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Abstract: 

Introduction 

A greater prevalence of dental fluorosis has been reported in higher- versus lower-altitude 

communities. This study, for the first time, examined several aspects of fluoride metabolism in 

children, aged 4-5 years, and their parent, living at lower altitude (<78m) and higher altitude (>1487) 

areas in Nepal.  

Methods 

The study assessed total daily fluoride intake (TDFI), 24h urinary fluoride excretion (UFE), and 

fluoride concentrations of toe- and finger-nail (FCtoenail, FCfingernail) in children and parents as well as 

fluoride concentration of plasma (FCplasma) in parents. Fractional urinary fluoride excretion (FUFE) 

was calculated as the ratio between UFE and TDFI. FCtoenail, FCfingernail and FCplasma were normalised 

for TDFI by dividing the variables by TDFI and the ratio was reported as the percentage.  

Results 

In total, 89 children and 80 parents took part in the study: 42 children and 41 parents from the lower 

altitude area; 47 children and 39 parents from the higher altitude area.  Fluoride concentration of 

drinking water was significantly (P<0.001) higher at lower altitude (0.395 mgF/l) than at higher 

altitude (0.104 mgF/l). TDFI was significantly (p<0.001) higher in both children and parents living in 

lower altitude than those living at higher altitude.  

There was a statistically significant (p= 0.044) difference in the mean FUFE of children living at 

lower altitude (53%) and higher altitude (46%). However, no significant difference in FUFE was 

found between parents living at lower altitude (47%) compared with higher altitude (41%).   

In both children and parents, no statistically significant differences in normalised FCtoenail, FCfingernail 

were found between the two altitude areas. However, normalised FCplasma  was statistically 

significantly (P=0.005) higher in parents living at higher altitude (0.15%) compared with those living 

at lower altitude (0.11%).  

Conclusion 

The results suggest that higher altitude living results in decreased urinary fluoride excretion, and 

consequently increased fluoride retention in children for a given dose (amount) of fluoride.  
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1. Introduction 

Dental fluorosis refers to a mineralization defect of the enamel as a result of exposure of the 

developing tooth organ to excessive amounts of fluoride (F). Due to the early commencement of tooth 

development in the permanent central incisors and first permanent molars, fluorosis in these teeth can 

start within the first 2 years of life [1]. However in general, the first 8 years of life are the most 

important for the development of fluorosis in permanent dentition [2]. Although the exact mechanism 

responsible for developing fluorotic enamel is not fully understood [3], total F exposure and or body F 

retention has been suggested as the true risk factor for fluorosis [4, 5]. Diet (including drinking water), 

toothpaste ingestion and F supplements are the main sources of F ingestion. It is estimated that about 

half of the daily F absorbed by healthy young to middle-aged adults becomes incorporated into 

calcified tissues, where 99% of the body’s F is found, and the other half is excreted in the urine which 

is the main route for F elimination from the body. In young children, the fractional retention of F (ie 

the % of ingested F which is retained), is reported to be higher than 50% due to the  rich blood supply 

and relatively large surface area of bone crystallites in the developing skeleton [6, 7]. Many factors 

can influence the rate of F absorption, excretion and consequently its retention, including total F 

intake, type of F, renal function, rate of bone metabolism, age as well as genetics, physical activity 

and altitude of residence [6, 7].  

Human epidemiological studies conducted in Kenya [8], Nigeria [9], Tibet [10], Mexico [11, 12], 

Uganda [13], Tanzania [14] and Nepal [15] have reported a higher prevalence of dental fluorosis in 

higher altitude communities compared with lower altitude communities, which cannot be explained 

wholly by differences in F exposure. An increased susceptibility to develop F-induced enamel 

hypomineralization has also been reported in rats kept in hypobaric conditions, regardless of the levels 

of ingested F [16, 17]. Compared with laboratory rats kept at sea level, rats residing at a simulated 

higher altitude (5,486 m) showed a more acidic urine, significantly higher plasma F concentrations 

and ultimately greater F retention [16-18].  

In this study, we aimed to quantify the effects of altitude on the urinary excretion of F, fractional 

urinary F excretion (FUFE; i.e the % of ingested F which is excreted) and F concentration in finger- 
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and toe-nail in children aged 4-5 years, and their parent (adults), living in Nepal. We also aimed to 

explore the influence of altitude on plasma F concentration in parents.  

 

Materials and methods 

Ethical approval 

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all 

procedures involving human participants were approved by the School of Health and Social Care 

ethics sub-committee, Teesside University, UK (# 077/13), and the Nepal Health Research Council (# 

121/13). Written informed consent was obtained from child-parent dyads. 

Sample size estimation 

A sample size estimation was conducted using the nQuery Advisor 5.0 software package. Since this 

study was the first of this nature on human participants, the sample-size estimation was informed by 

effect sizes and standard deviations cited in two previous related studies: a report on the F retention 

(%) in rats raised in a hypobaric chamber which simulated higher altitude [19], and a study on the 

prevalence of dental fluorosis in children living at higher and lower altitudes in Nepal [15].  

It was estimated that 33 individuals per group would be needed for 80% power. However, 50 paired 

children and parents (child-parent dyads) in a lower- and higher-altitude area (i.e. 200 participants in 

total) were recruited to account for possible withdrawal of participants prior to and during data 

collection. 

Study area and participants 

The study was carried out in two municipalities in Nepal: Banepa in the Hill region and Rajbiraj in the 

Tarai region with altitudes of 1,487m and 76 m above sea level, respectively. The initial analysis of 

drinking water samples collected from both municipalities found a F concentration of less than 0.3 

mgF/l for all samples which is regarded as low fluoride water [20]. 

Healthy children aged 4-5 years were identified for the study through primary schools in both areas 

after obtaining approval from the head-teachers. Child and parent dyads were then invited to take part 

in the study. The data collection phase included two home visits. At the first visit (Day 1), the weight 
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of child and parent, without shoes and jacket, was measured to the nearest 0.1 kg using a portable 

mechanical personal scale (BR2017; Camry, China), and the height was measured to the nearest 0.5 

cm using a portable stadiometer (DE56618903; ADE, Germany). Information about tooth-brushing 

habits of the child and parent was collected separately using a questionnaire and interview with the 

parents.  At the second home visit, dietary data plus samples of drinking (and cooking) water, drinks 

and foods, expectorated saliva/toothpaste, nail clippings and 24h urine samples were collected 

separately for each child-parent dyad.  

Assessment of total daily F intake (TDFI)  

Total daily dietary F intake was assessed using a three-day food diary, which has been reported in 

detail elsewhere [21]. In summary, parents were given two 3-day food diary at the first visit, with 

written and verbal instructions on how to record all food and drink consumed, by themselves and their 

child, over three days. In addition, parents were given plastic storage containers and requested to 

collect approximately 50g of drinks and foods consumed.  At the second visit, a post-completion 

interview with parents was conducted to make sure that all dietary data had been recorded as precisely 

as possible. The accuracy of estimates of food portion sizes made by parents was also checked using 

common everyday household items.  

TDF from diet (µg/day) for each participant was estimated by multiplying the weight of each 

food/drink sample (g) by its corresponding F concentration (µg/g). 

At the second visit, participants were asked to brush their teeth following their customary habits using 

their normal toothbrush and toothpaste. The amount of toothpaste dispensed onto the toothbrush was 

weighed using a portable electronic compact balance (A&D Instruments Ltd, Model HL-100, UK). 

All expectorated saliva, liquids and toothpaste, associated with tooth brushing, were collected in a 

wide-mouth polystyrene bowl and weighed. The total amount of F (µg) in expectorated 

saliva/liquid/toothpaste sample was estimated by multiplying the weight of sample (g) by its 

corresponding F concentration (µg/g). The total amount of F dispensed onto the toothbrush was 

subtracted from the total amount of F in expectorated saliva/liquid/toothpaste, and the resulting 
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amount multiplied by the participant’s corresponding frequency of daily brushing to calculate the 

daily F intake from toothpaste ingestion (µg/day). 

TDFI (µg/day) was then calculated by summing the F intakes from diet and toothpaste ingestion.  

Assessment of 24h urinary F excretion (UFE) 

Urine samples were collected from both child and parent. A urine collection kit, including disposable 

cups, jugs, potty, funnels and screw top plastic bottles, was given to parents with written and verbal 

instruction on how to collect their own and their child’s urine sample over a 24h period. The resultant 

24h urine samples of the child and parent were collected at the second visit and their total volumes 

were separately measured. UFE (µg/day) for each child and parent was estimated by multiplying the 

volume of the 24h urine sample (ml/day) by its corresponding F concentration (µg/ml). 

The urinary flow rate (ml/h) was calculated by dividing the urine volume by 24. A child or adult urine 

sample with a flow rate of < 5ml/h or < 9ml/h, respectively, was suspected as incomplete, as 

suggested by the World Health Organization, and discarded from data analysis [22]. 

Assessment of F concentration (µg/g) in nail 

Samples of nail were collected from both child and parent. Parents were asked to wash their own and 

child’s hands and feet with water and dry them thoroughly before clipping the nails. They were 

instructed to place samples of finger- and toe-nail separately in labelled zip-locked plastic bags. The 

samples were weighed and then cleaned at the fluoride laboratory at Teesside University using 

deionised water with interdental brush and sonicated for 1 minute. The samples were weighed again 

after drying them at 95 ± 5°C  [23].  

Assessment of F concentration (µg/g) in plasma 

A sample of venous blood was collected from each parent (but not the child) by the study nurse. 

Plasma was separated from the whole blood by centrifugation (Remi R-8C, India) at 15,000 rpm for 

15 minutes at room temperature and stored in a refrigerator (5°C) for immediate F analysis. 

F analysis of samples 

The concentrations of F in urine, water and drink samples were measured in triplicate at room 

temperature directly using a F-ion-selective electrode (Thermo Scientific Orion, Model 9609BNWP, 
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USA) coupled to a potentiometer (Thermo Scientific Orion, Model 720A, USA) after adding total 

ionic adjustment buffer (TISAB) III [24]. The F concentration of each expectorated 

saliva/liquid/toothpaste, toothpaste, food, milk-based drink, plasma and nail sample was measured 

using the overnight micro-diffusion method as detailed previously [24, 25].  In summary, a measured 

weight (or volume) of the sample was placed into the bottom of a polystyrene Petri dish (14.2 MM, 

VWR, UK). A sodium hydroxide (NaOH, A.R. Sigma-Aldrich, UK) trap solution was placed on the 

Petri dish lid and after the addition of sulphuric acid (H2SO4, Sigma-Aldrich) saturated with 

hexamethyldisiloxane (HMDS, Sigma-Aldrich), each dish was sealed very tightly. During an 

overnight diffusion, the released fluoride (as a result of acid hydrolysis) was trapped in the NaOH-

trap. The trap was then recovered,  perchloric acid (HClO4, Sigma-Aldrich) added and its final volume 

adjusted to 75 µL by the addition of deionised distilled water. The F concentration of each sample was 

then obtained by comparison of the millivolt reading of the sample to standard curves.  

The reliability of the F analytical methods was examined by reanalysing 10% of the samples, and the 

results confirmed no statistically significant differences in the means between test and retest for all the 

samples. 

Data handling 

To normalise by body weight, each TDFI (µg/day) and UFE (µg/day) value for each individual 

participant was divided by the participant’s weight and the values were reported as mg per kg body 

weight per day (mg/kg bw/d).  

To normalise for total F intake:  

Fractional Urinary Fluoride Excretion (FUFE %) for each participant was calculated from the 

following equation: (UFE/TDFI) x 100;  

Normalised fingernail F concentration (NFFC %) was calculated as: (Fingernail F 

concentration/TDFI) x 100;    

Normalised toenail F concentration (NTFC %) was calculated as: (Toenail F concentration/TDFI) x 

100; and, 
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Normalised plasma F concentration (NPFC %) was calculated as:  (plasma F concentration/TDFI) x 

100 

Statistical analysis 

Data were descriptively analysed using SPSS software (IBM Statistics, version 23). An Independent t-

test was used to quantify, for each response variable, the mean differences (and associated 95%-

confidence intervals) between the two altitudes as well as between the two age groups.  

Relationships between TDFI and UFE, by altitude and age group, were evaluated by standard linear 

regressions and Pearson’s correlation coefficients.  

 

Results 

Number of participants and anthropometric data  

In total, 89 children and 80 parents completed the three-day food diary and provided samples of 24h 

urine and expectorated saliva, liquids and toothpaste: 42 children and 41 parents in Rajbiraj (lower 

altitude area – LAA); 47 children and 39 parents in Banepa (higher altitude area – HAA).  F 

concentration of drinking water was statistically significantly (P<0.001) higher in the LAA (0.395 

mgF/l) than the HAA (0.104 mgF/l). 

The mean (SD) age of the children in the LAA and HAA was 4.5 (0.5) and 4.7 (0.5) years 

respectively and their weight was 16.6 (2.9) kg and 15.4 (1.8) kg, respectively.  

The mean (SD) age of parents in the LAA and HAA was 28.0 (3.7) and 29.1 (3.8) years respectively 

and their weight was 55.7 (9.7) and 56.1 (7.7) kg, respectively. 

TDFI, UFE and F concentration in nail and plasma in children and parents by altitude 

Tables 1 and 2 present mean (SD) urinary flow rate (ml/h), F intake (mg/kgbw/d), UFE (mg/kgbw/d) 

and F concentrations in nail (µg/g) and plasma (µg/ml) in children and parents, respectively, by 

altitude. 

All children and parents met the inclusion criterion of a urinary flow rate of 5 ml/h and < 9ml/h, 

respectively. Comparison between the two altitude areas showed no statistically significant 

differences in mean urinary flow rate in either children (Table 1) or parents (Table 2).   
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No child or parent who participated in this study took any F tablets or supplements; diet and 

inadvertent toothpaste ingestion were their only sources of F intake. In children, the overall mean 

(SD) contribution of diet to TDFI was 75 (19)%: 77 (19)% and 74 (20)% in the LAA and HAA 

respectively. The overall mean (SD) contribution of diet to TDFI, in parents, was 87 (13)%: 90 (11)%  

and 84 (14)% in parents living in the LAA and HAA respectively. No statistically significant 

differences in the F intake from toothpaste ingestion was found between the two altitudes for either 

group of study participants (Tables 1 and 2), whereas F intake from diet, TDFI and UFE were 

statistically significantly higher in both children and parents living in the LAA compared with those in 

the HAA.  

In children, no statistically significant differences in F concentration of either fingernail or toenail 

were found between the two altitudes (Table 1). In contrast, in parents, there was no statistically 

significant difference in F concentration of fingernail, while the mean toenail F concentration was 

statistically significantly (P=0.027) higher in LAA -living parents than those living in the HAA (Table 

2). The mean plasma F concentration was almost similar for parents living in the LAA and HAA 

(Table 2). 

Comparison between children and parents (adults) 

Mean and 95% confidence intervals for differences in F intake (mg/kgbw/d), UFE (mg/kgbw/d), and 

F concentrations in finger- and toe-nail in child-parent dyads by altitude are presented in Table 3. At 

both altitudes, mean TDFI, F concentration in fingernail and UFE were statistically significantly 

higher in parents than children, whereas mean F concentration in toenail was slightly, but not 

statistically significantly, higher in parents than children.  

Relationship between TDFI and UFE 

The linear relationships between TDFI and UFE, by altitude, for children are presented in Figure 1 

and for parents in Figure 2. In children (Figure 1), the statistically significant positive correlation 

between TDFI and UFE was very strong (ρ = 0.85, P<0.001) in the LAA, and strong (ρ = 0.74, 

P<0.001) in the HAA. In parents (Figure 2), the statistically significant positive correlation between 
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TDFI and UFE was moderate (ρ = 0.52, P=0.001) in the LAA, and strong (ρ = 0.67, P<0.001) in the 

HAA. 

FUFE  

In children, the mean (SD) FUFE (i.e. UFE normalised for F-intake) was 53 (18)% and 46 (16)% in 

the LAA and HAA, respectively, while for parents the FUFE was 47 (23)% and 41 (20)% in  the LAA 

and HAA respectively. The mean FUFE was statistically significantly (p= 0.044) higher in children 

living in the LAA than in the HAA, but there was no difference for parents. 

Although the overall mean FUFE was slightly, but not statistically significantly, higher in children 

than parents, the range was wider in parents as presented in Figure 3. 

F concentration in plasma, finger- and toe-nail, normalised for F-intake 

Box and whisker plots of F concentration in finger- and toe-nail, normalised for F-intake, in children 

and parents living in the LAA and HAA are presented in Figure 3.  

No statistically significant differences in finger- and toe-nail F concentrations, normalised for F-

intake, were found between the two altitude areas for children or for parents.    

As Figure 4 presents, in box and whisker plots of plasma F concentration, normalised for F-intake, the 

F-intake normalised plasma F concentration was statistically significantly (P=0.005) higher in parents 

living in the HAA (0.15%) than those living in the LAA (0.11%). 

 

Discussion 

This study provides the first data on the effect of altitude on different aspects of F metabolism 

including urinary F excretion and the proportion of ingested F excreted in the urine in humans, as well 

as F concentration in plasma and nail. The results suggest that higher altitude leads to decreased 

urinary F excretion, and consequently increased F retention in children when given the same dose 

(amount) of F.  

The study found diet as the main source of F intake for both children and parents (Tables 1 and 2), 

with water as the key contributor to dietary F intake. Compared with the HAA, total F intake of 

children and parents living in the LAA was significantly higher, primarily due to the higher F 
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concentration of water in the LAA.  F concentration of drinking water in the LAA (0.395 mgF/l), in 

the present study, was almost four times higher than that in the HAA (0.104 mgF/l). The impact of F 

concentration of water on TDFI, which was clearly demonstrated in this study, reinforces water as the 

primary route for F exposure in some communities.  

The overall mean contribution of diet (75%) to TDFI in the children of the present study corresponds 

to the 75% reported for 5-year-olds in Iowa [26], and the 71% reported for  the Nigerian 4-year-olds 

[27]. However, a wide variation in the contribution of diet to TDFI has been reported for children, 

ranging from 88% for Iowan 6-year-olds [26] to 31% for Puerto Rican 4-5-year-olds [28]. The 

variation in the contribution of diet to total F intake could be explained by differences in the age of 

children and their dietary habits and composition. In the present study, the contribution of toothpaste 

ingestion to TDFI was insignificant, in children and parents. However, the literature shows that 

toothbrushing with a fluoridated toothpaste could, on average, account for up to 69% of TDFI in 4-5 

year olds [29].  

When normalised by body weight, the present study also showed a higher mean F intake from diet 

and toothpaste ingestion in children compared with parents (Tables 1-3). This could be explained by 

the fact that children, generally, consume more food, on a body weight basis, compared with parents 

due to their higher energy requirements (90 kcal/kgbw/d for children vs 40 kcal/kgbw/d for parents 

[30]) and require more water to keep hydrated (65-85 ml/kgbw/d for children vs 30-50 ml/kgbw/d in 

parents [31]). Children also tend to swallow toothpaste as their control of their swallowing reflex is 

not as fully developed as adults [32].  

The mean TDFI of children as well as their parents in the present study was lower than the upper 

tolerable intake level (UL) of 0.1 mgF/kg bw/d [33] – a value suggested based on a prevalence of less 

than 5% of moderate dental fluorosis in children.   

Even though dental fluorosis has been well-documented to occur as a consequence of excess F 

ingestion during tooth formation, a lack of F dose-response effect in the occurrence of dental fluorosis 

has been reported in populations living at high altitude. A survey of 12-year-old Nepalese children 

reported a dental fluorosis prevalence of 53% in children living at an altitude of 3700m, even though 

the water F concentration was very low at 0.06 mg/l [15]. A study in Kenya reported a dental fluorosis 
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prevalence of 78.0% in children aged 11-15 years living at an altitude of 1500m with a water F 

concentration of <0.5 mgF/l compared with a prevalence of 36.4% in children at sea levels receiving 

similar F concentration in water [8]. A higher prevalence of dental fluorosis has also been reported in 

other communities with water F concentrations of <0.8 situated at altitudes of 1700m in Nigeria [9], 

2000m and 4300m in Tibet [10], >2000m in Mexico [11], and 1463m in Tanzania [14]. However, 

none of these studies assessed total F intake (i.e. the true risk factor for fluorosis). 

Since F metabolism can be affected by genetic and environmental factors, it is fundamental to 

quantify F excretion and retention rather than only the TDFI when health effects of F are concerned.  

Since age (i.e. skeletal development and growth) could be another variable influencing F metabolism, 

the current study compared UFE and FUFE between children and their parents subjected to similar 

environmental influences including altitude as well as their close genetic profile.   

The composition of diet can influence the pH of urine and consequently the magnitude of F excretion 

and retention. A vegetarian diet, which promotes an alkaline urine, results in relatively higher F 

excretion compared with a meat-based diet which results in a more acidic urine (and therefore more F 

retention) [34].  Nepalese people have a vegetarian-based diet with rice and lentils being the staple 

food commodities in the Tarai region (i.e. LAA), and maize and millet in the Hill region (i.e. HAA). 

Therefore, any differences in UFE between the two areas cannot be explained by the type of diet (i.e. 

vegetarian- vs meat-based diet).  

The overall mean UFE of both children and parents was higher in the LAA compared with the HAA 

(Tables 1 and 2), which could be related to the effect of the higher F concentration of water (and 

consequently higher total F intake) in the LAA. Figures 1 and 2 describe the linear association 

between total daily F intake and urinary F excretion in both parents and children at each altitude. This 

highlights the process by which the F incorporated into bone is steadily released by continuous bone 

remodelling and then excreted through urine, even when the F intake is nil or negligible. The 

estimated graph intercepts, in the present study, clearly suggest that in the absence of any F exposure, 

children living at a higher altitude excrete less F in their urine than those living at a lower altitude 

(Figure 1), although this difference was not observed in parents (Figure 2). This finding suggests that 
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either less F is released from bones or more F is reabsorbed from the renal tubules in children at 

higher altitudes.  

When urinary F excretion was normalised for TDFI (i.e. FUFE), the current study also found a 

statistically significantly (p=0.044) lower FUFE in children residing at higher altitude (46%) 

compared with those living at lower altitude (53%). These findings indicate that at a given level of F 

intake, urinary excretion of F is lower in children living at higher altitudes. However, no significant 

differences in FUFE were found between parents living at lower- and higher altitudes in the present 

study. This latter result is in agreement with the reported slightly, but not statistically significantly, 

lower urinary F excretion seen in 7-week female rats housed in an environmental chamber set at a 

stimulated altitude of 5486m (18000 ft) compared with those residing at sea level [34]. Considering 

that one human year equals 3.3 rat days in the pre-pubertal phase [35], the rats in the latter study were 

equivalent to almost 15 years of age in human terms.  

The differences in UFE and FUFE between children and parents may be explained by better 

adaptation to higher altitudes in adults as well as the differences in the growth rate (a lower growth 

rate in adults and therefore less F retention in calcified tissues) and the type and form of ingested F 

and its bioavailability (e.g. a F bioavailability of 100% from water vs 65% from infant milk formula 

reconstituted with water [36]). 

It has been reported that native Tibetans living at high altitude (3,800–4,200 m) have a steady increase 

in mean arterial haemoglobin oxygen saturation (SaO2) during the first decade of life, followed by a 

stabilisation during the second decade [37]. Therefore, during the first 3 years of life, when the 

window of susceptibility to the occurrence of fluorosis is the highest for the permanent incisors [2], 

the SaO2 is lower compared with older children and young adults.  

Therefore, the observed dental fluorosis at high altitudes seen in young children might be explained 

by a reduced urinary excretion of F, due to the alteration in acid-base balance caused by hypoxia (due 

to low SaO2) of high altitude, leading to a decrease in pH of urine and ultimately an increase in renal 

tubule reabsorption of F which results in more F retention [16, 17]. 

The present study found a very wide variation in FUFE, within the range of 30 to 80% [38-45] 

reported in the literature for children and adults.  The wide variation in FUFE could be explained by 
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between-individual physiological and dietary/oral hygiene habit differences and/or variations in the 

patterns of dietary/oral hygiene habits within-individual. 

The study [34] with two groups of female rats, residing at sea level and an environmental chamber set 

at a stimulated altitude of 5486m (18000 ft) for 5 weeks, reported a statistically significantly lower 

faecal F excretion in the groups at high altitude, indicating greater F absorption at high altitude. In the 

present study faecal F excretion was not measured but the significantly higher plasma F concentration, 

as a function of TDFI, detected in the parents at the HAA suggests that a higher proportion of ingested 

F may be absorbed from gastrointestinal tract at higher altitudes. The plasma F concentrations (0.026 

and 0.027 µg/ml in LAA and HAA, respectively) found in the present study were higher than the 

range of 0.009 to 0.020 µg/ml reported in the literature for adults living in low water F areas (<0.30 

µgF/ml) [46]. A plasma F concentration as low as 0.028 µg/ml has been shown to be still capable of 

inducing mild enamel fluorosis in the rat incisor [18]. 

Some studies have reported nail as a possible biomarker for chronic F exposure [25, 47-50] and 

enamel fluorosis [51, 52].  However, the present study found no significant differences in F 

concentration of finger-nail in both children and parents living at lower- and higher-altitudes despite a 

significant difference in TDFI between the two locations.  The study also showed a statistically 

significant difference in toe-nail F concentration in parents living at lower- and higher-altitude but not 

in children. Therefore, more epidemiological studies are required to assess the suitability, 

acceptability and sensitivity of nail as a F biomarker in different populations, with different dietary 

habits, and geographical situations.  

 

In conclusion; the results of this study suggest that urinary F excretion, in children, is decreased with 

chronic residence at higher altitudes which results in increased F retention in their body. This could 

therefore explain the observed dental fluorosis at high altitudes seen in young children receiving 

relatively low F water.   

 

Limitations of the study and future recommendations 
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There are several limitations to the present study which could be addressed by future studies to 

address the knowledge gaps regarding the impact of altitude on metabolism of F.  

The first limitation is that the blood collection was performed exclusively on adults because of the 

ethical restraint related to collecting blood from healthy children for the purpose of research. Due to 

the possible age differences in F metabolism, the results for adults may not necessarily apply to 

children. 

The other limitation is that no faecal sample was collected from the study participants due to the 

practicality issues for both participants and the research team. The only available study with rats [34] 

showed that in rats on low-F diet (0.032 mgF/day), their faecal F corresponded to 20% and 16% of the 

F intake when housed at sea level and a stimulated altitude of 5486m, respectively. However, human 

studies have reported that, on average, almost 10% and 6% of total daily F intake is excreted through 

faeces in children [53] and adults [54], respectively. Human studies are therefore needed to assess the 

effect of altitude on faecal F excretion. 

The present study focused on two narrow age groups (4-5- and 20-35 year-olds) and did not explore 

any possible effect of gender on F metabolism. Since the study by Beall [37] in native Tibetans living 

at high altitude reported age- and gender-differences in SaO2, more studies are needed to look at the 

effect of altitude on F metabolism in different age groups and genders. 
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Table 1. Estimated Mean (SD) urinary flow rate (ml/h), fluoride intake (mg/kgbw/day), urinary fluoride excretion (mg/kgbw/d), and fractional urinary 

fluoride excretion (%) in children by altitude.  

 

 Altitude  Differences 
P value 

Variables Lower (LAA) Higher (HAA)  Mean 95% CI 

Urinary flow rate (ml/h) 29 (9)a 20 (6) b  9 6, 12 NS 

Daily F intake (mg/kgbw/d)       

 Diet 0.050 (0.028) a 0.034 (0.021) b  0.016 0.005, 0.026 0.003 

 Toothpaste ingestion 0.015 (0.016) a 0.012 (0.011) b  0.004 -0.002, 0.010 NS 

 Total  0.065 (0.029) a 0.046 (0.020) b  0.019 0.009, 0.030 <0.001 

24h urinary F excretion (mg/kgbw/d) 0.036 (0.024) a 0.021 (0.014) b  0.015 0.007, 0.023 <0.001 

F concentration in        

 Fingernail (µg/g) 4.526 (2.266) c 3.989 (1.884) d  0.537 -0.634, 1.707 NS 

 Toenail (µg/g) 4.346 (2.268) e 3.399 (1.772) f  0.947 -0.252, 2.147 NS 

Fractional Urinary F excretion (%) 53 (18) 46 (16)  7 0.2, 15 0.044 

Number of samples (n): a (n=42), b (n=47), c (n=25), d (n=26), e (n=26), f (n=22) 
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Table 2. Estimated Mean (SD) urinary flow rate (ml/h), fluoride intake (mg/kgbw/day), urinary fluoride excretion (mg/kgbw/d) and fractional urinary 

fluoride excretion (%) in parents by altitude.  

 

 Altitude  Differences 
P value 

Variables Lower (LAA) Higher (HAA)  Mean 95% CI 

Urinary flow rate (ml/h) 44 (15) a 43 (20) b  1 -6, 9 NS 

Daily F intake (mg/kgbw/d)       

 Diet 0.022 (0.006) a 0.017 (0.006) b  0.005 0.003, 0.008 P<0.001 

 Toothpaste ingestion 0.003 (0.003) a 0.003 (0.003) b  -0.1 0.001, 0.001 NS 

 Total  0.025 (0.006) a 0.020 (0.007) b  0.005 0.002, 0.008 0.001 

Daily urinary F excretion (mg/kgbw/d) 0.012 (0.007) a 0.008 (0.006) b  0.004 0, 0.006 0.012 

F concentration in        

 Fingernail (µg/g) 2.989 (1.370) c 2.962 (1.656) d  0.027 -0.795, 0.849 NS 

 Toenail (µg/g) 3.712 (1.932) e 2.860 (0.758) f  0.851 0.101, 1.601 0.027 

 Plasma (µg/g) 0.026 (0.011) g 0.027 (0.008) g  -0.0005 -0.005, 0.004 NS 

Fractional Urinary F excretion (%) 47 (23) 41 (20)  6 -3, 16 NS 

Number of samples (n): a (n=41), b (n=39), c (n=26), d (n=30), e (n=24), f (n=32), g (n=37) 
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Table 3. Mean (95% confidence interval (CI)) difference in fluoride intake (mg/kgbw/day), urinary fluoride excretion (mg/kgbw/d) and fractional urinary 

fluoride excretion (%) between children and parents by altitude. 

 

 Lower altitude (LAA) Higher altitude (HAA) 

 
Mean (95% CI) of 

difference 

P 

value 
Mean (95% CI) difference P value 

Daily F intake (mg/kgbw/d)     

 Diet -0.028 (0.037, -0.018) <0.001 -0.018 (-0.024, -0.011) <0.001 

 Toothpaste ingestion -0.012 (-0.018, -0.007) <0.001 -0.009 (-0.012, -0.005) <0.001 

 Total  -0.040 (-0.050, -0.031) <0.001 -0.026 (-0.033, -0.20) <0.001 

Daily urinary F excretion (mg/kgbw/d) -0.024 (-0.032, -0.06) <0.001 -0.013 (0.017, -0.008) <0.001 

F concentration in      

 Fingernail (µg/g) -1.537 (-2.586, -0.488) 0.005 -1.027 (-1.975, -0.78) 0.034 

 Toenail (µg/g) -0.634 (-1.837, 0.568) NS -0.538 (-1.244, 0.167) NS 

Fractional Urinary F excretion (%) -6 (-15, 3) NS -4 (-12, 3) NS 
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Figure 1. Relationship between total daily F intake (TDFI: mg/kg bw/d) and 24h urinary F excretion 

(UFE: mg/kg bw/d) for children living at lower- and higher- altitudes 

Lower-altitude: UFE (mg/kg bw/d) = -0.009 + 0.686 [TDFI (mg/kg bw/d)]; (ρ = 0.85, P<0.001) 

Higher-altitude: UFE (mg/kg bw/d) = -0.002 + 0.508 [TDFI (mg/kg bw/d)]; (ρ = 0.74, P<0.001) 
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Figure 2. Relationship between total daily F intake (TDFI: mg/kg bw/d) and 24h urinary F excretion 

(UFE: mg/kg bw/d) for parents living at lower- and higher- altitudes 

Lower-altitude: UFE (mg/kg bw/d) = -0.002 + 0.552 [TDFI (mg/kg bw/d)]; (ρ = 0.52, P=0.001)  

Higher-altitude: UFE (mg/kg bw/d) = -0.003 + 0.594 [TDFI (mg/kg bw/d)]; (ρ = 0.67, P<0.001)  
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Figure 3. Box and whisker plots of fractional urinary F excretion and normalised F concentration in finger- and toe-nail in children and parents living at 

lower- and higher-altitudes. 
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Figure 4. Box and whisker plots of normalised plasma F concentration in parents living in lower- and 

higher-altitude areas 

* [(Plasma F concentration/TDFI) x 100] 

 


