
Decision Procedure for Separation Logic with
Inductive Definitions and Presburger Arithmetic

Makoto Tatsuta1, Quang Loc Le2, and Wei-Ngan Chin3

1 National Institute of Informatics / Sokendai, Tokyo, tatsuta@nii.ac.jp
2 Singapore University of Technology and Design, Singapore

3 National University of Singapore, Singapore

Abstract. This paper considers the satisfiability problem of symbolic
heaps in separation logic with Presburger arithmetic and inductive def-
initions. First the system without any restrictions is proved to be un-
decidable. Secondly this paper proposes some syntactic restrictions for
decidability. These restrictions are identified based on a new decidable
subsystem of Presburger arithmetic with inductive definitions. In the
subsystem of arithmetic, every inductively defined predicate represents
an eventually periodic set and can be eliminated. The proposed system is
quite general as it can handle the satisfiability of the arithmetical parts
of fairly complex predicates such as sorted lists and AVL trees. Finally,
we prove the decidability by presenting a decision procedure for symbolic
heaps with the restricted inductive definitions and arithmetic.

1 Introduction

In the last decade, separation logic has provided an appealing paradigm to sup-
port memory safety verification [1, 2]. For automated program verification, it is
necessary to decide the truth of entailment of symbolic heaps. This paper will
examine the decidability of the satisfiability problem for symbolic heaps. Deci-
sion procedures for satisfiability are important to support entailment proving [5].
It can directly support entailment proving if complement operation is available.
If complementation is unavailable, the unsatisfiability outcome is still important
for pruning of infeasible program sub-states during entailment proving itself.

This paper considers the symbolic heaps as the conjunction of equalities and
disequalities, and the spatial conjunction of empty heap, points-to predicate,
and inductive predicates. Inductive definitions for symbolic-heap systems are
important [7, 8, 4] as they can provide a flexible way to express a wide range of
recursive data structures. Recently, various extensions of symbolic heaps with
arithmetic have been advocated for verifying both quantitative properties and
data contents [5, 11, 9, 10]. These extensions aim to handle more complex data
structures involving arithmetic as well as shape information, such as length of
lists, minimum values of lists, sorted lists, and even height-balanced AVL trees.

Our work extends the satisfiability decision procedure for symbolic heaps
with inductive definitions [4] to symbolic heaps with inductive definitions and
Presburger arithmetic. First we show that the satisfiability of symbolic heaps in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322326776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the system SLA1 which includes (unrestricted) inductive definitions and Pres-
burger arithmetic is undecidable. The undecidability is proved by simulating
multiplication and reducing to it Peano arithmetic which is undecidable.

Next, we propose some restrictions on SLA1 to obtain a decidable subsystem,
called SLA2. For this purpose, we will use the three ideas: (1) a decidable sub-
system DPI of Presburger arithmetic and inductive definitions, (2) projections
and unfolding trees, and (3) a periodic structure in the sequence of base pairs.

Our first idea is to propose the decidable system DPI as a subsystem of Pres-
burger arithmetic and inductive definitions with some restrictions. Although the
truth for Presburger arithmetic is known to be decidable [6], the decidability of
Presburger arithmetic and inductive definitions is challenging; it is undecidable
without any restrictions, since some inductive predicate can simulate multipli-
cation and reduce Peano arithmetic to it. We will choose the restrictions so
that inductive predicates exactly represent eventually periodic sets. Our choice
is reasonable, since Presburger arithmetic is one of the strongest decidable sys-
tems and eventually periodic sets are the same as sets characterized by some
Presburger arithmetical formulas [6]. Under this restriction, we can show the
decidability by eliminating inductive predicates. Our restriction seems compli-
cated, but it is quite general as it can handle non-trivial data structures, such
as arithmetical parts of sorted lists and AVL trees.

Our second idea is to decide the satisfiability of a given symbolic heap in
separation logic with inductive definitions and arithmetic by deciding the satis-
fiability of its spatial part and its numeric part. The former satisfiability always
implies the latter satisfiability, but the converse does not necessarily hold. In
order to synchronize these two parts and guarantee the converse, we will use
unfolding trees, which are described, for example, in [7]. An unfolding tree T
of an inductive predicate P specifies how P is unfolded. Thus, P unfolded by
T is true in separation logic with inductive definitions and arithmetic iff the
spatial projection of P unfolded by T is true in separation logic with inductive
definitions and the numeric projection of P unfolded by T is true in arithmetic
with inductive definitions.

Our third idea is to use base pairs. Brotherston et al [4] showed the satis-
fiability of symbolic heaps is decidable in the system of separation logic with
inductive definitions. They introduced base pairs and an inductive predicate is
interpreted by a set of base pairs. In this paper, we will use their ideas and in-
terpret a symbolic heap without inductive predicates by a single base pair. One
of the key observations is that we can find some periodic structure in a given
sequence of the interpretations of symbolic heaps, since the set of base pairs is
finite in our setting.

Then we will define the decidable system SLA2 as the system SLA1 with some
restrictions to inductive definitions, so that the arithmetical part of inductive
definitions are those of the system DPI. When the unfolding trees are linear,
we can find some periodic structure in the sequence of base pairs that interpret
the inductive predicate unfolded by those trees, which enables us to decide its
satisfiability. For any tree-like data structures, the system SLA2 concurrently

2

allows size properties, such as the length of lists and the height of trees, and
data information such as the minimum and the maximum of data.

To summarize, we make the following technical contributions in this paper:
(1) We prove that SLA1 is undecidable. (2) We propose the decidable subsystem
DPI of Presburger arithmetic with inductive definitions, and prove its decid-
ability. (3) We present the decidable subsystem SLA2 of symbolic heaps with
Presburger arithmetic and inductive definitions, provide its decision procedure,
and prove its decidability.

The decidability results of this paper provide theoretical foundations to
advance satisfiability decision procedures in verification systems of heap-
manipulating programs, like [5, 11, 9, 10]. A system of symbolic heaps with in-
ductive definitions and arithmetic adds significantly to the expressivity of our
specification logic. However no decidability results for such a system have been
achieved prior to our current proposal. For symbolic-heap systems with inductive
definitions and without arithmetic, [4] shows the decidability of the satisfiability
of symbolic heaps, and [7, 8] proves the decidability of the truth of the entail-
ments of symbolic heaps under some restrictions such as bounded treewidth. For
symbolic-heaps systems with arithmetic and without inductive definitions, en-
tailment decision procedures for hard-coded predicates and entailment of prenex
formulas with some quantification were proposed in [11, 9, 10, 3]. For symbolic-
heaps systems with inductive definitions and arithmetic, [5] provided a semi-
decision procedure for the validity of the entailments for symbolic heaps. Our
results thus provide an important step towards state-of-the-art research on the
decidability of symbolic heaps with inductive definitions and arithmetic.

Section 2 defines the system SLA1 and its semantics, and shows the unde-
cidability. Section 3 proposes the decidable subsystem DPI of Presburger arith-
metic with inductive definitions, and proves its decidability. The decidable sys-
tem SLA2 is presented in Section 4. This section also defines unfolding trees
and base pairs, and proves the decidability of SLA2 by providing its decision
procedure. We conclude in Section 5.

2 System SLA1

We start off by defining the system SLA1 of separation logic and Presburger
arithmetic with inductive definitions. By combination of separation logic and
arithmetic, this system can describe range of complex data structures with pure
properties, for example, sorted lists with length information.

2.1 Syntax

We use vector notations x to denote a sequence x1, . . . , xk. |x| denotes the length
of the sequence. For simplicity sometimes we also use a notation of a sequence
to denote a set. We also write x = y to denote xi = yi for all i, and f(x) for
the sequence f(x1), . . . , f(xk). We write ≡ for the syntactical equivalence. N
denotes the set of natural numbers.

3

Pointer terms t ::= x | nil
Pure formulas Π ::= true | false | t = t | t 6= t | Π ∧Π
Integer constants k ::= . . . | − 1 | 0 | 1 | 2 | . . .
Arithmetical terms a ::= x | k | k × a | a+ a | − a | max(a, a) | min(a, a)
Arithmetical formulas Λ ::= true | a = a | a ≤ a | ¬Λ | Λ ∧ Λ | ∃x.Λ
Terms u ::= a | t
Spatial formulas Σ ::= emp | t 7→ (u1, . . . , uNC) | P (t,a) | Σ ∗Σ
Symbolic Heaps φ ::= Π ∧Σ ∧ Λ
Definition Clauses Φ ::= ∃x.φ
Definition Bodies Ψ ::= Φ | Ψ ∨ Ψ
Inductive Definitions pred P (x) ≡ Ψ

Fig. 1. Syntax of SLA1

The language of SLA1 is defined in Figure 1. We assume first-order variables
Vars ::= x, y, v, . . . and inductive predicate symbols P ::= P1, P2, We assume
variables are implicitly classified into pointer variables and integer variables. NC
is a positive number, which specifies the number of elements in a cell.

We often omit Π or Λ when they are true. SLA1 has an inductive definition
system, which is a finite set of inductive definitions given by pred. The system
SLA1 has symbolic heaps Π∧Σ as well as Presburger arithmetic Λ and inductive
predicates P .

We assume ∗ is more tightly bound than ∧. We sometimes write ∗kAk for a
sequence of separating conjunctions such as A1 ∗ A2 ∗ A3. We often write a1a2

for a1 × a2. We write FV(O) for the set of free variables in O where O is some
syntactic object.

In the following, we illustrate the expressiveness of SLA1 with two examples
and use them as running examples throughout the paper.

Example 1 (Sorted Lists). The following predicate sortll for sorted lists can
be defined in SLA1.

pred sortll(x, y, z) ≡ x 7→ (z,nil) ∧ y = 1
∨ ∃x1y1z1.x 7→ (z, x1) ∗ sortll(x1, y1, z1) ∧ y = y1 + 1 ∧ z ≤ z1.

y and z represent the length and the minimum value of the list respectively.

Example 2 (AVL Trees). The following predicate avl for AVL trees can be de-
fined in SLA1.

pred avl(x, h) ≡ emp ∧ x = nil ∧ h = 0∨
∃x1x2h1h2.x 7→ (x1, x2) ∗ avl(x1, h1) ∗ avl(x2, h2)
∧h = max(h1, h2) + 1 ∧ −1 ≤ h1 − h2 ≤ 1.

h is the height of the tree.

4

We call a definition clause a base case when it does not contain any inductive
predicates, and we call a definition clause an induction case when some inductive
predicates appear in it.

We write Ψ [x := t] for ordinary capture-avoiding substitution. Φ1[P :=
λx.Φ2] is defined as the definition clause obtained for Φ1 by replacing every
P (t) by Φ2[x := t] and moving existential quantifiers to the head. We often
write Φ[P, . . . , P] to explicitly show occurrences of an inductive predicate P .
When we use Φ1[P], we write Φ1[λx.Φ2] for Φ1[P][P := λx.Φ2].

For an induction case Φ[P] with one occurrence of P and n ≥ 0, we define

Φ0[P] ≡ P (x),
Φn+1[P] ≡ Φ[λx.Φn[P]].

2.2 Semantics

We write Z for the set of integers. We assume the set Val of values and the set
Loc of addresses such that Val = Z ∪ {null} and Val ∩ Loc = ∅. We use

Heaps = Locs→fin (Loc ∪Val)NC,
Stores = Vars→ Loc ∪Val.

We assume a cell will be interpreted by (Loc∪Val)NC and s(nil) = null. We use
s and h by assuming s ∈ Stores and h ∈ Heaps. We also assume that s(k) = k
for an integer constant k, and ×,+,−,max,min,≤ are interpreted for integers by
a usual semantics, and the interpretation s |= Λ for an arithmetic formula Λ is
defined using the standard model of integers Z.

The semantics s, h |= ∃z.φ of this logic is defined in a usual way as follows.
s |= t1 = t2 if s(t1) = s(t2),
s |= t1 6= t2 if s(t1) 6= s(t2),
s |= Π1 ∧Π2 if s |= Π1 and s |= Π2,
s, h |= emp if Dom(h) = ∅,
s, h |= t 7→ (t1, . . . , tn) if Dom(h) = {s(t)} and h(s(t)) = (s(t1), . . . , s(tn)),
s, h |= Σ1 ∗Σ2 if s, h1 |= Σ1 and s, h2 |= Σ2 for some h1 + h2 = h,
s, h |= P 0

i (t) does not hold,
s, h |= P k+1

i (t) if s, h |= Φ[Pi := P ki](t) for some definition clause Φ of Pi,
s, h |= Pi(t) if s, h |= Pmi (t) for some m,
s, h |= Π ∧Σ ∧ Λ if s |= Π and s, h |= Σ and s |= Λ, and
s, h |= ∃zzφ if s[z := b], h |= ∃zφ for some b ∈ Loc ∪ {null} with a pointer

variable z and some b ∈ Z with an integer variable z.

2.3 Undecidability in SLA1

This section shows that without any restrictions on the shape of inductive defi-
nitions, the satisfiability is undecidable in SLA1.

Theorem 2.1 The satisfiability of symbolic heaps is undecidable in SLA1.

5

Proof. For any primitive recursive function f(x), there is an inductive predi-
cate F such that for any numbers n,m, f(n) = m iff s0, h0 |= F (n,m) where s0

is the dummy store such that s0(x) = null for all x, and h0 is the empty heap
such that Dom(h0) = ∅. In this case, we say the inductive predicate F represents
the primitive recursive function f . We can show it by induction on the definition
of f . We will show only the following cases, since they are only interesting cases.

Case 1. Assume f is the successor function. We define

F (x, y) ≡ y = x+ 1 ∧ emp.

Then m = n+ 1 iff s0, h0 |= F (n,m).
Case 2. Assume a primitive recursive function f(x, y) is defined by

f(0, y) = g(y),
f(x+ 1, y) = h(x, y, f(x, y)).

By induction hypothesis for g and h we have inductive predicates G and H that
represent g and h respectively. We define the inductive predicate F by

F (x, y, z) ≡ x = 0 ∧G(y, z) ∧ emp ∨ ∃x1.x = x1 + 1 ∧ F (x1, y, z1) ∗H(x, y, z1, z).

Then F represents f , namely, f(n,m) = l iff s0, h0 |= F (n,m, l).
Let T (x, y, z) be Kleene’s T predicate, namely, for any numbers n,m, l,

T (n,m, l) is true iff the n-th partial recursive function with input m terminates
with the computation history coded by l.

Since T is primitive recursive (namely, its characteristic function is a primitive
recursive), there is an inductive predicate T ′ such that T (n,m, l) is true iff
s0, h0 |= T ′(n,m, l).

Hence the n-th partial recursive function with input m terminates iff
T ′(n,m, x) is satisfiable in SLA1. Hence the satisfiability in SLA1 would solve
the halting problem if the satisfiability in SLA1 were decidable. Consequently
the satisfiability in SLA1 is undecidable. 2

3 Presburger Arithmetic with Inductive Definitions

In this section, we define the system PI of Presburger arithmetic with positive
inductive definitions. The truth in this system is undecidable. We will use this
system as our starting point for constructing a decidable subsystem.

3.1 Presburger Arithmetic with Positive Inductive Definitions

Definition 3.1 (System PI) We assume the same first-order variables, the
same inductive predicate symbols, the same integer constants, the same arith-
metical terms, and the same arithmetical formulas as those of SLA1 presented
in Figure 1. For PI, we define the following.

φ ::= Λ | P (a) | φ ∧ φ.
Formulas Φ ::= ∃x.φ.
Definition Bodies Ψ ::= Φ | Ψ ∨ Ψ .
Inductive Definitions pred Pi(x) ≡ Ψ .

6

a is interpreted in Z. We define the truth of Λ by the standard model of integers.
We interpret an inductive predicate by the least fixed point in a usual way.

The truth of formulas in this system is undecidable for the following reason.
We can define multiplication as follows:

pred P (x, y, z) ≡ x = 0 ∧ z = 0 ∨ ∃x1z1.x = x1 + 1 ∧ P (x1, y, z1) ∧ z = z1 + y.

Then P (x, y, z) is true iff x × y = z is true. Since Presburger arithmetic with
multiplication is equivalent to Peano arithmetic, the truth of this system is
undecidable.

3.2 Decidable subsystem DPI

We define a subsystem DPI of Presburger arithmetic with inductive definitions.
The idea is that we impose some restrictions on the inductive definitions so
that every inductive predicate defines some eventually periodic set. Since the
decidability proof of Presburger arithmetic relies on the fact that a definable set
is exactly an eventually periodic set, this restriction enables us to use the same
proof idea for its extension with inductive definitions.

We explain our ideas of restrictions. (1) We assume we have only single
induction (namely we do not use mutual induction). Moreover we assume we
have at most one induction case. These restrictions enable us to compute the
inductive predicates by iteration of the induction case to the base case. (2) When
we have more than one arguments of inductive predicates, the i-th argument
uses only the i-th arguments of recursive calls. For example, when the induction
case of P (x, y) has recursive calls P (x1, y1) and P (x2, y2), then x is computed
by using only x1 and x2, and y is computed by using only y1 and y2. (3) We
assume the induction case has some shape like ∃x1(x = x1 + c ∧ P (x1)). In this
case, by letting Q be the set represented by the base case, P represents the set
{x+ nc | x ∈ Q,n ∈ N}, which is eventually periodic. We assume this shape of
induction case for some argument, for example, the j-th argument. (4) For the
other arguments (the i-th argument where i 6= j), we assume we reach the fixed
point by applying the induction case once. For example, if the induction case for
P (x) is ∃x1(x ≥ x1 ∧ P (x1)), this restriction is satisfied.

Definition 3.2 (System DPI) The language of DPI is the same as that of PI
except inductive definitions. The inductive definitions of DPI are defined as those
of PI with the following restriction: every inductive definition has the shape

pred P (x) ≡ Λ, or pred P (x) ≡
∧

1≤i≤m

Λ0,i ∨ ∃z.
∧

1≤i≤m

Λi ∧
∧

1≤l≤L

P (zl)

where m is the arity of P , FV(Λ0,i) ⊆ {xi}, z ⊇ zl, there is j such that Λi is
either of xi = f(zi), xi ≥ f(zi), or xi ≤ f(zi) for all i 6= j, and Λj is either of
the following:

(1) xj = f(zj) + c ∧ Λ′,
(2) xj ≥ f(zj) + c ∧ Λ′,

7

(3) xj ≤ f(zj) + c ∧ Λ′,
(4) a conjunction of the following forms with some integer constant n > 0:

Λ′, nxj = f(zj), nxj ≥ f(zj), or nxj ≤ f(zj),
where c is some integer constant, zj is z1

j , . . . , z
L
j , Λ′ is an arithmetical formula

such that FV(Λ′) ⊆ zj and Λ′[zj := z] is true for any z, f(zj) is a combination
of z1

j , . . . , z
L
j with max,min, defined by

f(zj) ::= zlj | max(f(zj), f(zj)) | min(f(zj), f(zj)),

and f ’s may be different from each other in the conjunction of (4).

Note that in DPI, each inductive definition has at most one induction case, and
mutual inductive definitions are not allowed.

Example 3 (Arithmetical Part of Sorted List Predicate). Let sortllN be an
inductive predicate symbol. The arithmetical part sortllN of the predicate
sortll is inductively defined by

pred sortllN (y, z) ≡ y = 1 ∨ ∃y1z1.sortll
N (y1, z1) ∧ y = y1 + 1 ∧ z ≤ z1.

Example 4 (Arithmetical Part of AVL Tree Predicate). Let avlN be an inductive
predicate symbol. The arithmetical part avlN of the predicate avl is inductively
defined by

pred avlN (h) ≡ h = 0 ∨ ∃h1h2.avl
N (h1) ∧ avlN (h2)

∧h = max(h1, h2) + 1 ∧ −1 ≤ h1 − h2 ≤ 1.

Definition 3.3 A set S of integers is defined to be eventually periodic if there
are some M ≥ 0, p1, p2 > 0 such that n ∈ S iff n + p1 ∈ S for all n ≥ M , and
n ∈ S iff n− p2 ∈ S for all n ≤ −M . Then we call the set (M,p1, p2)-periodic.

Lemma 3.4 If S 6= ∅ is (M,p1, p2)-periodic, then {x | nx = y, y ∈ S} is
(M,p1, p2)-periodic for n > 0.

Proof. Let S′ be {x | nx = y, y ∈ S}. Assume x ∈ S′ and x ≥ M . There is y
such that nx = y and y ∈ S. Since y = nx ≥ x ≥M and n(x+p1) = nx+np1 =
y + np1 ∈ S, we have x+ p1 ∈ S′.

Assume x + p1 ∈ S′ and x ≥ M . There is y such that n(x + p1) = y and
y ∈ S. Since y − np1 = nx ≥ x ≥M and nx = y − np1 ∈ S, we have x ∈ S′.

Similarly for x ≤ −M , x ∈ S′ iff x− p2 ∈ S′.
Hence S′ is (M,p1, p2)-periodic. 2

Theorem 3.5 (Inductive Predicate Elimination) For every inductive
predicate P , there is a formula Λ equivalent to P (x) such that Λ does not
contain any inductive predicates.

8

Proof. Let
pred P (x) ≡

∧
1≤i≤m

Λ0,i ∨ Φ1,

Φ1 ≡ ∃z.
∧

1≤i≤m

Λi ∧
∧
l

P (zl).

Let x be (x1, . . . , xm), S be {x | P (x)}, Q be {x |
∧
i

Λ0,i}, Si be {xi | P (x)},

and Qi be {xi | Λ0,i}. We have Q = Q1 × . . .×Qm.

Since {f(zi) |
∧
l

zli ∈ X} = X, we have the following facts: {xi | xi =

f(zi) ∧
∧
l

zli ∈ X} = X, {xi | xi ≥ f(zi) ∧
∧
l

zli ∈ X} = X+, and {xi | xi ≤

f(zi) ∧
∧
l

zli ∈ X} = X−, where X+ is ∅ if X = ∅, {z | z ≥ minX} if minX

exists, Z otherwise, and X− is ∅ if X = ∅, {z | z ≤ maxX} if maxX exists, Z
otherwise.

Define F : p(Zm) → p(Zm) by F (X)=Q ∪ {x | Φ1[λx.(x ∈ X)]}. Then

S=
⋃∞
n=0 F

n(∅). We define Fj :p(Z)→p(Z) by Fj(X)=Qj∪{xj | Λj∧
∧
l

zlj ∈ X}.

By the above facts, the i-th element of Fn(∅) is Qi, Qi+, or Qi− for all i 6= j
and n > 1. Hence S = S1 × . . . × Sm where Si = Qi, Qi+, or Qi− for all i 6= j,
and Sj =

⋃∞
n=0 F

n
j (∅), since the j-th value xj depends on only the previous j-th

values zj in the definition of P .
It is known that a set definable in Presburger arithmetic is exactly an eventu-

ally periodic set [6]. Hence each Qj is eventually periodic. Let Qj be (M,p1, p2)-
periodic.

We show Sj is eventually periodic by considering cases by the cases (1) to
(4) in the restriction 2 according to the shape of Λj .

We have the fact (a) : {f(zj) |
∧
l

zlj ∈ X ∧ Λ′} = X. We can show it as

follows: take a in the righthand side. By taking zlj to be a, since Λ′[zj := a] is
true and f(zj) = a, we have a is in the lefthand side.

The case (1). Λj is xj = f(zj)+c∧Λ′. We have Fj(X) = Qj∪{x+c | x ∈ X}
and Sj = {x + nc | x ∈ Qj , n ∈ N}. Let Ri be {x ∈ Qj | x ≡ i (mod c)}.
Assume c > 0. Define R′i as ∅ if Ri = ∅, {ki + nc | n ∈ N} if Ri has the mini-
mum ki, and {x | x ≡ i (mod c)} otherwise. Then Sj =

⋃
0≤i<cR

′
i. Then Sj is

(M ′, c, p2)-periodic where M ′ = max0≤i<c(M, |ki|). Similarly, if c < 0 then Sj is
(M ′, p1,−c)-periodic where M ′ = max0≤i<c{M, |ki| | Ri has the maximum ki}.
If c = 0, then Sj = Qj and Sj is (M,p1, p2)-periodic.

The case (2). Λj is xj ≥ f(zj) + c ∧ Λ′. We have Fj(X) = Qj ∪ {x | x ≥
x′ + c, x′ ∈ X}. If Qj = ∅, then Sj = ∅. Assume Qj 6= ∅. Sj is Z if Qj does
not have any minimum. Assume Qj has the minimum. If c < 0 then Qj = Z. If
c ≥ 0 then Sj is Qj ∪ {x | x ≥ minQj + c}. Hence either is eventually periodic.

The case (3). Λj is xj ≤ f(zj)+c∧Λ′. This case is shown in a similar manner
to the case (2).

9

The case (4). Λj is a conjunction of the forms Λ′, nxj = f1(zj), nxj ≥ f2(zj),
and nxj ≤ f3(zj). First we show Sj is (M,p1, p2)-periodic when Λj is either
nxj = f(zj) ∧ Λ′, nxj ≥ f(zj) ∧ Λ′, or nxj ≤ f(zj) ∧ Λ′.

Case (4).1. Λj is nxj = f(zj)∧Λ′. If Qj = ∅, then Sj = ∅ and it is (M,p1, p2)-
periodic. If Qj 6= ∅, by Lemma 3.4 and the fact (a), Sj is (M,p1, p2)-periodic.

Case (4).2. Λj is nxj ≥ f(zj) ∧ Λ′. If Qj = ∅, then Sj = ∅. Assume Qj 6= ∅.
If Qj does not have any minimum, Sj = Z. Assume Qj has the minimum k.
If X has the minimum, Fj(X) = Qj ∪ {x | x ≥ d(minX)/ne}. By this, Sj is
{x | x ≥ k} if k > 0 and n = 1, {x | x > 0} if k > 0 and n > 1, {x | x ≥ 0}
if k = 0, {x | x ≥ k} if k < 0. Moreover k ≥ −M . Hence either is (M,p1, p2)-
periodic.

Case (4).3. Λj is nxj ≤ f(zj)∧Λ′. In a similar way to the case (4).2, we can
show Sj is (M,p1, p2)-periodic.

We have shown Sj is (M,p1, p2)-periodic when Λj is either nxj = f(zj)∧Λ′,
nxj ≥ f(zj) ∧ Λ′, or nxj ≤ f(zj) ∧ Λ′.

We show the general case when Λj is
∧
k

Λ′k where Λ′k is either nxj = f1(zj)∧

Λ′, nxj ≥ f2(zj)∧Λ′, or nxj ≤ f3(zj)∧Λ′. Let F ′k(X) = Qj∪{xj | Λ′k∧
∧
l

zlj ∈ X}

and S′k be the least fixed point of F ′k. Since the least fixed point of
⋂
k F
′
k(X) is the

intersection of the least fixed points of F ′k(X) for all k, we have Sj =
⋂
k S
′
k. We

have the fact: if Xi is (M,p1, p2)-periodic for all i, then
⋂
iXi is also (M,p1, p2)-

periodic. By this fact, since S′k is (M,p1, p2)-periodic for all k, Sj is (M,p1, p2)-
periodic.

We have shown that the truth of P (x1, . . . , xm) is equivalent to
∧

1≤i≤m

(xi ∈

Qi)∨xj ∈ (Sj −Qj)∧
∧

1≤i≤m,j 6=i

(xi ∈ Si) and each of Qi, Qj , Si, Sj is eventually

periodic. Since an eventually periodic set is definable by a Presburger formula
[6], we have a formula that does not contain any inductive predicates and is
equivalent to P (x1, . . . , xm). 2

The decision procedure for DPI is obtained by computing the above M,p1, p2

and Sj according to the decidability proof.

4 Decidable Subsystem SLA2

In this section we define a decidable subsystem SLA2 of the system SLA1.

4.1 Syntax of SLA2

First we define a numeric projection from SLA1 to PI. Next we define a spatial
projection from SLA1 to the symbolic-heap system presented in [4] (we call it
SL).

We define the system SL. The difference from the system in [4] is that the
number of elements in a cell is fixed to be NC in SL and SL has only single
induction (namely, it does not have mutual induction).

10

Definition 4.1 (System SL) Pointer terms t ::= x | nil.
Pure formulas Π ::= true | false | t = t | t 6= t | Π ∧Π.
Spatial formulas Σ ::= emp | t 7→ (t1, . . . , tNC) | P (t) | Σ ∗Σ.
Symbolic Heaps φ ::= Π ∧Σ.
Definition Clauses Φ ::= ∃x.φ.
Definition Bodies Ψ ::= Φ | Ψ ∨ Ψ .
Inductive Definitions pred P (x) ≡ Ψ .

We assume inductive predicate symbols PN and PS for each inductive pred-
icate symbol P . We write xN and xS for the integer variables and the pointer
variables among the variables x respectively.

Definition 4.2 (Projection) The numeric projection (Σ)N is defined by
(emp)N ≡ (t 7→ (u))N ≡ true, (P (t,a))N ≡ PN (a), and (Σ1 ∗ Σ2)N ≡
(Σ1)N ∧ (Σ2)N .

(φ)N is defined by (Π ∧Σ ∧ Λ)N ≡ (Σ)N ∧ Λ.
(Φ)N is defined by (∃x.φ)N ≡ ∃xN .(φ)N .
(Ψ)N is defined by (Ψ1 ∨ Ψ2)N ≡ (Ψ1)N ∨ (Ψ2)N .
The spatial projection (u)S is defined by (t)S ≡ t and (a)S ≡ nil.
The spatial projection (Σ)S is defined by (emp)S ≡ emp, (t 7→ (u))S ≡ t 7→

((u)S), (P (t,a))S ≡ PS(t), and (Σ1 ∗Σ2)S ≡ (Σ1)S ∗ (Σ2)S .
(φ)S is defined by (Π ∧Σ ∧ Λ)S ≡ Π ∧ (Σ)S .
(Φ)S is defined by (∃x.φ)S ≡ ∃xS .(φ)S .
(Ψ)S is defined by (Ψ1 ∨ Ψ2)S ≡ (Ψ1)S ∨ (Ψ2)S .

We give the spatial projections of the predicates sortll and avl in Section
2.1. Their numerical projections are already given in Section 3.

Example 5 (Spatial Part of Sorted Lists).

pred sortllS(x) ≡ x 7→ (nil,nil) ∨ ∃x1.x 7→ (nil, x1) ∗ sortllS(x1).

Example 6 (Spatial Part of AVL Trees).

pred avlS(x) ≡ emp ∧ x = nil ∨ ∃x1x2.x 7→ (x1, x2) ∗ avlS(x1) ∗ avlS(x2).

Definition 4.3 (System SLA2) The language of SLA2 is the same as that
of SLA1 except inductive definitions. The inductive definitions of SLA2 are
those of SLA1 with the following two restrictions. Let the inductive definition
pred P (x) ≡ Ψ.

(1) Its numeric projection pred PN (xN) ≡ (Ψ)N is an inductive definition
of DPI.

(2) If the induction case has more than one occurrences of P , then the spatial
projection of Ψ has the following form

(Ψ)S ≡ ψ0 ∨ ∃z.Π ∧ ∗k∈Kwk 7→ (tk) ∗ ∗lPS(zl),

where ψ0 is a disjunction of the base cases, zl ⊆ z, the variables in (zl)l are
mutually distinct and do not appear in Π or {wk | k ∈ K}.

11

We explain the condition (2). Let the induction case with more than one
occurrences of P be Φ. It says the argument zl of P are distinct existential
variables and they do not appear in Π or {wk | k ∈ K}. Hence for the existential
variables, we can choose arbitrary values such that PS(x) is satisfiable by taking
x to these values. In particular, we can choose some values such that the base case
is true. Hence (Φ)S(T ′) is satisfiable for some unfolding tree T ′ of height 1, when
(Φ)S(T) is satisfiable for some unfolding tree T of height ≥ 1. Consequently The
restriction (2) guarantees that if an unfolding tree T of P is not linear, then the
base pair that interprets P unfolded by T is determined to be two possibilities
depending on the height 0 or ≥ 1 of T .

Example 7 (Sorted Lists). The predicate sortll in Section 2.1 can be defined
in SLA2 as its spatial projection sortllS(x) satisfies the restriction (2) (the
condition trivially holds since it does not apply) and its numeric projection
sortllN (x) is in DPI.

Example 8 (AVL Trees). The predicate avl in Section 2.1 can be defined in
SLA2 as its spatial projection avlS(x) satisfies the restriction (2) and its numeric
projection avlN (x) is in DPI.

4.2 Unfolding Tree

This section defines unfolding trees, introduced in [7], in our notation. We use
unfolding trees to synchronize the spatial part and the numeric part of a given
symbolic heap in the proof of the decidability for SLA2. In general we can define
unfolding trees for any logical system with inductive definitions including SLA1,
SLA2, DPI, and SL.

Definition 4.4 (Unfolding Tree) Suppose the inductive definition of P

pred P (x) ≡
∨

1≤i≤I

Φi ∨ Φ[P, . . . , P]

where Φi is a base case and the induction case Φ[P, . . . , P] contains n occurrences
of P . An unfolding tree T of P is defined by T ::= i | (T1, . . . , Tn) where 1 ≤ i ≤ I.

An unfolding tree T of P specifies how we unfold the inductive predicate P . It
is described as follows.

Definition 4.5 Suppose pred P (x) ≡
∨

1≤i≤I

Φi ∨ Φ[P, . . . , P].

For an unfolding tree T of P , P (T) is defined by:

P (i) ≡ λx.Φi,
P ((T1,...,Tn)) ≡ λx.Φ[P (T1), . . . , P (Tn)].

We write T (i, k) for (. . . (i) . . .) where . . . denotes k parentheses. T (i, k) is the
unfolding tree of length k with the leaf i and n = 1.

12

The next proposition guarantees the synchronization of the spatial and nu-
meric projections by an unfolding tree.

Proposition 4.6 s, h |= P (T)(t,a) in SLA2 for some h iff s, h |= PS(T)(t) in
SL for some h and s |= PN(T)(a) in DPI.

Proof. By induction on T . 2
The next proposition says the truth of P is that of P unfolded by some

unfolding tree.

Proposition 4.7 s, h |= P (T)(x) for some T iff s, h |= P (x).

Proof. The only if part is proved by P k(x) where k is the height of T . The if
part is shown by the definition of the truth. 2

4.3 Base Pairs

In this section, we define base pairs adopted from [4]. We use base pairs to
characterize unfolding trees T such that P (T)(x) is satisfiable. For this purpose,
we define a base pair (B,Π) for P (T)(t) so that (B,Π) is satisfiable iff P (T)(t)
is satisfiable.

Compared with the base pairs in [4], [4] interprets a symbolic heap with
inductive predicates by a set of base pairs. On the other hand we will interpret a
symbolic heap φ̌ without any inductive predicates by a single base pair. A single
base pair can work since φ̌ does not contain disjunction.

Since we want the set of equivalence classes of base pairs to be finite, we
have some notational difference with [4]: While [4] uses a multiset V for a base
pair (V,Π), we use a set B for a base pair (B,Π). For free variables, [4] uses
λx.(V,Π), but we implicitly use x. (V,Π) is satisfiable when Π is satisfiable in
[4], but our (B,Π) is satisfiable when Π ∧ ⊗B is satisfiable.

Definition 4.8 (Base Pair) We call (B,Π) a base pair when Π is a pure
formula, and B is a set of pointer variables. For a pure formula Π, Π is defined
to be consistent if Π 6` false.

For notation of multisets, we write {e[x] |M x ∈M V ∧. . .} a multiset counting
repetition of e[x] where each x is taken from the multiset V counting repetition.

We define [t]Π as {u | Π ` u = t}. It is an equivalence class containing t by
the equality of Π.

For a multiset V of terms and a pure formula Π, we define V/Π as
{[t]Π |M t ∈M V }. It is a multiset of equivalence classes by the equality of
Π. V/Π is called sound when V/Π does not have any duplicates and does not
have any equivalence class containing nil.

Definition 4.9 (Satisfiable Base Pair) A base pair (B,Π) is defined to be
satisfiable if Π is consistent and B/Π is sound.

13

We define ⊥ as (∅, false). For a multiset V of terms and a pure formula Π,
we define (V,Π) as (V,Π) if Π is consistent and B/Π is sound. Otherwise we
define it as ⊥.

For a multiset V of terms, we define the multiset V [x := t]M by replacing x
by t counting repetition. We use] for the multiset union.

We define
Π1 ∧ (V,Π) = (V,Π1 ∧Π),
(V,Π)[x := t]M = (V [x := t]M , Π[x := t]),
(V1, Π1) ∗ (V2, Π2) = (V1] V2, Π1 ∧Π2).

Definition 4.10 We define (V1, Π1) ' (V2, Π2) by Π1 ↔ Π2 and V1/Π1 =
V2/Π2. Then we say (V1, Π1) and (V2, Π2) are equivalent.

We write Π ↔x Π ′ when Π → Π0 iff Π ′ → Π0 for every Π0 such that
FV(Π0) ⊆ x and Π0 is either true, false, t1 = t2, or t1 6= t2. We define Π − x as
some Π ′ such that FV(Π ′) ⊆ FV (Π)− x and Π ′ ↔x Π.

For a set B of variables, we define ⊗B as∧
{t 6= u | t, u ∈ B, t 6≡ u} ∧

∧
{t 6= nil | t ∈ B}.

We define a language that contains P (T)(t). Since P (T)(t) is obtained from
P (t) by unfolding inductive predicates, it does not contain any inductive predi-
cates but it may have nested existential quantifiers. We use the name with ˇ for
the corresponding syntactical category.

Spatial formulas Σ̌ ::= emp | t 7→ (t1, . . . , tNC) | ∃x.φ̌ | Σ̌ ∗ Σ̌.

Symbolic Heaps φ̌ ::= Π ∧ Σ̌.
We define [[]] for this language. We define [[Σ̌]] by:

[[emp]] = (∅, true),
[[t 7→ (t1, . . . , tNC)]] = ({t}, true),

[[∃x.φ̌]] = (B − x, (Π ∧ ⊗B)− x),

[[Σ̌1 ∗ Σ̌2]] = [[Σ̌1]] ∗ [[Σ̌2]].

We define [[φ̌]] by [[Π ∧ Σ̌]] = Π ∧ [[Σ̌]].
Note that [[φ̌]] is (B,Π) such that B is a set of variables, FV(B),FV(Π) ⊆

FV(φ̌), and (B,Π) is satisfiable if (B,Π) 6= ⊥.
For a set x of variables, we write βx for the set of equivalence classes of

base pairs with its free variables in x by '. We will often write (B,Π) for the
equivalence class containing (B,Π). For example, we will write (B,Π) ∈ X ⊆ βx
when the equivalence class containing (B,Π) is in X. Note that [[φ̌]] ∈ βFV(φ̌).

The next lemma is useful to calculate [[]] by substitution. We write φ̌[φ̌1] to
explicitly display an occurrence of φ̌1 in φ̌.

Lemma 4.11 (1) [[φ̌[x := t]]] ' [[φ̌]][x := t]M .
(2) If [[φ̌1]] ' [[φ̌2]], then [[φ̌[φ̌1[x := t]]]] ' [[φ̌[φ̌2[x := t]]]].

14

Proof. (1) By induction on φ̌.
(2) By induction on φ̌ and (1). 2
We have the following lemma similar to Lemmas 3.7 and 3.8 in [4].

Lemma 4.12 (1) If [[φ̌]] = (B,Π) and s |= Π ∧ ⊗B, then there is h such that
s, h |= φ̌ and s(B) ⊆ Dom(h), and moreover we can freely choose values in
Dom(h)− s(B).

(2) If s, h |= φ̌ and [[φ̌]] = (B,Π), then s |= Π ∧ ⊗B and s(B) ⊆ Dom(h).

Proof. Each of (1) and (2) is proved by induction on φ̌. 2
The following proposition is an instance of the theorem 3.9 in [4] in our terms.

It says a base pair characterizes the satisfiability.

Proposition 4.13 φ̌ is satisfiable iff [[φ̌]] is satisfiable.

Proof. By Lemma 4.12 (1)(2). 2

4.4 Decidability in SLA2

This section provides the decision procedure of the satisfiability in SLA2 and
proves its correctness.

Our ideas of our decision algorithm are as follows. (1) We list up unfold-
ing trees T such that [[PS(T)(t)]] (the spatial part unfolded by T) is satisfiable.
(2) The set {T | [[PS(T)(t)]] satisfiable} has a periodic structure for the follow-
ing reason. In the case where the induction case has only one occurrence of
the inductive predicate, since the set of base pairs is finite, we have a periodic
structure. In the case where the induction case has more than one occurrences
of the inductive predicate, the satisfiability for T of height ≥ 1 is the same as
that for T of height 1 by the restriction (2) of SLA2. (3) In the case where the
induction case has only one occurrence of the inductive predicate, according to

the set X = {T | [[P
S(T)
1 (t)]] satisfiable}, we make new inductive definitions for

inductive predicates P1,i so that for any unfolding tree T ′, P
(T ′)
1,i is equivalent

to P
N(T)
1 for some T ∈ X. (4) We decide the numeric part of these inductive

predicates P1,i by the decidability of DPI.
We will use the next two lemmas to define our decision procedure for SLA2,

which can be straightforwardly shown.

Lemma 4.14 For an induction case Φ[P] with one occurrence of P in DPI,
Φn[P] is an induction case of P in DPI for n > 0.

We write T̃ to the set of leaves of an unfolding tree T .

Lemma 4.15 Assume pred P2(x) ≡
∨

1≤i≤I2

Φ2,i ∨ Φ2[P2, P2]

in SLA2. If ΦS2,i is satisfiable for all i ∈ ˜(T1, T2)∪ ˜(T3, T4), then [[P
S((T1,T2))
2 (x)]] =

[[P
S((T3,T4))
2 (x)]].

15

The next theorem is one of our main results.

Theorem 4.16 The satisfiability of symbolic heaps is decidable in SLA2.

Proof. For simplicity, we discuss only the case when only P1 and P2 are
inductive predicates, the induction case of P1 has one occurrence of P1, and the
induction case of P2 has two occurrences of P2. For simplicity, we also assume
P1 and P2 take one pointer variable and one integer variable.

The decision procedure for the satisfiability of a given symbolic heap in SLA2
is presented in Algorithm 1, where the input is the following symbolic heap:

φ ≡ Π ∧ ∗k∈Kwk 7→ (uk) ∗ ∗1≤i≤IP1(t1,i, a1,i) ∗ ∗1≤j≤JP2(t2,j , a2,j) ∧ Λ,

with the inductive definitions

pred P1(x, y) ≡
∨

1≤i≤I1

Φ1,i ∨ Φ1[P1],

pred P2(x, y) ≡
∨

1≤i≤I2

Φ2,i ∨ Φ2[P2, P2],

where x is a pointer variable and y is an integer variable.
Note. In the algorithm, for 1≤i≤I, we use (li, ni) to represent ni-times appli-

cation of the induction case to the li-th base case. For 1≤j≤J , we use 1≤mj≤I2
to represent the mj-th base case and (r, r) to represent the unfolding tree of
height 1 with the r-th base case.

First we will show that there exist pi < qi in the step 1. By definition,

(Φn+1
1 [λx.Φ1,i])

S = (Φ1[λx.Φn1 [λx.Φ1,i]])
S .

Hence, by Lemma 4.11 (2), if [[Φn1 [λx.Φ1,i]]] ' [[Φn
′

1 [λx.Φ1,i]]], then

[[(Φn+1
1 [λx.Φ1,i])

S]] ' [[(Φn
′+1

1 [λx.Φ1,i])
S]]. Since the equivalence class contain-

ing [[(Φn1 [λx.Φ1,i])
S]] is in βx for n = 0, 1, 2, . . ., and βx is finite, we have the

same occurrences of some equivalence class in the sequence. Hence we have some
n < n′ such that [[(Φn1 [λx.Φ1,i])

S]] and [[(Φn
′

1 [λx.Φ1,i])
S]] are equivalent. We can

take pi, qi as the least ones among these n, n′.
Next, by the following (1)(2), we will show that the algorithm returns Yes iff

φ is satisfiable.
(1) We will show that the algorithm returns Yes if φ is satisfiable.
Assume φ is satisfiable.
Let x = x1,1 . . . x1,I1x2,1 . . . x2,I2 , y = y1,1 . . . y1,I1y2,1 . . . y2,I2 , t =

t1,1 . . . t1,I1t2,1 . . . t2,I2 , and a = a1,1 . . . a1,I1a2,1 . . . a2,I2 . Define the predicate
P by

P (x,y) ≡ Π ∧ ∗k∈Kwk 7→ (uk) ∗ ∗1≤i≤IP1(x1,i, y1,i) ∗ ∗1≤j≤JP2(x2,j , y2,j).

Since P (t,a) and φ are equivalent, P (t,a) is satisfiable. By Proposition 4.7 we
have some T such that P (T)(t,a) is satisfiable. By Proposition 4.6, both PS(T)(t)
and PN(T)(a) are satisfiable.

16

Algorithm 1: Decision Procedure for SLA2

input : φ
output: Yes or No
Step 1. Compute pi, qi for each 1 ≤ i ≤ I1 as follows. Choose i. Compute the
sequence [[(Φn

1 [λx.Φ1,i])
S]] for n = 0, 1, 2, Take the smallest pi, qi such that

pi < qi, and the pi-th occurrence and the qi-th occurrence are equivalent.
Set I3 to be {i | Φ2,i satisfiable}. Set C to be
{(l1, n1, . . . , lI , nI ,m1, . . . ,mJ) | 1 ≤ li ≤ I1, 0 ≤ ni < qi, 1 ≤ mj ≤ I2 ∨ (mj =
(r, r) ∧ r ∈ I3)}.

Step 2. If C is empty, then return No and stop. Otherwise take some new
element in C and go to the next step.

Step 3. Check whether the following formula is satisfiable:

[[Π ∧ ∗k∈Kwk 7→ ((uk)S) ∗ ∗1≤i≤IP
S(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)

2 (t2,j)]].

If it is not satisfiable, then go to the step 2 for the next loop.
Step 4. For each 1 ≤ i ≤ I, by Lemma 4.14 and Theorem 3.5, define Λ1,i as
some arithmetical formula equivalent to P1,i(a1,i) where P1,i is defined by

pred P1,i(y) ≡ (Φni
1 [λy.Φ1,li])

N ∨ (Φqi−pi
1 [P1])N [PN

1 := P1,i].

For each 1 ≤ j ≤ J , by Theorem 3.5, define Λ2,j as (Φ2,mj)N [y := a2,j] if
1 ≤ mj ≤ I2, and some arithmetical formula equivalent to
(Φ2[P2, P2])N [PN

2 := P3][y := a2,j] where P3 is defined by

pred P3(y) ≡
∨
i∈I3

ΦN
2,i ∨ (Φ2[P2, P2])N

if mj = (r, r).

Step 5. Check if the following formula is satisfiable
∧

1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ

If it is true, then return Yes and stop.
Step 6. Go to the step 2 for the next loop.

Let T be (T1,1, ..., T1,I , T2,1, ..., T2,J). Let

φ′≡Π∧ ∗k∈K wk 7→ (uk) ∗ ∗1≤i≤IP
(T1,i)
1 (t1,i, a1,i) ∗ ∗1≤j≤JP

(T2,j)
2 (t2,j , a2,j)

Then P (T)(t,a) is φ′, PS(T)(t) is φ′S , and PN(T)(a) is φ′N . Hence both φ′S and
φ′N are satisfiable. By Proposition 4.13, [[φ′S]] is satisfiable.

Let T1,i be T (li, n
′
i). Take ni such that n′i = ni+k(qi−pi) for some k ≥ 0 and

ni < qi − pi. Since [[P
S(T1,i)
1 (x)]] = [[(Φ

n′
i

1 [λx.Φ1,li])
S]], and [[(Φpi1 [λx.Φ1,li])

S]] '
[[(Φqi1 [λx.Φ1,li])

S]] by the step 1, we have [[P
S(T1,i)
1 (x)]] ' [[P

S(T (li,ni))
1 (x)]].

Define mj as T2,j if 1 ≤ T2,j ≤ I2 and (r, r) if T2,j is (T1, T2) for some T1, T2

and r is arbitrarily chosen from ˜(T1, T2). Since P
S(T2,j)
2 (t2,j) is satisfiable, ΦS2,i is

satisfiable for all i ∈ ˜(T1, T2). Since [[P
S((T1,T2))
2 (x)]] = [[P

S((r,r))
2 (x)]] by Lemma

4.15, [[P
S(T2,j)
2 (x)]] = [[P

S(mj)
2 (x)]].

17

Since [[P
S(T1,i)
1 (x)]] ' [[P

S(T (li,ni))
1 (x)]], [[P

S(T2,j)
2 (x)]] = [[P

S(mj)
2 (x)]], and

[[φ′S]] is satisfiable,

[[Π ∧ ∗k∈Kwk 7→ ((uk)S) ∗ ∗1≤i≤IPS(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)
2 (t2,j)]]

is satisfiable by Lemma 4.11 (2). Hence we go from the step 3 to the step 4.
Since φ′N is satisfiable, we have s such that s |= φ′N . Hence s |=

P
N(T1,i)
1 (a1,i), s |= P

N(T2,j)
2 (a2,j), and s |= Λ. Since P

N(T (li,k(qi−pi)))
1 (y) ≡

P k1,i(y), we have P
N(T1,i)
1 (y)→ P1,i(y). Therefore P

N(T1,i)
1 (a1,i)→ Λ1,i by the

step 4. If 0 ≤ T2,j ≤ I2, then P
N(T2,j)
2 ≡ Λ2,j by the step 4. If T2,j = (T1, T2),

then P
N(T2,j)
2 (a2,j)→ (Φ2[P2, P2])N [PN2 := P3][y := a2,j] and P

N(T2,j)
2 → Λ2,j

by the step 4. Hence we have s |= Λ1,i and s |= Λ2,j . Hence s |=
∧

1≤i≤I

Λ1,i ∧∧
1≤j≤J

Λ2,j ∧ Λ. Hence the algorithm returns Yes at the step 5.

(2) We will show that φ is satisfiable if the algorithm returns Yes.
We have some (l1, n1, . . . , lI , nI ,m1, . . . ,mJ) such that

[[Π ∧ ∗k∈Kwk 7→ ((uk)S) ∗ ∗1≤i≤IPS(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)
2 (t2,j)]]

is satisfiable by the step 3, and
∧

1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ is satisfiable by the

step 5.

Then we have s such that s |=
∧

1≤i≤I

Λ1,i ∧
∧

1≤j≤J

Λ2,j ∧ Λ. Then s |= Λ1,i.

Since Λ1,i ↔ P1,i(a1,i), we have some ki ≥ 0 such that s |=
P
N(T (li,ni+ki(qi−pi)))
1 (a1,i). Define T1,i as T (li, ni + k(qi − pi)). Then s |=
P
N(T1,i)
1 (a1,i).

We define T2,j such that s |= P
N(T2,j)
2 (a2,j) by cases according to mj .

Case 1. 1 ≤ mj ≤ I2. We define T2,j as mj . Then s |= P
N(T2,j)
2 (a2,j).

Case 2. mj = (r, r). Since Λ2,j ↔ (Φ2[P2, P2])N [y := a2,j], there are T3,j , T4,j

such that Φ2,i is satisfiable for all i ∈ ˜(T3,j , T4,j), and s |= (Φ2[P, P])N [P :=

P
N(T3,j)
2 , P

N(T4,j)
2][y := a2,j], which is P

N((T3,j ,T4,j))
2 (a2,j). Define T2,j as

(T3,j , T4,j). Then s |= P
N(T2,j)
2 (a2,j).

Let

φ′≡Π∧ ∗k∈K wk 7→ (uk) ∗ ∗1≤i≤IP
(T1,i)
1 (t1,i, a1,i) ∗ ∗1≤j≤JP

(T2,j)
2 (t2,j , a2,j)∧Λ.

Then we have s |= φ′N .

[[P
S(T1,i)
1 (x)]] ' [[P

S(T (li,ni))
1 (x)]] by the step 1.

We can show that [[P
S(T2,j)
2 (x)]] = [[P

S(mj)
2 (x)]] as follows. If 1 ≤ mj ≤ I2,

then T2,j = mj and the claim holds. Assume mj = (r, r). Then T2,j is (T3,j , T4,j).

Since [[P
S(T2,j)
2 (x)]] = [[P

S((r,r))
2 (x)]] by Lemma 4.15, we have the claim.

18

Since [[P
S(T1,i)
1 (x)]] ' [[P

S(T (li,ni))
1 (x)]], [[P

S(T2,j)
2 (x)]] = [[P

S(mj)
2 (x)]], and

[[Π ∧ ∗k∈Kwk 7→ ((uk)S) ∗ ∗1≤i≤IPS(T (li,ni))
1 (t1,i) ∗ ∗1≤j≤JP

S(mj)
2 (t2,j)]]

is satisfiable, by Lemma 4.11 (2),

[[Π ∧ ∗k∈Kwk 7→ ((uk)S) ∗ ∗1≤i≤IP
S(T1,i)
1 (t1,i) ∗ ∗1≤j≤JP

S(T2,j)
2 (t2,j)]]

is satisfiable. Namely [[φ′S]] is satisfiable. By Proposition 4.13, φ′S is satisfiable.
Hence we have s′, h such that s′, h |= φ′S .

We define s′′ by s′′(x) = s′(x) for a pointer variable x and s′′(y) = s(y) for
an integer variables y. We have s′′, h |= φ′S .

Let x = x1,1 . . . x1,I1x2,1 . . . x2,I2 , y = y1,1 . . . y1,I1y2,1 . . . y2,I2 , t =
t1,1 . . . t1,I1t2,1 . . . t2,I2 , and a = a1,1 . . . a1,I1a2,1 . . . a2,I2 . Define the predicate
P by

P (x,y) ≡ Π ∧ ∗k∈Kwk 7→ (uk) ∗ ∗1≤i≤IP1(x1,i, y1,i) ∗ ∗1≤j≤JP2(x2,j , y2,j).

Define T as (T1,1, ..., T1,I , T2,1, ..., T2,J). Then P (T)(t,a) is φ′, PS(T)(t) is φ′S ,
and PN(T)(a) is φ′N .

Since
s′′, h |= PS(T)(t),
s′′ |= PN(T)(a),

by Proposition 4.6 we have some h′ such that

s′′, h′ |= P (T)(t,a).

Namely s′′, h′ |= φ′. Hence s′′, h′ |= φ. 2

5 Conclusion

We have proved that the satisfiability of symbolic heaps in SLA1 system with
inductive definitions and Presburger arithmetic without any restrictions is un-
decidable. We have proposed a decidable symbolic-heap subsystem SLA2 with
inductive definitions and Presburger arithmetic with some restrictions, and pro-
vided its decision algorithm as well as its correctness proof. To support this
result, we have also defined a related decidable subsystem DPI of Presburger
arithmetic and inductive definitions with some restrictions.

We have imposed a significant restriction on SLA2 for the case when the
unfolding trees becomes non-linear. SLA2 supports AVL trees, but does not
support sorted AVL trees because the minimum values and the maximum values
interact. Future work could relax the restrictions by using semilinear sets so that
it supports a wider class of data structures. We have not investigated pointer
arithmetic. An extension of our results to pointer arithmetic could be another
future work.

19

Acknowledgments

This work is partially supported by MoE Tier-2 grant MOE2013-T2-2-146.

References

1. J. Berdine, C. Calcagno, P. W. O’Hearn, A Decidable Fragment of Separation
Logic, In: Proceedings of FSTTCS 2004, LNCS 3328 (2004) 97–109.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn, Symbolic Execution with Separation
Logic, In: Proceedings of APLAS 2005, LNCS 3780 (2005) 52–68.

3. M. Bozga, R. Iosif, and S. Perarnau, Quantitative Separation Logic and Programs
with Lists, J. Autom. Reasoning 45 (2) (2010) 131–156.

4. J. Brotherston, C. Fuhs, N. Gorogiannis, and J.N. Perez, A Decision Procedure
for Satisfiability in Separation Logic with Inductive Predicates, In: Proceedings of
CSL-LICS’14 (2014) Article 25.

5. W.N. Chin, C. David, H.H. Nguyen, and S. Qin, Automated verification of shape,
size and bag properties via user-defined predicates in separation logic, Sci. Comput.
Program. 77(9) (2012) 1006–1036.

6. H. B. Enderton, A Mathematical Introduction to Logic, Second Edition, Academic
Press, 2000.

7. R. Iosif, A. Rogalewicz, and J. Simácek, The tree width of separation logic with
recursive definitions, In: Proceedings of CADE-24, LNCS 7898 (2013) 21–38.

8. R. Iosif, A. Rogalewicz, and T. Vojnar, Deciding Entailments in Inductive Sep-
aration Logic with Tree Automata, In: Proceedings of ATVA 2014, LNCS 8837,
201–218.

9. R. Piskac, T. Wies, and D. Zufferey, Automating Separation Logic Using SMT, In:
Proceedings of CAV 2013, LNCS 8044 (2013) 773-789.

10. R. Piskac, T. Wies, and D. Zufferey, Automating separation logic with trees and
data, In: Proceedings of CAV 2014, LNCS 8559 (2014) 711–728.

11. J. A. Navarro Préze and A. Rybalchenko, Separation logic modulo theories, In:
Proceedings of APLAS 2013, LNCS 8301 (2013) 90-106.

12. J.C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures,
In: Proceedings of Seventeenth Annual IEEE Symposium on Logic in Computer
Science (LICS2002) (2002) 55–74.

13. James Brotherston and Nikos Gorogiannis and Max Kanovich and Reuben Rowe,
Model Checking for Symbolic-Heap Separation Logic with Inductive Predicates,
In: Proceedings of POPL-43 (2016) 84–96.

20

