surpass the random sampling type method described. The
following describes an idealised (two-sample) instance, however, the principle
of RANSAC could be applied in conjunction with it to refine and confirm.

IPS has been reported to be accurate within 300mm which is a signif-
icant improvement on GPS, reported to be accurate within 5,000mm. In
recent years, research has refined the use of fiducial markers, demonstrating
accuracy within 80mm. In each case, the reported accuracy is without the
benefit of verification with segmentation or virtual photogrammetry from
BIM models. With the assumption that a floor is segmented, choosing three
points on the surface, with two creating a line perpendicular to the camera,
forms an isosceles or equilateral triangular hyperplane. Splitting this into a
triangle and trapezoid and injecting the z dimension from segmentation will
provide enough data to estimate the shear coefficient. Repeating this process
on a second perpendicular triangle will only be consistent, if it falls within
a reasonable tolerance, and if the surface is horizontal. Otherwise, it should
be possible to estimate the second shear coefficient and then rearrange shear
functions to determine perpendicular horizontal axis orientation. With the
orientation of the surface and shear coefficient, the cameras’ height and ori-
entation can be determined. The results may be confirmed by repeating the
process on the virtual planes associated with the segmented surfaces by using
the pixel reference to identify the surface.
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With or without the previous calibration for height and orientation, clas-
sified segmentation may aid location inference. Using segmented entities and
IPS virtual photogrammetry can be used to search for similar or expected
profiles. Considering a beam, for example, the orientation can be determined
from another hyperplane, this time between the floor and vertical centre point
of the beam, shear coefficient and taking the ratio of the full height and the
second height of another point along the floor/beam, not the entire length.
By repeating the process, the results may be refined. The final stage for
this method is subsampling segmented and virtual properties and applying
RANSAC to make educated guess from what appears to be in both from
segmentation in both virtual and real worlds.

Another option is using fiducial or natural markers, specifically for lo-
calisation of the camera. While natural markers are not necessarily present,
anyone taking pictures may throw temporary markers to the floor which, will
enable the previous method in conjunction with IPS. Segmentation aided lo-
calisation is a matter of confidence in what has been identified. Any markers
known to be on the floor will facilitate the previous method. In either case,
if a floor is known, IPS accuracy is enough to start using surface-to-surface
edge detection connected, noncoplanar surfaces. Localisation is not an exact
science and under normal circumstances is not guaranteed to work. However,
with BIM overlaying, the virtual test frame can be moved and the VP can be
regenerated. It is not great to say educated guessing can solve the problem,
however, it doesn’t matter whether the process is achieved by a single process
or it takes a thousand. Localisation doesn’t need to happen in seconds or
minutes, it just has to fall within an acceptable tolerance and not require
human input.

5. Discussions

Technology-Supported Integration of Real and Virtual Worlds:
Bridging the gap between real and virtual-worlds is no longer a matter of
technological barriers but rather a resource management issue. The tools
which are necessary to link, translate and fuse mixed reality data exist in
isolation. It is down to development teams to figure out how they may
be combined to produce a practical utility under the constraints of funding
and team capacity. Some techniques, such as Drone LiDAR scanning have
long since been established for producing a discrete spatial mapping of the
real world, that can be translated into virtual components. To a lesser ex-

28



tent, some tools such as Tango-enabled mobiles can produce and translate
point-clouds to coloured 3D meshes in near real-time. Pour Rahimian et
al. [14] demonstrated translation between vector and discrete virtual en-
vironments and linking Cartesian and Barycentric coordinate systems. In
this study, bidirectional linking between discrete and vector worlds were ex-
tended to incorporate raster representations, ultimately developing a virtual
photogrammetry tool for mixed reality.

ML-Assisted Image Processing: Python’s SciKit-learn contains many
flexible deep learning utilities designed for image classification, object iden-
tification and semantic segmentation. Of course, ML and deep learning tools
aren’t without flaw, but through progressive interactive training with re-
inforcement, transfer learning and input homogenisation, they can be con-
vinced to perform well beyond expectations. Linking virtual and real worlds,
however, requires testing, tweaking and reinforcement, which under normal
circumstances, would require significant team involvement which cannot al-
ways be consumed in parallel and must be carefully managed.

Paradigm Shift in Project Monitoring: The process of developing
and proving solutions for research objectives similar to this study do not
need to rely on the real world initially. Through abstracting the process,
there is no reason why individual components from virtual and real world
utilities or data sources cannot be interchangeable. For example, virtual
photogrammetry module for the Unity game engine, which was developed
in this study can differ from real photogrammetry only by imperfections
in the surfaces they may scan. Although virtual models can produce ideal
surface maps, there is a little challenge in introducing imperfections. The
idea behind converging realities is that tasks which are constrained by serial
time, equipment allocation and team capacity are not subject to the same
constraints. If a team has one drone in the real world, they can generate data
specific to the target building(s) at the rate which the camera is capable of
capturing UV and point-cloud data. The properties of the building and
environment are immutable, the weather and lighting are situational, and
the rendering is not controllable by the pilot.

Expedited Data Collection: In contrast, virtual worlds are constrained
only by the amount of processing time and devices that can be afforded to the
project. Data collection can be automatic and in parallel, and the environ-
mental and target features are mutable. The virtual world can be spawned
randomly with rendering material types, resolution and imperfections unique
to a given instance; even the target can be sampled from a repository of
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buildings. Drones in the virtual world don’t need pilots, nor do they have
physical representations meaning more than one can collect data during a
single collection. Unity can be compiled for Linux machines which enable
next-to-nothing cost parallel processing. In short, by the time the real world
pilot has travelled to the site and generated data for a single target, the vir-
tual world can produce thousands of data sets from any number of targets
with a flexible selection of the characteristics that are otherwise immutable
in the real world.

Converging Realities: The aim of attempting to converging realities
is to take actions which are applicable to virtual world data applicable to
data from the real world by gradually blurring the lines between the two.
The real and virtual world renderings are never going to be identical, and
therefore, training models on purely virtual data alone would likely be un-
fruitful. However, between readily available rendering material images and
Fast Style Transfer (FST) CNNs creating a progressive interactive training
ensemble can be made easier. FSTs, as demonstrated by Engstrom [79],
learn the common characteristics of a given training image’s artistic style by
comparing it with thousands of images with distinct artistic styles including
works from historically famous artists. Once a model has been trained, an
image can be converted from its raw state to a style-transferred equivalent.

The Virtual Photogrammetry Technique: In this study, rather than
attempting to create a complicated algorithm based on existing techniques
used in the real world, virtual photogrammetry was facilitated using simple
application of the game engine’s physics component. Currently constrained
by the screen resolution, not a physical constraint, any given camera is sent a
request to capture what it sees at the time step it receives the request. At the
end of the time, step a call back to capture the spatial and physical object
data. This process is by no means perfect and not implicitly transferable to
the real world, but it lays the foundation of progressing to a practical tool.

Role of Open Standards, Interoperability and Social Psychol-
ogy: This research suggested the next disruptive innovation in AEC soft-
ware will not be in the form of cutting edge design functionality but rather
by greater consideration for social psychology’s role in effective computer-
mediated communication. Pour Rahiumian et al. (2019) in contrast, argued
that focus should be on interoperability with an emphasis on accommodat-
ing immersive virtual environments. This paper proposes an intermediate
and demonstrates a collection of tools that partially bridge the gap between
these two suggestions. Open standards can facilitate interoperability not
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only between traditional vector CAD vendors but also packages which are
not directly linked to the construction industry. Pour Rahimian et al. [14],
for example, discussed the potential application of their BIM library to re-
side outside virtual environments entirely. The library does not presuppose
that the interface has any graphical interface to the extent that the model
may be interrogated without an interfacing script. This project tackles the
opposite side of communication problems in accordance to converging real-
ities approach, in which linking real and virtual worlds has many objective
and subjective benefits. Through the ability to mix worlds, the subjective
perception of proximity between involved parties can be heightened through
inherent increases in media richness while reducing the risk of communication
breakdown from initially unverifiable conflicts.

Application, Functionality, Impacts and Contributions of the
Study: This paper’s application in data science is yet to be established.
However, it has the potential to be its most significant contribution to sci-
entific knowledge. The framework and prototype presented in this study
formed methodological and technical foundations for a converging realities
approach to self-propagating hierarchical deep learning ensembles and creat-
ing an Al network which aims to progressively introduce real world images
to virtual world datasets, via homogenisation of real and virtual world im-
ages. A weakness of that kind of process, however, is its initial attempts
to rationalise the real world. This project is well suited to mitigating this
traction problem. Linking both real and virtual world enables determinis-
tic assertion of the presence of equipment and construction features through
spatial comparison of real and virtual photogrammetry data. This serves to
solve two problems. First, where an entity is proven to be present in both
worlds but not identified by an image classifier, additional images from either
world may be introduced to its training data or can be used to produce a
child branch in the network. Second, the information in the virtual world
is explicitly linked to the virtual entity and therefore, it can be bound to
pixels in a deterministic manner. In short, this library’s functionality may
reduce the need for difficult segmentation while providing a mechanism for
reinforcement and transfer learning.

6. Conclusion

The research presented in this paper addresses the methodological and
technical gap in the emerging digital analytical tools of machine learning and
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computer vision and the advanced visualisation media including BIM, and
interactive game-like immersive VR interfaces, in order to leverage automa-
tion of construction progress monitoring. To achieve this, the study proposed
a framework and developed a proof of concept prototype of a hybrid system
which is capable of importing and processing construction site images and
integrating them with the nD building information models within a gamelike
immersive VRE. It was discussed in lights of the reviewed literature that
despite the wide adoption of modern technologies in construction progress
monitoring, the use of BIM, as an as-planned constructional model, has not
been exploited well, due to the interoperability issues among the relevant
technologies.

Therefore, this study responded to the necessity of a platform that can
support continuous system update and enable construction managers and
clients to effectively compare the building construction (as-built) with as-
planned BIM model for the purpose of deficiency detection. The resulting
prototype, based around the principles of remote construction project mon-
itoring, took advantage of ML and image processing in removing unwanted
objects, recognising and extracting main building characteristics, and over-
laying these on the corresponding as-planned nD components. VR technolo-
gies, including Unity and HT'C Vive, provided a virtual environment to allow
better user interaction with these elements.

It was argued in the paper that the proposed platform could help con-
struction companies to follow the progress of their work and diagnose any
discrepancy without interrupting the on-site operations. This remote manag-
ing tool can also save a great deal of time and provide a more accurate com-
parison of constructed parts with the as-planned BIM model. On the other
hand, this powerful virtual environment can be used for presenting the stage
of building development to the clients. The facilitated automatic update of
the model makes it possible to have an on-demand schedule method without
the need for sophisticated wireless-enabled devices. One of the main contri-
butions of this project was providing a technical exemplar for the integration
of ML and image processing approaches with immersive and interactive BIM
interfaces, the algorithms and program codes of which can help replicability
of these approaches by other scholars.

The methods of object recognition, image processing and overlying real
images over as-planned BIM model were suggested for completion and demon-
stration of the presented prototype. However, different approaches might be
adopted in future to achieve better identification and segmentation of the
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building elements, considering the studied construction site situation and
demands. Moreover, advanced positioning systems can be employed for eas-
ier localisation of such components through extracting camera location. Fur-
thermore, the prospective photo shooting procedures can be further enhanced
by means of contemporary UAVs, which are capable of pre-programmed and
autonomous aviation and actions. Hence, the utilisation of advanced small
drones can automate image acquisition. This is possible through defining a
home point and a route in the virtual environment, then adapting it to the
real-world location and finally transferring the flight plan to the drone via a
waypoint path. As most advanced UAVs encompass 360-degree sensors, they
are able to perform safe indoor manoeuvres. The use of these UAVs can also
reduce health and safety risks and allow for capturing the site images, even
when there are works in progress.
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