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Abstract. Concolic testing is a test generation technique which works effectively
by integrating random testing generation and symbolic execution. Existing con-
colic testing engines focus on numeric programs. Heap-manipulating programs
make extensive use of complex heap objects like trees and lists. Testing such
programs is challenging due to multiple reasons. Firstly, test inputs for such pro-
grams are required to satisfy non-trivial constraints which must be specified pre-
cisely. Secondly, precisely encoding and solving path conditions in such pro-
grams are challenging and often expensive. In this work, we propose the first
concolic testing engine called CSF for heap-manipulating programs based on sep-
aration logic. CSF effectively combines specification-based testing and concolic
execution for test input generation. It is evaluated on a set of challenging heap-
manipulating programs. The results show that CSF generates valid test inputs
with high coverage efficiently. Furthermore, we show that CSF can be potentially
used in combination with precondition inference tools to reduce the user effort.

1 Introduction

Unit testing is essential during the software development process. To automate unit
testing effectively, we are required to generate valid test inputs which exercise program
behaviors comprehensively and efficiently. Many techniques for automating unit testing
have been proposed, including random testing [18] and symbolic execution [45]. A re-
cent development is the concolic testing technique [32, 40]. Concolic testing works by
integrating random testing and symbolic execution to overcome their respective limita-
tions [46]. It has been shown that concolic testing often works effectively [47].

Existing concolic testing engines focus on numeric programs, i.e., programs which
take numeric type variables as inputs. In contrast, heap-manipulating programs make
extensive use of heap objects and their inputs are often dynamically allocated data struc-
tures. Test input generation for heap-manipulating programs is hard for two reasons.
Firstly, the test inputs are often heap objects with complex structures and strict require-
ments over their shapes and sizes. Secondly, the inputs have unbounded domains. Ide-
ally, test generation for heap-manipulating programs must satisfy three requirements.

1. (Validity) It must generate valid test inputs.
2. (Comprehensiveness) It must exercise program behaviors comprehensively, e.g.,

maximizing certain code coverage.
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3. (Efficiency) It must be efficient.

Existing approaches often overlook one or more of the requirements. The state-of-
the-art approaches are based on classical symbolic execution [26] with lazy initializa-
tion [45]. To achieve comprehensiveness and efficiency, lazy initialization postpones
the initialization of reference type symbolic variables and fields until they are accessed.
However, lazy initialization has limited support to capture constraints on the shapes of
the input data structures. As a result, invalid test inputs are generated, which are not only
wasteful but also lead to the exploration of infeasible program paths. Furthermore, be-
cause the values of un-accessed fields are not initialized, the generated test inputs need
to be further concretized. Subsequent works on improving lazy initialization [15, 16,
21, 45] share the same aforementioned problems. To address the validity requirement,
Braione et al. [11] introduced a logic called HEX as a specification language for the in-
put data structures. However, HEX has limited expressiveness and thus cannot describe
many data structures (unless using additional user-provided methods called triggers).

Inspired by the recent success of concolic execution (e.g., [1, 41]), we aim to de-
velop a concolic execution engine for heap-manipulating programs. Developing a con-
colic execution engine which achieves validity, comprehensiveness and efficiency is
however highly non-trivial. For validity, we need a specification language which is ex-
pressive enough to capture constraints over the shapes and sizes of heap objects. We
thus adopt a recently proposed fragment of separation logic which is shown to be ex-
pressive and decidable [30]. For comprehensiveness and efficiency, we propose a novel
concolic testing strategy which combines specification-based testing and concolic exe-
cution. That is, we first generate test inputs according to the specification in a black-box
manner and then apply concolic execution to cover those uncovered program parts.

In summary, we make the following contributions. Firstly, we propose a concolic
execution engine for heap-manipulation programs based on separation logic. Secondly,
we combine specification-based testing with concolic execution in order to reduce the
cost of constraint solving. Thirdly, we implement the proposal in a tool called Concolic
StarFinder (CSF) and evaluate it in multiple experiments.

The rest of this paper is organized as follows. Section 2 illustrates our approach
through an example. Section 3 describes our specification language and specification-
based test input generation. Next, we present our concolic execution engine in Section 4.
We show the implementation and experiments in Section 5. Section 6 discusses related
works and finally Section 7 concludes.

2 Approach at a Glance

We illustrate our approach using method remove in class BinarySearchTree from
the SIR repository [7]. The method is shown in Fig. 1. It checks if a binary search tree
object contains a node with a specific value and, if so, removes the node. To test the
method, we must generate two inputs, i.e., a valid binary search tree object t and an
integer x, and then execute t.remove(x). Note that a valid binary search tree object must
satisfy strict requirements. Firstly, all BinaryNode objects must be structured in a binary
tree shape. Secondly, for any BinaryNode object in the tree, its element value must be
greater than all the element values of its left sub-tree and less than those of the right



1 public class BinarySearchTree {
public BinaryNode root;

3 public void remove(int x) {
root = remove(x, root);

5 }
private BinaryNode remove(int x, BinaryNode t) {

7 if (t == null) return t;
if (x < t.element)

9 t.left = remove(x, t.left);
else if (x > t.element)

11 t.right = remove(x, t.right);
else if (t.left != null && t.right != null){

13 t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);

15 } else
t = (t.left != null) ? t.left : t.right;

17 return t;
}

19 private BinaryNode findMin(BinaryNode t) {
if (t == null) return null;

21 else if (t.left == null) return t;
return findMin(t.left);

23 }
}

25

public class BinaryNode {
27 int element; BinaryNode left; BinaryNode right;

}

Fig. 1. Sample program

sub-tree. One way to define valid binary search tree objects is through programming a
repOK method [9, 45], as shown in App. 1.

If a repOK method is provided, we can use the black-box enumeration (BBE)
approach [45] to generate test inputs. BBE performs symbolic execution with lazy ini-
tialization on the repOK method. Although BBE can generate valid test inputs, it also
generates many invalid ones, e.g., the generated input is a cyclic graph instead of a tree5.
In our experiment with BBE for this method, a total of 225 test inputs are generated and
only 9 of them are valid. Moreover, because BBE generates test inputs based on the
repOK method only, it may not generate a high coverage test suite.

One way to obtain a high coverage test suite is to use the white-box enumeration ap-
proach [45]. First, white-box enumeration performs symbolic execution on the method
under test to create some partially initialized data structures. Then, these data structures
are used as initial inputs to perform symbolic execution with the repOK method. How-
ever, because the approach still uses lazy initialization, many invalid test inputs may be
generated. Moreover, white-box enumeration requires the availability of a conservative
repOK method in the first step, which is not easy to derive. Another approach is to use
the HEX logic [12] as a language to specify valid data structures. During lazy initializa-
tion, the exploration is pruned when the heap configuration violates the specification.
However, HEX has limited expressiveness, e.g., HEX cannot capture the property that
the nodes in the binary search tree are sorted due to the lack of arithmetic constraints.

5 When BBE runs, we count the structures that the repOK method returns true as valid ones,
and the structures that the repOK method returns false as invalid ones.



Formula Φ ::= ∆ | Φ1 ∨ Φ2

Symbolic heap ∆ ::= ∃v̄. (κ ∧ π)
Spatial formula κ ::= emp | x 7→c(v̄) | P(v̄) | κ1 ∗ κ2

Pure formula π ::= true | α | ¬π | π1 ∧ π2 α ::= a1 = a2 | a1 ≤ a2
a ::= null |k | v | k×a | a1+a2 | −a

Data structure Node ::= data ci{τ1 fi1 ; ...; τj fij} τ ::= bool | int | c
Predicate definition Pred ::= pred Pi(v̄i) ≡ Φi

Fig. 2. Specification language, where k is a 32-bit integer constant, v̄ is a sequence of variables

In comparison, our approach works as follows. We use separation logic to define a
predicate bst(root,minE,maxE), which specifies valid binary search trees where
root is the root of the tree and minE (resp. maxE) is the minimum (resp. max-
imum) bound of the element values of the tree. We refer the readers to Section 3
for details of the definition. The precondition of method remove is then specified
as bst(this root,minE,maxE). With the specification, we first apply specification-
based testing based on the precondition in a black-box manner. That is, we generate
the test inputs according to the precondition using a constraint solver without exploring
the method body. After this step, we generate 22 test inputs and they cover 14 over 15
feasible branches of the method remove (including auxiliary method findMin). The
only branch which is not covered is the else branch at line 21. We then perform con-
colic execution with the generated test inputs to identify a feasible path which leads to
the uncovered branch. After solving that path condition, we obtain the test inputs for
100% branch coverage.

3 Specification-based Testing

Our approach takes as input a heap-manipulating program which has a precondition
specified using a language recently developed in [14, 30]. In the following, we intro-
duce the language and present the first step of our approach, i.e., specification-based
testing based on the provided precondition.

Specification Language The language we adopt supports separation logic, inductive
predicates and arithmetical constraints, which is expressive to specify many data struc-
tures [14, 30]. Its syntax is shown in Fig. 2. In general, the precondition is a disjunction
of one or more symbolic heaps. A symbolic heap is an existentially quantified conjunc-
tion of a heap formula κ and a pure formula π. While a pure formula is a constraint in
the form of the first-order logic, the heap formula is a conjunction of heap predicates
which are connected by separating operation ∗. A heap predicate may be the empty
predicate emp, a points-to predicate x 7→c(v̄) or an inductive predicate P(v̄). Reference
types are annotated by the keyword data. Variables may have type τ as boolean bool

or 32-bit integer int or user-defined reference type c.
Inductive predicates are supplied by the users with the keyword pred. They are

used to specify constraints on recursively defined data structures like linked lists or



Algorithm 1: genFromSpec(Γ, n)

1 if n = 0 then
2 tests← ∅
3 foreach ∆ ∈ Γ do
4 r, model← sat(∆)
5 if r = SAT then
6 tests← tests ∪ toUnitTest(model)

7 return tests

8 else
9 Γ ′ ← ∅

10 foreach ∆ ∈ Γ do
11 Γ ′ ← Γ ′ ∪ unfold(∆)

12 return genFromSpec(Γ ′, n− 1)

trees. Inductive predicates are defined in the same language. For instance, the inductive
predicate bst(root,minE,maxE) introduced in Section 2 is defined as follows

pred bst(root,minE,maxE) ≡ (emp ∧ root = null)
∨ (∃elt, l, r. root7→BinaryNode(elt, l, r) ∗

bst(l,minE, elt) ∗ bst(r, elt,maxE) ∧minE < elt ∧maxE > elt)

, where root is the root of the tree andminE (resp.maxE) is the minimum (resp. max-
imum) bound of the element values of the tree. Using this definition with this root as
symbolic value for field root in class BinarySearchTree, the precondition of method
remove in the preceding section is then specified as bst(this root,minE,maxE).

Specification-based Testing If we follow existing concolic testing strategies [18], we
would first generate random test inputs before applying concolic execution. However, it
is unlikely that randomly generated heap objects are valid due to the strict precondition.
Thus, we apply specification-based testing to generate test inputs based on the user-
provided precondition instead.

The details are shown in Algorithm 1. The inputs are a set of formulae Γ and a
bound on n. The initial value of Γ contains only the precondition of the program un-
der test. The output is a set of test inputs which are both valid and fully initialized.
Algorithm 1 has two phases.

In the first phase, from line 8 to 12, procedure unfold is applied to each symbolic
heap∆ in Γ (at line 11) to return a set of unfolded formulae. Recall that a symbolic heap
is a conjunction of a heap constraint κ and a pure constraint π. If the heap constraint
κ contains no inductive predicates (i.e., it is a base formula), κ is returned as it is.
Otherwise, each inductive predicate Pi(t̄i) in κ is unfolded using its definition. Note
that the definition of Pi(t̄i) is a disjunction of multiple base cases and inductive cases.
During unfolding, κ is split into a set of formulae, one for each disjunct in the definition
of every inductive predicate Pi(t̄i) in κ. The process ends when n reaches 0.



1. emp ∧ this root = null

2. ∃elt, l, r. this root7→BinaryNode(elt, l, r) ∗ bst(l,minE, elt) ∗ bst(r, elt,maxE) ∧
minE < elt ∧maxE > elt

3. ∃elt, l, r. this root7→BinaryNode(elt, l, r) ∗ bst(r, elt,maxE) ∧ l = null ∧
minE < elt ∧maxE > elt

4. ∃elt, l, r, elt1, l1, r1. this root7→BinaryNode(elt, l, r) ∗ l 7→BinaryNode(elt1, l1, r1) ∗
bst(r, elt,maxE) ∗ bst(l1,minE, elt1) ∗ bst(r1, elt1, elt) ∧
minE < elt ∧maxE > elt ∧minE < elt1 ∧ elt > elt1

5. ∃elt, l, r. this root7→BinaryNode(elt, l, r) ∗ bst(l,minE, elt) ∧ r = null ∧
minE < elt ∧maxE > elt

6. ∃elt, l, r, elt2, l2, r2. this root7→BinaryNode(elt, l, r) ∗ r 7→BinaryNode(elt2, l2, r2) ∗
bst(l,minE, elt) ∗ bst(l2, elt, elt2) ∗ bst(r2, elt2,maxE) ∧
minE < elt ∧maxE > elt ∧ elt < elt2 ∧maxE > elt2

Fig. 3. Unfoldings

Procedure unfold is formalized as follows. Given an inductively predicate defini-
tion pred Pi(v̄i) ≡ Φi and a formula constituted with this predicate, e.g., ∆i ∗ Pi(t̄i),
unfold proceeds in two steps. First, it replaces the occurrences of the inductive predi-
cate with its definition as: unfold(∆i ∗ Pi(t̄i), Pi(t̄i)) ≡ ∆i ∗ (Φi[t̄i/v̄i]). After that, it
applies the following axioms to normalizes the formula into the grammar in Fig. 2:

(κ1 ∧ π1) ∗ (κ2 ∧ π2) ≡ (κ1 ∗ κ2) ∧ (π1 ∧ π2)
(∃w̄. ∆1) ∗ (∃v̄. ∆2) ≡ ∃w̄, v̄′. (∆1 ∗∆2[v̄′/v̄])

The correctness of these axioms could be found in [23, 38]. We then use unfold(∆) ≡⋃n
i=1 unfold(∆, Pi(t̄i)), Pi(t̄i) ∈ ∆. For example, given the above-specified precon-

dition for method remove, we obtain 6 formulae shown in Fig. 3 after unfolding twice.

Unit Test Generation After unfolding, Γ contains a set of formulae, each of which sat-
isfies the precondition. In the second phase, at lines 1-7, these formulae are transformed
into test inputs. First, we check the satisfiability of each formula using a satisfiability
solver S2SATSL [28, 30] at line 4. The result of the solver is a pair (r, model) where r is
a decision of satisfiability and model is a symbolic model which serves as the evidence
of the satisfiability. Intuitively, a symbolic model is a base formula where every vari-
able is assigned a symbolic value. Formally, a symbolic model is a quantifier-free base
formula ∆m where ∆m is satisfiable and for each variable v in ∆m, if v has a reference
type, ∆m contains v 7→c(...), or v = v′, or v = null; otherwise, ∆m contains v = k
with k is either a boolean or 32-bit integer constant.

At line 6, the symbolic model is transformed into a test input using procedure
toUnitTest, which we present in details in App. 2. Fig. 4 shows two test inputs gener-
ated for the example shown in Fig. 1. These two test inputs correspond to the first two
formulae shown in Fig. 3 (where x is assigned the default value 0).

The correctness of the algorithm, i.e., each generated test input is a valid one, is
straightforward as each symbolic model obtained from the unfolding satisfies the orig-
inal precondition, since each one is an under-approximation of a ∆ in Γ .



public void test_remove1() throws Exception {
BinarySearchTree obj = new BinarySearchTree();
obj.root = null; int x = 0;
obj.remove(x);

}

public void test_remove2() throws Exception {
BinarySearchTree obj = new BinarySearchTree();
obj.root = new BinaryNode();
BinaryNode left_2 = null; BinaryNode right_3 = null;
int element_1 = 0; int x = 0; obj.root.element = element_1;
obj.root.left = left_2; obj.root.right = right_3;
obj.remove(x);

}

Fig. 4. Two test inputs

datat ::= data c { (type v; )∗ }
type ::= bool | int | c
prog ::= stmt∗

stmt ::= v := e | v.fi := e | goto e | assert e | if e0 then goto e1 else goto e2
| v := new c(v1, ..., vn) | free v

e ::= k | v | v.fi | e1 opb e2 | opu e | null

Fig. 5. A core intermediate language

4 Concolic Execution

Specification-based testing allows us to generate test inputs which cover some parts of
the program. Some program paths however are unlikely to be covered with such test
inputs without exploring the program code [46]. Thus, the second step of our approach
is to apply concolic execution to cover the remaining parts of the program.

We take a program, a set of test inputs and a constraint tree as inputs. The constraint
tree allows us to keep track of both explored nodes and unexplored nodes. Informally,
the concolic execution engine executes the test inputs, expands the tree and then gener-
ates new test inputs to cover the unexplored parts of the tree. This process stops when
there are no unexplored nodes in the tree or it times out.

For simplicity, we present our concolic engine based on a general core intermedi-
ate language. The syntax of the language is shown in Fig. 5, which covers common
programming language features. A program in our core language includes several data
structures and statements. Our language supports boolean and 32-bit integer as primi-
tive types. Program statements include assignment, memory store, goto, assertion, con-
ditional goto, memory allocation, and memory deallocation. Expressions are side-effect
free and consist of typical non-heap expressions and memory load. We use opb to rep-
resent binary operators, e.g., addition and subtraction, and opu to represent unary oper-
ators, e.g., logical negation. k is either a boolean or 32-bit integer constant.

We assume the program is in the form of static single assignments (SSA) and omit
the type-checking semantics of our language (i.e., we assume programs are well-typed



in the standard way). Note that our prototype implementation is for Java bytecode,
which in general can be translated to the core language (with unsupported Java language
features are abstracted during the translation). The core language is easily extended to
interprocedural scenario with method calls.

Execution Engine Our concolic execution engine incrementally grows the constraint
tree. Formally, the constraint tree is a pair (V,E) where V is a finite set of nodes and
E is a set of labeled and directed edges (v, l, v′) where v′ is a child of v. Having edge
(v, l, v′) means that we can transit from v to v′ via an execution rule l. Each node in
the tree is a concolic state in the form of a 6-tuple 〈Σ,∆, s, pc, flag〉ι where Σ is the
list of program statements; ∆ is the symbolic state (a.k.a. the path condition); s is the
current valuation of the program variables (i.e., the stack); pc is the program counter;
flag is a flag indicating whether the current node has been explored or not and ι is the
current statement. Note that Σ and s are mapping functions, i.e., Σ maps a number to a
statement, and s maps a variable to its value.

Initially, the constraint tree has only one node 〈Σ, pre, ∅, 0, true〉ι0 where ∅ de-
notes an empty mapping function and ι0 is the initial statement. Note that the initial
symbolic state is the precondition. We start with executing the program concretely,
with some initial test inputs (at least one), and build the constraint tree along the way.
The initial test inputs may come from specification-based testing or be provided by the
users. Before each execution, s is initialized with values according to the test input. In
the execution process, given a node, our engine systematically identifies an applicable
rule (based on the current statement) to generate one or more new nodes. If no rule
matches (e.g., accessing a dangling pointer), the execution halts. Note that some of the
generated nodes are marked explored whereas some are marked unexplored (depending
on the outcome of the concrete execution).

After executing all initial test inputs, the engine searches for unexplored nodes in
the tree. If there is one such node with symbolic state ∆, the engine solves ∆ using
a solver [28, 30]. If ∆ is satisfiable, the unexplored path is feasible and the symbolic
model generated by the solver is transformed into a new test input (as shown in the Sect.
3). The new test input is then executed and the constraint tree is expanded accordingly.
If ∆ is unsatisfiable, the node is pruned from the tree. This process is repeated until
there are no more unexplored nodes or it times out.

The growing of the tree is governed by the execution rules, which effectively defines
the semantics of our core language. The detailed execution rules are presented in Fig. 6.
One or more rules may be defined for each kind of statements in our core language.
Each rule, applied based on syntactic pattern-matching, is of the following form.

conditions
current state ; end state1, ..., end staten

Intuitively, if the conditions above the line is satisfied, a node matching the current state
generates multiple children nodes.

In the following, we explain some of the rules in detail. In the rule [C−ASSIGN]

which assigns the value evaluated from expression e to variable v, for the concrete state
our system first evaluates the value of e based on the concrete state s prior to updating



[C−CONST]
s ` k ⇓ k

[C−VAR]
s ` v ⇓ k

[C−NULL]
s ` null ⇓ null

[C−UNOP]
s ` e ⇓ k

s ` opu e ⇓ opu k
[C−BINOP]

s ` e1 ⇓ k1 s ` e2 ⇓ k2
s ` e1 opb e2 ⇓ k1 opb k2

[C−LOAD]
s ` v ⇓ l s ` l.fi ⇓ k

s ` v.fi ⇓ k
[C−FREE]

s ` v ⇓ l s′=s \ {l.fi 7→ } ∀i=1..n ι = Σ(pc+ 1)

〈Σ,∆, s, pc, true〉free v; 〈Σ,∆, s′, pc+ 1, true〉ι

[C−ASSIGN]
s ` e ⇓ k s′=s[v ← k] fresh v′ e′=e[v′/v] ∆′≡∃v′.∆[v′/v] ∧ v=e′ ι=Σ[pc+ 1]

〈Σ,∆, s, pc, true〉v := e; 〈Σ,∆′, s′, pc+ 1, true〉ι

[C−NEW]

fresh l fresh v′ ∆′≡∃v′.∆[v′/v] ∗ v 7→c(v1, ..., vn)
s′1=s[l.fi ← (s ` vi)] ∀i=1..n s′=s′1[v ← l] ι=Σ(pc+1)

〈Σ,∆, s, pc, true〉v = new c(v1, ..., vn) ; 〈Σ,∆′, s′, pc+1, true〉ι

[C−STORE]
s ` v ⇓ l s ` e ⇓ k s′=s[l.fi ← k] ∆′≡∆ ∧ v.fi:=e ι=Σ(pc+ 1)

〈Σ,∆, s, pc, true〉v.fi = e; 〈Σ,∆′, s′, pc+ 1, true〉ι

[C−GOTO]
s ` e ⇓ k ι=Σ(k)

〈Σ,∆, s, pc, true〉goto e; 〈Σ,∆, s, k, true〉ι

[C−ASSERT]
s ` e ⇓ true ∆′≡∆ ∧ e ι=Σ(pc+1)

〈Σ,∆, s, pc, true〉assert(e) ; 〈Σ,∆′, s, pc+1, true〉ι

[C−TCOND]
s ` e0 ⇓ true s ` e1 ⇓ k1 s ` e2 ⇓ k2 ∆1≡∆ ∧ e0 ∆2≡∆ ∧ ¬e0 ι1=Σ(k1) ι2=Σ(k2)

〈Σ,∆, s, pc, true〉if e0 then goto e1 else goto e2 ;

〈Σ,∆1, s, k1, true〉ι1, 〈Σ,∆2, s, k2, false〉ι2

[C−FCOND]
s ` e0 ⇓ false s ` e1 ⇓ k1 s ` e2 ⇓ k2 ∆1≡∆ ∧ e0 ∆2≡∆ ∧ ¬e0 ι1=Σ(k1) ι2=Σ(k2)

〈Σ,∆, s, pc, true〉if e0 then goto e1 else goto e2 ;

〈Σ,∆1, s, k1, false〉ι1, 〈Σ,∆2, s, k2, true〉ι2

Fig. 6. Execution rules: Σ[x ← k] updates the mapping Σ by setting x to be k; fresh is used
as an overloading function to return a new variable/address; s ` e ⇓ k denotes the evaluation of
expression e to a concrete value k in the current context s

the state of v with the new value. For the symbolic state, it substitutes the current value
of v to a fresh symbol v′ prior to conjoining the constraint for the latest value of v.
In the rule [C−NEW] which assigns new allocated object to variable v, for the concrete
state our system updates the stack with an assignment of the variable to a fresh location.
For the symbolic state, it substitutes the current value of v to a fresh symbol v′ prior to
spatially conjoining the points-to predicate for the latest value of v.

In the rule [C−LOAD] (resp. [C−STORE]) which reads from (resp. writes into) the
field fi of an object v, in the concrete state we implicitly assume that the corresponding
variable of the field is l.fi where l is the concrete address of v and proceed accordingly.
For the symbolic states, checking whether a variable has been allocated before accessed
is much more complicated as the path condition (with the precondition) may include
occurrences of inductive predicates (which represent unbounded heaps), so our system
keeps the constraints with the field-access form (i.e., v.fi) and field-assign form (i.e.,
v.fi := e) and will eliminate them before sending these formulae to the solver.

In the rule [C−TCOND], two new nodes denoting the then branch and the else

branch of the condition are added into the tree with the current node is their parent.
The symbolic states (path conditions) of both nodes are updated accordingly (∆1 and
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Fig. 7. Constraint trees construction: a question mark represents an unexplored path and OK
denotes the execution terminates without error

∆2). The concrete state s helps to identify that the execution is going to follow the then
branch and marks this branch as explored. The remaining node is marked as unexplored.
The rule [C−FCOND] is interpreted similarly.

For example, Fig. 7 show the constraint trees constructed during the concolic exe-
cution of the example in Fig. 1 with two initial test inputs in Fig. 4. The input of the
first test case is an empty tree. The condition of the if− statement at line 7 evaluates
to true, satisfying the rule [C−TCOND]. The constraint tree in Fig. 7(a) is constructed.
The input of the second test case is a tree with one node and x is 0. Thus the node is
to be removed as its element is 0. The rule [C−FCOND] is applied, which results in
the tree in Fig. 7(b). The condition x < t.element is then used to generate a new test
input with x = 0 and t.element = 1. Executing this new test input triggers the rule
[C−TCOND] at line 9, and updates the constraint tree as in Fig.7(c).

Path Condition Transformation Note that the path conditions generated according to
the execution rules may contain field-access and field-assign expressions which are be-
yond the syntax in Fig. 2 and the support of the solver [28, 30]. Thus, these expressions
need to be eliminated. The details of the transformation are presented in the Algo-
rithm 2. The input of the algorithm is a path condition which may contain field-access
and field-assign expressions. The output are multiple path conditions, i.e., a disjunction
of path conditions, without field-access and field-assign expressions.

The algorithm begins by recording all symbolic values for all fields of points-to
predicates (lines 1-3). Then it considers each conjunct, which in form of a binary ex-
pression with left-hand side and right-hand side, in the path condition (line 4). In gen-
eral, the field-access expression is substituted by symbolic value of the field. For each
field-access expression v.fi in the conjunct (line 5), if the current path condition im-
plies v is null, the path condition is unsatisfiable and is discarded (lines 6-7). In case
the path condition implies v is constrained by a points-to predicate, it substitutes v.fi
with the corresponding symbolic name for the field in the predicate (lines 8-9). Oth-
erwise, if v is constrained by an inductive predicate, it unfolds the predicate to find
points-to predicate for v (lines 10-14). In the last case (lines 15-16), it considers the
current path condition does not have enough information to resolve v.fi and simply
returns empty. For field-assign expression v.fi := e, after transforming the expres-



Algorithm 2: preprocess(∆)

1 map← ∅
2 foreach v 7→c(v1, ..., vn) ∈ ∆ do
3 map← map ∪ {v.fi ← vi}
4 foreach (lhs op rhs) ∈ ∆ do
5 foreach v.fi ∈ (lhs op rhs) do
6 if ∆ =⇒ v = null then
7 return ∅
8 else if map(v.fi) = vi ‖map(x.fi) = vi && ∆ =⇒ v = x then
9 (lhs op rhs)← (lhs op rhs)[vi/v.fi]

10 else if P(v̄) ∈ ∆ && (v ∈ v̄ ‖ x ∈ v̄ && ∆ =⇒ v = x) then
11 ∆s ← unfold(∆, P(v̄)), Γ ← ∅
12 foreach ∆i ∈ ∆s do
13 Γ ← Γ ∪ preprocess(∆i)

14 return Γ

15 else
16 return ∅

17 if op is := then
18 Substitute lhs with a fresh symbolic name
19 Update the field in map to the new name
20 Substitute := with =

21 return {∆}

sion with above steps, it substitutes the left-hand side with a fresh symbolic name f ′i ,
update the mapping from v.fi (or x.fi in case ∆ =⇒ x = v) to f ′i , then change :=
to = (lines 17-20). Note that the update at line 19 may override the update at line
9 for left-hand side. Similar to Algorithm 1, the correctness of Algorithm 2 follows
from the fact that each final path condition is an under-approximation of the origi-
nal path condition because of the unfolding process. For instance, the path condition
bst(this root,minE,maxE) ∧ t = this root ∧ t 6= null ∧ x < t.element has
field-access expression t.element which need to be transformed. Using Algorithm 2,
we get the final path condition which can be passed to the solver:

∃elt, l, r. this root7→BinaryNode(elt, l, r) ∗ bst(l,minE, elt) ∗ bst(r, elt,maxE) ∧
minE < elt ∧maxE > elt ∧ t = this root ∧ t 6= null ∧ x < elt

The solver verifies that the path condition is satisfiable and then returns a model which
is a BinarySearchTree with 1 node. The element field of the node has value 1 and
the value of parameter x is 0. The details of the transformation are shown in App. 3.

5 Implementation and Experiments

We have implemented our proposal in a tool, named Concolic StarFinder (CSF), with
6770 lines of Java code as a module inside the Java PathFinder framework. In the fol-



lowing, we conduct three experiments and contrast CSF’s performance with existing
approaches. All experiments are conducted on a laptop with 2.20GHz and 16 GB RAM.
Instructions to obtain the artifact, which contains the tool source code, benchmarks and
test scripts to replicate the experiments, are included in App. 4.

First Experiment In this experiment, we assume CSF is used as a stand-alone tool
to generate test inputs for heap-manipulating programs. That is, the users provide a
program and a precondition, then apply CSF to automatically generate a set of test in-
puts. The experimental subject is a comprehensive set of benchmark programs collected
from previous publications, which includes Singly-Linked List (SLL), Doubly-Linked
List (DLL), Stack, Binary Search Tree (BST), Red Black Tree (RBT) from SIR [7], AVL
Tree, AA Tree (AAT) from Sireum/Kiasan [8], Tll from [27], the motivation example
from SUSHI [10], the TSAFE project [17], and the Gantt project [3]. In total, we have
74 methods whose line of codes range from dozens to more than one thousand. For each
method, the precondition according to the original publication is adopted for generat-
ing test inputs using CSF. In the specification-based testing stage, CSF is configured to
generate all test inputs with a depth of 1 (e.g., unfolding the precondition once).

We compare CSF with two state-of-the-art tools, e.g., JBSE [12] and BBE [45].
JBSE uses HEX for specifying the invariants of valid test inputs and generates test in-
puts accordingly. We use the same invariants reported in [12] in our experiments. Note
that because the HEX invariants for SLL, Stack, BST, AA Tree and Tll are not available6,
we skip running JBSE with these test subjects. BBE is explained in Section 2. In the
following, we answer multiple research questions (RQ) through experiments.

RQ1: Does CSF generate valid test inputs? We apply CSF to generate test inputs for the
74 methods. To check whether the generated test inputs are valid, we validate the gen-
erated test inputs with the repOK method in the data structures. The results are shown
in the columns named #Tests in Table 1 for each test subject. The entries for JBSE
and BBE are in the form of the number of valid test inputs over the total number of test
inputs. As expected, all test inputs generated by CSF are valid. In comparison, JBSE
generates 4.65% valid test inputs and BBE generates 7.83% valid test inputs. The reason
for the poor results of JBSE and BBE is that the reference variables/fields are initialized
with the wrong values or never initialized if they are not accessed. Note that by default,
JBSE generates partially initialized test inputs, so we additionally call method repOK
to concretize them. CSF solves the path conditions, which contain the precondition, to
generate test inputs, which are guaranteed to be valid. We thus conclude that using an
expressiveness language is important in achieving validity.

RQ2: Can CSF achieve high code coverage? We use JaCoCo [4] to measure the branch
coverage of the generated test inputs. The results are shown in the sub-columns named
Cov.(%) (which is the coverage achieved by valid test inputs) andNCov.(%) (which is
the coverage achieved by all test inputs including the invalid ones) in Table 1. The win-
ners are highlighted in bold. Note that for CSF, because all the test inputs are valid, we
omit the column NCov.(%). The results show that CSF achieves nearly 100% branch

6 and it is unclear to us whether HEX is capable to specify them.



Table 1. Experiment 1 & 2: Results

Program CSF JBSE BBE
#Tests Cov.(%) #Calls T(s) #Tests Cov.(%) NCov.(%) T(s) #Tests Cov.(%) NCov.(%) T(s)

DLL 75 100 40/58 32 121/5146 56 100 206 0/35 0 21 21
AVL 62 100 36/654 274 76/295 100 100 48 17/117 70 89 69
RBT 133 99 14/1106 2403 137/291 87 91 38 14/380 26 53 333
SUSHI 5 100 3/38 8 0/900 0 100 24 2/27 25 25 8
TSAFE 16 59 1/595 1190 0/32 0 5 10 0/1 0 0 1
Gantt 22 100 2/156 25 17/887 55 90 24 0/6 0 5 2
SLL 29 100 21/8 11 - - - - 16/50 66 71 19
Stack 18 100 16/2 7 - - - - 11/14 84 84 6
BST 47 100 16/33 14 - - - - 19/260 69 86 131
AAT 46 99 21/352 277 - - - - 3/166 6 43 111
Tll 6 100 2/4 2 - - - - 1/4 38 50 2
Math 320 88 576/0 73 - - - - 128/320 75 79 95

coverage for almost all programs except TSAFE, whose coverage is 59.46%. For 70 out
of 74 methods, CSF can obtain 100% branch coverage (including branches for auxiliary
methods and excluding infeasible branches). CSF fails to cover 1 branch in two meth-
ods (i.e., remove for RBT and remove for AAT ) and 3 branches in one method (i.e.,
put forRBT ). The reason is that although the path conditions leading to those branches
are satisfiable, the solver times out. For method TS R 3, CSF achieves 59.46% branch
coverage because in the execution, some native methods are invoked and applying sym-
bolic execution to those paths are infeasible. Moreover, some of the path conditions
contain string constraints which are not supported by the solver. For JBSE and BBE,
the average coverage is 68.54% and 37.85% respectively if we consider valid test in-
puts only. If all test inputs are considered, the average coverage increases to 95.59% for
JBSE and 54.66% for BBE. Note that the coverage is inflated with invalid test inputs.

RQ3: Is CSF sufficiently efficient? We measure the time needed to generate test inputs
(sub-columns T (s) in the Table 1). The results show that CSF needs 57.34 seconds on
average for each program. The numbers for JBSE and BBE are 8.75 and 9.50 seconds
respectively. Both JBSE and BBE are faster than CSF since they solve simpler con-
straints (e.g., without inductive predicates). However, their efficiency has a cost in term
of the validity of the generated test inputs and the achieved code coverage. To conclude,
we believe CSF is sufficiently efficient to be used in practice. We further show the num-
ber of solver calls used in CSF, i.e., the sub-column #Calls in the Table 1. The results
are represented in form of the number of solver calls for specification-based testing over
that of concolic execution. The results show that CSF needs 43 calls in average. Note
that the number of solver calls in the specification-based testing stage varies according
to the number of disjuncts in the precondition.

Second Experiment One infamous limitation of symbolic execution testing approach
is it cannot handle programs with complex numerical conditions. On the other hand,
specification-based testing approach does not suffer this limitation because it generates
test inputs independently of programs under test. In this experiment, we aim to show the
usefulness of specification-based testing in CSF, especially for programs with complex
numerical conditions. To do that, we systematically compose a set of programs which



public boolean withCos(Node root) {
while (root != null) {

if (Math.cos(root.elem) == 1) return true;
root = root.next; }

return false;
}

Fig. 8. An example in the second experiment

travel a singly-linked list, apply a method from java.lang.Math library to the list ele-
ments, and check if the result satisfies some condition. One example is shown in Fig. 8
with method cos, which returns the cosin value of an integer. In total, we have 32 pro-
grams with 32 different methods from java.lang.Math library. We run CSF with only
specification-based testing (to generate 10 test inputs) and compare the results with
BBE. We cannot compare with JBSE because we do not have the HEX invariant for
singly-linked list. However, we note that JBSE is a symbolic execution engine, which
means it has difficulties in handling complex numerical conditions. The list elements
has random values from -32 to 31 for all the tools. Due to randomness, we repeat the
experiment 10 times for each program.

In average, while CSF obtains 88.28% branch coverage, BBE obtains 75.31%. The
average number of solver calls is 18 and the average time is 2.27 seconds for each pro-
gram. For BBE, it generates 10 test inputs for each program but only 4 of them satisfy
repOK in 2.97 seconds. From the results, we conclude that the specification-based test-
ing phase is useful, especially for programs with complex numerical conditions.

Third Experiment Although having a specification language based on separation logic
allows us to precisely specify preconditions of the programs under test and generate
valid test inputs, it could be non-trivial for ordinary users to use such a language.
This problem has been recognized by the community and there have been multiple ap-
proaches to solve this problem [2, 27, 31, 39]. One noticeable example which has made
industrial impact is the Infer static analyzer [2], which infers preconditions of programs
through bi-abduction [13]. In this experiment, we show that CSF can be effectively
combined with Infer so that CSF can be applied without user-specified preconditions.

We first apply Infer to generate preconditions of the programs under test and then
apply CSF to generate test inputs accordingly. The test subject is PLEXIL [5], i.e.,
NASA’s plan automation and execution framework. Specifically, we analyze its verifi-
cation environment PLEXIL5 [6] with Infer, and collect 88 methods that have explicit
preconditions returned by Infer.

The experimental results are shown in Table 2, which are categorized based on the
number of initial test inputs generated from Infer’s preconditions (column #Init Tests).
The second column #Methods shows the number of methods in the category. The col-
umn #Tests shows the number of generated test inputs and the column #Exceptions
shows the number of exceptions in the category. Lastly, two columns #Calls and
Time(s) show the number of solver calls and the time needed to generate the test
inputs respectively. In summary, CSF generates 292 test inputs in 344 seconds which
achieved 58.36% branch coverage in average. Our investigation shows that all of these



Table 2. Experiment 3 with Infer: Results

#Init Tests #Methods #Tests #Exceptions #Calls Time(s)
1 8 10 10 8/14 16
2 51 130 119 102/206 167
3 29 152 132 87/254 161

public void test_integerValue1() throws Exception {
PlexilTreeParser obj = new PlexilTreeParser();
plexil.PlexilASTNode _t = new plexil.PlexilASTNode();
obj.ASTNULL = new antlr.ASTNULLType();
int ttype_1 = 0;
plexil.PlexilASTNode right_3 = null;
plexil.PlexilASTNode down_2 = null;
_t.ttype = ttype_1; _t.down = down_2; _t.right = right_3;
obj.integerValue(_t);

}

Fig. 9. A test input which leads to RuntimeException

test inputs are valid according to the inferred preconditions. Interestingly, 261 out of
the 292 test inputs (i.e., 89%) lead to RuntimeException during execution. The in-
terpretation can be either (1) the inferred preconditions are too weak to capture all the
necessary conditions for valid test inputs generation, or (2) there are potential bugs in
the programs.

To give an example, method integerV alue receives an Abstract Syntax Tree (AST)
as input and the AST must contain an INT token. The inferred precondition only says
that the input should not be null. One of the test inputs generated by CSF is shown
in Fig. 9. The execution result is RuntimeException because the value of field ttype
does not match with the value of INT token, which is 108.

It would be interesting to develop a full integration of CSF and the recent bi-
abduction for erroneous specification inference [39] so that we can generate meaningful
test inputs automatically to witness bugs for any program.

6 Related Work

We review closely related work in the following, emphasis is given to approaches that
generate test inputs for heap-manipulating programs.

Concolic testing programs with heap inputs This work is the first work that uses sepa-
ration logic for concolic testing. The engineering design of our tool is based on that of
JDart [32]. However, JDart, like most concolic execution engines, e.g., [18, 19, 24, 33,
42], does not support data structures as symbolic input for testing methods. Our work is
related to CUTE [40] and Pex [43]. CUTE [40] does support data structures as input by
using the so-called logical input map to keep track of input memory graph. However,
CUTE cannot handle unbounded inputs nor capture the shape relations between point-
ers, which leads to imprecision. Pex [43] uses a type system [44] to describe disjointness



of memory regions. But again, Pex cannot handle unbounded inputs. Moreover, the type
system can only reason about the global heap, which leads to complex constraints and
hence poor scalability. In comparison, our work handles unbounded inputs and shape
relations are well-captured by separation logic predicates.

Lazy initialization As far as we know, lazy initialization [25] is the only way to handle
unbounded inputs. However, most works in this direction, e.g., [15, 16, 21, 45], did not
address the problem of generating invalid test inputs due to the lack of constraints on the
shapes of the input data structures. This work is related to the tool JSF presented in [35,
36]. While JSF uses separation logic for specifying preconditions and apply classical
symbolic execution, ours relies on concolic execution. Moreover, to support memory
access, JSF unfolds those heaps accessed by reference variables in advance, our work
prepares heap accesses via lazy unfolding which helps to encode both executed/not-
yet-executed paths and heap accesses together. Another related work is [11] by Braione
et al., which we have discussed extensively in previous sections. The logic presented
in [11], HEX, is not expressive enough to describe many popular data structures, in-
cluding the binary search tree in our motivating example.

Specification-based testing has been an active research area for decades. Depending
on the testing goals, different types of logic have been used as the specification lan-
guages to generate test inputs, for example Alloy [34], Java predicates [9], and temporal
logic [20, 22]. However, we are not aware of any existing work that generate test inputs
from the specification in separation logic like ours.

Separation logic Research in separation logic focuses on static verification [13, 14, 27,
29, 37], which may return false positives and are not able to generate test inputs.

7 Conclusion

We have presented a novel concolic execution engine for heap-manipulating programs
based on separation logic. Our engine starts with generating a set of initial test inputs
based on preconditions. It concretely executes, monitors the executions and generates
new inputs to drive the execution to unexplored code. We have implemented the pro-
posal in CSF and evaluated it over benchmark programs. The experimental results show
CSF’s effectiveness and practical applications.

Acknowledgments. This research is supported by MOE research grant MOE2016-T2-
2-123.



Appendix 1: Method repOK for BinarySearchTree

public class BinarySearchTree {
public boolean repOK(BinaryNode t) {

return repOK(t, new Range());
}
boolean repOK(BinaryNode t, Range range) {

if (t == null) return true;
if (!range.inRange(t.element)) return false;
boolean ret = true;
ret = ret && repOK(t.left, range.setUpper(t.element));
ret = ret && repOK(t.right, range.setLower(t.element));
return ret;

}
}

Appendix 2: Symbolic model to test input

In the following, we show how to transform the symbolic model into a test input using
procedure toUnitTest. In this transformation, we maintain a list of initialized vari-
ables. The transformation has three steps. Firstly, for each points-to predicate v 7→c(...),
we create a new object of type c and assign the new object to v. Similarly, for each
predicate v = null or v = k, we assign null or k to v respectively. After that, we add
v into the list of initialized variables. Secondly, for each equality predicate v1 = v2, in
case either v1 or v2 is not initialized, we find an initialized alias v for v1 and v2 in the
model, then assign v to v1 and v2. In case v1 and v2 are not alias with any initialized
variable, we create a new object with compatible type and assign it to v1 and v2. Af-
ter that, both v1 and v2 are added into the list of initialized variables. Lastly, for each
points-to predicate v 7→c(v1, ..., vn), we assign vi to v.fi for i = 1..n. Note that before
this step, all variables v, v1, ..., vn are already initialized given the previous two steps.

Appendix 3: Path condition transformation example

We show the details of tranformation for the path condition

bst(this root,minE,maxE) ∧ t = this root ∧ t 6= null ∧ x < t.element

with field-access expression t.element.
From the path condition, we know that t is alias with this root and is constrained

by the predicate bst(this root,minE,maxE), so we unfold the predicate and get two
new path conditions:

1. emp ∧ this root = null ∧ t = this root ∧ t 6= null ∧ x < t.element
2. ∃elt, l, r. this root7→BinaryNode(elt, l, r) ∗ bst(l,minE, elt) ∗ bst(r, elt,maxE) ∧

minE < elt ∧maxE > elt ∧ t = this root ∧ t 6= null ∧ x < t.element

In the first case, this root = null ∧ t = this root so we cannot have symbolic
value for t.element and get rid of this path condition. Note that in this case, the path
condition is unsatisfiable because it also contains t 6= null. In the second case, t is
alias with this root, which points to a BinaryNode with the symbolic value for field



element is elt, so we substitute t.element with elt and get the final path condition
which can be passed to the solver:

∃elt, l, r. this root7→BinaryNode(elt, l, r) ∗ bst(l,minE, elt) ∗ bst(r, elt,maxE) ∧
minE < elt ∧maxE > elt ∧ t = this root ∧ t 6= null ∧ x < elt

Appendix 4: Instructions to replicate the experiments

We provide a Docker image containing the tool source code, benchmarks and test scripts
to replicate our experiments. Instructions to install Docker on various platforms can be
found in this link: https://docs.docker.com/install/.

Depending on the way Docker is installed, all the following Docker commands may
need to be run with sudo.

1. Pulling the Docker image from Docker Hub
docker pull artifact2019/concolic

2. Creating a Docker container
docker run -ti artifact2019/concolic /bin/bash
after this step, you will be inside the container and the current directory is
/tools/jpf-costar

3. Running all the examples from the current directory
bin/testAll.sh

4. The generated test inputs will be in the directory
src/output
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