
Machine Learning Algorithms for Network
Intrusion Detection

Jie Li, Yanpeng Qu, Fei Chao, Hubert P. H. Shum, Edmond S. L. Ho and Longzhi
Yang

Abstract Network intrusion is a growing threat with potentially severe impacts,
which can be damaging in multiple ways to network infrastructures and digi-
tal/intellectual assets in the cyberspace. The approach most commonly employed
to combat network intrusion is the development of attack detection systems via ma-
chine learning and data mining techniques. These systems can identify and discon-
nect malicious network traffic, thereby helping to protect networks. This chapter
systematically reviews two groups of common intrusion detection systems using
fuzzy logic and artificial neural networks, and evaluates them by utilizing the widely
used KDD 99 benchmark dataset. Based on the findings, the key challenges and op-
portunities in addressing cyber-attacks using artificial intelligence techniques are
summarized with future work suggested.

1 Introduction

Cybersecurity can be assisted by a set of techniques that protect cyberspace and
ensure the integrity, confidentiality and availability of networks, applications, and
data. Cybersecurity techniques also have the potential to defend against and recover
from any type of attack. More devices, i.e., “the Internet of Things (IoT)”, are be-
coming connected to cyberspace, and cybersecurity has become an elevated concern
affecting governments, businesses, other organizations, and individuals. The scope

Jie Li, Hubert P. H. Shum, Edmond S. L. Ho and Longzhi Yang
Department of Computer and Information Science, Northumbria University,
e-mail: longzhi.yang@northumbria.ac.uk

Yanpeng Qu
Information Science and Technology College, Dalian Maritime University, PR. China

Fei Chao
Cognitive Science Department, Xiamen University, PR. China

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322326681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jie Li et al.

of cybersecurity is broad, and can be grouped into five areas: critical infrastructure,
network security, cloud security, application security, and IoT security. Network se-
curity is an important challenge in the field of cybersecurity, because networks pro-
vide the means for crucial access to others devices, and for connectivity between all
the assets in cyberspace. Severe network attacks can lead to system damage, network
paralysis, and data loss or leakage. Network intrusion detection systems (NIDS) at-
tempt to identify unauthorized, illicit, and anomalous behavior based solely on net-
work traffic to support decision making in network preventative actions by network
administrators.

Traditional network intrusion detection systems are mainly developed using
available knowledge bases, which are comprised of the specific patterns or strings
that correspond to already known network behaviors, i.e., normal traffic and ab-
normal traffic [66]. Those patterns are used to check monitored network traffic to
recognize possible threats. Typically, the knowledge bases of such systems are de-
fined based on expert knowledge, and the patterns must be updated to ensure the
coverage of new threats [65]. Therefore, the detection performance of traditional
network intrusion detection systems depends highly on the quality of the knowl-
edge base. From a theoretical point of view, network intrusion detection systems
mainly aim to classify the monitored traffic as either ‘legitimate’ or ‘malicious’.
Therefore, machine learning approaches are appropriate to solve such problems;
and they have recently been widely applied to help better manage network intrusion
detection issues.

Machine learning (ML) is a field of artificial intelligence, which refers to a set
of techniques that give computer systems the ability to ‘learn’. Typically, machine
learning algorithms, such as artificial neural networks, learn from data samples to
categorize or find patterns in the data and enable computer systems to make predic-
tions on new or unseen data instances based on the discovered patterns [5]. Depend-
ing on the way of learning, machine learning can be further grouped into two main
categories: supervised learning and unsupervised learning. Supervised learning dis-
covers the patterns to map an input to an output based on the labeled input-output
pairs of data samples [59]. The classification problem is a typical supervised learn-
ing problem, which has been commonly used for solving NIDS problems, such as
those reported in [12, 39, 44, 56, 71]. The goal of unsupervised learning is to find a
mapping that is able to describe a hidden structure from unlabeled data samples.
It is a powerful tool for identifying structures when unlabeled data samples are
given [59]. Thanks to the relaxation of the requirement for labels of training data
in the unsupervised learning, various unsupervised learning approaches have also
been widely applied for NIDS problems, such as the clustering-based NIDS [88]
and self-organizing map based NIDS [26].

This chapter mainly focuses on the network intrusion detection system (NIDS),
and particularly how the machine learning and data mining techniques can help
in developing NIDS. The chapter firstly systematically reviews intrusion detection
techniques from the perspective of both hardware deployment and software imple-
mentation. The two most commonly used NIDS development methods and the three
most commonly used detection methodologies are reviewed first; they are followed

Machine Learning Algorithms for Network Intrusion Detection 3

by the investigation of applying machine learning and data mining techniques in the
implementation of intrusion detection systems. Two representative machine learn-
ing approaches, including fuzzy inference systems and artificial neural networks, are
particularly focused upon in this chapter, because they are the machine learning and
data mining techniques most suitable for supporting intrusion detection systems.
Fuzzy inference systems might not be traditionally classified as machine learning
algorithms, but the rule base generation mechanism follows the data mining prin-
ciple; therefore, fuzzy inference systems with automatic rule base generation can
also be considered as a machine learning technique/approach. Finally, the intrusion
detection systems developed upon these machine learning approaches are evaluated
using the widely used KDD99 benchmark dataset.

The remainder of this chapter is organized as follows. Section 2 introduces the
hardware deployment methods of network intrusion detection systems and detec-
tion methodologies. Section 3 reviews the existing machine learning-based network
intrusion detection systems using fuzzy inference systems and artificial neural net-
works. The limitations and potential solutions of both techniques are also discussed
in this section. Section 4 evaluates the studied systems using a well-known bench-
mark dataset KDD 99. Section 5 concludes the chapter and points out directions for
future work.

2 Network Intrusion Detection Systems

Network intrusion detection systems (NIDS) are software-based or hardware-based
devices that are used to monitor network traffic, i.e., to analyze them for signs of
possible attacks or suspicious activities. There are usually one or more network
traffic sensors used to monitor network activity on one or more network segments.
The system constantly performs analysis and watches for certain patterns of passing
traffic in a monitored network environment. When detected traffic patterns match
the defined signatures or policies in the knowledge base (e.g., based on a fuzzy rule
base or a trained neural network), a security alert will be generated.

2.1 Deployment Methods

There are multiple methods that can be adopted to deploy a NIDS in order to capture
and monitor traffic in a network environment, with passive deployment and in-line
deployment being the most commonly used, as shown in Figs. 1(a) and 1(b).

In the passive deployment method, the NIDS device is connected to a network
switch, which is deployed between the main firewall and the internal network. The
switch is usually configured with a port mirroring technology, such as the Mirror
Port supported by HP, or the Switched Port Analyzer (SPAN) supported by Cisco.
These port mirroring technologies are able to copy all network traffic, including in-

4 Jie Li et al.

Internet

NIDS

Host A Host B Host C

Internal Network

(a) NIDS - Passive deployment

Internet

NIDS

Host A Host B Host C

Internal Network

(b) NIDS - In-line deplployment

NIDS

Host A

Host B

Host C

Internal network

(c) NIDS - network TAP

Fig. 1 Deployment methods for intrusion detection systems

coming and outgoing traffic, to a particular interface of the NIDS for the purpose
of traffic monitoring and analysis. This method usually requires a high-end net-
work switch in order to enable the port mirroring technologies. There is a special
case of passive deployment, which is the passive network TAP (Terminal Access
Point) [13]. In particular, a network TAP uses pairs of cables included in the origi-
nal Ethernet cable, as illustrated in Fig. 1(c), to send a copy of the original network
traffic to the NIDS.

Machine Learning Algorithms for Network Intrusion Detection 5

The in-line deployment method deploys NIDS devices in the same way as fire-
walls, which allows all traffic to pass directly through the NIDS. Therefore, this de-
ployment method does not require any particularly high-end network device, which
is an ideal solution for those environments in which port mirroring technologies are
unavailable, such as a small branch office with low-end networking equipment.

It is important to note that the deployment methods should be carefully selected
while taking into account the network topology for optimal performance. For in-
stance, in the example shown in Fig. 1(a), the port mirroring method is not only able
to monitor the outgoing traffic between the internal network and the Internet, but
also the internal traffic between Hosts A, B and C. However, the network TAP and
in-line deployment method are only able to monitor the outgoing traffic that is gen-
erated between the internal network and the Internet. Therefore, the NIDS, which is
deployed by either the network TAP or the in-line method, will not notice if suspi-
cious traffic passes between two client machines. In addition, as the port mirroring
method uses a signal network interface to monitor the entire switch traffic, a traffic
congestion may occur if the switch backbone traffic is beyond the capacity of the
bandwidth of the monitored port. Therefore, it is a good strategy to deploy multiple
NIDS in complex network environments,so that these blind spots can be eliminated.

2.2 Detection Methodologies

Generally speaking, intrusion detection methodologies can be grouped into three
major categories: signature-based detection, anomaly-based detection and specification-
based detection [36].

The signature-based NIDS, also called knowledge-based detection or misuse de-
tection, refers to the detection of attacks or threats by looking for specific patterns or
strings that correspond to already known attacks or threats. These specific patterns
or strings are saved in a knowledge base, such as the byte sequences of the network
traffic, known malicious instruction sequences exploited by malware, the specific
ports a host tries to access, etc. The signature-based detection is the process that
compares known patterns against monitored network traffic to recognize possible
intrusions. Therefore, signature-based detection is able to effectively detect known
threats in a network environment, and its knowledge bases are usually generated by
experts. A good example for this type of detection is a large amount of failed login
attempts that have been detected in a Telnet session.

Anomaly-based detection primarily focuses on normal traffic behaviors rather
than specific attack behaviors, which overcomes the limitation of signature-based
detection that is only able to detect known attacks. This method is usually com-
prised of two processes: a training process and a detection process. In the training
phase, machine learning algorithms are usually adopted to develop a model of trust-
worthy activity based on the behavior of the network traffic without attacks. In the
detection phase, the developed trustworthy activity model is compared with the cur-
rently monitored traffic behavior, and any deviations indicate a potential threat. The

6 Jie Li et al.

anomaly-based detection method is usually adopted to detect unknown attacks, such
as [4, 34, 57, 77, 78, 81]. However, the effectiveness of anomaly-based detection is
greatly affected by the selected features that the machine learning algorithms use.
Unfortunately, the selection of an appropriate set of features has proved to be a big
challenge. Also, the observed system behaviors constantly change, which causes
anomaly-based detection to produce a weak profile accuracy.

Specification-based detection is similar to the anomaly-based detection method
as in it also detects attacks as deviations from normal behavior. However, specification-
based approaches are based on manually developed specifications that character-
ize legitimate behaviors rather than relying on machine learning algorithms. Al-
though this method is not characterized by the high rate of false alarms typical to
anomaly-based detection methods, the development of detailed specifications can be
time-consuming. Because it detects attacks as deviations from legitimate behaviors,
specification-based approaches are commonly used for unknown attacks detection.
The systems in [61, 74] are based on this type of approach. In addition, multiple
detection methodologies could be adopted jointly to provide more extensive and
accurate detection, as documented in [3].

3 Machine Learning in Network Intrusion Detection

Machine learning and data mining techniques work by establishing an explicit or
implicit model that enables the analyzed patterns to be categorized. In general, ma-
chine learning techniques are able to deal with three common problems: classifi-
cation, regression and clustering. Network intrusion detection can be treated as a
typical classification problem. Therefore, a labeled training data set is usually re-
quired for system modeling. A number of machine learning approaches have been
used to solve network intrusion detection problems, and all of them consist of three
general phases (as illustrated in Fig. 2).

• Pre-processing: The data instances that are collected from the network environ-
ment are structured, which can then be directly fed into the machine learning
algorithm. The processes of feature extraction and feature selection are also ap-
plied in this phase.

• Training: A machine learning algorithm is adopted to characterize the patterns
of various types of data, and build a corresponding system model.

• Detection: Once the system model is built, the monitored traffic data will be used
as system inputs to be compared to the generated system model. If the pattern of
the observation is matched with an existing threat, an alarm will be triggered.

Both supervised and unsupervised machine learning approaches have already
been utilized to solve network intrusion detection problems. For instance, super-
vised learning-based classifiers have been successfully employed to detect unau-
thorized access, such as k-nearest neighbor (k-NN) [39], support vector machine
(SVM) [45], decision tree [56], naı̈ve Bayes network [44], random forests [12],

Machine Learning Algorithms for Network Intrusion Detection 7

P
re

-p
ro

ce
ss

in
g

Training

Detection

System

model

Decision

Results

R
e

a
l

N
e

tw
o

r
k

 E
n

v
ir

o
n

m
e

n
t

Collected

data

Fig. 2 ML-NIDS architecture

and artificial neural networks (ANN) [43]. In addition, unsupervised learning algo-
rithms, including k-means clustering [58] and self-organized map (SOM) [26], have
also been applied to deal with network intrusion detection problems, with good re-
sults. For various reasons, such as the imbalance of training data sets and the high
cost of computational requirement, it is currently very difficult to design a single
machine learning approach that outperforms the existing ones. Therefore, hybrid
machine learning approaches, such as clustering with classifier [38, 77] and hier-
archical classifiers [8], have attracted a lot of attention in recent years. In addition,
some data mining approaches have also been successfully utilized to solve intrusion
detection problems. For instance, data mining approaches are employed to generate
a fuzzy rule base, and a fuzzy inference approach is then applied for threat detec-
tion in [34]. This section examines the existing NIDSes utilizing two approaches,
namely, fuzzy inference systems and artificial neural networks.

3.1 Fuzzy Inference Systems

Due to their great ability to deal with uncertainty, fuzzy inference systems (FIS)
have been widely used in detection of potential network threats. Generally speak-
ing, fuzzy inference systems are built upon fuzzy logic to map system inputs and
outputs. A typical fuzzy inference system consists of two main parts: a rule base
(or knowledge base) and an inference engine. A number of inference engines are
well established, with the Mamdani inference [42] and the TSK inference [68] be-
ing the most widely used. Although fuzzy sets are used in both rule antecedents
and rule consequences by the Mamdani fuzzy model, which is more intuitive and
suitable for handling linguistic variables, a defuzzification progress is required to

8 Jie Li et al.

transfer the fuzzy outputs to crisp outputs. In contrast, the TSK inference approach
produces crisp outputs directly, as crisp polynomials are used as rule consequences.

For a fuzzy inference-based NIDS (FIS-NIDS), the important features, which are
extracted from the network packets, are used in the pre-detector component to an-
alyze events with the set of rules to determine whether any incoming events have
intrusive patterns or not. The set of rules is called a fuzzy rule base, which can
be either pre-defined by expert knowledge (knowledge-driven), or extracted from
labeled data instances (data-driven) [31, 69]. In contrast to knowledge-driven rule
base generation approaches, which essentially limit the system’s applicability as ex-
pert knowledge is not always available in certain areas, data-driven rule base gener-
ation methods are most commonly used for intelligent NIDSes. Several data-driven
approaches have been proposed to generate a rule base for FIS-NIDS use, which are
usually derived from complete and dense data sets, such as [7, 62]. The generated
rule bases are often optimized using a general optimization technique, such as the
genetic algorithms (GA) for optimal system performance. As the used data sets are
dense and complete, the resulted rule bases are generally dense and complete each
of which covers the entire input domain, and accordingly the resulted fuzzy mod-
els often yield great reasoning performance. However, these systems will suffer if
only incomplete, imbalanced, and sparse data sets are available. In addition, these
systems are usually signature-based NIDS, which are only able to detect known
network threats for which the intrusive patterns have been covered in the rule base.

In order to address the above limitations, fuzzy interpolation has been used to
develop NIDS [49, 81]. Briefly, fuzzy interpolation enhances conventional fuzzy
inference systems to work with sparse fuzzy rule bases, by which some inputs or
observations are not covered [27]. Using fuzzy interpolation techniques, even when
the traffic patterns of the incoming event do not match with any of the patterns
stored in the rule base, an approximated result can still be obtained by considering
the similar patters expressed as rules in the current rule base. A number of fuzzy
interpolation approaches have been proposed in literature, e.g. [19, 20, 33, 83, 47,
48, 64, 79, 80, 84, 85, 86], and most of them have already been applied to solve
real-world problems, e.g. [32, 35, 46, 82].

A data-driven fuzzy interpolation-based NIDS can be developed in 4 steps: 1)
training data set generation and pre-processing, 2) rule base initialization, 3) rule
base optimization, and 4) intrusion detection by fuzzy interpolation [30, 34], as
illustrated in Fig.3. These key steps are detailed in the following sub-sections.

3.1.1 Dataset Generation and Pre-processing

The training dataset can either be collected from a real-life network environment,
or it can be developed from an existing dataset. Whatever method is selected, the
important features, which are selected for system modeling, have to be identified.
In general, a number of features can be monitored by networking tools for network
analysis during data packet transmission over the network, but some of these fea-
tures are redundant or noisy. Therefore, a well-thought manual feature selection

Machine Learning Algorithms for Network Intrusion Detection 9

Data set generation &

pre-processing

Rule Base

Initialisation

Optimization

Optimized

rule base

Processed training

dataset

Initialized

rule base

Fuzzy interpolation

reasoning

Input

network traffic Decision

Fig. 3 The framework of TSK+ based NIDS

process is often required for network attack detection [15]. This common practice
is also applied here. In particular, four important features identified by experts are
selected as NIDS signature for the proposed FIS-NIDS, which are listed in Table 1.

Table 1 Features used in the NIDS
Feature Description
Source bytes The number of data bytes sent by the source IP host
Destination bytes The number of data bytes sent by the destination IP host

Count The number of connections to the same host
as the current connection in the past 2 seconds

Dst Host Diff Rate % of connections whose ports are different, among the
past 100 connections with the same destination IP

The establishment of the optimal number of features that should be retained in
datasets by feature selection methods is always an argued point, because feature
selection usually causes information loss from the original dataset. Several pieces
of work in the area of feature selection have claimed that more attributes generally
lead to better approximations [22, 24, 73, 89]. This can be the case for perfect, en-
tirely consistent, and noise-free data, with all features being independent. Generally
speaking, feature relevancy and redundancy have to be considered by feature selec-
tion methods before the application of machine learning approaches [10, 29]. The
selected features should be highly relevant to the problem and non-redundant if they
are to be useful in an efficient manner [23]. In fact, a large volume of published re-
sults in relevant literature has demonstrated that smaller number of selected features
can lead to much-improved modeling accuracy, including [16, 21, 40, 52, 60, 87].
In addition, more attributes retained in datasets will also increase the computational

10 Jie Li et al.

complexity [23]. Therefore, it is necessary to consider as many features as possible
under certain circumstances especially for noise-free and fully consistent datasets,
but in others, a minimal subset of features satisfying some predefined criteria is
more appealing.

Once the features are determined for machine learning, data sets for a given net-
work of a particular environment need to be collected for model training. This is
typically implemented in stages based first on an attack-free network, and then dif-
ferent types of attacks that need to be identified. In other words, data regarding nor-
mal network traffic is collected from a threat-free network environment first. Then, a
number of attacks simulating the first type of attack are artificially launched so that
this type of attack is sufficiently covered by the data set. This process is repeated
for every other type of attacks until all the classes that need to be considered are
fully covered by the data set. The final dataset covers all attack types and attack-
free situations. In most cases, if an existing dataset is adopted for model training,
the process of data collection may be skipped; however, ideally, the structure of the
existing data set should follow the structure explained above.

3.1.2 Rule Base Initialisation

Training data set

Sub dataset (T)

(Type attacks)

Sub dataset (T2)

(Type 1 attacks)

Sub dataset (T1)

(Normal traffic)
…...

…......

TSK rule base

…...

Dataset

division

K-means

Fuzzy rule

extraction

Rule base

generation

()

1

Fig. 4 Rule base generation

Machine Learning Algorithms for Network Intrusion Detection 11

Suppose that the training dataset (T) contains l pl ě 1, l P Nq labeled classes,
which covers l´ 1 types of attacks and the normal situation. As illustrated in Fig. 4,
the system first divides the training data set T into l sub-datasets T1, T2, ..., Tl , each
representing a type of attack or the normal traffic (i.e., T “ Yl

s“1Ts). Then, the
K-means, one of the most widely used clustering algorithms, is employed to each
sub-dataset to group its data points into k clusters based on their feature values.
Note that the value of k in the K-means algorithm has to be predefined to enable the
application of the algorithm. The Elbow method [72], which determines the number
of clusters based on the criteria that adding another cluster is not much better for
modeling the dataset, has been employed for determining the value of k. Based on
this, each determined cluster is expressed as a fuzzy rule that contributes to the TSK
rule base.

In this work, a 0-order TSK fuzzy model is adopted. All data instances in each
class share the class label (an integer number), which is utilized as the consequent of
the corresponding TSK rule. The triangular membership function is utilized in the
rule antecedents. The support of the triangular fuzzy set is expressed as the span of
the cluster along this input dimension, and the core of the corresponding fuzzy set
is set as the cluster center. The final TSK fuzzy rule base is generated by combining
all the extracted rules from all l sub-datasets, which is illustrated as follows:

Rs
ts : IF x1 is Asts

1 and x2 is Asts
2 and x3 is Asts

3 and and x4 is Asts
4 ,

THEN z “ s,
(1)

where s “ t1, ..., lu represents the sth sub data set that indicates the sth type of
network traffic, ts “ t1, ..., ksu denotes the tth cluster in the sth sub data set. The
number of rules in this rule base is equal to the sum of the numbers of clusters for
all the sub-datasets (i.e., k1 ` k2 ` ...` kl).

3.1.3 Rule Base Optimization

The generated initial rule base can be employed for intrusion detection, but with rel-
atively poor performance. In order to increase the detection performance, a genetic
algorithm (GA) is adopted here to fine-tune the membership functions involved in
the initial rule base. Assume that a given initial TSK rule base is comprised of n
fuzzy rules of the form shown in Eq. 1. Suppose a chromosome, denoted as I , is
used to represent a potential solution in GA, which is coded to represent the pa-
rameters of all rules in the rule base as shown in Fig. 5. Based on this, the initial
population P “ tI1, I2, ..., I|P|u can be formed by taking the parameters of the initial
rule base and its random variations. During the optimization process, the number
of chromosomes is selected for offspring reproduction by applying the genetic op-
erators of crossover and mutation. Specifically, the fitness proportionate selection
method, also known as the roulette wheel selection, is implemented in this work
for chromosome selection, and the signal point crossover and mutation operators

12 Jie Li et al.

are employed for reproduction. In addition, in order to make sure that the resultant
fuzzy sets are valid and convex, the constraint a1ir ă a2ir ă a3ir, i “ t1, 2, 3, 4u is
enforced to the genes during optimization. The selection and reproduction processes
are iterated until the pre-defined maximum number of iterations is reached, or un-
til the system performance reaches a predefined threshold. Optimized parameters
and thus the optimized rule base can be achieved when the termination condition is
satisfied.

Input 1

.

Input 2 Input 3 Input 4 Output

Fig. 5 Chromosome encoding

3.1.4 Intrusion Detection by TSK-Interpolation:

Once the rule base is generated, the TSK+ fuzzy inference approach can be deployed
to perform inferences for attack detection. In order to generate network intrusion
alerts in real-time, the system is deployed by one of the deployment methods as
introduced in Section 2.1, which keeps capturing network traffic data for analysis.
For each captured network packet, four important features, as detailed in Table 1,
are extracted and fed into the proposed system. From this input, the TSK+ fuzzy
inference approach will classify the types of network traffic using the generated rule
base. Assume that an optimized TSK fuzzy rule base is comprised of n rules as
follows:

R1 : IF x1 is A1
1 and x2 is A1

2 and x3 is A1
3 and x4 is A1

4 THEN z “ Z1,

......

Rn : IF x1 is An
1 and x2 is An

2 and x3 is An
3 and x4 is An

4 THEN z “ Zn,

(2)

where Ai
kpk P t1, 2, 3, 4u and i P t1, ..., nuq represents a normal and convex trian-

gular fuzzy set in the rule antecedent denoted accordingly as paik1, a
i
k2, a

i
k3q, and

Zi is an integer number that indicates the one type of network traffic, either normal
or a particular type of attack. By taking a captured network packet as an example,
the working procedure of the TSK+ fuzzy inference for intrusion detection can be
summarized as the following steps:

Machine Learning Algorithms for Network Intrusion Detection 13

1. Extract the four feature values from the network packet, and express them in the
form I “ tx˚1 , x

˚
2 , x

˚
3 , x

˚
4 u, which will be used as the system input. Note that the

extracted feature values are normally crisp values. They have to be represented
as fuzzy sets of the form A˚k “ px

˚
k , x

˚
k , x

˚
kq, where k “ t1, 2, 3, 4u, for future

use.

2. Determine the matching degree SpA˚k , A
i
kq between the inputs I “ tA˚1 , A

˚
2 , A

˚
3 , A

˚
4 u

and rule antecedents (Ai
1, A

i
2, A

i
3, A

i
4) for each rule Ri, i “ t1, ..., nu using:

SpA˚k , A
i
kq “

˜

1´

3
ÿ

j“1

|x˚k ´ a
i
kj |

3

¸

¨DF , (3)

where DF , termed as distance factor, is a function of the distance between the
two fuzzy sets of interest, which is defined as follows:

DF “ 1´
1

1` e´sd`5
, (4)

where s (s ą 0) is a sensitivity factor, and d represents the Euclidean distance
between the two fuzzy sets. A smaller s value results in a similarity degree more
sensitive to the distance of two fuzzy sets.

3. Obtain the firing degree of each rule by integrating the matching degrees of its
antecedents and the given input values as follows:

αi “ SpA˚1 , A
i
1q ^ SpA

˚
2 , A

i
2q ^ SpA

˚
3 , A

i
3q ^ SpA

˚
4 , A

i
4q , (5)

where ^ is a t-norm usually implemented as a minimum operator.

4. Integrate the sub-consequences from all rules to get the final output using the
following formula:

z “

řn
i“1 αi ¨ Zi
řn

i“1 αi
. (6)

5. Apply the round function on the final output to obtain the integer number that
indicates the network traffic type for the given network packet.

As discussed above, if an unknown network’s threat behavior or traffic pattern
has been captured, a result of ‘network security alert’ can still be expected by con-
sidering all fuzzy rules in the rule base.

14 Jie Li et al.

3.2 Artificial Neural Networks

An artificial neural network (ANN) is an information processing system inspired by
biological nervous systems that constitute animal brains, which is one of the most
widely used machine learning algorithms [1]. Typically, an ANN is composed of
two main parts: a set of simple processing units, also known as nodes or artificial
neurons, and the connections between these. These simple units or nodes are orga-
nized in layers, which usually consist of the input, output, and hidden layers. The
hidden layers are the those between the input and the output layers. Once the set of
processing units and their connections are determined, or an ANN is built, the train-
ing process adjusts the connection weights between connected units to determine
the strength that one unit will affect the others. ANNs have been successfully em-
ployed in NIDSes, which usually fall into two categories: supervised training-based
NIDS and unsupervised training-based NIDS [54]. As demonstrated in Fig. 2, both
types of NIDSes essentially follow the architecture of ML-NIDS as specified in the
beginning of this section going through three general steps.

The desired output or pattern for a given input is learned from a set of labeled
data if the supervised learning approach is applied. A well-known supervised neural
network architecture is the multilayer perception (MLP), which is based on the feed-
forward and back-propagation algorithm with one or more layers between the input
and the output layer [66]. In this type of ANN-NIDSes, the number of nodes in
the input layer is set to the number of features selected from the original traffic
flow, and the number of nodes in the output layer is configured to be the number
of desired output classes [6, 37, 67, 77, 90]. The number of hidden layers and the
number of nodes for each hidden layer vary, and are usually configured according
to the situations. A feed-forward-based MLP with a signal hidden layer ANN NIDS
model is illustrated in Fig. 6.

Obviously, the entire data flow in the ANN as shown in Fig. 6 is in one direction
only: from the input layer, though the hidden layer, to the output layer. Therefore,
given a network traffic package as the input, the corresponding network behavior
can be predicted. The advantages of this model are its ability to represent both linear
and non-linear relationships, and directly learn these relationships from the data by
means of training. However, a number of research projects have reported that the
training process of this type of ANN can be very time-consuming, which may pose
a significant adverse impact for NIDS system updating [66, 43].

Another group of ANN NIDSes is unsupervised training-based, in which the
network adapts to different clusters without having a desired output. One of the
most popular algorithms in this group is the self-organizing map (SOM), which
transforms the input of arbitrary dimension into a low-dimensional (usually 1-
or 2-dimensional) discrete map by using the Kohonen’s unsupervised learning
method [2]. The structure of a conventional self-organizing map is shown in Fig. 7(a).
A conventional SOM network model usually has two layers: an input layer and an
output layer (also known as a competitive layer). Similar to the supervised training-
based NIDS, the number of nodes in the input layer are usually set to the number of
selected features of the training data set. The output layer consists of neurons orga-

Machine Learning Algorithms for Network Intrusion Detection 15

..
.

..
.

..
.

Input

Layer

Hidden

Layer

Output

Layer

weight weight

Feature 1

Feature 2

Feature n

Network

Behaviour 1

Network

Behaviour m

..
.

..
.

Fig. 6 Multilayer perception-based NIDS architecture

nized in a lattice, usually a finite two-dimensional space. Each neuron has a specific
topological position and is associated with a weight vector of the same dimension
as the input vectors [50].

The training process adjusts the weight vectors of the neurons, thereby describ-
ing a mapping from a higher-dimensional input space to a lower-dimensional map
space. As a result, the SOM eventually settles into a map of stable zones as a type of
feature map of the input space. Based on these mappings, various traffic behaviors
can be identified. Fig. 7(b) illustrates an example of a SOM output, which clearly
shows the four classes have eventually been predicted. When comparing the per-
formance (speed and conversion rate) between SOM and supervised learning based
NIDS systems, it becomes clear that SOM is more suitable for real-time intrusion
detection, as discussed in [28, 76, 55, 18, 75].

Although both types of ANN-network intrusion detection systems are success-
fully employed in detecting intrusions in real-world network environments with
promising results, existing ANN-network intrusion detection systems have two main
drawbacks: 1) lower detection precision for low-frequency attacks, and 2) weaker
detection stability limits the applicability of such systems [77]. The reason behind
these is the uneven distribution of different attack types. For instance, the number of
training data instances for low-frequency attacks are very limited compared to com-
mon attacks. As a consequence, it is not easy for the ANN to learn the characteristics
of such low-frequency attacks [17].

To address these issues, a number of solutions have been proposed, such as the
work reported in [77, 25, 53]. Among these systems, a fuzzy-clustering based neural
network NIDS approach (FC-ANN-NIDS) [77] can be a potential solution. Compar-
ing with a conventional ANN-NIDS, in which data clustering techniques are typi-

16 Jie Li et al.

. . .

Inputs layer

Output

layer

Weight

Feature 1 Feature 2 Feature n. . .
Training vector

(a) Structure of self-organising map-based NIDSes

Output

(b) SOM output example

Fig. 7 Self-organizing map-based NIDS architecture

cally not involved during the training process, the FC-ANN-NIDS adopts a fuzzy
clustering technique to generate different training sub-datasets. This is followed by
the application of multiple ANNs in the training stage based on the divided sub-
datasets. Finally, a fuzzy aggregation module is applied to combine the results of
the ANNs, in an effort to eliminate their errors. The framework of FC-ANN-NIDS
is illustrated in Fig. 8, which basically contains three major stages: clustering, ANN
modeling, and fuzzy aggregation. The details of this method (or FC-ANN-NIDS)
are presented in the rest of this section.

Training

Dateset

Clustering

Sub-

dataset 1

Sub-

dataset 2

Sub-

dataset c

. . .

ANN 1 ANN 2 ANN . . .

Aggregation

Decision

Fig. 8 FC-ANN-NIDS framework

Machine Learning Algorithms for Network Intrusion Detection 17

3.2.1 Clustering

Given a training data set that contains l network behaviors, the fuzzy C-mean clus-
tering technique [9] is employed to group the data instances in clusters, which es-
sentially divides the entire training data set into n sub-datasets. Note that only the
size and complexity of the original training dataset is reduced after data clustering,
and the data instances in each divided sub-dataset may still cover all the l network
behaviors. Each divided training dataset will be forwarded to the next stage for ANN
training. Unfortunately, the value of n (the number of clusters) in the proposed sys-
tem is determined under a practice theory. Therefore, more intelligent methods, such
as Elbow method [72] may be considered for determining the value of n.

3.2.2 ANN Training

A multi-layer perceptron model, as illustrated in Fig. 6, is used in this study for
modeling each sub-training dataset. As mentioned previously, the number of input
nodes is set to match the number of selected features of the training dataset; and the
number of nodes in the output layer is set to the number of network traffic behaviors
covered by the training dataset. The number of hidden nodes is then obtained by
adopting the empirical formula:

?
I `O ` α, pα “ t1, ..., 10uq, where I denotes

the number of input nodes, O represents the number of nodes in the output layer,
and α is a random number [17]. During the training process, the signals, which
combine both the input values and the weight values between the corresponding
input node and the hidden node, are received by each node in the hidden layer.
These signals are processed by a sigmoid activation function [51], and broadcasted
to all the neurons in the output layer with a special weight value. In this study, the
most widely used first-order optimization algorithm, gradient descent, is employed
for weight-updating during the back-propagation process. Once the entire training
process is completed, multiple ANN models can be generated based on the different
training sub-datasets. Note that each ANN model can be applied individually for
network intrusion detection in real-life network environments. In order to reduce
the detection errors, an aggregation module is applied to aggregate the results from
different ANNs.

3.2.3 Aggregation

Although each ANN generated in the last stage can be deployed individually as an
NIDS, some of them may have an unaccepted poor detection performance. In this
study, another multi-layer perceptron model is applied for sub-results aggregation.
In this stage, the number of nodes in both the input and the output layer is set to
the number of network behaviors. Given the entire training dataset and the trained
multiple ANN models with the corresponding training sub-datasets as generated in
the last stage, the modeling precess in aggregation stage is summarized as below.

18 Jie Li et al.

Step 1: Feed each data instance j in the original training dataset to every trained
ANN model (ANN1, ANN2, ..., ANNn). Denote the output of modelANNi, pi “
t1, ..., nuq from data instance j as oji , then the outputs from all ANNs is collectively
denoted as Oj and Oj “ roj1, ..., o

j
ns.

Step 2: Form the new input for the new ANN model based on the previous out-
puts. The new input Ijnew generated from data instance j is:

IjNew “ ro
j
1 ¨ µ1, ..., o

j
n ¨ µns , (7)

where µi represents the degree of membership of data instance j belonging to cluster
i. Note that the degree of membership for each data instance regarding each cluster
has been determined in the clustering using the fuzzy C-mean clustering algorithm.

Step 3: Generate a new ANN model and train it using the newly formed inputs
as generated in Step 2.

Once the entire model is built, the system can be deployed in real-life network
environments for intrusion detection. Given an incoming network traffic package,
the system first calculates the membership of the incoming data using the cluster
centers obtained in stage 1. Then, the ANN models and the aggregation model will
be applied to predict the final result, which indicates whether the incoming traffic
poses a threat. Such hybrid ANN network intrusion detection solutions can increase
detection performance, especially for the low-frequency attacks. However, it may be
costly in time because of the training processes for the large number of feed-forward
neural networks.

3.3 Deployment of ML-based NIDS

Although the developed ML-based network intrusion detection systems are able to
take the network package (input) to predict whether it is a normal network behavior
or not, these systems still cannot be directly implemented in real-life network envi-
ronments for real time detection. The reason behind is that the generated ML-based
models do not have packet sniffers, which are used to capture the network traffic in
real-time. In order to achieve real time detection, the developed ML-based network
intrusion detection systems have to work with with packet sniffers, such as Snort,
Bro, and Spark. A packet sniffer (or network sniffer) is a network traffic monitoring
and analysis tool that can sniff out the network data flowing over the monitored net-
work in real time. A number of ML-based network intrusion detection systems have
been successfully integrated with packet sniffers and achieved good real time detec-
tion, such as [41, 49]. The framework of these systems is illustrated in Fig. 9. The
packet sniffer, which can be implemented by either passive or in-line deployment
method as introduced in Section 2.1, continuously captures the network traffic, and
extracts the required information from the captured network packets to feed into the
system model developed by machine learning techniques, thereby generating the
final decisions.

Machine Learning Algorithms for Network Intrusion Detection 19

Packet

sniffer

ML-based

NIDS

Network

traffic

M
o

n
it

o
re

d
 n

e
tw

o
rk

Processed

data
Decision

Capture network

traffic packets and

data pre-processing

Use processed

data as input to

product a decision

Fig. 9 The framework of ML-NIDS deployment

4 Experiment

A number of network intrusion detection systems developed by different machine
learning approaches are evaluated in this section by applying them to the KDD99
benchmark dataset.

4.1 Evaluation Environment

A well-known benchmark data set, KDD99, which has been utilised in a number
pieces of recent research, such as [11, 34, 81, 77], is used in this work to evaluate
multiple machine-learning based network intrusion detection systems. The KDD99
dataset is a popular benchmark for intrusion detection; it includes legitimate con-
nections and a wide variety of intrusions simulated in a military network environ-
ment [70]. This dataset contains almost 5 million data instances with 42 attributes,
including the “class” attribute, which indicates whether a given instance is a normal
connection instance or one of the four types of attacks to be identified (i.e., normal,
denial of service attacks, user to root attacks, remote to user attacks, and probes). An
important feature of this dataset is that it is an imbalanced dataset, with most data
instances belonging to the normal, denial of service attacks and probes categories.
As with the type of low-frequency attacks, the classes of user to root attacks and re-
mote to user attacks, are only covered by a small number of data samples. Knowing
the inherent issues associated with the dataset, such as the high duplication rate of
78% [70], data instance selection methods, such as the random selection method, are
used to reduce the size of the dataset for machine learning. It is worth mentioning
that the KDD99 dataset has been evolved to the NSL-KDD-99 dataset [70], which
reduces the size to 125,937 data samples, while keeping all the features of the origi-
nal dataset. Table 2 details the information about the number of data instances in the

20 Jie Li et al.

training and testing datasets that were used by different network intrusion detection
systems, as discussed in Section 3.

Table 2 Details of data set for machine learning based NIDSes

Machine learning
approaches

Training Testing DatasetNormal Abnormal Normal Abnormal
TSK+ [34] 67,343 58,630 9,711 9,083 Entire NSL-KDD-99
Conventional
Fuzzy Inference [62] 67,343 58,630 9,711 9,083 Entire NSL-KDD-99

FC-ANN [77] 3,000 15,285 60,593 250,496 Random selection
MLP [43] 5,922 6,237 3,608 3,388 Random selection
SOM [26] 97,277 396,744 60,593 250,436 Random selection
Hierarchical SOM [26] 97,277 396,744 60,593 250,436 Random selection

4.2 Model Construction

This section details the model construction of the aforementioned six ML-based
network intrusion detection approaches.

4.2.1 TSK+ Fuzzy Inference

As discussed in Section 3.1, this system brings four important features to the sys-
tem model. During rule base initialization, the training dataset was divided into five
sub-datasets based on the five symbolic labels, which are represented by five in-
teger numbers. The fuzzy model takes four inputs, and predicts the crisp number.
According to the Elbow method, 46 TSK fuzzy rules have been generated, which
constructed the initial rule base. The final rule base has then been optimized using
the GA. The objective function in this work is defined as the root mean square error
(RMSE), while the GA parameters are listed in Table 3.

Table 3 GA parameters

Parameters Values
Population size 100.00
Crossover rate 0.85
Mutation rate 0.05
Maximum iteration 10,000.00
Termination threshold 0.01

Machine Learning Algorithms for Network Intrusion Detection 21

4.2.2 Conventional Mamdani Fuzzy Inference

The conventional Mamdani fuzzy inference model is investigated in this work. The
system uses 34 features for system modeling, which results in 34 inputs and one out-
put Mamdani fuzzy model. Each input domain has been equally partitioned into four
regions, described by four linguistic terms, namely, “very low”, “low”, “medium”,
and “high”; and two fuzzy sets, “low”, and “high”, are used to indicate normal and
abnormal network traffic, respectively. The fuzzy rules are obtained by a mapping
mechanism based on the given training data set. Given the input, which is a network
traffic package, the system first fuzzifies the crisp value of the required features
based on the mapping mechanism, then generates a fuzzy output based on the gen-
erated rule base. Finally, the center of gravity method is employed to defuzzify the
fuzzy output to a crisp one, which indicates whether the traffic is normal or an attack.

4.2.3 Fuzzy Clustering-Based ANN

Fuzzy clustering-based ANN uses all the 41 features to predict the five network be-
haviors. Note that, the symbolic values contained in the dataset have been converted
to continuous values. In the beginning, six training sub-datasets are obtained by
using a fuzzy C-means clustering technique. From there, six signal-hidden-layered
neural network models are trained, each of which is referred to as [41;18;5] struc-
ture. That is each network takes 41 inputs, goes through 18 hidden nodes, and finally
produces 5 outputs. In the aggregation progress, a new signal-hidden-layered ANN
model with the structure [5;13;5] is designed to aggregate all results from upper-
level ANN models. The mean square error (MSE) is used as the fitness function
during system modeling, and the threshold of MSE is set to 0.001. Also, the learn-
ing rate and the momentum factor at both ANN model levels are set to 0.01 and 0.2,
respectively.

4.2.4 Multilayer Perceptron

Expert knowledge has been used in this work to help select the most important fea-
tures. In particular, 35 features, including five symbolic features and 30 numerical
features, have been selected. Similar to the FC-ANN approach introduced above,
the symbolic values were converted to numerical values. Because of the lack of
data samples in U2R and R2U attacks, only three categories, which are “normal”,
“DoS” and “probes”, were considered. As a result, 35 input nodes and three out-
put nodes were used. In this experiment, a two-hidden-layered MLP network model
was implemented, constituting a four-layer MLP, whose structure is referred to as
[35;35;35;3].

22 Jie Li et al.

4.2.5 Hierarchical Self-Organizing Maps

A hierarchical self-organizing map architecture which consists of two levels of SOM
networks each comprised of three layers was used in this experiment. The first layer
was an input layer, with 20 input nodes (corresponding to 20 selected features). At
the first level of SOM, 6 SOM networks were deployed, each of which represented
one of the basic TCP features, including “duration”, “protocol type”, “service”,
“flag”, “destination bytes”, and “source bytes”. During the training process, each
training data sample was fed into each SOM network, thereby creating a number of
mappings between inputs and six 6ˆ 6 grids on the second layer, which resulted in
36 ˆ 6 “ 216 neurons. After this, potential function clustering [9] was employed
on each output layer of the first SOM level of the SOM to reduce the total neurons
from 36 to 6. As a consequence, the total number of neurons in the second layer was
reduced to 36. These 36 neurons were used as inputs for the second SOM level of
SOM to train a new SOM network that consists of a 20ˆ 20 grid of neurons, which
indicates the mapping from the input space to the different network behaviors. The
learning rate was set to 0.05, and the neighbourhood function was configured as a
Gaussian function.

4.2.6 Conventional Self-Organizing Maps

In this experiment, all the 41 features have been used for the intrusion detection sys-
tem. During the training process, the learning rate was set to 0.05, and the Gaussian
function was used as the neighbourhood function. The developed system took 41
inputs to create a mapping between five categories of network behaviors into a 6ˆ6
grid of neurons.

4.3 Results Comparisons

In order to enable a direct comparison between the different ML-NIDS approaches,
a common measurement, the detection rate, are employed in this work. In particular,
the detection rate can be defined as follows:

Detection rate “
Number of instances correctly detected

Total number of instances
¨ 100% (8)

The detection rates of the classification results for each network traffic category, are
summarised in Table 4.

The results show that all the approaches achieved a high detection performance
in the normal, DoS, and probes category, which contain sufficient data samples for
training. Note that conventional ANN-based network intrusion detection systems,
such as the MLP-based approach and the SOM-based approach, led an extremely
poor detection performance in the U2R and R2U classes. As discussed in Sec-

Machine Learning Algorithms for Network Intrusion Detection 23

Table 4 Performance comparison

Approach Normal DoS U2R R2U Probes
TSK+ [34] 93.10 97.84 65.38 84.65 85.69
Conventional
fuzzy inference [62] 82.93 90.42 19.05 15.58 37.08

FC-ANN [77] 91.32 96.70 76.92 58.57 80.00
MLP [43] 89.20 90.90 N/A N/A 90.30
SOM [26] 98.50 96.80 0.00 0.15 63.40
Hierarchical
SOM [26] 92.40 96.50 22.90 11.30 72.80

tion 3.2, this issue is caused by the lack of training data samples in both the U2R
and R2U classes. In this case, a future investigation may be required to identify how
the detection threshold affects the detection performance. Obviously, similar to the
modified version of the ANN approaches, the FC-ANN-based approach and the hi-
erarchical SOM-based approach increased the detection rate. It is worth mentioning
that the TSK+ based intrusion detection system not only achieved the best detection
performance in the normal, DoS, and probes classes, but also had an outstanding
performance in the other two classes.

5 Conclusion

This chapter investigates how machine learning algorithms can be used to develop
NIDSes. In particular, the chapter first reviewed the existing intrusion detection
techniques, including hardware deployment and software implementations. They
are followed by the discussion of a number of machine learning algorithms and
their applications in network intrusion detection. Finally, a well-known network se-
curity benchmark dataset, KDD99, was employed for the evaluation of the reviewed
machine learning-based network intrusion detection systems, with a critical analy-
sis of the results. Although the benchmark dataset, KDD99, is still popular in recent
research, it is relatively outdated and many of today’s network threats are not cov-
ered by the KDD99 dataset. Thereby, future research may consider using alternate
datasets, such as those reported in [14, 63]. In addition, as IoT continues to expand,
the data being generated will continue to grow in volume and velocity. How con-
ventional machine learning and artificial intelligence can be expanded to deal with
such continued growing data will be an interesting research direction.

References

1. Anderson, J.A.: An introduction to neural networks. MIT press (1995)

24 Jie Li et al.

2. Beghdad, R.: Critical study of neural networks in detecting intrusions. Computers and Security
27(5), 168 – 175 (2008)

3. Bostani, H., Sheikhan, M.: Hybrid of anomaly-based and specification-based ids for internet
of things using unsupervised opf based on mapreduce approach. Computer Communications
98, 52–71 (2017)

4. Bostani, H., Sheikhan, M.: Modification of supervised opf-based intrusion detection systems
using unsupervised learning and social network concept. Pattern Recognition 62, 56–72
(2017)

5. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Communications Surveys & Tutorials 18(2), 1153–1176
(2016)

6. Cameron, R., Zuo, Z., Sexton, G., Yang, L.: A fall detection/recognition system and an empiri-
cal study of gradient-based feature extraction approaches. In: UK Workshop on Computational
Intelligence, pp. 276–289. Springer (2017)

7. Chaudhary, A., Tiwari, V., Kumar, A.: Design an anomaly based fuzzy intrusion detection
system for packet dropping attack in mobile ad hoc networks. In: Advance Computing Con-
ference (IACC), 2014 IEEE International, pp. 256–261. IEEE (2014)

8. Chen, Y., Abraham, A., Yang, B.: Hybrid flexible neural-tree-based intrusion detection sys-
tems. International journal of intelligent systems 22(4), 337–352 (2007)

9. Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal of Intelligent &
fuzzy systems 2(3), 267–278 (1994)

10. Dash, M., Liu, H.: Feature selection for classification. Intelligent data analysis 1(3), 131–156
(1997)

11. Elisa, N., Yang, L., Naik, N.: Dendritic cell algorithm with optimised parameters using genetic
algorithm. In: 2018 IEEE Congress on Evolutionary Computation (IEEE CEC 2018). IEEE
(2018)

12. Farnaaz, N., Jabbar, M.: Random forest modeling for network intrusion detection system.
Procedia Computer Science 89, 213 – 217 (2016)

13. Garfinkel, S.: Network forensics: Tapping the internet. IEEE Internet Computing 6, 60–66
(2002)

14. Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for
intrusion detection dataset. In: Information Science and Security (ICISS), 2016 International
Conference on, pp. 1–6. IEEE (2016)

15. Guha, S., Yau, S.S., Buduru, A.B.: Attack detection in cloud infrastructures using artificial
neural network with genetic feature selection. In: 2016 IEEE 14th Intl Conf on Dependable,
Autonomic and Secure Computing, pp. 414–419 (2016)

16. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of machine
learning research 3(Mar), 1157–1182 (2003)

17. Haykin, S., Network, N.: A comprehensive foundation. Neural networks 2(2004), 41 (2004)
18. De la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martı́nez-Álvarez, A.: Feature selection

by multi-objective optimisation: Application to network anomaly detection by hierarchical
self-organising maps. Knowledge-Based Systems 71, 322–338 (2014)

19. Huang, Z., Shen, Q.: Fuzzy interpolative reasoning via scale and move transformations. Fuzzy
Systems, IEEE Transactions on 14(2), 340–359 (2006)

20. Huang, Z., Shen, Q.: Fuzzy interpolation and extrapolation: A practical approach. Fuzzy
Systems, IEEE Transactions on 16(1), 13–28 (2008)

21. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-
based approaches. IEEE Transactions on knowledge and data engineering 16(12), 1457–1471
(2004)

22. Jensen, R., Shen, Q.: Computational intelligence and feature selection: rough and fuzzy ap-
proaches, vol. 8. John Wiley & Sons (2008)

23. Jensen, R., Shen, Q.: Are more features better? a response to attributes reduction using fuzzy
rough sets. IEEE Transactions on Fuzzy Systems 17(6), 1456–1458 (2009)

24. Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Transactions on
Fuzzy Systems 17(4), 824–838 (2009)

Machine Learning Algorithms for Network Intrusion Detection 25

25. Joo, D., Hong, T., Han, I.: The neural network models for ids based on the asymmetric costs
of false negative errors and false positive errors. Expert Systems with Applications 25(1), 69
– 75 (2003)

26. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: A hierarchical som-based intrusion
detection system. Engineering Applications of Artificial Intelligence 20(4), 439 – 451 (2007)

27. Kczy, L., Hirota, K.: Approximate reasoning by linear rule interpolation and general approxi-
mation. International Journal of Approximate Reasoning 9(3), 197 – 225 (1993)

28. Labib, K., Vemuri, R.: Nsom: A real-time network-based intrusion detection system using
self-organizing maps. Networks and Security pp. 1–6 (2002)

29. Langley, P., et al.: Selection of relevant features in machine learning. In: Proceedings of the
AAAI Fall symposium on relevance, vol. 184, pp. 245–271 (1994)

30. Li, J., Qu, Y., Shum, H.P.H., Yang, L.: Tsk inference with sparse rule bases. In: Advances in
Computational Intelligence Systems, pp. 107–123. Springer (2017)

31. Li, J., Shum, H.P., Fu, X., Sexton, G., Yang, L.: Experience-based rule base generation and
adaptation for fuzzy interpolation. In: Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International
Conference on, pp. 102–109. IEEE (2016)

32. Li, J., Yang, L., Fu, X., Chao, F., Qu, Y.: Dynamic qos solution for enterprise networks using
tsk fuzzy interpolation. In: Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Confer-
ence on, pp. 1–6. IEEE (2017)

33. Li, J., Yang, L., Fu, X., Chao, F., Qu, Y.: Interval type-2 tsk+ fuzzy inference system. In:
Fuzzy Systems (FUZZ-IEEE), 2018 IEEE International Conference on. IEEE (2018)

34. Li, J., Yang, L., Qu, Y., Sexton, G.: An extended takagi–sugeno–kang inference system (tsk+)
with fuzzy interpolation and its rule base generation. Soft Computing 22(10), 3155–3170
(2018)

35. Li, J., Yang, L., Shum, H.P., Sexton, G., Tan, Y.: Intelligent home heating controller using
fuzzy rule interpolation (2015)

36. Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.: Intrusion detection system: A comprehensive
review. Journal of Network and Computer Applications 36(1), 16–24 (2013)

37. Linda, O., Vollmer, T., Manic, M.: Neural network based intrusion detection system for critical
infrastructures. In: 2009 International Joint Conference on Neural Networks, pp. 1827–1834
(2009)

38. Liu, G., Yi, Z.: Intrusion detection using pcasom neural networks. In: International Sympo-
sium on Neural Networks, pp. 240–245. Springer (2006)

39. Ma, Z., Kaban, A.: K-nearest-neighbours with a novel similarity measure for intrusion de-
tection. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 266–271
(2013)

40. Mac Parthaláin, N., Shen, Q.: Exploring the boundary region of tolerance rough sets for feature
selection. Pattern Recognition 42(5), 655–667 (2009)

41. Mahoney, M.V.: A machine learning approach to detecting attacks by identifying anomalies
in network traffic. Tech. rep. (2003)

42. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthe-
sis. IEEE Transactions on Computers C-26(12), 1182–1191 (1977)

43. Moradi, M., Zulkernine, M.: A neural network based system for intrusion detection and clas-
sification of attacks. In: Proceedings of the IEEE International Conference on Advances in
Intelligent Systems-Theory and Applications, pp. 15–18 (2004)

44. Mukherjee, S., Sharma, N.: Intrusion detection using naive bayes classifier with feature reduc-
tion. Procedia Technology 4, 119 – 128 (2012). 2nd International Conference on Computer,
Communication, Control and Information Technology(C3IT-2012) on February 25 - 26, 2012

45. Mukkamala, S., Sung, A.: Feature selection for intrusion detection with neural networks and
support vector machines. Transportation Research Record: Journal of the Transportation Re-
search Board (1822), 33–39 (2003)

46. Naik, N.: Fuzzy inference based intrusion detection system: Fi-snort. In: Computer and Infor-
mation Technology; Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM),
2015 IEEE International Conference on, pp. 2062–2067. IEEE (2015)

26 Jie Li et al.

47. Naik, N., Diao, R., Quek, C., Shen, Q.: Towards dynamic fuzzy rule interpolation. In: Fuzzy
Systems (FUZZ), 2013 IEEE International Conference on, pp. 1–7. IEEE (2013)

48. Naik, N., Diao, R., Shen, Q.: Genetic algorithm-aided dynamic fuzzy rule interpolation. In:
Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, pp. 2198–2205. IEEE
(2014)

49. Naik, N., Diao, R., Shen, Q.: Dynamic fuzzy rule interpolation and its application to intrusion
detection. IEEE Transactions on Fuzzy Systems (2017)

50. Ouadfel, S., Batouche, M.: Antclust: An ant algorithm for swarm-based image clustering. Inf.
Technol. J 6(2), 196–201 (2007)

51. Panicker, M., Babu, C.: Efficient fpga implementation of sigmoid and bipolar sigmoid acti-
vation functions for multilayer perceptrons. IOSR Journal of Engineering (IOSRJEN) pp.
1352–1356 (2012)

52. Parthalain, N., Shen, Q., Jensen, R.: A distance measure approach to exploring the rough set
boundary region for attribute reduction. IEEE Transactions on Knowledge and Data Engineer-
ing 22(3), 305–317 (2010)

53. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: Existing solutions and
latest technological trends. Computer Networks 51(12), 3448 – 3470 (2007)

54. Planquart, J.P.: Application of neural networks to intrusion detection. Sans Institute (2001)
55. Prabhakar, S.Y., Parganiha, P., Viswanatham, V.M., Nirmala, M.: Comparison between genetic

algorithm and self organizing map to detect botnet network traffic. In: IOP Conference Series:
Materials Science and Engineering, vol. 263, p. 042103. IOP Publishing (2017)

56. Rai, K., Devi, M.S., Guleria, A.: Decision tree based algorithm for intrusion detection. Inter-
national Journal of Advanced Networking and Applications 7(4), 2828 (2016)

57. Ramadas, M., Ostermann, S., Tjaden, B.: Detecting anomalous network traffic with self-
organizing maps. In: G. Vigna, C. Kruegel, E. Jonsson (eds.) Recent Advances in Intrusion
Detection, pp. 36–54. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

58. Ravale, U., Marathe, N., Padiya, P.: Feature selection based hybrid anomaly intrusion detection
system using k means and rbf kernel function. Procedia Computer Science 45, 428 – 435
(2015). International Conference on Advanced Computing Technologies and Applications
(ICACTA)

59. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial intelligence: a
modern approach, vol. 2. Prentice hall Upper Saddle River (2003)

60. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics.
bioinformatics 23(19), 2507–2517 (2007)

61. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.: Specification-
based anomaly detection: a new approach for detecting network intrusions. In: Proceedings
of the 9th ACM conference on Computer and communications security, pp. 265–274. ACM
(2002)

62. Shanmugavadivu, R., Nagarajan, N.: Network intrusion detection system using fuzzy logic.
Indian Journal of Computer Science and Engineering (IJCSE) 2(1), 101–111 (2011)

63. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection
dataset and intrusion traffic characterization (2018)

64. Shen, Q., Yang, L.: Generalisation of scale and move transformation-based fuzzy interpo-
lation. Journal of Advanced Computational Intelligence and Intelligent Informatics 15(3),
288–298 (2011)

65. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network
intrusion detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 305–316 (2010)

66. Stampar, M., Fertalj, K.: Artificial intelligence in network intrusion detection. In: 2015 38th
International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1318–1323 (2015)

67. Subba, B., Biswas, S., Karmakar, S.: A neural network based system for intrusion detection
and attack classification. In: 2016 Twenty Second National Conference on Communication
(NCC), pp. 1–6 (2016)

68. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE Transactions on Systems, Man, and Cybernetics SMC-15(1), 116–132 (1985)

Machine Learning Algorithms for Network Intrusion Detection 27

69. Tan, Y., Li, J., Wonders, M., Chao, F., Shum, H.P., Yang, L.: Towards sparse rule base gener-
ation for fuzzy rule interpolation. In: Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International
Conference on, pp. 110–117. IEEE (2016)

70. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the kdd cup 99 data
set. In: The Second IEEE Symposium on Computational Intelligence for Security and Defence
Applications (2009)

71. Thaseen, I.S., Kumar, C.A.: Intrusion detection model using fusion of chi-square feature se-
lection and multi class svm. Journal of King Saud University-Computer and Information
Sciences 29, 462–472 (2017)

72. Thorndike, R.L.: Who belongs in the family. Psychometrika pp. 267–276 (1953)
73. Tsang, E.C., Chen, D., Yeung, D.S., Wang, X.Z., Lee, J.W.: Attributes reduction using fuzzy

rough sets. IEEE Transactions on Fuzzy systems 16(5), 1130–1141 (2008)
74. Tseng, C.Y., Balasubramanyam, P., Ko, C., Limprasittiporn, R., Rowe, J., Levitt, K.: A

specification-based intrusion detection system for aodv. In: Proceedings of the 1st ACM work-
shop on Security of ad hoc and sensor networks, pp. 125–134. ACM (2003)

75. Vasighi, M., Amini, H.: A directed batch growing approach to enhance the topology preserva-
tion of self-organizing map. Applied Soft Computing 55, 424–435 (2017)

76. Vokorokos, L., Balaz, A., Chovanec, M.: Intrusion detection system using self organizing map.
Acta Electrotechnica et Informatica 6(1), 1–6 (2006)

77. Wang, G., Hao, J., Ma, J., Huang, L.: A new approach to intrusion detection using artificial
neural networks and fuzzy clustering. Expert Systems with Applications 37(9), 6225 – 6232
(2010)

78. Wang, W., Battiti, R.: Identifying intrusions in computer networks with principal compo-
nent analysis. In: First International Conference on Availability, Reliability and Security
(ARES’06), pp. 8 pp.– (2006)

79. Yang, L., Chao, F., Shen, Q.: Generalised adaptive fuzzy rule interpolation. IEEE Transactions
on Fuzzy Systems (2017)

80. Yang, L., Chen, C., Jin, N., Fu, X., Shen, Q.: Closed form fuzzy interpolation with interval
type-2 fuzzy sets. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on,
pp. 2184–2191. IEEE (2014)

81. Yang, L., Li, J., Fehringer, G., Barraclough, P., Sexton, G., Cao, Y.: Intrusion detection system
by fuzzy interpolation. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp. 1–6 (2017)

82. Yang, L., Li, J., Hackney, P., Chao, F., Flanagan, M.: Manual task completion time estimation
for job shop scheduling using a fuzzy inference system. In: iThings and GreenCom and
CPSCom and SmartData, 2017 IEEE International Conference on, pp. 139–146. IEEE (2017)

83. Yang, L., Shen, Q.: Adaptive fuzzy interpolation and extrapolation with multiple-antecedent
rules. In: Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, pp. 1–8 (2010)

84. Yang, L., Shen, Q.: Adaptive fuzzy interpolation. Fuzzy Systems, IEEE Transactions on 19(6),
1107–1126 (2011)

85. Yang, L., Shen, Q.: Adaptive fuzzy interpolation with uncertain observations and rule base. In:
Fuzzy Systems (FUZZ), 2011 IEEE International Conference on, pp. 471–478. IEEE (2011)

86. Yang, L., Shen, Q.: Closed form fuzzy interpolation. Fuzzy Sets and Systems 225, 1–22
(2013). Theme: Fuzzy Systems

87. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal
of machine learning research 5(Oct), 1205–1224 (2004)

88. Zhang, C., Zhang, G., Sun, S.: A mixed unsupervised clustering-based intrusion detection
model. In: 2009 Third International Conference on Genetic and Evolutionary Computing, pp.
426–428 (2009)

89. Zuo, Z., Li, J., Anderson, P., Yang, L., Naik, N.: Grooming detection using fuzzy-rough feature
selection and text classification. In: Fuzzy Systems (FUZZ-IEEE), 2018 IEEE International
Conference on. IEEE (2018)

90. Zuo, Z., Yang, L., Peng, Y., Chao, F., Qu, Y.: Gaze-informed egocentric action recognition for
memory aid systems. IEEE Access 6, 12,894–12,904 (2018). DOI 10.1109/ACCESS.2018.
2808486

