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Abstract 

This paper describes how computational intelligence can be used to simulate medical imaging to 

explore areas that cannot be easily achieved by medical imaging. Simulating genes and proteins that 

have direct influences to cancer development and immunity belong to this category. This paper has 

presented simulation and inspection of BIRC3, BIRC6, CCL4 and KLKB1 with their outputs and 

explanations. Brain segment intensity involved with dancing has also been presented. Simulating 

medical imaging has been enabled by our proposed MapReduce framework with fusion algorithm, 

which is very similar to the digital surface theories that can best simulate how biological units can get 

together to form bigger units and thus eventually simulate the entire unit of biological subject. The 

M-Fusion and M-Update function developed by fusion algorithm can achieve a good performance 

evaluation that all data up to 40 GB can be processed and visualized within 600 seconds. We conclude 

that computational intelligence can provide effective and efficient healthcare research via simulation 

and visualization.   

1. Introduction 

Genes carry important information for each individuals and allow the parents to pass on their 

biological details to their children. Consequently, genetic disorders can also be passed to the next 

generations, or to their grandchildren. Understanding how diseases have been developed, particularly 

anything related to genetic disorders, or genes that are more prone to trigger other major diseases 

such as cancers are worth to be investigated. This may include studying malignant tumors to 

understand how malignant tumors can develop into cancers. To study the tumors and genes prone to 

tumor development, advanced methods on medical imaging and visualization will be required to allow 

scientists to see their objects of investigations in details, such as the abilities to magnify particular 

regions for investigation, simulate the biological processes of malignant tumors and help diagnose the 

right causes of diseases [1-3]. Modern medical imaging includes multimodality image techniques, 

which have become more complex and more expensive, even they are efficient. The costs of 

investigating patients’ health have become less affordable due to the high maintenance and set-up 

costs [1, 4]. Hence, other pioneering techniques should be considered, such as simulations and 

visualization, which can replicate the real data or real area of investigations after capturing all the data 

and completing medical imaging successfully once. Simulations and visualizations by computational 

intelligence can be used at any time, results of analysis can be reproduced effectively with lower costs 

[5-6]. Thus, the use of advanced computational intelligence can foster a simulation-type of medical 

imaging, in order to fulfil concerns for both costs and quality of investigations. 

The breakdown of this paper is as follows. Section 2 presents the related literature including our 

MapReduce Framework with fusion algorithm. Section 3 present various simulations for medical 

imaging including genes that can be prone to cancer development, or immunity development and 

brain imaging. Section 4 demonstrates results of our performance evaluation and Section 5 presents 

topics of discussion. Finally, Section 6 sums up Conclusion and Future Work. 

2. Literature and Related Work 



This section describes literature with three sub-sections. The first sub-section describes digital 

surfaces and development that can best be simulated. The second and third sub-sections explain our 

computational intelligence by our MapReduce framework and fusion algorithm. 

2.1 Digital surfaces and development into tunnels, gaps and skeletons 

Digital surfaces are important aspects for simulating medical images. Kim [7] define three dimensional 

Z cube values to present positions be adjacent to 3-cells. Movement of cells can be then defined by a 

mathematical framework proposed by Chen and Zhang [8]. In between cells or organs, there are tiny 

gaps in between, which can be called alpha-surface. Before mid-1990s, obtaining high resolution on 

medical images was challenging. The solution was to propose an alpha-surface using a three-

dimensional R cube values to present digitization of surfaces. There are still tiny gaps while adopting 

both Z cube and R cube values. In order to simulate surfaces that are adjacent and tied to each other, 

Malgouyres [9] propose how to make Z and R cube values together by having 26 pairs of Z and R cubes 

adjacent to each other. Eventually, Bertrand and Malgouyres [10] develop a method that can join 26 

pairs of Z and R cubes adjacent to each other better, which then forms a unit that can join other units 

more easily. Brimkov and Klette [11] can make this proposal a digitization successfully. 

All the work described above have paved ways for developing tunnels, gaps and eventually skeletons 
for digital and computational medical imaging. There are gaps between different units of cells, genes, 
organs and biological subjects of investigations. Tunnels are in between two gaps that can form a 
pathway, or a channel to another biological subject of investigation. It can be between two different 
biological units, or two different clusters of biological units. Gaps and tunnels are important elements 
in simulating medical imaging, since not all details (which need powerful electron microscope) can be 
100% reproduced. However, if ensuring gaps and tunnels are properly connected to the right 
biological units, getting close to 100% accuracy will be more likely [12]. Different biological units can 
form together as an integrated unit, which also represent the topological features for biological units. 
By forming individual biological units into an integrated or more structured unit, it allows scientists to 
be more confident to simulate medical imaging [13-14]. It is also a technique used to simulate a single 
unit of medical imaging object, before connecting all different units together to form the entire object 
of medical imaging simulation.  

Figure 1 shows the representation of biological units, gaps, tunnels and skeletons. Each cell is a 
biological unit, which can form together into larger units. Spaces in between are gaps. While there are 
more units getting together (before forming into skeletons), tunnels can lead to different units, and 
any smart ways to tie all different together, can be a vital process to form into skeletons. Such “smart 
ways” require computational intelligence to organize and make the structure of the skeletons as tidy 
and coherent as possible. Each skeleton may have different shapes and size due to the subject of 
biological studies. 

 

Figure 1: Illustration of biological units, gaps, tunnels and skeletons 



2.2 Computational intelligence by MapReduce 

Following Section 2.1 that each biological unit can join together, a very similar concept can be applied 

- each biological unit can be regarded as each data to be processed, analyzed and integrated together 

to represent the concept of fusing all biological units together as single skeleton, or groups of 

skeletons. Each data carries information about the individual biological units, hence, this will require 

computational intelligence such as MapReduce to process all data that can be mapped, merged, 

reduced and then integrated together. MapReduce framework can equally split all data into 

independent chunks that can be processed by map function. Subsequently, all the semi-processed 

data can be merged together to become the input of reduce function, which will categorize all 

processed data and get all categorized data together as the output [15]. This process is similar to the 

formation of a skeleton on the left side of Figure 1.  

To facilitate a smooth and fast big data processing, improved MapReduce functions have been used. 
Partitioning the three functions means Partitioning-Map (P-Map), Partitioning-Merge (P-Merge) and 
Partitioning-Reduce (R-Reduce) can focus on its tasks. MapReduce framework can present inputs as 
<key, value>, which can be summed up as <Ky, Vy>, in which y is the iteration number of MapReduce 
service, which can get <Ky, Vy> in each parallel pipeline. Each pipeline can determine the iteration 
number of inputs and outputs. By using partitioning approach, it can perform optimization of data 
processing and each task is divided as follows.  

 P-Map: which maps all data into the grouped clusters ready processing; 
 P-Merge: All the processed outputs are collected; 
 P-Reduce: All the outputs can be condensed into one or fewer clusters; 
 P-Query: It can be executed once all the three functions that have been executed once. The 

command can directly retrieve data. 
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(a) Illustrations of P-Map and P-Merge operations 
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(b) Illustrations of P-Reduce operations 

Figure 2. Illustration of the optimization algorithm through P-Map, P-Merge and P-Reduce 

Fig 2 (a) and (b) shows the illustration of our proposed optimization algorithm. P-Map will split all the 

inputs from V and E (from our Procedure 1, Partitioning algorithm) into both sorting and splitting 



process. The outputs for V and E in P-Map reshuffled the outcomes of V and E sequentially into pairs 

(e.g., V2 and E2 and V3 and E3) until the end of the processing. The maximum number of pairs in each 

processing operation can reach up to 256 pairs. Subsequently, the output of P-Map will become the 

input of P-Merge, and same or identified groups of outputs are classified together. For illustration, the 

inputs of P-Merge become {V7, E7} all the ways to{V10, E10}, all of which are further processed and 

summed as {V11, E11} and {V12, E12}.  

2.3 Computational intelligence to support fusion algorithm 

This section describes how to get all outputs and fuse them together, similar to the process of 

establishing “individual skeletons” and “clusters of skeletons” described in Section 2.1. When all the 

outputs from P-Reduce are collected, they contribute to the individual skeletons. The challenge is to 

collect the same category of Reduced outputs to gather them together to become clusters of 

skeletons. To facilitate this, fusion algorithm is developed, which adopts a multimodal node to collect 

all the output data that can be summed up as “M-Fusion” and “M-Update”. M-Fusion is a function 

that can combine all the output from P-Reduce function, and allows different outputs to be collected 

from all the nodes, and integrate the final outputs together, similar to the formation of groups of 

skeletons. M-Update is the function that can update all the results and confirm the formation of 

groups of skeletons can take place. 

 

Procedure 1: Fusion algorithm 

Input: 1. Sub P-Reduced outputs R1, R2,…Rm and the node demands d1, d2,…dn; 

             2. The number of replica servers, k. 

Output: The set of chosen multimodal node, M. 

1: Read data; Map data; Merge data; 

2: Reduce data; Update data; 

3: Let the node set M = Φ. 

4: For i = 1 to k do 

5:  For each node 𝑓𝑖
𝑗
 in Ri 

6:    Let 𝑓𝑖
𝑗
 be the data fusion at each node; 

7: Compute the costs of all the other nodes in Ci requesting services from node 𝑓𝑖
𝑗
; 

8:     End for 

9:     Choose the node 𝑓𝑖
𝑗
 to achieve multi-modal data fusion at each node; 

10:    Let M = Mi∪𝑓𝑖
𝑗
; 

11: End for 

12: Return M 

13: Fusion data; Update data; Complete multi-nodal fusion. 

 

Figure 3 shows the Fusion algorithm receives outputs as Mi∪𝑓𝑖
𝑗
, indicating the multi-node and fusion 

numbers. M1∪𝑓1
𝑗
 means that the output is located at the first multi-node that the fusion output is the 

first in the fusion service. Figure 3(a) shows the architecture, where all the outputs at each node were 

collected and are presented as M. At each multi-node M, a sequence number is allocated based on a 

first-come, first-served basis. The fusion algorithm can then map all of these nodes using the 



fusion(data) and update(data) commands. For the smooth operation of these processes, the fusion 

commands are M-Fusion(data) and M-Update(data), as illustrated in Figure 3(b). 
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(a) Data fusion at multi-nodes 
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(b) How to achieve fusion via the five steps presented: P-Map, P-Merge, P-Reduce, M-Fusion and M-Update 

Figure 3: Architecture to support fusion algorithm 

For this paper, outputs of simulating medical imaging by our MapReduce framework and the fusion 

algorithm will be demonstrated in Section 3. 

3. Simulations for medical imaging 

This section presents different outputs of simulating medical imaging involved with our approach to 

process and integrate data. For this medical research, all the cancer cells have been simulated 

thousands of times based on patients’ different types of tumors. It has been simulated repetitively 

many times, so that the final outcome can be close to a better accuracy. As a result, all these thousands 

of simulations can become very valuable training data as described in this section for simulating high-

performance malignant tumors. Genes that are more likely trigger this tumor development process, 

will be difficult to be detected by medical imaging. To facilitate it, first, blood sample was taken and 

investigated under electron microscope. Then samples of genes can be taken. Then the images can be 

taken. Simulation can take the size, shape and any special observations of the genes. Similarly, gene 

database can be cross checked to ensure that the simulated medical images look the same, except 

individual marks (such as cancerous spots, if there are) can be different to the healthy gene [16].  

High performance and accuracy contribute to computational demands. To facilitate this, modern 

computing infrastructure in [15] has been built and used to simulate complex biological functions and 

growth. The resources include the high-end Cloud Computing, with 300 GHz multi-core CPUs, 10 Bps 

network speed, full virtualization Cloud Virtual Machine (VM) Center, up to 100 nodes per VM to be 

used for testing and simulation, previously it was used for weather simulations and forecasting [15].  

3.1 Simulation of genes as a good alternative to real medical imaging 

This section describes the simulation of genes as an alternative to medical imaging following methods 

proposed in Section 2. First, BIRC3 is a gene that has direct impact on breast cancer and is also related 



to colon cancer [17]. Figure 4 (a) shows BIRC3, which is located on chromosome 13q21. Simulating 

BRCA3 allows scientists to inspect the generic samples or anonymized samples from patients. Figure 

4 (b) shows BIRC3 with 90 degrees of rotation to inspect any abnormities.  

 

 

4(a): BIRC3 

 

4(b): BIRC3 with 90 degrees of rotation 

Figure 4: BIRC3 simulation 

 

BIRC6 is a gene that has direct influences on brain, breast, colon and other cancers [18]. It has a more 

complex structure than BIRC 3. Figure 5(a) shows the BIRC6 default simulation and Figure 5(b) shows 

its 90 degrees of rotation. BIRC6 is worth to be investigated, since any abnormalities can be related to 

possibilities of having cancerous activities. 



 

5(a): BIRC6 



 

5(b): BIRC6 with 90 degrees of rotation 

Figure 5: BIRC6 simulation 

CCL4 is a protein that can attract natural killer cells and other immunity cells [19]. It can be regarded 

as an alarm to trigger the body immunity to destroy bacteria and thus its presence is useful to trigger 

immunity system maintenance. Checking its status can help understand how immunity can respond 

to cancer presence. Figure 6(a) and 6(b) show CCL4 simulation and its 90 degrees of rotation. 



 

6(a): CCL4 

 

6(b): CCL4 in 90 degrees of rotation 

Figure 6: CCL4 simulation 

3.2 Simulating blood clot as a better alternative than medical imaging 

There are other body functions that cannot be directly taken by medical imaging, such as how body 

immunity system can be triggered. One of these examples include blood clot simulation that at the 

very beginning, a gene called KLKB4 can trigger this process to happen. KLKB1 can trigger our body to 

make proteins called plasma pekallikrein [20]. Figure 7(a) shows KLKB1 in actions to gather all proteins 

in the blood as soon as possible to stop more blood flowing. Figure 7(b) shows KLKB1 in 90 degrees of 

rotation. Compared to Section 3.1, the difference is that in KLKB1, computational intelligence plays a 

more vital role. The yellow protein-like structure is the one to connect all different units, and then 

form into a unit of skeleton. This is also enabled by the functions of M-Fusion and M-Update to gather 



all different units together from data processing and structuring. The advantage of adopting 

simulation approach is clear and self-explanatory since this is less practical to be achieved by medical 

imaging. 

 

7(a): KLKB1 in action 

 



 

7(b): KLKB1 in 90 degrees of rotation 

3.3 Brain imagining 

Brain imaging is often used by hospitals and medical research with different purposes such as studying 

the activities of the brain segments and cells, or understanding which part of the brain is active under 

certain types of instructions. This also includes brain segmentation and the intensity of activities on 

each brain segment. Figure 8 (a) shows a diagram of brain segmentation while volunteers had 

undergone dancing as the method to understand the intensity of brain activities on each segment. 

The lower part of the brain corresponds to the balance and co-ordinating body movement. Figure 8(b) 

shows the intensity of brain activities when volunteers are fully engaged with dancing, when their 

emotions are high and new dancing moves have been learned and fully adopted by the entire brain. 

This is the result of the collective intelligence from dancing volunteers. The way to handle data 

processing and analysis is based on Section 2, where each active state represents a red color dot. The 

intensity of redness means that segment is in an active state. This is similar to concept explained in 

Section 2, all data processing and fusion have taken place at the active segments.  

 

 



 

 

 

 

 

 

Figure 8(a): Intensity of brain activities when involved with dancing 

                                                                                       

 

 

 

 

 

 

Figure 8(b): Intensity of brain activities when volunteers are fully engaged 

4. Performance evaluation 

Performance evaluation is a crucial part to identify the effectiveness of the proposed computational 

intelligence and test resiliency of medical imaging simulation, to see whether simulation can take place 

smoothly while a large size of data has been processed and analysed. Section 2 has described the 

techniques behind processing data that represent “skeleton”, the elements of medical imaging 

simulation and the way to integrate all the outputs together. Each time data of 10GB, 20GB, 30 GB 

and then 40GB can been processed respectively and the focus is to identify how long data fusion 

(forming skeleton) may take since the emphasis is on data fusion to complete medical imaging 

simulation. Thus, the completion time of M-Fusion and M-Update have been measured when the data 

size varies.  

Figure 9 (a) shows the completion time for executing of M-Fusion and M-Update for 10 GB of data 

between 10 and 100 nodes. All the completion time drops as an inverse exponential curve when the 

number of nodes has increased up to 100 nodes. Both functions stay close with each other in their 

completion time. Similarly, Figure 9 (b), 9(c) and 9(d) shows the completion time for executing of M-

Fusion and M-Update for 20 GB, 30GB and 40GB of data respectively between 10 and 100 nodes. They 

have similar inverse exponential curve shape, except the slope has become more gentle when the size 

of data increases. In other words, the impact of running M-Fusion and M-Update on the completion 

time has decreased when the size of data increases. All the completion time can be done in less than 

600 seconds for 40GB of data. Additionally, the impacts to the completion time with the increased 

nodes are not significant.  



 

Fig. 7 (a): Completion time for M-Fusion and M-Update for 10 GB 

 

Fig. 7 (b): Completion time for M-Fusion and M-Update for 20 GB   
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Fig. 7 (c): Completion time for M-Fusion and M-Update for 30 GB 

 

Fig. 7 (d): Completion time for M-Fusion and M-Update for 10 GB 

5. Discussion 

Advanced computational intelligence is useful to medical imaging simulations with the following 

reasons. First, costs of running very expensive experiments and medical equipment in laboratories can 

be reduced. Simulations can be done many times and outputs can be computed or queried at any time 

to support reproducibility of results [21-22]. Second, it provides a pioneering way to explore 

multimodal biomedical research by providing simulations similar to the real organs, such as rain 

segmentation to represent the brain cell intensities to respond to dancing. Third, there are areas that 

biomedical imaging cannot be easily adopted such as investigating at the micro-level such as genes 

and proteins, and investigating whether they have the liabilities of triggering the development of 

malignant tumors or cancerous cells. Forth, simulating biomedical work can be presented by 
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visualization and analytics, so that complex biological science and physiological science can be 

explained more easily with the visual aids.  

Computational intelligence can combine the “beauty of computer and biological science” by 

analogizing the similarities between theories of digital surfaces with development of “skeletons”, and 

improved MapReduce framework. Our research contributions are as follows. First, we develop fusion 

algorithm and MapReduce to demonstrate how to simulate medical imaging. Second, we have 

demonstrated how to perform simulation to investigate genes that are prone to trigger cancers and 

perform inspection. This technique cannot be easily achieved by the use of medical imaging alone 

which can provide a good alternative to medical imaging. Third, the completion time for all data fusion 

can be undertaken all under 600 seconds for processing up to 40 GB of data, with a good performance 

evaluation achieved.  

6. Conclusion and Future Work 

This paper demonstrates proofs-of-concept of simulating medical imaging by our advanced 

computational intelligence technique. We identify the similarities between the digital surface theories 

and our MapReduce framework with fusion algorithm. We can regard each biological unit as a data 

and the treat them the same way to process and fuse data together. We have explained our 

MapReduce functions and fusion algorithm, in which M-Fusion and M-Update can get the outputs of 

P-Reduce functions together. This allows simulating small units into clusters of units, and eventually 

the entire simulated medical image. Our proposed technique has the advantages than medical 

imaging alone, by simulating genes, proteins and immunity that cannot be easily be achieved by 

medical imaging alone. Examples of BIRC3, BIRC6, CCL4 and KLKB1 have been demonstrated. 

Inspection on genes to check any signs of cancers can be performed. Medical imaging on brain 

segmentation has also been explained. Additionally, performance evaluation of our fusion algorithm: 

M-Fusion and M-Update was undertaken that all 10GB, 20GB, 30 GB and 40GB of data had completion 

time between 45 seconds and 580 seconds, between 10 and 100 nodes. Therefore, our wok has 

demonstrated a cost-effective, useful and effective way of developing analytics and visualization to 

influence biomedical imaging simulation. Our future work will include more varieties of gene 

simulation and enhanced fusion algorithm to take on 100 GB of data analysis and fusion. 
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