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ABSTRACT 

Currently, flexible surfaces enabled to be actuated by robotic 

arms are experiencing high interest and demand for robotic 

applications in various areas such as healthcare, automotive, 

aerospace, and manufacturing. However, their design and control 

thus far has largely been based on ‘trial and error’ methods 

requiring multiple trials and/or high levels of user specialization. 

Robust methods to realize flexible surfaces with the ability to deform 

into large curvatures therefore require a reliable, validated model 

that takes into account many physical and mechanical properties 

including elasticity, material characteristics, gravity, external 

forces and thickness shear effects. The derivation of such a model 

would then enable the further development of predictive based 

control methods for flexible robotic surfaces. This paper presents a 

lumped-mass model for flexible surfaces undergoing large 

deformation due to actuation by continuum robotic arms. The 

resulting model includes mechanical and physical properties for 

both the surface and actuation elements to predict deformation in 

multiple curvature directions and actuation configurations. The 

model is validated against an experimental system where measured 

displacements between the experimental and modelling results 

showed considerable agreement with a mean error magnitude of 

about 1% of the length of the surface at the final deformed shapes. 

 

1. Introduction  

Design and development of smooth, continuous-bodied 

(continuum) robotics is increasingly aimed at a variety of 

engineering fields ranging from bio-inspired robotics to medical and 

healthcare procedures [1-3]. Continuum robots, particularly 

inspired by biology, has become an active research area. Numerous 

continuum robot arms, directly actuated by pneumatic artificial 

muscles or remotely actuated via concentric tube or and/or tendon-

based structures are well established [1, 4]. Further studies have 

focused on kinematics, dynamics or control of continuum arms and 

manipulators with results indicating that complex motions are 

achievable, which can be utilised in a wide range of industrial and 

healthcare tasks [5-9]. However, the continuum robotics field is no 

longer restricted merely to the actuation of arms developing a curve 

or line in space. Rather the application of continuum robotic 

elements can be extended to actuate spatial surfaces featuring a high 

degree of flexibility, i.e. so called Large Deformation Continuum 

Surfaces (LDCS). 

LDCSs have the potential to be widely utilised across a range of 

engineering applications such as manufacturing e.g. for providing 

reconfigurable moulds which are currently subjected to costly 

processes [10, 11]. A practical application of actuated surfaces as 

reconfigurable moulds has been previously reported by Habibi et al 

[10] in which vacuum-jammed surfaces integrated with pneumatic 

artificial muscles are characterised to enable reshaping different 

moulds of complex geometries though lacking a reliable kinematic 

model. Experimental applications such as this require high-

resolution models to form the basis of model-based control of the 

surfaces.    

Another application which is currently in use is healthcare tooling 

to assist patients with the lack of mobility such as soft/flexible 

exoskeleton systems [12]. Such surfaces also have potential to be 

used in aerospace and automotive industries to adapt to and control 

aerodynamic forces. For all of these applications the actuation and 

deformation of the surface must be highly predictable to achieve on-

demand, desired profiles consisting of simple to multiple curvatures 

as schematically shown in Fig. 1.  

 

Fig. 1. A representative LDCS deformed into multiple curvatures using 

actuating elements placed on the surface edge 

However, LDCS have been so far operated mainly based on user 

intuition and personal expertise rather than on model based control 

and simulation. This type of operation would then lead to trial-and-

error based methods in their design which raises production costs 

and degrades performance. To obviate this issue a flexible and 

computationally efficient model needs to be developed to accurately 

characterize configurations due to interactive forces applied by 
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actuators and external force elements. This will enable surfaces to 

be accurately simulated and the resulting models further made 

available for model based control methods. 

One challenge to model these surfaces analytically is that most of 

the available beam, shell and plate theories are only applicable when 

the body thickness (relative to the planar dimensions), and 

consequently shear effects, are assumed small or zero. Well-known 

examples include Euler–Bernoulli beam theory and Kirchhoff–

Love plate theory which have been developed for thin beams and 

plates [13]. Although other analytic solutions have been recently 

developed, so far they are only applicable to 1D structures such as 

cantilever soft arms undergoing large shear deformation that are 

subjected to external loadings (e.g. [14]).  

On the other hand, some developed theories for thick-walled 

beams and plates that account for shear deformations and rotational 

bending effects, such as Timoshenko beam theory [15, 16] and the 

Mindlin–Reissner theory of plates [17], cannot be used for the large 

deflection and flexibility considered in this work which are caused 

by embedded actuators due to linear elastic constraints on their 

strain-displacement relations [13]. As a result, LDCSs have been 

solved for numerically rather than analytically. In summary, no 

basic shell or plate theory has been reported in the literature to be 

appropriate and applicable for modelling LDCSs that are actuated 

by continuum robotic arms.  

Models proposed for the actuated LCDSs undergoing large 

deformations include work by Kano et al [18] which presents a 

model for a two-dimensional sheet-like robot inspired by the control 

scheme of the scaffold-based locomotion of snakes. The surface can 

be bent into relatively large curvatures. However gravity is not taken 

into account in this model. In addition, the sheet’s thickness and the 

moment of inertia effects along two coordinates are considered zero. 

In another work carried out by Medina et al [19], Euler-Lagrange 

methods are used for modelling a planar 8 × 8 multi-link grid with 

massless segments. The modelled surface is assumed very thin and 

highly constrained. The surface model could deform to a curved 

shape by embedded actuator segments but it cannot tolerate the 

application of significant forces. The simulation average accuracy 

reported in the work is 0.25 of a link length.  

Another approach called the phantom muscle method was 

developed by Merino et al [20] to present a kinematic model for 

LDCSs when deformed by actuators attached to their edges. This 

technique uses an infinite number of interpolated curves parallel to 

the attached actuators. Although this approach introduces a 

relatively simple mathematical model with good computational 

efficiency, it lacks the inclusion of several crucial surface 

parameters such as material properties and gravitational effects. 

The work presented here details the development of a kinematic 

model for LDCSs using a lumped-mass technique which 

encompasses essential factors such as material properties of a soft 

surface, inertia forces, gravitational effects, material damping, and 

in-depth shear effects across thick plates. The use of lumped-mass 

models has been well reported and acknowledged for their 

adaptability with large deflections and flexibility [21-23], ease of 

implementation [24, 25], and considerable computational efficiency 

as well as the reliable capture of systems’ dynamics [22-26].  

In principle, the lumped-mass approach is a close relative to Finite 

Element Analysis (FEA) method. Both approaches discretize a body 

into a finite number of elements which are connected through nodes. 

However, they are slightly different in the way they treat the nodes 

and calculate the displacements, as been well discussed in the 

literature [26, 27].  

The model developed here introduces a new application of the 

lumped-mass approach which will be detailed in the next section. 

Although the approach has shown conformity with large deflections 

and flexibility well in previous studies [23-25], it has never been 

used as a 3D, two-layer plate model to simulate thick surfaces that 

include thickness shear effects. Moreover, the integration of such a 

3D, lumped-mass LDCS model with a continuum arm model to be 

actuated in large deflections has not been studied or reported in the 

literature. The model will first be compared to analytical solutions 

resulting from classical beam and plate theories when the LDCS is 

statically deflected under its own weight. An actuator model 

developed using the Euler-Lagrange method is then integrated with 

the surface model so that on-demand bending, physical 

characteristics and geometry of the surface can be evaluated after 

actuated deformations. It will be shown that the surface model is 

capable of being bent smoothly into desired profiles for multiple 

actuator configurations including a single actuator linked to one 

edge and a pair of actuators linked to two parallel edges of the 

surface.  

In the following (Section 2) details of the approach including the 

model configuration and characteristics, its corresponding equations 

and a simple theoretical verification of the lumped mass model will 

be presented. Section 3 then demonstrates how to model an 

adaptable continuum robotic arm and link it to the LDCS. Simulated 

results are then presented for desired bending and actuation profiles 

of the LDCS. Section 4 provides details on an experimental actuated 

LDCS setup, with experimental validation of the model for 

actuation configurations of a single actuator linked to one edge and 

a pair of actuators linked to two parallel edges of the surface. This 

section also presents further validation of the model by applying an 

external concentrated force on the surface while monitoring its 

transient dynamic performance. Finally, the study will be 

summarised by concluding remarks in Section 5.  

2. Modelling approach 

In the following subsection, the 3D model developed in the 

current work is explained in detail.  

2.1 Model configuration and characteristics  

The flexible surface model is composed of two interconnected 

layers; each including a lattice of lumped masses linked together 

(b) 

(c) 
Fig. 2. a) Representation of the LDCS lumped-mass model with a close-up view of one corner; b) Arrangement of the masses linking to the 

typical central mass i,j in bottom layer of the 2-layer model; c) The featured spring-damper link connecting every two masses in the model 

(a) 
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through linear springs. The model also includes springs in all locally 

diagonal directions around every mass in the model to take shear 

effects into account and hence represents a more realistic 

performance of a thick plate or shell than other surface lumped-mass 

models presented to date, e.g. in [21, 25], wherein only one layer of 

simple lumped-mass grids has been created. Fig. 2a shows a 

representation of the developed model with a close-up of a corner 

of the surface to display all the spring connections between 8 typical 

masses in the layers. As a result of both the anticipated large 

deformations and plate/shell thickness the planes normal to the 

neutral plane of the surface will not remain perpendicular after the 

surface undergoes deflection. The resulting model configuration 

therefore links a typical mass in the middle of any layer to 8 

surrounding masses in the same layer along with 9 other masses on 

the opposite layer of the model as shown in Fig. 2b. It is not shown 

in the diagrams for clearness and simplicity, but every line 

connecting the masses (shown as spheres) is composed of both 

spring and damping elements (Fig. 2c) to absorb energy and provide 

stiffness elements. 

 The dynamic behaviour of each mass in the model is then the 

result of forces applied by surrounding springs as well as the 

gravitational force acting permanently in the –Z direction. The 

model can also include the effects of external forces on the 

individual masses, and those at the boundaries with applied 

constraints, e.g. those with support reaction loads, utilize this 

external force for their boundary conditions. Likewise, external 

interactive loads, such as those imposed by connecting actuation 

elements and/or external environmental forces, are also applied. 

There are a few simplifying assumptions in this work. The surface 

is assumed flat before deformation and its main axes are aligned 

straight before loading. The rectangular cross sectional area along 

any Cartesian direction in the surface is constant before 

deformation. These sections are originally perpendicular to the 

longitudinal axes of the surface but they may not remain normal due 

to inclusion of shear effects and hereupon allowing for motions of 

different points in different directions. Hence the in-depth thickness 

does not need to be considered small. The mass of the surface is 

evenly distributed between the two layers on the top and bottom of 

the neutral plane and the material of the model is considered elastic, 

homogenous and isotropic. The dominant deflection of the surface 

in this particular work is bending about the y-axis in the XY plane, 

but other motions are achievable. The internal strain energy of a 

surface segment could be due to bending moment, transverse or 

axial deflections and the model is capable of accounting for these 

distortions. 

The equations of motion to determine the dynamic behavior of the 

flexible LDCS are derived through general Newtonian principles as 

follows 

where U represents the vector of displacement, [M] the diagonal 

lumped mass matrix, [C] the damping matrix, [K] the stiffness 

matrix, and Fext and W are the vectors representing external forces 

and gravity (weight) respectively acting on the model.  

To implement Eq. (1), the displacement of masses should be first 

expressed in terms of the model physical parameters. For this 

reason, a computation scheme was devised to apply Newton’s 

second law of motion and Hooke’s law directly on each mass 

projected in all the 3D Cartesian coordinates. Fig.3 shows a 

representative pair of masses, m1 and m2, connected by a linear 

spring of unloaded length L that move from their origins at time t1 

to other points in the space at time t2 through an arbitrary 

deformation of the surface. 

 
Fig. 3. Representation of two typical interconnected lumped masses of the 

model before deformation (at t=t1) and after that (at t=t2) 

The transition of the two masses in Fig. 3 develops a spring force 

that is actually a component of the term [K]{U} in Eq. (1). This 

force, according to Hooke’s law, is determined as follows: 

𝑓𝑞 = 𝑘𝑢𝑞
12 + 𝑐𝑢̇𝑞

12  (2) 

where fq is the force between m1 and m2 in Fig. 3 applied through 

compressing or stretching the connecting spring. Also, q represents 

𝑞 = 𝑒̂𝑥 , 𝑒̂𝑦 , 𝑒̂𝑧 that are unit vectors for the Cartesian coordinates X, 

Y, and Z respectively. The unloaded length of springs in all the three 

coordinates q is equally set as l. Likewise, k and c are the stiffness 

of the spring and damping coefficient respectively, and 
12

qu  

represents the net stretch or compression of the spring along the 

coordinate q emerging after deformation, which is determined 

through the following equation 

𝑢𝑞
12 =

(|𝑙+𝑢2−𝑢1|−𝐿)(𝑙+𝒖𝟐𝒒−𝒖𝟏𝒒)

|𝑙+𝑢2−𝑢1|
  (3) 

where u1 and u2 are the displacement vectors of m1 and m2 defined 

as 𝑢1 = 𝒖𝟏𝒙𝑒̂𝑥 + 𝒖𝟏𝒚𝑒̂𝑦 + 𝒖𝟏𝒛𝑒̂𝑧  and 𝑢2 = 𝒖𝟐𝒙𝑒̂𝑥 + 𝒖𝟐𝒚𝑒̂𝑦 +

𝒖𝟐𝒛𝑒̂𝑧 respectively. Hence uiq (i = 1, 2) in Eq. (3) are the components 

of vectors 𝑢1 and 𝑢2 in direction q. 

Moreover 12

qu  in Eq. (2) is the time derivative of Eq. (3) defined 

as 𝑢̇𝑞
12 =

𝑑

𝑑𝑡
(𝑢𝑞

12). Then a set of equations whose number depends 

on the number of lumped masses multiplied by 3 (the number of 

coordinates), can be solved numerically which was implemented 

here through the software Matlab R2016a.  

As depicted in Fig. 2b, a typical mass indexed by ‘i,j’ located in 

the center of the bottom layer of the surface is bound to other masses 

by 17 linear springs. The surrounding masses are also denoted by 

‘i,j’ formats. The amount of displacement for the central point (i,j) 

is then given by 

        𝑢𝑞
𝑖,𝑗

= ∫ (∫ 𝑢̈𝑞
𝑖,𝑗

𝑡2

𝑡1

𝑑𝑡) 𝑑𝑡
𝑡2

𝑡1

=
1

𝑚
∫ (∫ ∑ 𝑓𝑞(𝑡)𝑑𝑡)𝑑𝑡

𝑡2

𝑡1

𝑡2

𝑡1

=
1

𝑚
∫ (∫ {𝑘

𝑡2

𝑡1

𝑡2

𝑡1

𝛿𝑈𝑞 + 𝑐
𝑑

𝑑𝑡
[𝛿𝑈𝑞]

+ 𝐹(𝑒𝑥𝑡)𝑞 − 𝑊}𝑑𝑡)𝑑𝑡 

(4) 

WFUKUUM ext  }]{[}]{[}]{[  C  (1) 
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where
qU  is determined through the following term  

    𝛿𝑈𝑞 =  𝑢𝑞
𝑖−1,𝑗

+ 𝑢𝑞
𝑖+1,𝑗

+ 𝑢𝑞
𝑖,𝑗+1

+ 𝑢𝑞
𝑖,𝑗−1

+ 𝑢𝑞
𝑖+1,𝑗+1

+ 𝑢𝑞
𝑖+1,𝑗−1

+ 𝑢𝑞
𝑖−1,𝑗+1

+ 𝑢𝑞
𝑖−1,𝑗−1

+ 𝑢𝑞
(𝑖−1,𝑗)𝑇 + 𝑢𝑞

(𝑖+1,𝑗)𝑇 + 𝑢𝑞
(𝑖,𝑗+1)𝑇

+ 𝑢𝑞
(𝑖,𝑗−1)𝑇 + 𝑢𝑞

(𝑖+1,𝑗+1)𝑇 + 𝑢𝑞
(𝑖+1,𝑗−1)𝑇

+ 𝑢𝑞
(𝑖−1,𝑗+1)𝑇 + 𝑢𝑞

(𝑖−1,𝑗−1)𝑇 + 𝑢𝑞
(𝑖,𝑗)𝑇 

(5) 

where the terms uq for the masses in all positions (‘i-1, j’, ‘i+1, j’, 

…) except the central mass (i,j) are determined using Eq.(3), here 

noting that the lengths l and L can be assigned different values 

depending on the position of each mass relative to the mass i,j. In 

Eq. (5), the index T indicates the masses located in the top layer. 

Any external load in the model is represented by F(ext)q but the 

weight of each point mass is denoted by W (=mg) as it is applied 

only in the direction –Z. 

It should be noted that the parameters k and c in Eq. (4) have been 

presumed constant and equal for all springs and dampers between 

any two masses in any direction, whether axial or diagonal, 

throughout the LDCS model to make the surface stiffness uniform. 

In other words, the surface is assumed to be isotropic and 

homogeneous, which is also the case for the experimental surface 

detailed in Section 4.1. Note also that the terms corresponding to 

damping forces vanish under steady-state conditions and they affect 

the displacements only in transition states with no influence on the 

steady-state accuracy of the results.  

It is also notable that the motion described by Eq. (4) should be 

applied for all the surrounding masses shown in Fig. 2b and 

consequently for all the existing masses in the lumped model to be 

solved at each time iteration. The equations for the masses located 

at the top layer are similar to Eq. (4) where the places of the top and 

bottom layers are reversed. Here the index T is replaced by B 

indicating the masses located in the bottom layer of the model. Also, 

the signs +/– in some of the existing terms are changed accordingly 

based on predefined geometrical positions. It is worth mentioning 

that the equations of motion for boundary masses vary based on 

imposed conditions. When a mass is constrained in one direction, 

the corresponding displacements must become zero in that direction 

rather than being calculated through Eq. (3). Likewise, for the 

masses directly linked to actuators, the amount of displacement is 

initially dictated by the motion of an actuator to which the mass is 

bound. To clarify this issue, the development of an actuator model 

by which the LDCS is bent into the shapes desired for the present 

work will be presented in Section 3.1. 

2.2 Theoretical model verification  

Having developed the surface model, the LDCS can now be 

actuated through specific configurations using a continuum robot 

arm attached to the surface. However, prior to this the surface based 

model was tested, loaded under its own weight, to evaluate its 

consistency with results yielded by Timoshenko Beam theory. The 

3D lumped model shown in Fig. 4a is composed of 24 lumped 

masses, total length L=0.5 m, width w= 0.1m, cross section A=0.01 

m2, total mass m=0.3kg, Poison’s ratio 𝜈 = 0.5 and Young’s 

modulus E=40 kPa deflecting under its own weight. Given these 

values, using the approach presented in [24], developed for planar 

lumped-mass arrays, along with using equivalent spring constant for 

series/parallel springs, an average value of k=250 N/m was worked 

out as the spring stiffness matching the properties of this model.  

Note that not all the spring-damper links are shown in the figures 

pertinent to the lumped models in this work. In the presented Fig. 

4a, only the links on surface and edges are displayed for better 

visibility and to avoid complicating the images. 

The results of this initial test, depicted in Fig. 4b, highlight a 

reliable conformity between the developed lumped-mass 

configuration of the surface and the Timoshenko theory, with 

maximum error of 1.1 mm at the end point, in comparison to the 

model dimensions of 500x100x100 mm. Note that the maximum 

deflection of the beam calculated and shown here is less than 10% 

of its total length. However, when the weight of the model was 

increased to cause larger deflection and curvature, the two result sets 

found further departure from each other due to the inconsistency of 

Timoshenko theory with such large deformation as mentioned in 

Section 1. Hence, a different numerical method or an experimental 

test was needed to validate the model when undergoing larger 

deformations. 

3. Simulation of actuated LDCS  

This section describes how the modelled LDCS is bent and 

deformed into the profiles of interest followed by the presentation 

of initial simulated results after actuation. 

3.1 Integrated LDCS-arm model 

Deformation of the surface in this work is provided by a 

controllable continuum arm linked to the surface and used as an 

actuator. Here it is not our aim to present a novel development in 

modelling such actuators, rather we illustrate how the surface model 

is moved and deflected into the shapes of interest with certain 

curvatures to be compared with the empirical tests accordingly. The 

development of soft actuators themselves is a crucial phase in 

designing robotic LDCS surfaces [28]. An actuator model was 

developed here to match the physical realization of the surface 

model. The general concept of the actuator model is shown in Fig. 

5a, and this is then embedded into the surface model. The general 

idea of this arm model has been previously developed and validated 

by other researchers e.g. a study carried out by Giri and Walker [29] 

wherein a section of a continuum arm is modelled using lumped 

model elements and application of Lagrangian principles. The main 

(a) 

original position 

deflected 

position 

Fig. 4. a) Representation of a 3D, beam model under its weight composed of 24 lumped masses interconnected by linear springs. 

b) Results of the model deflection versus the beam theory 

 

(b) 

Z 

X 

Y 
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difference with the presented model is that the arm sections in [29] 

are driven by input forces representing air muscles in the system 

while the current work applies torque joints between the lumped 

segments to rotate them and bend the entire arm resulting in fewer 

actuated degrees of freedom.  

The central backbone of the model is assumed able to rotate along 

the segments for generating smooth bends. As a result, the two 

marginal, parallel edges of the model surface can elongate, and/or 

contract while bending. These two edges will be then linked to the 

top and bottom borderlines of the surface model.  

The actuator model is a multi-body system consisting of lumped 

segments of mass ml, and moment of inertia I as shown in Fig. 5a. 

The segments of core spine are joined together via torsional springs 

and torsional dampers whose stiffness and damping coefficients are 

denoted by kt and ct respectively. A clearer configuration of the 

model that incorporates all necessary characteristics for formulation 

and matches well with the modelled LDCS is the 4-link, lumped 

parameter model illustrated in Fig. 5b where its flexibility is due to 

the fitted torsional springs. In our case the arm is restricted to planar 

motions, similar to the most of previously developed soft bending 

actuators (e.g. [30]), which results in movement in the XZ plane, as 

this is also how the experimental arm is set-up. The transverse links 

A1B1, A2B2, A3B3, and A4B4 are attached and perpendicular to the 

links L1, L2, L3, and L4 respectively and hence their motions 

determined by the corresponding links. In this model the length of 

all the related links are assumed equal as Li=ll and
bii lBA  .  

The major variable of this system is
i , the rotation angle of each 

link in the XZ plane, through which the state of the system can be 

fully described given that the left-hand node of the first main 

segment (O0) and the transverse link A0B0 are fixed in space. As both 

the kinetic energy (Ek) and the potential energy of the actuator (Ep) 

can be evaluated with respect to
i , its motion can be described 

through a Lagrangian formulation via the following  

𝜕

𝜕𝑡
(

𝜕𝐿𝑛

𝜕𝜃̇𝑟
) −

𝜕𝐿𝑛

𝜕𝜃𝑟
= 𝑇𝑟   (6) 

where Ln (= Ek – Ep) is the composite energy term and Tr denotes 

the external torque acting on the coordinate 𝜃𝑟. As shown in Fig. 5b, 

the torques (Tr = T1, T2, T3, and T4) are applied on the left-hand joints 

of the links at O0, O1, O2, and O3 respectively to generate a desired 

curvature throughout the arm. Having calculated Ek and Ep, the 

Lagrangian term for the 4-link arm shown in Fig. 5b is given by   

 

 

𝐿𝑛 =
1

2
𝑚𝑙𝑙𝑙

2[
10

3
𝜃̇1

2 +
7

3
𝜃̇2

2 +
4

3
𝜃̇3

2 +
1

3
𝜃̇4

2

+ 5𝜃̇1𝜃̇2 cos(𝜃1 − 𝜃2)

+ 3𝜃̇1𝜃̇3 cos(𝜃1 − 𝜃3)

+ 3𝜃̇2𝜃̇3 cos(𝜃2 − 𝜃3)

+ 𝜃̇1𝜃̇4 cos(𝜃1 − 𝜃4)

+ 𝜃̇2𝜃̇4 cos(𝜃2 − 𝜃4)

+ 𝜃̇3𝜃̇4 cos(𝜃3 − 𝜃4)] −
1

2
[𝑘𝑡1𝜃1

2

+ 𝑘𝑡2(𝜃2 − 𝜃1)2 + 𝑘𝑡3(𝜃3 − 𝜃2)2

+ 𝑘𝑡4(𝜃4 − 𝜃3)2]

−
1

2
𝑚𝑙g𝑙𝑙[7 sin 𝜃1 + 5 sin 𝜃2

+ 3 sin 𝜃1 + sin 𝜃4] 

(7) 

To evaluate the equations of motion for this system, the masses of 

the links were considered in the potential energy and the damping 

effects were applied through the principle of virtual work and 

included in Tr. Given the energy term in Eq. (7), and substituting in 

Eq. (6), it is then possible to derive the equations of motion for the 

arm which are solved numerically using Matlab. Then, the rotations 

of all the four main links (
i ) and consequently the displacements 

of the transverse links i.e. the points Oi, Ai and Bi shown in Fig. 5b 

are determined using geometrical relations. For example, the XZ 

coordinates of the point A3 are given by:  

which are then subtracted from their original values to arrive at net 

displacements. Subsequently the points Ai and Bi are connected to 

the corresponding lumped masses located in the top and bottom 

layers of the surface model respectively as illustrated in Fig. 6. This 

connection is made through stiffer springs (as the values will be 

given in the next section) to enable force based connection between 

the elements. Note that every three pairs of the lumped masses of 

the surface in the longitudinal direction (X) are bound to one main 

link (segment) of the actuator as seen in Fig. 6. The intervening 

masses are not joined to the arm. As a result, the surface and the 

continuum arm are bound together at 5 sections indicated by A0B0, 

A1B1, A2B2, A3B3, and A4B4 in Fig. 5 and Fig. 6. It is mentionable 

that the arm model was initially developed with the same number of 

masses along the surface edge to connect every link’s end to a mass 

on the surface model. However, that arrangement made only a small 

improvement on the accuracy of results, less than 0.2%, at the cost 

of a significantly increased runtime. Because the purpose of this 

model is for use in model-based control, computational efficiency 

33213

33213

cos
2

)sinsin(sin

sin
2

)coscos(cos





b
lA

b
lA

l
lz

l
lx




 

(8) 

X 

Z 

Torsional spring and dampers (kt, ct) 

(a) (b) 

Fig. 5. a) Schematic of general arm model when embedded in the flexible LDCS; b) The lumped parameter, multibody actuator model to 

match the 2-layer configuration of the flexible LDCS in which kt and ct denote stiffness and damping coefficients of torsional springs and 

torsional dampers respectively. The torques Tr (where r=1, 2, 3, 4) are applied on the left-hand joints of the links at O0, O1, O2, and O3 

causing the rotations (𝜃𝑖) of the four main links L1, L2, L3, and L4 to generate a desired curvature throughout the arm. Likewise, transverse 

links A1B1, A2B2, A3B3, and A4B4, all with the equal length of |𝐴𝑖𝐵𝑖| = 𝑙𝑏, are attached and perpendicular to the main links. 

o 

I, ml 

I, ml 
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applications, reducing computation time over absolute accuracy is 

an essential factor. 

 
Fig. 6. Representation of the LDCS integrated with an arm model along 

one side of the surface. 

To match the two models, the thickness of the surface should be 

adjusted equally with the length of transverse links i.e. 

zbii llBA  . Moreover, since the length of each link of the 

actuator is twice the distance between every two masses of the 

surface in the x-direction, in all simulation results it has been 

assumed that Li=ll=2l.  

3.2 Simulation results 

The dynamics of the developed flexible grid when actuated is 

influenced by gravity and the external loading applied by the 

actuators integrated with the surface. In this work two 

configurations for the integrated LDCS-arm model were developed 

and tested; Test 1- one actuator is mounted on one edge of the 

surface (Figs. 7a, b); and Test 2- a pair of the actuator model are 

linked to two parallel edges of the surface (Fig. 8a, b). In both 

arrangements, the surface is clamped along the indicated edge to 

hold the surface up from the ground. 

The surface model contains a 2-layer square grid of 9x9 masses 

developed according to the modelling approach described in Section 

2. Thus it consists of 162 masses of m=1.5 g with the total mass 

M=243 g. This conforms to the characteristics of experimental test 

surfaces manufactured for the test setup. The total length and width 

of Ltot=0.160 m (i.e. l=0.020 m), thickness lz=0.010 m and therefore 

a cross section area A=16*10-4 m2 were selected. A 9x9 grid was 

chosen to represent the surface as an initial trade-off between 

accuracy and computational efficiency of the system as discussed in 

Section 4.3.  

A value of k=400 N/m was determined as the spring stiffness of 

the LDCS model to match the Young’s modulus and Poisson’s ratio 

of the flexible surface in the experimental test described in Section 

4.1 using the approach presented in [24], previously developed for 

(a) 

X Y 

Z 

LDCS 

original position  

Continuum arm 
  

LDCS model  

Clamped edge 
  

(b) 

Fig. 7. Test 1- The LDCS model deformed by a single continuum arm when it bends into a curvature of radius r=0.131 m (kr=7.63 m-1), 

shown in two different views (a and b). 

(a) X Y 
Z 

Continuum arms 
  

LDCS original position  

LDCS model  

Clamped edge 
  

(b) 

X 

Y 
Z 

Fig. 8. Test 2- The LDCS model deformed by a pair of continuum arm attached to two parallel sides when bending into a curvature of 

radius r=0.092 m (kr=10.87 m-1); a) top-layer view b) bottom-layer view. 
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planar lumped-mass arrays. The value for the springs linking the 

arm(s) to the surface was selected as ka=4000 N/m to represent a 

firm connection between the two models. 

Physical properties of the continuum arm model were selected to 

match the characteristics of the fabricated actuator that will be 

discussed further in Section 4.1. Consequently, each link of the 

model was given a mass of ml= 0.01 kg and length ll=2l=0.040 m, 

while the massless transverse links (AiBi) were fitted equal to the 

surface’s thickness i.e. lb= lz=0.01 m. 

Figs. 7a, b presents the simulation results of Test 1 from two 

different views, which are of the final deformed shape of the LDCS 

model in the static condition after it has undergone the transient state 

due to actuation of the arm which was bent into a curvature of radius 

r=0.131 m (kr=7.63 m-1). In the second configuration (Test 2), two 

identical continuum arms with the same physical properties used in 

Test 1 were attached to the parallel edges of the surface. Fig. 8 again 

shows two views from the final profile of the LDCS model in this 

test, under static conditions that are caused by the actuation of the 

pair of arms bent into a curvature of radius r=0.092 m (kr=10.87 m-

1). 

As can be seen, the top centre of the surface has slightly sagged 

down under its weight which is due to symmetry in the boundary 

conditions applied by the two actuating arms. In both Figs. 7 and 8, 

the actuating arm is shown in black lines in the lateral side(s) of the 

surface model where it has displaced the surface from its original 

position (as indicated in the figures) placed on the horizontal XY 

plane and bend it up to obtain the curvature determined by the values 

given to the applied torques (Ti) and the stiffness of torsional springs 

(kti). Note that since the simulation is initialized from zero gravity, 

the actuator model does not need to be pre-strained and pressurised 

to keep the surface straight in the XY plane. In other words, actuating 

and gravity forces are applied simultaneously at the beginning. It 

should also be noted that Figures 7 and 8 have been drawn on 

purpose slightly detached to highlight the distinction between the 

two models, when in the model they are actually connected by the 

spring ka. 

Further details on the testing procedure are given in the following 

section where the equivalent experimental tests are presented to 

provide ground truth for evaluating the modelling results. 

4. Experimental setup and validation 

4.1 Test rig 

To validate the modelling results a test rig, shown in Fig. 9, was set 

up consisting of an aluminium frame, position sensor system, PC 

DAQ and a pneumatic system to operate the actuators. The sensor 

system is a 3D Guidance trakSTAR (Ascension Corp., USA) chosen 

and used for its convenience and high accuracy with measuring 

displacements up to 0.1 mm. The sensor system’s main box was 

connected to the PC using a USB cable and three sensor probes（

Model 180 were plugged to the main box. The sensors can be 

inserted in the surface at any desired position. The sensor system 

also includes an electromagnetic generator (MRT) to generate a 

magnetic field working in conjunction with a transmitter that 

establishes the coordinate frame and tracking volume. The system 

is then capable to sense the displacement of every probe in the 

magnetic field in three spatial coordinates. 
A soft surface was then fabricated from Ecoflex-0050 silicon 

rubber poured into a rectangular mould to be solidified and shaped 

into the same effective dimensions considered for the developed 

LDCS model. Also, a clamping holder to fix one edge of the surface 

was built through prototype 3D printing. Similarly the continuum 

robotic arm actuator was made from a material known as 

DragonSkin-0030 silicon rubber formed through a designed mould 

shown in Fig.10a. Manufacturing the arm was then accomplished 

by fitting reinforcement fibres and an inextensible layer to be 

adapted and integrated with the fabricated surface as presented in 

Fig.10b. The details on the method to fabricate this type of actuator 

Inextensible layer 
  

Continuum 

robotic arm 

(actuator) 
Soft surface 

  

Actuator mould 
  

(a) (b) 

Fabricated arm 
  

Fig. 10. a) The actuator mould designed to fabricate continuum arm; b) Schematic details of the 

integrated surface-actuator used in the experimental test rig.  

(a) (b) 

Unactuated soft 

surface 
  

PC 
  

Aluminum frame 
  

Sensor probes 
  

Sensor system 

Air pump 

Integrated 

surface-actuator 

Air tube 

Valves 

Magnetic field generator 

Fig. 9. a) The test rig set up for the experimental tests; b) two different views of the manufactured soft 

surface without integrated actuator and sensors while clamped at one edge hanging under gravity.  



JMR-19-1021 Habibi   8 

 

are provided by Polygerinos et al [30]. The actuator is hollow and 

operated by air pressure which enables to bend up in different 

desired curvatures. The bending curvature is proportional to air 

pressure and controlled by varying the input analog voltage of a 

proportional valve (SMC ITV2000) in the pneumatic system. In this 

experiment, air pressures of 81 kPa and 116 kPa were used 

respectively in Test 1 (to bend the actuator into a curvature of radius 

r=0.131 m) and Test 2 (to bend the actuators into a curvature of 

radius r=0.092m). The curvatures were empirically obtained via 

fitting the position points measured along the length of several 

points along the curve. This consistency in curvature is also in 

agreement with the beam theory and modelling method of the soft 

actuator from [30]. Once the soft surface is attached to the surface, 

it can be approximated as a uniform payload acting on the arm 

causing a constant curvature shown in Figures 13 and 14. 

The tests were carried out so that the manufactured surface and 

the LDCS simulation undergo the same loading and boundary 

conditions as well as geometrical and material properties. The 

primary difference is likely in the material damping of the modelled 

LDCS, which was considered in this study as c=1 N.s/m to improve 

performance of the model, effectively by not letting the model 

vibrate forever, while maintaining results similar to the 

experimental values. This difference is clear in Fig.19 in Section 4.4 

at the beginning of movement of the surface (transient state). 

Although this low value (c=1 N.s/m) would increase calculated 

displacements in the transient regions, but it was chosen as the result 

of a compromise between the computational efficiency of the 

model, its oscillatory behaviour during transient state and its 

consistency with the experimental surface. Nevertheless, if desired 

the material damping can be tuned to provide compatibility with 

almost any desired flexible surface. 

To calculate Young’s modulus (E) of the fabricated surface, a 

tensile test machine (NEWTRY ZQ-21B-4 High Precision Force 

Testing and Tension/Force Gauge, China) shown in Fig. 11a, was 

utilised. This machine applied a uniform axial force on the surface, 

gripped at one edge and gently stretched, with applied force and 

resulting displacement measured. The resulting data was used to 

draw the force-displacement graph shown in Fig. 11b to calculate 

Young’s modulus as E=75.35 kPa for this case. In addition, the 

Poison’s ratio of the surface, made from the incompressible 

material, silicon rubber, is considered to approach 0.5 as was also 

found in [31]. 

To do this tensile test, a surface with the same dimensions of the 

model (160mm*160mm*10mm), was used to provide the Young’s 

modulus of the surface. As shown in Fig. 11b, the strain obtained in 

this test is then less than 7%. Note that within this range (generally 

the strain within 0-1), the stress and strain relationship in 

hyperelastic materials such as this type of silicon rubber, is almost 

linear and it can be expressed by Young’s modulus [32-34]. The 

large deformation experienced by our surface is in the overall shape 

and spatial movement of the points across the surface that leads to 

considerable overall relative bending. However, the distance 

between every two marked points on the surface do not locally 

experience a large elongation or contraction that would lead to 

typical large elongation in hyperelastic materials, e.g. a common 

range between 100% - 400% [35]. Because the elongation of the 

surface measured in this experiment does not go beyond 10%, 

shown in Fig. 13 and Fig. 14, we may consider our surface to have 

very small elastic strain for its given material [32-34].  

 
Fig. 11. a) A tensile test machine applying uniform axial force to the soft 

surface; b) The resulted force-displacement graph to calculate Young’s 

modulus of the surface. 

4.2 Testing through experimental procedure 

The physical parameters such as mass, length, and other 

dimensions in both experimental tests were chosen to be the same 

as those in the developed models for the simulation test. However, 

the mechanical properties, i.e. Young’s modulus and Poison’s ratio, 

were first found empirically as explained in Section 4.1, and then 

applied to the lumped models to find the spring constants in the way 

explained in Section 3.2. To proceed with the experimental test, 

once the arms are operated by air pressure, the actuator(s) of the 

LDCS reshape it into desired curvatures. Since the actuator(s) in the 

experimental setup operate(s) almost linearly as a function of input 

pressure against curvature [30], the supplied pressure was increased 

gradually to reshape the surface into the curvature resulting in the 

lumped model. 

To determine bending level and curvature for the arm models, the 

torsional springs pinned at the joints shown in Fig. 5b (O0, O1, O2, 

and O3) are given specific values to result in a bend on the arm 

accordingly due to the equal, constant torques applied on the joints 

(T1, T2, T3, and T4). In other words, since same amount of torque is 

applied on these four joints connecting the main links of the arm(s), 

when a proportional set of spring stiffness are chosen and allocated 

to the linear torsional springs, each link rotates relative to its 

previously positioned, adjacent link with an angle exactly 

proportional to their stiffness difference. For example, this set in the 

case of Test 1, was selected as kt1=12, kt2=6, kt3=3, and kt4=1.5 [N/m] 

while the applied torques were selected as T1=T2=T3=T4 = 0.5 [N.m] 

which provided the desired curvature. In fact, this caused each link 

to rotate as twice as much as the previous link to finally achieve the 

overall curvature of radius r=0.131 m (kr=7.63 m-1) for the 

continuum arm. 

To detail the displacement of the LDCS during actuation, six 

points across the surface were indicated and labelled on its unloaded 

state as shown in Fig. 12. These points are assumed to be located in 

the central, neutral plane of the surface which is averaged between 

the masses positioned in the top and bottom layers. The probes of 

the sensors used for the measurements are very sharp, slender, 

flexible and can be inserted into the soft surface directly. Hence, it 

is assumed that they have very little effect on the mechanical 

properties of the soft surface.  

Due to a limited number of available sensors in the experimental 

tests, the three sensors in both setups (Test 1 and Test 2) were first 

attached to the points P2, P4 and P6 to measure their displacements. 

Then the same sensors were attached to the other three target points, 

i.e. P1, P3 and P5, to obtain the desired displacement points used for 

comparison. 

(a) (b) 
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Fig. 12. Representation of the unloaded LDCS model indicating the 

position of the points considered for measuring displacements during the 

tests.  

4.3 Empirical results and comparisons 

The results of Test 1 and Test 2 are presented here to evaluate the 

validity of the model. Fig. 13 which is related to Test 1 for the 

experimental surface, corresponds to Fig.7a, b of the simulated 

results. Fig. 14 indicates Test 2, corresponding to the simulated 

results in Fig.8a, b. In both cases the final surface displacement is 

shown.  

  
Fig. 13. The final curved shape of the manufactured soft surface in the test 

rig under static conditions when it has been actuated by a single continuum 

arm (Test 1) bending into a curvature of radius r=0.131 m. 

 

 
Fig. 14. The final curved shape of the manufactured soft surface in the test 

rig under static conditions it has been actuated by a pair of parallel 

continuum arms (Test 2) bending into a curvature of radius r=0.092 m.  

 

Table 1 shows the resulting displacements for the two sets at each 

point for Test 1. 

 

As points P1 and P2 in Test 1 are firmly joined to the continuum 

arm, and this does not twist in the y-direction, their displacements 

in the y-direction (uy) remain zero. However, these points in the 

simulation do have minor transitions in the y-direction due to the 

simulated spring connections between the surface and actuator.  

Figure 15 depicts the data in Table 1 via a bar chart to visualise 

how closely modelling and experimental results confirm each other 

in different coordinates.    

 

Fig. 15. Comparison of displacement results between the LDCS model 

and the experimental surface at 6 measured points in Test 1. [Data acquired 

from Table1.] 

Similar to Test 1, the displacement data for all 6 points in Test 2 

are shown in Table 2. The results in Test 2 from the two presented 

sets show that the average absolute error is less than 1 mm. As 

before, some points in the y-direction (uy) are not displaced. This is 

because the four points P1, P2, P5 and P6 are attached firmly to the 

two parallel actuators. Also the two points P3 and P4 are located in 

the middle of the surface and which are then subjected to 

symmetrical boundary and physical conditions about the surface’s 

central X-axis. Due to this symmetry, as expected, some identical 

displacements for a few pairs of points result in Test 2 as can be 

seen in Table 2. These are ui(P2) = ui(P6), ui(P1) = ui(P5) where i= x, z 

and uy(P2) = -uy(P6), uy(P1) = -uy(P5). On the contrary, there is no 

symmetry in the boundary conditions applied in Test 1. 
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Table 1 

Comparison of the displacement results between the LDCS 

model and the experimental surface acquired from Test 1 (Fig.7 
and Fig. 13) measured at 6 different points of the surface. Data 

are in [mm]. 

Measured 

Points 

Modelling Experimental 

𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 

P1 -11.6 -1.1 21.3 -12.4 0 20.0 

P2 -44.5 -1.3 82.6 -45.4 0 80.8 

P3 -4.6 -3.6 10.8 -3.6 -4.8 9.5 

P4 -15.1 -6.6 46.9 -16.0 -7.9 44.9 

P5 4.2 -5.8 -4.0 5.4 -7.0 -2.5 

P6 3.6 -15.7 14.9 4.8 -17.1 12.8 

P2 

P4 

P6 

P1 

P5 
P3 

Continuum arm 
  

Flexible surface 
  

Sensors 
  

Clamped edge 
  

X 

Y 
Z 

Clamping holder 
  

Parallel Continuum arms 
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Similarly, the data in Table 2 have been utilised in Figure 16 to 

plot a clearer picture of agreement between modelling and 

experimental results obtained in Test 2. 

 

Fig. 16. Comparison of displacement results between the LDCS model 

and the experimental surface at 6 measured points in Test 2. [Data acquired 

from Table 2.] 

Table 3 shows a summary of absolute error between modelling and 

experimental results at 6 points of the surface considering one 

decimal digit for both of the implemented tests. Shown in Table 3, 

apart from the absolute errors in each coordinate (𝑢𝑥, 𝑢𝑦, and 𝑢𝑧), 

are the spatial magnitude of these displacement errors for each point 

(δu) determined through 𝛿𝑢 = √𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2. 

 

As seen in Table 3, the measured points in Test 1 results in very 

large deformations and therefore reveals accordingly larger errors 

(mean absolute error of 1.3 mm among the coordinates 𝑢𝑥, 𝑢𝑦, and 

𝑢𝑧 ) than Test 2 (mean absolute error of 0.7 mm among the 

coordinates 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧). Overall the average absolute error for 

both tests was found to be less than 1 mm among the coordinates 

𝑢𝑥 , 𝑢𝑦 , and 𝑢𝑧, which is very small in comparison to the overall 

surface dimensions of 160x160x10 mm (less than 1% of the length 

of surface’s sides). In addition, the maximum spatial magnitude of 

the errors (δu) is 2.8 mm that corresponds to point P6 in Test 1. 

However, the mean value of δu from the both tests was found as 

δu)mean = 1.75 mm which is still considered small as it is only slightly 

above 1% of the length of surface’s side (1.06%).  

One main reason for this small error is the limited number of 

nodes (masses) used in the model here for computational efficiency 

where as with other discretization model methods, increasing the 

number of nodes would lead to more precise results. However, 

achieving an optimal number of nodes to be used for the LDCS 

model requires a comprehensive optimization process that is out of 

the scope in this work. 

 

4.4 Further validation: External loading and dynamic 

transient performance 

As mentioned above, one of the main goals for the modeling of 

the actuated surface is to evaluate against external loading in static 

and dynamic conditions. For this reason, in addition to the 

gravitational effects, an additional mass representing a 

concentrated, constant external force was applied to the top, centre 

of the surface at point P4 in the configuration of parallel arms as 

shown in Fig. 17. This image shows the final deformation of the 

integrated actuator-surface after the transient operation of actuation 

ended. 

 
Fig. 17. Image of the experimental test of the actuated flexible surface 

undergoing an additional weight positioned between two embedded 

continuum arms. 

The model configuration in this test was again composed of two 

lattices of 9x9 masses, or 162 masses in total across the surface. The 

value of each mass was chosen as m=9.87*10-4 g i.e. with the total 

mass of M=160 g. The additional mass was selected as m0=40 g to 

quantify the external load as F0=0.39 N. 

The simulation results of this test are presented in Fig. 18 wherein 

the 2-layer LDCS model has been bent up by two parallel continuum 

arms of identical physical properties embedded in the surface. The 

actuating arms, shown as black lines in the lateral side(s) of the 

LDCS model, have actuated it into a curvature of radius r=0.115 m 

(kr=8.69 m-1) at the side edges. It can be seen that the top centre of 

the surface where the additional mass is attached sags down due to 

the concentrated external force applied to this point. In the 

experiment, to ensure that the actuation and gravity forces operate 

at the same time, two plates as shown in Fig.17 were used to support 

the surface at the start. When the actuation force was applied the 

surface was then lifted from the support. Similarly, in tests with the 

additional weight, it was held by a movable seat support to ensure it 

would not hang off of the surface before actuation, which results in 

a starting displacement of 0 at t=0 sec, as shown in Fig.19.  The seat 

support was moved aside at the same time as the actuation started.    
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Table 2 

Comparison of the displacement results between the LDCS 

model and the experimental surface acquired from Test 2 (Fig. 8 

and Fig. 14) at 6 different points of the surface. Data are in 

[mm]. 

Measured 

Points 

Modelling Experimental 

𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 

P1 -6.5 -0.4 14.5 -7.0 0 13.8 

P2 -62.7 -0.6 88.9 -63.5 0 88.0 

P3 -4.2 0 12.8 -4.9 0 11.9 

P4 -48.2 0 87.3 -49.4 0 86.2 

P5 -6.5 0.4 14.5 -7.0 0 13.8 

P6 -62.7 0.6 88.9 -63.5 0 88.0 

Table 3 

Summary of absolute error between modelling and experimental 

results at 6 points of the surface for both Test 1 and Test 2.  Data 

are in [mm]. 

Error P1 P2 P3 P4 P5 P6 

Test 1 

𝑢𝑥 0.8 0.9 1.0 0.9 1.2 1.2 

𝑢𝑦 1.1 1.3 1.2 1.3 1.2 1.4 

𝑢𝑧 1.3 1.8 1.3 2.0 1.5 2.1 

𝜹𝒖 1.9 2.4 2.0 2.5 2.3 2.8 

Test 2 

𝑢𝑥 0.5 0.8 0.7 1.2 0.5 0.8 

𝑢𝑦 0.4 0.6 0 0 0.4 0.6 

𝑢𝑧 0.7 0.9 0.9 1.1 0.7 0.9 

𝜹𝒖 0.9 1.3 1.1 1.6 0.9 1.3 
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Fig. 18. Simulation results for the lumped mass LDCS model undergoing a 

concentrated external force displayed at its final static deformed shape after 

actuation by two continuum arms embedded in its two parallel edges. 

Figure 19 shows the displacement of point P4 on the surface 

versus time in the x, y and z directions for both the simulated and 

experimental tests. As shown, the point undergoes tiny fluctuations 

in displacement (with a maximum vibration amplitude of 3 mm for 

the 160mm-long surface) in the initial transient period due to the 

sudden movement and low material damping (c=1 N.s/m as 

explained in Section 4.1). Differences in this transient region are 

small and likely due to material property differences for c and k in 

the model. After the transient dies out the two results converge and 

settle very close together in the x and z-directions, indicating a 

reliable static performance for the developed model. The results in 

the y-direction remain zero as expected due to symmetry in 

geometry, loading, and boundary conditions applied by the two 

parallel arms positioned equally apart on its two sides. 

 

5. Conclusions  

This paper has introduced and validated a novel 3D, two-layer, 

lumped mass-spring-damper model to describe the behaviour of 

actuated surfaces undergoing large deformations. The study has also 

extended the application of a lumped mass approach for 

characterising and representing thick flexible plates in 3D space 

where a continuum robotic arm and flexible surface are integrated 

together. The full model takes into account interactive forces 

(between the actuating arm and surface), as well as physical and 

mechanical properties of the system such as mass, elasticity 

characteristics, gravity, material damping, and in-depth shear 

effects. The static deflection of the developed surface model under 

its own weight was first compared to the well-known Timoshenko 

beam theory with maximum error of 1.1 mm at the end in 

comparison to the model length of 500 mm.  A test rig was 

constructed for two simulated surface-arm configurations, Test 1 – 

Single actuator along an edge and Test 2 – Parallel actuators along 

two edges, for experimental comparison purposes. In addition, the 

developed model accounted for deformations resulting from a 

combination of loads applied by the actuation arms, gravity and 

external forces, while still accounting for in-depth bending shear 

effects of thick flexible plates. The model further successfully 

demonstrated the transient dynamic performance of actuated 

surfaces undergoing large deformation while experiencing 

concentrated external loading. 

Simulated and experimental results show that the model is capable 

of accurately predicting profiles and curvatures of the actuated 

LDCS due to applied forces by the continuum arm(s), whether 

dynamically over the transient actuation time or statically after the 

end of motion with a mean error magnitude of about 1% of full 

surface length at final deflected positions. 

In summary, the proposed model is a new methodology to enable 

a modelling method for actuated surfaces undergoing large 

deformations through the use of continuum actuation. This approach 

is primarily focused to present a middle ground between FEA 

techniques (usually with insufficient level of computational 

efficiency) and very simple analytical models (usually with low 

level of accuracy or incapable of modelling shear deformations) for 

such structures for use in model-based control methodologies. In 

line with this characteristic, future work will focus on the trade-off 

between computational efficiency and accuracy of modelling when 

applied to model based control methodologies, particularly in 

applications where high computational power is not available. The 

model presented here could then be used in model-based control 

strategies across a range of highly deformable continuum robotics 

applications such as the manipulation of parts in manufacturing 

environments, soft/flexible exoskeleton systems in healthcare, and 

deformable surface control in the aerospace, automotive, energy and 

food processing industries. 
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