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How to aggregate decision information in heterogeneous multiattribute group decision making (HMAGDM) is vital. The aim
of this paper is to develop an approach to aggregating decision data into intuitionistic triangular fuzzy numbers (ITFNs) for
heterogeneousMAGDMproblems with real numbers (RNs), interval numbers (INs), triangular fuzzy numbers (TFNs), trapezoidal
fuzzy numbers (TrFNs), and triangular intuitionistic fuzzy number (TIFNs). Using the relative closeness of technique for order
preference by similarity to ideal solution (TOPSIS) and geometry entropymethod, we first present a general approach to aggregating
heterogeneous information into ITFNs, which takes the group consistency of experts into account. Based on the collective
intuitionistic triangular fuzzy decision matrix and extended TOPSIS, a multiple objective mathematical program is constructed
to determine the optimal attribute weights. Subsequently, a new method to solve HMAGDM problems is presented based on the
aforementioned discussion. A trustworthy service selection example is provided to verify the practicality and effectiveness of the
proposed method.

1. Introduction

Group decision making (GDM) has been known as a popular
method for finding the best alternative from a set of alter-
natives through aggregating decision information given in a
group of experts, in which the evaluation of alternatives may
involve multiple attributes including objective and subjective
information [1–3]. Due to the limited cognition and prefer-
ence of decision maker, it is hard for different attributes to use
the same information format to express the evaluation. For
instance, in an online seller evaluation, the service attitude
of the seller is suited to be described by triangular fuzzy
numbers (TFNs) since the service of the seller is generally
stable, but sometimes it is excellent and sometimes bad. It
is convenient to describe the shipping speed of seller with
interval numbers (INs) since it is not fixed but fluctuates
in a certain range. These types of GDM problems with
multiple conflicting attributes whose values are given by

decision makers (DMs) may be represented in the form of
multiple formats, such as real numbers (RNs), INs, TFNs,
trapezoidal fuzzy numbers (TrFNs), and linguistic values
(LVs), called heterogeneous multiattribute group decision
making (HMAGDM) problems [4].

In this recent research, HMAGDM methods have been
successfully applied to various fields, such as supply chain
coordination [5], business processes [6], and software quality
evaluation [7–9]. The key to tackling such problems is how
to fuse various types of attribute values [10]. So far, many
useful and valuable methods have been developed to study
the fusion process of heterogeneous information, which can
be roughly classified into three main categories [4, 10]. (1)
The indirect approaches [11–14], in which the heteroge-
neous decision information given by DMs is converted into
uniformed information by transformation methods. Wang
and Cai [13] developed a generic distance-based VIKOR
which can use aggregation function to convert heterogeneous
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information into a uniform nonfuzzy degree and applied it to
deal with emergency supplier selection.Using transformation
function, Zhang et al. [14] transformed the multigranular
linguistic decision matrices (LDMs) into uniform LDMs.
Then, a new optimization consensus model was constructed
for 2-Rank multigranular linguistic MAGDM problems. (2)
The optimization-based approaches [5, 15–17], in which the
heterogeneous information is integrated by constructing dif-
ferentmultiple objective optimizationmodels. Dong et al. [15]
proposed a new complex and dynamicHMAGDMmethod to
deal with the differences between individual sets of attributes
and heterogeneous information. Zhang et al. [16] developed a
HMAGDMmethod with aspirations information by combin-
ing the prospect theory and a biobjective intuitionistic fuzzy
programming model. Yu et al. [17] incorporated risk attitude
and preference deviation of experts into the mathematical
programming models to solve the HMAGDM problems with
RNs, INs, Ifs, LVs, and TFNs. (3) The direct approaches [10,
18–21]. In the direct approach, the collective decision infor-
mation is obtained by aggregating standardized individual
decision information. Then the heterogeneous information
is transformed into some comparable preference informa-
tion. Yue and Jia [10] introduced a projection measure to
aggregate decision information including IFNs and IVIFs.
Yue [18] proposed a direct projection-based group decision-
making methodology with RNs and INs. To overcome the
irrationality of the classical projection formulae in RN and
IN vector settings, Yue [19] presented a normalized projec-
tion measure and applied it to solve HMAGDM problems
with RNs and INs. In order to integrate heterogeneously
interrelated attributes in the HMAGDM problem, Das et
al. [20] develop an Atanassov’s intuitionistic fuzzy extended
Bonferroni mean based on a strict t-conorm. Li et al. [21]
proposed a new HMAGDM method using weighted power
average operator to integrate the heterogeneous decision
data.

These achievements have provided the foundation of
the HMAGDM problems. It is noticed that methods [1, 5–
8, 15–21] are on the basis of the hypothesis that the ratings
provided by DMs are completely affirmative, neglecting the
judgment subjectivity; thus, the impreciseness and uncer-
tainty of original decision information cannot be captured.
Methods [10–14] turned the heterogeneous information into
a unified form of linguistic terms, which are subjective and
cannot measure quantitatively and intuitively the uncertainty
of attribute values. Intuitionistic fuzzy (IF) sets (IFSs) [22, 23]
and interval-valued intuitionistic fuzzy sets (IVIFSs) [24] can
be viewed as an effective tool to describe the uncertainty and
ambiguity, which has led to the wide applications of IFSs and
IVIFSs [25–27]. To fill these research gaps, many practical
studies have been proposed to aggregate decision data into
IFSs [22–24], which can be divided into two categories: (1) the
methods for aggregatingRNs into intuitionistic fuzzy number
(IFN) based on Golden Section idea [28, 29], Minimax
Criterion [30], and statistical theory [31]; (2) the methods
for aggregating RNs or INs into interval-valued intuitionistic
fuzzy number (IVIFN) [1] based on Minimax Criterion [32],
linear transformation [33], and mean and standard deviation
[34]. However, these methods [28–34] cannot be suitable for

HMAGDM problems. More recently, Xu et al. [35] presented
a general method to aggregate decision information into IFN
and applied it to select cloud computing service providers
wherein the assessments take the form of RNs, INs, TFNs,
TrFNs, and LVs. Combined with the relative closeness in
technique for order preference by similarity to ideal solution
(TOPSIS) and statistical theory [36], Wan et al. [37] devel-
oped a new general method to aggregate the attribute value
vector into IVIFNs and used it for HMAGDM problem with
RNs, INs, TFNs, and TrFNs.

The aforementioned methods [35, 37] have made deep
discussions to HMAGDM problems based on aggregating
decision data into IF information, but these aggregation
techniques [28–35, 37] still suffer from some deficiencies. (1)
They cannot deal with more complicated attribute values rep-
resented by triangular intuitionistic fuzzy number (TIFNs)
and trapezoidal intuitionistic fuzzy numbers (TrIFNs). (2)
They ignore the influence of different experts in aggregation
process which may lead to unreasonable results. (3) The
membership degree and nonmembership degree of inte-
grated value in [28–35, 37] cannot reflect the distribution
characteristics of the data like normal distribution. In many
real decision situations, the evaluations of decision maker
are based on a number of historical feedbacks on the cor-
responding attribute. Studies showed that the distribution of
historical feedbacks is generally close to a normal distribution
when the number of feedbacks is larger. It may be effective to
use TFNs to model the integrated value instead of crisp value
and interval-value since TFNs contain more information and
are more consistent with normal distribution characteristics.
Thus, when an assessment vector is aggregated into an
IFN and IVIFN, the loss of information is likely to occur.
Intuitionistic triangular fuzzy numbers (ITFNs) introduced
by Liu and Yuan [38], as an extension of IFSs, can express
more information from different dimension decision infor-
mation [39] than IFNs and IVIFNs since its prominent
characteristic is that the corresponding membership degree
and nonmembership degree are described by TFNs [40].
Thus, ITFNs can not only depict the fuzzy concept of
“good” or “excellent,” but also outstand the satisfaction and
dissatisfaction information with the maximum probability
and also recoup the deficiency due to the loss of the center
of gravity in IVIFNs [41–43]. For instance, in a trustworthy
seller selection example, the service attitudemay be expressed
by an ITFN ((0.4,0.6,0.7),(0.1,0.2,0.3)), which contains two
aspects of implication in the historical ratings of a seller:
one is that users’ satisfactory degree is between 0.4 and 0.7;
the most possible satisfactory degree is 0.6; the other is that
users’ dissatisfactory degree is between 0.1 and 0.3; the most
possible dissatisfactory degree is 0.2. Some theories andGDM
methods based on ITFNs have been developed. Wang [40]
defined score function and accuracy function to compare the
ITFNs and developed several ITFN geometric aggregation
operators. Wei [41] proposed the ITFN weighted averaging
operator and ITFN ordered weighted averaging operator
and applied them to solve GDM problems. To consider the
interaction among attributes, Gao et al. [42] presented some
ITFN aggregation operators with interaction. Yu and Xu [43]
investigated a series of intuitionistic multiplicative triangular
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fuzzy aggregation operators. Although these studies [38–
43] focused on different aspects of ITFNs, it can only
aggregate ITFNs. Therefore, to push ahead with the applica-
tion of the above aggregations, it is necessary to aggregate
multiple types of decision information into ITFNs, which
is very interesting yet relatively sophisticated to dispose
of.

To do that, this paper aims to propose a novel HMAGDM
method based on ITFNs. The primary contributions of this
paper can be illuminated briefly as follows.

(1) We first present an aggregation technology to aggre-
gate heterogeneous information into TIFNs. Compared with
existing methods [28–35, 37], the proposed aggregate tech-
nology has the following advantages. For more details, refer
to Section 5.2.

(i) A new elicitation of the support, opposite, and uncer-
tain information based on distance is introduced,
which can accommodate more complicated attribute
values including TIFNs and TrIFNs since it just needs
to calculate the distance from decision data to the
maximum and minimum grade.

(ii) A new construction approach of ITFN is presented by
group consistency which not only takes into account
expert’s weight but can overcome the shortcoming of
the hypothesis of the normal distribution.

(iii) It can not only effectively avoid the loss of original
information, but also reflect the distribution charac-
teristics of the original decision data.

(2) A new similarity measure of ITFNs is developed
and applied to construct a multiple objective linear pro-
gramming to determine attribute weights in ITFN envi-
ronment with incomplete information. The determination
method of attribute weights can effectively avoid the sub-
jectivity brought by the given attribute weights in ad-
vance.

(3) Based on the aforesaid provision, a new method to
deal with HMAGDM problems with RNs, INs, TFNs, TrFNs,
and TIFNs is proposed. The comprehensive evaluation value
of the alternative is an ITFN, which preserves more useful
information.

The remainder of this paper is set out as follows.
Section 2 briefly introduces related basic concepts. Section 3
presents an approach to aggregating heterogeneous deci-
sion data into ITFNs. Section 4 builds a multiple objective
linear programming model to determine attribute weights
and propose a HMAGDM method. Section 5 provides a
numerical example to illustrate the feasibility and reasonable-
ness of the proposed method. Section 6 makes our conclu-
sions.

2. Preliminary

In this section, some basic concepts of ITFN and distance
measures are briefly described below.

2.1. Intuitionistic Triangular Fuzzy Number

Definition 1 (see [38]). A triangular fuzzy number (TFN) A
is a special fuzzy set on a real number set R; its membership
function is defined by

𝐹𝐴 (𝑥) = {{{{{{{{{{{{{{{
𝑥 − 𝑡𝑙𝑡𝑚 − 𝑡𝑙 , if 𝑡𝑙 ≤ 𝑥 ≤ 𝑡𝑚,𝑡ℎ − 𝑥𝑡ℎ − 𝑡𝑚 , if 𝑡𝑚 ≤ 𝑥 ≤ 𝑡ℎ,0, if otherwise, (1)

where 0 ≤ 𝑡𝑙 ≤ 𝑡𝑚 ≤ 𝑡ℎ ≤ 1, 𝑡𝑙 and 𝑡ℎ present the lower limit
and upper limit of A, respectively, and 𝑡𝑚 is the mode, which
can be denoted as a triplet (𝑡𝑙, 𝑡𝑚, 𝑡ℎ).
Definition 2 (see [38]). Let X be a fixed set; 𝜇𝐴(𝑥) =(𝑡𝑙𝐴(𝑥), 𝑡𝑚𝐴(𝑥), 𝑡ℎ𝐴(𝑥)) and V𝐴(𝑥) = (𝑓𝑙𝐴(𝑥), 𝑓𝑚𝐴 (𝑥), 𝑓ℎ𝐴(𝑥)) are
TFNs defined on the unit interval [0, 1]; then an intuitionistic
triangular fuzzy set 𝐴 over X is defined as 𝐴 = {(𝑥, <𝜇𝐴(𝑥), V𝐴(𝑥) >) | 𝑥 ∈ 𝑋} where the parameters 𝜇𝐴(𝑥)
and V𝐴(𝑥) indicate, respectively, the membership degree and
nonmembership degree of the element x in 𝐴, with the
conditions 0 ≤ 𝑡ℎ𝐴(𝑥) + 𝑓ℎ𝐴(𝑥) ≤ 1.

For convenience, we call 𝛼̃ = ((𝑡𝑙𝐴, 𝑡𝑚𝐴 , 𝑡ℎ𝐴), (𝑓𝑙𝐴, 𝑓𝑚𝐴 , 𝑓ℎ𝐴))
an intuitionistic triangular fuzzy number (ITFN), where

𝑡𝑙𝐴, 𝑡𝑚𝐴 , 𝑡ℎ𝐴 ∈ [0, 1] ,𝑓𝑙𝐴, 𝑓𝑚𝐴 , 𝑓ℎ𝐴 ∈ [0, 1] ,𝑡ℎ𝐴 + 𝑓ℎ𝐴 ∈ [0, 1] . (2)

It is clear that the largest and smallest ITFN are 𝛼+ =((1, 1, 1), (0, 0, 0)) and 𝛼− = ((0, 0, 0), (1, 1, 1)), respectively.
Definition 3 (see [38]). Let 𝛼̃1 = ((𝑡𝑙1, 𝑡𝑚1 , 𝑡ℎ1), (𝑓𝑙1, 𝑓𝑚1 , 𝑓ℎ1 ))
and 𝛼̃2 = ((𝑡𝑙2, 𝑡𝑚2 , 𝑡ℎ2), (𝑓𝑙2, 𝑓𝑚2 , 𝑓ℎ2 )) be two ITFNs; then the
containment is𝛼̃1 ⊆ 𝛼̃2
iff 𝑡𝑙1 ≤ 𝑡𝑙2, 𝑡𝑚1 ≤ 𝑡𝑚2 , 𝑡ℎ1 ≤ 𝑡ℎ2 , 𝑓𝑙1 ≥ 𝑓𝑙2, 𝑓𝑚1 ≥ 𝑓𝑚2 and 𝑓ℎ1 ≥ 𝑓ℎ2 . (3)

Some arithmetic operations between ITFNs 𝛼̃1 and 𝛼̃2 are
shown as below [40]:

(1) 𝛼̃1 + 𝛼̃2 = ((𝑡𝑙1 + 𝑡𝑙2 − 𝑡𝑙1𝑡𝑙2, 𝑡𝑚1 + 𝑡𝑚2 − 𝑡𝑚1 𝑡𝑚2 , 𝑡ℎ1 + 𝑡ℎ2 − 𝑡ℎ1𝑡ℎ2),(𝑓𝑙1𝑓𝑙2, 𝑓𝑚1 𝑓𝑚2 , 𝑓ℎ1 𝑓ℎ2 )),
(2) 𝜆𝛼̃ = ((1 − (1 − 𝑡𝑙1)𝜆, 1 − (1 − 𝑡𝑚1 )𝜆, 1 − (1 − 𝑡ℎ1)𝜆),((𝑓𝑙1)𝜆, (𝑓𝑚1 )𝜆, (𝑓ℎ1 )𝜆)) 𝜆 > 0.
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Definition 4 (see [41]). For a set of ITFNs 𝛼̃𝑖 (𝑖 = 1, 2, . . . , 𝑛)
that have associated an importance weight vector 𝑤 =(𝑤1, 𝑤2, . . . , 𝑤𝑛)𝑇 with 𝑤𝑖 ∈ [0, 1] and ∑𝑛𝑖=1𝑤𝑖 = 1. We call

𝐼𝑇𝐹𝑊𝐴(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑛∑
𝑖=1

𝑤𝑖𝑎𝑖 = ((1
− 𝑛∏
𝑖=1

(1 − 𝑡𝑙𝑖)𝑤𝑖 , 1 − 𝑛∏
𝑖=1

(1 − 𝑡𝑚𝑖 )𝑤𝑖 , 1
− 𝑛∏
𝑖=1

(1 − 𝑡ℎ𝑖 )𝑤𝑖) ,
( 𝑛∏
𝑖=1

(𝑓𝑙𝑖 )𝑤𝑖 , 𝑛∏
𝑖=1

(𝑓𝑚𝑖 )𝑤𝑖 , 𝑛∏
𝑖=1

(𝑓ℎ𝑖 )𝑤𝑖))
(4)

an intuitionistic triangular fuzzy weighted average operator
(ITFWA).

Definition 5. Let 𝛼̃1 = ((𝑡𝑙1, 𝑡𝑚1 , 𝑡ℎ1), (𝑓𝑙1, 𝑓𝑚1 , 𝑓ℎ1 )) and 𝛼̃2 =((𝑡𝑙2, 𝑡𝑚2 , 𝑡ℎ2), (𝑓𝑙2, 𝑓𝑚2 , 𝑓ℎ2 )) be two ITFNs. A similarity measure𝜗(𝛼̃1, 𝛼̃2) between the ITFNs 𝛼̃1 and 𝛼̃2 is defined as follows:𝜗 (𝛼̃1, 𝛼̃2) = 1 − [ 112 (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) + 12⋅max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨)]
(5)

Theorem 6. 
e similarity measure 𝜗(𝛼̃1, 𝛼̃2) satisfies the
following properties:

(i) 0 ≤ 𝜗(𝛼̃1, 𝛼̃2) ≤ 1.
(ii) 𝜗(𝛼̃1, 𝛼̃2) = 1 if and only if 𝛼̃1 = 𝛼̃2.
(iii) 𝜗(𝛼̃1, 𝛼̃2) = 𝜗(𝛼̃2, 𝛼̃1).
(iv) If 𝛼̃3 is a ITFN and 𝛼̃1 ⊆ 𝛼̃2 ⊆ 𝛼̃3, then 𝜗(𝛼̃1, 𝛼̃3) ≤𝜗(𝛼̃1, 𝛼̃2) and 𝜗(𝛼̃1, 𝛼̃3) ≤ 𝜗(𝛼̃2, 𝛼̃3).

Proof. It is easy to see that the proposed similarity measure𝜗(𝛼̃1, 𝛼̃2) meets the third property of Theorem 6. We only
need to prove (i), (ii), and (iv).

For (i). By (2), we have0 ≤ 󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 ≤ 1,0 ≤ 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 ≤ 1,0 ≤ 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 ≤ 1,0 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 ≤ 1,

0 ≤ 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 ≤ 1,0 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨 ≤ 1.
(6)

It is easy to see that0 ≤ 112 (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) ≤ 120 ≤ 12 max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) ≤ 12
(7)

Thus we get0 ≤ 1 − [ 112 (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1− 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) + 12 max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨)]≤ 1
(8)

And then the inequality 0 ≤ 𝜗(𝛼̃1, 𝛼̃2) ≤ 1 is established.
For (ii). When 𝜗(𝛼̃1, 𝛼̃2) = 1, if and only if112 (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑚1− 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) = 012 max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) = 0

(9)

Apparently, it is easy to derive󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 = 0,󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 = 0,󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 = 0,󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 = 0,󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 = 0,󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨 = 0.
(10)

Thus we get 𝑡𝑙1 = 𝑡𝑙2, 𝑡𝑚1 = 𝑡𝑚2 , 𝑡ℎ1 = 𝑡ℎ2 , 𝑓𝑙1 = 𝑓𝑙2, 𝑓𝑚1 = 𝑓𝑚2 ,𝑓ℎ1 − 𝑓ℎ2 . And then 𝛼̃1 = 𝛼̃2.
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For (iv). Since 𝑡𝑙1 ≤ 𝑡𝑙2 ≤ 𝑡𝑙3,𝑡𝑚1 ≤ 𝑡𝑚2 ≤ 𝑡𝑚3 ,𝑡ℎ1 ≤ 𝑡ℎ2 ≤ 𝑡ℎ3 ,𝑓𝑙1 ≥ 𝑓𝑙2 ≥ 𝑓𝑙3,𝑓𝑚1 ≥ 𝑓𝑚2 ≥ 𝑓𝑚3 ,𝑓ℎ1 ≥ 𝑓ℎ2 ≥ 𝑓ℎ3 ,
(11)

we get 󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙3󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚3 󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ3 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙3󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚3 󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ3 󵄨󵄨󵄨󵄨󵄨 .
(12)

Based on the above inequalities, it is easy to derive󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑚1− 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙3󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚3 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ3 󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙3󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚3 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ3 󵄨󵄨󵄨󵄨󵄨 ,

max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) ≤ max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙3󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚3 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ3 󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙3󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚3 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ3 󵄨󵄨󵄨󵄨󵄨) .
(13)

Thus, it holds that1 − [ 112 (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) + 12 max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨)]≥ 1 − [ 112 (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1− 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨) + 12 max (󵄨󵄨󵄨󵄨󵄨𝑡𝑙1 − 𝑡𝑙2󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑡𝑚1 − 𝑡𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡ℎ1 − 𝑡ℎ2 󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑙1 − 𝑓𝑙2󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑓𝑚1 − 𝑓𝑚2 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓ℎ1 − 𝑓ℎ2 󵄨󵄨󵄨󵄨󵄨)] .
(14)

Thus, 𝜗(𝛼̃1, 𝛼̃3) ≤ 𝜗(𝛼̃1, 𝛼̃2). In the same way, it is proved
that 𝜗(𝛼̃1, 𝛼̃3) ≤ 𝜗(𝛼̃2, 𝛼̃3).
2.2. Distance Measures. Hamming distance is easily pro-
cessed and commonly used in the process of heterogeneous
information processing. For INs 𝑎 = [𝑎𝑙, 𝑎𝑢] and 𝑏 =[𝑏𝑙, 𝑏𝑢] (or TFNs 𝑎 = (𝑎1, 𝑎2, 𝑎3) and 𝑏 = (𝑏1, 𝑏2, 𝑏3), TrFNs𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝑏 = (𝑏1, 𝑏2, 𝑏3, 𝑏4), and TIFNs 𝑎 =((𝑎1, 𝑎2, 𝑎3), 𝑢𝑎, V𝑎) and 𝑏 = ((𝑏1, 𝑏2, 𝑏3), 𝑢𝑏, V𝑏)), the distance
measures can be defined as follows [35, 44]:

𝑑 (𝑎, 𝑏)
= {{{{{{{{{{{{{{{{{{{

12 (󵄨󵄨󵄨󵄨󵄨𝑎𝑙 − 𝑏𝑙󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎𝑢 − 𝑏𝑢󵄨󵄨󵄨󵄨) , if 𝑎, 𝑏 are INs13 (󵄨󵄨󵄨󵄨𝑎1 − 𝑏1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎2 − 𝑏2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎3 − 𝑏3󵄨󵄨󵄨󵄨) , if 𝑎, 𝑏 are TFNs14 (󵄨󵄨󵄨󵄨𝑎1 − 𝑏1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎2 − 𝑏2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎3 − 𝑏3󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎4 − 𝑏4󵄨󵄨󵄨󵄨) , if 𝑎, 𝑏 are TrFNs16 (󵄨󵄨󵄨󵄨𝑢𝑎𝑎1 − 𝑢𝑏𝑏1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝑎𝑎2 − 𝑢𝑏𝑏2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑢𝑎𝑎3 − 𝑢𝑏𝑏3󵄨󵄨󵄨󵄨) + 󵄨󵄨󵄨󵄨V𝑎𝑎1 − V𝑏𝑏1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝑎𝑎2 − V𝑏𝑏2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨V𝑎𝑎3 − V𝑏𝑏3󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎1 − 𝑏1󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎2 − 𝑏2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑎3 − 𝑏3󵄨󵄨󵄨󵄨 ), if 𝑎, 𝑏 are TIFNs.
(15)

3. A New Method for Heterogeneous
MAGDM Problems

In this section, the presentation of heterogeneous MAGDM
problems is given first. Then, an approach to aggregating
heterogeneous information into ITFNs is developed.

3.1. Heterogeneous MAGDM Problems. For the sake of con-
venience, some symbols are introduced to characterize the
heterogeneous MAGDM problems as follows:

(1) The group of DMs𝐷𝑖 (𝑖 ∈ 𝑀 = {1, 2, . . . , 𝑚}).
(2)The set of attributes𝐴𝑗 (𝑗 ∈ 𝑁 = {1, 2, . . . , 𝑛}). Denote

the attribute weight vector by𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛), where𝑤𝑗

represents the weight of𝐴𝑗 such that 𝑤𝑗 ∈ [0, 1] (𝑗 ∈ 𝑁) and∑𝑛𝑗=1𝑤𝑗 = 1.
(3) The set of alternatives 𝑆𝑘 (𝑘 ∈ 𝑃 = {1, 2, . . . , 𝑝}).
Since there are multiple formats of rating values, the

attribute set A = {𝐴1, 𝐴2, . . . , 𝐴𝑛} is divided into four subsets𝐴1 = {𝐴1, 𝐴2, . . . , 𝐴𝑗1}, 𝐴2 = {𝐴𝑗1+1, 𝐴𝑗1+2, . . . , 𝐴𝑗2}, 𝐴3 ={𝐴𝑗2+1, 𝐴𝑗2+2, . . . , 𝐴𝑗3}, 𝐴4 = {𝐴𝑗3+1, 𝐴𝑗3+2, . . . , 𝐴𝑗4}, and𝐴5 = {𝐴𝑗4+1, 𝐴𝑗4+2, . . . , 𝐴𝑗5}, where 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑗3 ≤𝑗4 ≤ 𝑗5 ≤ 𝑛, 𝐴 𝑡 ∩ 𝐴𝑘 = 0 (𝑡, 𝑘 = 1, 2, 3, 4, 5; 𝑡 ̸= 𝑘),
and ⋃5𝑡=1 𝐴 𝑡 = 𝐴, 0 is an empty set. The rating values in
the subsets 𝐴𝑒 (𝑒 = 1, 2, 3, 4, 5) are in the form of RNs, INs,
TFNs, TrFNs, and TIFNs, respectively. Denote the subscript
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Figure 1: Framework for aggregating ITFN.

sets for subsets 𝐴𝑒 (𝑒 = 1, 2, 3, 4, 5) by 𝑁1 = {1, 2, . . . , 𝑗1},𝑁2 = {𝑗1 + 1, 𝑗1 + 2, . . . , 𝑗2}, 𝑁3 = {𝑗2 + 1, 𝑗2 + 2, . . . , 𝑗3},𝑁4 = {𝑗3 + 1, 𝑗3 + 2, . . . , 𝑗4}, and𝑁5 = {𝑗4 + 1, 𝑗4 + 2, . . . , 𝑗5},
respectively.

(4) The group decision matrix.
Suppose that the rating of alternative 𝑆𝑘 with respect to

the attribute 𝐴𝑗 given by DM𝐷𝑖 is denoted by 𝑥𝑘𝑖𝑗 (𝑖 ∈ 𝑀, 𝑗 ∈𝑁, 𝑘 ∈ 𝑃). If 𝑗 ∈ 𝑁1, then 𝑥𝑘𝑖𝑗 is a RN. If 𝑗 ∈ 𝑁2, then 𝑥𝑘𝑖𝑗 =[𝑥𝑘𝑖𝑗, 𝑥𝑘𝑖𝑗] is an IN. If 𝑗 ∈ 𝑁3, then 𝑥𝑘𝑖𝑗 = (𝑎𝑘𝑖𝑗, 𝑏𝑘𝑖𝑗, 𝑐𝑘𝑖𝑗) is a TFN.
If 𝑗 ∈ 𝑁4, then 𝑥𝑘𝑖𝑗 = (𝑒𝑘𝑖𝑗, 𝑓𝑘𝑖𝑗 , 𝑔𝑘𝑖𝑗, ℎ𝑘𝑖𝑗) is a TrFN. If 𝑗 ∈ 𝑁5,
then 𝑥𝑘𝑖𝑗 = ((𝑡𝑘𝑖𝑗, 𝑡𝑘𝑖𝑗, 𝑡𝑘𝑖𝑗), 𝑢𝑘𝑖𝑗, V𝑘𝑖𝑗). Namely, 𝑥𝑘𝑖𝑗 can be unified as
follows:

𝑥𝑘𝑖𝑗 =
{{{{{{{{{{{{{{{{{{{{{{{

𝑥𝑘𝑖𝑗, if 𝑗 ∈ 𝑁1[𝑥𝑘𝑖𝑗, 𝑥𝑘𝑖𝑗] , if 𝑗 ∈ 𝑁2(𝑎𝑘𝑖𝑗, 𝑏𝑘𝑖𝑗, 𝑐𝑘𝑖𝑗) , if 𝑗 ∈ 𝑁3(𝑒𝑘𝑖𝑗, 𝑓𝑘𝑖𝑗 , 𝑔𝑘𝑖𝑗, ℎ𝑘𝑖𝑗) , if 𝑗 ∈ 𝑁4((𝑡𝑘𝑖𝑗, 𝑡𝑘𝑖𝑗, 𝑡𝑘𝑖𝑗) , 𝑢𝑘𝑖𝑗, V𝑘𝑖𝑗) , if 𝑗 ∈ 𝑁5
(16)

Hence, a group decision matrix of alternative 𝑆𝑘 can be
expressed as

𝑋
𝑘 = (𝑥𝑘𝑖𝑗)𝑚×𝑛 =

𝐴1 𝐴2 ⋅ ⋅ ⋅ 𝐴𝑛𝐷1𝐷2...𝐷𝑚
(
(

𝑥𝑘11 𝑥𝑘12 ⋅ ⋅ ⋅ 𝑥𝑘1𝑛𝑥𝑘21 𝑥𝑘22 ⋅ ⋅ ⋅ 𝑥𝑘2𝑛... ... ... ...𝑥𝑘𝑚1 𝑥𝑘𝑚2 ⋅ ⋅ ⋅ 𝑥𝑘𝑚𝑛
)
)(𝑘 ∈ 𝑃)

(17)

To reduce information loss and simplify the focused
problems, the group decision matrices 𝑋𝑘 = (𝑥𝑘𝑖𝑗)𝑚×𝑛 (𝑘 =1, 2, . . . , 𝑝) can be integrated into a collective ITFN decision
matrix. The key to addressing this issue lies in an effective
approach for constructing ITFNs based on the experts’
assessment expressed in different types of data.

3.2. An Approach to Aggregating Heterogeneous Information
into ITFNs. To facilitate the calculation, denote the jth
column vector in the matrix 𝑋𝑘 as

𝐴𝑘𝑗 = (𝑥𝑘1𝑗, 𝑥𝑘2𝑗, . . . , 𝑥𝑘𝑚𝑗) (𝑘 ∈ 𝑃, 𝑗 ∈ 𝑁) , (18)

which is the normalized assessment vector of alternative 𝑆𝑘 on
attribute 𝐴𝑗 given by all DMs 𝐷𝑖 (𝑖 = 1, 2, . . . , 𝑚). Let 𝐴max

𝑗

and 𝐴min
𝑗 be the largest grade and smallest grade employed

in the rating system. For example, if the assessments in 𝐴𝑗
are TFNs, then 𝐴max

𝑗 = (1, 1, 1) and 𝐴min
𝑗 = (0, 0, 0); if the

assessments in 𝐴𝑗 are INs, then 𝐴max
𝑗 = [1, 1] and 𝐴min

𝑗 =[0, 0]. To integrate the decision matrices 𝑋𝑘 = (𝑥𝑘𝑖𝑗)𝑚×𝑛 (𝑘 =1, 2, . . . , 𝑝) into a collective ITFN decision matrix, all the
elements in vector 𝐴𝑘𝑗 need to be aggregated into an ITFN.
The implementation of the aggregation approach involves a
four-stage framework (see Figure 1): (1) Elicit Rsd, Rdd, and
Rud. In this process, we use the TOPSIS method to obtain
the rating satisfactory degree (Rsd) and rating dissatisfactory
degree (Rdd) of 𝑥𝑘𝑖𝑗 and construct the support set 𝜉𝑘𝑗 and
opposition set 𝜁𝑘𝑗 of 𝐴𝑘𝑗. The rating uncertain degree (Rud)
of 𝑥𝑘𝑖𝑗 and the corresponding uncertain set 𝜂𝑘𝑗 are derived by
geometry entropy. (2) Calculate mode. Combining the group
consistency and mean method, the modes of the above sets𝜉𝑘𝑗, 𝜁𝑘𝑗, and 𝜂𝑘𝑗 are computed in this stage. (3) Construct
Qst and Qdt. According to the Min-Max method, the quasi-
satisfactory triangular (Qst) and quasi-dissatisfactory trian-
gular (Qdt) of𝐴𝑘𝑗 can be built. (4) Induce an ITFN.The ITFN
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Figure 2: Distances ratio-based rating uncertain degree for 𝑥𝑘𝑖𝑗.
of𝐴𝑘𝑗 can be obtained through a linear transformation in this
process.

3.2.1. Elicit the Rsd, Rdd, and Rud. Consider that (1) the
relative closeness [45] from𝑥𝑘𝑖𝑗 to𝐴max

𝑗 implies the satisfaction
of DM; (2) the relative closeness from 𝑥𝑘𝑖𝑗 to 𝐴min

𝑗 implies
the dissatisfaction of DM; and (3) according to the ratio-
based measure of fuzziness [46, 47], the ratio of distances
from 𝑥𝑘𝑖𝑗 to 𝐴min

𝑗 and from 𝑥𝑘𝑖𝑗 to 𝐴max
𝑗 can also express the

fuzziness degree of 𝑥𝑘𝑖𝑗.Thus, combining the relative closeness
of TOPSIS [36] and geometry entropy method [46], the Rsd,
Rdd, and Rud of 𝑥𝑘𝑖𝑗 can be elicited as follows.

Definition 7. Let 𝐴𝑘𝑗 be a benefit attribute vector, and let 𝑥𝑘𝑖𝑗
be an arbitrary element in 𝐴𝑘𝑗. The Rsd, Rdd, and Rud of 𝑥𝑘𝑖𝑗
are defined as𝜉𝑘𝑖𝑗 = 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min

𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 ) + 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min

𝑗 ) , (19)

𝜁𝑘𝑖𝑗 = 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) + 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) , (20)

𝜂𝑘𝑖𝑗 = min
{{{𝑑(𝑥𝑘𝑖𝑗, 𝐴min

𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 ) , 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 )}}} , (21)

respectively, where 𝜉𝑘𝑖𝑗, 𝜁𝑘𝑖𝑗, and 𝜂𝑘𝑖𝑗 denote the Rsd, Rdd,
and Rud given by 𝑑𝑖 on attribute 𝐴𝑗 in the alternative 𝑆𝑘,𝑑(𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) is the distance between 𝑥𝑘𝑖𝑗 and the largest grade𝐴max
𝑗 of the attribute 𝐴𝑗, and 𝑑(𝑥𝑘𝑖𝑗, 𝐴min

𝑗 ) is the distance
between 𝑥𝑘𝑖𝑗 and the smallest grade 𝐴min

𝑗 of the attribute 𝐴𝑗.
For Example 1. Consider that 𝑥111 = (4.6, 7.2, 8.3) is a TFN
in the ten-mark system; then 𝐴min

𝑗 = (0, 0, 0), 𝐴max
𝑗 =(10, 10, 10). According to (19)-(21), the Rsd, Rdd, and Rud of𝑥111 are calculated, respectively, as 𝜉111 = 0.67, 𝜁111 = 0.33, and𝜂111 = 0.49.

Theorem 8. Rud 𝜂𝑘𝑖𝑗 of 𝑥𝑘𝑖𝑗 in 𝐴𝑘𝑗 has the following properties.
(EP1) If 𝑥𝑘𝑖𝑗 = 𝐴max

𝑗 or 𝑥𝑘𝑖𝑗 = 𝐴min
𝑗 , then 𝜂𝑘𝑖𝑗 = 0, which

means that 𝐴min
𝑗 and 𝐴max

𝑗 are not fuzzy since 𝐴min
𝑗 and 𝐴max

𝑗

are crisp sets.
(EP2) If 𝑑(𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) = 𝑑(𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) (namely, 𝑥𝑘𝑖𝑗 is the

middle point), then 𝜂𝑘𝑖𝑗 = 1, which means that 𝑥𝑘𝑖𝑗 is the fuzziest
element.

(EP3) 𝜂𝑘𝑖𝑗 ≤ 𝜂𝑘𝑡𝑗 (𝑖, 𝑡 ∈ 𝑀 = {1, 2, . . . , 𝑚}), if 𝜂𝑘𝑖𝑗 is less fuzzy
than 𝜂𝑘𝑖𝑗, i.e.,𝑑 (𝑥𝑘𝑖𝑗, 𝐴min

𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴min

𝑗 )𝑑 (𝑥𝑘𝑡𝑗, 𝐴max
𝑗 ) ,

for 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) , 𝑑 (𝑥𝑘𝑡𝑗, 𝐴min
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴max

𝑗 ) ;𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴min

𝑗 )𝑑 (𝑥𝑘𝑡𝑗, 𝐴max
𝑗 ) ,

for 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) ≥ 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) , 𝑑 (𝑥𝑘𝑡𝑗, 𝐴min
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴max

𝑗 ) ;𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴max

𝑗 )𝑑 (𝑥𝑘𝑡𝑗, 𝐴min
𝑗 ) ,

for 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) , 𝑑 (𝑥𝑘𝑡𝑗, 𝐴min
𝑗 ) ≥ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴max

𝑗 ) ;𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) ≤ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴max

𝑗 )𝑑 (𝑥𝑘𝑡𝑗, 𝐴min
𝑗 ) ,

for 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) ≥ 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) , 𝑑 (𝑥𝑘𝑡𝑗, 𝐴min
𝑗 ) ≥ 𝑑 (𝑥𝑘𝑡𝑗, 𝐴max

𝑗 ) .

(22)

It is easy to prove that Rud 𝜂𝑘𝑖𝑗 meets the properties (EP1)-
(EP3), which are consistent with the axioms (1)-(3) of fuzzy
entropy based on distance in [48]. Froma geometric standpoint,𝐴max
𝑗 and 𝐴min

𝑗 in the rating system are nonfuzzy which can
correspond to the position M and position N (Figure 2). When
a fuzzy number 𝑥𝑘𝑖𝑗 is moved from position M (or N) towards
middle position O, the distance from 𝑥𝑘𝑖𝑗 to M is close to N.
Meanwhile,𝑥𝑘𝑖𝑗 become more and more vague; i.e., 𝜂𝑘𝑖𝑗 is getting
bigger and bigger. Particularly, when 𝑥𝑘𝑖𝑗 is in position P, the
distance from 𝑥𝑘𝑖𝑗 to M is equal to N. So, the fuzzy number 𝑥𝑘𝑖𝑗
is the fuzziest, i.e., 𝜂𝑘𝑖𝑗 = 1. According to the analysis above, it is
reasonable that Rud measures the uncertainty of the original
assessment. It is worth mentioning that (21) is suitable for
different forms of decision data such as INs, TFNs, TIFNs, and
TrIFNs.

Remark 9. From (19)-(21), the extraction method in this
paper relies on just the largest grade 𝐴max

𝑗 and the smallest
grade𝐴min

𝑗 of the attribute 𝐴𝑗, while the methods [35, 37] rely
on 𝐴max
𝑗 and 𝐴min

𝑗 as well as the middle grade 𝐴mid
𝑗 of the

attribute 𝐴𝑗. However, it is hard to determine the middle
grade for some sets of TIFNs [43] and TrIFNs [49, 50].
Hence, the proposed extraction method is more effective and
simple.
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Remark 10. When𝐴𝑘𝑗 is a cost attribute vector, the Rud of 𝑥𝑘𝑖𝑗
can be derived by (21).TheRsd andRdd of𝑥𝑘𝑖𝑗 can be rewritten
as 𝜉𝑘𝑖𝑗 = 𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max
𝑗 ) + 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min

𝑗 ) , (23)

𝜁𝑘𝑖𝑗 = 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 )𝑑 (𝑥𝑘𝑖𝑗, 𝐴max

𝑗 ) + 𝑑 (𝑥𝑘𝑖𝑗, 𝐴min
𝑗 ) (24)

Remark 11. For the benefit attribute vector 𝐴𝑘𝑗 = (𝑥𝑘1𝑗,𝑥𝑘2𝑗, . . . , 𝑥𝑘𝑚𝑗), 𝜉𝑘𝑖𝑗, 𝜁𝑘𝑖𝑗, and 𝜂𝑘𝑖𝑗 of each element are composed
of support set 𝜉𝑘𝑗, opposition set 𝜁𝑘𝑗, and uncertain set 𝜂𝑘𝑗 of
𝐴𝑘𝑗 which can be defined as 𝜉𝑘𝑗 = {𝜉𝑘1𝑗, 𝜉𝑘2𝑗, . . . , 𝜉𝑘𝑚𝑗} and 𝜁𝑘𝑗 ={𝜁𝑘1𝑗, 𝜁𝑘2𝑗, . . . , 𝜁𝑘𝑚𝑗} and 𝜂𝑘𝑗 = {𝜂𝑘1𝑗, 𝜂𝑘2𝑗, . . . , 𝜂𝑘𝑚𝑗}, respectively.
3.2.2. Calculate the Mode. For the support set 𝜉𝑘𝑗 = {𝜉𝑘1𝑗,𝜉𝑘2𝑗, . . . , 𝜉𝑘𝑚𝑗}, the mode of the TFN is located in the center
around which the Rsd 𝜉𝑘𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚) gather. Inspired
by the literature [49, 50], the more consistent it is with the
rest of 𝜉𝑘𝑗, the greater the importance of the Rsd 𝜉𝑘𝑖𝑗 given by
DM 𝐷𝑖. That is to say, the weighted average of the collection𝜉𝑘𝑗 can be regarded as its mode. Here, we utilize the distance
between 𝜉𝑘𝑖𝑗 and 𝜉𝑘𝑒𝑗 to define the consistency degree of 𝐷𝑖 on
support set 𝜉𝑘𝑗 to the rest of experts, which can be obtained
by 𝐶𝐼𝑘𝑖𝑗 = 1𝑚 − 1 𝑚∑𝑖=1,𝑖 ̸=𝑗 (1 − 𝑑 (𝜉𝑘𝑖𝑗, 𝜉𝑘𝑒𝑗)) , (25)

where 𝑑(⋅) is the distance between 𝜉𝑘𝑖𝑗 and other Rsds in 𝜉𝑘𝑗.
Clearly, 0 ≤ 𝑆𝑘 ≤ 1.

Generally, an expert’s Rsd is more important if he/she is
more similar to the group’s Rsd. In other words, the larger the
value of 𝐶𝐼𝑘𝑖𝑗 is, the more important 𝜉𝑘𝑗 is. Thus, the weight of𝐷𝑖 on 𝜉𝑘𝑗 can be obtained by

𝑢𝑘𝑖𝑗 = 𝐶𝐼𝑘𝑖𝑗∑𝑚𝑖=1 𝐶𝐼𝑘𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚) . (26)

Then the mode of 𝛿𝑘𝑗 for support set 𝜉𝑘𝑗 is derived as𝑚(𝜉𝑘𝑗) = 𝑚∑
𝑖=1

𝑢𝑘𝑖𝑗𝜉𝑘𝑖𝑗. (27)

Similarly, we have the mode𝑚(𝜁𝑘𝑗) of opposition set 𝜁𝑘𝑗.
3.2.3. Construct Qst and Qdt. Note that the membership
degree and nonmembership degree of aTIFN areTFNs rather
than real numbers. Moreover, 𝜉𝑘𝑖𝑗 and 𝜁𝑘𝑖𝑗 are real numbers
which are difficult to express the imprecise and vague experts’
subjective judgment. By doing this, the TFNs of 𝜉𝑘𝑖𝑗 and 𝜁𝑘𝑖𝑗

are commonly used to represent Qsd and Qdd of 𝐴𝑘𝑗 since
TFN is characterized by a membership function. Thus, it is
necessary to construct the Qst and Qdt of 𝐴𝑘𝑗. As per the
definition of TFN, the corresponding TFNs of 𝜉𝑘𝑗 and 𝜁𝑘𝑗 can
be constructed as follows.

Definition 12. For the attribute vector𝐴𝑘𝑗, theQst𝛿𝑘𝑗 andQdt𝛾𝑘𝑗 of alternative 𝑆𝑘 on attribute 𝐴𝑗 are defined as𝛿𝑘𝑗 = (min {𝜉𝑘𝑗} ,𝑚 (𝜉𝑘𝑗) ,max {𝜉𝑘𝑗}) ,(𝑘 ∈ 𝑃, 𝑗 ∈ 𝑁) (28)

𝛾𝑘𝑗 = (min {𝜁𝑘𝑗} , 𝑚 (𝜁𝑘𝑗) ,max {𝜁𝑘𝑗}) ,(𝑘 ∈ 𝑃, 𝑗 ∈ 𝑁) (29)

where the min{𝜉𝑘𝑗} and max{𝜉𝑘𝑗} are the minimum value
and maximum value of the support set 𝜉𝑘𝑗 and min{𝜁𝑘𝑗} and
max{𝜁𝑘𝑗} are the minimum value and maximum value of
opposition set 𝜁𝑘𝑗. For the convenience of discussion, the pair(𝛿𝑘𝑗, 𝛾𝑘𝑗) is called a quasi-ITFN.

Remark 13. To calculate the mode of triangular fuzzy num-
bers 𝛿𝑘𝑗 and 𝛾𝑘𝑗, this paper employs the weighted averaging
value that considers the distribution of ratings, whereas some
works used the mean value method. The essential difference
is that the current method takes the consistency of the group
into account, while the mean value method is based on
statistical assumptions.

3.2.4. Inducing an ITFN. Finally, an ITFN is induced
from the Qst and Qdt of alternative 𝑆𝑘 on the attribute𝐴𝑗 by the following normalized method. Let 𝛼𝑘𝑗 =((𝑡𝑙𝑘𝑗, 𝑡𝑚𝑘𝑗, 𝑡ℎ𝑘𝑗), (𝑓𝑙𝑘𝑗, 𝑓𝑚𝑘𝑗 , 𝑓ℎ𝑘𝑗)) (𝑘 ∈ 𝑃, 𝑗 ∈ 𝑁) be the induced
ITFN by the attribute vector 𝐴𝑘𝑗, and mean(𝜂𝑘𝑗) =(1/𝑚)∑𝑚𝑖=1 𝜂𝑘𝑖𝑗 is the uncertain degree of 𝐴𝑘𝑗, To satisfy the
conditions in (3) and consider the influence of uncertain
degree, the values of 𝑡𝑙𝑘𝑗, 𝑡𝑚𝑘𝑗, 𝑡ℎ𝑘𝑗, 𝑓𝑙𝑘𝑗, 𝑓𝑚𝑘𝑗 , and 𝑓ℎ𝑘𝑗 can be
computed as follows:

𝑡𝑙𝑘𝑗 = min {𝜉𝑘𝑗}𝜓𝑘𝑗 ,
𝑡𝑚𝑘𝑗 = mean (𝜉𝑘𝑗)𝜓𝑘𝑗 ,
𝑡ℎ𝑘𝑗 = max {𝜉𝑘𝑗}𝜓𝑘𝑗 ,
𝑓𝑙𝑘𝑗 = min {𝜁𝑘𝑗}𝜓𝑘𝑗 ,
𝑓𝑚𝑘𝑗 = mean (𝜁𝑘𝑗)𝜓𝑘𝑗 ,
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𝑓ℎ𝑘𝑗 = max {𝜁𝑘𝑗}𝜓𝑘𝑗 , (𝑘 ∈ 𝑃, 𝑗 ∈ 𝑁)
(30)

respectively, where𝜓𝑘𝑗 = (1/5)(min{𝜉𝑘𝑗}+𝑚(𝜉𝑘𝑗)+min{𝜁𝑘𝑗}+𝑚(𝜁𝑘𝑗) +mean(𝜂𝑘𝑗)) +max{𝜉𝑘𝑗} +max{𝜁𝑘𝑗}.
Apparently, 𝑡𝑙𝑘𝑗, 𝑡𝑚𝑘𝑗, 𝑡ℎ𝑘𝑗, 𝑓𝑙𝑘𝑗, 𝑓𝑚𝑘𝑗 , and 𝑓ℎ𝑘𝑗 satisfy (3). Thus,𝛼𝑘𝑗 = ((𝑡𝑙𝑘𝑗, 𝑡𝑚𝑘𝑗, 𝑡ℎ𝑘𝑗), (𝑓𝑙𝑘𝑗, 𝑓𝑚𝑘𝑗 , 𝑓ℎ𝑘𝑗)) is an ITFN. Namely, all the

attribute values in the vector 𝐴𝑘𝑗 can be aggregated into an
ITFN 𝛼𝑘𝑗.
For Example 2. Consider that 𝐴𝑘𝑗 = ((4.6, 7.2, 8.3),(3.4, 4.6, 6.7), (5.6, 6.2, 8.2), (4.5, 6.5, 10), (3.7, 6.5, 7.2)) is a
TFN vector in the ten-mark system; then 𝐴min

𝑗 = (0, 0, 0),

𝐴max
𝑗 = (10, 10, 10). According to (19)-(21), the support

set, opposition set, and uncertain set of 𝐴𝑘𝑗 are calculated,
respectively, as 𝜉𝑘𝑗 = {0.67, 0.49, 0.70, 0.65, 0.58}, 𝜁𝑘𝑗 = {0.33,0.51, 0.30, 0.35, 0.42}, and 𝜂𝑘𝑗 = {0.49, 0.39, 0.52, 0.5, 0.44}.
Subsequently, the mode of the sets 𝜉𝑘𝑗 and 𝜁𝑘𝑗 is calculated
from (25)-(27) to be 𝑚(𝜉𝑘𝑗) = 0.62 and 𝑚(𝜁𝑘𝑗) = 0.38.
It follows from (28) and (29) that 𝛿𝑘𝑗 = (0.49, 0.62, 0.70)
and 𝛾𝑘𝑗 = (0.30, 0.38, 0.51). Finally, by using (29), the
induced ITFN associated with 𝐴𝑘𝑗 is derived to be 𝛼𝑘𝑗 =((0.349, 0.445, 0.499), (0.214, 0.268, 0.364)).
4. A Novel Approach for Heterogeneous
MAGDM Problems

According to the proposed aggregationmethod, the collective
decision matrix 𝑋 = (𝑟𝑘𝑗)𝑝×𝑛 is aggregated as follows:

𝐴1 𝐴2 ⋅ ⋅ ⋅ 𝐴𝑛𝑆1𝑆2...𝑆𝑝 ( ((𝑡𝑙11, 𝑡𝑚11, 𝑡ℎ11) , (𝑓𝑙11, 𝑓𝑚11, 𝑓ℎ11))((𝑡𝑙21, 𝑡𝑚21, 𝑡ℎ21) , (𝑓𝑙21, 𝑓𝑚21, 𝑓ℎ21))...((𝑡𝑙𝑝1, 𝑡𝑚𝑝1, 𝑡ℎ𝑝1) , (𝑓𝑙𝑝1, 𝑓𝑚𝑝1, 𝑓ℎ𝑝1))
((𝑡𝑙12, 𝑡𝑚12, 𝑡ℎ12) , (𝑓𝑙12, 𝑓𝑚12, 𝑓ℎ12))((𝑡𝑙22, 𝑡𝑚22, 𝑡ℎ22) , (𝑓𝑙22, 𝑓𝑚22, 𝑓ℎ22))...((𝑡𝑙𝑝2, 𝑡𝑚𝑝2, 𝑡ℎ𝑝2) , (𝑓𝑙𝑝2, 𝑓𝑚𝑝2, 𝑓ℎ𝑝2))

⋅ ⋅ ⋅⋅ ⋅ ⋅...⋅ ⋅ ⋅
((𝑡𝑙1𝑛, 𝑡𝑚1𝑛, 𝑡ℎ1𝑛) , (𝑓𝑙1𝑛, 𝑓𝑚1𝑛, 𝑓ℎ1𝑛))((𝑡𝑙2𝑛, 𝑡𝑚2𝑛, 𝑡ℎ2𝑛) , (𝑓𝑙2𝑛, 𝑓𝑚2𝑛, 𝑓ℎ2𝑛))...((𝑡𝑙𝑝𝑛, 𝑡𝑚𝑝𝑛, 𝑡ℎ𝑝𝑛) , (𝑓𝑙𝑝𝑛, 𝑓𝑚𝑝𝑛, 𝑓ℎ𝑝𝑛)) )

(31)

where 𝑟𝑘𝑗 = ((𝑡𝑙𝑘𝑗, 𝑡𝑚𝑘𝑗, 𝑡ℎ𝑘𝑗), (𝑓𝑙𝑘𝑗, 𝑓𝑚𝑘𝑗 , 𝑓ℎ𝑘𝑗)) (𝑘 ∈ 𝑃, 𝑗 ∈ 𝑁) are
ITFNs aggregated by the attribute vector 𝐴𝑘𝑗 in𝑋

𝑘.
Assume that the weight vector 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) of

attributes is fully known; by (4), we can easily obtain the
comprehensive rating 𝑟𝑘 = ((𝑡𝑙𝑘, 𝑡𝑚𝑘 , 𝑡ℎ𝑘), (𝑓𝑙𝑘, 𝑓𝑚𝑘 , 𝑓ℎ𝑘 )) of the
alternative 𝑆𝑘.When𝑤 is incompletely known, wemay utilize
the following programming model to establish the attribute
weights.

4.1. Determination of Attribute Weights. As all known, it is
reasonable to determine the attribute weights by making
alternative similar to the positive ideal solution (PIS) and
at the same time far away from the negative ideal solution
(NIS) as far as possible. Let 𝑆+ = {𝑟+1 , 𝑟+2 , . . . , 𝑟+𝑛 } and 𝑆− ={𝑟−1 , 𝑟−2 , . . . , 𝑟−𝑛 } be the intuitionistic triangular fuzzy PIS and
NIS, respectively, where𝑟+𝑗 = ((max

𝑘
𝑡𝑙𝑘𝑗,max
𝑘
𝑡𝑚𝑘𝑗,max
𝑘
𝑡ℎ𝑘𝑗) ,(min

𝑘
𝑓𝑙𝑘𝑗,min
𝑘
𝑓𝑚𝑘𝑗 ,min

𝑘
𝑓ℎ𝑘𝑗)= ((𝑡𝑙𝑗+, 𝑡𝑚𝑗 +, 𝑡ℎ𝑗 +) , (𝑓𝑙𝑗+, 𝑓𝑚𝑗 +, 𝑓ℎ𝑗 +)) , (32)

𝑟−𝑗 = ((min
𝑘
𝑡𝑙𝑘𝑗,min
𝑘
𝑡𝑚𝑘𝑗,min
𝑘
𝑡ℎ𝑘𝑗) ,(max

𝑘
𝑓𝑙𝑘𝑗,max

𝑘
𝑓𝑚𝑘𝑗 ,max

𝑘
𝑓ℎ𝑘𝑗)= ((𝑡𝑙𝑗−, 𝑡𝑚𝑗 −, 𝑡ℎ𝑗 −) , (𝑓𝑙𝑗−, 𝑓𝑚𝑗 −, 𝑓ℎ𝑗 −)) .

(33)

(𝑗 ∈ 𝑁 = {1, 2, . . . , 𝑛}). Based on (5), we can define the sim-
ilarity degree between alternative 𝑆𝑘 (𝑘 ∈ 𝑃 = {1, 2, . . . , 𝑝})
and intuitionistic triangular fuzzy ideal solution, shown as
follows:𝜗+𝑘 = 1 − 𝑝∑

𝑗=1

𝑤𝑗 ∗ [ 112 (󵄨󵄨󵄨󵄨󵄨󵄨𝑡𝑙𝑘𝑗 − 𝑡𝑙𝑗+󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡𝑚𝑘𝑗 − 𝑡𝑚𝑗 +󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑡ℎ𝑘𝑗− 𝑡ℎ𝑗 +󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑙𝑘𝑗 − 𝑓𝑙𝑗+󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑚𝑘𝑗 − 𝑓𝑚𝑗 +󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑓ℎ𝑘𝑗 − 𝑓ℎ𝑗 +󵄨󵄨󵄨󵄨󵄨󵄨)+ 12 max (󵄨󵄨󵄨󵄨󵄨󵄨𝑡𝑙𝑘𝑗 − 𝑡𝑙𝑗+󵄨󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡𝑚𝑘𝑗 − 𝑡𝑚𝑗 +󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨𝑡ℎ𝑘𝑗 − 𝑡ℎ𝑗 +󵄨󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑙𝑘𝑗 − 𝑓𝑙𝑗+󵄨󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑚𝑘𝑗 − 𝑓𝑚𝑗 +󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨𝑓ℎ𝑘𝑗 − 𝑓ℎ𝑗 +󵄨󵄨󵄨󵄨󵄨󵄨)]
(34)

𝜗−𝑘 = 1 − 𝑝∑
𝑗=1

𝑤𝑗 ∗ [ 112 (󵄨󵄨󵄨󵄨󵄨󵄨𝑡𝑙𝑘𝑗 − 𝑡𝑙𝑗−󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑡𝑚𝑘𝑗 − 𝑡𝑚𝑗 −󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑡ℎ𝑘𝑗− 𝑡ℎ𝑗 −󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑙𝑘𝑗 − 𝑓𝑙𝑗−󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑓𝑚𝑘𝑗 − 𝑓𝑚𝑗 −󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑓ℎ𝑘𝑗 − 𝑓ℎ𝑗 −󵄨󵄨󵄨󵄨󵄨󵄨)+ 12 max (󵄨󵄨󵄨󵄨󵄨󵄨𝑡𝑙𝑘𝑗 − 𝑡𝑙𝑗−󵄨󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑡𝑚𝑘𝑗 − 𝑡𝑚𝑗 −󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨𝑡ℎ𝑘𝑗 − 𝑡ℎ𝑗 −󵄨󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑙𝑘𝑗 − 𝑓𝑙𝑗−󵄨󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑓𝑚𝑘𝑗 − 𝑓𝑚𝑗 −󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨󵄨𝑓ℎ𝑘𝑗 − 𝑓ℎ𝑗 −󵄨󵄨󵄨󵄨󵄨󵄨)]
(35)

Then, a multiple objective linear mathematical programming
model is constructed as follows:

max {𝜗+𝑘 − 𝜗−𝑘 } (𝑘 ∈ 𝑃)𝑠.𝑡. 𝑤 ∈ Ω (36)
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For a multiple objective programming, there are several
solution methods. Here, we apply the Max-Min method. Let𝜌 = min{𝜗+𝑘 −𝜗−𝑘 }. By using theMax-Minmethod, (36) can be
solved by the following single objective linear programming
model:

max 𝜌
𝑠.𝑡. {{{𝜗+𝑘 − 𝜗−𝑘 ≥ 𝜌 (𝑘 ∈ 𝑃)
𝑤 ∈ Ω (37)

By plugging (34) and (35) in (37), it is easily seen that we
can derive the attribute weights since the optimal solution of
(37) is a Pareto optimal solution of (36).

Remark 14. To obtain the weights of attributes in the intu-
itionistic triangular fuzzy environment, the current method-
ology first combines a multiple objective mathematical pro-
gramming model with TOPSIS idea based on the above
collective decision matrix. Then, this model can be solved
by Max-Min method, which is relatively simple. However, Li
and Chen [49] determined the attribute weights by expected
weight value that involved options of decision makers.
Shan and Xu [42] gave the attribute weights in advance.
Therefore, our method could be more reasonable and objec-
tive.

Thus, the ranking order of the alternative 𝑆𝑘 can be
conducted by the following relative closeness coefficient
(RCC): 𝑅𝐶𝐶𝑘 = 𝜗+𝑘𝜗+

𝑘
+ 𝜗−
𝑘

(38)

where 0 ≤ 𝑅𝐶𝐶𝑘 ≤ 1, (𝑘 ∈ 𝑃). It is obvious that the larger𝑅𝐶𝐶𝑘, the better the alternative 𝑆𝑘.
4.2. Procedure of the Proposed Aggregation Method for Hetero-
geneous MAGDM. On the basis of the above analysis, a new
approach to heterogeneous MAGDM problems involves the
following primary steps.

Step 1. Obtain the decision matrix of alternative 𝑆𝑘 (𝑘 =1, 2, . . . , 𝑝) taking the form of 𝑌𝑘 = (𝑦𝑘𝑖𝑗)𝑚×𝑛, by (18).
Step 2. Convert the decision matrices 𝑋𝑘 = (𝑥𝑘𝑖𝑗)𝑚×𝑛 (𝑘 =1, 2, . . . , 𝑝) into a collective decision matrix 𝑋 = (𝑟𝑘𝑗)𝑝×𝑛
through the aggregation method developed in Section 3.
Based on each column vector 𝐴𝑘𝑗 in the matrix 𝑋𝑘, conduct
the following substeps.

Step 2.1. Compute theRsd, Rdd, andRud of𝑥𝑘𝑖𝑗 by plugging the
Hamming distance of different attribute types into (19), (20),
(21), (23), and (24), and construct support set 𝜉𝑘𝑗, opposition
set 𝜁𝑘𝑗, and uncertain set 𝜂𝑘𝑗 of 𝐴𝑘𝑗.
Step 2.2. Calculate the mode of the support set 𝜉𝑘𝑗 and
opposition set 𝜁𝑘𝑗 of 𝐴𝑘𝑗 by (25)-(27).

Step 2.3. Construct the Qst 𝛿𝑘𝑗 and Qdt 𝛾𝑘𝑗 of 𝐴𝑘𝑗 by (28) and
(29).

Step 2.4. Induce the corresponding ITFN of 𝐴𝑘𝑗 using (30).

Step 3. Determine the attribute weights by constructing a
multiple objective programming model. The detailed steps
are as follows.

Step 3.1. Define the intuitionistic triangular fuzzy PIS 𝑆+ ={𝑟+1 , 𝑟+2 , . . . , 𝑟+𝑛 } and NIS 𝑆− = {𝑟−1 , 𝑟−2 , . . . , 𝑟−𝑛 } by (32) and (33),
respectively.

Step 3.2. Compute the similarity degrees 𝜗+𝑘 and 𝜗−𝑘 from the
elements at the kth row of the collective decision matrix 𝑋 =(𝑟𝑘𝑗)𝑝×𝑛 to PIS 𝑆+ and NIS 𝑆− by (34) and (35), respective-
ly.

Step 3.3. Construct a multiple objective programming model
based on (36).

Step 3.4. Convert the above model into a single objective
programming model by (37).

Step 3.5. Obtain the optimal weights of attributes by solving
the linear programming model.

Step 4. Calculate the similarity degrees 𝜗+𝑘 and 𝜗−𝑘 of alterna-
tive 𝑆𝑘 (𝑘 ∈ 𝑃) by the obtained attribute weights and (34) and
(35).

Step 5. Calculate the RCC of alternative 𝑆𝑘 (𝑘 ∈ 𝑃) by (38).
Step 6. Rank the alternatives according to the RCC and select
the best one.

The decision procedure of the proposed algorithmmay be
depicted in Figure 3.

5. A Trustworthy Seller Selection Problem and
Comparison Analyses

To demonstrate the efficacy of the proposed HMAGDM
method, this section gives a trustworthy seller selection
example and conducts comparison analyses with the ones of
the existing methods [34, 35, 37].

5.1. A Trustworthy Seller Selection Example and Its Solu-
tion Procedure. Online service trading usually takes place
between parties who are autonomous, in an environment
where the buyer often has not enough information about
the seller and goods. Many scholars think that trust is a
prerequisite for successful trading.Therefore, it is very impor-
tant that buyers can identify the most trustworthy seller.
Suppose that a consumer desires to select a trustworthy seller.
After preliminary screening, four candidate sellers 𝑆1, 𝑆2, 𝑆3,
and 𝑆4 remain to be further evaluated. Based on detailed
seller ratings, the decision-making committee assesses the
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Figure 3: The framework of the proposed heterogeneousMAGDMmethod.

four candidate sellers according to the five trust factors,
including product quality (A1), service attitude (A2), web-
site usability (A3), response time (A4), and shipping speed
(A5).

Product quality (A1), service attitude (A2), and website
usability (A3) given by DMs with a one-mark system are all
benefit attributes. It is better to use TFNs to assess product
quality (A1). For service attitude (A2), the experts like to
provide the lower and upper limits and the most possible
intervals; thus the assessments of A2 can be represented by

TrFNs. The website usability (A3) is expressed by TIFNs,
while response time (A4) and shipping speed (A5) given by
DMs with a ten-mark system both are cost attributes. The
assessments of the sellers on A4 can be represented by RNs.
Due to the uncertainty of shipping speed, INs are suitably
utilized to represent the assessments of shipping speed (A5).
The assessments of four sellers on five attributes given by
five experts are listed in Table 1. The attributes’ importance is
incomplete and experts give incomplete information on the
attributes’ importance as follows:

Ω = {{{𝑤1 ≥ 0.1; 𝑤2 − 𝑤1 ≤ 0.05; 𝑤3 − 𝑤1 ≤ 0.05; 𝑤5 − 𝑤1 ≤ 0.05;𝑤1 + 𝑤3 + 𝑤5 ≤ 0.6; 𝑤4 ≤ 0.2; 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 1.}}} (39)

Obviously, the decision problem mentioned above is
a heterogeneous MAGDM problem involving five differ-
ent formats of data: RNs, INs, TFNs, TrFNs, and TIFNs.

To address this problem, we apply the proposed decision
method to the selection of the trustworthy sellers be-
low.
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Table 1: The decision matrix of four alternatives.

Sellers DMs A1 A2 A3 A4 A5

S1 D1 (0.46,0.72,0.83) (0.2, 0.3, 0.5, 1.0) ((0.33,0.5,0.67),0.5,0.3) 3.4 [2, 6]
D2 (0.34,0.46,0.67) (0.4, 0.5, 0.6, 0.8) ((0.33,0.5,0.67),0.4,0.5) 5.4 [1, 3]
D3 (0.56,0.62,0.82) (0.4, 0.4, 0.5, 0.8) ((0.33,0.5,0.67),0.6,0.1) 7.2 [1, 6]
D4 (0.45,0.65,1.00) (0.2, 0.3, 0.5, 0.9) ((0.5,0.67,0.83),0.7,0.2) 8.1 [1, 4]
D5 (0.37,0.65,0.72) (0.0, 0.1, 0.3, 0.7) ((0.17,0.33,0.5),0.4,0.6) 5.9 [3, 8]

S2 D1 (0.51,0.67,0.73) (0.2, 0.3, 0.4, 0.7) ((0.67,0.83,1.0),0.6,0.3) 4.2 [3, 6]
D2 (0.35,0.64,0.73) (0.3, 0.4, 0.4, 0.9) ((0.33,0.5,0.67),0.4,0.5) 5.4 [2, 5]
D3 (0.66,0.82,1.00) (0.2, 0.2, 0.4, 0.5) ((0.67,0.83,1.0),0.6,0.2) 7.2 [4, 7]
D4 (0.34,0.51,0.77) (0.5, 0.6, 0.8, 0.8) ((0.17,0.33,0.5),0.7,0.2) 10.0 [1, 3]
D5 (0.68,0.82,1.00) (0.1, 0.1, 0.2, 0.5) ((0.67,0.83,1.0),0.3,0.6) 7.1 [6, 7]

S3 D1 (0.52,0.66,0.81) (0.5, 0.6, 0.6, 0.8) ((0.0,0.17,0.33),0.5,0.3) 7.8 [2, 4]
D2 (0.39,0.66,0.68) (0.4, 0.5, 0.7, 0.8) ((0.33,0.5,0.67),0.4,0.5) 6.5 [2, 4]
D3 (0.62,0.67,0.84) (0.3, 0.3, 0.5, 0.9) ((0.0,0.17,0.33),0.6,0.1) 4.3 [1, 3]
D4 (0.58,0.74,1.00) (0.4, 0.4, 0.6, 0.8) ((0.33,0.5,0.67),0.6,0.3) 8.3 [3, 5]
D5 (0.44,0.50,0.67) (0.3, 0.3, 0.4, 0.5) ((0.5,0.67,0.83),0.4,0.6) 5.5 [4, 7]

S4 D1 (0.34,0.47,0.67) (0.2, 0.3, 0.4, 0.5) ((0.5,0.67,0.83),0.4,0.4) 4.9 [6, 7]
D2 (0.59,0.66,0.68) (0.2, 0.3, 0.4, 0.4) ((0.5,0.67,0.83)0.6,0.4) 8.1 [5, 6]
D3 (0.47,0.56,0.67) (0.1, 0.1, 0.2, 0.7) ((0.33,0.5,0.67),0.6,0.1) 3.9 [1, 10]
D4 (0.45,0.50,0.69) (0.4, 0.5, 0.7, 0.8) ((0.33,0.5,0.67),0.7,0.3) 5.8 [2, 4]
D5 (0.57,0.74,1.00) (0.2, 0.3, 0.6, 0.6) ((0.17,0.33,0.5),0.4,0.6) 7.0 [4, 6]

Step 1. Thegroup decisionmatrices are obtained as in Table 1.

Step 2. Due to the ratings of A1, A2, A3 given by DMs based
on the one-mark system and the ratings of A4, A5, with the
ten-mark system, we have

𝐴min
𝑗 = {{{{{{{{{{{{{{{{{{{

0, if 𝑗 ∈ 𝑁1[0, 0] , if 𝑗 ∈ 𝑁2(0, 0, 0) , if 𝑗 ∈ 𝑁3(0, 0, 0, 0) , if 𝑗 ∈ 𝑁4((0, 0, 0) , 0, 1) , if 𝑗 ∈ 𝑁5,
𝐴max
𝑗 =

{{{{{{{{{{{{{{{{{{{{{
10, if 𝑗 ∈ 𝑁1[10, 10] , if 𝑗 ∈ 𝑁2(1, 1, 1) , if 𝑗 ∈ 𝑁3(1, 1, 1, 1) , if 𝑗 ∈ 𝑁4((1, 1, 1) , 1, 0) , if 𝑗 ∈ 𝑁5.

(40)

Obtain the aggregated ITFNs corresponding to the
attribute vectors.

Step 2.1. By plugging (15) into (19)-(21) for benefit attributes
(plugging (15) into (23), (24), and (21) for cost attributes), we
can compute the Rsd, Rdd, and Rud of 𝑥𝑘𝑖𝑗, which are shown
in Table 2. Thereby the support set 𝜉𝑘𝑗 and opposition set 𝜁𝑘𝑗
of 𝐴𝑘𝑗 can be derived.

Step 2.2. By (25)-(27), we can obtain the modes of 𝜉𝑘𝑗 and 𝜁𝑘𝑗,
which are listed in Table 3.

Step 2.3. Using (28) and (29), the Qst 𝛿𝑘𝑗 and Qdt 𝛾𝑘𝑗 of 𝐴𝑘𝑗
can be constructed, and the results are presented in Table 3.

Step 2.4. Based on (30), the aggregated ITFNs of 𝐴𝑘𝑗 are also
shown in Table 3.

Step 3. Determine the attribute weights.

Step 3.1. By (32) and (33), the intuitionistic triangular fuzzy
PIS and NIS are defined as follows.𝑆+ = {((0.41, 0.51, 0.63) , (0.13, 0.24, 0.34)) ,((0.23, 0.33, 0.39) , (0.18, 0.29, 0.39)) ,((0.28, 0.38, 0.46) , (0.19, 0.27, 0.36)) ,((0.10, 0.22, 0.36) , (0.18, 0.32, 0.44)) ,((0.32, 0.46, 0.56) , (0.13, 0.24, 0.35))} ,𝑆− = {((0.35, 0.42, 0.50) , (0.21, 0.28, 0.36)) ,((0.13, 0.22, 0.33) , (0.24, 0.34, 0.43)) ,((0.07, 0.18, 0.29) , (0.24, 0.34, 0.45)) ,((0.00, 0.16, 0.29) , (0.23, 0.34, 0.49)) ,((0.22, 0.32, 0.44) , (0.19, 0.31, 0.41))} .

(41)

Step 3.2. By (34) and (35), the similarity degrees 𝜗+𝑘 and𝜗−𝑘 (𝑘 = 1, 2, 3, 4) are calculated as follows.𝜗+1 = 1 − (0.097𝑤1 + 0.062𝑤2 + 0.051𝑤3 + 0.004𝑤4+ 0.026𝑤5)
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Table 2: Rsd, Rdd and Rud of each attribute value.

Providers DM A1 A2 A3 A4 A5

S1 D1 0.67,0.33,0.49 0.50,0.50,1.00 0.42,0.58,0.64 0.66,0.34,0.52 0.60,0.40,0.67

D2 0.49,0.51,0.39 0.58,0.42,0.74 0.42,0.58,0.61 0.46,0.54,0.85 0.80,0.20,0.25

D3 0.67,0.33,0.52 0.53,0.47,0.90 0.41,0.59,0.68 0.28,0.72,0.39 0.65,0.35,0.54

D4 0.70,0.30,0.50 0.48,0.52,0.90 0.59,0.41,0.79 0.19,0.81,0.24 0.75,0.25,0.33

D5 0.58,0.42,0.44 0.28,0.720.38 0.67,0.33,0.80 0.41,0.59,0.70 0.45,0.55,0.82

S2 D1 0.64,0.36,0.49 0.40,0.60,0.67 0.70,0.30,0.58 0.58,0.42,0.72 0.55,0.45,0.82

D2 0.57,0.43,0.43 0.50,0.50,1.00 0.42,0.58,0.61 0.46,0.54,0.85 0.65,0.35,0.54

D3 0.82,0.18,0.60 0.33,0.67,0.68 0.69,0.31,0.56 0.28,0.72,0.39 0.45,0.55,0.82

D4 0.54,0.46,0.41 0.68,0.32,0.33 0.45,0.55,0.76 0.00,1.00,0.00 0.80,0.20,0.25

D5 0.83,0.17,0.60 0.23,0.77,0.78 0.63,0.37,0.89 0.29,0.71,0.41 0.35,0.65,0.54

S3 D1 0.66,0.34,0.50 0.63,0.37,0.60 0.15,0.85,0.17 0.22,0.78,0.28 0.70,0.30,0.43

D2 0.58,0.42,0.44 0.60,0.40,0.67 0.42,0.58,0.61 0.35,0.65,0.54 0.70,0.30,0.43

D3 0.71,0.29,0.55 0.50,0.50,1.00 0.14,0.86,0.16 0.57,0.43,0.75 0.80,0.20,0.25

D4 0.77,0.23,0.56 0.55,0.45,0.82 0.44,0.56,0.70 0.17,0.83,0.21 0.60,0.40,0.67

D5 0.54,0.46,0.43 0.38,0.62,0.60 0.56,0.44,0.91 0.45,0.550.82 0.45,0.55,0.82

S4 D1 0.49,0.51,0.39 0.35,0.65,0.54 0.53,0.47,0.90 0.51,0.49,0.96 0.45,0.55,0.82

D2 0.64,0.36,0.51 0.33,0.67,0.48 0.59,0.41,0.90 0.19,0.81,0.24 0.45,0.55,0.82

D3 0.57,0.43,0.45 0.28,0.72,0.38 0.41,0.59,0.68 0.61,0.39,0.64 0.45,0.55,0.82

D4 0.55,0.45,0.44 0.60,0.40,0.67 0.47,0.53,0.77 0.42,0.58,0.72 0.70,0.30,0.43

D5 0.77,0.23,0.55 0.43,0.57,0.74 0.56,0.44,0.91 0.30,0.70,0.43 0.50,0.50,1.00

𝜗+2 = 1 − (0.002𝑤1 + 0.078𝑤2 + 0.008𝑤3 + 0.078𝑤4+ 0.086𝑤5)𝜗+3 = 1 − (0.040𝑤1 + 0.030𝑤2 + 0.165𝑤3 + 0.043𝑤4+ 0.026𝑤5)𝜗+4 = 1 − (0.072𝑤1 + 0.085𝑤2 + 0.098𝑤3 + 0.018𝑤4+ 0.109𝑤5)𝜗−1 = 1 − (0.014𝑤1 + 0.038𝑤2 + 0.141𝑤3 + 0.079𝑤4+ 0.114𝑤5)𝜗−2 = 1 − (0.100𝑤1 + 0.043𝑤2 + 0.165𝑤3 + 0.146𝑤4+ 0.267𝑤5)𝜗−3 = 1 − (0.060𝑤1 + 0.087𝑤2 + 0.003𝑤3 + 0.166𝑤4+ 0.323𝑤5)𝜗−4 = 1 − (0.034𝑤1 + 0.021𝑤2 + 0.077𝑤3 + 0.191𝑤4+ 0.230𝑤5)
(42)

Step 3.3. By using (36), a multiple objective programming
model is expressed as follows:

max {𝜗+1 − 𝜗−1 = −0.084𝑤1 − 0.023𝑤2 + 0.089𝑤3+ 0.075𝑤4 + 0.088𝑤5}
max {𝜗+2 − 𝜗−2 = 0.098𝑤1 − 0.035𝑤2 + 0.156𝑤3+ 0.068𝑤4 + 0.181𝑤5}
max {𝜗+3 − 𝜗−3 = 0.020𝑤1 + 0.058𝑤2 − 0.162𝑤3+ 0.123𝑤4 + 0.298𝑤5}
max {𝜗+4 − 𝜗−4 = −0.038𝑤1 − 0.064𝑤2 − 0.021𝑤3+ 0.172𝑤4 + 0.122𝑤5}𝑠.𝑡. 𝑤 ∈ Ω

(43)
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Table 3: Mode𝑚{𝜉𝑘𝑗},𝑚{𝜁𝑘𝑗}, Qst 𝛿𝑘𝑗, Qdt 𝛾𝑘𝑗 and aggregated ITFNs of attribute vectors.
Sellers Attributes 𝑚{𝜉𝑘𝑗} 𝜉𝑘𝑗 𝑚{𝜁𝑘𝑗} 𝜁𝑘𝑗 ITFNs
S1 A1 0.62 (0.49,0.62,0.70) 0.38 (0.30,0.38,0.51) ((0.35,0.44,0.49),(0.21,0.27,0.36))

A2 0.48 (0.28,0.48,0.58) 0.52 (0.43,0.52,0.73) ((0.16,0.28,0.34),(0.25,0.31,0.43))
A3 0.59 (0.50,0.59,0.83) 0.41 (0.17,0.41,0.50) ((0.35,0.41,0.58),(0.12,0.29,0.35))
A4 0.40 (0.19,0.40,0.66) 0.60 (0.34,0.60,0.81) ((0.10,0.22,0.36),(0.19,0.33,0.45))
A5 0.65 (0.45,0.65,0.80) 0.35 (0.20,0.35,0.55) ((0.32,0.46,0.56),(0.14,0.24,0.39))

S2 A1 0.68 (0.54,0.68,0.83) 0.32 (0.17,0.32,0.46) ((0.40,0.51,0.62),(0.12,0.24,0.34))
A2 0.42 (0.23,0.42,0.68) 0.58 (0.33,0.58,0.78) ((0.13,0.24,0.38),(0.18,0.33,0.44))
A3 0.71 (0.50,0.71,0.83) 0.29 (0.17,0.29,0.50) ((0.37,0.53,0.62),(0.12,0.22,0.37))
A4 0.67 (0.00,0.33,0.58) 0.67 (0.42,0.67,1.00) ((0.00,0.16,0.29),(0.21,0.33,0.50))
A5 0.44 (0.35,0.56,0.80) 0.44 (0.20,0.44,0.65) ((0.22,0.35,0.51),(0.13,0.28,0.41))

S3 A1 0.65 (0.54,0.65,0.77) 0.35 (0.23,0.35,0.46) ((0.40,0.48,0.57),(0.17,0.26,0.34))
A2 0.53 (0.38,0.53,0.63) 0.47 (0.38,0.47,0.63) ((0.24,0.34,0.40),(0.24,0.30,0.40)
A3 0.40 (0.17,0.40,0.67) 0.60 (0.33,0.60,0.83) ((0.09,0.22,0.37),(0.18,0.33,0.46))
A4 0.35 (0.17,0.35,0.57) 0.65 (0.43,0.65,0.83) ((0.09,0.19,0.31),(0.23,0.35,0.45))
A5 0.46 (0.32,0.46,0.56) 0.24 (0.14,0.24,0.39) ((0.32,0.46,0.56),(0.14,0.24,0.39))

S4 A1 0.60 (0.49,0.60,0.77) 0.40 (0.23,0.40,0.51) ((0.35,0.42,0.54),(0.16,0.28,0.35))
A2 0.39 (0.28,0.39,0.60) 0.61 (0.40,0.61,0.73) ((0.16,0.22,0.34),(0.23,0.35,0.41))
A3 0.54 (0.33,0.54,0.67) 0.46 (0.33,0.46,0.67) ((0.21,0.34,0.42),(0.21,0.29,0.42))
A4 0.41 (0.19,0.41,0.61) 0.59 (0.39,0.59,0.81) ((0.11,0.23,0.34),(0.22,0.33,0.45))
A5 0.50 (0.45,0.50,0.70) 0.40 (0.30,0.40,0.55) ((0.29,0.33,0.46),(0.20,0.32,0.36))

Step 3.4. By using (37), (43) can be changed into the following
single objective linear programming model:

max {𝑥}
𝑠.𝑡.

{{{{{{{{{{{{{{{{{{{{{
−0.084𝑤1 − 0.020𝑤2 + 0.089𝑤3 + 0.075𝑤4 + 0.088𝑤5 ≥ 𝑥0.098𝑤1 − 0.030𝑤2 + 0.154𝑤3 + 0.068𝑤4 + 0.181𝑤5 ≥ 𝑥0.020𝑤1 + 0.058𝑤2 − 0.162𝑤3 + 0.123𝑤4 + 0.298𝑤5 ≥ 𝑥−0.038𝑤1 − 0.070𝑤2 − 0.021𝑤3 + 0.172𝑤4 + 0.122𝑤5 ≥ 𝑥
𝑤 ∈ Ω

(44)

Step 3.5. Applying Lingo 11.0, we have the attribute weight
vector 𝑤 = (0.162, 0.212, 0.214, 0.200, 0.212).
Step 4. By plugging 𝑤 into (34) and (35), the similarity
degrees 𝜗+𝑘 and 𝜗−𝑘 of alternative 𝑆𝑘 can be calculated as
follows: 𝜗+1 = 0.954,𝜗−1 = 0.919,𝜗+2 = 0.948,𝜗−2 = 0.854,𝜗+3 = 0.938,

𝜗−3 = 0.869,𝜗+4 = 0.923,𝜗−4 = 0.886.
(45)

Step 5. Based on (37), the RCC of alternative 𝑆𝑘 is yielded as
follows: 𝑅𝐶𝐶1 = 0.509,𝑅𝐶𝐶2 = 0.526,𝑅𝐶𝐶3 = 0.519,𝑅𝐶𝐶4 = 0.510. (46)
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Step 6. Since 𝑅𝐶𝐶2 > 𝑅𝐶𝐶3 > 𝑅𝐶𝐶4 > 𝑅𝐶𝐶1, we can easily
rank the preference order of the sellers as 𝑆2 ≻ 𝑆3 ≻ 𝑆4 ≻ 𝑆1.
Hence, the best seller is 𝑆2.
5.2. Comparison Analyses with Existing Methods Aggregated
IF Information. Generally, the key focus of the heterogeneous
MAGDMmethods is how to aggregate the assessments taking
the form of different data types, determine the weights of
experts and attributes, and rank the preference order of alter-
natives. Here, we make detailed comparison analyses with
some similar methods [34, 35, 37] from the abovementioned
key issues, which are shown in Table 4. Furthermore, the
current methodology has the following superiorities.

(1) A comparison between the current methodology and
Yue’s method [34] is made. We consider attribute weight
vector 𝑤 = (0.4, 0.2, 0.4) and employ the former to evaluate
the masses’ satisfaction of three leaders used in [34]; the
ranking of three suppliers is 𝑆1 ≻ 𝑆3 ≻ 𝑆2 which is
inconsistent with 𝑆1 ≻ 𝑆2 ≻ 𝑆3 shown in [34]. Although
the ranking is inconsistent, the best satisfactory leader is
the same. Thus, the current methodology can well adapt
to the special decision circumstance in [34]. However, the
latter cannot deal with the heterogeneousMAGDMproblems
since it is only suitable for interval numbers. Moreover,
in the former, the attribute weights are derived by using
a multiple objective programming model that can avoid
subjective randomness in the latter.

(2) A comparison between the current methodology and
Xu et al. method [35] is made. Assume that 𝑎 = (𝜇1, V1) and𝑏 = (𝜇2, V2) are two IFNs, 𝑑(𝑎, 𝑏) = (1/2)(|𝜇1 − 𝜇2| + |V1 − V2|)
is the distance of a and b, and 𝛼+ = (1, 0) and 𝛼− = (0, 1) are
the largest and smallest IFN. Then, the former is applied to
evaluate the cloud computing service provider used in [35];
the ranking of four suppliers is 𝑆1 ≻ 𝑆2 ≻ 𝑆3 ≻ 𝑆4 which is
inconsistent with 𝑆3 ≻ 𝑆1 ≻ 𝑆2 ≻ 𝑆4 shown in [35]. Thus,
the current methodology can well adapt to a special decision
circumstance in [35]. The main reasons for the difference in
the ranking are as follows. (i) The method for eliciting the
satisfaction and dissatisfaction of DMs based on the TOPSIS
idea in the current methodology is more complete than that
in [35], because the former takes into account the two aspects
of satisfaction and dissatisfaction in each element, while the
latter considered only one aspect. (ii) Besides the rating values
denoted by RNs, INs, TFNs, TrFNs, and LVs, the former can
deal with more complicated rating values, including TIFNs,
whereas the latter is only suitable for the HMAGDMproblem
with RNs, INs, TFNs, TrFNs, and LVs. Thus, the latter cannot
solve the abovementioned example. (iii) In the former, the
integrated information of experts is expressed by a TIFN,
whereas that in the latter is an IFN. Hence, there are more
opportunities resulting in a loss of information.

(3) A comparison between the current methodology and
Wan et al. method [37] is made. We employ the former to
evaluate the IT outsourcing service provider used in [37]; the
ranking of four suppliers is 𝑆3 ≻ 𝑆2 ≻ 𝑆1 ≻ 𝑆4 which is
consistent with 𝑆3 ≻ 𝑆2 ≻ 𝑆1 ≻ 𝑆4 shown in [37]. Thus,
the current methodology can well adapt to a special decision
circumstance in [37]. However, the current methodology is
superior over the later in the following aspects. (i) In the

former, the integrated information of experts on the same
attribute is a TIFN, whereas that in the latter is an IVIFN.
Hence, the current methodology can express vagueness
information of reality more accurately and abundantly. (ii)
The former takes into account the weights of experts by their
consistency degree, whereas there is no consideration in the
latter. So, the current methodology is more reasonable. (iii)
The same as the above, the latter is only suitable for the
HMAGDM problem with RNs, INs, TFNs, and TrFNs. Thus,
the latter cannot solve the abovementioned example.

5.3. Comparison Analyses with Existing HMAGDMMethods.
In this section, we compare the proposed method with other
two methods for HMAGDM problems; one is the complex
and dynamic MAGDM method developed by Dong et al.
[15] that is an optimization-based approach, and the other
is the GDM method based on integrating heterogeneous
information introduced by Li [21] that is a direct approach.
For simplicity, the comparative analysis methods are denoted
as CD-GDM and IGI-GDM. The highlighted features of the
proposed methods can be summarized as follows.

(1) During the initial phase, CD-GDM and IGI-GDM
need to standardize the decision data, whereas there is no
need for standardization in the proposed method which is
relatively simple.

(2) The GDMmatrix of the proposed method is an ITFN
decision-making matrix containing ITFNs only which is easy
to handle, whereas that of IGI-GDMremains a heterogeneous
decision-making matrix which is difficult to deal with.

(3) In CD-GDM and IGI-GDM, the integrated infor-
mation of experts is expressed by original decision data
types and real number type which contains less information,
while the integrated information of experts in the proposed
method is represented by ITFNswhich can express intuitively
and describe satisfaction, dissatisfaction, and distribution of
experts.

(4) The weights of attributes in IGI-GDM are given by
decision makers in advance which are subjective; CD-GDM
determine the weights of attributes by nonlinear program-
ming model, whereas they construct a multiple objective
linear programming model to establish attributes’ weights.
Thus the proposed method is more objective and effective.

6. Conclusions

In this paper, we put forward a new aggregation approach
to solve such heterogeneous MAGDM problems in which
the weights of the attributes are incompletely known. The
key features of the proposed method are listed as follows:
(1) a new similarity measure of ITFNs is proposed; (2) a
new general approach to aggregating decision information
into ITFNs is proposed. It can not only accommodate more
complicated data of types, including INs, TFNs, TrFNs, and
TIFNs, but also take importance of experts into account; (3) a
new multiple objective mathematical programming model is
developed for determining the attribute weights objectively
under intuitionistic triangular fuzzy environment; (4) a
new method is presented to solve heterogeneous MAGDM
problems, which considers fully the indeterminacy of the
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DMs in the assessment; thus the final decision results derived
by the proposed method are more reasonable. Additionally,
the proposed method can be also appropriate for the com-
plex multiattribute large-group decision-making problems
[51]. Future research will extend the developed method to
heterogeneous MAGDM with complete unknown weight
information under complex fuzzy environment. Meanwhile,
as the scale of group increases and the decision makers
have different backgrounds and levels of knowledge, it is
difficult to achieve consensus among decisionmakers [52, 53].
Therefore, it will be very interesting in future studies to
discuss the consensus reaching mechanism in the large-scale
HMAGDM.
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