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ABSTRACT
Locating vulnerabilities is an important task for security auditing,
exploit writing, and code hardening. However, it is challenging
to locate vulnerabilities in binary code, because most program
semantics (e.g., boundaries of an array) is missing after compilation.
Without program semantics, it is difficult to determine whether a
memory access exceeds its valid boundaries in binary code. In this
work, we propose an approach to locate vulnerabilities based on
memory layout recovery. First, we collect a set of passed executions
and one failed execution. Then, for passed and failed executions, we
restore their program semantics by recovering fine-grainedmemory
layouts based on the memory addressing model. With the memory
layouts recovered in passed executions as reference, we can locate
vulnerabilities in failed execution by memory layout identification
and comparison. Our experiments show that the proposed approach
is effective to locate vulnerabilities on 24 out of 25 DARPA’s CGC
programs (96%), and can effectively classifies 453 program crashes
(in 5 Linux programs) into 19 groups based on their root causes.

1 INTRODUCTION
For memory unsafe languages like C/C++, memory corruption
vulnerability is one of the most severe defects, as it can lead to
software crash or even allows adversaries to take full control of
the software. Buffer overflow is one of the most common memory
corruption vulnerabilities, which is also the focus of this paper.
In the remaining of this paper, by vulnerability, we mean buffer
overflow vulnerability.

There have been a number of techniques [1–4] that can locate
buffer overflows, and most of them are in the source code level, such
as AddressSanitizer [1]. However, the source code is not always
available (e.g., closed-source software and off-the-shelf components
in IoT devices). Further, it is shown that the semantics of binary
code may be different from its source code [5]. For the purpose of
binary security auditing, exploit writing and code hardening, it is
highly significant to locate buffer overflows in binary code directly.

However, it is much more challenging to locate buffer overflows
in binaries than in source code. When the source code is compiled
into binaries, its program semantics is missing, i.e., we are not
able to identify variables of program and their memory boundaries

anymore. Without the memory boundaries, locating buffer over-
flows in binary code becomes very difficult. Although there have
been some techniques working on the binary code (e.g., Valgrind
Memchecks [3]), none of them can locate buffer overflows within
the stack/global memory regions (e.g., overflow beyond an array
but still within its resident stack frame) [1]. To address these is-
sues, recovering the program semantics, i.e., memory boundaries
of variables, is necessary to locate buffer overflows in binary code.

In addition, locating vulnerabilities highly benefits triaging pro-
gram crashes in binaries [6]. It is well-known that the same vulnera-
bility can produce various symptoms, leading to crashes at different
locations. For example, the fuzzing system (e.g., fairfuzz, aflfast and
aflgo [7–11]) usually generates a large number of crashes. However,
not all of these crashes are unique. Many of them are due to the
same vulnerability. If the crashes can be grouped according to their
root causes, it would greatly improve the efficiency of analysis.

Aiming at addressing the above challenges, we propose an ap-
proach, based on dynamic execution information, to locate buffer
overflows in binaries. Our approach mainly consists of two parts:
recovering memory layout and locating vulnerabilities.

RecoveringMemory Layout. A memory layout represents the
static data structure of a variable in source code, e.g., a data structure
with its members. In our approach, we actually use the dynamic
execution information in binary code to restore static data structure
information of variables in source code. To recover the memory
layout, first, we identify the relevant addressing instructions for
each memory access in dynamic execution information. Second,
we recover a memory layout for each memory access based on the
memory addressing model. Third, if multiple memory layouts (e.g.,
recovered from multiple executions) access the same variable, we
merge them into a memory layout, generating a more complete
static data structure for that variable. Compared to existing tech-
niques [12–16], our approach can precisely recover fine-grained
memory layouts of variables (c.f. Section 6.1).

Locating Vulnerabilities. Based on recovered memory layouts,
we locate buffer overflows in a failed execution. To achieve this
goal, we need to determine whether the recovered memory layout
in failed execution exceeds its valid boundaries. To infer the bound-
aries, we collect a failed execution and a set of passed executions. In
this paper, the failed execution means to cause the program crash,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322326682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2019, 26–30 August, 2019, Tallinn, EstoniaHaijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li, Shengchao Qin, Yang Liu, and Ting Liu

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1    Identify relevant 

instructions

2     Recover memory layout 

on single access

3  Merge memory layouts 

on multiple accesses
4  Locate vulnerabilities Reports

Static memory layout recoveryPassed and failed

test cases

Binary program

Passed and failed 

execution information

Dynamic execution information

Figure 1: Overview of our approach

12:      ptr->stu[a].name[i] = 41;

typedef struct{

  int name[3];

  void (*func)(void);

}Stu;

typedef struct{

  Stu stu[2];  

  int a;

}Info;

static int num = 1;

1:  void f(void){

2:       ...

3:  }

4: void test(int a, int b) {

5:    Info *ptr = (Info*)malloc(sizeof(Info));

6:    char *str = (char*)malloc(b);

7:    for(int i=0; i<b; i++){

8:       *str = 'a';

9:        str = str +1;

       }

10:  ptr->stu[a].func = &f; 

11:  for (int i=0; i<b; i++)

12:      ptr->stu[a].name[i] = 41;

13:  ptr->stu[a].name[5*num -3] = 42;

14:  ptr->stu[a].func();  

15:}  

…...

l1:  mov    -0x3c(%ebp),%eax

l2:  movb  $0x61,(%eax)

l3:  addl    $0x1,-0x3c(%ebp)

…...

m1: mov   -0xc(%ebp),%eax

m2: mov   0x8(%ebp),%edx

m3: shl     $0x4,%edx

m4: add    %edx,%eax

m5: add    $0xc,%eax

m6: movl  $0x804843b,(%eax)

…...

p1:  mov  -0xc(%ebp),%eax

p2:  mov  0x8(%ebp),%edx

p3:  lea     0x0(,%edx,4),%ecx

p4:  mov   -0x10(%ebp),%edx

p5:  add    %ecx,%edx

p6:  movl  $0x29,(%eax,%edx,4)

…...

q1:  mov   0x804a020,%edx

q2:  mov   %edx,%eax

q3:  shl     $0x2,%eax

q4:  add    %edx,%eax

q5:  lea     -0x3(%eax),%ecx

q6:  mov   -0xc(%ebp),%eax

q7:  mov   0x8(%ebp),%edx

q8:  shl     $0x2,%edx

q9:  add    %ecx,%edx

q10: movl  $0x2a,(%eax,%edx,4)

…...

0 12 363228

0 1 432

16 3224 28

Real memory layout

Recovered memory layout

ptr->stu[a].func = &f; 

    ptr->stu[a].name[i] = 41;

ptr->stu[a].name[5*num -3] = 42;

(a) Source code (d) Merged memory layout(c) Memory layout on single access (b) Identified relevant instructions

str[0] str[1] str[3]str[2]
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16
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a

name namefunc func
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(e) Reported root cause 

Lf

3228

Failed memory layout

Passed memory layout

32

Step 1
Step 2

Step 3

Step 4

Figure 2: Illustration example for our approach

while the passed execution would not. The failed execution is the
input to our approach, and passed executions can be obtained easily
from existing tools or test suites (c.f. Section 5.2). For passed exe-
cutions, we recover their memory layouts (called passed memory
layouts), which are considered as the memory layouts within valid
boundaries. For the failed execution, we also recover its memory
layouts (called failed memory layouts), which may include mem-
ory layouts exceeding valid boundaries (called vulnerable memory
layouts). With the memory layouts recovered in passed executions
as reference, we can locate vulnerable memory layout, i.e., can-
didate buffer overflow, in the failed execution by memory layout
identification and comparison (see Section 4).

We have implemented the proposed approach in a prototype
tool, and evaluated its effectiveness in two different aspects: 1) lo-
cating vulnerabilities, and 2) triaging program crashes. In locating
vulnerabilities, our approach is effective to locate buffer overflow
vulnerabilities on 24 out of 25 DARPA’s CGC programs (96%). In
triaging experiments, our approach is able to classify the 453 pro-
gram crashes (in 5 widely used Linux programs) into 19 groups,
while AFL reports 320 unique crashes (groups).

The contributions of this work are summarized as follows:

• We formalize a memory addressing model, based on which,
together with the dynamic execution information, we pro-
pose a general approach to precisely recover the static fine-
grained hierarchical memory layouts of program variables.
• With the memory layouts recovered in passed executions as
reference, we propose an approach to locate buffer overflows
in failed execution by memory layout identification and com-
parison. To the best of our knowledge, by using fine-grained
memory layouts, our approach is the first work to locate

buffer overflows within stack, global memory regions, and
data structures in binary code.
• We implemented a prototype of the proposed approach and
evaluated its effectiveness on binary programs with diverse
kinds of vulnerabilities.

2 APPROACH OVERVIEW
2.1 Motivating Example
Fig. 2 (a) shows a program with a buffer overflow vulnerability. If
the input of function test is (1,4), the program crashes at Line 14.
The buffer overflow is triggered in the loop (Line 11). The variable
ptr → stu[1].name contains three elements, but is assigned with
four elements. As a result, the variable ptr → stu[1].func is over-
written, and the program crashes when Line 14 is executed (where
ptr → stu[1].func is accessed).

After being compiled into binaries, the program semantics is
missing, making it difficult to identify the variables and their bound-
aries. For example, the variable ptr → stu[1].name and its memory
boundaries (its size is 12 bytes) are missing in binaries. Without
this information, the buffer overflow cannot be identified when it
is written with 16 bytes.

2.2 Overview of our Approach
To address this issue, we propose an approach to locate buffer
overflows in binaries. The overall flow of the proposed approach
is shown in Fig. 1. The input to our approach is a set of concrete1
execution information (either passed or failed).

1Notice that we call the obtained executions “concrete” because they are real traces
from dynamic executions. Thus, there are no loop or recursive function issues any
more in our approach as they have been unrolled during dynamic executions.
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The proposed approach consists of four steps. In the first step,
given passed and failed executions, we identify relevant addressing
instructions for each memory access. In the second step, we recover
the memory layout for each memory access. Since one execution
may have multiple memory accesses, we may have more than
one memory layout recovered. If some of the recovered memory
layouts access the same variable, we merge them into one in the
third step. After this step, we have recovered memory layouts for
each execution (either passed or failed). In the fourth step, we use
the memory layouts of passed executions as reference to locate
buffer overflows in the failed execution. In the following, we walk
through these steps using the motivating example in Fig. 2.

Step 1. We identify relevant addressing instructions for each
memory access. To access a variable, the program first determines
its memory address. For a memory access instruction, we perform
a backward taint analysis to identify the relevant instructions used
to compute its memory address. Fig. 2 (b) shows several sets of
identified instructions. For example,m6 is a memory access instruc-
tion, we perform backward taint analysis and identify the relevant
instructionsm1 . . .m6, which correspond to Line 10 in Fig. 2 (a).

Step 2. We recover memory layout based on identified instruc-
tions for each memory access. In general, the memory address of a
variable is computed by iteratively adding an offset to the address
of its enclosing variable. Based on this iterative process, we identify
the memory blocks (c.f. Definition 1), which represent the enclosed
variables. In addition, we construct their hierarchical structure, and
finally form a memory layout.

For example, consider instructionsp1 . . .p6, which correspond to
Line 12 (e.g., ptr → stu[1].name[2] = 41). The recovered memory
layout is L3, as shown in Fig. 2 (c), where the red part is the real
memory layout of the variable, and the blue part is the recovered
memory layout (double-headed arrows below indicate memory
blocks). Based on identified instructions, we can infer that: the
memory address is computed by adding two offsets (16 and 8) to the
base address, and then is written with four bytes. Based on this infor-
mation, we identify two memory blocks [0, 28] and [16, 28], where
0 represents a relative base address. In addition, we construct their
hierarchical structures. The memory block [16, 28] is enclosed in
[0, 28]. The identified memory blocks actually correspond to the
variables in source code. For example, [0, 28] and [16, 28] represents
arrays ptr → stu and ptr → stu[1].name, respectively. The hierar-
chical structures reflect the enclosing/enclosed relationships of
variables. The variable ptr → stu[1].name is enclosed in ptr → stu.

Step 3. When multiple memory accesses operate on the same
variable in the executions (e.g., in the unrolled loop), corresponding
recovered memory layouts should be merged. For example, the
memory layouts L2 and L3 in Fig. 2 (c) represent the same variable,
we merge them into a more complete memory layout Lp , as shown
in Fig. 2 (d), which reflects not only the variable ptr → stu[1].func
but also ptr → stu[1].name.

Step 4. With above three steps, we recover memory layouts of
variables. To locate vulnerabilities, we need to determine whether
the recovered memory layout in failed execution exceeds its valid
boundaries. With the memory layouts recovered in passed execu-
tions as reference, we locate buffer overflows in failed execution
by memory layout identification and comparison. For example, we
recover a passed memory layout , i.e., test(1,3), and a failed memory

layout , i.e., test(1,4), as shown in Lp and Lf of Fig. 2 (d). By memory
layout identification, memory blocks [16, 28] in Lp and [16, 32]
in Lf are compared, and [28, 32] (i.e., ptr → stu[1].func) in Lf is
considered to be overflowed, as shown in Fig. 2 (e).

The proposed approach can help users in two scenarios: (1)
One wants to disassemble or debug the binary program. With the
recovered fine-grained memory layouts as debug symbols, he/she
can interpret some key data structures. (2) One has a binary program
crashed, and he/she wants to figure out whether the crash is due
to buffer overflow and its root causes. Given the failed (crashed)
execution, together with a set of passed executions, our approach
can diagnose whether there is a buffer overflow and its root causes.

3 MEMORY LAYOUT RECOVERY
We first formalize a memory addressing model, and then introduce
the memory layout recovery based on memory addressing model.

3.1 Memory Addressing Model
Before a variable is accessed, its memory address needs to be deter-
mined first. In binary code, there are usually two addressing modes
for memory access: direct and indirect addressing [12]. In direct
addressing, the address is encoded in the instruction itself, usually
used to access a scalar variable.

The indirect addressing mode is typically used to access an ar-
ray or a data structure. Generally, the address is computed by an
equation: address = base + (index ∗ scale) + offset, where index rep-
resents the index of an array, scale is the size of unit element in the
array, and offset implies the offset calculation for the member of a
data structure.

The equation for indirect addressing depends on the hierarchical
structure of a variable. For example, a data structure may contain
an array as its member or the element of an array can be a data
structure. Hence, there could be more than one index ∗ scale and
offset. A more general equation is:

address = base +
n∑
i=1

(indexi ∗ scalei ) + offset (1)

In general, offset may be an optimized value due to the compilation,
i.e., offset = ∑ni=1 offseti , where each offseti corresponds to one
indexi ∗ scalei and offseti ≥ 0. The addressing equation is the key
insight for recovering memory layouts of variables in this paper.

Example 1. Considerptr → stu[index1].name[index2] in Fig. 2(a),
the memory address is calculated by:base+offset1+index1∗scale1+
offset2 + index2 ∗ scale2, where base = ptr is the base address;
offset1 = 0 is the offset of stu in data structure ptr ; index1 ∗ scale1
calculates the address of the index1th element of stu; offset2 = 0
is the offset of name in data structure stu[index1]; index2 ∗ scale2
calculates the address of the index2th element of name .

3.2 Definition of Memory Layout
Definition 1. A memory blockm is a tuple (m⌞ ,m⌟ ,m̃), where

m⌞ is the start address andm⌟ is the end address. If it represents an
array, m̃ is the size of its unit element; Otherwise, m̃ is zero. We use
←→m to denote the size ofm.

Definition 2. A memory layout L = (m,M ,E) is a directed
acyclic graph (DAG), wherem is the root memory block,M is a set of

3
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memory blocks, and E ⊂ M ×M is a set of directed edges connecting
memory blocks such that (m1,m2) ∈ E ifm⌞1 ≤ m⌞2 ∧m

⌟
2 ≤ m⌟1 .

Definition 3. Given two memory blocksm1 andm2, ifm1 and
m2 represent the same variable, they are the alias memory blocks; if
the variable represented bym1 is enclosed in that represented bym2,
thenm1 is an inner memory block ofm2.

Specifically, a directed edge (m1,m2) in memory layout L represents
thatm2 is the inner memory block ofm1. A memory layout actually
reflects the static hierarchical data structure of a variable (i.e., the
enclosing/enclosed relationship).

Theorem 1. Given two memory blocks m1 and m2, if they are
intersected (i.e.,m⌞1 < m

⌟
2 ∧m

⌟
1 > m

⌞
2 ), and 0 < m̃2 ≤ m̃1 is true,m2

is the alias or inner memory block ofm1.

Theorem 2. Given two memory blocks m1 and m2, if they are
intersected (i.e.,m⌞1 < m

⌟
2 ∧m

⌟
1 > m

⌞
2 ), and 0 < m̃2 ≤ m̃1∧

←→m2 > m̃1
is true,m2 is the alias memory block ofm1.

Theorems 1 and 2 present two basic approaches to determine
the relationship between two memory blocks. Their detailed proofs
can be found in the website [17].

3.3 Memory Layout Recovery on Single
Memory Access

Memory layouts are recovered based on memory addressing model.
For the direct addressing, the recovered memory layout contains
only one memory blockm, i.e., the accessed memory block, and its
unit element size is zero (i.e., m̃ = 0). For the indirect addressing,
the memory layout is recovered based on the following four steps:

3.3.1 Identifying Relevant Instructions. We first identify the rel-
evant instructions, which compute the address for the memory
access. To achieve this goal, we perform a backward taint analysis,
in which the memory access instruction is regarded as the sink. Dif-
ferent from traditional taint analysis, we only propagate the taints
among the registers (not including registers esp and ebp), since
the memory address is computed by registers [18]. For example,
in Fig. 2(b) Linem6 is a memory access instruction. Based on the
taint propagation among registers, we continue to identify Lines
m1 −m5. At Lines m1 and m2, we stop the taint propagation as
their source operands are memory, not registers. As a result, the
identified addressing instructions are Linesm1-m6.

3.3.2 Recovering Addressing Equation. After identifying relevant
instructions, we recover the addressing equation, based on the ad-
dress calculation in identified instructions, in the form of Equation 1.
For example, we identify instructions (Lines m1-m6) in Fig. 2(b),
where Linem6 is a memory access instruction. At Linem1, it stores
the address pointed by ptr to register eax , which is the base address.
At Linem2, it stores the value of variable a to register edx , which is
index1. Then, index1 is multiplied by 16 at Linem3, and thus scale1
is 16. At Linem4, it adds index1∗scale1 to the base address. At Line
m5, it adds offset (i.e., 0xc) to compute the memory address. Thus,
the recovered addressing equation is: eax + (edx ∗ 16) + 12.

3.3.3 Optimizing Addressing Equation. The addressing equation
is optimized as follows: 1) Sorting n terms indexi ∗ scalei based

Algorithm 1: GenerateLayout
input :address = base +∑ni=1 (indexi ∗ scalei ) + offset
output : a memory layout L = (m,M, E )

1 Let offset = ∑ni xi , where xi represents offseti and xi ≥ 0;
2 start ←− base ;
3 end ←− address + sizeof (accessed memory) ;
4 if ∀1 ≤ i ≤ n: indexi ∗scalei ≥ 0 then
5 M ←− ∅, E ←− ∅ ;
6 for i = 1 : n do
7 start ←− start + xi ;
8 mi ←− (start, end , scalei );
9 M ←− M ∪ {mi } ;

10 if i ≥ 2 then
11 E ←− E ∪ (mi−1,mi ) ;
12 start ←− start + indexi ∗scalei ;
13 m ←−m1 ;
14 else
15 m ←− (start, end , 0) ;
16 M ←− {m }, E ←− ∅ ;
17 return L ;

on the descending order of scalei for i ∈ {1, . . . ,n}. 2) Merging
some terms of indexi ∗ scalei if possible. For two adjacent terms
indexi ∗ scalei and indexi+1 ∗ scalei+1 (1 ≤ i < n), if scalei <
indexi+1 ∗ scalei+1, they are merged into one term index ∗ scale ,
where scale = gcd(scalei ,scalei+1) (i.e., greatest common divisor)
and index = (indexi ∗ scalei + indexi+1 ∗ scalei+1)/scale . In fact,
these two terms are used together to access the same array. The
detailed explanation can be found in the website [17]. For example,
the equation for array access int a[2p + q] is recovered as: base
+p ∗ (2 ∗ sizeof (int)) + q ∗ sizeof (int), where p ∗ (2 ∗ sizeof (int))
and q ∗ sizeof (int) are used together to access an array. Hence,
they should be merged.

3.3.4 Recovering Memory Layout. Based on the optimized address-
ing equation, we recover the memory layout in Algorithm 1. It takes
the addressing equation as input, and outputs a recovered memory
layout. As described in Section 3.1, offset in the equation may be
an optimized value. Thus, at Line 1 we introduce the parameter xi
to represent each possible offseti . We recover the memory layout
based on two cases: (1) if every indexi ∗ scalei in the equation is
greater than or equal to zero, the memory layout can be recovered
normally (Lines 4–13). We iteratively identify the memory blocks
and construct their hierarchical structure (Lines 6–12). In this loop,
we first compute the start address of a memory block by adding
the offset xi (Line 7). Then, we recover this memory blockmi at
Line 8, and its unit size is scalei . At Line 11, we add a directed edge
(mi−1,mi ). Last, we calculate the address of the indexi th element
and continue to recover the next memory block (Line 12). (2) If there
is an indexi∗scalei that is negative (i.e., indexi is negative), it may
be used to access an array with other index j∗scalej together. For
example, in ptr → stu[a].name[5 ∗num− 3], -3 (i.e., indexi ) is used
to access array name with 5 ∗ num (i.e., index j ) together. However,
we cannot determine whether a or 5 ∗ num is used to access an
array together. In this case, we adopt a conservative strategy to
only recover the largest memory block (Line 15).
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Example 2. In Fig. 2(a), we assume that the address pointed
by pointer ptr is 0 and the value of variable a is 1. Based on Lines
m1−m6 in Fig. 2(b), we can recover an equation: 0+1∗16+12.We use
x1 and x2 to represent the optimized offsets, i.e., x1+x2 = 12. Based
on Line 8 of Algorithm 1, a memory block (x1,32,16) is identified.
Hence, we recover a memory layout, as L2 in Fig. 2(c). For Lines
q1 −q10, we recover an equation: 0+ 1 ∗ 20+ 1 ∗ 16+ (−3 ∗ 4). Since
index3 ∗ scale3 (i.e., −3 ∗ 4) is negative, we only recover the largest
memory block (0,28,0), as L4 in Fig. 2(c).

3.4 Memory Layout Recovery on Multiple
Memory Accesses

When multiple memory accesses operate on the same variable (e.g.,
in the unrolled loop), corresponding recovered memory layouts
should be merged to generate a more complete one. Notice that
multiple memory accesses could happen in the same or different
executions. It is non-trivial to infer which memory layouts can be
merged because their concrete memory addresses cannot be used as
a unique identification. Hence, we first index the memory layouts
to make their memory addresses in a relative coordinate system so
that we can determine whether they can be merged.

3.4.1 Indexing Memory Layout. Assume that the address space of a
program consists of several non-overlapping memory-regions [12,
19]: stack, heap, and global, which correspond to functions, heap-
allocation statements and global/static variables, respectively. Specif-
ically, each function has a memory-region, i.e., its stack frame; one
heap-allocation statement has a memory-region; the data section is
a memory-region including global/static variables. Hence, the con-
crete memory address can be indexed by a pair: (memory-region,
offset). The indexing process is described as follows:
• For variable a which is a local variable in a function f (stack
memory), we index its memory address by the pair ( f ,&a − fp),
where f represents the memory region associated with f , &a is
the concrete memory address of a, and fp is the frame pointer of
f (e.g., register ebp).

• For variable a which is an enclosed variable (e.g., the member of
a data structure) in heap memory allocated at statement s , we
index its memory address by the pair (s , &a − ptr (s)), where s rep-
resents the memory region associated with the heap-allocation
statement s , &a is the concrete memory address of a, and ptr (s )
is the base address of memory allocated at statement s .
• For variable a which is a global/static variable in global memory,
we index its memory address by the pair (д,&a − ds), where д is
the memory region associated with data section (often denoted
.data in binary code), &a is the concrete memory address of a,
and ds is the base address of data section.
After indexing, the addresses of memory layouts are in the same

coordinate, i.e., they are relative to the beginning of a memory-
region. Hence, we can merge the memory layouts.

3.4.2 MergingMemory Layouts. Given twomemory layouts L1 and
L2, we merge them based on two cases, as shown in Algorithm 2.
The first case is that their root memory blocks m1 and m2 are
intersected (Line 1). We first merge the root memory blocks of
L1 and L2 by MergeBlock (i.e., Algorithm 3), and construct a new
memory layout L′. Then, we continue to merge the children of L′

Algorithm 2: MergeLayout
input :memory layouts L1=(m1,M1,E1) and L2=(m2,M2,E2)
output :merged memory layout L′=(m′, M ′, E′)

1 if m⌞1 < m⌟2 ∧m
⌟
1 > m⌞2 then

2 L′ ←− MergeBlock(L1, L2);
3 L′ ←− UpdateLayout(L′) ;
4 return L′ ;
5 else return NIL ;

Algorithm 3: MergeBlock
input :memory layouts L1=(m1,M1,E1) and L2=(m2,M2,E2)
output :merged memory layout L′=(m′, M ′, E′)

1 if 0 < m̃1 < m̃2 then swap(L1, L2) ;
2 (m′,M ′, E′) ←− (m1,M1 ∪M2, E1 ∪ E2);
3 (m′⌞,m′⌟, m̃′) ←− (min (m⌞1 ,m

⌞
2 ),max (m⌟1 ,m

⌟
2 ), m̃1);

4 status ←− DetermineLevel(m′,m2);
5 if m2 is the inner memory block ofm′ in status then
6 E′ ←− E′ ∪ {(m′,m2) };
7 else
8 foreachmc ∈ Child (m2) do
9 E ←− E \ {(m2,mc ) } ;

10 E ←− E ∪ {(m′,mc ) } ;
11 M ←− M \ {m2 };
12 if m̃2 == 0 then m̃′ ←− 0 ;
13 return L′ ;

by UpdateLayout (i.e., Algorithm 5). The second case is thatm1
andm2 are not intersected. They represent different variables, and
cannot be merged. Next, we introduce the merging in the first case.

Algorithm 3 introduces how to merge root memory blocksm1
andm2 of L1 and L2. At Line 1, it makes sure that m̃2 ≤ m̃1 is true.
Thus,m2 is the alias or inner memory block ofm1 (c.f. Theorem 1).
At Lines 2-3, it mergesm1 andm2 as a new memory blockm′, and
constructs a new memory layout L′. Then, it determines whether
m2 is the inner memory block ofm′ by DetermineLevel (i.e., Al-
gorithm 4). If so, m2 is added as the inner memory block of m′
(Line 6). Otherwise,m2 andm′ are alias memory blocks, or their
relationship cannot be determined. It adds the inner memory blocks
(i.e., children) ofm2 as the inner memory blocks ofm′ (Lines 8-10),
and deletesm2 (Line 11). Note that, when the relationship between
m2 andm′ cannot be determined, the algorithm ignores the case
thatm2 is the inner memory block ofm′. As a result, it may lose
some precision but is still correct. If the unit size ofm2 is zero, the
unit size ofm′ is updated as zero (Line 12).

Given two memory blocksm1 andm2 such that m̃2 ≤ m̃1 (c.f.
Algorithm 3), Algorithm 4 determines whetherm2 is the alias or
inner memory block ofm1. At Lines 1-3, it decides thatm2 is the
alias memory block ofm1 (c.f. Theorem 2). If it cannot determine
m2 is the alias memory block ofm1, we consider the inner memory
blockmc ofm1 at Lines 5-11. It first checks whetherm2 andmc
are intersected (Line 6). Then, it checks whether m̃2 ≤ m̃c is true
(Line 7). If so, m2 is the alias or inner memory layout of mc (c.f.
Theorem 1). Based on transitivity,m2 is the inner block ofm1. At
Line 10, it checkswhetherm2 is the alias block ofmc (c.f. Theorem 2).
If so,m2 is also the inner block ofm1 based on transitivity.
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Algorithm 4: DetermineLevel
input :memory blocksm1 andm2
output : determining relationship betweenm1 andm2

1 if m̃1 , 0 and m̃2 , 0 then
2 if ←→m2 > m̃1 then
3 returnm2 is alias memory block ofm1;
4 else
5 foreachmc ∈ Child (m1) do
6 if m⌞c < m⌟2 andm⌟c > m⌞2 then
7 if m̃2 ≤ m̃c then
8 returnm2 is inner memory block ofm1;
9 else

10 if ←→mc > m̃2 then
11 returnm2 is inner block ofm1;

12 return it is unknown

Algorithm 5: UpdateLayout
input :memory layout L = (m,M, E )
output : updated memory layout L′ = (m,M ′, E′)

1 L′ ←− L ;
2 Let Q be an empty queue ;
3 Q .ENQUEUE(m) ;
4 while Q is not empty do
5 mq ←− Q .DEQUEUE() ;
6 foreach (m1,m2) s .t .m1,m2 ∈ Child (mq ) do
7 Let L1 = (m1,M1, E1) and L2 = (m2,M2, E2) be two sub

layouts of L′, whose roots arem1 andm2;
8 if m⌞1 < m⌟2 andm⌟1 > m⌞2 then
9 L3 : (m3,M3, E3) ←− MergeBlock(L1, L2) ;

10 M ′ ←− M ′ \ (M1 ∪M2) ∪M3 ;
11 E′ ←− E′ \ (E1 ∪ E2) ∪ E3 ;
12 E′ ←− E′ \ {(mq,m1), (mq,m2) }∪{(mq,m3) } ;
13 L′ ←− UpdateLayout(L′);
14 return L′;

15 foreachmc ∈ Child (mq ) do
16 Q .ENQUEUE(mc ) ;

17 return L′ ;

3.4.3 Update Memory Layout. Algorithm 5 iteratively merges sub-
memory layouts by a queueQ . The input is a memory layout L and
the output is an updated one L′. For the memory blockmq , it first
identifies two sub-memory layouts L1 and L2 (Line 6-7). If their root
memory blocksm1 andm2 are intersected (Line 8), we merge them
to construct a new memory layout L3 by MergeBlock (Line 9). At
Lines 10-12, it replaces L1 and L2 with L3. Since the memory layout
is updated, we continue to update L′ by UpdateLayout (Line 13).
If sub-memory layouts ofmq cannot be merged, it adds children
of mq into Q (Lines 15-16) and continues to merge the children
iteratively. If there is no merging between any two sub memory
layouts, the algorithm terminates.

Example 3. Fig. 3 shows the process of merging two memory
layouts, which correspond to L2 and L3 in Fig. 2(c). We can infer that
m1 (x1,32,16) andm2 (0,28,16) are intersected, where 0 ≤ x1 ≤ 12,
m̃1 = m̃2 = 16 and ←→m2 = 28. Based on Lines 1-3 in Algorithm 4,

m1(x,32,16) m2(0,28,16)

m3(16,28,4)

m'(0,32,16)

m3(16,28,4)

L2 L3 Lp

Figure 3: Example to illustrate merging memory layouts.

we knowm1 andm2 are the alias memory blocks. Hence, they are
merged as m′=(0,32,16), and m3 is added as the inner memory
block ofm′.

3.4.4 Merging for Pointer Arithmetics. The pointer arithmetic gen-
erally yields a new pointer that still points the same memory alloca-
tion [4]. Multiple memory accesses by dereferencing these pointers
can lead to many memory layouts, which cannot be merged with
Algorithm 2 (because they are not intersected). However, these
memory layouts belong to the same memory allocation and should
be merged together. To improve the precision, we merge them
together as follows:

Given such two memory layouts L1 = (m1,M1,E1) and L2 =
(m2,M2,E2), they are merged into a new memory layout L3 =
(m3,M3,E3), where m3 = (min(m⌞1 ,m

⌞
2 ),max (m⌟1 ,m

⌟
2 ),0), M3 =

M1 ∪M2 ∪ {m3} and E3 = E1 ∪ E2 ∪ {(m3,m1), (m3,m2)}.

Example 4. In Fig. 2(b), Lines l1 − l3 are executed four times (in
the unrolled loop), and we recover four memory layouts, which
cannot be merged with Algorithm 2. Due to the pointer arithmetics,
these four memory layouts are then merged as L1 in Fig. 2(c).

3.5 Discussion of Special Cases
Based on the memory addressing model, our approach can recover
memory layouts of variables generally. In this section, we discuss
special cases during memory layout recovery.

Address space layout randomization. Address space layout
randomization (ASLR) is a memory-protection technique by ran-
domizing the locations of modules and certain data [20]. Current
ASLR techniques usually randomize the base address of a memory
region (e.g., stack frame). In this case, it does not affect our memory
layout indexing (c.f. Section 3.4.1) and our approach can still work.

Memory allocation alloca. The function alloca allocates the
memory in the stack. In our approach, the stack memory allocated
by alloca is treated as the heap memory allocation.

Differentmemory layouts in one allocation statement.The
layouts of memory allocated in one allocation statement may be
different in different contexts. For example, if(*) size=sizeof(structA);
else size=sizeof(structB); ptr=malloc(size);, the variable ptr can rep-
resent two data structures (i.e., structA and structB). For this case,
we associate its context with the allocation statement to index the
memory layout. Specifically, we adopt the technique in memory
indexing [19], which uses control flow structure to index allocation
point, as the context of allocation statement.

Data structure union. A union can hold only one of its data
members at a time. In multiple accesses of a union, it may hold dif-
ferent members. Thus, our approach may merge different members.
If different members have different unit sizes, we only recover the
maximum memory range and discard the internal memory layout.
Hence, the recovered memory layout is still consistent with the
semantics of union.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Locating Vulnerabilities in Binaries via
Memory Layout Recovering ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4 LOCATING VULNERABILITIES
In this section, we introduce how to locate buffer overflow vulnera-
bilities by leveraging recovered memory layouts.

4.1 Locating Vulnerabilities by Leveraging
Recovered Memory Layouts

A buffer overflow occurs when dereferencing a pointer that goes
out of the bounds of its pointed object. To locate the buffer overflow,
we collect a set of passed executions and a failed execution. With
the fine-grained memory layouts recovered in passed executions
as reference, the vulnerable memory layout in failed execution can
be identified by memory layout identification and comparison.

It is worth noting that, the size of a memory block may not
be fixed as we introduce the parameters in Algorithm 1 (i.e., xi
at Line 1). To locate the buffer overflow, we adopt a conservative
strategy to determine their values: let the size of the passed mem-
ory layout be the maximum and the size of the failed memory lay-
out be the minimum. Specifically, in a memory layout L = (m,M ,E),
the size of each memory block mi ∈ M is: end − (base + · · · +
(xi−1 + indexi−1 ∗ scalei−1) + xi ) (c.f. Algorithm 1). For the passed
memory layout, we make the size of eachmi ∈ M maximum, i.e.,
(∀1 ≤ i < n : xi = 0) ∧ xn = offset. For the failed memory layout,
we make the size of eachmi∈M minimum, i.e., x1 = offset ∧ (∀1 < i
≤ n : xi = 0).

Algorithm 6 shows how to locate the buffer overflow. It takes a
failed memory layout L1 and a passed memory layout L2 as inputs.
Its intuition is as follows: for each memory blockm′1 of L1, ifm

′
1 is

the alias or inner memory block of some memory blockm′2 of L2,
andm′1 is beyondm

′
2, then it is a candidate buffer overflow.

At Line 5, it checks whether m̃′1 is zero. If so, it cannot determine
the relationship betweenm′1 andm

′
2. Thus, it only comparesm′1

with the root memory blockm2 of L2. Ifm′1 is beyondm2 (Line 6),
there is a candidate buffer overflow inm′1. At Line 9-17, it checks
m′1 with each memory blockm′2 of L2. Ifm

′
1 is beyondm

′
2 (Line 13),

the algorithm checks the relationship betweenm′1 andm
′
2. Ifm

′
1 is

the alias or inner memory block ofm′2 (Line 14), there is a candidate
buffer overflow inm′1.

Notice that, for the heap memory whose size is controlled by
inputs, its memory layout is not fixed with different inputs. Al-
though we recover the maximum memory range after merging, it
still cannot be used to locate vulnerabilities. For example, in the
statement p = malloc (input ), if the maximum value of input in
passed test cases is 5, we recover a memory block whose size is 5
bytes (the maximum). If the value of input in the failed test case is
10, we recover a memory block whose size is 10 bytes. Comparing
these two memory blocks introduces a false positive. In this case,
we dynamically record the memory range of allocated memory, not
to index and merge their memory layouts. To locate vulnerabili-
ties, we check whether the used memory is beyond the allocated
memory, which is the same as Valgrind Memcheck [3].

4.2 False Positive Reduction
Passed executions may only cover partial program behaviors. Thus,
the passed memory layout may also be under-approximated. Locat-
ing vulnerabilities by comparing failed memory layout with under-
approximated memory layout may introduce false positives. For

Algorithm 6: CompareLayout
input :memory layouts L1=(m1,M1,E1) and L2=(m2,M2,E2)
output : determining the buffer overflow

1 Let Q1 be an empty queue ;
2 Q1 .ENQUEUE(m1) ;
3 while Q1 is not empty do
4 m′1 ←− Q1 .DEQUEUE() ;
5 if m̃′1 == 0 then
6 if m′⌞1 < m⌞2 < m′⌟1 orm′⌞1 < m⌟2 < m′⌟1 then
7 return find buffer overflow

8 else
9 Let Q2 be an empty queue ;

10 Q2 .ENQUEUE(m2) ;
11 while Q2 is not empty do
12 m′2 ←− Q2 .DEQUEUE() ;
13 if m′⌞1 < m′⌞2 < m′⌟1 orm′⌞1 < m′⌟2 < m′⌟1 then
14 if m′1 is alias or inner block ofm

′
2 then

15 return find buffer overflow

16 foreachmc ∈ Child (m′2) do
17 Q2 .ENQUEUE(mc ) ;

18 foreachmc ∈ Child (m′1) do
19 Q1 .ENQUEUE(mc ) ;

20 return not find buffer overflow

this problem, we reduce false positives based on two accompanying
phenomena: data corruption or abnormal memory address [21],
which increase the confidence of our results.

4.2.1 Data Dependence Mismatch. Buffer overflow typically incurs
data corruption (overflowed by another data) [21]. Data corruption
can lead to data dependence mismatch, describing a data depen-
dence that is not supposed to exist in the code. For example, in
Fig. 2(a), assume that the value of variable b is 4. The program
executes four times at Line 12. As a result, the value of variable
ptr → stu[a].func is corrupted by ptr → stu[a].name. At Line 14, it
uses ptr → stu[a].func. Thus, there is a data dependence between
Lines 12 and 14, which does not exist in the code. Hence, a data de-
pendence mismatch occurs. To increase the confidence, we report a
buffer overflow vulnerability only if it conducts a data dependence
mismatch as well.

To obtain data dependence relations that do exist in the code, we
use dynamic analysis as in work [21]. We execute a set of passed
test cases, and compute data dependence relations. Similarly, we
also compute the data dependence relations in the failed execution.
If a data dependence relation only occurs in failed execution but
not in any passed execution, there is a data dependence mismatch.

4.2.2 Abnormal Memory Address. When the buffer is overflowed
too much, it may reach an memory address that cannot be accessed
(e.g., unallocated memory). This situation is considered as an abnor-
mal memory address access. Usually, an abnormal memory access
directly leads to a program crash. Thus, if a buffer overflow leads
to an abnormal memory address access, it is a true buffer overflow.
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5 EVALUATION
We have implemented a prototype tool for our approach, and eval-
uated its effectiveness. All the experiments are performed on the
32-bit Linux system with 3.5 GHz Intel Xeon E5 CPU and 8 GB
RAM. Since our memory addressing model is general, our approach
can be easily extended to 64-bit system.

5.1 Experiment Setup
We selected 25 binary programs from the benchmarks of DARPA’s
CGC [22], which is a competition to automatically detect vulnera-
bilities. Instead of contrived simple situations, they approximate
real vulnerabilities with enough complexities and diversities, ideal
for evaluating our approach [21]. However, not all programs are
selected because: 1) they run under DARPADECREE, while our tool
runs on the Linux system. Although the team TrailofBits has mi-
grated them into Linux system, not all of them are reproducible [23];
2) we only consider the buffer overflow, the programs with other
types (e.g., null pointer dereference and use after free) are out of our
consideration. In addition, we selected four binary programs obj-
dump, readelf, ld and c++filt from binutils (about 690k LoC), which
are widely used in fuzzing system [10, 11], and one binary program
tiff2bw from libtiff (about 100k LoC). In these five programs, we
generated 453 program crashes, which constitute real-world bench-
marks. The 25 CGC programs show the diversities of vulnerabilities,
and the 5 real-world programs show the scalability of our approach.

5.2 Experiment Design
In the experiments, we use the fuzzing system [7–11] to generate the
passed test cases2 and use the dynamic binary analysis framework
Pin [24] to collect the dynamic execution information. In general,
AFL generates a large number of passed test cases with different
code coverage. For efficiency, we select the passed test cases by
adopting additional coverage strategy [25]. It selects the next passed
test case, which covers more codes that are covered by the failed
test case but not covered by already-selected passed test cases,
until vulnerabilities are located. Due to the lack of ground truth
in our experiments, we manually validate the results. In total, we
manually check 478 program crashes in 30 programs and their
recovered memory layouts.

5.3 Experimental Results
We evaluated the effectiveness of our approach in three aspects:
1) recovering memory layouts, 2) locating vulnerabilities, and 3)
triaging program crashes.

5.3.1 Recovering Memory Layout. Table 1 shows the experimental
results on recovering memory layouts. Column Name lists the pro-
gram names. In column Passed Inputs, the heading #Total lists the
total number of generated passed test cases, and #Select shows the
number of selected passed test cases. The details of generation/se-
lection of passed test cases can refer to Section 5.2. Column Trace
Length lists the number of instructions in the execution, where
#Passed and #Failed represent the average numbers of instructions
in selected passed executions and failed execution, respectively.
2There could be a situation where a passed execution accesses a memory location
beyond the boundary, but does not lead to any crash. This would not produce false
positives, not misleading analyst to wrong investigation. See [17] for more details.

Since a program may contain more than one vulnerable memory
layout, in column Vulnerable Memory Layout, the heading No. lists
each of them. For example, there are three vulnerable memory
layouts in the program stack_vm.

The heading Status shows the status of recovered passed mem-
ory layout, which is used for comparison to identify the vulnerable
memory layout. It indicates whether the passed memory layout rep-
resents the hierarchical structure of variables, where Under means
that we under-approximately recover the memory layout, and Com-
plete means that we recover its complete memory layouts. Notice
that we got a large number of passed memory layouts recovered in
passed executions. We manually check and report only 36 of them
(column Status) because: 1) the number of recovered memory lay-
outs is too large to manually check all; 2) these 36 memory layouts
are compared to identify vulnerable memory layouts and we need
to check its status (under-approximated or complete).

Summary. Among the reported 36 passed memory layouts, 15
memory layouts are completely recovered (i.e., the recovered static
hierarchical data structures for variables are the same with their
static hierarchical data structures in source code) and 21 are under-
approximately recovered (e.g., some internal data structures of vari-
ables are not recovered). Memory layouts are under-approximately
recovered because some elements of array or members of data struc-
ture are not accessed in dynamic execution information. That is, our
approach achieves 100 % success rate to recover memory layouts
that are covered in dynamic execution information. Despite the
under-approximate memory layout recovery, they are still useful
to locate buffer overflow vulnerabilities, which is shown in the
following experiments.

5.3.2 Locating Vulnerabilities. Table 1 also shows the results of
locating buffer overflow vulnerabilities. There are multiple types of
buffer overflow vulnerabilities in the programs, as shown in column
Type. The symbols Stack, Heap, Global represent stack, heap, and
global buffer overflow, respectively. In addition, we consider another
special type of buffer overflow: overflow within a data structure, as
indicated by Internal. In binary code, ValgrindMemcheck [3] cannot
locate buffer overflows within stack, global memory regions, and
data structures [1]. Valgrind’s extension SGCheck tries to locate
stack buffer overflows, however, it still needs debug information.
Even in source code, AddressSanitizer [1] cannot detect the buffer
overflow within the data structures as well.

Column Buffer Overflow shows whether the vulnerable memory
layouts are the root causes of crash. Since one vulnerable memory
layout may be overflowed at different instructions, the heading #Ins
represents the number of instructions producing buffer overflows in
vulnerable memory layouts. The heading Root shows whether it is
a real buffer overflow. Our approach may report false positives. To
reduce them, we adopt two strategies: data dependence mismatch
(denoted by M) and abnormal memory address (denoted by A) in
the column Plus Accompanying.

After our investigation, we found that the false positives are
generated in two cases: (1) Some instructions do lead to the buffer
overflow, but do not lead to the crash. For example, in the pro-
gram Sample_Shipgame, there are 2 instructions leading to a buffer
overflow. However, one is assigned with ‘\0’, and it is not the root
cause of crash. This can be eliminated by our strategies, and thus
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Table 1: Experimental results on programs from DARPA’s Cyber Grand Challenge

Name Type Passed Inputs Trace Length Vulnerable Buffer Overflow Plus Accompanying Time(s)Memory Layout
#Total #Select #Passed #Failed No. Status #Ins Root Mismatch/Abnormal #Ins Root Select Locate

Sample_Shipgame Stack 620 1 20,843 32,502 1 Under 2 ✓ M 1 ✓ 349 50

ValveChecks Stack 10 2 5,242 104,726 1 Under 1 × – 0 – 6 512 Complete 1 ✓ M+A 1 ✓
Bloomy_Sunday Stack 192 1 786,145 642,941 1 Complete 2 ✓ M+A 1 ✓ 119 147
The_Longest_Road Stack 298 1 343,992 344,668 1 Under 3 ✓ M+A 1 ✓ 168 110
Thermal_Controller_v2 Stack 83 1 64,752 66,291 1 Under 5 ✓ M 3 ✓ 52 104

XStore Stack 290 1 995,805 997,222 1 Under 1 × – 0 – 163 3872 Under 3 ✓ M+A 1 ✓
Casino_Games Stack 603 2 192,211 182,209 1 Under 1 ✓ M+A 1 ✓ 390 143
Palindrom Stack 61 1 106,087 5,262 1 Complete 6 ✓ M 4 ✓ 31 48
CableGrind Stack 818 1 17,240 18,336 1 Under 1 ✓ M+A 1 ✓ 432 46

stack_vm Heap 168 1 177,047 1,104,414
1 Under 1 × – 0 –

95 3782 Under 1 ✓ A 1 ✓
3 Complete 1 ✓ M 1 ✓

Street_map_service Heap 630 1 1,121,017 714,785 1 Complete 3 ✓ M 1 ✓ 468 240
humaninterface Heap 533 1 509,169 509,618 1 Complete 1 ✓ M 1 ✓ 279 244

AIS-Lite Heap 368 1 41,069 33,904 1 Under 3 × – 0 – 203 472 Complete 2 ✓ M 1 ✓
matrices_for_sale Heap 34 1 170,680 6,564 1 Complete 1 ✓ A 1 ✓ 18 54
cotton_swab_arithmetic Heap 1065 1 2,192 2,052 1 Complete 1 ✓ A 1 ✓ 544 37
LMS Heap 147 1 26,710 22,425 1 Complete 2 ✓ M 1 ✓ 81 58

BudgIT Heap 222 1 169,483 9,502 1 Under 2 × – 0 – 123 722 Complete 2 ✓ A 1 ✓
PKK_Steganography Heap 184 1 182,333 114,543 1 Complete 1 ✓ A 1 ✓ 102 178
ASCII_Content_Serve Heap 277 1 1,377,145 489,714 1 Complete 1 ✓ A 1 ✓ 174 551
electronictrading Internal 90 2 595,381 10,800 1 Under 2 ✓ M 1 ✓ 49 186

Internal 699 2 706,641 83,424
1 Under 3 × – 0 –

477 303SCUBA_Dive_Logging 2 Under 2 × – 0 –
3 Under 1 ✓ M 1 ✓

Internal 583 6 999,709 131,256

1 Under 3 × – 0 –

612 1,432CGC_Planet_Mark_ 2 Under 5 × – 0 –
Language_Parser 3 Under 3 × – 0 –

4 Under 6 × – 0 –
Square_Rabbit Global 593 1 2,917,848 837,835 1 Complete 1 ✓ A 1 ✓ 484 605
TAINTEDLOVE Global 52 1 201,339 100,849 1 Under 1 ✓ A 1 ✓ 29 73
stream_vm Global 136 1 101,184 100,145 1 Complete 1 ✓ A 1 ✓ 67 76
Total 4 8,756 34 11,831,264 6,665,987 36 15+21 76 25+11 25+11 30 25+0 5,515 5,620
Avg. – 350 1.4 473,251 266,639 – – 3.04 – – 1.2 – 221 225

the number of instructions is reduced from 2 (#Ins in Buffer Over-
flow) to 1 (#Ins in Plus Accompanying). (2) Some instructions indeed
do not produce the buffer overflow. For example, in the program
CGC_Planet_Mark_Language_Parser, all the false positives are re-
duced (#Ins in Plus Accompanying).

Since our approach requires passed and failed executions, its
effectiveness depends on the test cases. For example, in program
CGC_Planet_Markup_Language_Parser, our approach fails to lo-
cate buffer overflow vulnerabilities. This is because the program
contains many special checks in the markup language parser, and
AFL does not generate passed test cases to cover the data structure
overflowed (i.e., struct City). Since our approach does not recover
the memory layout of struct City in passed executions, we fails to
locate its buffer overflow in failed execution.

Column Time shows the time overhead. The heading Select shows
the time for selecting passed test cases, while Locate for locating
buffer overflow vulnerabilities (including recovering memory lay-
outs, computing data dependencies, and locating vulnerabilities).

Summary. Our experimental programs include 4 types of vul-
nerabilities (Column Type): 9 stack buffer overflows, 10 heap buffer
overflows, 3 internal data structure overflows, 3 global memory
buffer overflows, which show the diversity of vulnerabilities. For

Table 2: Triage Program Crash on five real-world programs

Name Test Cases Trace Length AFL Our Approach#passed #failed #Passed #Failed
objdump-2.26 1,475 73 166,802 235,657 59 4 (61, 8, 3, 1)
readelf-2.28 1,780 119 162,662 68,088 69 3 (102, 15, 2)
ld-2.24 1,274 117 1,504,274 1,334,977 90 6 (45, 28, 12, 12, 3, 1)
c++filt-2.26 1,861 23 17,708 4567 18 3 (21, 1, 1)
tiff2bw-3.9.7 1,846 121 1,131,200 1,102,423 84 3 (111, 6, 4)

each vulnerable memory layout, we locate 3.04 instructions on
average. In the beginning, we reports 25 true positives and 11 false
positives (Root in Buffer Overflow). After applying the proposed
elimination strategies, 25 errors are confirmed, and all of 11 false
positives are eliminated (Root in Plus Accompanying). The average
time for selecting passed test cases and locating vulnerabilities are
221 and 225 seconds. The results show that our approach is effective
to locate buffer overflow vulnerabilities.

5.3.3 Triage Program Crashes. As described in Section 1, triaging
program crashes is very important in the program analysis and de-
bugging. In the experiments, we use the fuzzing system to generate
a number of program crashes, many of which are caused by the
same vulnerability but AFL is not able to distinguish them. Our
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approach can help to triage program crashes based on the root
causes of vulnerabilities.

Since multiple instructions may lead to the same vulnerable
memory layout (e.g., #Ins in Buffer Overflow), we decided to use
a more coarse-grained granularity, i.e., we use functions where
blamed instructions reside as blamed functions. Thus, in our ex-
periment, we identify the root causes based on vulnerable memory
layouts and blamed functions [6].

Table 2 shows the results of five real-world programs with total
453 program crashes. Column Name shows the program name.
Column Test Cases lists the number of test cases, where #Passed
and #Failed represent the number of passed and failed test cases,
respectively. Column Trace Length lists the average number of
instructions in the execution. The last two columns show the results
of triaging program crashes.

Summary. Column AFL lists the number of unique program
crashes triaged by AFL. Column Our Approach shows triaging re-
sults of our approach, where the first number is the number of
groups, and the numbers in the brackets represent the number
of crashes in each group. For example, 4(61,8,3,1) represents 73
crashes are classified into 4 groups, which include 61, 8, 3 and 1
crashes, respectively. We manually check the crashes for all groups
and confirm that our triaging results are correct. Compared to AFL,
our approach helps to reduce the number of unique program crashes
significantly. Thus, it can save manual resources for analyzing them.

There are 16 crashes that are not grouped in program ld-2.24, as
our approach fails to locate their vulnerabilities. We look closely
into this program, and these 16 crashes are due to the null pointer
dereference, which is out of the scope of this work.

6 RELATEDWORK
6.1 Reverse Engineering
Reverse engineering of data structures is an active area in binary
code analysis [39–43]. Thomas and Gogul [12] also proposed an
approach to recover memory ranges of variables in binary code. Its
main difference from ours is that they recover memory information
using static analysis (value-set analysis), while we use dynamic
execution information. Our results are under-approximated and
theirs are over-approximated. Our under-approximated memory
layout introduces less false negatives and false positives in locating
buffer overflow vulnerabilities. Built on the work [12], Brumley et
al. developed TIE [13], which recovers the memory information
of data structures and their types. TIE has the same limitations as
work [12] when used for locating buffer overflow vulnerabilities.

Lin et al. proposed Rewards [14], the reverse engineering of data
structures using dynamic analysis. It infers the types of data struc-
tures based on arguments of well-known functions (e.g., a system
call). However, our approach recovers memory layouts based on the
memory addressing model. Hence, Rewards only recovers a small
portion of data structures [15], and our approach is more general
for data structures.

Slowinska et al. developed Howard [15, 16], which is the closest
work to ours. However, there are still two main differences. The first
is that Howard may miss internal layouts of data structures in some
cases even they are accessed in the execution. Howard [15] only

records a base pointer for each memory access. It may miss the in-
ternal layouts in the case where memory address is computed based
on multiple base addresses. Take the memory access at Line 12 in
Fig 2 for example, Howard considers its base pointer is ptr. How-
ever, its memory address is computed based on ptr, stu and name.
Hence, Howard misses the internal layouts. The second difference
is that Howard detects arrays which are accessed in loops while
our approach can recover arrays generally based on the memory
addressing model. Thus, our approach is more general to recover
the fine-grained layouts of data structures.

6.2 Locating Vulnerabilities
Source code analysis. There has been lots of work aiming at locat-
ing vulnerabilities in source code (e.g.,[53–56]). AddressSanitizer [1]
is a widely used tool in practice. It instruments a program, inserts
undefined memory (i.e., redzones) between the objects and detects
an access to the undefined memory. DieHard [53] and its successor
DieHarder [54] populate newly allocated memory and freed mem-
ory with magic values. They also add redzones around the allocated
memory region to detect the spatial errors. The tools SoftBound [2],
CETS [4] and LowFat [55, 56] keep track of per-pointer capability
and checks capability when accessing an object.

Although these techniques can also locate buffer overflows, they
are applicable to different scenarios (i.e., source code vs. binary
code). Since the source code is not always available, our approach
is applicable to more scenarios. In addition, some source code based
techniques do not recognize the internal structures of data struc-
tures, such as AddressSanitizer. Hence, they cannot locate internal
overflow within a data structure. Since our approach recovers fine-
grained memory layouts of variables, this is not an issue anymore.

Binary code analysis. Locating vulnerabilities in binary code
has also been widely studied [57–62]. Valgrind Memchecks [3]
uses the valid value bit and address bit in shadow memory to cap-
ture reading undefined memory and out-of-bounds access. Besides,
Valgrind’s extension SGCheck also wants to locate stack buffer
overflows, however, it still needs the help of debug information. Dr.
Memory [59] is similar to Valgrind Memchecks in many ways. It is
further equipped with a multi-threaded binary translation system.
Purify [60] shadows every byte of memory with a two-bit value that
encodes one of three states: unaddressable, writable, and readable.

These techniques locate heap buffer overflow without false posi-
tives, which is achieved by our approach as well. Due to the lack of
program semantics in binary code, it is very difficult to identify the
boundaries of variables in stack and global memory regions. Thus,
none of these techniques can locate buffer overflowwithin the stack
and global memory regions [1]. To the best of our knowledge, our
approach is the first work to achieve this goal in binary code.

7 CONCLUSION
In this work, we propose an approach to locate buffer overflows in
binary code.We first recovers thememory layouts based onmemory
addressing model together with dynamic execution information.
Then, based on the recovered memory layouts we locate buffer
overflow vulnerabilities.
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